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Abstract  

 
 Falls and hip fractures are a major public health problem among the elderly.  In 
addition to bone strength, sideways falls and direct hip impact are important determinants for 
hip fracture.  However, few falls actually cause serious injury in both young and older adults. 
Therefore, understanding how individuals facilitate a safe landing during a fall will help 
guide appropriate exercise-based training programs.  The primary purpose of this thesis was 
to investigate the effects of secondary tasks on movement strategies during a sideways fall.
 To address this aim, I used a tether and electromagnet to suddenly release subjects 
from a sideways leaning position, causing them to fall onto a gymnasium mat. I instructed 
subjects to “fall and protect yourself, as if you were landing on a hard surface”.  I acquired 
trials in four conditions, presented in a pseudo-random order: falling while holding a box, 
falling while holding an empty mug, falling while reciting spoken text, and falling with no 
secondary task.  In most trials, regardless of condition, impact occurred to the lateral aspect 
of the pelvis (no secondary task = 87%, box = 82%, cognitive = 90%, mug = 79%).  While 
the frequency of impact to both hands decreased when carrying an object (box=67%, 
mug=50% compared to cognitive=90% and no secondary task=85%), 40% of trials in the 
mug condition involved one hand contacting the ground, indicating hand impact was still 
common. It appears when protective movements such as impact to the knees and hands did 
occur, they were not used to avoid direct hip impact.  Instead, they were used to help break 
the fall, and to avoid head impact, which was not seen in this experiment.  The results from 
this study indicate that secondary tasks have minimal effects on fall responses and that the 
rare occurrence of hip fractures in the young is due to some combination of bone strength and 
effective use of body segments to break the fall.  
 In a second study, I examined how a cognitive task affected the ability of young 
women to rotate forward (FR) or backward (BR) during a sideways fall.  Subjects were 
released from a sideways leaning position and were provided with a visual cue upon tether 
release instructing them on the desired direction of rotation.  The site of impact on the pelvis 
(as reflected by the hip proximity angle) was closer to the lateral aspect of the hip in 
cognitive trials than in control trials (43 ± 18º versus 51 ± 19º in FR and 59 ± 18º versus 68 ± 
18º in BR) (p=0.0006).  This was due to a longer delay in the initiation of rotation in 
cognitive trials (293 ± 60 ms versus 232 ± 71 ms in FR and 278 ± 87 ms versus 239 ± 60 
ms), as opposed to a change in mean angular velocity.  Pelvis impact velocity was similar in 
the two conditions (2.6 ± 0.3 m/s compared to 2.7 ± 0.3 m/s in FR trials and 2.8 ± 0.2 m/s 
compared to 2.9 ± 0.2 m/s in BR trials) (p=0.0514).  The results from this study indicate that 
involvement in a secondary task can impair safe landing responses.  Secondary attentional 
tasks cause a delay in the initiation of fall protective responses, which alters landing 
configuration.  However, the motor programme that governs falling, remaining consistent 
across condition is robust to changes in task execution at the onset of the fall.   
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Chapter 1 General Introduction and Literature Review 
 
 

1.1 General Introduction 
 

Falls occur among people of varying ages, but they are a major health problem for 

the elderly and are the leading cause for death, disability and injury in this population 

(Nevitt et al., 1989; Tinetti and Speechley, 1989; Hayes et al., 1996).    

However, only 1-2% of falls in the elderly result in hip fracture (Gryfe et al., 

1977; Nevitt, et al., 1989; Tinetti et al., 1988) and fewer than 10% cause serious injury.  

This suggests that certain common protective responses are used to land safely during a 

fall (Cummings and Nevitt, 1989; Robinovitch et al., 2003).  Improved understanding of 

the nature and factors which influence the efficacy of these responses can help guide 

appropriate exercise-based training programs. 

The experiments described in this thesis provide important new insight into 

strategies young individuals utilize to protect themselves during a fall, and how 

secondary tasks affect the dynamics of a fall.      

 

1.2 Literature Review 

1.2.1 Incidence of Falls 
There are three general groups of people who are at a high risk for fall-related 

injuries: older adults over age 65, children between the ages of 6-10, and individuals who 

work at various heights (Robinovitch, 1999).  It is among the elderly however that falls 

are a major health problem, as one third of people 65 years or older fall each year 

(Speechley and Tinetti, 1991).  In Canada, falls account for estimated medical costs of 
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about $1 billion (Papadimitropoulos et al., 1997).  As the population continues to age, 

fall-induced injuries and deaths are likely to increase (Rubenstein et al., 1994).  While the 

prevention of falls is an essential goal for reducing the incidence of fall-related injuries, it 

is also important to understand how individuals avoid injury during a fall.  This research 

improves our knowledge of safe landing strategies during falling, which has implications 

for understanding and preventing injuries among both young and older adults.   

 

1.2.2 Fall Risk Factors 
It is well established that several causes of instability can result in a fall.  Falls are 

often caused by slips, trips, or a sudden loss of balance during daily movements such as 

walking, turning, bending or rising (Nevitt and Cummings, 1993).  The risk for falls 

among older adults is dependent upon various extrinsic (e.g., environmental) and intrinsic 

(e.g., neuromuscular) factors.  Fall risk increases with certain environmental factors, such 

as poor lighting (Weir and Culmer, 2004).  Furthermore, falls are precipitated by many 

disease- and age-related declines in neurological and musculoskeletal function such as: 

dementia, Parkinson’s, use of psycho-active medications, impairments to vision, hearing, 

reaction time and lower muscular strength (Wolfson et al., 1985; Cummings and Nevitt, 

1989; Tinetti, 1994; Kannus et al., 1999; Woollacott and Shumway-Cook, 2002).  While 

these factors influence the risk for falls in the event of a fall, I am unaware of how they 

affect the dynamics of an actual fall.  The results from this thesis stress the importance of 

response time and allocation of attention on impact severity during a sideways fall.   
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1.2.3 Fall-related Injuries 
Among the elderly, falls are a major cause of injury and death, often leading to a 

loss of mobility, independence and a decline in overall quality of life (Cummings and 

Nevitt, 1994; Schwartz et al., 1998; Kannus et al., 2005).  Falls from adults over 65 

comprise over 80% of injury related admissions to the hospital and are among the leading 

causes of brain injuries (Kannus et al., 1999; Pickett et al., 2001; Weir and Culmer, 

2004).  Injuries from a falls include: hip fractures, wrist fractures, vertebral fractures, 

head injuries, fractures of the proximal humerus, joint dislocations, severe lacerations and 

soft tissues injuries (Tinetti et al., 1988; Nevitt et al., 1989; Nevitt et al., 1993; Cooper et 

al., 1992).  

The most serious type of injury in terms of frequency, medical costs and 

morbidity is hip fractures.  In the elderly, falls account for over 90% of hip fractures 

(Grisso et al., 1991), with about 23,000 cases of hip fracture occurring in Canada 

annually and over 250,000 occurring in the United States (Papadimitropoulos et al., 

1997).  Furthermore, the incidence of hip fractures is two to three times greater in women 

than men (Zuckerman et al., 1996).  The occurrence of hip fractures increases 

exponentially with age and is expected to increase 4-fold by 2041 if successful 

interventions are not put in place (Jaglal et al., 1996; Papadimitropoulos et al., 1997).  In 

addition wrist fractures are also common among both young and older adults (Palvanen et 

al., 2000).     

 

1.2.4 Biomechanics of Falls 
A fall can be considered to have four stages (Hayes et al., 1996): (1) an initiation 

stage, involving a loss of balance resulting in instability; (2) a descent stage, involving 
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both attempted and executed movements in preparation for landing; (3) an impact stage, 

which involves contact between the body and the ground; and (4) a post impact stage, 

where the subject comes to a rest. The majority of research on falls has focused almost 

entirely on fall initiation and balance recovery rather than the descent stages of a fall (Do 

et al., 1982; Chen et al., 1994; Luchies et al., 1994; Grabiner et al., 1993; Romick-Allen 

and Schultz, 1988).  By contrast, research on fall mechanics is scarce, due in part to the 

difficulty ensuring participants remain safe throughout testing sessions.   

