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Abstract

Technical analysis has been thwarted in academic circles, due to the

Efficient Market Hypothesis, which had significant empirical support early

on. However recently, there is accumulating evidence that the markets

are not as efficient and a new theory of price discovery, Heterogenous

Market Hypothesis, is being proposed. As such, there is renewed interest

and possibility in technical analysis, which identifies trends in price and

volume based on aggregate repeatable human behavioural patterns.

In this thesis we propose a new approach for modeling and working

with technical analysis in high-frequency markets: dynamic Bayesian

networks (DBNs). DBNs are a statistical modeling and learning framework

that have had successful applications in other domains such as speech

recognition, bio-sequencing, visual interpretation. It provides a coherent

probabilistic framework (in a Bayesian sense), that can be used for both

learning technical rules and inferring the hidden state of the system. We

design a DBN to learn price and volume patterns in TSE60 stock market

and find that our model is able to successfully identify runs and reversal

out-of-sample in a statistically significant way.
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Chapter 1

Introduction

Traditionally, there have been two main schools of thought in financial

markets—technical analysis and fundamental analysis. Technical analysis

is the study of trends in price and volume, while fundamental analysis

concerns itself with economic factors and the projection of performance

based on these factors. These two approaches need not be exclusive;

indeed they can complement each other. Technical analysis tools can

be used to draw significance to various economic trends and knowing

economic trends can aid the technician in determining the potential

significance of various technical signals and patterns [Murphy 99].

Despite the infiltration of technical analysis in industry practice, aca-

demic finance has been slow to accept it. In fact, among certain critics,

technical analysis is viewed as a form of black magic. Indeed, in his in-

fluential book A Random Walk down Wall Street, [Malkiel 03] concludes

that “[u]nder scientific scrutiny, technical analysis must share a pedestal

with alchemy.”

Much of the criticism of technical analysis has its roots in academic

theory—specifically the efficient market hypothesis (EMH). EMH states

that in a market populated with homogeneous, rational and fully informed

agents, and in the absence of transaction costs, the market price will fully

reflect all available information [Fama 70]. Thus the market’s price is

1



2 CHAPTER 1. INTRODUCTION

always the correct one—any past trading information is already reflected

in the price of the stock—and any attempt to predict price is useless.

EMH cannot be tested directly, since it assumes that the market price is

actually the best estimate we have of the asset’s intrinsic value. [Fama 70]

offers a way to test the predictions of EMH on real-world markets, by

identifying three sources of information, corresponding to three increasing

degrees of informational efficiency that can be tested separately: in the

weak form, prices are supposed to fully reflect all the information con-

tained in historical information, so that no excess return can be achieved

by following technical analysis strategies; in the semi-strong form, prices

more generally reflect all sorts of information publicly available, so that

prices quickly adjust to news and consequently even fundamental anal-

ysis is of little use in finding investment opportunities; finally, in the

strong form, prices reflect all types of information, public or private,

so that no one can use monopoly information to get excess profit. At

the time, EMH was supported by a large body of empirical research

[Samuelson 65, Fama 69, Jensen 67]. In particular, the weak form of

EMH is consistent with a random walk model, such as brownian motion

or more general Lévy processes.

However, recent work has questioned the validity of EMH [LeBaron 96].

Instead of assuming a homogenous market, in which all agents interpret

news and react to it in the same way, a heterogenous market is pro-

posed, in which agents act in different time horizons and in differing ways

[Dacorogna 01]. Also, emerging discoveries in behavioural economics

maintain that human psychology, not always rational, is intertwined with

price processes [Kahneman 79]. Finally, random walk models are unable

to explain properties of real world markets such as volatility clustering

and correlations between waiting times of orders [Liu 99, Cont 01].

These results imply systematic patterns may exist in price action.

[Lo 00] evaluated the effectiveness of chart patterns, and found that over

a 31-year sample period several of them provided incremental information.

Furthermore, stock prices are found to fluctuate far too much compared
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with what could be expected from variations in the dividend process which

are supposed to underlie the fundamental value [Shiller 81]. Also, studies

have shown that volume can be a significant information source to price

movement [Karpoff 87].

However, profiting using technical analysis is still open for debate.

[Brock 92] show trading rules out-perform a buy-and-hold strategy on

the Dow Jones Industrial Average Index. However, they do not include

transaction costs in their analysis. [Bessembinder 98] replicate their work

but include transaction costs and show that these subsume the profitability

documented by [Brock 92]. A more comprehensive study of simple tech-

nical trading is surveyed in [Canegrati 08], with results that are mixed

and dependent on the market and economy chosen.

While most studies have evaluated technical analysis at the daily

frequency, technical analysis may be most useful at higher frequencies,

when fundamentals are changing the least. The practice of day trading

puts this to the test. Day traders engage in the buying and selling of

securities many times during the course of a day based on short-term price

volatility. They typically close out positions by the end of the trading day

in order to avoid risk when the markets are closed.

Traditionally, the primary means of detecting trends and patterns has

involved statistical methods such as clustering and regression analysis and

more recently the Autoregressive Conditional Heteroscedastic (ARCH)

model and its descendant, Generalized ARCH (GARCH) model. The math-

ematical models associated with these methods for financial forecasting,

however, are linear and may fail to forecast the turning points because

in many cases the data they model may be highly nonlinear. As a result,

machine learning paradigms are becoming prevalent tools for analyzing

markets since they inherently handle non-linear modeling. For example,

[Austin 04] uses genetic algorithms to optimize a set of technical indi-

cators for foreign exchange markets, [Nevmyvaka 06] addresses optimal

execution strategies with a reinforcement learning algorithm, [Zhang 98]

survey the use of artificial neural networks for financial forecasting, and
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hidden Markov models have been used to estimate latent variables in

models [Mamon 07].

In this thesis, we propose using Dynamic Bayesian Networks (DBNs)

as a natural approach for financial forecasting and technical analysis. As

far as we are aware it is the first study to investigate the use of DBNs

in this capacity. DBNs are playing an increasingly important role in the

design and analysis of machine learning algorithms. They provide a

flexible and coherent probabilistic framework for modeling temporal data

using the Bayesian network formalism—a marriage of probability theory

and graph theory in which dependencies between variables are expressed

graphically. Many of the classical multivariate probabilistic systems studied

in statistics, systems engineering, information theory, pattern recognition

and statistical mechanics are special cases of the general graphical model

formalism—examples include mixture models, factor analysis, hidden

Markov models, Kalman filters and Ising models [Jordan 98]. Indeed,

DBNs provide a powerful tool for dealing with uncertainty and complexity

in a system that evolves over time [Murphy 02].

Furthermore, the DBN graphical model formalism provides a frame-

work for the design of new systems—ideal for modeling high-frequency

markets with embedded patterns. Fundamental to the idea of a graphical

model is the notion of modularity: a complex system is built by combining

simpler parts. Probability theory provides the glue whereby the parts

are combined, ensuring that the system as a whole is consistent, and

providing ways to interface models to data. They have been successfully

employed in various other applications including speech recognition, gene

sequencing, bio-informatics, visual object tracking, and medical diagnosis.

In this thesis, we design a DBN based on a hierarchical hidden Markov

model to learn price and volume patterns in intraday data. We carefully

design our features based on technical analysis priors of price and volume

behaviour, and learn the model parameters using a historical window.

The flexibility allowed by DBNs requires that one design the structure

well—too complicated a structure results in over-fitting the learning data,
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whereas too sparse a structure does not capture meaningful patterns.

Our model learns two distinct states in high-frequency data—one

where volume and price behaviour indicates buying pressure (buying

state) and another where it indicates selling pressure (selling state). Buy-

ing pressure is identified when price increases have accompanying volume

increases and price decreases have accompanying volume decreases; sell-

ing pressure is identified when the reverse is true, that is when price

increases have volume decreases and price decreases have volume in-

creases. Distributions of price and volume are learned for the two unique

states that maximize the likelihood of the observation sequence. We use

intraday tick data from sixty stocks of the S&P/TSE 60 and find that dur-

ing the buying state there is positive expectation in price and during the

selling state there is negative expectation in price. We also investigate the

predictive power of this model and obtain statistically significant evidence

that high-frequency price and volume behaviour can identify intraday

runs and reversals ex-ante. We conclude that dynamic Bayesian networks

can provide a powerful approach for analyzing markets and is a promising

technique upon which more complex models of market behaviour can be

built.

1.1 Contributions

This thesis is an interdisciplinary work that involves aspects of machine

learning, statistics and finance. The major contributions are:

1. Approach technical analysis using a coherent probabilistic frame-

work (dynamic Bayesian networks) within a regime switching con-

text.

2. Design a price and volume dynamic bayesian network for high-

frequency stock markets based on technical analysis concepts. It is

the first publicly available application of dynamic bayesian networks

on high frequency stock data.
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3. Verify significance of regimes in high-frequency markets (S&P500

TSE60) ex-ante; investigate profitability and properties of simple

trading strategy based on model.

1.2 Thesis outline

Chapter 2 reviews basic financial theory about markets and introduces

technical analysis; chapter 3 describes dynamic Bayesian network theory;

chapter 4 motivates and proposes the price and volume model; finally,

chapter 5 discusses and analyzes results of the model when applied to

market tick data.



Chapter 2

Financial Theory

There have been two main approaches to financial markets, fundamental

analysis and technical analysis. The former attempts to ascertain intrinsic

value of financial assets, while the latter attempts to identify trends in

them. The goal of both methods is to forecast or project performance of

the asset.

In this chapter we review background theory relating to financial

markets, providing context for both fundamental and technical analysis.

We also review recent studies which have shed light on the complexities

in the market. We begin by defining the Efficient Market Hypothesis

and its implications. We then describe an alternate theory, Heterogenous

Market Hypothesis, that explains some of the empirical findings; finally,

we explain the basic idea of technical analysis and why it may have

validity.

2.1 Efficient Market Hypothesis

Information is what drives investment decisions and trading. Secu-

rity prices are a result of this process: as market participants engage

in trading—buyers meet sellers—and new price levels are established.

Whether this market price actually reflects the intrinsic value of the asset

7
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is a difficult question. The Efficient Market Hypothesis (EMH) addresses

this question by turning the problem upside down. [Fama 70] defines, "A

market in which prices always fully reflect available information is called

efficient." Therefore, in efficient markets, information should be reflected

in prices with an accuracy that leaves no investor an incentive to search

for more information or to trade. As a result, it assumes that the market

price is actually the best estimator we have of the asset’s intrinsic value.

An idealized "frictionless" market is defined as a market where the

following hold [Schwartz 04],

• There are no taxes, no transaction costs, and no short-selling restric-

tions.

• All investors are fully informed (∀i,φi,t ≡ φt) and, being fully in-

formed, have the same (homogenous) expectations about what

prices will be in the future (∀i, pi,t+1 ≡ E[pt+1|φt]).

• Unlimited amounts can be borrowed or lent at a constant, risk-free

rate.

• Markets are perfectly liquid.

where φi,t represents the information set known to investor i at time t, φt

represents all information available at time t, pt+1 is the price of the asset

at time (t + 1) and pi,t+1 is investor i’s expected price for time (t + 1) at

time t.

In such a market, market efficiency is a result of two basic mechanisms:

traders’ rationality and arbitrage. Rational traders imply that traders

base their demand function (their orders) on their expectations of an

asset’s fundamental value, centered around the fundamental value of

the asset, E[pt+1|φt]. [Sharpe 98] defines arbitrage as "the simultaneous

purchase and sale of the same, or essentially similar, security in two

different markets for advantageously different prices". It is the means

by which any new information quickly (instantaneously, in a frictionless
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market) assimilates into the market causing the price to once again reflect

all known information [Shleifer 97].

However, EMH cannot be tested directly since it requires an accurate

model of asset pricing. Instead, examining whether or not traders can

realize excess returns by trading on information becomes the test of market

efficiency. The null hypothesis tests this in three increasing degrees of

informational efficiency [Fama 70],

Weak form efficiency: Prices fully reflect the information implicit in the

sequence of past prices. Thus excess returns cannot be realized by

using trading rules based on past price movements, for instance by

technical analysis or chartist methodologies. So past price changes

cannot be used to improve predictions concerning the expected

value of future price changes—consistent with the random walk

hypothesis [Samuelson 65] (see Section 2.2).

Semi-strong form efficiency: Prices reflect all relevant information that

is publicly available. In this situation, prices quickly adjust to new

information available. The announcement of a piece of information

is considered an event, and the studies are commonly referred to

as event studies. For instance, [Fama 69] conducted a study of

the effect of stock splits on share price. They found that prices

adjust to news before the event occurred, and therefore profitable

trading strategies cannot be developed in relation to an event after

it has occurred. A number of other more recent event studies have

substantiated the informational efficiency of the market in the semi-

strong form of the hypothesis.

Strong form efficiency: Information that is known to any participant

is reflected in market prices. Early identification of new informa-

tion can provide a source of excess returns; for example, insiders

who trade on the basis of privileged information can make substan-

tial profits—violating strong form efficiency. However, the empirical
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evidence shows that professional investment managers do not consis-

tently realize superior portfolio returns. Mutual funds have been the

most frequently studied of the institutions; [Jensen 67, Ippolito 89]

show that they do not in general outperform the market.

More recently studies are showing empirical evidence against the

EMH. Market prices were proven to exhibit excess volatility compared

with the level we would expect from the movements in the underlying

fundamentals [Shiller 81]. It was also shown that most price variations of

the S&P500 stock index did not correspond to any news over more than

50 years of data [Cutler 89]. Finally, the 1987 stock market crash, the

tech boom bubble and recently the credit crisis crash provide the most

obvious evidence that prices do not simply reflect fundamental values.

As a result theoretical arguments against the EMH emerged. First,

if all agents are rational and this is common knowledge, there should

be no trade, since an agent will send an order only if they have private

information not reflected in price, in which case other agents will refuse to

trade [Milgrom 82]. This contrasts with the high level of intra-day activity

witnessed in real-markets, suggesting that trades occur when participants

have heterogenous beliefs. Moreover, as [Grossman 80] pointed out, if

markets are efficient and prices actually reflect all available information,

what is the incentive for rational traders and arbitrageurs to collect this

information in the first place—and if they do not, what will ensure that the

price reflects it? Finally, arbitrage was shown to be risky and consequently

limited [Shleifer 97]. As such, there is no guarantee that the price will

mean revert toward its intrinsic value once driven away by irrational

traders. An alternative to the EMH is the heterogenous market hypothesis

[Dacorogna 01], which addresses these issues. This is discussed in Section

2.4.



2.2. THE RANDOM WALK HYPOTHESIS 11

2.2 The Random Walk Hypothesis

When successive price changes have an expected value of 0 and are

statistically independent and identically distributed, the security’s price is

said to follow a random walk. This is consistent with the weak form of

market efficiency, as past prices cannot be used to improve prediction of

future prices. Thus deviations from random walk provides us evidence of

market inefficiencies.

Denoting Wt,∆t as the log price increment (i.e., Wt,∆t ≡ log Pt−log Pt−∆t =
log Pt

Pt−∆t
), the following conditions are necessary for the process to be a

random walk [Daniel 06],

E[Wt,∆t] = 0

var(Wt,∆t) = ∆tσ2 <∞

cov(Wt,∆t , Ws,∆t) = 0, ∀s 6= t

noting that a zero autocorrelation is only a necessary, but not sufficient

condition for independence.

Different increment distributions result in different random walks.

For instance, when Wt,∆t ∼N (0,∆tσ2) (Gaussian white noise), we have

geometric Brownian motion.

In fact, if price changes are independent and identically distributed,

with finite second moment, then the Central Limit Theorem guarantees

that the centered log-returns (Wt,∆t) will be normally distributed since

returns are additive. Moreover, if we increase the time scale to large

values (∆t ′ = n∆t), the distribution of Wt,∆t ′ ≡ log Pt − log Pt−∆t ′ will

remain normal, simply scaled by a factor
p

n, since Wt,∆t ′ ∼N (0, n∆tσ2) =
p

nN (0,∆tσ2).
Figure 2.1 shows log returns for Thomson Corp., and for comparison

purposes shows Gaussian increments. We can see that Gaussian price

changes are a poor model for actual price changes. In particular, actual

return distributions have fat tails (leptokurtic), exhibiting excess kurtosis
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(a)

(b)

Figure 2.1: A comparison of a) transaction log returns for TSE:TOC over
week of May 7, 2007 normalized to have mean 0, standard deviation 1,
and b) Gaussian increments.
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when compared with the normal distribution. Levy stable distributions are

the only family of distributions stable by addition (i.e., linear combination

of two independent copies of the variable has the same distribution) that

can be obtained by summing independent identical random variables.

