
Properties of
Two-Dimensional Words

by

Taylor J. Smith

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Taylor J. Smith 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Combinatorics on words in one dimension is a well-studied subfield of theoretical computer
science with its origins in the early 20th century. However, the closely-related study of two-
dimensional words is not as popular, even though many results seem naturally extendable
from the one-dimensional case. This thesis investigates various properties of these two-
dimensional words.

In the early 1960s, Roger Lyndon and Marcel-Paul Schützenberger developed two fa-
mous results on conditions where nontrivial prefixes and suffixes of a one-dimensional word
are identical and on conditions where two one-dimensional words commute. Here, the the-
orems of Lyndon and Schützenberger are extended in the one-dimensional case to include a
number of additional equivalent conditions. One such condition is shown to be equivalent
to the defect theorem from formal languages and coding theory. The same theorems of
Lyndon and Schützenberger are then generalized to the two-dimensional case.

The study of two-dimensional words continues by considering primitivity and peri-
odicity in two dimensions, where a method is developed to enumerate two-dimensional
primitive words. An efficient computer algorithm is presented to assist with checking the
property of primitivity in two dimensions. Finally, borders in both one and two dimensions
are considered, with some results being proved and others being offered as suggestions for
future work. Another efficient algorithm is presented to assist with checking whether a
two-dimensional word is bordered.

The thesis concludes with a selection of open problems and an appendix containing
extensive data related to one such open problem.

Keywords: bordered word, combinatorics on words, formal language theory, Lyndon–
Schützenberger theorem, periodic word, primitive word, two-dimensional word

iii

Acknowledgements

To my supervisor, Dr. Jeffrey Shallit, thank you for everything. Without your direction, I
would never have been able to write this thesis. Your vast breadth and depth of knowledge,
your constant drive to improve, and your fine attention to detail have taught me more about
this area of research (and about research in general) than I could have possibly imagined.
As I go forward with my academic career, I can only hope that the quality of my work will
one day match that of yours.

To my readers, Dr. Eric Blais and Dr. Lila Kari, thank you for your careful review and
for your helpful feedback.

To the faculty and staff of the Cheriton School of Computer Science, thank you for all
of the inspiration, guidance, and assistance you have provided to me. I was among some
truly great minds during my time here.

To my colleagues in the Algorithms & Complexity Group, and in particular to my
officemate Sajed Haque, thank you for giving me a much-needed outlet to share ideas,
commentaries, and a laugh or two.

Finally, to my family and friends, thank you for your love, for your support, and for
continuing to put up with me whenever I talk about “algorithms” and “theory” and all
that good stuff.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Symbols vii

1 Introduction 1

1.1 Overview of Combinatorics on Words . 1

1.2 Contributions of the Thesis . 2

1.3 Chapter Outlines . 2

2 Background and Related Work 4

2.1 Preliminaries . 4

2.2 Previous Work . 11

2.3 Important Theorems . 14

3 One-Dimensional Lyndon–Schützenberger Theorems 18

3.1 One-Dimensional Extension of the First Theorem 18

3.2 One-Dimensional Extension of the Second Theorem 20

v

4 Two-Dimensional Lyndon–Schützenberger Theorems 23

4.1 Overlapping Two-Dimensional Generalization of the First Theorem 23

4.2 Bordered Two-Dimensional Generalization of the First Theorem 24

4.3 Two-Dimensional Generalization of the Second Theorem 27

5 Two-Dimensional Primitivity and Periodicity 30

5.1 Enumerating One-Dimensional Primitive Words 30

5.2 Enumerating Two-Dimensional Primitive Words 32

5.3 Checking if a Two-Dimensional Word is Primitive 33

6 Two-Dimensional Borders 36

6.1 Enumerating One-Dimensional Bordered Words 36

6.2 Enumerating Two-Dimensional Bordered Words 39

6.3 Checking if a Two-Dimensional Word is Bordered 43

7 Conclusions 46

References 48

A Data for the Enumeration of Two-Dimensional Unbordered Words 56

vi

List of Symbols

∅ Empty set
ε Empty word
Σ Finite alphabet
Σ∗ Set of all finite one-dimensional words over Σ
Σ+ Set of all finite one-dimensional words over Σ, excluding the empty word
Σm×n Set of all finite two-dimensional words over Σ of dimension m× n
a Symbol in Σ
p, q, r, . . . One-dimensional word
A,B,C, . . . Two-dimensional word
L Language
|L| Cardinality or size of a language
|w| Length of a one-dimensional word w
|A| Number of symbols in a two-dimensional word A
ARM Two-dimensional word A in row-majorized representation
ACM Two-dimensional word A in column-majorized representation
	 Horizontal concatenation of two-dimensional words
: Vertical concatenation of two-dimensional words

vii

Chapter 1

Introduction

1.1 Overview of Combinatorics on Words

Combinatorics on words is a field spanning both computer science and mathematics that
focuses on combinatorial properties applied to formal languages. Its origins were largely
algebraic, and were focused on finding patterns within sequences of symbols. However,
the field has since expanded to other aspects of the mathematical sciences, including algo-
rithms, complexity, coding theory, and even physics (particularly, symbolic dynamics).

The study of combinatorics on words originated in the early 1900s with the work of Axel
Thue, who published two papers on patterns and repetitions within words [76]. However,
the importance of Thue’s work was not recognized until several decades later, when research
in this area became very popular. The first book on combinatorics on words appeared in
1983 [68], and it was written by “M. Lothaire”, a collective pseudonym for a group of
researchers.

Combinatorics on words is closely related to the study of formal languages, due to
the fact that both fields investigate various properties of the same mathematical object:
words. Some of the more popular research areas in combinatorics on words include struc-
tures within words (e.g., words that contain or avoid certain patterns); types of words
(e.g., infinite words); collections of words—also known as languages—and their properties
(e.g., regularity, context-freeness, etc.); representing words and languages visually (e.g., us-
ing automata); and connections between words and mathematics (e.g., to group theory).

For more details on the origins of the study of combinatorics on words, Berstel and
Perrin have published a comprehensive survey of the field’s history [19].

1

1.2 Contributions of the Thesis

This thesis presents the following results. In Sections 3.1 and 3.2, we extend the well-
known theorems of Lyndon and Schützenberger in the one-dimensional case to include
a number of additional equivalent conditions. We show that one condition is equivalent
to the defect theorem, which states that if a set of n words is nontrivially related, then
they can be expressed as products of at most n − 1 words. We then generalize the same
theorems of Lyndon and Schützenberger to the two-dimensional case in Sections 4.1, 4.2,
and 4.3. In Chapter 5, we investigate the properties of primitivity and periodicity in two
dimensions. We present a formula and a linear-time algorithm to assist with enumerating
two-dimensional primitive words and to check primitivity in two dimensions. Chapter 6
considers borders in both one and two dimensions. We present a result on enumerating
one-dimensional bordered words as polynomials and discuss a generalization of bordered
and unbordered words in two dimensions. We also provide another linear-time algorithm
to assist with checking whether a given two-dimensional word is bordered. A variety of
open problems are included in Chapter 7.

Some of the results in this thesis first appeared in the author’s paper with Gamard,
Richomme, and Shallit [42]. These results, and the relevant sections of the paper where
they first appeared, are listed in a footnote at the beginning of their respective chapters.

1.3 Chapter Outlines

This thesis is divided into seven chapters, which discuss the following topics:

1 Introduction
The present chapter aims to provide the reader with a brief history of combinatorics
on words and an overview of the material contained within this thesis.

2 Background and Related Work
This chapter contains the various definitions required to understand the material
presented in later chapters. We give an overview of previous work relating to this
thesis, and we prove some important theorems that will be used in later chapters.

3 One-Dimensional Lyndon–Schützenberger Theorems
This chapter takes a closer look at two well-known theorems of Lyndon and Schützenberger.
We present extensions of these theorems. We show that each theorem admits addi-
tional conditions and that these new conditions are equivalent to one another.

2

4 Two-Dimensional Lyndon–Schützenberger Theorems
This chapter builds upon the work in the previous chapter by extending the Lyndon–
Schützenberger theorems to the two-dimensional case. We develop two-dimensional
equivalents of each condition in the original theorems. We study the second Lyndon–
Schützenberger theorem for two-dimensional words in both the overlapping and bor-
dered case.

5 Two-Dimensional Primitivity and Periodicity
This chapter considers the properties of primitivity and periodicity in two-dimensional
words. We review properties of one-dimensional primitive words. We present a for-
mula to enumerate all two-dimensional primitive words of a given dimension, and we
develop an efficient algorithm for verifying the primitivity of a two-dimensional word
and computing its primitive root.

6 Two-Dimensional Borders
This chapter considers borders in two-dimensional words. We review properties of
one-dimensional bordered words and prove a small result on the enumeration of one-
dimensional bordered words as polynomials. We present a discussion on techniques
for enumerating two-dimensional bordered words, and we develop an efficient algo-
rithm for verifying that a two-dimensional word is bordered. An appendix containing
data relating to this chapter is included at the end of the thesis.

7 Conclusions
This chapter summarizes the results of the thesis and offers suggestions for future
work relating to this research.

3

Chapter 2

Background and Related Work

2.1 Preliminaries

In this section, we introduce some basic terminology and definitions.

We begin with terminology relating to combinatorics of words in one dimension. This
terminology is standard (see, for example, Hopcroft and Ullman’s text [56]) and so it shall
not be discussed here in great detail. Let Σ = {0, . . . , k − 1} represent some nonempty
finite k-ary alphabet. A word w = a0 · · · an−1 over Σ (sometimes also called a string) is
composed of symbols a0, . . . , an−1 ∈ Σ. The length of this word w is denoted |w| = n. If
|w| = 0, then we say that w is the empty word and we denote it by the symbol ε. If we
can decompose a word w into the form w = xyz, then we say that y is a subword of w.
A language L over Σ is a set of words over Σ. Languages may be finite or infinite. There
exist two special languages: the set of all words over Σ including the empty word, denoted
Σ∗, and the set of all nonempty words over Σ, denoted Σ+.

We often wish to apply operations to words. Two words w and x can be combined,
or concatenated, by joining the last symbol of w to the first symbol of x. We denote
concatenation by placing the two word variables side by side, like wx. If w = a0 · · · an−1 is
a word, then wm = (a0 · · · an−1) · · · (a0 · · · an−1)︸ ︷︷ ︸

m

is the word w concatenated with itself m

times. The word wm is called a power of w.

Example 2.1. Let w = ha. Then w concatenated with itself gives the word w2 = haha,
which is also a second power of w.

4

We conclude by defining some properties of words. We say that a word w is periodic if
it can be written as a power of some smaller word z repeated e ≥ 2 times, and we write
w = ze if this is the case.

If a word w is not periodic, then we say that it is primitive. We observe the following
property of primitive words, with the proof based on that given in Shallit’s text [68, 80]:

Proposition 2.2. For any nonempty word w, the smallest word z such that w = ze for
some integer e ≥ 1 is primitive. Moreover, the word z is unique.

Proof. To prove primitivity, take the largest integer 1 ≤ e ≤ |w| such that w = ze has a
solution. If the word z were not primitive, then we could write z = yf for some word y
and integer f ≥ 2. Therefore, we would have w = (yf)e where fe > e; a contradiction.

The proof of uniqueness is left for Section 2.3.

We call the unique word z obtained from Proposition 2.2 the primitive root of w.

Example 2.3. The word v = bird is primitive. The word w = dodo is periodic, since we
can write w = dodo = (do)2. The primitive root of w is z = do.

Given two words w, x ∈ Σ∗, if there exists a word y ∈ Σ∗ such that w = xy (respectively,
w = yx), then we say that x is a prefix (respectively, a suffix) of w. Observe that, in both
cases, we allow y to be empty. If y 6= ε, then we say that x is a proper prefix (respectively,
a proper suffix).

Example 2.4. Let w = haystack. Some prefixes of w include the words hay, hays, and
haystack. Some suffixes of w include the words tack, stack, and haystack. The first
two words in each list are also proper prefixes or proper suffixes, respectively.

If we can write a word w as w = axaxa, where x ∈ Σ∗ and a ∈ Σ, then we say that
w is an overlap. This is because the subword axa in w is overlapping itself. Similarly, if
w can be written as w = xyx, where x ∈ Σ+ and y ∈ Σ∗, then we say that w is bordered.
This is because the subword x acts as a “border” surrounding the overall word w.

Example 2.5. Let w = alfalfa. This word contains an overlap; namely, w = axaxa
where a = a and x = lf, so the subword alfa overlaps itself. This word is also bordered;
namely, w = xyx where x = a and y = lfalf.

5

We now move on to terminology relating to combinatorics of words in two dimensions.
The terminology given here is common in most of the literature on the topic [43, 75]. The
definition of an alphabet does not change, as we require no special properties of alphabets
in two dimensions. However, we do require a two-dimensional analogue for the notion of a
word.

Definition 2.6 (Two-dimensional word). A two-dimensional word

A =


a0,0 a0,1 . . . a0,n−1
a1,0 a1,1 . . . a1,n−1

...
...

. . .
...

am−1,0 am−1,1 . . . am−1,n−1


is a map from {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1} to an alphabet Σ.