 

1.2.4.1 Kinematics of a Fall 

1.2.4.1.1. Fall Severity 
Bone mineral density is an important contributor to hip fractures, as studies have 

found that the risk of hip fracture increases with decreasing bone mineral density of the 

proximal femur (Cummings and Nevitt, 1989; Hayes et al., 1996).  However, factors 

related to the dynamics of a fall, including the direction of the fall and the impact location 

also play an important role in the etiology of hip fractures (Speechley and Tinetti, 1991; 

Hayes et al., 1993; Nevitt and Cummings, 1993; Kannus et al., 1996; van den 

Kroonenberg et al., 1996; Schwartz et al., 1998).  Studies examining the epidemiology of 

falls have discovered that falling sideways increases the risk for fracture by 6-fold (Nevitt 

and Cummings, 1993; Greenspan et al., 1994).  Individuals who landed on or near the hip 

were 30 times more likely to suffer hip fractures (Nevitt and Cummings, 1993, 

Greenspan et al., 1994).  Those who used the hand or knee to break the fall were 3-fold 

less likely to fracture.  These results suggest that fracture risk during falling depends on 

the ability to utilize protective movements aimed at landing safely.  However, very little 

is known about the nature and factors that affect these responses.   
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The study by van den Kroonenberg et al., (1996) was the first to examine falls 

from standing height using human subjects.  They measured hip impact velocity, which 

along with the effective mass and stiffness of the body influences the contact forces at the 

hip.  They found that muscle-relaxed falls resulted in a reduction in hip impact velocities 

and that most subjects were unable to break their falls with the outstretched hands.  

However, a major limitation for their study was that the falls were self-initiated, while 

falls in real life are usually unexpected.    

Hsiao and Robinovitch (1998) examined the role of protective responses during 

falls from standing height.  They found that, in young people during unexpected slips, 

impact to the outstretched hand occurred in over 90% of all falls while impact to the 

lateral aspect of the hip was avoided.   

In a more recent study Robinovitch et al. (2003) investigated the ability of young 

individuals to avoid hip impact by rotating either forward or backward during a sideways 

fall (Robinovitch et al., 2003).  They found that subjects were equally successful in 

avoiding hip impact by rotating forward or backward.  However, a limitation to this study 

was that the subjects were informed about the desired falling technique before they fell 

and were therefore able to plan their descent.  The second study (Chapter 3) in this thesis 

improves on this methodology cueing the subject about the desired direction of rotation at 

the instant of the perturbation, thus eliminating the ability of subjects to pre-plan their 

responses.  
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1.2.5 Dual-Task Research and the Role of Attention 

1.2.5.1 The Role of Attention in Balance Maintenance 
Research suggests that the performance of attention demanding tasks can increase 

the risk for falls in older adults (Lajoie et al, 1993; Tideiksaar, 1996; Sparrow et al., 

2002). Attention can be defined as the limited capacity for individuals to process 

information (Woollacott and Shumway-Cook, 2002).  So, if two tasks are performed 

concurrently, performance on one or both may deteriorate if they require more than the 

available attentional resources (Shumway-Cook and Woollacott, 2000; Woollacott and 

Shumway-Cook, 2002).  Dual task paradigms involve performing both a postural task 

and a secondary task together, and the extent to which both tasks share attentional 

resources is determined by a decline in performance of either task (Kerr et al., 1985).  In 

the first experiment (Chapter 2), dual-task methods were used to explore how fall 

protective responses are modified while performing various secondary tasks.  The second 

experiment (Chapter 3) in this thesis uses the dual-task paradigm to investigate the role of 

attention on the ability to employ specific protective responses during a fall.   

Over the years, posture and balance have been widely examined using a dual-task 

method, with several studies indicating that the maintenance of balance competes with 

other tasks for limited cognitive resources (Kerr et al., 1985; Guerts 1988; Maki and 

McIlroy, 1996; Brown et al., 1999; Shumway-Cook and Woollacott, 2000; Dault et al., 

2001; Yardley et al., 2001; Müller et al., 2004).  Kerr et al. (1985) first demonstrated that 

postural control was attentionally demanding by finding interference between a cognitive 

task and a postural task.  Furthermore, several researchers have demonstrated that the 

maintenance and control of posture and balance requires more attentional resources in 

dynamic tasks such as walking, compared to static tasks such as sitting or standing 
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quietly (Bardy and Laurent, 1991; Lajoie et al., 1993; Teasdale et al., 1993).  Brown et 

al., (1999) examined responses from both young and older adults asked to respond to a 

series of unexpected platform displacements while performing a secondary task using a 

feet in place strategy and a stepping strategy.  They found that recovery strategies in 

response to low velocity disturbances (such as the ankle strategy) were associated with 

lower attentional demands than strategies for fast velocity disturbances (such as 

stepping).  Furthermore, evidence suggests that secondary attention tasks have a greater 

effect on postural stability in elderly than young adults (Brown et al., 1999; Rankin et al., 

2000; Shumway-Cook and Woollacott, 2000; Redfern et al., 2001).  Interestingly, 

Lundin-Olsson et al., (1997) found that frail elderly patients stop walking when they start 

talking, reflecting the difficulty of simultaneously performing both a motor and cognitive 

task.  It appears that the complexity of the postural task, along with the cognitive and 

physical abilities of the subject, affects the ability to allocate sufficient attention to 

balance when multiple tasks are involved (Lajoie et al., 1993; Shumway-Cook and 

Woollacott, 2000).  If the presence of multiple tasks can affect the risk of falling, I 

wondered whether it also affects movement strategies and impact severity during an 

actual fall – the major question addressed by this thesis.     

 

 

 

 

 

 7



1.3 Objectives 
 

The specific objectives of this thesis work were as follows: 

1. To investigate how movement strategies during a sideways fall are affected 

by involvement in various secondary tasks.  

2. To examine how the presence of a secondary task affects the ability of 

young individuals to utilize specific protective responses during a sideways 

fall. 
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Chapter 2 Sideways falls with and without a secondary task  
 

2.1 Abstract 
 Fewer than 10% of falls actually cause serious injury (Robinovitch et al., 2000), 

which suggests that common protective responses exist for avoiding injury during falls 

(Cummings and Nevitt, 1989).  Secondary tasks may alter the nature of these responses.  

To test this hypothesis, I examined fall dynamics when subjects attempted to “protect 

themselves” during a sideways fall, and how these strategies were affected by secondary 

tasks.  Thirteen women (aged 18-35) were suddenly released from a sideways leaning 

position, causing them to fall to their right onto a gym mat.  Trials were conducted in 

each of four conditions: holding a box, holding an empty mug, reciting spoken text, and 

no secondary task.  Pelvis impact was common in all trials (no secondary task = 87%, 

box = 82%, cognitive = 90%, mug = 79%) and this was unaffected by the secondary task.  

While the frequency of impact to both hands decreased when carrying an object 

(box=67%, mug=50% compared to cognitive=90% and no secondary task=85%), 40% of 

trials in the mug condition involved one hand contacting the ground.  The results from 

this study indicate that the rare occurrence of hip fractures in the young is due to bone 

strength and the effective use of body segments (such as the hands and knees) to break 

the fall.  These findings indicate that the motor programme which governs falling is 

robust to the presence of secondary tasks.  Apparently, the occurrence of a fall causes a 

prompt allocation (perhaps due to the startle response) of attentional resources to the task 

of safe landing, which is performed in a remarkably consistent manner.   