This is known as the Generalized Central Limit Theorem, where normal

limiting distribution becomes a special case. Levy stable distributions are

bell shaped and can exhibit leptokurtosis. In particular, the characteristic

exponent parameter, α, defines the tail’s thickness and scaling behaviour

(scales with exponent 1/α). When 0 < α < 2, the distributions are non-

Gaussian and characterized by excess kurtosis with tails that decay as

a power-law with exponent α. Consequently, their second moment is

not defined and their first moment exists only when α > 1 [Cont 03].

Thus the assumption of independent increments with infinite variance

could then elegantly explain the excess kurtosis observed in empirical

data while preserving the parsimony of the random walk hypothesis.

However, recent studies using transaction data (for example [Liu 99])

report that the distribution of log returns exhibits a power-law behaviour

for high-frequency with a tail index α≈ 3, well outside of the Levy regime

0< α < 2. This scaling breaks down when the sampling window increases

for ∆t ≈ 16 days for individual stocks and ∆t ≈ 4 days for indices,

after which a slow convergence to a Gaussian distribution is observed

[Daniel 06].

2.3 Stylized facts

[Cont 01] conducted a comprehensive study of various financial assets

and found that the return distributions all contained similar properties or

stylized facts listed below. These facts further reveal the inability of the

random walk approach to model real financial series.

Autocorrelations: Linear autocorrelations of asset returns are often in-

significant, except for high-frequency small intraday time scale (<
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20 minutes).

Fat tails: The unconditional distribution of returns has a tail index which

is finite, higher than two and less than five. This excludes Levy

stable laws with infinite variance and the normal distribution.

Distribution asymmetry: Distributions are negatively skewed, with a

greater chance of larger drawdowns in prices but not equally large

upward movements.

Time scaling: The shape of the distribution is not the same at different

time scales. Particular in high-frequency (smaller time scales) the

distribution vary the most, and as one increases the time scale

distributions look more like a normal distribution.

Bursts: Returns at any time scale exhibit irregular bursts.

Volatility clustering: Volatility displays a significant positive autocorrela-

tion, indicating that periods of high volatility are followed by high

volatility and periods of lower volatility are followed by low volatility.

(This can be modeled by using GARCH type models, where volatility

σ is stochastic parameter that follows an autoregressive model.)

Conditional heavy tails: Even after correcting returns for volatility clus-

tering using GARCH-type models, residual time series still exhibit

fat tails.

Autocorrelation of absolute returns: Absolute returns can be another

measure of volatility. Autocorrelation function of absolute returns

decays slowly as a function of time lag, indicating long-range depen-

dence.

Leverage effect: Volatility is negatively correlated with returns.

Volume/volatility correlation: Volume is correlated with volatility.
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2.4 Heterogeneous Market Hypothesis

With more and more evidence accumulating against the EMH and given

the stylized facts described above, a model of market dynamics called

heterogeneous market hypothesis has surfaced [Dacorogna 01]. The het-

erogenous market hypothesis is in contrast to the assumption of a homoge-

nous market where all participants interpret news and react to news in

the same way.

Various participants in a market can have radically different time

perspectives and motives for placing an order. A fund manager may be

prepared to wait several days to execute a large order, whereas a day trader

will want an extremely fast turnaround. Some participants trade because

of their own analysis of information, others do so for liquidity reasons and

some trade on the basis of technical analysis. All these flows are broken

down into atomic transactions that meet in real time on the exchange. The

different dealing frequencies clearly mean different reactions to the same

news in the same market. The market is heterogenous with a "fractal"

structure of the participants’ time horizons as it consists of short-term,

medium-term and long-term components. Each component has its own

reaction time to news, related to its time horizon and dealing frequency.

Furthermore, participants may have divergent expectations, as they

differ in their assessments of information. Information sets are vast,

complex and challenging to understand. Different participants possess

only a subset of the information that is publicly available, and some

have private information. Also, to be useful, raw information has to

be processed and analyzed, which may not be done in identical ways.

And participants may also reassess their individual valuations based on

what they come to know others are thinking. (Note, even though the

assumption of homogenous expectations is unrealistic, models based on

it, such as the standard capital asset pricing model, continue to provide

insight into how the market determines prices for various assets according

to their risk and return characteristics.)
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This heterogeneity in time horizon and expectations can explain why

volatility is positively correlated with market volume. In a homogenous

market, the more participants that are present, the faster the price should

converge to the intrinsic value on which all agents have rational expecta-

tion. In this case we would expect volatility to be negatively correlated

with market presence (volume) and activity. In a heterogenous market,

different market participants are likely to settle for different prices and

decide to execute their transactions in different market situations—thus

generating volatility.

2.5 Technical analysis

Technical analysis uses past price and volume information to forecast the

direction of the market. Technical analysts, sometimes called "chartists",

may employ models and trading rules based on price and volume transfor-

mations, such as the relative strength index, moving averages, regressions,

inter-market and intra-market price correlations, cycles or, classically,

through recognition of chart patterns. The basic principle of technical

analysis is that market price reflects all relevant information. In fact tech-

nical purists even believe it is redundant to do fundamental analysis, since

the price reflects this already (for example, prices adjust to news before

the event occurs). On this point, technical analysts agree with one of the

premises of EMH. The key basis for forecasting then is that price action

tends to repeat itself because investors collectively tend toward patterned

behaviour. Thus technicians’ attempt to identify trends and conditions.

There is a considerable number of trading rules based on observations

of past price and volume movements that have been developed. In general,

the patterns are interpreted as shifts in demand and supply which can be

identified by investigating market action in the form of price and volume

movements. Thus, by understanding the emotions in the market and

studying the market itself, as opposed to its fundamental components,

technicians attempt to determine what direction, or trend, will continue
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in the future.

The basic definition of price trend is the one put forward by Dow

Theory [Murphy 99] in the early 1900s. Market price action can be

represented as a sequence of zig-zags, defined as local extrema of a

smoothed market price curve [Lo 00]. Zig-zags form as the market goes

through periods of price discovery and consolidation in the direction of

the overall trend. An uptrend is classified as a series of higher highs and

higher lows; while a downtrend is one of lower lows and lower highs.

Volume is also considered a critical ingredient in technical analysis. It

is used to confirm trends and chart patterns. Dow Theory describes how

price and volume behaviour may be interpreted together [Ord 08]. Any

price movement up or down with higher volume is seen as a signal that

the price move is being supported and as such this represents the "true"

market view. If many participants are active in a particular security, and

the price moves significantly in one direction, Dow maintained that this

was the direction in which the market anticipated continued movement.

A move with weak volume indicates the market is merely consolidating.

Furthermore, Dow Theory stipulates that this analysis can be done at

all time scales. In this thesis, we design a dynamic Bayesian network

that attempts to capture this behaviour in a high-frequency window. See

Section 4.1 for a more thorough description of the technical analysis

principle used.

Dow theory, and in general technical analysis, has not been received

well by academics, although it is widely used among traders and financial

professionals. One of the biggest challenges in assessing the validity of

technical analysis is its highly subjective nature. Technical analysis has

received much criticism from fundamentalists for this reason—as these

patterns are attributed to be in "the eyes of the beholder". On the other

hand, professional chartists profess that technical analysis is an art more

than a science, requiring skills and judgement.

Literature has generally focused on evaluating simple technical trading

rules such as filter rules and moving average rules that are fairly straight-
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forward to define and implement. [Lo 00] moved this literature forward

by evaluating more complicated trading strategies used by chartists that

are hard to define and implement objectively. His work mitigates some of

the stigma of technical analysis by proposing a systematic and automatic

approach to technical pattern recognition. He evaluated the effectiveness

of chart patterns, and found that over a 31-year sample period several of

them provided incremental information.

Furthermore, emerging discoveries in behavioural economics claim

that human psychology is not always rational, and in fact intertwined

with the price process [Kahneman 79]. Using an innovative approach,

[Kahneman 79], established human beings are subject to framing (deci-

sion depends on the way problem is presented), perform badly at esti-

mating probabilities and are sensitive to relative wealth variation rather

than absolute wealth level. Kahneman was awarded the Nobel Prize in

Economics in 2002 for his work. His results imply emotion and senti-

ment may play a large part in price discovery, thus indirectly supporting

technical analysis tenets.

Whether technical analysis actually works continues to be a mat-

ter of controversy, however. Recent studies have yielded mixed results.

[Brock 92] show trading rules out-perform a buy-and-hold strategy on

the Dow Jones Industrial Average Index. However, they do not include

transaction costs in their analysis. [Bessembinder 98] replicate their work

but include transaction costs and show that these subsume the profitability

documented by [Brock 92]. [Canegrati 08] conducted the largest econo-

metric study ever made to demonstrate the validity of technical analysis

for companies listed on the FTSE. By analyzing more than 70 technical

indicators, some of them almost unknown until then, the study demon-

strated how market returns can be predicted, at least to a certain degree,

by some technical indicators.

Most studies have evaluated technical analysis at the daily frequency.

However, in practice technical analysis is used more frequently at higher

frequencies for intraday trading, when fundamentals are changing the
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least. In this thesis, we investigate the viability of price and volume pat-

terns, while introducing a new and probabilistically consistent approach

(dynamic Bayesian networks, which are discussed in the next chapter) for

analyzing technical signals.





Chapter 3

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) can be used used to model stochastic

processes that generate a sequence of observable quantities, or observa-

tions, as they evolve over time in a non-deterministic way. Stochastic

processes occur in a large range of application areas, and there is set of

common themes that allow them to be classified within a well developed

taxonomy. The principal distinctions are

• Continuous time versus discrete time. Continuous time processes

occur naturally in models of physical systems. Brownian motion

can be considered as a simple continuous time DBN. Discrete time

models can be used as approximations to continuous models and

also occur naturally in many areas of economics, communications

and computer science. Speech recognition and genome mapping are

some examples of Discrete time models.

• Use of hidden state. Many time-series modeling techniques work

exclusively with observable quantities. More complex techniques

posit the existence of one or more hidden underlying states, whose

interaction and values determines in some way the observed quanti-

ties. Hidden Markov models, Kalman filters are examples that use

hidden states.

21
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• Continuous variables versus discrete variables. When modeling sys-

tems, continuous variables are natural choice in some applications,

whereas discrete variables are more appropriate in other domains.

We can also obtain mixed continuous and discrete variables. In

particular, it is common, for instance, in speech recognition, to have

discrete state variables and continuous observations variables.

In this thesis we will be concerned with hidden-state, discrete-time

and discrete-variable models.

The models use the concept of probability and Bayesian inference. We

refer the reader to [Pearl 88] for a thorough discussion of the significance

of probability, causality and process modeling.

Dynamic Bayesian networks, and more generally graphical proba-

bilistic models, use a graph to describe a stochastic process. The graph

contains a qualitative part, its topography, and a quantitative part, a set

of conditional probability functions. The entire model can be thought

of as "a compact and convenient way of representing a joint probability

distribution over a finite set of variables" [Bengtsson 99].

The power of these models comes from the conditional independence

assertions encoded in the topography. Conditional independence asser-

tions allow for local inferences—so that calculations of joint probability

distributions of conditionally independent subsets of variables can be per-

formed separately, reducing complexity. Such conditionally independent

subsets can be combined to form complex structures in a modular way.

Use of conditional independence assertions result in sparse networks, and

will itself create at least three important advantages compared to fully

connected models:

• Sparse network structures have fewer computational and memory

requirements,

• Sparse networks are less susceptible to noise in training data and

less prone to overfitting (since there is less freedom in the form



3.1. BAYESIAN NETWORKS 23

of a restricted number of random variables, there is less risk that

spurious regularity in data will be treated as significant),

• Resulting structure and parameters reveal useful knowledge about

the underlying problem domain that was previously inconspicuous.

Graphical models are very versatile. They combine useful traits from

graph theory and probability theory and offer an intuitive, visual repre-

sentation of conditional independence, efficient algorithms for inference

and strong representational power. Many important current models, such

as mixture models, factor analysis, hidden Markov models (and variants),

Kalman filtes and Ising models, can be expressed as particular instances

of graphical models. Furthermore, specific algorithms for each of the

models turn out to be just special cases of graphical model inference

[Bilmes 00]. Indeed, the framework is flexible enough to subsume many

existing techniques and is viewed as a unifying statistical framework,

facilitating experimentation in new and complex ways. These properties

make it an ideal tool for use in financial analysis. Financial data is rapt

with noise, randomness and uncertainty. Thus this flexible statistical

framework, that can learn dependencies and infer hidden states in an

interpretable and efficient manner can become an invaluable approach

for analyzing and manipulating financial data.

We shall first present Bayesian networks, describing their represen-

tation and usage. Then we look at dynamic Bayesian networks, which

extends Bayesian networks by incorporating a time series component.

We end by showing an example of how DBNs may be used for regime

switching models in economic analysis.

3.1 Bayesian networks

A Bayesian network is a graphical model for representing conditional

independencies between a set of random variables. They are constructed

from directed and acyclic graphs. Nodes represent random variables—a
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measured parameter, a hidden or latent variable or a hypothesis. The

absence of edges imply conditional independencies. To each node or

variable a conditional probability distribution is defined. Thus they encode

the joint probability distribution of all the variables in a compact manner.

Most of the theory for Bayesian networks is due to [Pearl 88].

The graph topology accounts for the qualitative part of the Bayesian

network—i.e., which variables are conditioned on which. The quantitative

part consists of defining the conditional probability functions or densities

involved. For discrete ranges, the probability is typically stored in a

conditional probability table. For continuous variables, Gaussian mixtures

may be used. The directed edges of a Bayesian network provide an

informal representation of causality, so that an edge goes from a cause

to a consequence. This idea can be useful for constructing Bayesian

nets by hand or for interpreting automatically derived ones. However, it

is important to understand that this construct of causality is informal—

while it is true that a graph corresponds to a particular joint probability

distribution, the converse is not true. A given joint probability distribution

may be factorized in different ways, giving rise to different graphs. For

example, by Bayes’ rule

P(A|B) =
P(B|A)P(A)

P(B)
,

edges can be reversed and hence have inverted causal interpretations.

Refer to [Pearl 88] for more detailed discussion of causality in Bayesian

networks.

For example, consider the Bayesian network shown in Figure 3.1

(adopted from [Murphy 02]), where the four random variables, C , S, R, W

are binary (i.e., have values in {0,1}) and represent the events Cloudy,

Sprinkler is on, Raining, and grass is Wet respectively. We see that the

event "grass is wet" (W = 1) has two possible causes: either the water

sprinker is on (S = 1) or it is raining (R = 1). The strength of this

relationship is shown in the conditional probability table (CPT) (refer to
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C

R S

W

Figure 3.1: Simple Bayesian network with four random variables, C , S, R,
W . (Example adopted from [Murphy 02])

P(C = 0) P(C = 1)

0.5 0.5

C P(S = 0) P(S = 1)

0 0.5 0.5
1 0.9 0.1

C P(R= 0) P(R= 1)

0 0.8 0.2
1 0.2 0.8

S R P(W = 0) P(W = 1)

0 0 1 0
1 0 0.1 0.9
0 1 0.1 0.9
1 1 0.01 0.99

Table 3.1: Conditional probability table for simple Bayesian network.
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Table 3.1). For example, we see that P(W = 1|S = 1, R = 0) = 0.9, and

hence, P(W = 0|S = 1, R = 0) = 1− 0.9 = 0.1. Since the C node has no

parents, its CPT specifies the prior probability that it is cloudy (in this

case, 0.5).

Bayesian networks were motivated by the need of a flexible model

with a rigorous probabilistic foundation, that allows top-down (semantic)

and bottom-up (perceptual) evidences to be combined, permitting bi-

directional inferences. They can be used for predictions, diagnosis and

learning [Murphy 02]. We can use a Bayesian network to perform some

inference tasks. The idea is that if we observe some evidences, that is, we

know the values of some variables in the network, we could use those

evidences to infer the values of other variables. Unknown variables are

also known as hidden nodes and known value variables as observable

nodes. Note that if all nodes are observed, there is no need to do inference,

although we might still want to do learning.

Using the chain rule of probabilities, the joint probability distribution

of the Bayesian net shown in Figure 3.1 can be expressed as,

P(C , S, R, W ) = P(C)P(S|C)P(R|C , S)P(W |C , S, R)

However, this form does not consider the possible simplifications due to

the assumed conditional independencies. If we do, we may from each

factor exclude all conditional independent variables, arriving at a simpler

joint distribution factorization,

P(C , S, R, W ) = P(C)P(S|C)P(R|C)P(W |S, R)

More generally, consider a set of random variables denoted by X = {X i}
associated with a set of nodes in a graph G = (V, E), where X i denotes

the random variable associated with node i, (i ∈ V ). The definition of

conditional independence in Bayesian networks states that a node is con-

ditionally independent of its non-descendants given its parents [Pearl 88].