In this way, one may think of a two-dimensional word as being similar to an array or a
matrix. By convention, we take A[0, 0] to be the upper-left corner of the two-dimensional
word A. We also say that A[i..j, k..l] is the two-dimensional subword of A contained within
rows i to j and within columns k to l.

We also give a handy notation for discussing sets of two-dimensional words.

Definition 2.7 (Set of two-dimensional words). The set of two-dimensional words Σm×n

contains all two-dimensional words of dimension m× n over Σ.

Note that, occasionally, two-dimensional words may also be referred to as “pictures”
or “figures”. The latter term is often used when a number of rectangular two-dimensional
words are combined to form a non-rectangular two-dimensional word. For more details on
two-dimensional words, see the survey papers by Giammarresi and Restivo [43] and Morita
[75].

We can generalize the notion of word length by saying that if A ∈ Σm×n, then |A| = mn.
The length of a two-dimensional word is therefore the number of symbols within that word.
Although the one-dimensional empty word was the unique one-dimensional word of length
zero, we cannot simply define the two-dimensional analogue to be the two-dimensional word
of dimension 0 × 0. Although such a word is indeed empty, it is not unique. (Consider,
for instance, two-dimensional words of dimension 1× 0 or 0× 2.) Therefore, we generalize
the notion of the empty word to two dimensions by saying that any two-dimensional word
with at least one dimension being equal to zero is “empty”.

6

Certain operations may also be applied to two-dimensional words, with the proper
generalization. We begin by discussing how to concatenate pairs of two-dimensional words.
In one dimension, we could only concatenate words w and x side-by-side, which made
the operation straightforward; in two dimensions, however, we must distinguish between
concatenation in the horizontal direction and concatenation in the vertical direction and,
furthermore, we must have a matching of dimensions in that direction.

Definition 2.8 (Concatenation of two-dimensional words). Let A ∈ Σm1×n1 and B ∈
Σm2×n2 . If n1 = n2 = n, then the horizontal concatenation of A and B, denoted A	B, is
the (m1 +m2)× n two-dimensional word produced by placing B underneath A. Likewise,
if m1 = m2 = m, then the vertical concatenation of A and B, denoted A : B, is the
m× (n1 + n2) two-dimensional word produced by placing B to the right of A.

Example 2.9. Given two-dimensional words

A =

[
1 2

4 5

]
, B =

[
7 8

]
, and C =

[
3

6

]
,

the horizontal concatenation of A with B and the vertical concatenation of A with C are,
respectively,

A	B =

1 2

4 5

7 8

 and A: C =

[
1 2 3

4 5 6

]
.

Note that we cannot concatenate A with B vertically, nor can we concatenate A with C
horizontally, since we do not have a matching of dimensions in those respective directions.

We may also generalize the notion of powers by considering repeated concatenations of
two-dimensional words.

Definition 2.10 (Power of a two-dimensional word). Let A ∈ Σm×n. The p× q power of
A, written Ap×q, is the pm× qn two-dimensional word with the property that Ap×q[i, j] =
A[i mod p, j mod q].

Example 2.11. Given the two-dimensional word A =
[
4 6

]
, which is evidently of di-

mension 1× 2, the 2× 3 power of A is

A2×3 =

[
4 6 4 6 4 6

4 6 4 6 4 6

]
.

7

Take care not to confuse the notation for powers, written Ap×q, with the notation for a
set of two-dimensional words, written Σm×n. The latter will always be denoted using the
Greek letter Σ, while the former may use any capital Latin letter.

We can define periodicity and primitivity for two-dimensional words as well. The prop-
erties are defined similarly to those in one dimension.

Definition 2.12 (Two-dimensional periodic word). A two-dimensional word A is periodic
if it can be written as A = Bp×q with either p ≥ 2 or q ≥ 2.

Definition 2.13 (Two-dimensional primitive word). A two-dimensional word A is primi-
tive if it is not periodic.

Example 2.14. The two-dimensional word A =
[
2 4

]
is primitive. On the other hand,

B =

[
2 4

2 4

]
is periodic, since we can write B = A2×1.

Two-dimensional words may also contain prefixes or suffixes.

Definition 2.15 (Prefix/suffix of a two-dimensional word). A two-dimensional word A
has a prefix (respectively, a suffix) B if there exists a possibly empty two-dimensional word
C such that A = B 	 C or A = B : C (respectively, A = C 	B or A = C :B).

The definition of a proper prefix or proper suffix of a two-dimensional word follows
naturally from the above definition and from the one-dimensional case. A two-dimensional
word B is a proper prefix or suffix of another two-dimensional word A if and only if B is
a prefix or suffix of A and B 6= A (that is, if and only if C is nonempty).

Example 2.16. The two-dimensional word

A =

9 6 3

8 5 2

7 4 1


has, for example, prefixes

B1 =

[
9 6 3

8 5 2

]
, B2 =

98
7

 , and B3 =

9 6 3

8 5 2

7 4 1

 ,
8

of which B1 and B2 are proper prefixes of A. By contrast, the two-dimensional word

B4 =

[
9 6

8 5

]
is not a prefix of A because, by the definition of a prefix, we must have a matching in at
least one dimension.

If the concatenation operation is 	, then we say that the two-dimensional word A
has a (proper) prefix or suffix in the horizontal direction. Likewise, if the concatenation
operation is :, then we say that A has a (proper) prefix or suffix in the vertical direction.

We can consider the notions of overlap and border with respect to two-dimensional
words. Intuitively speaking, overlap suggests we have some matching of symbols in one
dimension, while border suggests we have some matching of symbols in both dimensions.
We begin with the definition of two-dimensional overlapping words.

Definition 2.17 (Overlap of two-dimensional words). A pair of two-dimensional words A
and B overlap if there exists a two-dimensional word C such that C is a suffix of A and a
prefix of B or vice versa.

The notion of both horizontal and vertical overlap are illustrated in Figure 2.1.

Example 2.18. The 2 two-dimensional words

A =

[
1 2 3

3 4 5

]
and B =

[
3 4 5

5 6 7

]

share a horizontal overlap C1 =
[
3 4 5

]
and a vertical overlap C2 =

[
3

5

]
.

A

B

C

(a) Horizontal overlap

A BC

(b) Vertical overlap

Figure 2.1: Illustrations of overlap

9

In a paper of Anselmo, Giammarresi, and Madonia [8], the authors refer to horizontal
overlap as “h-slide overlap” and to vertical overlap as “v-slide overlap”.

We now turn to the definition of a two-dimensional bordered word, which is, intuitively
speaking, a combination of the two types of overlap. In another paper [7], Anselmo,
Giammarresi, and Madonia state informally that a two-dimensional word is bordered “when
we can find the same rectangular portion at two opposite corners” of the word. This notion,
although similar in name, is not the same as our notion of border below. The paper of
Anselmo et al. considers a border to be only an overlap of corners, whereas here we consider
a border to be similar to a picture frame. In this way, we have an overlap from both the
top-left and bottom-right corners to both the top-right and bottom-left corners.

Definition 2.19 (Border of a two-dimensional word). A two-dimensional word A is bor-
dered if there exist a nonempty two-dimensional wordQ and possibly empty two-dimensional
words R, S, and T such that

A = (Q:R:Q)	 (S : T : S)	 (Q:R:Q).

Informally, a two-dimensional bordered word has the subword Q appearing in each
corner and the subword T in the center, with subwords R and S completing the frame
around T . The notion of a two-dimensional border is illustrated in Figure 2.2.

Example 2.20. The two-dimensional word

A =


7 4 1 7 4

6 8 0 6 8

3 2 9 3 2

7 4 1 7 4

6 8 0 6 8


is bordered, with Q =

[
7 4

6 8

]
, R =

[
1

0

]
, S =

[
3 2

]
, and T =

[
9
]
.

A =

Q R Q

S T S

Q R Q

Figure 2.2: Subwords of a two-dimensional bordered word A

10

2.2 Previous Work

The literature features a good deal of previous work on two-dimensional words, their prop-
erties, and algorithms. This section gives a brief summary of the existing body of knowledge
relating to two-dimensional words.

General. There are a number of good survey articles on two-dimensional words and
languages, such as those by Giammarresi and Restivo [43] and Morita [75].

Much of the early work on two-dimensional words related to polyominoes and tilings
in the plane [44, 45, 46]. Work in this area later extended the notion of codes to two
dimensions. These objects were called “picture codes” or “pictures” [26].

Origins. No research on combinatorics on words is complete without referencing the
seminal papers of Thue in the early 20th century. In Thue’s 1906 paper [83], he discusses
the first notions of primitivity by studying repetitions in finite words and by constructing
squarefree words over three and four symbols. In Thue’s 1912 paper [84], he again deals
with repetitions in finite words, but here he studies so-called “irreducible” words with a
focus on such words over two and three symbols.

Bordered words. Anselmo, Giammarresi, and Madonia generalized unbordered words
to two dimensions in their paper [7]. They also devised a method to construct unbordered
two-dimensional words of a given dimension, as well as to construct “quasi-unbordered”
two-dimensional words. (Informally, a two-dimensional word is quasi-unbordered if it has
no border on its right-hand side only.)

Anselmo, Jonoska, and Madonia study the so-called “framed” and “unframed” two-
dimensional words, which appears to be somewhat similar to the “picture frame” charac-
terization of a border given in the previous section [9].

Holub and Shallit studied borders and periods in random words [55]. They showed that
the asymptotic probability that a random word has a border of length at most k is constant
both in k and in the alphabet size l, and that there exists a recurrence to determine these
constants. They also give the probability of finding an unbordered random word, or a
random word with border length l.

A “bifix” is a subword that is both a prefix and a suffix of some word. The notion of
bifixes is identical to that of borders, so a good amount of work on bordered words may

11

be found in the literature on bifixes. Unger introduced bifixes in 1960 [87], and Nielsen
devised a systematic way of generating all bifix-free sequences over some alphabet, and of
recursively enumerating these sequences [77].

Bajic, Stojanovic, and Lindner introduced “cross-bifix-free” words [12], which gener-
alizes bifixes to the case where, given two words in a language, no prefix of one word
is a suffix of the other. Bajic later gave a method of constructing cross-bifix-free words
[11]. Bilotta, Pergola, and Pinzani developed a similar method for binary cross-bifix-free
words of a fixed length, as well as a method to find nonexpandable subsets of such words
[21]. Chee, Kiah, and Purkayastha developed a method similar to Bajic for non-binary
cross-bifix-free words [28].

Bifixes and cross-bifixes were extended to the two-dimensional case by Barcucci, Bernini,
Bilotta, and Pinzani [14]. In their paper, the authors developed a method of construct-
ing all two-dimensional words with these properties. Notably, they also coined the terms
“bibifix” and “cross-bibifix” for two-dimensional bifix and cross-bifix, respectively.

Overlap in words. Blackburn’s paper [23] provides a method of constructing non-
overlapping codes which, as it turns out, are equivalent to cross-bifix-free codes. The work
in this paper was extended by Barcucci, Bernini, Bilotta, and Pinzani [15], who generalized
Blackburn’s method to two dimensions and provided both an enumeration method and a
generating function for two-dimensional non-overlapping words. Anselmo, Giammarresi,
and Madonia [8] later solved an open problem given by Barcucci et al. by presenting a
method to construct a non-expandable set of two-dimensional non-overlapping words.

1D pattern matching. The bibliography on one-dimensional pattern matching is vast.
Aside from the Knuth–Morris–Pratt pattern matching algorithm, which will be mentioned
in a later chapter, one-dimensional pattern matching techniques will not be discussed in
great detail in this thesis.

For a comprehensive overview of the literature on this topic, see Beebe and Salomon’s
bibliography [16].

2D pattern matching. Two-dimensional pattern matching was first studied by Bird [22]
and by Baker [13], who both independently extended the Knuth–Morris–Pratt algorithm
to two dimensions. Their extensions only worked for exact pattern matching, and the
algorithms run in O(n2 log |Σ|) time for a bounded alphabet or O(n2 log(m)) time for an
unbounded alphabet.

12

Amir and Landau presented a method for approximate pattern matching in two dimen-
sions [5]. Their algorithm runs in O(nd(dk + k2)) time on a serial processor.

Amir, Landau, and Vishkin defined the notion of pattern matching with scaling, or
detecting patterns in a two-dimensional word that are scaled to natural multiples of the
size of the word [6]. They gave an algorithm for this problem that runs in O(n2 log |Σ|)
time. Amir and Farach later studied pattern matching in two-dimensional words where
the patterns are square [4], and Idury and Schäffer gave an algorithm for pattern matching
in two dimensions where each pattern is rectangular [59].

The first deterministic algorithm to solve the problem of two-dimensional exact pattern
matching was given by Amir, Benson, and Farach [3]. Their algorithm runs in O(n2) time
for text processing with a O(n) matching step. The algorithm is alphabet independent for
the text processing step, but not for the pattern processing step. Around the same time,
Galil and Park gave a similar algorithm that is alphabet independent in both steps and
runs in O(m2 + n2) time [38].

A survey of two-dimensional pattern matching algorithms can be found in Chapter 12
of Crochemore and Rytter’s text [34].