 
Keywords: falls, protective responses, secondary tasks 
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2.2 Introduction 
 

Falls are the leading cause of death, disability and injury among the elderly.  One 

third of people 65 years or older fall each year (Nevitt et al., 1989; Speechley and Tinetti, 

1991; Hayes et al., 1996).  Over 90% of hip fractures are the results of a fall (Grisso et 

al., 1991), and there are about 23,000 cases of hip fracture occurring in Canada annually 

(Papadimitropoulos et al., 1997).   

Risk of hip fracture increases with decreasing mineral density of the proximal 

femur (Cummings and Nevitt, 1989; Hayes et al., 1996).  However, the fall direction and 

the configuration of the body at impact are at least as important as bone strength in 

influencing the risk for hip fracture (Hayes et al., 1993; Greenspan et al., 1994; Nevitt 

and Cummings, 1993).  Falling sideways increases the risk for fracture by 6-fold 

(Greenspan et al., 1994), while impacting on or near the hip increases fracture risk by 

over 30-fold (Nevitt and Cummings, 1993).   

Although falls are common, only 1-2% of falls in the elderly result in hip fracture 

(Gryfe et al., 1977; Nevitt, et al., 1989; Tinetti et al., 1988) and fewer than 10% cause 

serious injury (Robinovitch et al., 2000).  Furthermore, hip fractures (unlike wrist 

fractures) due to falls are extremely rare for young adults.     

 This suggests that common protective responses exist for avoiding serious injury 

during a fall (Cummings and Nevitt, 1989; Robinovitch et al., 2003).  The ability to use 

these protective responses in real-life may depend on environmental context (e.g., 

presence of a handrail), behavioural variables (e.g., prior training in falling techniques 

such as martial arts), and situational variables (e.g., carrying an object) (Bateni et al., 

2004; Robinovitch et al., 2003).     
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The purpose of this study was to determine how secondary tasks such as carrying 

an object or being engaged in a conversation affect the position and velocity of the body 

segments at landing from a fall, when the individual is instructed to “fall and protect 

yourself”.  I hypothesized that the secondary tasks would cause a general impairment in 

fall protective responses, and result in an (a) increase in the frequency of impact to the 

hip region, and (b) a decrease in the frequency of impact to the outstretched hands.   

 

2.3 Materials and Methods 

2.3.1 Subjects 
 

Participants consisted of 13 females between the ages of 18 and 30 yrs (mean = 

22 ± 3 yrs) who had mean body weight of 63 kg ± 11 kgs.  Subjects were recruited 

through postings of advertisements at Simon Fraser University and were then screened 

for eligibility through a telephone interview.  Exclusion criteria included a history of 

impaired balance, neurological disease, uncorrected visual deficit or training in the past 

five years in balance or safe falling techniques such as gymnastics or martial arts.  All 

participants provided informed written consent and the experimental protocol was 

reviewed and approved by the Office of Research Ethics at Simon Fraser University.   

2.3.2 Protocol 
During the experiment, the subjects underwent a series of falls involving sideways 

perturbations to balance.  During these trials the subject stood with her feet shoulder 

width apart on a rigid platform of 30cm in height.  A series of three gymnastics mats 

similar to those used during athletic high jump were used to cushion falls.  Each mat was 

240cm X 120cm X 30cm in length, width and height.  The mats were placed adjacent and 
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flush to the surface of the floor, providing an effective padded area of 240cm X 360cm 

(8’ X 12’) for the subjects to fall on.  During the experiment, a tether and electromagnet 

was used to suddenly release subjects from a sideways leaning position, causing them to 

fall to their right and onto a gym mat.  The subjects were released from a 20-degree 

inclined position from the vertical (Figure 2-1) as measured by a goniometer.   

The only instruction that I provided to subjects was that they should “fall and 

protect yourself, as if you were landing on a hard surface.”  

I acquired four trials in each of four conditions (box, mug, cognitive and no 

secondary task), presented in a pseudo-random order.  In the mug condition, the subject 

carried an empty mug in their right hand that was sealed closed with a lid.  In the box 

condition, the subject carried with both hands a closed empty cardboard box of 

dimensions 40cm X 20cm X 35cm in length, width and height.  No instructions were 

given to subjects regarding the contents of either object or about whether they should 

hold or release the object during the fall.  In the cognitive task, the participants recited 

spoken text (a narrated story), which they listened to via headphones.     

 

2.3.3 Data Analysis 
 

An eight camera, 120-Hz motion measurement system (Motion Analysis Inc., CA, 

USA) was used to acquire 3-dimentional positions of 41 reflective markers placed 

bilaterally on the shoulder, bicep, lateral elbow, forearm, radial head, lateral wrist, 

anterior superior iliac spine (ASIS), iliac crest, greater trochanter (GT), front thigh, lateral 

knee, shank, front shank, lateral ankle, first metatarsal head, fifth metatarsal head and 

heel as well as single markers on the front head, top head, back head, right clavicle, right 
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scapula, C7 and sacrum.  I placed 3 markers on the mats to help determine the time of 

impact between the subject and a given body part.  The time of impact was determined by 

finding the frame just before a marker on a given body part fell below the mat markers 

and was determined for the pelvis, knee(s) and hand(s).   The occurrence of pelvis impact 

was taken as the frame where the vertical coordinate of either the right or left GT or ASIS 

marker descended below the height of the markers on the mat.  This was supplemented 

by analysis to detect the time when the direction of the marker movement changed 

abruptly, signalling contact.  For instance, if the marker was moving downwards and then 

started to move upwards, the frame just before it started moving upwards would indicate 

impact.  Although both methods were used to determine the time instant during which 

pelvis impact occurred, priority was given to the former.    

In trials when subjects held an object, visual inspection by two experimenters was 

used to determine whether the box or mug was released before pelvis impact.  Kinematic 

data and custom routines (MATLAB, The MathWorks, Natick, MA, USA) were used to 

determine the hip proximity angle and impact velocity.  The orientation of the pelvis at 

impact was determined by first establishing the position of a transverse planar ellipse 

passing through 3 markers: the sacrum, right ASIS and left ASIS (Figure 2-2). Pelvis 

impact was then determined by calculating the lowest vertical point on the circumference 

of the ellipse at the time of pelvis impact. The hip proximity angle (α) was then defined 

as an absolute angle measured within the plane of the ellipse, indicating how close the 

point of pelvis impact was to the lateral aspect of the pelvis. An angle of α =0 degrees 

represented direct impact to the lateral aspect to the hip, while positive α = +90 degrees 

reflected impact to the anterior aspect of the pelvis and negative α = -90 degrees reflected 

 17



impact to the posterior aspect of the pelvis. Pelvis impact velocity was determined by 

taking the average vertical velocity of the right and left greater trochanter markers two 

frames before impact of the pelvis. Furthermore, I determined the time interval between 

impact to the pelvis and the first hand to impact and between impact to the right and left 

hands.     

 

2.3.4 Statistical Analysis 
 

A chi square analyses was used to determine whether differences existed between 

the various conditions: no secondary task, box, mug and cognitive in the observed 

frequency of impact to the pelvis, right knee, left knee, right hand and left hand.  A one-

way analysis of variance was performed to assess whether condition influenced the 

following dependent variables: hip proximity angle, pelvis impact velocity, time interval 

between pelvis and first hand to impact, and the time interval between impact to the right 

and left hand.  All statistical tests were run using statistical analysis software (SAS 

Institute Inc., Cary, NC. Version 5.1) and were based on a significance level of α=0.05. 

 
 

2.4 Results 
 

Pelvis impact was common in all trials. A chi square analysis indicates that no 

differences existed between conditions in the percentages of all trials that had pelvis 

impact (χ2 (3, N=207)=2.93, p=0.4024) (Table 2-1).  