Thus, in general, the joint probability distribution associated with a given
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graph can be factorized as follows,

P(X ) = P(X1)P(X2|X1) · · · P(Xn|X1, ..., Xn−1)

=
∏

i

P(X i|X1:i−1)

=
∏

i

P(X i|parents(X i))

where parents(X i) is the set of parents of X i in the graph. The function

P(X i|parents(X i)) is called node i’s conditional probability distribution

(CPD). This can be an arbitrary distribution—for example multinomials

encoded as conditional probability tables (CPT) can be used when the

variables are discrete.

In addition to causal and diagnostic reasoning, Bayesian nets support

the powerful notion of "explaining away". If a node is observed, then

its parents become dependent, since they are rival causes for explaining

the child’s value. For the example in Figure 3.1, the two causes, S and

R, compete to explain the observed data W . Hence, S and R become

conditionally dependent given that their common child, W , is observed,

even though they are marginally independent. For example, suppose the

grass is wet, but that we also know that it is raining, then the posterior

probability the sprinkler is on goes down: P(S = 1|W = 1, R = 1) = 0.1945.

In general, the conditional independence relationships encoded by a

Bayesian net are described using the notion of d-separation [Neapolitan 03].

Two disjoints sets of nodes A and B are conditionally independent given

set C , if C d-separates A and B—that is, if along every undirected path

between a node in A and a node in B there is a node D such that: (1) D

has converging arrows and neither D not its descendants are in C , or (2)

D does not have converging arrow and D is in C . (Converging arrows

implies the the node is a child of both the previous and following nodes

in the path). Therefore one can infer many independence relations from

visual inspection of the graph, without explicitly grinding through Bayes’
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rule. For example, in Figure 3.1, C is conditionally independent from W

given the set C = {S, R}, since both S ∈ C and R ∈ C are along the path

between C and W and do not have converging arrows. However, C is not

conditionally independent from W given R only.

3.2 Dynamic Bayesian networks

The Bayesian networks discussed so far all specify a certain point in time—

they are static. They need to be extended in order to account for temporal

processes such as financial time series (or, more generally, sequences of

any kind, for instance speech). This is accomplished by a straightforward

extension.

Dynamic Bayesian Networks (DBNs) are Bayesian networks which

include directed edges pointing in the direction of time [Murphy 02,

Bilmes 03]. A set of variables X t denotes the system state at time t, where

X t = {X 1
t , X 2

t , ..., X 2
t } and X i

t denotes the X i node of the underlying Bayesian

network at time t. We only consider discrete-time stochastic processes so

we will increase the value of t by one at each time step. (For a treatment

on continuous-time DBNs we refer the reader to [Nodelman 07]). The

structure and parameters are assumed to repeat for each time slice (i.e.,

the process is assumed to be stationary), so the conditional probabilities

associated with X i
t , 1≤ t ≤ T , are the same.

Formally, a dynamic Bayesian network is defined to be a pair (B1, B2),
where B1 is a Bayesian network which defines the prior P(X1) and B2 is a

two-slice temporal Bayesian network which defines P(X t |X t−1) by means

of a directed acyclic graph as

P(X t |X t−1) =
N
∏

i=1

P(X i
t |Parents(X i

t))

If the processes modeled are assumed to be Markovian (i.e., the future

is conditionally independent of the past given the present) then depen-

dency edges are only permitted between time frame t and t + 1. In this
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Figure 3.2: An example of a DBN representation and the unrolling mecha-
nism (a) Initial network. (b) Transition network. (c) Unrolled DBN for
four time slices.
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case, it is enough to specify the the initial network (see Figure 3.2a)

and the edges connecting two consecutive time slices (2TBN, see Figure

3.2b) and then repeat them as necessary (see Figure 3.2c for four time

slices). Note, there is fundamentally no reason why we cannot allow arcs

to skip across slices. Intuitively, directed arcs within a slice represent

"instantaneous" causation [Murphy 02].

Conceptually, DBNs can be seen as "unrolling" a one-frame network

for T time steps [Friedman 98] and adding time-dependencies, in effect

creating a Bayesian network of size N x T . The resulting joint distribution

is then given by,

P(X1, ..., XT ) =
T
∏

t=1

N
∏

i=1

P(X i
t |Parents(X i

t))

We will introduce hidden Markov models (HMM) and hierarchical

hidden Markov models (HHMMs) in the next sections and show that they

are really just special cases of DBNs. In particular, we will later design our

price and volume model as hierarchical hidden Markov model and then

transform it to a DBN for learning and inference purposes.

3.2.1 Hidden Markov models

The basic idea of a hidden Markov model is that the observation sequence

is generated by a system that can exist in one of a finite number of

states. At each time-step, the system makes a transition from the state it

is in to another state, and emits the observable quantity according to a

state-specific probability distribution.

We will use St to denote the hidden state and Yt to denote the observa-

tion. If there are K possible states, then St ∈ {1, ..., K}. Yt can be a discrete

symbol, Yt ∈ {1, ..., L}, or a feature vector, Yt ∈ RL.

The parameters of the model are the initial state distribution, π(i)≡
P(S1 = i), the transition model, A(i, j) ≡ P(St = j|St−1 = i), and the

observation model P(Yt |St).
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The structure of matrix A is often depicted graphically, for example

Figure 3.3, which depicts a left-to-right transition matrix. Note, the graph

in Figure 3.3 should not be confused with the DBN graphs we discussed

in the previous section. Here nodes represent states, in contrast to DBNs,

where nodes represent random variables and can take on states.

1 2 3 4

Figure 3.3: Simple left-to-right state transition diagram for a 4-state HMM.
Nodes represent states and arrows represent allowable transitions (i.e.,
transitions with non-zero probabilities).

If the observation are discrete symbols, we can represent the obser-

vation model as a matrix, B(i, k) ≡ P(Yt = k|St = i). If the observations

are vectors in RL, we can use for instance a Gaussian, P(Yt = y|St = i) =
N (y;µi,Σi) where N (y;µ,Σ) is the Gaussian density with mean µ and

covariance Σ evaluated at y.

We can represent an HMM as a DBN as shown in Figure 3.4. The

DBN represents the conditional independence assumptions, St+1⊥St−1|St

(Markov property) and Yt⊥Yt ′ |St , for t ′ 6= t.

S1 S2 S3

Y1 Y2 Y3

Figure 3.4: An HMM representation as an instance of a DBN, unrolled for
three time slices.

The conditional probability distribution of each node given its parents

are,

P(S1 = i) = π(i)



32 CHAPTER 3. DYNAMIC BAYESIAN NETWORKS

P(St = j|St−1 = i) = A(i, j)

P(Yt = j|St = i) = B(i, j)

where π, A and B are as defined for the HMM and observations are dis-

crete. The hidden Markov model consists of one hidden state; DBNs are

more general in that they allow the hidden state to be specified by a set

of random variables, S1
t , ...,SN

t , thus using a distributed representation of

state which in itself can contain dependencies. Consequently, by repre-

senting HMMs as DBNs it becomes easy to create variations on the basic

theme. For examples and discussion we refer the reader to [Murphy 02].

3.2.2 Hierarchical hidden Markov models

Hierarchical HMMs were introduced by [Fine 98] as extensions of HMMs.

They are structured multi-level stochastic processes. They generalize

HMMs by making each of the hidden states an autonomous probabilistic

model on its own, that is, each state is an HHMM as well (i.e., recursive

definition). An HHMM generates observation sequences by a recursive

activation of one of the substates of a state (called abstract state), which in

turn can activate one of its substates. This recursive activation continues

until we reach a leaf state (called production state), which emits an

observation according to a distribution specific to the state of the stack

in the hierarchy. When the sub-HHMM is finished, control is returned

to wherever it was called from. The calling context is stored using a

depth-limited stack.

The observation sequence is denoted by Y = y1, y2, ..., yT , where

yi ∈ {1, ..., L} for discrete observations. A state of an HHMM is denoted by

qd
i (d ∈ {1, ..., D}) where i is the state index and d is the hierarchy index.

The hierarchy index of the root is 0 and of the production states is D. We

denote the number of substates of an abstract state qd
i by |qd

i |. In addi-
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tion to its model structure, an HHMM is specified by the state transition

probability between the internal states and the output distribution vector

of production states. That is, for each internal state qd
i (d ∈ {0, ..., D− 1}),

there is a state transition probability matrix denoted by Aqd
= (aqd

i j ), where

aqd

i j = P(qd+1
j |q

d+1
i ) is the probability of making a horizontal transition from

the ith state to the jth state, both of which are substates of qd . Similarly,

Πqd
= {πqd

(qd+1
i )}= {P(qd+1

i |qd)} is the initial distribution vector over the

substates of qd , which is the probability that state qd will initially activate

the state qd+1
i . If qd+1

i is an internal state, then πqd
(qd+1

i ) may be inter-

preted as the probability of making a vertical transition—entering substate

qd+1
i from its parent state qd . Each production state qD is parameterized by

its output probability vector BqD
= {bqD

(k)}, where bqD
(k) = P(Yk = yk|qD)

is the probability that the production state qD will output the symbol

yk ∈ {1, ..., L}. The entire set of parameters is denotes by,

λ= {λqd
}d∈{0,...,D} = {{Aqd

}d∈{0,...,D−1}, {{Πqd
}d∈{0,...,D−1}, {BqD

}}

Refer to Figure 3.5 for an example HHMM. A string is generated by

starting from the root state and choosing one of substates at random

according to Πq1
. Similarly, for each internal state q that is entered, one

of q’s substates is randomly chosen according to Πq, until a production

state qD is reached at which point a single symbol is emitted according

to distribution BqD
. After completing the recursive string generation,

the internal state that started the recursion chooses the next state in

the same level according to the level’s state transition matrix Aq. Each

level (excluding root) has a final state qd
end , which terminates the level

transitions and returns control to the parent of the hierarchy.

[Murphy 02] shows how we can represent an HHMM as a DBN, using

the structure shown in Figure 3.6. We assume production states are at

the bottom of the hierarchy. The state of the HMM at level d and time t

is represented by Qd
t . The state of the whole HHMM is encoded by the
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q0

q1
1 q1

2 q1
e

q2
1 q2

2 q2
e

q3
1 q3

2 q3
3 q3

e

Figure 3.5: An illustration of an HHMM of four levels. Dashed and solid
edges respectively denote vertical and horizontal transitions. Dashed
edges upward denote (forced) returns from the end state of each level to
the level’s parent state. For simplicity, the production states are omitted
from the figure.
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vector Q t = {Q0
t , ...,QD

t }. The vector Q t encodes the contents of the stack,

that specifies the complete path to take from the root to leaf state in the

state transition diagram.

F d
t is an indicator variable that equals 1 if the HMM at level d and

time t has finished, otherwise has value 0. Note if F d
t = 1, then F d ′

t = 1

for all d ′ > d—that is, the number of F nodes that are off represents the

effective height of the stack which represents the level of the hierarchy

we are currently on.

The downward arcs between the Q variables represent the fact that

a state activates a sub-state. The upward arcs between the F variables

enforce the fact that a higher-level HMM can only change state when the

lower level one is finished.

We define the CPDs of each node types below.

Bottom level (d = D, t = 2 : T − 1): QD follows a Markov chain, deter-

mined by which sub-HMM it is in (encoded by Q0:D−1
t ≡ k). Instead

of QD entering its end state, it turns on F D to signal that higher level

HMMs can now change state. Thus,

P(QD
t = j|QD

t−1 = i, F D
t−1 = f ,Q0:D−1

t = k) =







eAD
k (i, j), if f = 0

πD
k ( j), if f = 1

where i, j 6= end, where end represents the end-state for this HMM.

Because Qd
t does not take on the value "end" (there is no correspond-

ing observation), the DBN and HHMM transition matrices are not

identical. However we can obtain the DBN transition matrix, eAD
k

from AD
k by rescaling,

eAD
k (i, j)(1− AD

k (i, end)) = AD
k (i, j)

Similarly, πD
k is the initial distribution for level D given context is in
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Q0
1

F1
1

Q1
1

F2
1

Q2
1

F3
1

Q3
1

Q0
2

F1
2

Q1
2

F2
2

Q2
2

F3
2

Q3
2

Q0
3

F1
3

Q1
3

F2
3

Q2
3

F3
3

Q3
3

O1 O2 O3

Figure 3.6: A 4-level HHMM represented as a DBN. Qd
t is the state at time

t, level d; F d
t = 1 if the HMM at level d has finished (entered its exit state),

otherwise F d
t = 0. Shaded nodes are observed, clear nodes are hidden.

The dotted arcs can be added to make the observation conditional on the
hierarchical stack state.
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state k,

P(F D
t = 1|Q0:D−1

t = k,QD
t = i) = AD

k (i, end)

Intermediate/Top levels (d = 0 : D− 1, t = 2 : T − 1): Similar to the bot-

tom level, Qd follows a Markov chain determined by Q0:d−1 and F d

specifies whether we should use the transition matrix or the prior.

The difference is that we now also get a signal from below, F d+1,

specifying whether the sub-model has finished or not. If it has, we

can change state, otherwise we must remain in the same state. Thus,

P(Qd
t = j|Qd

t−1 = i, F d+1
t−1 = b, F d

t−1 = f ,Q0:d−1
t = k) =











δ(i, j), if b = 0

eAd
k(i, j), if b = 1, f = 0

πd
k( j), if b = 1, f = 1

We re-scale the transition matrix as before,

eAd
k(i, j)(1− Ad

k(i, end)) = Ad
k(i, j)

F d should turn on only if Qd is allowed to enter a final state, the

probability of which depends on the context Q1:d−1,

P(F d
t = 1|Qd

t = i,Q0:d−1
t = k, F d+1

t = b) =







0, if b = 0

Ad
k(i, end), if b = 1

Initial slice (t = 1, d = 0 : D): For the top level CPDs are, P(Q1
1 = j) =

π1( j) and for d = 1, .., D, we have P(Qd
1 = j|Q0:d−1

1 = k) = πd
k( j).

Final slice (t = T, d = 0 : D): To ensure that all sub-HMMs have reached

their end states by the time we reach the end of sequence, we can

clamp F d
T = 1 for all d.

Observations: Observations can be conditioned on the entire stack, as
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P(Ot |Q t). Alternatively, we can condition Ot only on some of its

parents.

One of [Murphy 02]’s main contributions was showing the equivalence

of an HHMM in DBN form as summarized above. In doing so, he was

able to improve the inference algorithm proposed in the original HHMM

paper by [Fine 98] from O(T 3) time to O(T ) time, where T is the number

of time slices (assuming per slice complexity as constant, see Section

3.3). Transforming HHMMs into DBNs allows us to leverage generic DBN

inference and learning procedures, instead of deriving HHMM specific

methods. Also, it becomes easier to vary the model as the DBN framework

is more flexible and general.

3.3 Inference

We could use dynamic Bayesian networks to perform inference on hidden

nodes, that is to calculate the posterior distribution of the node, given

some evidence or values of observable variables. Before we receive evi-

dence, the network represents our a priori belief about the system that it

models; after we receive evidence, the network may be updated to denote

our a posterior beliefs.

Probabilistic inferences in dynamic bayesian networks can be accom-

plished by "unrolling" the DBN for T time-slices and then applying a static

Bayesian network inference algorithm.

The inference problem requires us to compute P(XQ|XE = xE), where

XQ is a set of query variables and XE is a set of evidence variables. The most

common exact inference (computing the probabilities exactly) methods

are: variable elimination, which eliminates (by integration or summation)

the non-observed non-query variables one by one by distributing the sum

over the product; clique tree propagation, which caches the computation

so that many variables can be queried at one time and new evidence can

be propagated quickly; and recursive conditioning, which allows for a
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space-time tradeoff and matches the efficiency of variable elimination

when enough space is used. All of these methods have complexity that

is exponential in the graph’s treewidth [Robertson 84, Elidan 08]. In this

thesis we describe the variable elimination algorithm, which is the basis

of other exact inference algorithms. We refer the reader to [Murphy 02]

for variants which improve upon the basic algorithm.

In variable elimination, the posterior probability of variables XQ, given

some evidence XE = xe is computed using Bayes rule,

P(XQ|XE) =
P(XQ, XE)

P(XE)

=

∑

h6⊂Q∪E

P(XH = h, XQ, XE)

∑

h6⊂E

P(XH = h, XE)

Thus, inference boils down to marginalizing joint distributions. If

variables can at most take on K states, then computing
∑

h P(X ) takes

O(KN) time, where N is the total number of nodes. This is exponential in

the number of nodes and becomes intractable for graphs of any significant

size.