Periodic words. The periodicity lemma of Fine and Wilf [37], which we shall discuss
briefly in the next section, is fundamental to the study of periodic words. This lemma
shows that the longest word with periods p and q, but not with period gcd(p, q), is of
length p+ q − gcd(p, q)− 1.

Holub extended Fine and Wilf’s periodicity lemma to words with multiple periods
[52, 53]. Holub shows that the longest word with periods p1, p2, . . . , pn, but not with
period gcd(p1, p2, . . . , pn), can be determined algorithmically. Interestingly, he also shows
that this longest word must be a palindrome. In a later paper [54], Holub gave a concise
description of an algorithm originally published by Tijdeman and Zamboni [85, 86].

Ehrenfeucht and Silberger studied the connection between repetitions in one-dimensional
words and unbordered segments of those words [36, 81]. Silberger later studied the enu-
meration of one-dimensional unbordered words [82].

Guibas and Odlyzko investigated the property of periodicity in one-dimensional words
[47, 48]; their work arose from previous investigations into pattern matching algorithms,
and how knowing the structure of a periodic string could affect the performance of such
an algorithm.

13

Amir and Benson studied periodicity in two dimensions in a series of papers [1, 2].
Crochemore, Iliopoulos, and Korda [33] and, more recently, Gamard and Richomme [40,
41], considered quasiperiodicity in two dimensions. Régnier and Rostami studied the more
general case of periodicity and space covering in d dimensions [78].

Periodicity has been studied in random words as well. See the paper of Holub and
Shallit [55] referenced in the earlier discussion on bordered words.

Primitive words. Bacquey studied primitive roots in two-dimensional biperiodic infinite
words [10]. Bacquey showed that all two-dimensional words with two periods contain at
least one primitive root. Moreover, there are at most two ordered pairs of positive integers
(m,n) where every primitive root is of dimension m × n, and every m × n rectangular
pattern is a primitive root of the word.

Other topics. Marcus and Sokol [72] considered two-dimensional Lyndon words. A
Lyndon word is a word that is lexicographically strictly smaller than its circular shifts.

2.3 Important Theorems

In this section, we outline a few fundamental theorems that we will see in later chapters.

We begin with Levi’s lemma, named for the German mathematician Friedrich Wilhelm
Levi [67]. This rather basic result is not provided out of interest, but instead because some
future theorems use this lemma as an intermediate step.

Lemma 2.21 (Levi’s lemma). Let u, v, x, y ∈ Σ∗ and suppose that uv = xy. If |u| ≥ |x|,
then there exists t ∈ Σ∗ such that u = xt and y = tv. If |u| < |x|, then there exists t ∈ Σ+

such that x = ut and v = ty.

Proof. Immediate.

We proceed to state two famous theorems due to the American mathematician Roger
Lyndon and the French mathematician Marcel-Paul Schützenberger. These theorems, as
well as their generalizations and extensions, will be the focus of the next two chapters of
this thesis.

The first theorem of Lyndon and Schützenberger tells us under what conditions a
word has a nontrivial proper prefix and suffix that are identical. Here, we reproduce the

14

statement and proof of the first theorem from the paper of Lyndon and Schützenberger
[69], albeit slightly modified to fit the context of combinatorics on words rather than the
authors’ original context of elements in a free group.

Theorem 2.22 (First Lyndon–Schützenberger theorem). Let x, y, z ∈ Σ+. If xy = yz,
then there exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 0 such that x = uv, z = vu, and
y = (uv)eu = u(vu)e.

Proof. Suppose |x| ≥ |y|. Then, by Levi’s lemma, there exists a word v ∈ Σ∗ such that
x = yv and z = vy. Take u = y and e = 0 to complete the proof for this case.

Otherwise, |x| < |y|. Then, by Levi’s lemma once again, there exists a word y′ ∈ Σ+

such that y = xy′. Rewrite our expression as x(xy′) = (xy′)z and observe that xy′ = y′z.
Since x is nonempty, we know that |y′| < |y|. The result follows by an induction on the
length of y.

The second theorem of Lyndon and Schützenberger essentially states a number of condi-
tions under which two words x and y commute. In their paper, Lyndon and Schützenberger
present a number of equivalent results separately, but here we combine these results into
one theorem. Again, we reproduce a restated version of the results and their associated
proofs from the authors’ paper [69]. The directions (1) ⇒ (2) and (3) ⇒ (2) are given
by Lyndon and Schützenberger; the remaining directions are provided for completeness.
(Note that it is possible to prove this theorem using the directions (1)⇒ (2)⇒ (3)⇒ (1),
but the proof given here remains true to the original paper.)

Theorem 2.23 (Second Lyndon–Schützenberger theorem). Let x, y ∈ Σ+. Then the fol-
lowing conditions are equivalent:

(1) xy = yx;

(2) There exist z ∈ Σ+ and integers i, j ≥ 1 such that x = zi and y = zj;

(3) There exist integers k, l ≥ 1 such that xk = yl.

Proof. (1) ⇒ (2): We proceed by induction on the length of xy. If |xy| = 2, then |x| =
|y| = 1, so take z = x = y and i = j = 1. Otherwise, assume our statement is true for
|xy| < n and, without loss of generality, assume |x| ≥ |y|. Applying Lemma 2.21 to x
and y with u = y and v = x produces the relation x = yt = ty for some word t ∈ Σ∗. If
|x| = |y|, then we can take z = x = y and i = j = 1 as before. Otherwise, |ty| < |xy| = n,

15

so by induction there exist a word z ∈ Σ+ and integers i, j ≥ 1 such that t = zi and y = zj.
It follows that x = zi+j.

(2)⇒ (1): If x = zi and y = zj, then xy = zizj = zi+j = zjzi = yx.

(2)⇒ (3): If x = zi and y = zj, then take k = j and l = i to get xk = (zi)k = (zi)j =
zij = (zj)i = (zj)l = yl.

(3) ⇒ (2): If k = 1 or l = 1, then the proof is immediate. Otherwise, we have that
|xk| = |yl| ≥ |x|+ |y|. This implies that xk and yl share a prefix of length ≥ |x|+ |y|. By
concatenating x to the left of xk and yl, we see that xk+1 and xyl also share a prefix of
length ≥ |x| + |y|. Similarly, concatenating y to the left of xk and yl gives yxk and yl+1,
which also share a prefix of length ≥ |x| + |y|. Since xk and yl share this prefix, then the
same is true for the pairs xk+1 and yl+1, as well as for the pairs xk+1 and xyl and the pairs
yxk and yl+1. Thus, by comparing xyl and yxk, we see that they too share a prefix of
length ≥ |x|+ |y|, and hence xy = yx. By the equivalence of conditions (1) and (2), there
exist a word z and integers i, j ≥ 1 such that x = zi and y = zj.

Now that we have these characterizations of commutative words due to the second
Lyndon–Schützenberger theorem, we can prove a variety of results. For example, recall
the proof of Proposition 2.2. To prove the uniqueness of the primitive root z where w = ze

for e ≥ 1, suppose to the contrary that z is not unique. Then we would have w = ze = yf for
two primitive words z and y and integers e, f ≥ 1. By the second Lyndon–Schützenberger
theorem, there exists a word x where |x| ≥ 1 such that z = xk and y = xl for integers
k, l ≥ 1. However, since z and y are primitive, we must have that k = l = 1. But then
z = y = x, so e = f and w must only have one unique representation; a contradiction.
This completes the uniqueness portion of the proof.

As a motivation for the rest of this thesis, we consider a theorem in combinatorics on
words that is well-studied and has already been generalized to two dimensions. The Fine–
Wilf theorem [37], named for the American mathematicians Nathan Fine and Herbert
Wilf, relates the length of a word to the word’s possible periods. What follows is the
one-dimensional version of the theorem with the proof omitted.

Theorem 2.24 (Fine–Wilf theorem). Let w ∈ Σ+. If w has periods p and q, and |w| ≥
p+ q − gcd(p, q), then w also has period gcd(p, q).

Proof. Omitted.

A good deal of work has been written about this theorem since its introduction. Castelli,
Mignosi, and Restivo generalized this theorem to three periods [27] and, later, Justin gener-
alized it to arbitrary periods [60]. Constantinescu and Ilie provide a more complete solution

16

and better bounds for the case involving arbitrary periods [30]. The same researchers, as
well as Karhumäki, Puzynina, and Saarela, generalized the Fine–Wilf theorem to abelian-
equivalent words, or words containing the same symbols up to rearrangement [31, 63].
A number of researchers extended the Fine–Wilf theorem to the case of partial words, or
words that are a partial mapping into some alphabet [18, 24, 25], and to the case of pseudo-
repetitions in words, a notion that appears often in the field of bioinformatics [35, 64, 70].
Tijdeman and Zamboni gave an algorithm to compute the maximal word w of length n ac-
cording to the Fine–Wilf theorem [85, 86]. Lastly, Mignosi, Restivo, and Silva generalized
the Fine–Wilf theorem to two dimensions [73].

The Fine–Wilf theorem stands as an example of how results in combinatorics on words
can be generalized and expanded upon in many ways, which is, in a sense, the overarching
theme of this thesis.

17

Chapter 3

One-Dimensional
Lyndon–Schützenberger Theorems

3.1 One-Dimensional Extension of the First Theorem

In this section, we present and prove an extension of the first Lyndon–Schützenberger
theorem. For the time being, we shall restrict ourselves to one dimension. In Sections 4.1
and 4.2, we shall generalize this theorem to two dimensions under the assumptions that
our two-dimensional words are overlapping or bordered, respectively.

Why would we want an extended version of the theorem? For one, additional conditions
would give more versatile methods of identifying when two words obey the properties given
by the theorem. Instead of having to potentially rewrite words or replace variables to
fit the original conditions, additional conditions would provide us with more options to
identify words satisfying the theorem. In addition, the extended version allows us to draw
connections between this theorem and related concepts in formal language theory; as we
will see, one of the additional conditions has been studied for quite some time, yet has
never been connected to the Lyndon–Schützenberger theorem.

Recall Theorem 2.22 from Chapter 2. The following theorem is a more general extension
of Theorem 2.22 which introduces multiple new equivalent conditions for a word to have
identical nontrivial prefixes and suffixes. Note that conditions (1) and (2) are restatements

The results in Section 3.2 of this chapter are based on the work found in Section 1 of the author’s
paper with Gamard, Richomme, and Shallit [42].

18

of the original conditions, and the “if-and-only-if” argument of the original theorem has
been replaced by a chain of implications.

Following a suggestion by Shallit [79], we shall begin by proving the implication (1)⇒
(2) ⇒ (3) ⇒ (4) ⇒ (6). The implication (3) ⇒ (5) ⇒ (7) follows a similar argument, so
the proofs for conditions (5) and (7) are omitted. Finally, we conclude the proof using the
implication ((6) and (7))⇒ (1).

Theorem 3.1. Let y ∈ Σ+. Then the following conditions are equivalent:

(1) There exists p ∈ Σ+ such that p is both a proper prefix and a proper suffix of y;

(2) There exist u ∈ Σ+, v ∈ Σ∗, and an integer e ≥ 1 such that y = (uv)eu;

(3) There exist s ∈ Σ+ and t ∈ Σ∗ such that y = sts;

(4) There exist q ∈ Σ+ and r ∈ Σ∗ such that qr is a proper prefix of y and qry = yrq;

(5) There exist q′ ∈ Σ+ and r′ ∈ Σ∗ such that r′q′ is a proper suffix of y and q′r′y = yr′q′;

(6) There exist x ∈ Σ+, w ∈ Σ∗, and an integer i ≥ 2 such that x is a proper prefix of y
and yw = xi;

(7) There exist x′ ∈ Σ+, w′ ∈ Σ∗, and an integer j ≥ 2 such that x′ is a proper suffix of
y and w′y = x′ j.

Proof. (1)⇒ (2): Suppose that the nonempty word p is both a proper prefix and a proper
suffix of y; that is, there exist nonempty words c and d such that y = pc = dp. We prove
by induction on the length of p.

If |p| = 1, then by the conditions imposed on p, we get y = pqp for some possibly empty
word q. Take u = p, v = q, and e = 1 to get y = (uv)eu = (pq)1p = pqp.

Now suppose |p| > 1. Write y = pc = dp for some words c and d. We consider two
cases.

• If |c| ≥ |p|, then there exists a possibly empty word q such that d = pq and c = qp.
Take u = p, v = q, and e = 1 to get y = (uv)eu = (pq)1p = pqp.

19

• If |c| < |p|, then there exists a nonempty word q such that p = qc = dq. Since
0 < |q| = |p| − |d| < |p|, we can apply induction on the equality p = qc = dq. This
gives us a nonempty word u, a possibly empty word v, and an integer e ≥ 1 such
that c = vu, d = uv, and p = (uv)eu. Hence, y = pc = (uv)euvu = (uv)e+1u.

(2) ⇒ (3): We know that y = (uv)eu = uv(uv)e−1u for some e ≥ 1. Take s = u and
t = v(uv)e−1. Since u is nonempty, then s is nonempty, and y = sts.

(3) ⇒ (4): We know that y = sts. Take q = s and r = t. Then qry = ststs = yrq.
Since s is nonempty, then q is nonempty, and so qr is a proper prefix of y.