 Furthermore a one-way ANOVA indicated that no differences existed between 

conditions in the mean absolute values of hip proximity angle (F3,12=0.65, p=0.5912) 
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(Figure 2-3).  Mean vertical pelvis impact velocity was also unaffected by the secondary 

tasks (F3,12=0.59, p=0.6230) (Figure (2-4)).  There was much greater between-subject 

variability than between-condition variability in pelvis impact configuration and pelvis 

impact velocity (Table 2-4 and Figures 2-3 & 2-4).   

Impact to one or both hands was more common in the no secondary task and 

cognitive conditions than the box and mug conditions (Table 2-1 & 2-3).  Subjects 

released the box before impact in 73% of trials, and the mug before impact in 32% of 

trials.  When subjects carried an object the frequency of impact to both hands was 

significantly reduced (box=67%, mug=50% compared to cognitive=90% and no 

secondary task=85%) (χ2 (3, N=207)=26.42, p<0.0001) (Table 2-1 & 2-3). Despite 

releasing the box during 73% of all trials, 20% of box condition trials involved no hand 

contact.  Furthermore, 40% of trials in the mug condition involved one hand contacting 

the ground at impact and 50% involved both hands impacting.  The frequency of one 

hand contact in the mug condition was more common than in the other three conditions.  

While this suggests usage of the hands depended on whether subjects were carrying an 

object and the type of object they were carrying, hand impact was still common.  Post hoc 

tests show that differences in right hand impact occur only in conditions where the box 

and mug were held (Table 2-2).  Differences in left hand impact were due to the box 

affecting both the no secondary task and cognitive conditions (Table 2-2).  During both 

hands impacting, the box and mug caused differences in all conditions except each other 

(Table 2-2).   

Raw data (Figure 2-5) shows the vertical position of the pelvis along with the 

right and left wrists from a subject with no hand contact in the box condition and one 
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hand contact in the mug condition.  In the box condition, the subject holds the box with 

both hands while her pelvis and elbows impact.  In the mug condition, the subject holds 

the mug with her right hand and impacts her right elbow and left hand.  Complementing 

these graphs are stick figures (Figure 2-6) which show the descent stages of the fall for 

the same subject every 150ms.   

The average time interval between impact to the pelvis and hand differed 

significantly between conditions (F3,12=5.48, p=0.0040) (Table 2-4) and subjects tended 

to first impact their hand before the pelvis.  The time differences between the pelvis and 

first hand to impact was less than 50 ms in all conditions except the mug condition.  In 

the mug condition subjects tended to impact the left instead of the right hand, and the 

interval averaged 63 ± 84 ms.     

Chi square analyses indicate that no differences existed between conditions in the 

frequency of right knee impact (χ2 (3, N=207)=0.90, p=0.8245) and both right and left 

knee impact (χ2 (3, N=207)=3.01, p=0.3903).  In all conditions knee impact 

predominately occurred on the right knee, while left knee impact was infrequent (Table 

2-1).   

Head impact did not occur during any trials as subjects tended to land on the side 

of their hip and use their upper extremity and knee(s) to break their fall.     

 Furthermore, in all trials involving the cognitive task, participants stopped talking 

immediately after they fell.   
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2.5 Discussion 
 

This study examined movement strategies during sideways falls where the subject 

was instructed to “fall and protect yourself”, and various secondary tasks (carrying an 

object, or reciting text) were performed.  I hypothesized that subjects would avoid impact 

to the hip region and instead impact the outstretched hands.  I found that impact to the hip 

occurred in the majority of trials.  I also found that impact to the outstretched hands and 

knee was common.  These findings differ from those of Hsiao and Robinovitch (1998) 

who reported that young adults tend to rotate to avoid hip impact during an unexpected 

sideways fall.   

I also hypothesized that secondary physical or mental tasks would alter the 

mechanics of the fall in a way that would increase the frequency of impact to the hip and 

decrease the frequency of impact to the outstretched hands.  I found no differences in the 

frequency of hip impact between no secondary task trials and secondary task trials.  I did 

however observe that frequency of impact to the outstretched hands decreased when 

carrying an object.   

There are noteworthy limitations to the present study and due to safety concerns, 

our study was limited to young subjects.  I examined falling strategies in healthy young 

adults, and an important question is whether elderly individuals would exhibit similar 

falling patterns.  Safety concerns make it difficult to examine this question 

experimentally, but it could be addressed through careful post-hoc investigation of real 

life falls.  The limited results that are currently available suggest that attempts to break 

the fall with the outstretched hands may be less effective among older fallers than among 

younger adults, due in part to declining strength and reaction time with age (Rice et al., 
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1989; Nevitt and Cummings, 1993).   I examined only sideways falls, since hip fracture 

risk is greatest for this fall direction (Greenspan et al., 1994).  I instructed subjects to “fall 

and protect yourself”, which allowed them the ability to pre-plan their movement strategy 

before they were suddenly released from the tether.  Observed movement patterns 

therefore reflected at least to some extent subjects’ perceptions of what constituted a safe 

landing.  This resulted in considerable variability between subjects in the configuration 

and velocity of the pelvis at impact.  Whether such variability exists in real-life falls is an 

important question for further study.  I prevented them from attempting to recover 

balance (e.g. by stepping) which may alter movement patterns during a fall (Hsiao and 

Robinovitch, 1998).  Subjects fell onto a compliant mat which likely reduced the fear of 

injury associated with falling and consequently the nature of observed protective 

responses.  However, I believe that this effect was minimized by instructing subjects to 

“imagine falling on a hard surface, like a concrete sidewalk”.  While the occurrence of 

the fall was unexpected, ensured by randomizing the interval after the “ready” cue when 

subjects were released, the fall direction was constant.  However, subjects participated in 

four different conditions presented in random order, each requiring intrinsically unique 

responses.   

While impact to the knee(s) and hand(s) did not result in avoidance of impact to 

the hip, they were probably essential in allowing subjects to avoid impact to the head 

which was never observed.  These impacts also allowed for a sharing of impact energy 

between the pelvis and extremities, as suggested by the small time differences between 

pelvis and hand contacts.  In all trials except those involving the mug, the average time 

difference between the pelvis and first hand to impact was less than 50 ms.  Previous 
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studies indicate that it takes approximately 50 ms for peak force to be reached after 

impacting the hip or wrist (Chiu and Robinovitch, 1996; Robinovitch et al., 1991). 

Presumably, injury risk is largest for falls which exceed this time difference (Hsiao and 

Robinovitch, 1998), and therefore falls in our mug condition (or a similar real-life 

situation) may create a greater risk for injury.  Subjects dropped the mug in 32% of trials 

and dropped the box in 73% of trials.  Bateni et al., (2004) investigated grasping reactions 

while holding an object and found subjects held onto the object whether or not it had any 

stabilization value.  They also found that the task of holding an object sometimes 

prevented subjects from using their arms to grasp a nearby rail for support after 

experiencing a sudden perturbation to balance.  Our results suggest that features of the 

object (such as perceived fragility, habitual context, and constraints on one versus two 

hands) influence whether subjects retain their grasp on it during falling.   

In summary, I found that sideways falls consistently resulted in direct impact to 

the lateral aspect of the hip regardless of whether a secondary mental or physical task is 

present.  I also found the frequency of wrist impact decreased when holding an object.  I 

observed considerable variability between subjects in pelvis impact configuration and 

velocity but remarkably consistent responses for individual subjects across the various 

conditions.  This suggests that a robust motor programme is utilized to facilitate safe 

landing when falling, and that attentional switching occurs early in descent to facilitate its 

execution.  Future studies should probe further how features and success in executing this 

programme are affected by task constraints, environmental variable (e.g. obstacles), and 

age-related changes in sensory, musculoskeletal, and cognitive status.   
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2.6 Tables  
 
Table 2-1  Percent of all trials involving pelvis, knee and hand impact with corresponding p values.  