Since our Bayesian net represents a conditionally factored distribution,

we can do better by taking advantage of conditional independence rela-

tions to marginalize efficiently. The joint distribution represented by a

Bayesian network can be written in factored form,

P(X ) =
N
∏

i=1

P(X i|Parents(X i))

Thus,

P(XQ, XE) =
∑

h6⊂Q∪E

P(XH = h, XQ, XE)
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=
∑

h6⊂Q∪E

N
∏

i=1

P(X i|Parents(X i), XE)

This expression can be significantly simplified by summing out vari-

ables in an arbitrary elimination ordering such that, every time a variable

X 6∈ {XH , XE} is eliminated, only the factors containing X are multiplied

and the resulting potential is marginalized over X . This process of order-

ing the factors (potentials) and the sum (variables) is the basis of variable

elimination algorithms.

For example, referring to the Bayesian network in Figure 3.1, the joint

probability distribution is,

P(C , S, R, W ) = P(C)P(S|C)P(R|C)P(W |S, R)

So for instance,

P(W = w) =
∑

c

∑

s

∑

r

P(c, s, r, w)

=
∑

c

∑

s

∑

r

P(c)P(s|c)P(r|c)P(w|s, r)

=
∑

c

P(c)
∑

s

P(s|c)
∑

r

P(r|c)P(w|s, r)

noting that as we perform the innermost sums, we create new terms,

which need to be summed over in turn. Thus, the amount of work we

perform when computing a marginal is bounded by the size of the largest

term that we encounter. Any permutation of the variables to be eliminated

could be used as elimination sequence. Therefore choosing a summation

(elimination) ordering to minimize this is important for the efficiency

of the algorithm. Since the problem of finding an optimal elimination

ordering is NP-complete [Arnborg 87], several heuristic approaches have

been proposed in order to achieve close to optimal elimination sequences

[Zhang 99]. The most used method defined in the context of a greedy
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algorithm, is to select the next variable to be eliminated, X , by minimizing

the weight (state space size) of the new potential obtained during the

process of eliminating X [Kjaerulff 90].

Note, that variable elimination takes O(NK M) time, where N is the

number of nodes in the graph, K is the maximum number of states a node

can take on, and M is the largest number of variables in a factor [Pearl 88].

If we want to compute P(X i|XE) for all i 6∈ E, we could call variable

elimination O(N) times, once for each node, thus it would take O(N 2K M)
time. As mentioned, clique tree propagation, caches the computation so

that many variables can be queried at one time, thus providing a way to

compute all N marginals in O(NK M) time [Murphy 02].

If we are interested in the most likely explanation of the set of query

variables for the evidence (instead of the posterior distribution), the

inference problem becomes,

x∗Q = argmax
xQ

P(XQ = xq|XE = xE)

This is known as the Viterbi problem. We can solve this problem

using the variable elimination algorithm, replacing sum-product with

max-product as follows,

x∗Q = arg max
xQ

P(xQ, xE)
P(xE)

= arg max
xQ

P(xQ, xE)

= arg max
xQ

N
∏

i=1

P(X i|Parents(X i), XE)

The difference is that Viterbi assigns to a node the probability of the

single best assignment, while the posterior calculation assigns the sum of

probabilities over all possibilities to a node.
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3.3.1 Types of inference for DBNs

For a given dynamic Bayesian network, there are a variety of inference

problems we might be interested in (see Figure 3.7 for a summary)

[Murphy 02]. Let St represent the hidden nodes and Yt represent the

observable nodes,

Filtering Computing P(St |Y1:t), i.e., monitoring (tracking) the state over

time.

Prediction Computing P(St+h|Y1:t) for some horizon h> 0 into the future.

Fixed-lag smoothing (Look-ahead) Computing P(St−l |Y1:t), i.e., estimat-

ing what happened l > 0 steps in the past given all the evidence up

to the present.

Fixed-interval smoothing (Look-ahead) Computing P(St |Y1:T ), i.e., es-

timating what happened in the past given the entire set of evidence.

This is used for training as well.

Viterbi decoding Computing arg maxS1:t
P(S1:t |Y1:t), i.e., determining the

most likely explanation of the observed data.

Look-ahead Viterbi Computing arg maxS1:t
P(S1:t |Y1:T ), i.e., determining

the most likely explanation for the entire set of observed data.

Classification Computing P(Y1:t) =
∑

X1:t
P(X1:t , Y1:t), to compute the like-

lihood of a sequence under different models.

We can solve filtering, smoothing and prediction problems by applying

evidence at appropriate times and then running the variable elimination

inference algorithm described. If we are interested in Viterbi filtering or

smoothing, we replace sum-product operator with max-product in the

variable elimination algorithm. For a DBN with T time slices, this would

take O(T ) time (where we have assumed per slice complexity as constant).
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t
filtering P(St |Y1:t)

h

t
prediction P(St+h|Y1:t)

l

t
fixed-lag
smoothing

P(St−l |Y1:t)

t
fixed-interval
smoothing

P(St |Y1:T )

t

Viterbi argmaxS1:t
P(S1:t |Y1:t)

t
look-ahead
Viterbi

argmaxS1:t
P(S1:t |Y1:T )

t

classification
∑

X1:t
P(X1:t , Y1:t)

Figure 3.7: The main kinds of inference for DBNs. The shaded region is
the interval for which we have data. The arrow represents the time step
at which we want to perform inference. t is the current time, and T is the
sequence length. h is a prediction horizon and l is a time lag. (Adopted
from [Murphy 02])
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In DBNs we often want to dynamically filter or smooth at each time

step. This requires rebuilding the entire time history of the process for

each time step, requiring O(T 2) time.

However, for a DBN that is stationary and Markovian, we can do

inference incrementally. Recall, that a stationary DBN implies that the

node relationships within a time slice t and the transition function from

time slice t to time slice (t + 1) do not depend on t; Markovian property

implies that the time slice (t + 1) only depends on the time slice t and not

on any previous time slices (i.e., the set of nodes in a time slice d-separates

the past from the future).

Thus we can represent a DBN using a 2TBN and do inference just using

this structure. In this case dynamic inference boils down to doing static

inference on the 2TBN and then using generalized forward-backward

operators to step through the DBN. (The forward-backward algorithm is

used to do inference for an HMM. [Murphy 02] generalizes the forward

and backward operators as "message" passing operators from which we

can compute P(X i
t |Y1:T ) and P(X i

t ,Parents(X i
t)|Y1:T ) for any node X i

t and

its parents.) Two variants are described in the literature: 1) Frontier

algorithm (originally presented in [Zweig 96]), which uses the full set of

hidden nodes at the current time slice that d-separates the process into

two segments, and 2) Interface algorithm [Murphy 02], which is slightly

more efficient than the frontier algorithm since it uses only the out-going

nodes between time-slices to d-separate the process. Both algorithms

result in O(T ) time for inference.

3.4 Learning

When the structure of a dynamic Bayesian network is given, the learning

task becomes one of estimating the model parameters. Generally, we are

interested in finding the maximum likelihood estimates (MLEs) of the

parameters of each node’s conditional probability distribution—that is,

the parameter values which maximize the likelihood of the evidence or
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training data. If there are a small number of training cases compared to the

number of parameters, we could use a prior to regularize the problem. In

this case, we call the estimates maximum a posterior (MAP) estimates, and

use Bayesian estimation, as opposed to maximum likelihood estimation.

We refer the reader to [Murphy 02] for more information on this approach.

We will primarily be concerned with maximum likelihood learning in this

thesis.

If the network is fully observed—so that there is no hidden or unob-

served nodes—the problem reduces to finding the MLE for a given sample.

Training data can contain S sequences, assumed to be independent, each

of which has the observed values for all n nodes per slice for each of T

slices. For notational simplicity, we assume each sequence is of the same

length. Thus we can imagine "unrolling" a two-slice DBN to produce a

(static) Bayesian netowrk with T slices.

We assume the parameters values for all nodes are tied (i.e., constant)

across time, so that for a time series of length T , we get one sample for

each CPD in the initial slice, and (T − 1) data points for each of the other

CPDs. If S = 1, we cannot reliably estimate the parameters of the nodes in

the first slice, so we usually assume these are fixed a priori. That leaves

us with N = S(T − 1) samples for each of the remaining CPDs.

The joint probability (as discussed in Section 3.3) of all the nodes in

the graph is,

P(X1, ..., Xm) =
∏

i

P(X i|Parents(X i))

where m = n(T − 1) is the number of nodes in the unrolled network,

excluding the first slice. The normalized log-likelihood of the training set

D = {D1, ..., DS} is a sum of terms, one for each node,

L =
1

N
log

S
∏

l=1

P(Dl |G)
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=
N
∑

i=1

S
∑

l=1

log P(X i|Parents(X i), Dl)

We see that the log-likelihood decomposes according to the structure

of the graph. Thus we can maximize the contribution to the log-likelihood

of each node independently and consequently estimate the parameters of

each CPD given its local data.

If the CPD is in the exponential family, the parameters can be deter-

mined using its sufficient statistic. For instance, in the case of tabular

CPD’s (where the node has a multinomial distribution) we can define the

parameters as,

θi, j,k ≡ P(X i = k|Parents(X i) = j),

and the log-likelihood becomes,

L =
∑

i

∑

l

log
∏

j,k

θ
1i jkl

i jk

=
∑

i

∑

l

∑

j,k

1i jkl logθi jk

=
∑

i, j,k

Ni jkl logθi jk

where 1i jkl ≡ I(X i = k,Parents(X i) = j|Dl) is 1 if the event (X i = k,Parents(X i) =
j) occurs in case Dl , 0 otherwise. Thus, Ni jk ≡

∑

l I(X i = k,Parents(X i) =
j|Dl) is the number of times the event (X i = k,Parents(X i) = j) was seen

in the training set. The resulting MLE is given by,

θ̂i jk =
Ni jk
∑

k Ni jk

which can be verified by taking derivatives and using a Lagrange multiplier.

This turns out to be simply the frequency of sample observations.

When the network contains hidden or unobserved nodes, the log-
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likelihood cannot be decomposed into sum of local terms, one per node.

Instead we obtain,

L =
∑

l

log P(Dl)

=
∑

l

log
∑

H

P(H, Dl)

where H is the set of hidden variables, and
∑

H is the sum (or integral) over

H required to obtain the marginal probability of the data. Thus the MLE is

the argument that maximizes L. The obvious way to maximize likelihood

is to do gradient ascent. However, a simpler and more straightforward

algorithm is expectation maximization (EM). In fact, EM is implicitly a

gradient method [Salakhutdinov 03, Salojärvi 05].

The basic idea behind EM is to apply Jensen’s inequality to our likeli-

hood function to get a lower bound on the the log-likelihood, and then to

iteratively maximize this lower bound. Jensen’s inequality says that, for

any concave function f ,

f

 

∑

j

λ j y j

!

≥
∑

j

f (y j)

where
∑

j λ j = 1. In other words, f of any weighted average is bigger than

the average of the f ’s. Since the log function is concave, we can apply

Jensen’s to the likelihood function to get,

L =
∑

l

log
∑

H

P(H, Dl;θ)

=
∑

l

log
∑

H

q(H)
P(H, Dl;θ)

q(H)

≥
∑

l

∑

H

q(H) log
P(H, Dl;θ)

q(H)
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=
∑

l

∑

H

q(H) log P(H, Dl;θ)−
∑

l

∑

H

q(H) log q(H)

where q is any function s.t.
∑

H q(H) = 1 and 0≤ q(H)≤ 1.

Maximizing the lower bound with respect to q gives

q(H) = P(H|Dl;θ)

This is called the E (expectation) step and makes the bound equality.

Maximizing the lower bound with respect to the free parameters θ is

equivalent to maximizing the expected complete data log-likelihood,

L(θ) =
∑

l

∑

H

q(H) log P(H, Dl;θ)

so we obtain,

θ ′ = argmax
θ

∑

l

∑

H

q(H) log P(H, Dl;θ)

This is called the M (maximization) step.

If we use q(H) = P(H|Dl;θ ), and starting from some initial parameters

θ0, we get

θk+1 = argmax
θ

∑

l

∑

H

P(H|Dl;θk) log P(H, Dl;θ)

[Dempster 77] proved that θk+1 is guaranteed to ensure P(D|θk+1) ≥
P(D|θk), because using q(H) = P(H|Dl;θ) in the E step makes the lower

bound touch the actual log likelihood curve, so raising the lower bound

will also raises the actual log-likelihood curve.

Thus the EM method allows us to find a local maximum with an initial

starting point θ0. It is worth noting that generally the likelihood surface is

heavily multi-modal—and so local search algorithms such as EM are prone

to get stuck in local optima. A simple solution, which we will use in our

experiments, is multiple restarts. An alternative, is to use deterministic

annealing [Murphy 02]. This works by enforcing a certain level of entropy
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(noise) in the system, which is gradually reduced. The idea is to multiply

the entropy by a temperature term T ; initially the temperature is high,

which "smooths out" the energy surface, so it is easy to find the maximum.

Then the temperature is gradually reduced to T = 1 corresponding to

the original problem. Note, this is similar, but distinct from simulated

annealing which also works my gradually reducing the free energy, but

with random moves. We leave it to future work to consider this approach

more fully.

3.5 Example: using DBNs for regime switching

In econometrics, a model with a fixed density distribution or single set

of parameters may not be sufficient to account for structural changes

in financial series. Time varying parameter models have been used to

address this limitation. In particular, regime switching models, in which

parameters move discretely between a fixed number of regimes have been

used. In this section, we develop the Markov regime switching model

presented by [Hamilton 89] and show the equivalent representation in a

DBN framework.

Regime switching models have a rich history in financial economet-

rics, dating back to at least [Goldfeld 73], where a latent state variable

controlling the regime follows a Markov chain. [Hamilton 89], extended

regime switching models, allowing the parameters of an auto-regression

to be controlled by the outcome of a discrete-state Markov process. Many

authors have subsequently employed Markov switching to model regime

changes in economic time series. Examples include investigations of busi-

ness cycle asymmetry [Hamilton 89, Lam 90], heteroskedasticity in time

series of asset prices [Schwert 94, Garcia 99], the effects of inflation on

UK commercial property values [Barber 97], the effects of oil prices on U.S.

GDP growth [Raymond 97], labor market recruitment [Storer 95], the

dividend process [Driffill 98], government expenditure [Ruge-Murcia 95],

and the level of merger and acquisition activity [Town 92].
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A regime switching model increases flexibility of a static econometric

model by allowing dynamic parameters. That is, each regime specifies a

set of model parameters, and the regime switching model combines these

parameter sets into one system. Depending on the most likely regime the

system is in at any particular time, the corresponding set of parameters is

applied.

Regime switching models are better able to fit economic data than

their static counterparts—a natural consequence of introducing addi-

tional state parameters [Nelson 01]. Moreover, regime switches can be

viewed as structural changes in the economy which can be associated

with events such as financial crisis [Jeanne 00, Cerra 03, Hamilton 05],

abrupt changes in government policy [Sims 06, Davig 04], or economic

cycle transitions [Chauvet 05].

Consider how we may describe a structural change for a single variable

yt . Suppose that typical bahaviour of yt follows a first-order autoregres-

sion:

yt = c1+φ1 yt−1+ εt (3.1)

where εt ∼N (0,σ2) is Guassian noise.

Say this adequately describes the behaviour of yt for t = 1,2, ..., t0

and that at t = t0 there is a structural change in the economy that causes

a significant change in the average level of the series. Furthermore we

believe that this change also entails a different degree of dependence on

the past. Thus for t = t0+1, t0+2, ... we would like to model the data as:

yt = c2+φ2 yt−1+ εt (3.2)

We can combine the piecewise models (3.1) and (3.2) in a larger encom-

passing model:

yt = cst
+φst

yt−1+ εt (3.3)

where

st =

(

1 (Regime 1)

2 (Regime 2)
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A complete specification would require a probabilistic model of what

caused the change from st = 1 to st = 2. A simple specification is the

realization of a two-state Markov chain with

P(st = j|st−1 = i, st−2 = k, ..., yt−1, yt−2, ...) = P(st = j|st−1 = i) = pi j

Assuming that we do not observe st directly, but infer its operation through

the observations of yt , the parameters necessary to fully describe this

process are the variance of the noise σ2, the auto-regression coefficients φ1

and φ2, the two levels c1 and c2, and the two state transition probabilities

p11 and p22, noting p12 = 1− p11 and p21 = 1− p22.

If we specify p22 = 1, then regime 2 is an absorbing regime and

represents a permanent shift into state 2. The Markov formulation allows

a more general possibility that p22 < 1, allowing a non-zero probability

of switching back to state 1 once in state 2, i.e. p21 = 1− p22 > 0. This is

natural in business cycles or financial crisis situations where the structural

change is rarely permanent.

Y1 Y2 Y3

S1 S2 S3

Figure 3.8: An auto-regressive HMM.

This Markov regime switching model can be represented as a discrete

state, continuous observation DBN. Refer to Figure 3.8 for the structure

of the DBN. St = st is the discrete regime, which can take on values 1

or 2; and Yt are observations. Note that Yt is dependent on both the

current latent regime St , and the previous observation Yt−1. Thus this

model differs from a standard HMM, by allowing Yt−1 to help predict Yt .