(4)⇒ (6): Suppose uvy = yvu for words u, v, and y. Multiply by v on the right to get
(uv)(yv) = (yv)(uv). Then, by Theorem 2.23, there exists some nonempty word x such
that uv = xj and yv = xi for some integers j ≥ 1 and i ≥ 1. Take z = v to get yz = xi as
required. Now, using the fact that uv is a proper prefix of y, we get

|xi| = |yz| ≥ |y| > |uv| = |xj|.

Since |xi| > |xj|, we see that i > j ≥ 1, so i ≥ 2 as required.

((6) and (7)) ⇒ (1): Given yw = xi, choose m < i such that m|x| < |y| ≤ (m + 1)|y|.
Since x is a proper prefix of y, we must have m ≥ 1. Rewrite y as y = xmp for some word
p. Since y is a prefix of xi, it follows that p is a prefix of x. Therefore, p is a proper prefix
of y. We know that p is nonempty because |y| > m|x|. Therefore, in conjunction with
condition (7), p is both a proper prefix and a proper suffix of y.

3.2 One-Dimensional Extension of the

Second Theorem

In this section, we present and prove an extension of the second Lyndon–Schützenberger
theorem in a similar fashion to Section 3.1. Again, we restrict ourselves to the one-
dimensional case here. In Section 4.3, we shall generalize this theorem to two dimensions.

Recall Theorem 2.23 from Chapter 2. The following theorem is a more general extension
of Theorem 2.23 which introduces two additional equivalent conditions for words x and y
to commute.

20

Theorem 3.2. Let x, y ∈ Σ+. Then the following conditions are equivalent:

(1) xy = yx;

(2) There exist z ∈ Σ+ and integers i, j ≥ 1 such that x = zi and y = zj;

(3) There exist integers k, l ≥ 1 such that xk = yl;

(4) There exist integers r, s ≥ 1 such that xrys = ysxr;

(5) x{x, y}∗ ∩ y{x, y}∗ 6= ∅.

Proof. The proof of the equivalence of conditions (1), (2), and (3) was presented in the
proof of Theorem 2.23. Here, we shall demonstrate the equivalence of conditions (3), (4),
(5), and (1), thus creating a chain of implications.

(3)⇒ (4): If xk = yl, then we immediately have xrys = ysxr with r = k and s = l.

(4) ⇒ (5): Let z = xrys. Then by (4) we have z = ysxr. So z = xxr−1ys and
z = yys−1xr. Thus z ∈ x{x, y}∗ and z ∈ y{x, y}∗. So x{x, y}∗ ∩ y{x, y}∗ 6= ∅.

(5) ⇒ (1): By induction on the length of |xy|. The base case is |xy| = 2. More
generally, if |x| = |y| then clearly (5) implies x = y and so (1) holds. Otherwise without
loss of generality |x| < |y|. Suppose z ∈ x{x, y}∗ and z ∈ y{x, y}∗. Then x is a proper
prefix of y, so write y = xw for a nonempty word w. Then z has prefix xx and also prefix
xw. Thus x−1z ∈ x{x,w}∗ and x−1z ∈ w{x,w}∗, where by x−1z we mean remove the
prefix x from z. So x{x,w}∗ ∩ w{x,w}∗ 6= ∅, so by induction (1) holds for x and w, so
xw = wx. Then yx = (xw)x = x(wx) = xy.

Before we conclude this chapter, we require one more definition. We say that a finite
set of words X is a code if every word w ∈ X has a unique factorization in X∗; that is,
u0 · · ·um−1 = v0 · · · vn−1 with ui, vj ∈ X for all i, j ≥ 0 implies m = n and ui = vi for all
0 ≤ i < m.

We note that condition (5) is essentially equivalent to the well-known “defect theorem”,
which is a property of a finite set of words that is a non-code; that is, a finite set of
words where not all elements of the set have a unique factorization. Intuitively, the defect
theorem says that we can represent n non-codewords by taking the product of at most
n− 1 codewords. We omit the proof here.

21

Theorem 3.3 (Defect theorem). If X ⊆ Σ∗ is a finite non-code, then there exists a code
Y ⊆ Σ∗ such that X ⊆ Y ∗ and |Y | ≤ |X| − 1.

Proof. Omitted.

The defect theorem has unclear origins and is sometimes considered folklore. Berstel,
Perrin, Perrot, and Restivo give an early account of the defect theorem in their paper
[20]. Huova explores the defect theorem applied to two dimensions in a paper [57] and
in her PhD thesis [58]. Karhumäki, Man̆uch, and Plandowski, as well as Man̆uch alone,
studied a bi-infinite version of the defect theorem [61, 62, 71]. Moczurad studied the defect
theorem applied to two-dimensional planar figures [74]. For more information on the defect
theorem, see Theorem 1.2.5 and Corollary 1.2.6 in Lothaire’s text [68] or the survey article
by Harju and Karhumäki [51].

22

Chapter 4

Two-Dimensional
Lyndon–Schützenberger Theorems

4.1 Overlapping Two-Dimensional Generalization of

the First Theorem

We now proceed to generalize our extended versions of the Lyndon–Schützenberger the-
orems to two-dimensional words. In this and the following section, we will focus on the
first Lyndon–Schützenberger theorem. These generalizations apply to every condition of
Theorem 3.1.

Recall the definition of two-dimensional overlap from Chapter 2: a pair of two-dimensional
words A and B overlap if there exists a two-dimensional word C such that C is a suffix of
A and a prefix of B or vice versa.

The following theorem is written in the context of vertical overlap. It can easily be
adapted to the case of horizontal overlap by considering columns of each two-dimensional
word instead of rows.

Theorem 4.1. Let Y ∈ Σm×n be a nonempty two-dimensional word. Then the following
are equivalent:

(1) There exists a nonempty two-dimensional word P such that P is both a proper prefix
and suffix of Y in the vertical direction;

The results in Section 4.3 of this chapter are based on the work found in Section 3 of the author’s
paper with Gamard, Richomme, and Shallit [42].

23

(2) There exist a nonempty two-dimensional word U , a possibly empty two-dimensional
word V , and an integer e ≥ 1 such that Y = (U : V)e×1 : U ;

(3) There exist a nonempty two-dimensional word S and a possibly empty two-dimensional
word T such that Y = S : T : S;

(4) There exist a nonempty two-dimensional word Q and a possibly empty two-dimensional
word R such that Q:R is a proper prefix of Y and Q:R: Y = Y :R:Q;

(5) There exist a nonempty two-dimensional word Q′ and a possibly empty two-dimensional
word R′ such that R′ :Q′ is a proper suffix of Y and Q′ :R′ : Y = Y :R′ :Q′;

(6) There exist a nonempty two-dimensional word X, a possibly empty two-dimensional
word W , and an integer i ≥ 2 such that Y :W = X i×1;

(7) There exist a nonempty two-dimensional word X ′, a possibly empty two-dimensional
word W ′, and an integer j ≥ 2 such that W ′ : Y = X ′ j×1.

Proof. Follows from the proof of the one-dimensional version of the first Lyndon–Schützenberger
theorem. Apply each direction of the one-dimensional proof to each row of the two-
dimensional words.

It is evident that this generalization of the theorem is not very interesting, since it
essentially amounts to applying the one-dimensional version of the theorem to some set of
one-dimensional words concatenated together. Thus, we will not dwell on this generaliza-
tion for too long. Fortunately, we have another property of two-dimensional words similar
to overlap for which we can apply our generalized theorem.

4.2 Bordered Two-Dimensional Generalization of

the First Theorem

Recall the definition of a two-dimensional border from Chapter 2: a two-dimensional word
A is bordered if there exist a nonempty two-dimensional word Q and possibly empty two-
dimensional words R, S, and T such that

A = (Q:R:Q)	 (S : T : S)	 (Q:R:Q).

24

The following theorem is written in the context of a “picture frame” border, as discussed
in Chapter 2. Similar to the proof of Theorem 3.1, we shall begin by proving the implication
(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). The implication (4) ⇒ (6) follows a similar argument,
so it is omitted. Finally, we conclude the proof using the implication ((5) and (6)) ⇒
(1). Observe that there is one fewer condition here than in the one-dimensional case
since condition (4) here essentially consolidates properties of conditions (4) and (5) of
Theorem 3.1.

Theorem 4.2. Let A ∈ Σm×n be a nonempty two-dimensional bordered word. Then the
following are equivalent:

(1) There exist nonempty two-dimensional words P1 and P2 such that P1 is both a proper
prefix and suffix of A in the horizontal direction and P2 is both a proper prefix and
suffix of A in the vertical direction;

(2) There exist nonempty two-dimensional words U1 and U2, possibly empty two-dimensional
words V1 and V2, and integers e, f ≥ 1 such that A = (U1	V1)e	U1 = (U2:V2)f:U2;

(3) There exist nonempty two-dimensional words S1 and S2 and possibly empty two-
dimensional words T1 and T2 such that A = S1 	 T1 	 S1 = S2 : T2 : S2;

(4) There exist nonempty two-dimensional words U1 and U2 and possibly empty two-
dimensional words V1 and V2 such that U1	V1	A = A	V1	U1 and U2 :V2 :A =
A: V2 : U2.

(5) There exist nonempty two-dimensional words X1 and X2, which are proper pre-
fixes of A in the horizontal and vertical directions, respectively, possibly empty two-
dimensional words Z1 and Z2, and integers i1, i2 ≥ 2 such that A	 Z1 = X i1×1

1 and
A: Z2 = X1×i2

2 .

(6) There exist nonempty two-dimensional words R1 and R2, which are proper suf-
fixes of A in the horizontal and vertical directions, respectively, possibly empty two-
dimensional words W1 and W2, and integers j1, j2 ≥ 2 such that W1	A = Rj1×1

1 and
W2 : A = R1×j2

2 .

Proof. (1)⇒ (2): We prove the claim about P1 by induction. The claim about P2 follows
by transposing A and applying the same proof with appropriate substitutions.

If P1 ∈ Σ1×n, then we have A = P1	K 	P1 for some possibly empty two-dimensional
word K. Let U1 = P1, V1 = K, and e = 1 to get A = (P1 	K)1 	 P1 = (U1 	 V1)e 	 U1.

25

Suppose the claim is true for some proper prefix and suffix with m > 1 rows. We show
it is true for m+ 1 rows. Write A = P1	O = M 	P1 for some nonempty two-dimensional
words O and M . We consider two cases:

• If #rows(M) ≥ #rows(P1), then there exists a “middle” two-dimensional word N such
that M = P1 	 N and O = N 	 P1. Take U1 = P1, V1 = N , and e = 1 to get
A = (P1 	N)1 	 P1 = (U1 	 V1)e 	 U1.

• If #rows(M) < #rows(P1), then again there exists a “middle” two-dimensional word
N such that P1 = M 	N = N 	O. We know that

0 < #rows(N) = (#rows(P1)−#rows(M)) < #rows(P1),

so N is a proper prefix and suffix of P1. Apply the inductive hypothesis to N and
P1 to get a nonempty two-dimensional word U1, a possibly empty two-dimensional
word V1, and an integer e ≥ 1 such that

M = U1 	 V1,
O = V1 	 U1,

N = (U1 	 V1)e 	 U1.

It follows that

A = M 	N 	O
= U1 	 V1 	 (U1 	 V1)e 	 U1 	 V1 	 U1

= (U1 	 V1)e+2 	 U1.

(2)⇒ (3): Since

A = (U1 	 V1)e 	 U1 = U1 	 V1 	 (U1 	 V1)(e−1) 	 U1

and
A = (U2 : V2)

f : U2 = U2 : V2 : (U2 : V2)
(f−1) : U2,

take S1 = U1, T1 = V1 	 (U1 	 V1)(e−1), S2 = U2, and T2 = V2 : (U2 : V2)
(f−1). Since U1

and U2 are nonempty, then S1 and S2 are nonempty, and A = S1	T1	S1 = S2 :T2 :S2.

(3) ⇒ (4): We know that A = S1 	 T1 	 S1 = S2 : T2 : S2. Take U1 = S1, U2 = S2,
V1 = T1, and V2 = T2. Then

U1 	 V1 	 A = S1 	 T1 	 S1 	 T1 	 S1 = A	 V1 	 U1

26

and
U2 : V2 : A = S2 : T2 : S2 : T2 : S2 = A: V2 : U2.

(4) ⇒ (5): Suppose U1 	 V1 	 A = A 	 V1 	 U1 and U2 : V2 : A = A : V2 : U2 for
two-dimensional words U1, U2, V1, and V2. Concatenate V1 to the bottom of A and U1 and
V2 to the right of A and U1 respectively to get

(U1 	 V1)	 (A	 V1) = (A	 V1)	 (U1 	 V1)
and

(U2 : V2) : (A: V2) = (A: V2) : (U2 : V2).

Then, by the two-dimensional generalization of the second Lyndon–Schützenberger theo-
rem, there exist nonempty two-dimensional words X1 and X2 and positive integers i1, i2,
j1, and j2 such that U1	V1 = Xj1×1

1 , A	V1 = X i1×1
1 , U2:V2 = X1×j2

2 , and A:V2 = X1×i2
2 .