 
 Condition 
  Response                                                                                                         χ2               p value  
 No task Box Cognitive Mug             
                                        (n=53)      (n=51)          (n=51)        (n=52) 
 

 
 Pelvis Impact 87 82 90 79 2.93 0.4024 
 
 Knee Impact 
  Right 75 80 80 83 0.90 0.8245 
  Left 15 22 12 23 3.01 0.3903 
  Right and Left 15 22 12 23 3.01 0.3903 
 
 Hand Impact 
  Right  94 80 96 58 33.40 <.0001 
  Left 85 67 92 83 11.91 0.0081 
  Right and Left 85 67 90 50 26.42 <.0001 
 
*Note: p values are from chi square analysis with df=3, N=207  
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Table 2-2 Post hoc results for right hand impact, left hand impact and both hand impact 

                                                                                                      
Hand Impact  χ2     p value   
 
  
 Right Hand Impact  
  No Task and Box (N=104)  4.62  0.0316 
  No Task and Cognitive (N=104)  0.17  0.6786 
  No Task and Mug (N=105)  19.43  <.0001 
  Box and Cognitive (N=102)  6.04  0.0140 
  Box and Mug (N=103)  6.20  0.0128 
  Cognitive and Mug (N=103)  21.23  <.0001 
 
 Left Hand Impact 
  No Task and Box (N=104)  4.73  0.0296 
  No Task and Cognitive (N=104)  1.34  0.2472 
  No Task and Mug (N=105)  0.09  0.7582 
  Box and Cognitive (N=102)  10.13  0.0015 
  Box and Mug (N=103)  3.50  0.0612 
  Cognitive and Mug (N=103)  2.09  0.1481 
 
 Both Hand Impact 
  No Task and Box (N=104)   4.73  0.0296 
  No Task and Cognitive (N=104)  0.67  0.4148 
  No Task and Mug (N=105)  14.61  0.0001 
  Box and Cognitive (N=102)  8.35  0.0039 
  Box and Mug (N=103)  2.94  0.0864 
  Cognitive and Mug (N=103)  19.77  <.0001 
 
*Note: p values are from chi square analysis with df=1  
 
 
 
Table 2-3  Percent of all trials showing the breakdown of hand impact.   

 
 Condition 
  Type of hand contact                                                                                                                             
 No task Box Cognitive Mug  
     (n=53)          (n=51)            (n=51)            (n=52) 
 

 
 No Hands 6 20 2 10  
 
 One Hand 9 14 8 40  
  
  Two Hands  85 67 90 50  
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Table 2-4  Experiment #1: Outcome values.  

 
Variable Mean ± S.D. Range F ratios, p Value  
 
 
Hip Proximity Angle (deg)      —  — F3,12=0.65, p=0.5912 
 No task (n=13) -5 ± 24 -55 to 89 __ 
 Box (n=12) -8 ± 23 -86 to 56 __ 
 Cognitive (n=13) -7 ± 21 -69 to 82 __ 
 Mug (n=11) -7 ± 24 -71 to 70 __ 
 
Pelvis Impact Velocity (m/s)      —      — F3,12=0.59, p=0.6230 
 No task (n=13) -2.1 ± 0.7 -3.2 to -0.1 __  
 Box (n=12) -2.1 ± 0.7 -3.1 to -0.6 __ 
 Cognitive (n=13) -2.3 ± 0.6  -3.1 to -0.2 __ 
 Mug (n=11) -2.2 ± 0.6 -3.1 to -0.6 __ 
 
Time Interval b/w Pelvis and 1st Hand (ms)   —       — F3,12=5.48, p=0.0040 
 No task (n=13)  3 ± 56 -317 to 117 __ 
 Box (n=10)  23 ± 44 -67 to 92 __ 
 Cognitive (n=13)  1 ± 47 -258 to 117 __ 
 Mug (n=10)  63 ± 84 -200 to 342 __ 
 
Time Interval b/w Right and Left Hand (ms) —       — F3,12=0.75, p=0.5327 
 No task (n=13)  53 ± 108 -242 to 275 __ 
 Box (n=11)  49 ± 48  0 to 183 __ 
 Cognitive (n=13)  86 ± 67  0 to 442 __ 
 Mug (n=8)  92 ± 141 -92 to 558 __ 
 
    —, parameter is not applicable for that category. 
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2.7 Figures 
 

 
 
Figure 2-1  Experimental setup.  A sideways fall was unexpectedly initiated by releasing a tether, 
which held the subject at a 20º lean angle. 
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Figure 2-2  Definition of hip proximity angle.  The hip proximity angle, which is shown by alpha in 
the diagram, is an absolute angle that reflects how near the site of pelvis impact is to the lateral 
aspect of the hip.  An angle of 0 degrees indicates direct impact to the lateral aspect to the hip, while 
+90 degrees reflects impact to the anterior aspect of the pelvis and -90 degrees indicates impact to the 
posterior aspect of the pelvis. 
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Figure 2-3  Pelvis impact configuration.  Impact configurations were unaffected by the secondary 
task.  The distribution of hip proximity angles show considerable variability between subjects, but 
little variability between conditions.  
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Figure 2-4  Pelvis impact velocity.  Impact velocities were not different across various secondary task 
conditions but there was considerable between-subject variability.   
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C.  Cognitive     D.  Mug    
 
 
Figure 2-5A-D.  Vertical position of the wrists and pelvis for one subject in all trials.  Each trace 
begins at fall initiation. The letters represent the time of impact: p = pelvis impact, rw = right wrist 
impact and lw = left wrist impact.  Note that in (B), the box trial no hands impacted, which 
represented 20% of all trials.  Also note that in (D), the mug trial only one hand impacted the mat, 
which was representative of 40% of all trials.   
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Figure 2-6A-D.  Stick figures showing descent kinematics for one subject.  The trials are the same as 
those used in Figure 5A-D.  Pelvis impact occurred in all trials.  In (A) a no task trial, the subject 
lands impacting the ground with the right hand; (B) a box trial, the subject lands with no hands 
impacting and still holding the box with both hands; (C) a cognitive trial, the subject lands impacting 
the ground with the right hand; (D) a mug trial, the subject lands impacting the ground with their 
left hand and their right hand holding onto the mug.   
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Chapter 3 Influence of a Cognitive Task on the Ability to Avoid Hip 
Impact during Sideways Falls 

 

3.1 Abstract 
 

Recent studies have shown that the maintenance of balance is attentionally 

demanding and can be impaired by a cognitive task (Brown et al., 1999; Shumway-Cook 

and Woollacott, 2000). I have investigated whether a cognitive task can affect the ability 

of young adults to employ a specific protective response (rotating to avoid hip impact) 

during an actual sideways fall.  Nineteen women (aged 18-30) participated in both control 

and cognitive trials where they were released from a sideways leaning position, causing 

them to fall to their right onto a gym mat. The site of impact on the pelvis was closer to 

the lateral aspect of the hip in cognitive trials than in control trials (43 ± 18º versus 51 ± 

19º in FR and 59 ± 18º versus 68 ± 18º in BR) (p=0.0006). This was due to a longer delay 

in the initiation of rotation in cognitive trials (293 ± 60 ms versus 232 ± 71 ms in FR and 

278 ± 87 ms versus 239 ± 60 ms), as opposed to a change in mean angular velocity. The 

results from this study indicate that the attentional demands associated with falling are 

sufficient enough that involvement in a secondary task can impair one’s ability to rotate 

to avoid hip impact during a sideways fall.    

 

Keywords: falls, attention, cognitive, secondary tasks 
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3.2 Introduction 
 

Falls are a major health problem for the elderly and are the cause of over 90% of 

hip fractures (Grisso et al., 1991).  While risk for hip fractures depends on bone density, 

factors associated with the dynamics of the fall are the strongest determinants of fracture 

risk (Hayes et al., 1993).  For example, falling sideways, in comparison to forward or 

backward, increases the risk for hip fracture by 6-fold, while landing directly on the hip 

increases fracture risk by 30-fold (Nevitt and Cummings, 1993; Greenspan et al., 1994).   