This is called an auto-regressive HMM [Murphy 02].

By specifying the conditional probability density for Y as,
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P(Yt = yt |St = i, Yt−1 = yt−1) =N (yt; ci +φi yt−1,σ2)

we have an equivalent DBN model. We can now apply the general infer-

ence and learning algorithms to find the parameters or infer the latent

state. If we felt that the regime switch also affected the variance of the

Gaussian noise, we can easily incorporate this behaviour by allowing σ to

be dependent on i as well.

The unifying perspective of DBNs brings out connections between

models that had previously been considered quite different, and we refer

the reader to [Murphy 02] for a more detailed "laundry list" of examples of

such models. [Pesaran 06] for instance, uses a hierarchical hidden Markov

model for modeling time series subject to multiple structural breaks. If

we start thinking in terms of graphical networks we can introduce far

more flexibility in the models—all able to leverage the same paradigm for

inference and estimation.

While regime switching models have been mostly used for low fre-

quency economic series modeling to account for structural changes, they

can also be a powerful tool for technical analysis in high frequency stock

markets to account for behavioural changes of market participants. In

the next chapter we develop such a regime switching model based on

dynamic Bayesian networks and technical analysis principles.



Chapter 4

Price and Volume Model

In this chapter we design a dynamic Bayesian network for modeling runs

and reversals in high frequency stock markets within a regime switching

framework. There are two notable distinctions from past regime switching

models which are unique to our endeavour:

• Regimes generally correspond to longer term horizons. This work

models regimes or states that persist for short intraday periods which

manifest as runs or reversals in the price process.

• Regimes are used to classify particular economic environments based

on fundamentals. We extend this concept to permit regimes to

be identified by technical analysis paradigms, recognizing that a

technical chartist is essentially working under a regime switching

model in which buy and sell signals are used to mark a regime

switch.

• We use non-synchronous tick observations, rather than synchronous

data observed at sampled time intervals.

We first review price and volume relationships in technical analysis, ex-

plain our feature extraction approach and finally describe the model.

53
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4.1 Price and volume relationships

[Murphy 99] provides a definition of technical analysis: “[the] study of

market action through the use of charts for the purpose of forecasting

future price trends.” The term market action includes two principal

sources of information—price and volume. The assumption technicians

use is that all of the fundamental information and current market opinions

are already reflected in the current price and when viewed in conjunction

with past prices often reveals recurring price and volume patterns that

provide information to potential future price movement. The patterns

are interpreted as shifts in demand and supply which can be identified

by the study of market action. They are generally horizon invariant, with

the claim that similar patterns should exist at each frequency horizon,

whether it is intraday, daily or long term [Murphy 99].

Most patterns are based on zig-zags, which are defined by a sequence

of local extrema, {Ek}, of the price process at the points where price

changes direction. Here Ek = (tk, pk) is a coordinate, where tk is the time

and pk is the price at the extrema. The price path may be smoothed

first, with kernels of varying bandwidth, to obtain different horizons or

granularities of zig-zags [Lo 00]. By construction the series of extrema

contains alternating minima and maxima—that is, if the kth extremum is

a maximum, then the (k+ 1)th extremum is a minimum and vice versa.

The minima form support levels, and the maxima form resistance levels,

as these identify the points at which demand and supply levels cross

[Murphy 99]. A zig-zag leg is defined as the vector from one extrema

to the next, lk =
−−−→
Ek−1Ek, so zig-zags may also be defined in terms of a

sequence of legs, {lk}.

[Ord 08] describes how price and volume behaviour may be inter-

preted. Volume is supposed to push price. If volume is increasing on the

upward legs and contracting on the downward legs then a bullish trend

should continue. The explanation is that when prices go up, sellers are

more willing to meet buyers at those higher levels and volume increases.
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When prices go down, sellers are not as interested since they expect to

sell at higher prices, consequently volume decreases. This activity reflects

a bullish undertone. On the other hand, if volume increases on the down-

ward legs and decreases on the upward legs, then the market has a bearish

sentiment, since in order to attract buyers, prices have to go lower. When

prices head higher, buyers are not interested, believing they will be able

to obtain lower prices, thus creating a bearish undertone. Refer to Figure

4.1 for a visual example. [Ord 08] suggests using average volume over a

zig-zag leg to measure the force in a leg, instead of total volume, since it

reflects the buying or selling pressure in a normalized way.

As is common in technical analysis, the definition of ‘increasing’ or

‘decreasing’ average volume and the bandwidth used to obtain zig-zags

can be subjective. We will return to making them precise for our use in

section 4.3 as the feature extraction process is described.

4.2 Market microstructure

An electronic stock exchange, such as the Toronto Stock Exchange (TSE)

uses a continuous double auction mechanism. It consists of an order book,

in which limit orders are sorted by price (and subsequently time and

volume) and stored in two stacks, the bid side for buy orders and the ask

side for sell orders. When a new buy (respectively sell) limit order reaches

the book, it either triggers a trade if its limit price is higher than the best

offer (respectively lower than the best bid), or it is stored in the book

at the appropriate level based on the price, timing and volume. Other

types of orders may also be submitted, such as market buy and sell orders,

which are executed immediately by consuming the top of the ask and bid

stacks, respectively.

Each transaction that results in a trade can be represented as logical

unit called a tick. This forms the most granular level of the price process,

and it includes the time, price and volume of the transaction. Participant

information such as buyer and seller names may also be available. A
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natural consequence of this process is that tick data is asynchronous, since

the arrival of trades are not uniform in time.

The process of day trading—entering and exiting trades within a

short span of minutes or even seconds—attempts to profit from short

term price volatility. [Schwartz 04] divides short term volatility into two

components: fundamental volatility and technical volatility. Fundamental

volatility characterizes price adjustments that are attributable to news

concerning fundamental values. Technical volatility is process driven and

characterizes price changes that are attributable to market friction caused

by the order book mechanism. Technical volatility accentuates volatility

and manifests as swings—runs and reversals over intraday intervals—in

response to the arrival of buy and sell orders in the market. As a result, it

is generally viewed as the source of trading cost to portfolio managers, in

the form of spreads, execution costs and market impact. But on the flip

side, it compensates dealers and limit order traders for the risks they take

in settling prices for other players [Schwartz 04].

Technical analysis can be thought of as an approach to inferring where

a stock’s price is relative to an unobserved consensus equilibrium value.

As such, day traders that use technical analysis claim they can benefit from

accentuated volatility by exploiting intraday runs and reversals. Moreover,

some technologically sophisticated hedge funds have discovered that

they can earn the spread rather than pay it by timing technical volatility.

[Schwartz 04]

One of the sources of technical volatility is the bid-ask spread. Trans-

action prices bounce between the bid and the ask, with staggered arrivals

of market sell orders that execute at the bid, and arrivals of market buy

orders that execute at the ask (see Figure 4.2). This behaviour is known

as the bid-ask bounce and can be viewed as bouncing between tick support

and resistance levels [Schwartz 04].

For our analysis we shall construct our zig-zags using bid-ask support

and resistance points in attempt to capture technical volatility trends due

to spreads. We leave the analysis of other sources of technical volatility to
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future research. Using [Ord 08]’s volume and price analysis approach, we

associate increasing or decreasing volume indicators to the zig-zag legs in

order to assess whether there is buying or selling pressure. Then, using a

temporal probabilistic model, i.e. DBNs, we infer what short term trend is

likely to form.

4.3 Feature extraction

Tick series can be defined as a sequence of triples, {yk}, yk = (tk, pk, vk),
where tk ≤ tk+1 is the time stamp in seconds, pk is the trade price, and vk

is the trade volume. The sequence is ordered by the occurrence of trades

and forms the direct market price process. Note, there can be more than

one trade within a second.

Using the tick series {yk}, we derive zig-zags that capture the bid-ask

bounce, to obtain a new series {zn}, zn = (in, jn, en,φn), where en are local

extrema prices, and in, jn are indices to {yk}, with in ≤ jn, representing

the starting and ending point of the extrema. More precisely, en = pk

for all k where in ≤ k ≤ jn and pin−1 < en < p jn+1 (for local maxima) or

pin−1 > ek > p jn+1 (for local minima). Note when in < jn a zig-zag extrema

consists of a consecutive sequence of ticks which form a plateau or valley

in the price process (see Figure 4.3). φn measures the average volume per

second during the zig-zag leg ending at en. That is,

φn =
1

t jn − t in−1
+ 1

jn
∑

k=in−1

vk

where we have normalized the volume by t jn− t in−1
+1 =∆tn+1, adding 1

to avoid division by zero in situations where the entire zig-zag leg occurs

within the same second. Also, note that calculation of average volume over

a leg is inclusive of end-point extrema volume, consistent with [Ord 08]’s

methodology. Figure 4.4 shows the distribution of the number of ticks in

a zig-zag leg for GoldCorp Inc (TSE:G) over the month of May, 2007.

In practice we do not observe a realization of a zig-zag point as soon as
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it is completed. Instead there is a one tick lag between the leg completion

and the time of detection. This will become important in Section 5 when

we analyze the predictability of the model. In particular, the realization of

the nth zig-zag point zn, is made after observing the ( jn+ 1)th tick point

y jn+1, that is one tick after it has completed. We use this tick point as

the reference when analyzing predictability and therefore do not use any

forward information which may cause a “look-ahead” bias.

Discrete features are defined based on the zig-zag series {zn}. For each

zig-zag point, zn, there is a corresponding feature set On = ( f 0
n , f 1

n , f 2
n )

which are used to form a new series {On}. f 0
n represents the direction of

the zig-zag leg, f 1
n indicates whether there is a trend, and f 2

n indicates

whether average volume increased or decreased. These are defined more

precisely below:

f 0
n =

(

+1, if en is a local maximum (zig-zag leg was positive)

−1, if en is a local minimum (zig-zag leg was negative)

f 1
n =







+1, if en−4 < en−2 < en and en−3 < en−1 (up-trend)

−1, if en−4 > en−2 > en and en−3 > en−1 (down-trend)

0, otherwise (no trend)

Before we define f 2
n we first define some intermediary variables:

θ 1
n =

φn

φn−1
, θ 2

n =
φn

φn−2
, θ 3

n =
φn−1

φn−2

These represent average volume ratios associated with the current zig-zag

leg and its predecessors. We discretize each of the above ratios ( j = 1, 2, 3)

to obtain:
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eθ j
n =







+1, if θ j
n − 1> α

−1, if 1− θ j
n > α

0, if |θ j
n − 1| ≤ α

for some α level, which specifies what percentage change is necessary

to identify significant increases or decreases in the average volumes of

the zig-zag legs. If α = 0, all changes in average volume are identified,

and if α > 0 then small increases or decreases in average volume are not

recognized. By experimentation, we found α = 0.25 detects changes in

volume in high-frequency data appropriately. So for instance if the current

leg’s average volume had increased by more than 25% of the previous

leg’s, then eθ 1
n = +1, but if it had decreased by more than 25% instead,

eθ 1
n =−1; had the change been less than 25%, eθ 1

n = 0.

Using eθ 1
n , eθ 2

n , eθ 3
n directly in our feature space would result in 33 = 27

possible permutations, and when combined with features f 0
n and f 1

n , there

is a total of 2·3·27 = 162 possibilities. To reduce the feature space size and

simultaneously capture essential aspects we use the following grouping to

define f 2
n ,

f 2
n =







+1, if eθ 1
n = 1, eθ 2

n >−1, eθ 3
n < 1 (volume strenghtens)

−1, if eθ 1
n =−1, eθ 2

n < 1, eθ 3
n >−1 (volume weakens)

0, otherwise (volume is indeterminant)

Thus f 2
n characterizes whether volume is strengthening or weakening in

the direction of the corresponding zig-zag leg.
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Up Legs Down Legs
Symbol Vector (On) Symbol Vector (On)

U1 (1,1, 1) D1 (−1, 1,−1)
U2 (1,−1,1) D2 (−1,−1,−1)
U3 (1,1, 0) D3 (−1, 1,0)
U4 (1,0, 1) D4 (−1, 0,−1)
U5 (1,0, 0) D5 (−1, 0,0)
U6 (1,0,−1) D6 (−1, 0,1)
U7 (1,−10) D7 (−1,−1,0)
U8 (1,1,−1) D8 (−1, 1,1)
U9 (1,−1,−1) D9 (−1,−1,1)

Table 4.1: Enumeration of observation feature space. Ranges from bullish
observation at the top to bearish observations at the bottom.

The final observation feature space consists of 2 ·3 ·3 = 18 possibilities,

nine for positive direction legs, and nine for negative direction legs. These

are enumerated in Table 4.1 from bullish observations to bearish observa-

tions based on [Ord 08]’s price and volume prescriptions. Here, the terms

bullish and bearish are referring to price behaviour over a high-frequency

window that may last just minutes or even seconds. Bullish observations

have strengthening volume ( f 2
k = 1) along positive zig-zag legs ( f 0

k = 1)

and weakening volume ( f 2
k =−1) along negative zig-zag legs ( f 0

k =−1),

with a trend ( f 1
k =±1) emphasizing more significance. Conversely, bearish

observations have strengthening volume ( f 2
k = 1) along negative zig-zag

legs ( f 0
k = −1) and weakening volume ( f 2

k = −1) along positive zig-zag

legs ( f 0
k = 1), again with a trend ( f 1

k = ±1) emphasizing more signifi-

cance. Figure 4.5 shows an example of the unconditional distribution of

the observations for GoldCorp Inc. (TSE:G) over the month of May, 2007.

4.4 Model specification

We specify the model first as a hierarchical hidden Markov model (HHMM),

which we shall transform into dynamic Bayesian form for learning and
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inference purposes. The HHMM is a well formalized tool suitable to

model complex patterns in long temporal sequences. Figure 4.6 shows

the hierarchical hidden Markov model (HHMM) we propose to use.

There is one root node, q0, and two top level states, q1
1 and q1

2. These

two states represent distinct modes the market can be in, in particular

specifying whether the asset is in a run or a reversal. We do not explicitly

designate a priori which state is associated to a run or a reversal, rather

we allow the model to learn two different states (noting the symmetry)

and subsequently label its meaning based on the in sample behaviour

(Refer to Section 4.5).

Each of the top level states activates its own probabilistic model, which

is a simple HMM. As discussed in Section 3.2.2, the semantics of a hidden

Markov model requires that internal nodes (i.e. q0, q1
1 and q1

2) undergo

a vertical transition first; subsequently, after completing a depth first

traversal of the tree, control returns to the activating node and then a

horizontal transition is applied. Here, the state q1
1 activates the internal

state q2
1; subsequently, it transitions horizontally, so that it is always

alternating between states q2
2 and q2

1. These are production states which

emit observations, X , with a distribution over possible feature vectors.

Refer to Table 4.1 for an enumeration. In particular, q2
1 emits negative

zig-zag legs, i.e. {X |q2
1} = {D1, ..., D9} and q2

2 emits positive zig-zag legs, i.e.

{X |q2
2} = {U1, ..., U9}. While in the top level state q1

1, there is a non-zero

probability of entering the termination state only from q2
1, at which point

control is returned back to the top level and a horizontal transition to q1
2

is effected (note, there are no loop-backs). The q1
2 state is symmetrical

to the q1
1. It activates on q2

3 and subsequently alternates between q2
3 and

q2
4, emitting positive zig-zag legs and negative zig-zag legs respectively, so

{X |q2
3} = {U1, ..., U9} and {X |q2

4} = {D1, ..., D9}. The q1
2 state terminates only

from q2
3, at which point the top level state transitions back to q1

1, and the

process continues. The restriction on the activation and termination nodes

is to enforce that all possible observation sequences are well behaved—

alternating between positive and negative zig-zag legs—even as the top
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level state undergoes transitions.

In addition to the model structure, to complete the definition of the

HHMM, we need to specify the state transition probabilities between the

states and the output distribution vector of the production states. For the

root node and each top-level state qk (k = {0,1} is the hierarchy index),

there is a state transition probability matrix denoted by Aqk
= (aqk

i j ) where

aqk

i j = P(qk+1
j |q

k+1
i , qk) is the probability of making a horizontal transition

from the ith state to the jth while in the internal state qk.

Transitions at layer 1 can be specified as,

Aq0
=

 

0 1

1 0

!

where the (i, j)th element corresponds to the probability of transitioning

from q1
i to q1

j in Layer 1.

For the top level states,

Aq1
1 =























0 p1 0 0 1− p1

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0























and

Aq1
2 =



















0 0 0 0 0

0 0 0 0 0

0 0 0 p2 1− p2

0 0 1 0 0

0 0 0 0 0



















In both Aq1
1 and Aq1

2 the (i, j)th element corresponds to transitioning from

q2
i to q2

j in Layer 2, noting that j = 5 represents the termination node for
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both q1
1 and q1

2.