Take Z1 = V1 and Z2 = V2 to get A	 Z1 = X i1×1
1 and A: Z2 = X1×i2

2 as required. Now,
using the fact that U1 	 V1 is a proper prefix of A, we get

#rows(X
i1×1
1) = #rows(A	 Z1) ≥ #rows(A) > #rows(U1 	 V1) = #rows(X

j1×1
1)

and we arrive at a similar result when we consider the columns of each word. Since
#rows(X

i1×1
1) > #rows(X

j1×1
1) (and likewise for the columns of X2), we see that i1 > j1 ≥ 1

and i2 > j2 ≥ 1, so i1, i2 ≥ 2 as required.

((5) and (6))⇒ (1): Given A	 Z1 = X i1×1
1 , choose m1 < i1 such that

#rows(X
m1×1
1) < #rows(A) ≤ #rows(A

(m1+1)×1).

Since X1 is a proper prefix of A in the horizontal direction, we must have m1 ≥ 1. Rewrite
A as A = Xm1×1

1 	 P1. Since A is a prefix of X i1×1
1 in the horizontal direction, it follows

that P1 is a prefix of X1 in the horizontal direction. Therefore, P1 is a proper prefix of A in
the horizontal direction. We know that P1 is nonempty because #rows(A) > #rows(X

m1×1
1).

Therefore, in conjunction with condition (6), P1 is both a proper prefix and proper suffix
of A in the horizontal direction. A similar argument follows on the two-dimensional word
X2 to show that there exists some P2 that is a proper prefix (and, in conjunction with
condition (6), a proper suffix) of A in the vertical direction.

4.3 Two-Dimensional Generalization of the

Second Theorem

Recall Theorem 3.2 from Chapter 3. The following theorem is a generalization of conditions
(2), (3), and (4) of Theorem 3.2 to two-dimensional words.

27

Theorem 4.3. Let A and B be nonempty two-dimensional words. Then the following three
conditions are equivalent:

(1) There exist positive integers p1, p2, q1, q2 such that Ap1×q1 = Bp2×q2.

(2) There exist a nonempty two-dimensional word C and positive integers r1, r2, s1, s2
such that A = Cr1×s1 and B = Cr2×s2.

(3) There exist positive integers t1, t2, u1, u2 such that At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1

where ◦ can be either : or 	.

Proof. (1) ⇒ (2): Let A ∈ Σm1×n1 and B ∈ Σm2×n2 be two-dimensional words such that
Ap1×q1 = Bp2×q2 . By dimensional considerations, we have m1p1 = m2p2 and n1q1 = n2q2.
Let P = Ap1×1 and Q = Bp2×1. We have P 1×q1 = Q1×q2 .

Taking P and Q to be two-dimensional words over Σm1p1×1 and considering horizontal
concatenation, we can write P q1 = Qq2 . By Theorem 3.2, there exist a word R ∈ Σm1p1×1

and integers s1, s2 such that P = R1×s1 and Q = R1×s2 .

Let r denote the number of columns of R, let S = A[0 . . .m1 − 1, 0 . . . r − 1], and let
T = B[0 . . .m2 − 1, 0 . . . r − 1]. Observe that A = S1×s1 and B = T 1×s2 . Considering the
first r columns of P and Q, we see that Sp1×1 = T p2×1.

Taking S and T to be two-dimensional words over Σ1×r and considering vertical con-
catenation, we can write Sp1 = T p2 . Again, by Theorem 3.2, there exist a word C ∈ Σ1×r

and integers r1, r2 such that S = Cr1×1 and T = Cr2×1.

Therefore, A = Cr1×s1 and B = Cr2×s2 .

(2) ⇒ (3): Without loss of generality, assume that the concatenation operation is :;
that is, we are considering vertical concatenation. Recall that A = Cr1×s1 and B = Cr2×s2 .
Let t1 = r2, t2 = r1, u1 = s2, and u2 = s1. Then we have

At1×u1 :Bt2×u2 = Cr1t1×s1u1 : Cr2t2×s2u2

= Cr1t1×(s1u1+s2u2) (Observe that r1t1 = r2t2)

= Cr2t2×s2u2 : Cr1t1×s1u1

= Bt2×u2 : At1×u1 .

(3) ⇒ (1): Without loss of generality, assume that the concatenation operation is :;
that is, we are considering vertical concatenation. Assume that there exist positive integers
t1, t2, u1, and u2 such that

At1×u1 :Bt2×u2 = Bt2×u2 : At1×u1 .

28

We sketch the proof that we can concatenate multiple copies of A and B while maintaining
this equality. Observe that concatenating At1×u1 to the left of each side of the above
equation gives

At1×u1 : At1×u1 :Bt2×u2 = At1×u1 :Bt2×u2 : At1×u1

= Bt2×u2 : At1×u1 : At1×u1 ,

so At1×2u1 : Bt2×u2 = Bt2×u2 : At1×2u1 . A similar result follows if we concatenate Bt2×u2

instead. Repeating these concatenations i times for At1×u1 and j times for Bt2×u2 reveals
that

At1×iu1 :Bt2×ju2 = Bt2×ju2 : At1×iu1 .

Let A ∈ Σm1×n1 and B ∈ Σm2×n2 . Now choose i = u2n2 and j = u1n2 to get iu1n1 = ju2n2.
Then, by considering the first iu1n1 columns of the two-dimensional word defined in the
above equation, we get At1×iu1 = Bt2×ju2 . Hence, we may take p1 = t1, q1 = iu1, p2 = t2,
and q2 = ju2.

Note that generalizing condition (1) of Theorem 3.2 requires considering two-dimensional
words with the same number of rows or same number of columns. Hence, the next result
is a direct consequence of Theorem 4.3.

Corollary 4.4. Let A,B be nonempty two-dimensional words. Then

(a) if A and B have the same number of rows, A : B = B : A if and only there exist
a nonempty two-dimensional word C and integers e, f ≥ 1 such that A = C1×e and
B = C1×f ;

(b) if A and B have the same number of columns , A 	 B = B 	 A if and only there
exist a nonempty two-dimensional word C and integers e, f ≥ 1 such that A = Ce×1

and B = Cf×1.

As another consequence of Theorem 4.3, we get the following result (which is itself an
alternative proof of Lemma 3.3 in a paper by Gamard and Richomme [41]):

Corollary 4.5. Let A be a nonempty two-dimensional word. Then there exists a unique
two-dimensional primitive word C and positive integers i, j such that A = Ci×j.

Remark. In contrast to Corollary 4.5, Bacquey has shown that two-dimensional biperiodic
infinite words can have two distinct primitive roots [10].

29

Chapter 5

Two-Dimensional Primitivity
and Periodicity

5.1 Enumerating One-Dimensional Primitive Words

We now shift our attention from the Lyndon–Schützenberger theorems to focus on the
properties of primitivity and periodicity in two-dimensional words. In this section, we
begin by reviewing techniques to enumerate primitive words in the one-dimensional case.

There is a well-known formula to enumerate the number of one-dimensional primitive
words of length n over a k-letter alphabet:

ψk(n) =
∑
d|n

µ(d)kn/d,

where µ is the Möbius function, introduced by the German mathematician August Ferdi-
nand Möbius and defined as:

µ(n) =

{
(−1)t, if n is a square-free positive integer with t prime divisors;

0, if n is divisible by a square greater than 1.

For more details on this enumeration formula, see, for example, Section 16.3 of Hardy and
Wright’s text [50] or Section 1.3 of Lothaire’s text [68].

Most of the results in this chapter are based on the work found in Sections 6 and 7 of the author’s
paper with Gamard, Richomme, and Shallit [42].

30

We recall an important property of the sum of the Möbius function µ(d). The proof of
this lemma is based on the proof of Theorem 263 in Hardy and Wright’s text [50].

Lemma 5.1. For any positive integer n,∑
d|n

µ(d) =

{
1, if n = 1;

0, if n > 1.

Proof. Let k denote the number of distinct prime divisors of n. Rewrite n in terms of its
prime decomposition; that is, n = pa11 p

a2
2 . . . pakk . For k ≥ 1, we have∑

d|n

µ(d) = 1 +
∑
1≤i≤k

µ(pi) +
∑

1≤i<j≤k

µ(pipj) + · · ·

= 1− k +

(
k

2

)
−
(
k

3

)
+ · · ·

= (1− 1)k

= 0.

Otherwise, if n = 1, then µ(n) = 1.

We also recall the Möbius inversion formula.

Lemma 5.2. Given two functions f and g, if

g(n) =
∑
d|n

f(d)

for all integers n ≥ 1, then

f(n) =
∑
d|n

µ(n/d)g(d) =
∑
d|n

µ(d)g(n/d).

Proof. Observe that we can rewrite the rightmost expression as∑
d|n

µ(d)g(n/d) =
∑
d|n

µ(d)
∑

c|(n/d)

f(c)

=
∑
cd|n

µ(d)f(c)

=
∑
c|n

f(c)
∑

d|(n/c)

µ(d),

31

and, by Lemma 5.1, the rightmost sum is 1 when n/c = 1; that is, when n = c. Otherwise,
the rightmost sum is 0. Therefore, the expression reduces to f(n) as required.

5.2 Enumerating Two-Dimensional Primitive Words

In this section, we use the results from Section 5.1 to generalize the equation for enumer-
ating one-dimensional primitive words to the case of two-dimensional primitive words in
the following manner:

Theorem 5.3. Let ψk(m,n) denote the number of two-dimensional primitive words of
dimension m× n over a k-letter alphabet. Then

ψk(m,n) =
∑
d1|m

∑
d2|n

µ(d1)µ(d2)k
mn/(d1d2).

Proof. We will use Lemmas 5.1 and 5.2 to prove our generalized formula.

Let gk(m,n) = kmn; this function counts the number of two-dimensional words of
dimension m × n over a k-letter alphabet. By Corollary 4.5, each of these words has a
unique primitive root of dimension d1× d2, where d1 | m and d2 | n. Therefore, gk(m,n) =∑

d1|m
d2|n

ψk(d1, d2). Using Lemma 5.2, we get

∑
d1|m
d2|n

µ(d1)µ(d2) gk

(
m

d1
,
n

d2

)
=
∑
d1|m

µ(d1)
∑
d2|n

µ(d2) gk

(
m

d1
,
n

d2

)

=
∑
d1|m

µ(d1)
∑
d2|n

µ(d2)
∑

c1|m/d1
c2|n/d2

ψk(c1, c2)

=
∑

c1d1|m

µ(d1)
∑
c2d2|n

µ(d2) ψk(c1, c2)

=
∑
c1|m

∑
c2|n

ψk(c1, c2)
∑

d1|m/c1
d2|n/c2

µ(d1)µ(d2).

Let r = m/c1 and s = n/c2. By Lemma 5.1, the last sum in the above expression is 1 if
r = 1 and s = 1; that is, if c1 = m and c2 = n. Otherwise, the last sum is 0. Therefore,
the sum reduces to ψk(m,n) as required.

32

1 2 3 4 5 6 7
1 2 2 6 12 30 54 126
2 2 10 54 228 990 3966 16254
3 6 54 498 4020 32730 261522 2097018
4 12 228 4020 65040 1047540 16768860 268419060
5 30 990 32730 1047540 33554370 1073708010 34359738210
6 54 3966 261522 16768860 1073708010 68718945018 4398044397642
7 126 16254 2097018 268419060 34359738210 4398044397642 562949953421058

Table 5.1: Values of ψ2(m,n)

To illustrate the growth of the function ψ, Table 5.1 gives the first few values of ψ2(m,n).

We take a brief digression now to investigate a curious relationship. Given a triangle
T with nonzero area, we construct its pedal triangle T ′ by selecting a point P within T ,
drawing perpendicular lines from P to each side of T forming three points Q, R, and S,
and connecting these points. We can iterate this process of constructing pedal triangles,
and we denote the ith iteration by T i. We say that the pedal triangle formed from T (n−1)

is the nth pedal triangle of T , and if T is similar to its nth pedal triangle, then we say that
T has period n.

A calculation reveals that ψ2(2, n) is equal to the number of pedal triangles with period
n. Presently, it is not known whether there exists a connection between pedal triangles of
period n and two-dimensional primitive words of dimension 2×n over a two-letter alphabet,
but the fact that the two enumerations agree suggests some sort of bijection between these
objects. For more details on pedal triangles, see the paper of Vályi [88] and the paper of
Kingston and Synge [65].

5.3 Checking if a Two-Dimensional Word is Primitive

In this section, we take a computational view towards primitivity in two-dimensional words
by proving that the property of two-dimensional primitivity can be checked in linear time
and by giving an efficient algorithm to test the primitivity of a given two-dimensional word.

We start with a useful lemma that we will require for the proof of the main theorem.
This lemma gives us a method of determining the dimensions of the primitive root of some
two-dimensional word A using only the lengths of the one-dimensional primitive roots of
each row and column of A.

33

Lemma 5.4. Let A be an m × n two-dimensional word. Let the primitive root of row i
of A be denoted by ri and the primitive root of column j of A be denoted by cj. Then
the primitive root of A has dimension p × q, where q = lcm(|r0|, |r1|, . . . , |rm−1|) and p =
lcm(|c0|, |c1|, . . . , |cn−1|).