Recent research has shown that young subjects are able to rotate during descent to 

avoid hip impact during a sideways fall (Robinovitch et al., 2003).  In the current study, I 

examined whether subjects’ ability to execute this specific protective response is affected 

by a secondary attention task.  Attention can be defined as the capacity of an individual to 

process information (Woollacott and Shumway-Cook, 2002).  Lajoie et al. (1993) found 

that as the complexity of the postural task increased, performance on a secondary 

auditory reaction time task increased.  They concluded that as postural tasks become 

more complicated (such as from sitting or standing to walking), the attentional demands 

also increase.  Accordingly, the attentional demands associated with falling should be 

significant and the performance of a secondary cognitive task may significantly impair 

one’s ability to execute a specific protective response.  On the other hand, as observed in 

our first study, subjects may prioritize falling and quickly switch attention to the task of 

executing a specific landing strategy.  By examining how a secondary attention task 

affects subjects’ ability to execute a specific protective response – rotating during descent 

to avoid hip impact – this second study provides information on the attentional demands 

of falling which complements the results from the first study.     
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Accordingly, our goal in this study was to examine whether the ability to rotate 

forward or backward during a sideways fall is affected by a secondary cognitive task.  I 

hypothesized that the secondary task would (1) reduce the ability of subjects to rotate and 

result in impact closer to the hip, (2) increase the time involved in initiating rotation and 

(3) increase the impact velocity of the pelvis.   

 

3.3 Materials and Methods 
 

3.3.1 Subjects 
 

Participants consisted of 19 females between the ages of 18 and 30 years (mean = 

22 ± 4 yrs) having body weight between 41 and 82 kg (mean = 62 kg ± 12 kgs).  They 

were recruited through postings of advertisements at Simon Fraser University and 

screened for eligibility through a telephone interview.  Exclusion criteria included a 

history of recent shoulder dislocation, rotator cuff injury, knee ligament repair, severe 

neck pain, concussion or whiplash, regular episodes of dizziness or fainting, neurological 

disease, uncorrected visual deficit or participation in sports that involve extensive fall 

training such as gymnastics or martial arts during the past five years.  All participants 

provided informed written consent and the experimental protocol was reviewed and 

approved by the Office of Research Ethics at Simon Fraser University.   

 

3.3.2 Protocol 
 

Participants underwent a series of falls involving sideways perturbations to 

balance.  During these trials, participants stood on a rigid platform with their feet 
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shoulder width apart.  A series of gymnastics mats of dimensions 360cm wide x 240cm 

long x 30cm thick, similar to those used during athletic high jump, were located flush to 

the platform.  A tether and electromagnet were used to suddenly release subjects from a 

sideways leaning position, causing them to fall to their right onto a gym mat.  Before 

release, the subject was inclined 20-degrees from the vertical (Figure 3-1).  

Subjects were instructed to fall using one of three different techniques: forward 

rotation (FR), backward rotation (BR) and no rotation (NR).  These instructions were 

presented to the subject by projecting an image indicating the direction of rotation on the 

wall in front of them at the same time the fall was initiated.  During the FR trials, the 

subject was instructed to rotate forward during descent to land on the outstretched hands.  

For the BR trials, the subject was instructed to rotate backwards during descent to land on 

their buttocks.  During NR trials, the subject was instructed to fall sideways with no 

rotation, to land on her side.  If a blank screen was presented to the subjects, a NR fall 

was indicated.  Subjects were instructed to fall according to the image that was randomly 

displayed to them (FR, BR or NR).  Subjects were also instructed to “keep their knees 

extended during descent”, “land as softly as possible” and “avoid head impact”.  In 

addition, subjects were instructed that the most important thing was to “avoid impacting 

your hip” during both FR and BR trials.     

The cognitive task, which was performed during half of all trials, involved 

listening to a story via headphones and reciting the spoken text out loud.  I wanted a task 

that would involve both listening and talking in order to simulate a situation similar to an 

engaging conversation.  Subjects were instructed to “continue talking up to the time the 

tether is released”.   
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A total of 26 trials were collected; 10 FR (5 control, 5 cognitive) and 10 BR (5 

control, 5 cognitive).  The 6 NR (3 control, 3 cognitive) trials were ‘catch’ trials, to 

decrease expectation of rotation and were not analyzed.  The direction of rotation and the 

cognitive task were both randomized.  Furthermore, a random time of 1-10 seconds was 

inserted between the time the subject was in the initial starting position and the instant the 

tether was released.   

 

3.3.3 Data Analysis 
 

An eight camera, 120-Hz motion measurement system (Motion Analysis Inc., CA, 

USA) was used to acquire 3-dimentional positions of 41 reflective markers placed 

bilaterally on the: shoulder, bicep, lateral elbow, forearm, radial head, lateral wrist, 

anterior superior iliac spine (ASIS), iliac crest, greater trochanter (GT), front thigh, lateral 

knee, shank, front shank, lateral ankle, first metatarsal head, fifth metatarsal head and 

heel as well as single markers on the front head, top head, back head, right clavicle, right 

scapula, C7 and sacrum.  I placed 3 markers on the mats to help determine the time of 

impact between the pelvis and the mat.  The time of pelvis impact was taken as the frame 

where the vertical coordinate of either the right or left GT or ASIS marker descended 

below the height of the markers on the mat.  This was supplemented by analysis to detect 

the time when the direction of the marker movement changed abruptly, signalling 

contact.  For instance, if the marker was moving downwards and then started to move 

upwards, the frame just before upward movement would indicate impact.  Although both 

methods were used to determine the time of pelvis impact, priority was given to the 

former.    
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Custom routines (MATLAB, The MathWorks, Natick, MA, USA) were used to 

determine the orientation of pelvis at impact as quantified by the hip proximity angle, the 

time during descent when pelvis rotation was initiated and the mean and maximum 

angular velocity of the pelvis during descent.  The orientation of the pelvis at impact was 

determined by first establishing the position of a transverse planar ellipse passing 

through: the sacrum, right ASIS and left ASIS (Figure 3-4), and then identifying the 

lowest vertical point on the circumference of the ellipse at the time of impact.  The hip 

proximity angle (α) was then calculated as the angle measured within the plane of the 

ellipse, which indicates how close the point of pelvis impact was to the lateral aspect of 

the pelvis.  An angle of α = 0 degrees indicates direct impact to the lateral aspect to the 

hip, while α = +90 degrees reflects impact to the anterior aspect of the pelvis and α = -90 

degrees reflects impact to the posterior aspect of the pelvis.  The time to initiate rotation 

during descent was defined as the time after release when the subjects’ angular velocity 

during descent first reached ±0.1deg/s.  Pelvis impact velocity was determined by taking 

the average vertical velocity of the right and left trochanter markers two frames (about 17 

ms) before impact of the pelvis.  The mean and maximum pelvis angular velocities were 

derived by differentiating position data.   

 

3.3.4 Statistical Analysis 
 

Statistical analysis was performed using a two-way repeated measures analysis of 

variance, with two independent variables: direction (with two levels: FR and BR) and 

cognitive task (with two levels: control and cognitive).  A separate ANOVA was used for 

each of the following dependent variables: hip proximity angle, time to initiate rotation, 
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pelvis impact velocity, mean and maximum pelvis angular velocity.  Paired t tests were 

used to further identify the source of any differences.  Pearson product moment 

correlations were used to examine associations between hip proximity angles and times to 

initiate rotation to see if a causal relationship existed between changes in these two 

variables.  Statistical tests were run using the statistical analysis software (SAS Institute 

Inc., Cary, NC. Version 5.1).    