Similarly, Πqk
= {πqk

(i)}= {P(qk+1
i |qk)} is the distribution vector over

the substates of qk, which is the probability that state qk will initially

activate the state qk+1
i . For the root node, we assign an initial probability

of starting in a particular top level state,

Πq0
=
�

pi (1− pi)
�T

For the top-level states the activation is deterministic, thus,

Πq1
1 =
�

1 0 0 0 0
�T

and

Πq1
2 =
�

0 0 1 0 0
�T

so q1
1 activates q2

1 and q1
2 activates q2

3.

Each production state, q2, is parameterized by its output probability

vector Bq2
= {bq2

(k)}, where bq2
(k) = P(xk|q2) is the probability that the

production state q2 will output the symbol xk ∈ Ω. The entire set of

parameters is denoted by

λ= {λqd
}d∈{0,1,2} = {{Aqd

}d∈{0,1}, {Πqd
}d∈{0,1}, {Bq2

}}

To summarize, the top level states prescribe a unique distribution over

price and volume observations. The production states visited gives rise

to a sequence of observation symbols according to these distributions.

Furthermore, each top-level state consists of both positive and negative

zig-zags in a symmetrical way. The symmetry of the two states, does not

inherently assume that q1
1 is bullish and q1

2 is bearish or vice-versa. In fact,

the feature vectors are price change agnostic, that is, for any realization

of the observations there is equal number of positive and negative legs—

identified with +1 and −1 for feature element f 0
k —irrespective of the
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magnitude of the price change. The model focusses on capturing how

volume interacts with price to identify whether there is buying or selling

pressure.

The duration of each top level state, q1
i , i ∈ {1,2} has a geometric

distribution with success probability parameter of pi. Specifically, the

probability we remain in state q1
i for exactly (2d − 1) steps is Pi(d) =

(1 − pi)pd−1
i where 1 − pi is the probability of transitioning to the end

state. We leave it to future work to incorporate and evaluate more general

duration distribution models.

We can represent this HHMM as a DBN [Murphy 02] shown in Figure

4.4. Each node in a time slice represents a random variable and the

model unfolds over discrete time steps. Note the time steps need not be

uniformly spaced. In our case, our observations are realized at irregular

time intervals as zig-zags are formed. In standard econometric treatises,

we usually consider synchronous time steps. We would have to assign a

business time scale transformation or sample at synchronous times. In

comparison, by using a DBN framework we inherently are able to address

non synchronous observations without any added complexity or loss of

samples.

In the DBN model,

Q1
t =

(

1, when top-level state is q1
1

2, when top-level state is q1
2

Q2
t =















1, when state q2
1is active

2, when state q2
2is active

3, when state q2
3is active

4, when state q2
4is active

Ft =

(

0, indicates we continue in the same Q1
t state

1, indicates the Q1
t state must transition
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Ot = j, j ∈

(

{U1, ..., U9}, if Q2
t = q2

1 or Q2
t = q2

3

{D1, ..., D9}, if Q2
t = q2

2 or Q2
t = q2

4

We now define the conditional probability distributions (CPDs) of each of

the node types below, which will complete the definition of the model. We

consider the top (Q1
t ) and bottom (Q2

t ) layers of the hierarchy separately

(since they have different local topology), as well as the first, middle and

last time slices.

Layer 1:

P(Q1
t = q1

j |Q
1
t−1 = q1

i , Ft−1 = f ) =

(

δ(i, j), if f = 0

Aq0
(i, j), if f = 1

where δ(i, j) implies we must stay in the same state.

Layer 2:

P(Ft = f |Q2
t = q2

i ,Q1
t = q1

k) = Aq1
k(i, end)

P(Q2
t = j|Q2

t−1 = q2
i ,Q1

t = q1
k, Ft−1 = f ) =

(

Ãq1
k(i, j), if f = 0

Πq1
k( j), if f = 1

where

Ãq1
k(i, j) =

Aq1
k(i, j)

1− Aq1
k(i, end)

is used for the transition matrix since Q2
t never actually enters an end

state. Instead, the Ft node is used to signal the termination of the level.

Output level:

P(Ot = x j|Q2
t = q2

i ) = bq2
i ( j)
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Note that for the output distributions we only need to condition on layer

2 nodes as the event specified by random variable Q2
t uniquely maps to an

event specified by Q1
t of layer 1. In particular, when Q2

t = q2
1 or Q2

t = q2
2,

then Q1
t = q1

1 and when Q2
t = q2

3 or Q2
t = q2

4, then Q1
t = q1

2.

The current model assumes only two regimes representing a ’buy state’

and ’sell state’. The most natural addition would be a third state, neutral,

in which no position is advocated. We could also consider a 5 hidden

state model, where we distinguish a strong buy from a weak buy and a

strong sell from a weak sell. By reducing the number of states (and hence

parameters) we limit ourselves from over-fitting in sample (and therefore

are more robust out of sample). Whether two regimes suffice is not clear.

However, with even three regimes, we found higher likelihoods do not

necessarily increase out-of-sample accuracy. This is partly because we are

not labeling our hidden nodes and hence our conditional distributions are

not ’unique’ enough for the given sample amount (i.e. we would need

more samples do learn three or more unlabeled hidden states). With more

samples, faster implementation and better learning heuristics (such as

deterministic annealing) we can revisit more complicated models and

experiment further. Also another possibility is semi-supervised learning,

where we label at least some of the hidden states—but we would need

to do this very carefully since as discussed in Section 4.5, it is not always

clear what state corresponds to a particular observation. Finally, there are

algorithms to learn the structure of the Bayesian network, which we could

apply to see how many hidden states best fit the data. We leave this to

future work.

4.5 Learning and inference

We use the EM algorithm to learn the two different top-level states based

on the high-frequency data observations alone. The top-level states are

not labeled in the learning phase. They can be considered high-frequency

regimes, where the latent top-level variable (q1
i ) specifies the active regime
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and each regime determines a unique observation distribution over the

price and volume feature space.

Our goal is to distinguish between bullish trends (run) and bearish

trends (reversals) in the high-frequency window. However, there are

many ways to label runs and reversals. Often trends are identified at

different frequencies by using retracement levels. A retracement level

is the percentage change from a minimum or maximum that must be

reached to change the direction of the current trend. If we use different

retracements levels we can observe any particular observation may be

classified as either part of a run or part of a reversal. Refer to Figure

4.8, in which a stock series has been shown with 5% and 3% retracement

levels. We can see that depending on how we choose to measure runs or

reversals, we obtain different classifications for the same point in time.

Thus, to alleviate the possibility of inappropriately labeling the regime, we

allow the EM algorithm to best explain the observation sequence based on

switching between two hidden regimes. Thus an unsupervised learning

methodology is ideal to protect from inappropriate labeling.

Moreover since these two top-level states are symmetrical in structural

semantics (refer to Section 4.4), there is no built-in bias associated with

the regime. A regime switch simply implies structural changes in the price

and volume observations of the series, signalling when buying and selling

pressure has changed. Once the model has been learned we must analyze

the results to investigate what the regimes represent, if anything useful

(see Section 5.2).

Since the likelihood surface in EM is riddled with local optima, we

start with several different initial parameters and pick the results that

provide highest likelihood in search of the global optimum.

Once we have learned a model based on samples we may use it in

the future for inference. Viterbi inference at each time step is used to

determine the top level state based on observation up to the current time

t. Thus,
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Q̂1
t = argmax

Q1
1:t

P(Q1
1:t |O1:t)

This is in contrast to using the Filter inference in which

Q̂1
t =max

Q1
t

P(Q1
t |O1:t)

is calculated, since in Viterbi the sequence of all possible states are ex-

amined to see which one is most probable given the data up to time

t.
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Figure 4.1: Bema Gold Corp. chart showing that in a bullish trend, vol-
ume increases as price increases, and volume decreases as price declines.
(Adopted from [Ord 08])
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Figure 4.2: Evolution of the transaction price and the bid-ask bounce.
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Figure 4.3: Sample tick level zig-zags extracted from transaction price
for Goldcorp Inc (TSE:G). Red circles indicate local extrema points (or
plateaus) which form tick level support and resistance levels.
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Figure 4.4: Distribution of length of zig-zag leg in number of ticks for
GoldCorp Inc (TSE:G) for May 2007.
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Figure 4.5: Unconditional distribution of observations for GoldCorp Inc.
(TSE:G) over the month of May, 2007.
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q2
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−
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5

Figure 4.6: Hierachical hidden Markov model for price and volume analy-
sis. q1

1 and q1
2 are top level states representing runs or reversals. q2

1 and q2
4

represent negative zig-zag legs, while q2
2 and q2

3 represent positive zig-zag
legs. These are production nodes, filled in gray, that emit an observation
symbol according to some distribution. Transitions enforce the alternating
sequence of positive and negative legs. q2

5 is the termination nodes (note,
there are two of them) at which point control is returned back to the
parent node in layer 1.

Q1
1

F1

Q2
1

O1

Q1
2

F2

Q2
2

O2

Q1
3

F3

Q2
3

O3

Figure 4.7: First three time slices of equivalent DBN for price and volume
analysis.
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Figure 4.8: Example of how zig-zags extracted with different retracement
levels can allow the same point in time to be labeled differently. For
instance, along the gray vertical line, using 5% retracement we would
classify the observation point as belonging to a downtrend, while using
3% retracement we would classify the observation as belonging to an
uptrend.





Chapter 5

Computational Results

In this section we learn and evaluate the forecasting ability of the model

we developed. We first consider a simulated example to show how the

model can encode price and volume patterns and how the EM algorithm

can effectively learn back the patterns out of sample. Subsequently, we

use historical Toronto Stock Exchange data to learn the model on a rolling

window basis and evaluate the results statistically.

5.1 Simulated example

We illustrate how the DBN structure can model price and volume technical

patterns with a hypothetical set of parameters. Define top-level state q1
1 as

a bullish state and q1
2 as a bearish state. Refer to Figure 4.6. In the bullish

state the observations favour strengthening volume on the upward zig-zag

legs, and weakening volume on the downward zig-zag legs; in the bearish

state the observations tend towards weakening volume on the upward

legs and strengthening volume on the downward legs. This behaviour

can be expressed by specifying the conditional observation distributions,

bq2
i ( j), for i ∈ {1,2, 3,4} and j ∈ {U1, ..., U9, D1, ..., D9}, as described below.

Let Θ(i;µ,σ) = Φ(i+0.5;µ,σ)−Φ(i−0.5,µ,σ), where Φ(x;µ,σ) is the

cumulative normal with mean µ and standard deviation σ. This effectively

77
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discretizes the normal probability distribution.

For the bullish state, q1
1, define conditional observation distributions

as:

bq2
1(Uk) = Θ(k;µ1,σ1), bq2

1(Dk) = 0

bq2
2(Dk) = Θ(k;µ1,σ1), bq2

2(Uk) = 0

For the bearish state, q1
2, define conditional observation distributions

as:

bq2
3(Uk) = Θ(k;µ2,σ2), bq2

3(Dk) = 0

bq2
4(Dk) = Θ(k;µ2,σ2), bq2

4(Uk) = 0

where k = 1, ..., 9. By choosing µ1 = 3,µ2 = 7,σ1 = σ2 = 2.5, we obtain

conditional observation distributions as shown in Figure 5.1. As discussed

in Section 4.3, U1 to U9 are ranked from bullish upward legs to bearish

upward legs and D1 to D9 are ranked from bullish downward legs to

bearish downward legs. Thus we have a higher likelihood for observations

that have supporting volume on positive zig-zag legs and weakening

volume on negative zig-zag legs conditioned on being in the bullish state

(q1
1). Conversely, we have a higher probability of supporting volume

on negative zig-zag legs and weakening volume on positive zig-zag legs

conditioned on the bearish state (q1
2). In addition we set the probability

of remaining in the top level state as p1 = p2 = 0.8, encoding the expected

duration of the trends with a geometric distribution. Figure 5.2 shows

the unconditional distribution of observations based on simulating the

DBN for 1000 time-steps. This is a mixture of the conditional observation

distributions. Figure 5.3 shows the duration distribution of the top-level

state of the simulated data, where duration is the number of zig-zags

before a top-level state switch.

We divide the 1000 samples into two groups of 500. We use the

first 500 samples to learn the parameters of the model using expectation

maximization (discussed in Section 3.4) assuming all we know is the

observation sequence. We do not assume we can assign labels to the



5.1. SIMULATED EXAMPLE 79

Figure 5.1: Conditional distribution of observations for simulation param-
eters µ1 = 3,µ2 = 7,σ1 = σ2 = 2.5.

Figure 5.2: Unconditional distribution of observations based on simulation
of DBN for 1000 time steps with parameters µ1 = 3,µ2 = 7,σ1 = σ2 = 2.5.
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Figure 5.3: Duration distribution of the top-level state of the simulated
data.
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Figure 5.4: Model learned likelihood versus percentage accuracy.
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top-level states for reasons explained in section 4.5.

Once we have learned the parameters, we use them on the second

untouched set of 500 samples. The learned parameters are used to infer

the top-level states of the second group of 500 out-of-sample observations

with the Viterbi algorithm. Thus,

Q̂1
t = argmax

Q1
1:t

P(Q1
1:t |O1:t)

for t = 501, ..., 1000.

We start with twenty different initial parameters chosen randomly.

For each attempt, we optimized the likelihood and calculated the out-of-

sample percentage accuracy. Figure 5.4 shows a scatter plot of likelihood

versus percentage accuracy. For two possible top-level states, simple guess-

ing yields 50% accuracy in expectation. However, the learned model

obtains up to 90% accuracy. We see that obtaining a higher likelihood in

general provides a higher accuracy rate—consequently, likelihood maxi-

mization is able to effectively learn back the latent model parameters out

of sample.

5.2 TSE60 experiment and analysis

Using historical high-frequency Toronto Stock Exchange data, we analyze

60 stocks of the TSE60 for May 2007. The data consists of 22 business days

excluding holidays and weekends. In addition, a manual data cleansing

process revealed three days of unusable data due to significant errors,

which leaves us with 19 days, labeled as D1, ..., D19. Transactions are

identified in the data to form the raw tick series. In aggregate, over the

60 stocks this consisted of 3,449,363 ticks and after applying the feature

extraction process, 646,692 number of zig-zag observations. At a daily

frequency this would account for 13,688 years of observation data and on

average 228 years of data per stock. So although 19 days may not seem a

lot, at a high-frequency scale, it provides for ample observation points. We
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Table 5.1: Quartile groupings by average daily volume in the month of
April 2007.

Largest Quartile 2nd Quartile 3rd Quartile Smallest Quartile

Ticker Vol (mil) Ticker Vol (mil) Ticker Vol (mil) Ticker Vol (mil)

SJR.B 22.60 MFC 2.10 YLO.UN 1.24 IMO 0.59
TOC 10.50 CCO 1.99 TRP 1.18 CP 0.56
BCE 9.40 RY 1.98 T 1.17 SC 0.56

BBD.B 5.06 ABX 1.96 BAM.A 1.03 NA 0.54
MG.A 4.70 PCA 1.91 TA 1.02 SNC 0.52

G 4.11 YRI 1.85 MDS 0.91 BVF 0.50
SXR 3.95 CNR 1.78 SLF 0.91 FM 0.45
TLM 3.78 BNS 1.73 HSE 0.85 L 0.45
LUN 3.53 RCI.B 1.54 POT 0.83 NCX 0.44

CTC.A 3.40 RIM 1.48 AEM 0.79 THI 0.40
K 3.32 COS.UN 1.43 AGU 0.77 GIL 0.38

SU 2.92 BMO 1.36 ENB 0.72 FTS 0.33
TCK.B 2.70 TD 1.30 CM 0.65 ERF.UN 0.32
ECA 2.23 CNQ 1.29 AER.UN 0.65 IMN 0.29
NXY 2.19 NT 1.27 PWT.UN 0.62 WN 0.13

process the raw series to obtain zig-zag features as described in Section

4.3.

We divide the 60 stocks into four groups (quartiles) based on the

average volume of trades in the previous month, labeling them G1, ..., G4,

where G1 consists of 25% of the stocks that had the most volume, and

G4 consists of 25% of the lowest volume stocks. Refer to Table 5.1 for a

listing of each group. The reason for doing this is to be able to investigate

the cross-sectional performance of the model. (In our analysis we also

considered dividing the stocks into ten group or by decile, results were

similar. To highlight the important characteristics we are showing quartile

results. ) We would expect that higher volume stocks would be more

likely to have price and volume patterns embedded, since price move-

ments in these highly liquid stocks require more volume synchronicity;

consequently a volume move would carry more significance.