Proof. Let P be the primitive root of the word A, where P has dimension m′×n′. Then the
row A[i, 0..n− 1] is periodic with period n′. But, since the primitive root of A[i, 0..n− 1]
is of length ri, we know that |ri| divides n′. It follows that q divides n′, where q =
lcm(|r0|, |r1|, . . . , |rm−1|).

Now, suppose n′ 6= q. Then, since q divides n′, we must have that n′/q > 1. Let
Q = P [0..m′− 1, 0..q− 1]. Then Q1×(n′/q) = P , which contradicts our hypothesis that P is
primitive. It follows that n′ = q as claimed.

Applying the same argument to the columns proves the claim about p.

With this lemma, we can state the main result of this section.

Theorem 5.5. Given an m× n two-dimensional word A, we can verify whether this word
is primitive and compute the primitive root of A in O(mn) time for fixed alphabet size.

Proof. It is a well-known fact that a one-dimensional word u is primitive if and only if u
is not an interior factor of its square uu [29]; that is, u is not a factor of the word uFuL,
where uF is u with the first letter removed and uL is u with the last letter removed.

We can test whether u is a factor of uFuL using a linear-time string matching algorithm
such as the Knuth–Morris–Pratt algorithm [66]. If the algorithm returns no match, then
u is indeed primitive. Furthermore, if u is not primitive, then the length of its primitive
root is given by the index (starting at position 1) of the first match of u in uFuL.

We assume that there exists an algorithm 1DPrimitiveRoot to obtain the primitive
root of a given one-dimensional word in this manner.

We use Lemma 5.4 as the basis for Algorithm 5.6, which computes the primitive root
of a two-dimensional word. The algorithm takes as input a two-dimensional word A of
dimension m×n and produces as output the primitive root C of A and its dimensions. The
correctness of the algorithm follows from Lemma 5.4, and the running time is O(mn).

34

Algorithm 5.6: Computing the primitive root of A

1: procedure 2DPrimitiveRoot(A,m, n)
2: for 0 ≤ i < m do . compute primitive root of each row
3: ri ← 1DPrimitiveRoot(A[i, 0..n− 1])

4: q ← lcm(|r0|, |r1|, . . . , |rm−1|) . compute lcm of each primitive root length
5: for 0 ≤ j < n do . compute primitive root of each column
6: cj ← 1DPrimitiveRoot(A[0..m− 1, j])

7: p← lcm(|c0|, |c1|, . . . , |cn−1|) . compute lcm of each primitive root length
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do
10: C[i, j]← A[i, j]

11: return (C, p, q)

Remark. One might suspect that it is easy to reduce two-dimensional primitivity to one-
dimensional primitivity by considering the two-dimensional word A as a one-dimensional
word constructed by taking the elements of A in row-major or column-major order. How-
ever, the natural conjectures that A is primitive if and only if

(a) either its corresponding row-majorized or column-majorized word is primitive, or

(b) both its row-majorized and column-majorized words are primitive,

both fail. For example, condition (a) fails because the two-dimensional word

A =

[
0 0

1 1

]
is not two-dimensional primitive, even though its row-majorized word ARM = [00][11] is
one-dimensional primitive. Similarly, condition (b) fails because the two-dimensional word

B =

[
0 1 0

1 0 1

]
is two-dimensional primitive and its column-majorized word BCM = [01][10][01] is primi-
tive, but its row-majorized word BRM = [010][101] is not.

35

Chapter 6

Two-Dimensional Borders

6.1 Enumerating One-Dimensional Bordered Words

We conclude with a brief investigation of the property of one- and two-dimensional bordered
words. We begin with a review of some results relating to borders in one dimension.

Recall the definition of a one-dimensional bordered word from Chapter 2. A one-
dimensional word w ∈ Σ+ is bordered if it can be written as w = xyx, where x ∈ Σ+ and
y ∈ Σ∗. Similarly, we say that a one-dimensional word w is unbordered if we cannot write
it as w = xyx.

The number of one-dimensional unbordered words of length n over an alphabet of size
k, denoted here by uk(n), satisfies the following recurrence relation:

uk(n) =


k, if n = 1;

k(k − 1), if n = 2;

k · uk(n− 1), if n ≥ 3 is odd;

k · uk(n− 1)− uk(n/2), if n ≥ 4 is even.

Harborth [49] studied this relation for the case where k = 2 and Nielsen [77] did the same
for the general case. This particular formulation was given by Holub and Shallit [55].

As a consequence of this recurrence relation, the number of one-dimensional bordered
words of length n over an alphabet of size k, denoted here by bk(n), is therefore

bk(n) = kn − uk(n),

36

where the kn term comes from the fact that there are a total of kn ways to form a one-
dimensional word of length n using k symbols.

As an aside, we can consider the value uk(n) to be a polynomial in the size of the
alphabet k. If we do this, then we can derive an interesting result about the lowest order
term of this polynomial. We begin with a few intermediate results.

Lemma 6.1. Let `2(n) denote the length of the binary representation of some number
n ∈ N. Then `2(2i+ 1) = `2(2i) = `2(i) + 1 for all i ≥ 1.

Proof. The first equality comes from the fact that decrementing an odd binary number by
one does not affect the length of the bit string. The second equality comes from the fact
that dividing an even binary number by two reduces the length of the bit string by one,
necessitating the additive term.

Lemma 6.2. Let s2(n) denote the sum of the bits in the binary representation of some
number n ∈ N. Then s2(2i) = s2(i) and s2(2i+ 1) = s2(2i) + 1 for all i ≥ 1.

Proof. The first equality comes from the fact that dividing an even binary number by
two removes the least significant 0 bit, but does not remove any 1 bits, leaving the sum
unaffected. The second equality comes from the fact that decrementing an odd binary
string by one replaces the least significant 1 bit with a 0 bit, necessitating the additive
term.

Note the following special cases of Lemmas 6.1 and 6.2: `2(0) = 1 since |0| = 1, and
s2(0) = 0.

Lemma 6.3. For all i ≥ 1, we have s2(i) < s2(2i− 1) + 1.

Proof. Observe that every number of the form 2i − 1, where i ≥ 1, has a binary repre-
sentation of the form (i− 1)2 1, where (n)2 denotes the number n represented in base 2.
Thus, we have that s2(2i− 1) = s2(i− 1) + 1 and therefore s2(2i− 1) + 1 = s2(i− 1) + 2.
However, we also have that

s2(i) ≤ s2(i− 1) + 1

s2(i) + 1 ≤ s2(i− 1) + 2

s2(i) + 1 ≤ s2(2i− 1) + 1

s2(i) < s2(2i− 1) + 1.

Therefore, s2(i) < s2(2i− 1) + 1 for all i ≥ 1.

37

With these lemmas, we can now present the main result.

Theorem 6.4. The lowest order term of the polynomial uk(n) is

−(−1)`2(n) · ks2(n),

where `2(n) and s2(n) follow the definitions from Lemmas 6.1 and 6.2.

Proof. We prove via induction. For the base cases, consider n = {1, 2}. Then, for n = 1,
we have `2(1) = 1, s2(1) = 1, and

uk(1) = k

= −(−1)1 · k1,

and for n = 2, we have `2(2) = 2, s2(2) = 1, and

uk(2) = k · (k − 1)

= k2 − k,

where the lowest order term of uk(2) is evidently −(−1)2 · k1.

Now, assume the theorem holds for some n ∈ N. We will show that it holds for n+ 1.
We split this inductive step into two cases.

• If n+ 1 is odd, then it is of the form 2i+ 1 for some i ≥ 1 and we have

uk(2i+ 1) = k · uk(2i)

= k · (−(−1)`2(2i) · ks2(2i) + higher-order terms) (by the inductive hypothesis)

= k · (−(−1)`2(2i+1) · ks2(2i) + · · ·) (by Lemma 6.1)

= −(−1)`2(2i+1) · ks2(2i)+1 + · · ·
= −(−1)`2(2i+1) · ks2(2i+1) + · · · (by Lemma 6.2)

as required.

• If n + 1 is even, then it is of the form 2i for some i ≥ 2 and we have uk(2i) =
k · uk(2i− 1)− uk(i), so the lowest order term could appear in either k · uk(2i− 1) or
uk(i). However, by induction, we know that the lowest order term of k · uk(2i − 1)
is of degree s2(2i − 1) + 1, while the lowest order term of uk(i) is of degree s2(i).

38

Therefore, by Lemma 6.3, the lowest order term of uk(2i) will be found in uk(i), and
so we have

uk(2i) = k · uk(2i− 1)− uk(i)

= higher-order terms− (−(−1)`2(i) · ks2(i)) (by the inductive hypothesis)

= · · · − (−(−1)`2(i) · ks2(2i)) (by Lemma 6.2)

= · · ·+ (−(−1)`2(i)+1 · ks2(2i))
= · · ·+ (−(−1)`2(2i) · ks2(2i)) (by Lemma 6.1)

as required.

In either case, the inductive hypothesis holds, and so the theorem holds for all n ∈ N.

6.2 Enumerating Two-Dimensional Bordered Words

We now progress to a discussion of borders in the two-dimensional case. Recall the def-
inition of a two-dimensional bordered word from Chapter 2. A two-dimensional word A
is bordered if there exist a nonempty two-dimensional word Q and possibly empty two-
dimensional words R, S, and T such that

A = (Q:R:Q)	 (S : T : S)	 (Q:R:Q).

Similarly, we say that a two-dimensional word A is unbordered if we cannot write it in the
form above.

A natural question to ask at this point is whether a recurrence relation similar to that for
uk(n) exists for the set of two-dimensional unbordered words. That is, given an alphabet
of size k and two dimensions m and n, is there a way to find Uk(m,n), the number of
two-dimensional unbordered words of dimension m× n? If there were, then we could also
easily find Bk(m,n), the number of two-dimensional bordered words of dimension m× n,
by using the formula

Bk(m,n) = kmn − Uk(m,n).

Again, the kmn term comes from the fact that there are a total of kmn ways to form a
two-dimensional word of dimension m× n using k symbols.

Since we have an efficient method of enumerating two-dimensional primitive words from
Chapter 5 which uses results on one-dimensional primitive words, we could use a similar

39

technique to enumerate two-dimensional unbordered words which takes advantage of the
known properties of one-dimensional bordered words presented at the beginning of this
chapter. Before we discuss this technique, however, we must take a brief digression to
mention a connection between borders and periods in words.

Recall that a one-dimensional word w has period p if w[i] = w[i+ p] for all i. If a word
has multiple periods, then by convention, the period is usually taken to mean the smallest
period of the word. We make the following observation:

Proposition 6.5. Let 1 ≤ p < n. A one-dimensional word w of length n has period p if
and only if w has a border of length n− p.

Proof. (⇒): If w is periodic with period p, then w[1..(n−p)] = w[(p+1)..n]. This subword
of w is of length n− p and it occurs at the beginning and the end of w, so it is a border.

(⇐): If w has a border of length n− p, say x, then we can write w = xy = zx for some
words y and z. Then x = w[1..(n− p)] = w[(p+ 1)..(n− p)], so w is periodic with period
p.

Note that if p = n, then our proposition does not apply since it would imply w has
a “border” of length zero, which is not a valid border length. Thus, we get the following
result as a corollary of Proposition 6.5.

Corollary 6.6. A one-dimensional word w of length n has no period shorter than n if and
only if w is unbordered.

It is easy to see that Proposition 6.5 also allows for borders to overlap. If a one-
dimensional word has a border that overlaps itself, then it must have another border of
shorter length, so we can restrict the length of borders that we consider within a word.
Therefore, given a one-dimensional bordered word w of length n, we will only consider
borders of w that are of length 1 ≤ l ≤ bn/2c. Consequently, this means we will only
consider periods of w of length dn/2e ≤ p ≤ n− 1.

Now that we have seen the connection between borders and periods, we can continue
discussing the technique for enumerating two-dimensional unbordered words. With this
technique, we begin by taking all two-dimensional bordered words A of dimension m × n
over an alphabet of size k and treating each column of A as a “symbol” from an alphabet
of size km. For example, if

A =

0 1 2 0 1

3 4 5 3 4

0 1 2 0 1

 ,
40

then the equivalent column-majorized word would be

ACM = [030][141][252][030][141].

Observe that A is bordered if and only if ACM is bordered. Moreover, if A is bordered, then
each “symbol” of ACM is bordered and each “symbol” has the same border length. Since
each “symbol” is of length m, then the border length l is bounded by 1 ≤ l ≤ bm/2c and,
similarly, the period length p is bounded by dm/2e ≤ p ≤ m − 1 by our earlier remark.
We can then use the inclusion-exclusion principle over each period length applied to these
one-dimensional bordered words to determine the number of two-dimensional unbordered
words.

Using the inclusion-exclusion principle, our goal is to consider all possible period lengths
and to find the most general word having each of these periods. After finding such a word,
we can then determine how many choices we have for choosing the remaining free symbols,
or the symbols that are not determined by any of the periods of the word.

This technique is similar to finding the autocorrelation of a one-dimensional word w of
length n. An autocorrelation is a bit vector of length n whose ith entry is equal to 1 if
w is periodic with period i and 0 otherwise. Guibas and Odlyzko discuss the problem of
enumerating autocorrelations of words [47, 48].

We illustrate this technique with some examples over a two-letter alphabet.