 

3.4 Results 
 

3.4.1 Effect of Condition and Rotation on Hip Proximity Angle 
 

A main effect of both cognitive task and direction of rotation on hip proximity 

angle was found (cognitive task = (F1,18=17.44, p=0.0006), direction = (F1,18=10.96, 

p=0.0039).  The mean value of the hip proximity angle was lower in the cognitive trials 

than the control trials by 16% in the FR condition, and by 13% in the BR condition 

(Table 3-1).  Raw data (Figure 3-5A-D) illustrates typical rotational patterns from 4 

subjects all of whom demonstrate axial rotation in the cognitive than control trials.  The 

mean absolute value of hip proximity angle was greater in BR trials than FR trials (68 ± 

18º versus 51 ± 19º in the control condition and 59 ± 18º versus 43 ± 18º in the cognitive 

condition) (Table 3-1).   

 

3.4.2 Effect of Condition and Rotation on Time to Initiate Rotation 

A main effect of cognitive task on time to initiate rotation was found (F1,18=13.52, 

p=0.0017).  The mean value of the time to initiate rotation was greater in the cognitive 
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trials than the control trials by 26% in the FR condition, and by 16% in the BR condition 

(Table 3-1).  There was no main effect on time to initiate rotation for the direction of 

rotation between FR trials and BR trials (F1,18=0.03, p=0.8559). 

 

3.4.3 Effect of Condition and Rotation on Pelvis Impact Velocity 
 

The main effect for cognitive task trials approached significance (F1,18=4.35, 

p=0.0514) suggesting that pelvis impact velocity was lower in cognitive than control 

trials (2.6 ± 0.3 m/s compared to 2.7 ± 0.3 m/s in FR trials and 2.8 ± 0.2 m/s compared to 

2.9 ± 0.17 m/s in BR trials).  In addition, a main effect of direction was found as pelvis 

impact velocity was smaller (Table 3-1) in FR trials compared to BR trials (F1,18=15.03, 

p=0.0011) (Table 3-2).   

 

3.4.4 Correlations between Hip Proximity Angle and Time to initiate Rotation 
 

Correlations were based on differences between the control and cognitive 

condition for each rotation type.  In backward rotation trials, a negative correlation 

existed (r= -0.51) (p=0.0272) between hip proximity angle and time to initiate rotation.  

No correlation (r= -0.21) (p=0.3861) was observed in forward rotation trials between hip 

proximity angle and time to initiate rotation. 
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3.5 Discussion 
Our results indicate that the ability of young adults to avoid impact to the pelvis 

during a sideways fall is reduced by a secondary cognitive task.  In particular, the 

cognitive task caused a delay in the time for young adults to initiate rotation and resulted 

in impact closer to the lateral aspect of the hip.  While previous research has examined 

the kinematics of falls (van den Kroonenberg et al., 1996; Hsiao and Robinovitch, 1998; 

Smeesters et al., 2001; Robinovitch et al., 2003), this is the first study to our knowledge 

that has examined how an attention demanding task affects specific protective responses 

during a fall .     

I also hypothesized that the cognitive task would affect the severity of the fall by 

increasing the pelvis velocity at impact.  Our results indicate the opposite trend – impact 

velocities were slightly lower (by about 0.1 ms) in the cognitive condition, when 

compared to the control.  Accordingly, the mechanisms responsible for reducing impact 

velocity during a fall – such as energy absorption through muscle contraction during 

descent – do not appear to be sensitive to the attentional task I employed.  Similar to 

Robinovitch et al. (2003) a lower pelvis impact velocity was seen in FR trials compared 

to BR trials.  This difference is likely due to individuals impacting their knees before 

their pelvis during FR trials, but not BR trials.   

This study has several limitations.  Unlike a real fall, participants were aware of 

the magnitude and direction of the perturbation.  Furthermore, I used only one type of 

perturbation, and variations in perturbation characteristics may effect fall kinematics as 

may neuromuscular variables (e.g., reaction time and strength), environmental variables 

(e.g., obstacles) or situational variables (e.g., carrying an object).  Just after the onset of 

the fall, subjects were required to view the wall in front of them to acquire a visual cue of 
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the desired landing strategy, which required allocation of attentional resources.  Also, 

subjects fell onto a compliant gym mat, which may have reduced their fear of injury and 

thus altered their responses.  However, any reduction in fear due to falling onto a 

compliant surface was likely mediated by the fact that subjects were under pressure to 

rotate correctly.  Furthermore, any attempt by the subject to anticipate or pre-plan their 

response was likely minimized, as subjects were unable to predict between FR, BR and 

NR options, which were presented randomly.   

In summary, I demonstrated that a secondary cognitive task delayed young 

participants’ ability to rotate during descent to avoid impact to the hip during a sideways 

fall.  The mechanism underlying these trends was a delay in the initiation of rotation 

following release and not a change in subsequent rotational velocity.   
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3.7 Tables 
 
 
Table 3-1  Means, standard deviations and range values for outcome parameters.  

 
Variable FR Control FR Cognitive BR Control BR Cognitive  
  

 
Hip Proximity Angle (deg)  51 ± 19  43 ± 18  68 ± 18  59 ± 18 
 3 to 99      -49 to 99      -122 to -8      -129 to 51 
 
Time to Initiate Rotation (ms) 232 ± 72 293 ± 79 239 ± 60 278 ± 87 
 50 to 467 83 to 675 42 to 458 33 to 633  
 
Mean Angular Velocity (m/s) 139.4 ± 27.5  129.0 ± 42.1         -138.0 ± 25.1        -138.0 ± 26.9 
 34.0 to 231.4      -178.9 to 215.0 -230.5 to 147.0    -215.5 to 190.2 
 
Max Angular Velocity (m/s)  1.8 ± 0.5  1.9 ± 0.7      -1.8 ± 0.4     -1.8 ± 0.4 
                                                     -1.6 to 4.1            -1.9 to 7.0     -3.5 to -0.9   -3.6 to -0.7 
 
Pelvis Impact Velocity (m/s) 2.7 ± 0.3 2.6 ± 0.3 2.9 ± 0.2 2.8 ± 0.2 
 1.4 to 4.3       0.6 to 3.2 1.8 to 3.3    0.04 to 3.4 
 
Notes: (1) FR = forward rotation, BR = backward rotation; (2)  first row cell entries show 
mean ± one standard deviation followed in the second row by range (min to max)  
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Table 3-2  Paired t-test values.  

 
Variable p Value   
 
 
Hip Proximity Angle (deg)    — 
 Forward Rotation: ConFR & CogFR (n=19) 0.0132 
 Backward Rotation: ConBR & CogBR (n=19) 0.0050 
 Control Condition: ConFR & ConBR (n=19) 0.0037 
 Cognitive Condition: CogFR & CogBR (n=19) 0.0100 
 
Time to Initiate Rotation (ms)    — 
 Forward Rotation: ConFR & CogFR (n=19) 0.0040 
 Backward Rotation: ConBR & CogBR (n=19) 0.0219 
 Control Condition: ConFR & ConBR (n=19) 0.7816 
 Cognitive Condition: CogFR & CogBR (n=19) 0.5230 
 
Pelvis Impact Velocity (m/s)    — 
 Forward Rotation: ConFR & CogFR (n=19) 0.1300 
 Backward Rotation: ConBR & CogBR (n=19) 0.0984  
 

— , parameter is not applicable for that category. 
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3.8 Figures 
 
 

 
 

Figure 3-1  Experimental setup.  A sideways fall was unexpectedly initiated by releasing a tether, 
which held the subject at a 20º lean angle.   
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Figure 3-2  Forward rotation.  Image presented to subjects at the time of release showing a person 
landing on the outstretched hands. 