Figures 5.5, 5.6, 5.7 and 5.8 show the unconditional distribution of the

observations for each quartile. We can observe that all four quartiles have

remarkably similar unconditional distributions—each with relatively nor-

mal skew ( -0.01) and a kurtosis lower than that of a Gaussian distribution
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( 1.3).

We use the price and volume dynamic Bayesian network described

in Section 4.4 to model the features extracted. Model parameters are

learned based on a rolling five day window using the EM algorithm as

described in Section 3.4, thus maximizing the posterior probability of the

parameters λ (see Section 4.4) given the observations O,

λ∗ = arg max
λ

log P(O;λ) = argmax
λ

logΣH P(O, H;λ)

where H ∈ q1
1, q1

2 represents the hidden state variables. We attempted

EM trials using five initial starts and chose the best set of parameters

λ∗ that maximized the joint likelihood. Since the EM algorithm can be

computationally expensive on large sets of data we limited number of EM

trials to five—a future course of study can investigate more trials and/or

combine other searching techniques such as genetic algorithms in attempt

to find the global maximum likelihood.

The above step provides us with a learned set of parameters for the

DBN model over a five day historic window. Recall, in the corresponding

HHMM model the two top level states (q1
1, q1

2) are symmetric and we do not

assign semantic meaning to them prior to the learning phase. Once we’ve

learned the parameters, we asses the trade performance of these states

over the five day historic in-sample period. Noting that the expectation

step in the EM algorithm has already marked each hidden state with the

most likely state value, we can evaluate the in-sample expected trade

return of each state as follows,

E(Rq1
1
) =

1

Nq1
1

Nq1
1

∑

k=1

p fk

q1
1
− pik

q1
1

pik
q1

1

(5.1)

E(Rq1
2
) =

1

Nq1
2

Nq1
2

∑

k=1

p fk

q1
2
− pik

q1
2

pik
q1

2

(5.2)

where pik
q1

1
(pik

q1
2
) is the initial price at the beginning of the kth continuous
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Figure 5.5: Unconditional distribution of observations for G1.

Figure 5.6: Unconditional distribution of observations for G2.
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Figure 5.7: Unconditional distribution of observations for G3.

Figure 5.8: Unconditional distribution of observations for G4.
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block of q1
1 (q1

2) states, p fk

q1
1

(p fk

q1
2
) is the final price before the top-level state

switch, and Nq1
1

(Nq1
2
) is the number of samples of state switches. We can

now assign meaning to each state: if E(Rq1
1
)> E(Rq1

2
) we designate state q1

1

as a run (bullish) and q1
2 as a reversal (bearish), otherwise we designate

q1
2 as a run (bullish) and q1

1 as a reversal (bearish).

Figures 5.9, 5.10, 5.11 and 5.12 show the in-sample conditional (con-

ditioned on being in the bullish or bearish top-level state) distribution of

feature observations learned for each quartile. The learned conditional

distributions are similar across quartiles with the same characteristics

showing up in each.

Recall Table 4.1 lists the feature vectors, which we ranked a priori

based on volume and price technical analysis concepts so that U1,...,U4

(for the positive legs) and D1, ..., D4 (for the negative legs) are bullish

observations whereas U6,...,U9 (for the positive legs) and D6, ..., D9 (for

the negative legs) are bearish observations. We can see that there is a

strong tilt towards the bullish observations in the bullish state, and a

strong tilt towards the bearish observations in the bearish state. This

behaviour is learned from the unconditional distribution directly using

EM.

This validates that the intraday price process can be split into two

regimes, with unique distributions over the feature vectors. Each regime is

distinguished from the unconditional distribution with a tilt towards price

and volume characteristics so that the bullish state is more likely to have

observations where price increases are supported by volume increases

and price decreases are not supported by volume decreases, whereas

the bearish state is tilted toward observations where price decreases are

supported by volume increases and price increases are not supported by

volume decreases.

The exception is U2 and U8 for up legs and D2 and D8 for down legs.

The bullish state is more likely to have observation feature U8 and D8 than

U2 and D2, which counters our a priori ranking shown in Table 4.1. U2

(equiv. D2) refers to feature observation (1, -1, 1) (equiv. (-1, -1, -1) ), and
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U8 (equiv. D8) refers to feature observation (1, 1, -1) (equiv. (-1, 1, 1) ).

Recalling f 0
k is the direction of the leg, f 1

k is a price momentum indicator

and f 2
k is the volume indicator, we see that in these cases momentum is

more significant than the price and volume formation. Using DBNs we are

thus able to learn characteristics which can be used for technical analysis

accounting for exceptions in a coherent probabilistic framework.

Now that we have a fully specified model, we can use this model for

inference purposes on the sixth out-of-sample day. Recalling Section 3.3

and Figure 3.7, we have several options for inference: filtering, Viterbi,

prediction, fixed-lag smoothing, offline fixed-interval smoothing, and

offline fixed-interval Viterbi smoothing. We investigate two of these

inference types, offline fixed-interval Viterbi smoothing and Viterbi.

Offline fixed-interval Viterbi smoothing infers the hidden state at time

t as,

ˆ̂Q1
t = argmax

Q1
1:t

P(Q1
1:t |O1:T )

where Q1
1:t represent the sequence of hidden states up to present time t,

and O1:T represents all the evidence for the sixth out-of-sample day (i.e.

T corresponds to the final DBN slice or zig-zag of the sixth day). We are

inferring the state at some earlier time t using information known for

the remainder of the day, and thus permitting a look-ahead bias. The

information obtained about the inferred state using this approach cannot

be traded upon, however, it provides us with an upper bound benchmark

of our model. Consequently, it illustrates whether the designed model was

capable of learning meaningful patterns out-of-sample. Refer to Figure

5.13 for an example out-of-sample day where the offline fixed-interval

viterbi was used for inference.

Viterbi inference estimates the hidden state at time t as,

Q̂1
t = arg max

Q1
1:t

P(Q1
1:t |O1:t)
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Figure 5.9: Conditional distribution of observations for G1.

Figure 5.10: Conditional distribution of observations for G2.
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Figure 5.11: Conditional distribution of observations for G3.

Figure 5.12: Conditional distribution of observations for G4.
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Figure 5.13: Example of out-of-sample offline fixed-interval look-ahead
viterbi inference. Sample day showing results for GoldCorp Inc. (TSE:G)
on May 11, 2007. Filled circles are the start of the bullish state and
upside-down triangles are the start of the bearish state.
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where Q1
1:t represent the sequence of hidden states up to present time t,

and O1:t represents the observational evidence up to present time t for

the sixth out-of-sample day. In this case we do not incur any look-ahead

bias—we are only using information known up to the present time to

infer the hidden state at the present time. Thus, the inferred states can be

traded upon. Refer to Figure 5.14 for an example sixth day where viterbi

was used for inference.

We shall investigate the trade return distribution based on the inference

out-of-sample. The kth trade return is given by

Rk =
p fk − pik

pik

where pik is the initial price at the beginning of a top-level state switch, p fk

is the final price before the top-level state switches again. As mentioned in

Section 4.3, we do not observe a realization of a zig-zag point (and hence

the corresponding observation) as soon as it is completed—rather there

is a one tick lag between the leg completion and the time of detection.

We assume we trade at the next tick, after the zig-zag leg is completed

and we are able to detect the zig-zag leg, ensuring we do not have any

look-ahead bias when evaluating the return.

5.2.1 Goodness-Of-Fit tests

A natural first step in the analysis of the model is to gauge the information

content of the top-level (q1
1, q1

2) learned states. We propose to do this

by investigating the unconditional empirical distribution of trade returns

with the corresponding conditional empirical distribution, conditioned on

the top-level state, for each quartile. If the model has learned two distinct

states, conditioning on them should alter the empirical distribution of

trade returns, otherwise if the model has simply over-fit the observation

features out-of-sample then the conditional and unconditional distribu-

tions of trade returns should be close. Although this is a weaker test of the

effectiveness of the model—informativeness does not guarantee a prof-
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Figure 5.14: Example of out-of-sample viterbi inference. Sample day
showing results for GoldCorp Inc. (TSE:G) on May 11, 2007. Filled circles
are the start of the bullish state and upside-down triangles are the start of
the bearish state.
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itable trading strategy—it is nevertheless a more fundamental assessment

of whether the model has even learned anything at all.

Table 5.2 and Figures 5.15, 5.16, 5.17 and 5.18 show the conditional

and unconditional trade return distributions for each quartile. We see

the trade return distributions are quite unlike normal distributions with

significant skew and kurtosis. In particular, the bullish state trade return

distribution is positively skewed with significant kurtosis, while the bearish

state trade return distribution is negatively skewed also with significant

kurtosis. This implies most of the action is occurring at the tails. Looking

at the graphs we see that the bullish distribution lies above the bearish

distribution in the right tail and below in the left tail. This is the case for

all the four quartiles, with results being stronger for the top quartile and

diminishing as we go to lower volume quartiles.

Chi-Square test

The chi-square Goodness-of-fit test [Snedecor 89] is used to test if a

sample of data came from a population with a specific distribution. We

can use this tool to test the informativeness of the two top-level states

by checking if the conditional trade return distribution is statistically

equivalent to the unconditional trade distribution. If conditioning on the

regime provides no incremental information, the conditional trade returns

should be similar to those of the unconditional returns.

The test requires that the data first be grouped. The actual number of

observations in each group is compared to the expected number of obser-

vations and the test statistic is calculated as a function of this difference.

The number of groups and how group membership is defined affects the

statistical power of the test (i.e. how sensitive it is to detecting departures

from the null hypothesis). The power of the test is also affected by the

sample size and shape of the null and underlying (true) distributions.

In general, power is maximized by choosing endpoints such that group

membership is equiprobable (i.e. the probabilities associated with an

observation falling into a given group are divided as evenly as possible
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Figure 5.15: Left: Distribution of the length of a state; right: conditional
distribution of trade returns for G1.

Figure 5.16: Left: Distribution of the length of a state; right: conditional
distribution of trade returns for G2.
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Figure 5.17: Left: Distribution of the length of a state; right: conditional
distribution of trade returns for G3.

Figure 5.18: Left: Distribution of the length of a state; right: conditional
distribution of trade returns for G4.
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across the intervals) [Sheskin 00].

Thus we could use groups based on quantiles of the conditional returns

with the unconditional returns. In particular, we compute the deciles of

unconditional trade returns, thus grouping the data into 10 bins. We

tabulate the relative frequency δ̂ j of conditional trade returns falling into

decile j of the unconditional returns, j = 1, ..., 10,

δ̂ j ≡
number of conditional returns in decile j

total number of conditional returns

Assuming that the trade returns are independent and identically dis-

tributed, the chi-square test defined is,

H0: Conditional and unconditional trade

distributions are identical.

Ha: Conditional distribution is not the same

as the unconditional distribution.

Q Statistic: Q ≡
10
∑

j=1

(n j − 0.10n)2

0.10n
∼ X 2

9

Asymptotic:
p

n(δ̂ j − 0.10)∼ N(0,0.10(1− 0.10))

where n j is the number of observations that fall in decile j and n is the

total number of observations. If conditioning on the regime provides no

information, the expected percentage falling in each decile is 10% with

variance decreasing in the order of n−1. Also, note that the sampling

distributions are derived under the assumption that returns are IID, which

is not reasonable for financial data. We normalize the trade returns, by

subtracting its mean and dividing by its standard deviation in attempt to

address this issue. However, this does not eliminate the dependence or

heterogeneity in the data observations. (Note, similar assumption is made

in [Lo 00] in their statistical tests.) We hope to extend analysis to more

general non-IID case in future work.
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Kolmogorov-Smirnov test

Another comparison of the conditional and unconditional distributions

of returns is provided by the non-parametric Kolmogorov-Smirnov test

([Chakravarti 67, Sheskin 00]). The Kolmogorov-Smirnov test can be

used to decide if a sample comes from a population with a specific distri-

bution. In the two sample version, it can be used to compare whether two

samples came from the same distribution. In this case, the Kolmogorov-

Smirnov statistic quantifies a distance between the empirical distribution

function of the two samples.

Let {Z1n}
N1
n=1 and {Z2n}

N2
n=1 be two samples that are each independent

and identically distributed with cumulative distributions functions F1(z)
and F2(z), respectively. The empirical cumulative distribution function,

F̂i(z) of each sample is given by,

F̂i(z) =
1

Ni

Ni
∑

k=1

IZi≤z, i = 1, 2

where IZi≤z is the indicator function, equal to 1 if Zi ≤ z otherwise 0. The

test is defined as,

H0: F1(z) = F2(z), the samples

are drawn from the same distribution.

Ha: F1(z) 6= F2(z), samples have

different distributions.

Statistic: γN1,N2
≡
�

N1N2

N1+ N2

�
1
2

sup
−∞<z<∞

|F̂1(z)− F̂2(z)|

Asymptotic: lim
min(N1,N2)→∞

P(γN1,N2
≤ x) =

∞
∑

k=−∞

(−1)k exp(−2k2 x2), x > 0

An approximate α-level test of the null hypothesis can be performed

by computing the statistic and rejecting the null if it exceeds the upper α

percentile for the null distribution given by the asymptotic distribution.

Thus we can calculate p-values with respect to the asymptotic distribution.
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This test assumes the sample trade returns are independent and identically

distributed—we normalize the trade returns once again, keeping in mind

that this does not eliminate dependence or heterogeneity of the samples.

(Similar assumption is made in [Lo 00]).

What these goodness-of-fit tests tell us

Chi-square test results are summarized in Tables 5.3 (in-sample), 5.4

(out-of-sample with lookahead bias) and 5.5 (out-of-sample without look

ahead bias) for each quartile. For each state, the percentage of conditional

trade returns that falls within each of the 10 unconditional return deciles

is tabulated. If conditioning on the state provides no information, the

expected percentage falling in each decile is 10%. Asymptotic z-statistics

for this null hypothesis are reported in parenthesis, and the X 2 goodness-

of-fitness test statistic Q is reported in the last column with the p-value

in parenthesis below the statistic. We see that the relative frequency

of the conditional returns are significantly different from those of the

unconditional returns for both the bullish and bearish state and across

all the quartiles. In-sample results have extreme z-scores, indicating that

the learned states define two clearly distinct return distributions. This

persists in the out-of-sample look-ahead Viterbi, and to a lesser extent in

the out-of-sample without look-ahead Viterbi. In all case and across all

quartiles the p-value is 0.00% (at two points of accuracy) showing that

conditioning on the state alters the trade distribution and hence contains

information.

This result is further supported with the Kolmogorov-Smirnov test

results, summarized in Tables 5.6 (in-sample), 5.7 (out-of-sample with

lookahead bias) and 5.8 (out-of-sample without look ahead bias). The

p-values are with respect to the asymptotic distribution of the Kolmogorov-

Smirnov test statistic for the equality of conditional and unconditional

trade return distribution. In-sample and look-ahead Viterbi results have p-

value of 0.00% (at two decimal points of accuracy) across all quartiles. In

Viterbi without look ahead the statistical significance declines particularly
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for Quartile 3 at 13.43%. The other quartiles still show a statistically

significant deviation from unconditional (at the 5% level).

5.2.2 Regime return characteristics

The goodness-of-fit tests provided us with information about whether

there is information content in the two states. In this section we will

test whether the two states correspond to runs (high frequency bullish

periods) and reversals (high frequency bearish periods). We propose to

do this by testing the means of the trade returns in each state.

Bullish versus bearish

First we would like to verify whether the bullish regime has a higher

mean than the bearish regime. As discussed in Section 5.2 we designate a

top-level state to be bullish or bearish based on the in-sample trade return

performance after we learn the maximum likelihood model parameters

via EM. Using inference we can subsequently generate out-of-sample trade

returns for the bullish regime and the bearish regime, which we designate

as {X1n}
N1
n=1 and {X2n}

N2
n=1, respectively.

We shall use the t-test for two independent samples [Sheskin 00]. In

conducting the test, the two sample means (denoted by X 1 and X 2) are

used to estimate the values of the means of the populations (µ1 and

µ2) from which the samples are derived. If the result of the t-test for

two independent samples is significant, it indicates that there is a high

likelihood that the samples represent population with different mean

values. The test is useful when the underlying population variances are

unknown, and therefore must be estimated by computing the unbiased

sample standard deviation (S),

S =

s

∑

X 2− (
∑

X )2

n

n− 1

The test is defined as,
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Table 5.6: Kolmogorov-Smirnov test of the equality of the in-sample
conditional and unconditional trade return distribution.

In sample

Bullish State Bearish State
γ p-value γ p-value

Largest Quartile 8.15 0.00% 8.16 0.00%
2nd Quartile 7.73 0.00% 7.76 0.00%
3rd Quartile 5.34 0.00% 5.36 0.00%

Smallest Quartile 4.83 0.00% 4.83 0.00%
All stocks 12.84 0.00% 12.87 0.00%

Table 5.7: Kolmogorov-Smirnov test of the equality of the out-of-sample
look ahead viterbi conditional and unconditional trade return distribution.