Example 6.7. Consider the case where m = 3. Then, by our observation, the only period
length we must consider is 2. Given a word of length 3, specifying 2 symbols in that word
fixes the remaining symbol. Removing this symbol from the word and considering each
possible pair of remaining symbols as being members of an alphabet of 4 “symbols”, we
get that

U2(3, n) = 23n − b22(n)

= 23n − b4(n),

where m = 3, n > 1, and bk(n) follows the earlier definition.

Example 6.8. Consider the case where m = 4. Then the possible period lengths are 2 or
3. We follow the same process as before, where this time we subtract b4(n) and b8(n) from
our enumeration. However, doing so means we have double-counted, since a word could
have both periods 2 and 3, in which case it must have a shortest period of 1. Therefore,
we add b2(n) to our enumeration, resulting in the formula

U2(4, n) = 24n + b21(n)− b22(n)− b23(n)

= 24n + b2(n)− b4(n)− b8(n).

41

Shallit and Cummings give the following method for calculating the coefficients of
Uk(m,n) [79]. Given an integer m and a set of periods P , use an algorithm—for example,
the algorithm given by Holub [54]—to find the most general word of length m having all
periods p ∈ P . Such a word will contain symbols from an alphabet of size m. Now,
consider all possible nonempty subsets of the periods p in the range dm/2e ≤ p ≤ m − 1
and, for each possible subset S, find the most general word w of length m having at least
those periods p ∈ S as well as the period m. Then, starting with the initial polynomial
P (x) = 0, add a coefficient of the form (−1)axb to P (x) for each pair (S,w), where a = |S|
and b is the number of distinct elements in w. This can be expressed as a sum over all
subsets S with ci representing the coefficient of xi, giving the expression

Uk(m,n) = kmn +
∑

i∈P(S)

cib2i(n).

Example 6.9. Let m = 5. The possible sets of periods for m are P = {3, 4}. The
nonempty subsets of P are {3}, {4}, and {3, 4}. We consider each subset individually.

• For the subset {3}, the most general word of length 5 with period 3 is 12312.

• For the subset {4}, the most general word of length 5 with period 4 is 12341.

• For the subset {3, 4}, the most general word of length 5 with periods 3 and 4 is
11211.

This gives the polynomial P (x) = −x3 − x4 + x2, from which we get the result

U2(5, n) = 25n − b23(n)− b24(n) + b22(n)

= 25n − b8(n)− b16(n) + b4(n).

To illustrate the growth of the function U , Table 6.1 gives the first few values of
U2(m,n). Observe that the row corresponding to m = 1 (and, similarly, the column cor-
responding to n = 1) simply enumerates the one-dimensional unbordered words of length
n (similarly, of length m), and so the formula for U2(m,n) is not needed in that case.
Appendix A features tables of values that list coefficients and alphabet sizes to calculate
U2(m,n) for various values of m.

42

1 2 3 4 5 6 7
1 2 2 4 6 12 20 40
2 2 14 60 246 1004 4052 16296
3 4 60 496 4020 32464 260880 2092096
4 6 246 4020 64902 1043748 16739196 268136088
5 12 1004 32464 1043748 33480816 1072592432 34341627328
6 20 4052 260880 16739196 1072592432 68683762160 4396921430976
7 40 16296 2092096 268136088 34341627328 4396921430976 562879053495808

Table 6.1: Values of U2(m,n)

6.3 Checking if a Two-Dimensional Word is Bordered

In this section, we take a computational view towards two-dimensional bordered words
by presenting an algorithm to detect whether a given two-dimensional word is bordered.
There is an obvious polynomial-time algorithm for checking this property; all we must do
is check every possible border size. However, we can do better. As we will see in this
section, we can check this property in linear time by exploiting an observation we made
earlier.

We begin by providing a lemma that we will require for our algorithm. This lemma,
as stated by Crochemore and Rytter in Chapter 13 of their text [34], gives a linear time
bound for finding all periods of a one-dimensional word. In their text, the authors give
a pseudocode description of an algorithm for finding these periods. This result was first
published in two papers approximately a decade apart [32, 39]; the proof is based on the
exposition given in the former paper.

Lemma 6.10. The periods of a one-dimensional word w can be computed in O(|w|) time,
with a constant amount of space in addition to w.

Proof. Recall from Proposition 6.5 that there exists a one-to-one correspondence between
periods and borders of a one-dimensional word. Linear-time string matching algorithms
such as the Knuth–Morris–Pratt algorithm [66] allow us to efficiently preprocess the borders
of all prefixes of a word w. From this, we can compute the periods of w. This computation
requires between |w| and 2|w| comparisons and O(|w|) additional space.

43

Using Lemma 6.10, we can state the main result of this section.

Theorem 6.11. Given an m × n two-dimensional word A, we can verify whether this
word is bordered and compute the dimension of the largest border in O(mn) time for fixed
alphabet size.

Proof. If some two-dimensional word A has a largest border of k rows and l columns, then
this algorithm will return (k, l). Observe that if l is the largest border in the vertical
direction, then each row has a border of length l. Moreover, l must be the largest such
border for all rows; if not, then there would exist a larger border l′ and A would therefore
have a largest border of l′ columns, contradicting the fact that the largest border of A
had l columns. Since l is the largest border of each row, then n− l is the smallest period
common to all rows by Proposition 6.5. Therefore, the algorithm will return n− (n− l) = l
as one of the values of the pair. A similar argument applies to the other value k.

Now, if this algorithm returns (k, l), then the given two-dimensional word A has a
largest border of k rows and l columns. For if not, then the algorithm would return a
larger pair (k′, l′), where m − e′ = k′ and n − d′ = l′ for some smaller periods e′ and d′.
But this contradicts the fact that e and d were taken to be the smallest periods common
to all Qj and Pi respectively.

Lemma 6.10 asserts the existence of a linear-time algorithm for obtaining all periods
of a one-dimensional word. We assume there exists an algorithm 1DPeriod to obtain
the periods of a given one-dimensional word in this manner. Furthermore, we assume this
algorithm returns the periods as a bit vector; that is, it returns a one-dimensional vector
P where the ith bit of the vector is 1 if a period of length i exists in the word and 0

otherwise. Observe that this period-finding algorithm need only search for periods p of
length dn/2e ≤ p ≤ n − 1 in line 3 and periods q of length dm/2e ≤ q ≤ m − 1 in line 9.
This is due to our earlier remark on the bounds on the lengths of periods.

We use Proposition 6.5 and Lemma 6.10 as the bases for Algorithm 6.12, which com-
putes the dimension of the largest border of a two-dimensional word. The algorithm
takes as input a two-dimensional word A of dimension m × n and produces as output
the dimension of the upper-left part of the border, from which the entire border can be
calculated. The correctness of the algorithm follows from this proof, and the running time
is O(mn).

44

Algorithm 6.12: Computing the border of A

1: procedure 2DBorder(A,m, n)
2: for 0 ≤ i < m do
3: Pi ← 1DPeriod(A[i, 0..n− 1]) . compute periods of rows as bit vector
4: P ← P ∩ Pi . intersect bit vectors

5: if P = ∅ then
6: return “unbordered” . if P is empty, A is unbordered

7: d← smallest period common to all Pi

8: for 0 ≤ j < n do
9: Qj ← 1DPeriod(A[0..m− 1, j]) . compute periods of columns as bit vector
10: Q← Q ∩Qi . intersect bit vectors

11: if Q = ∅ then
12: return “unbordered” . if Q is empty, A is unbordered

13: e← smallest period common to all Qj

14: return (m− e, n− d)

45

Chapter 7

Conclusions

In this thesis, we studied a number of properties and results relating to two-dimensional
words. We extended the well-known theorems of Lyndon and Schützenberger in the one-
dimensional case to include a number of additional equivalent conditions and further gen-
eralized these theorems to the two-dimensional case. We showed that one new condition
of the first Lyndon–Schützenberger theorem was related to the defect theorem for formal
languages. We discussed two-dimensional primitive and periodic words. In particular, we
proved a formula for the enumeration of such words similar to that of the one-dimensional
case, and we presented computer methods to verify the primitivity of a two-dimensional
word in linear time. We discussed one- and two-dimensional borders and presented re-
sults on the enumeration of one-dimensional bordered words and their representation as
polynomials. In the two-dimensional case, borders were also considered, with results being
proved that were similar to those in the previous chapter. Finally, following this chapter,
we provide a large set of data relating to two-dimensional bordered words to assist in future
work on this topic.

Throughout the process of writing this thesis, a number of questions arose that would
serve as excellent topics for future work relating to this research. We provide a summary
of these questions here.

• Bacquey poses the following problem in his paper on two-dimensional biperiodic
infinite words [10]: for the d-dimensional generalization of an infinite word, show
that there are at most d! distinct primitive roots. Bacquey showed that this d!
bound was tight for d ≤ 2, but did not provide a proof of correctness or tightness for
d > 2.

46

• Can we generalize properties of words (e.g., overlaps, borders) to words of dimension
greater than 2? What would be a “correct” characterization for these properties?

• Can we generalize either of the Lyndon–Schützenberger theorems or the Fine–Wilf
theorem to words of dimension greater than 2?

• What is the connection (if any) between the number of two-dimensional primitive
words of dimension 2 × n over a two-letter alphabet, ψ2(2, n), and the number of
pedal triangles with period n?

• Does there exist a recurrence relation for the enumeration of all two-dimensional
unbordered words of dimension m × n over a k-letter alphabet, similar to the one-
dimensional case?

• Is there a better or more efficient method for enumerating all two-dimensional un-
bordered words of dimension m× n over a k-letter alphabet?

• What is the general formula for Uk(m,n) as defined in Chapter 6?

47

References

[1] Amihood Amir and Gary E. Benson. Two-dimensional periodicity and its applications.
In G. Frederickson, editor, Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1992), pages 440–452, 1992.

[2] Amihood Amir and Gary E. Benson. Two-dimensional periodicity in rectangular
arrays. SIAM Journal on Computing, 27(1):90–106, 1998.

[3] Amihood Amir, Gary E. Benson, and Martin Farach. Alphabet independent two-
dimensional matching. In R. Kosaraju, M. Fellows, A. Wigderson, and J. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on the Theory of Computing (STOC
1992), pages 59–68, 1992.

[4] Amihood Amir and Martin Farach. Two-dimensional dictionary matching. Informa-
tion Processing Letters, 44(5):233–239, 1992.

[5] Amihood Amir and Gad M. Landau. Fast parallel and serial multidimensional ap-
proximate array matching. Theoretical Computer Science, 81(1):97–115, 1991.

[6] Amihood Amir, Gad M. Landau, and Uzi Vishkin. Efficient pattern matching with
scaling. Journal of Algorithms, 13(1):2–32, 1992.

[7] Marcella Anselmo, Dora Giammarresi, and Maria Madonia. Unbordered pictures:
Properties and construction. In A. Maletti, editor, Proceedings of the 6th International
Conference on Algebraic Informatics (CAI 2015), volume 9270 of Lecture Notes in
Computer Science, pages 45–57. Springer-Verlag, 2015.

[8] Marcella Anselmo, Dora Giammarresi, and Maria Madonia. Non-expandable non-
overlapping sets of pictures. Theoretical Computer Science, 657(B):127–136, 2017.

48

[9] Marcella Anselmo, Natasha Jonoska, and Maria Madonia. Framed versus un-
framed two-dimensional languages. In M. Nielsen, A. Kucera, P. Bro Miltersen,
C. Palamidessi, P. Tuma, and F. Valencia, editors, Proceedings of the 35th Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM 2009),
volume 5404 of Lecture Notes in Computer Science, pages 79–92. Springer-Verlag,
2009.

[10] Nicolas Bacquey. Primitive roots of bi-periodic infinite pictures. In F. Manea and
D. Nowotka, editors, Local Proceedings of the 10th International Conference on Com-
binatorics on Words (WORDS 2015), volume 2015/5 of Kiel Computer Science Series,
pages 1–16. Kiel University, 2015.

[11] Dragana Bajic. On construction of cross-bifix-free kernel sets. In Documents of the 2nd
Management Committee Meeting of COST2100, page TD(07)237. COST2100, 2007.

[12] Dragana Bajic, Jakov Stojanovic, and Juergen Lindner. Multiple window-sliding
search. In Proceedings of the 2003 IEEE International Symposium on Information
Theory (ISIT 2003), page 249, 2003.

[13] Theodore P. Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978.

[14] Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani. Cross-bifix-free
sets in two dimensions. Theoretical Computer Science, 664:29–38, 2017.

[15] Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani. Non-
overlapping matrices. Theoretical Computer Science, 658(A):36–45, 2017.

[16] Nelson H. F. Beebe and David Salomon. A bibliography on pattern matching, reg-
ular expressions, and string matching. http://ftp.math.utah.edu/pub/tex/bib/

string-matching.pdf.

[17] Jean Berstel. Axel Thue’s papers on repetitions in words: A translation. Technical
report 20, Laboratoire de Combinatoire et d’Informatique Mathématique de l’UQAM,
Montréal, 1995.

[18] Jean Berstel and Luc Boasson. Partial words and a theorem of Fine and Wilf. Theo-
retical Computer Science, 218(1):135–141, 1999.

[19] Jean Berstel and Dominique Perrin. The origins of combinatorics on words. European
Journal of Combinatorics, 28(3):996–1022, 2007.