 

 

 

Figure 3-3  Backward rotation.  Image presented to subjects at the time of release showing a person 
landing on the buttocks.  
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Figure 3-4  Definition of hip proximity angle.  The hip proximity angle, which is shown by alpha in 
the diagram, is an absolute angle that reflects how near the site of pelvis impact is to the lateral 
aspect of the hip.  An angle of 0 degrees indicates direct impact to the lateral aspect to the hip, while 
+90 degrees reflects impact to the anterior aspect of the pelvis and -90 degrees indicates impact to the 
posterior aspect of the pelvis.    
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Figure 3-5A-D.  Axial rotation of the pelvis during descent for four typical subjects in forward 
rotation trials (FR) and backward rotation trials (BR).  Axial rotation at pelvis impact is equal to the 
hip proximity angle.  Each graph begins at fall initiation and ends at pelvis impact.  Note that lower 
axial rotation was demonstrated by all subjects in cognitive trials compared to control trials.  Also 
note that in most cognitive trials there was a delay in the time for subjects to initiate rotation.   
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Chapter 4 General Conclusions 
 

4.1 Summary 
 

Falls and fall-related injuries are a major public health problem among the elderly 

worldwide.  With our aging population on the rise, reducing both the incidence and 

severity of falls is a priority.  This thesis examined protective responses that young 

individuals utilize to land safely during a fall and how these strategies are affected by the 

performance of various secondary tasks.  

In Chapter 2, I discovered that young individuals do not avoid pelvis impact when 

instructed to land safely but instead use their body segments to break the fall.  I found 

that impact to the lateral aspect of the hip was common in all trials, even those involving 

a secondary motor or cognitive task. Despite a slight decrease seen in the frequency of 

hand impact in trials involving carrying an object, impact to at least one outstretched 

hand was common.  Furthermore, head impact did not occur in any of the trials.  The 

results from this study suggest that the rare occurrence of hip fractures in the young is 

due to some combination of bone strength and effective use of body segments to break 

the fall.   

In Chapter 3, it was shown that involvement in a secondary cognitive task can 

affect the ability of young individuals to rotate forward (FR) or backward (BR) during a 

sideways fall.  Impact occurred closer to the lateral aspect of the hip in cognitive trials 

than in control trials.  This was due to a longer delay in initiation of rotation in cognitive 

trials as opposed to a change in mean angular velocity.  This suggests that the attentional 
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demands associated with a secondary task can impair subjects’ ability to execute a 

specific safe landing response.     

 

4.2 Limitations 
 

In any fall study, trade-offs exist between simulating a realistic falling situation to 

evoke natural responses while ensuring participants remain safe.  Accordingly, fall 

studies have included only young subjects, which is a limitation as most fall-related hip 

fractures occur in older adults.   

One limitation of this study was that subjects were aware of the direction and 

magnitude of the perturbation.  Subjects were released from at a 20 degree lean angle by 

a tether to elicit a sideways fall.  This is considerably different from a real-life loss of 

balance, due to a sudden loss of balance (Nevitt and Cummings, 1993; Robinovitch et al., 

2004).  Although, falls can occur in a variety of directions I examined only sideways 

falls, since hip fracture risk increases greatly in this direction (Greenspan et al., 1994).  

Furthermore, I did not allow subjects to employ balance recovery responses such as 

stepping.     

Another limitation was that subjects fell onto a compliant mat, so any fears 

associated with falling may have been reduced.  However, I believe that this effect was 

minimized in our first study (Chapter 2) by instructing subjects to: “imagine falling on a 

hard surface, like a concrete sidewalk”.     
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4.3 Future Work 
 

4.3.1 Secondary Cognitive Task 

In this thesis the secondary cognitive task used was a verbal task.  It is possible that 

a secondary task that is spatial in nature, a task that deals with the locations and 

movements in space might have a greater effect on fall dynamics (Baddeley, 1998).  

Evidence shows that there is interference between two spatial tasks when performed 

concurrently as they utilize the portion of the brain responsible for creating and 

maintaining visual imagery (Baddeley, 1983).  This was shown by Alan Baddeley (1983) 

who found that listening to American football while driving was disruptive.  Greater 

interference may have been noticed in our second experiment (Chapter 3) if a task that 

was spatial in nature such as the Brooks spatial task (1967) was used.  This task involves 

the participant imagining a 4X4 square and then putting numbers into the appropriate 

square with specific sentences that provide guidance on the location of these numbers 

(Quinn and McConnell, 1996).  In this case both the postural task (which involves 

rotating correctly) and the spatial task would be performed by the visual-spatial-sketch 

pad (VSSP), which is the cognitive system of working memory that would be responsible 

for delaying response initiation.  While a different type of cognitive task might elicit a 

varied response our goal was to simulate a conversation, which is a situation that occurs 

frequently in one’s day to day life.  Future studies may vary the type of cognitive tasks 

used to examine whether this has an effect on falling behaviour.   
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4.3.1.1 Cognitive Task Delay  

In order to attribute a delay in rotation on the cognitive task in experiment two 

(Chapter 3), future work should investigate whether this delay is from shifting attention 

from the cognitive task to the postural task, or due to a lag in processing information 

about the direction of rotation at the time of release.  A future study might examine how 

individuals rotate while performing the cognitive task when they know their direction of 

rotation versus when their direction of rotation is suddenly presented to them.  This type 

of study would help decipher if the delay seen in this study (Chapter 3) is strictly due to 

the secondary task (and is indicative of interference in working memory) or is primarily 

due to the act of rotating (which the cognitive task might just exacerbate).  

 

4.3.2 Protective Responses in the Elderly 
 

Future research should examine protective responses during falls in older adults.  

In undertaking such studies, caution must be taken to ensure injuries do not occur.  These 

include having subjects wear hip guards, wrist guards, using a harness to control their 

velocity during descent and using bone density imaging techniques (such as DXA) to 

screen out osteoporotic individuals.   

 

4.3.3 Exercise-Based Programs 
 

The use of exercise-based programs to enhance safe landing strategies would 

complement existing strategies (e.g., hip protectors, fall prevention programs, 

medications) for preventing serious injury during a fall.  However, important goals for 
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future studies are to first identify components of muscular strength, joint flexibility, and 

reaction time that govern these safe landing responses during a fall.  For instance, can 

individuals be trained to more effectively utilize the outstretched hands during a fall?  By 

collaborating with various health professionals exercise programs can be designed to 

target these specific factors (e.g., using push-ups to simulate breaking the fall with the 

outstretched hands) (Robinovitch et al., 2003).  By determining these components, 

exercise programs can appropriately target and modify each of these factors for 

individuals at risk.   

 

4.3.4 Training under Dual-task conditions 
 

Impairments in the allocation of attention have been shown to be a risk factor for 

falls (Lajoie et al., 1993; Shumway-Cook and Woollacott, 2000) and researchers have 

investigated whether such impairments can be diminished with physical practice on 

balance tasks.  Melzer and Oddsson (2004) found that the ability to rapidly execute a step 

in elderly subjects while simultaneously performing a cognitive task can be improved 

with training.  Additionally, Silsupadol et al. (2006) found that older adults can improve 

their balance under certain dual-task conditions.  This suggests that training under dual-

task conditions could minimize the effect of a secondary task and even improve 

performance on postural tasks.     

 

4.3.4.1 Training Safe Landing Techniques 
 

Only recently, have researchers begun to investigate how individuals can land 

safely during a fall.  Groen et al., (2006) have incorporated martial arts fall techniques, 
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such as rolling after impact into fall prevention training programs for the elderly.  

Robinovitch et al. (2003) found that individuals can avoid hip impact during a fall by 

rotating during descent.  Future programs should include dual-task paradigms when 

training individuals on safe landing techniques.     

 

4.4 Conclusions 
 

While preventing falls is paramount to reducing injuries among the elderly, falls 

are inevitably going to occur, due to factors that may or may not be controllable.  Truly 

understanding how people fall will allow for the design of appropriate strategies targeting 

fall prevention or safe landing training during a fall.  This thesis identified that during a 

sideways fall movement strategies are utilized to effectively break the fall, even in the 

presence of a secondary task (Chapter 2).  I also identified that the ability to employ 

specific protective responses is impaired in the presence of a secondary cognitive task 

(Chapter 3).     
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