Out-of-sample Look-ahead Viterbi

Bullish State Bearish State
γ p-value γ p-value

Largest Quartile 5.49 0.00% 5.43 0.00%
2nd Quartile 4.80 0.00% 4.82 0.00%
3rd Quartile 2.80 0.00% 2.82 0.00%

Smallest Quartile 2.33 0.00% 2.35 0.00%
All stocks 7.64 0.00% 7.64 0.00%

Table 5.8: Kolmogorov-Smirnov test of the equality of the out-of-sample
viterbi conditional and unconditional trade return distribution.

Out-of-sample Viterbi

Bullish State Bearish State
γ p-value γ p-value

Largest Quartile 1.39 4.25% 1.38 4.40%
2nd Quartile 2.07 0.04% 2.08 0.04%
3rd Quartile 1.18 12.58% 1.16 13.43%

Smallest Quartile 1.74 0.46% 1.72 0.54%
All stocks 2.97 0.00% 2.96 0.00%
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H0: µ1 ≤ µ2

Ha: µ1 > µ2

t Statistic: t =
X 1− X 2

s

�

(N1− 1)S2
1 + (N2− 1)S2

2

N1+ N2− 2

�

�

1

N1
+

1

N2

�

with (N1+ N2− 2) degrees of freedom

We would like to point out that the t-test for two samples is based on

the following assumptions:

1. Each sample has been randomly selected from the population it

represents (IID samples from each population distribution);

2. The distribution of data in the underlying population from which

each of the samples is derived is normal;

3. The third assumption, which is referred to as the homogeneity of

variance assumption, states that the variance of the underlying

population represented by Sample 1 is equal to the variance of the

underlying population represented by Sample 2 (i.e., σ1 = σ2).

If any of these assumptions are violated, the reliability of the t-test

statistic may be compromised. An alternative is to consider the analogous

nonparametric test—which will have relatively fewer or less rigorous

assumptions. However, numerous empirical sampling studies have demon-

strated that under most conditions a parametric test like the t test for two

independent samples is reasonably robust. That is, it provides information

about the underlying sampling distribution, in spite of the fact that one or

more of the test’s assumptions have been violated. In addition, parametric

tests, such as the t test for two independent samples, are more powerful

than their nonparametric analogs. We risk adjust the trade returns, by

dividing by its standard deviation in attempt to address these assumptions.

We shall leave it to future work to consider a more general analysis.
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Runs and reversals

Finally, we would also like to test if the bullish regime has a positive mean

while the bearish regime has a negative mean. This tests whether our

learned states captures runs and reversals out-of-sample. We can use

the single sample t-test to compare each regime’s mean trade return (µ1

and µ2 for bullish and bearish, respectively) from 0 [Sheskin 00]. In the

one tail test, if the result of the single-sample t test yields a significant

positive (negative) value, we can conclude there is a high likelihood the

sample is derived from a population with a positive (negative) mean. The

test is used when the underlying population standard deviation (σ) is

unknown, and therefore must be estimated by computing the unbiased

sample standard deviation (S).

The test for the bullish regime is,

H0: µ1 ≤ 0

Ha: µ1 > 0

t Statistic: t =
X 1

S1
p

N1

with (N1− 1) degrees of freedom

The test for the bearish regime is,

H0: µ2 ≥ 0

Ha: µ2 < 0

t Statistic: t =
X 2

S2
p

N2

with (N2− 1) degrees of freedom

If the absolute value of the t-statistic is less than α-level of the t-

distribution we can reject the null hypothesis. Alternatively, we can

calculate the p-value as the probability of obtaining a t value equal to or

more extreme than that obtained from the sample data when H0 is true.
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The following two assumptions apply to the single-sample t test:

1. The sample has been randomly selected from the population it

represents (IID samples from population distribution);

2. The distribution of data in the underlying population the sample

represents is normal.

We risk adjust the trade returns, by dividing by its standard deviation

in attempt to address these assumptions. We leave it to future work to

explore more general analysis which do not rely on these assumptions.

What the regime mean tells us

Results for regime mean tests are summarized in Tables 5.9 (in-sample),

5.10 (out-of-sample with lookahead bias) and 5.11 (out-of-sample without

look ahead bias) for each quartile. P-values can be calculated as the

probability of obtaining a test statistic value equal to or more extreme

than that obtained from the sample data when the null hypothesis is

true. We find that for in-sample and out-of-sample with look-ahead bias,

the results are statistically significant at 0.00% (accurate to two decimal

points). This is the case for all three tests, namely 1) bullish mean is

greater than bearish mean, 2) bullish mean is positive, 3) bearish mean

is negative. For out-of-sample Viterbi (without look-ahead bias) we see

weaker results, but statistically significant for the top three quartiles at

the 5% level. For the 4th quartile, while the positive bullish mean test

is significant at 4.76%, the negative bearish mean is much weaker at

36.97%.

We can conclude that the price and volume DBN model is indeed able

to learn two different states that represent intraday bullish and bearish

properties—with results stronger for larger volume stocks.
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5.2.3 Trading strategy and results

Now that we have statistical evidence that the model has indeed learned

two states, one indicating a run and the other a reversal, we shall evaluate

the trading profits of simple trading system based on the model. We shall

position ourselves long one unit when top level state Q1
t switches to bullish

(i.e. run) and short one unit when Q1
t switches to bearish (i.e. reversal).

Again, we ensure no look-ahead bias is present by placing the trade one

tick after the observation is complete, since this is the point at which the

zig-zag leg is identifiable, at which point we can extract the observation

feature.

Table 5.12 shows the results obtained for the four quartiles. The

buy and hold results are compared to the look-ahead Viterbi and Viterbi

without look-ahead strategy. We note that the developed strategy based

on the DBN model has very low correlation to the buy and hold strategy,

indicating that it can perform in both bullish and bearish periods. Look-

ahead Viterbi has exceptional performance. Though this strategy cannot

be traded upon, it is indicative of the significance of the learned price and

volume patterns out-of-sample. Without look-ahead bias the performance

drops, but it is still significant compared to buy and hold. In general, high

volume stocks perform better than lower volume stocks. This was seen

with the statistical tests as well, with stronger significant results for the

larger quartiles.

Performance without the look-ahead bias drops mainly due to instabil-

ity of the regime state, which results in a higher number of trades (see

Figure 5.13 versus 5.14 for a visual example). In comparison, the look

ahead bias has smoothed switching since we estimate the hidden state

using information from the past, present and the future. It remains an

interesting course of investigation to see how we can enhance the DBN

inference framework to minimize instable regime switches.

Figures 5.19, 5.20, 5.21 and 5.22 show the accrued profit and loss

(P&L) of $1 invested in the strategy using Viterbi inference (without look-
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ahead bias) compared to the buy and hold approach for each quartile.

Comparing to the simple buy and hold strategy, we can clearly see that

our model has the capacity to capture significant profit from technical

intraday volatility.

When we place the trade after the one-tick lag, we assume we can fulfil

the trade at that price—that is, we are not accounting for trading costs.

Although this may not be reasonable for the general public, it may be ok for

a market maker that is generally expected to earn the spread (not taking

into account large block trades which would necessarily span several

transactions and have significant market impact if traded all at once). In

fact, as discussed in Section 4.2, the model uses bid-ask resistance points

to capture technical volatility arising due to spreads. Thus we have been

able to generate a predictive model of ultra-high frequency moves—useful

for a market maker or possibly as an input for an optimal execution engine.

Also, passive public traders who use limit orders could benefit from this

model as well, and an interesting extension would be to combine order

book information to provide precise limit order trade signals. Another

interesting future course of study could attempt to learn from features

which characterize other sources of technical intraday volatility apart from

bid-ask spreads such as market impact, price discovery and momentum

effects.
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Figure 5.19: Value of $1 invested in G1 stocks.
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Figure 5.20: Value of $1 invested in G2 stocks.
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Figure 5.21: Value of $1 invested in G3 stocks.
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Figure 5.22: Value of $1 invested in G4 stocks.



Chapter 6

Conclusion

This chapter concludes this thesis. We begin by summarizing the key

points of the work, what guided us in this direction and what we learned

from our model and experiments. Finally, we review our contributions

and suggest future avenues of investigation.

6.1 Summary of key ideas

In this thesis, we have proposed a new approach for modeling and working

with technical analysis. The idea of technical analysis has been thwarted

from the beginning in academic circles. This is mostly due to the Efficient

Market Hypothesis, which had significant empirical support early on.

The idea of the efficiency of markets is that price changes are due to

fundamental value changes and that these changes cannot be anticipated

a priori. In its weakest form, it implies that the market follows a random

walk, and therefore past price information cannot be used to forecast

future price. However, recent research has started to question the Efficient

Market Hypothesis—both on a theoretical basis and with empirical results.

In particular, the return distribution of prices seem to exhibit specific

characteristics, such as volatility clustering and excessive leptokurtosis,

that is difficult to explain with a random walk model.

119
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Technical analysis also advocates that price (and volume) information

reflects all known information, but in addition, it believes that human

behaviour tends to repeat itself, forming trends and patterns in market

prices. Thus by diligently studying price and volume behaviour chartists

identify market sentiment and attempt to forecast price direction. How-

ever, technical analysis remains mostly an “art” with much room left for

subjective interpretation.

This thesis promotes a new toolset to work with technical analysis:

dynamic Bayesian networks (DBNs). DBNs are a statistical modeling and

learning framework that have had successful applications in speech recog-

nition, bio-sequencing, visual interpretation, and other areas. It subsumes

several popular paradigms including mixture models, factor analysis, hid-

den Markov models, Kalman filters and Ising models. Technical analysis

may well be the next frontier for such methods. By providing a coherent

probabilistic framework (in a Bayesian sense), it can be used for both

learning technical rules and inferring the hidden state of the system.

6.2 Results and contributions

We present a model based on dynamic Bayesian networks to learn price

and volume patterns in high-frequency markets. It is the first study to

apply DBNs to financial data, and one of the few that investigate technical

analysis in high-frequency markets.

We carefully define high-frequency features based on zig-zags that

characterize price moves with corresponding volume moves in a trending

or non-trending environment. This feature set encodes price and volume

technical analysis tenets. We design a hierarchical hidden Markov model

(HHMM) that distinguishes between runs and reversals by learning distinct

distributions over the feature space. The HHMM is designed to prevent

overfitting, however complex enough to learn significant patterns in the

feature space. We subsequently transform the HHMM into a DBN for

efficient learning and inferences purposes. One of the key differences



6.3. APPLICATIONS AND FUTURE WORK 121

from other DBN applications, such as speech recognition, is that we do

not label our hidden states in the training phase. In financial series, it is

not clear whether a particular point is in a run or reversal since it depends

on the time scale of concern. As such, training financial DBNs poses

additional challenges.

We investigate TSE60 stocks and found that we are able to learn two

regimes that successfully captured runs and reversals out-of-sample. We

present statistical tests, verifying that two regimes captured unique return

trade distributions both in- and out-of-sample. Moreover, we showed that

the bullish regime resulted is a positive trade mean, while the bearish

regime resulted in a negative trade mean in a statistically significant way

out-of-sample. In general, we found higher volume stocks lend themselves

more favourably to technical analysis, indicating that price and volume

behaviour is more persistent in larger aggregates. Finally we illustrate the

results of a trading system based on the model, which yielded substantial

positive results compared to the buy and hold strategy. We have not

considered the impact of trading costs—since our window frequency was

at the transaction level, we expect the model to be more useful for market

makers, optimal execution kernels and limit order traders.

Our results validate the presence of technical predictability; we con-

clude that there is information content available in price and volume data

in transaction data that can be used to predict intraday trends. Moreover,

our methods suggest that dynamic Bayesian networks can be used to

improve upon traditional technical analysis approaches.

6.3 Applications and future work

This work just scratches the surface of using DBNs for financial analysis.

Below we list a few possible way we can extend our work,

Parameter learning: Improve learning for the global maximum likeli-

hood parameters, for example by considering deterministic anneal-
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ing or incorporating a genetic evolutionary approach.

Structure learning: Consider learning the structure (topography) of the

DBN [Friedman 98], instead of designing it manually.

Chain graphs: DBN semantics encode conditional probabilities in the

form of directed arcs; we can also consider including undirected

arcs representing correlation (known as chain graphs).

Order flow: Incorporate order flow data in the feature space. [Fama 70]

shows that order flow data significantly improves technical analysis

signals.

Time scales: Consider alternate time scales (i.e., hours, days, etc.), by us-

ing features that correspond to that time-scale. In addition, consider

modeling a multi-resolution DBN, as is done for language and speech

recognition. (Refer to [Filali 06] for discussion on multi-dynamic

Bayesian networks).

Cross-sectional analysis: Markets exhibit a high degree of interdepen-

dency; consider linking individual asset models to form a large

integrated multi asset DBN.

Continuous features: Use continuous features instead of just discrete,

allowing for more informative features.

Fundamental value: Consider fundamental data in the feature space.

In particular, consider designing a DBN that captures equilibrium

dynamics and consequently identifies mispricings from equilibrium.

Dynamic Bayesian networks, and more generally, graphical probabilis-

tic networks is an encompassing and general framework to work within.

We hope that our considerations illustrate that they can be powerful

tools for market analysis, and hope to explore more possibilities in future

research.
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vol. 6, page 41Ű49, 1965. 2, 9

[Schwartz 04] Robert Schwartz. Equity markets in action: The

fundamentals of liquidity, market structure & trading.

Wiley, 2004. 8, 56



BIBLIOGRAPHY 131

[Schwert 94] G.W. Schwert. Mark-up Pricing in Mergers and Acqui-
sitions. Papers 95-01, Rochester, Business - Financial

Research and Policy Studies, 1994. 49

[Sharpe 98] William Sharpe. Investments (6th edition). Prentice

Hall, 1998. 8

[Sheskin 00] David J. Sheskin. Handbook of parametric and non-

parametric statistical procedures. Chapman and Hall,

2 edition, 2000. 98, 99, 101, 107

[Shiller 81] Robert J Shiller. Do Stock Prices Move Too Much to be
Justified by Subsequent Changes in Dividends? Ameri-

can Economic Review, vol. 71, no. 3, pages 421–36,

June 1981. 3, 10

[Shleifer 97] Andrei Shleifer & Robert W Vishny. The Limits of
Arbitrage. Journal of Finance, vol. 52, no. 1, pages

35–55, March 1997. 9, 10

[Sims 06] Christopher A. Sims & Tao Zha. Were There Regime
Switches in U.S. Monetary Policy? American Economic

Review, vol. 96, no. 1, pages 54–81, March 2006. 50

[Snedecor 89] George W. Snedecor & William G. Cochran. Statisti-

cal methods. Iowa State University Press, 8 edition,

1989. 94

[Storer 95] Paul Storer & Marc A. Van Audenrode. Unemploy-
ment Insurance Take-Up Rates in Canada: Facts, De-
terminants, and Implications. Canadian Journal of

Economics, vol. 28, no. 4a, pages 822–35, November

1995. 49

[Town 92] R J Town. Merger Waves and the Structure of Merger
and Acquisition Time-Series. Journal of Applied Econo-



132 BIBLIOGRAPHY

metrics, vol. 7, no. S, pages S83–100, Suppl. De 1992.

49

[Zhang 98] Guoqiang Zhang, B. Eddy Patuwo & Michael Y. Hu.

Forecasting with artificial neural networks: The state of
the art. International Journal of Forecasting, vol. 14,

no. 1, pages 35–62, March 1998. 3

[Zhang 99] Nevin Zhang & David Poole. On the role of context-
specific independence in probabilistic reasoning. In

Proc. IJCAI, 1999. 40

[Zweig 96] G. Zweig. A forward-backward algorithm for infer-

ence in bayesian networks and an empirical com-

parison with hmms. Master’s thesis, Department of

Computer Science, U.C. Berkeley, 1996. 44


	Front matter
	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis outline

	Financial Theory
	Efficient Market Hypothesis
	The Random Walk Hypothesis
	Stylized facts
	Heterogeneous Market Hypothesis
	Technical analysis

	Dynamic Bayesian Networks
	Bayesian networks
	Dynamic Bayesian networks
	Hidden Markov models
	Hierarchical hidden Markov models

	Inference
	Types of inference for DBNs

	Learning
	Example: using DBNs for regime switching

	Price and Volume Model
	Price and volume relationships
	Market microstructure
	Feature extraction
	Model specification
	Learning and inference

	Computational Results
	Simulated example
	TSE60 experiment and analysis
	Goodness-Of-Fit tests
	Regime return characteristics
	Trading strategy and results


	Conclusion
	Summary of key ideas
	Results and contributions
	Applications and future work

	Bibliography