49

http://ftp.math.utah.edu/pub/tex/bib/string-matching.pdf
http://ftp.math.utah.edu/pub/tex/bib/string-matching.pdf

[20] Jean Berstel, Dominique Perrin, Jean-François Perrot, and Antonio Restivo. Sur le
théorème du défaut. Journal of Algebra, 60(1):169–180, 1979. In French.

[21] Stefano Bilotta, Elisa Pergola, and Renzo Pinzani. A new approach to cross-bifix-free
sets. IEEE Transactions on Information Theory, 58(6):4058–4063, 2012.

[22] Richard S. Bird. Two-dimensional pattern matching. Information Processing Letters,
6(5):168–170, 1977.

[23] Simon R. Blackburn. Non-overlapping codes. IEEE Transactions on Information
Theory, 61(9):4890–4894, 2015.

[24] Francine Blanchet-Sadri and Robert A. Hegstrom. Partial words and a theorem of
Fine and Wilf revisited. Theoretical Computer Science, 270(1–2):401–419, 2002.

[25] Francine Blanchet-Sadri, Sean Simmons, Amelia Tebbe, and Amy Veprauskas. Abelian
periods, partial words, and an extension of a theorem of Fine and Wilf. RAIRO –
Theoretical Informatics and Applications, 47(3):215–234, 2013.

[26] Symeon Bozapalidis and Archontia Grammatikopoulou. Picture codes. RAIRO –
Theoretical Informatics and Applications, 40(4):537–550, 2006.

[27] M. Gabriella Castelli, Filippo Mignosi, and Antonio Restivo. Fine and Wilf’s theo-
rem for three periods and a generalization of Sturmian words. Theoretical Computer
Science, 218(1):83–94, 1999.

[28] Yeow Meng Chee, Han Mao Kiah, and Punarbasu Purkayastha. Cross-bifix-free codes
within a constant factor of optimality. IEEE Transactions on Information Theory,
59(7):4668–4674, 2013.

[29] Christian Choffrut and Juhani Karhumäki. Combinatorics of words. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 1, pages 329–438.
Springer-Verlag, Berlin Heidelberg, 1997.

[30] Sorin Constantinescu and Lucian Ilie. Generalized Fine and Wilf’s theorem for arbi-
trary number of periods. Theoretical Computer Science, 339(1):49–60, 2005.

[31] Sorin Constantinescu and Lucian Ilie. Fine and Wilf’s theorem for abelian periods.
Bulletin of the European Association for Theoretical Computer Science, 89:167–170,
2006.

50

[32] Maxime Crochemore. String-matching on ordered alphabets. Theoretical Computer
Science, 92(1):33–47, 1992.

[33] Maxime Crochemore, Costas S. Iliopoulos, and Maureen Korda. Two-dimensional
prefix string matching and covering on square matrices. Algorithmica, 20(4):353–373,
1998.

[34] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press,
Oxford, 1994.

[35] Elena Czeizler, Lila Kari, and Shinnosuke Seki. On a special class of primitive words.
Theoretical Computer Science, 411(3):617–630, 2010.

[36] Andrzej Ehrenfeucht and Donald M. Silberger. Periodicity and unbordered segments
of words. Discrete Mathematics, 26(2):101–109, 1979.

[37] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions.
Proceedings of the American Mathematical Society, 16(1):109–114, 1965.

[38] Zvi Galil and Kunsoo Park. Truly alphabet-independent two-dimensional matching. In
M. Luby, editor, Proceedings of the 33rd Annual IEEE Symposium on the Foundations
of Computer Science (FOCS 1992), pages 247–256, 1992.

[39] Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer
and System Sciences, 26(3):280–294, 1983.

[40] Guilhem Gamard and Gwenaël Richomme. Comparison of coverability and multi-scale
coverability in one and two dimensions, 2015. arXiv:1506.08375.

[41] Guilhem Gamard and Gwenaël Richomme. Coverability in two dimensions. In A.-
H. Dediu, E. Formenti, C. Mart́ın-Vide, and B. Truthe, editors, Proceedings of the
9th International Conference on Language and Automata Theory and Applications
(LATA 2015), volume 8977 of Lecture Notes in Computer Science, pages 402–413.
Springer-Verlag, 2015.

[42] Guilhem Gamard, Gwenaël Richomme, Jeffrey Shallit, and Taylor J. Smith. Period-
icity in rectangular arrays. Information Processing Letters, 118:58–63, 2017.

[43] Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 215–267.
Springer-Verlag, Berlin Heidelberg, 1997.

51

[44] Solomon W. Golomb. Polyominoes. George Allen & Unwin, London, 1966.

[45] Solomon W. Golomb. Tiling with polyominoes. Journal of Combinatorial Theory,
1:280–296, 1966.

[46] Solomon W. Golomb. Tiling with sets of polyominoes. Journal of Combinatorial
Theory, 9:60–71, 1970.

[47] Leo J. Guibas. Periodicities in strings. In A. Apostolico and Z. Galil, editors, Com-
binatorial Algorithms on Words, volume 12 of NATO ASI Series F: Computer and
System Sciences, pages 257–269. Springer-Verlag, Berlin Heidelberg, 1985.

[48] Leo J. Guibas and Andrew M. Odlyzko. Periods in strings. Journal of Combinatorial
Theory, Series A, 30(1):19–42, 1981.

[49] Heiko Harborth. Endliche 0-1-Folgen mit gleichen Teilblöcken. Journal für die reine
und angewandte Mathematik, 271:139–154, 1974. In German.

[50] Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, Oxford, 6th edition, 2008.

[51] Tero Harju and Juhani Karhumäki. Many aspects of defect theorems. Theoretical
Computer Science, 324(1):35–54, 2004.

[52] S̆tĕpán Holub. On multiperiodic words. RAIRO – Theoretical Informatics and Appli-
cations, 40(4):583–591, 2006.

[53] S̆tĕpán Holub. Corrigendum: On multiperiodic words. RAIRO – Theoretical Infor-
matics and Applications, 45(4):467–469, 2011.

[54] S̆tĕpán Holub. On an algorithm for multiperiodic words. Acta Polytechnica, 53(4):344–
346, 2013.

[55] S̆tĕpán Holub and Jeffrey Shallit. Periods and borders of random words. In N. Ollinger
and H. Vollmer, editors, Proceedings of the 33rd Symposium on Theoretical Aspects
of Computer Science (STACS 2016), volume 47 of Leibniz International Proceedings
in Informatics, pages 44:1–44:10. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016.

[56] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, 1979.

52

[57] Mari Huova. A note on defect theorems for 2-dimensional words and trees. Journal
of Automata, Languages, and Combinatorics, 14(3/4):203–209, 2009.

[58] Mari Huova. Combinatorics on Words: New Aspects on Avoidability, Defect Effect,
Equations and Palindromes. PhD thesis, Turku Centre for Computer Science, 2014.

[59] Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of rectangular pat-
terns. Information and Computation, 117(1):78–90, 1995.

[60] Jacques Justin. On a paper by Castelli, Mignosi, Restivo. Theoretical Informatics and
Applications, 34(5):373–377, 2000.

[61] Juhani Karhumäki, Ján Man̆uch, and Wojciech Plandowski. On defect effect of bi-
infinite words. In L. Brim, J. Gruska, and J. Zlatus̆ka, editors, Proceedings of the 23rd
International Symposium on Mathematical Foundations of Computer Science (MFCS
1998), volume 1450 of Lecture Notes in Computer Science, pages 674–682. Springer-
Verlag, 1998.

[62] Juhani Karhumäki, Ján Man̆uch, and Wojciech Plandowski. A defect theorem for
bi-infinite words. Theoretical Computer Science, 292(1):237–243, 2003.

[63] Juhani Karhumäki, Svetlana Puzynina, and Aleksi Saarela. Fine and Wilf’s theorem
for k-abelian periods. In H.-C. Yen and O. H. Ibarra, editors, Proceedings of the 16th
International Conference on Developments in Language Theory (DLT 2012), volume
7410 of Lecture Notes in Computer Science, pages 296–307. Springer-Verlag, 2012.

[64] Lila Kari and Shinnosuke Seki. An improved bound for an extension of Fine and
Wilf’s theorem and its optimality. Fundamenta Informaticae, 101(3):215–236, 2010.

[65] John G. Kingston and John L. Synge. The sequence of pedal triangles. American
Mathematical Monthly, 95(7):609–620, 1988.

[66] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[67] Friedrich W. Levi. On semigroups. Bulletin of the Calcutta Mathematical Society,
36:141–146, 1944.

[68] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley, Reading, 1983.

53

[69] Roger C. Lyndon and Marcel-Paul Schützenberger. The equation aM = bNcP in a free
group. Michigan Mathematical Journal, 9(4):289–298, 1962.

[70] Florin Manea, Robert Mercaş, and Dirk Nowotka. Fine and Wilf’s theorem and
pseudo-repetitions. In B. Rovan, V. Sassone, and P. Widmayer, editors, Proceedings of
the 37th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2012), volume 7464 of Lecture Notes in Computer Science, pages 668–680.
Springer-Verlag, 2012.

[71] Ján Mănuch. Defect effect of bi-infinite words in the two-element case. Discrete
Mathematics and Theoretical Computer Science, 4(2):273–290, 2001.

[72] Shoshana Marcus and Dina Sokol. On two-dimensional Lyndon words. In O. Kurland,
M. Lewenstein, and E. Porat, editors, Proceedings of the 20th International Symposium
on String Processing and Information Retrieval (SPIRE 2013), volume 8214 of Lecture
Notes in Computer Science, pages 206–217. Springer-Verlag, 2013.

[73] Filippo Mignosi, Antonio Restivo, and Pedro V. Silva. On Fine and Wilf’s theorem
for bidimensional words. Theoretical Computer Science, 292(1):245–262, 2003.

[74] W lodzimierz Moczurad. Defect theorem in the plane. RAIRO – Theoretical Infor-
matics and Applications, 41(4):403–409, 2007.

[75] Kenichi Morita. Two-dimensional languages. In C. Mart́ın-Vide, V. Mitrana, and
G. Păun, editors, Formal Languages and Applications, volume 148 of Studies in Fuzzi-
ness and Soft Computing, pages 427–437. Springer-Verlag, Berlin Heidelberg, 2004.

[76] Trygve Nagell, Atle Selberg, Sigmund Selberg, and Knut Thalberg, editors. Selected
Mathematical Papers of Axel Thue. Universitetsforlaget, Oslo, 1977.

[77] P. Tolstrup Nielsen. A note on bifix-free sequences. IEEE Transactions on Information
Theory, 19(5):704–706, 1973.

[78] Mireille Régnier and Ladan Rostami. A unifying look at d-dimensional periodicities
and space coverings. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber,
editors, Proceedings of the 4th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 1993), volume 684 of Lecture Notes in Computer Science, pages 215–227.
Springer-Verlag, 1993.

[79] Jeffrey Shallit. Personal communication.

54

[80] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge, 2009.

[81] Donald M. Silberger. Borders and roots of a word. Portugaliae Mathematica,
30(4):191–199, 1971.

[82] Donald M. Silberger. How many unbordered words? Commentationes Mathematicae
(Prace Matematyczne), 22(1):143–145, 1980.

[83] Axel Thue. Über unendliche Zeichenreihen. Skrifter udvigne af Videnskabs-selskabet
i Christiania, I. Mathematisk-naturvidenskabelig klasse, 7:1–22, 1906. In German.
English translation available [17]. Reprint available [76].

[84] Axel Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter
udvigne af Videnskabs-selskabet i Christiania, I. Mathematisk-naturvidenskabelig
klasse, 1:1–67, 1912. In German. English translation available [17]. Reprint available
[76].

[85] Robert Tijdeman and Luca Q. Zamboni. Fine and Wilf words for any periods. Inda-
gationes Mathematicae, 14(1):135–147, 2003.

[86] Robert Tijdeman and Luca Q. Zamboni. Fine and Wilf words for any periods II.
Theoretical Computer Science, 410(30–32):3027–3034, 2009.

[87] Stephen H. Unger. A theorem on self-overlapping sequences. The American Mathe-
matical Monthly, 67(2):139–143, 1960.

[88] Gyula Vályi. Über die Fußpunktdreiecke. Monatshefte für Mathematik und Physik,
14(1):243–253, 1903. In German.

55

Appendix A

Data for the Enumeration of
Two-Dimensional Unbordered Words

In each of the following tables, the value above the line indicates the dimension m, and
each pair of values (c, k) below the line indicates the coefficient c corresponding to the
given alphabet size k. We assume that all two-dimensional words are over a two-letter
alphabet. For example, taking m = 4, we get that

U2(4, n) = 24n + b2(n)− b4(n)− b8(n),

where U2(m,n) represents the number of two-dimensional unbordered words of dimension
m × n over a two-letter alphabet and bk(n) represents the number of one-dimensional
bordered words of length n over a k-letter alphabet. See Chapter 6 for more details.

2
−1 2

3
−1 4

4
1 2
−1 4
−1 8

5
1 4
−1 8
−1 16

6
1 4
−1 16
−1 32

56

7
1 8
−1 32
−1 64

8
−1 2

1 4
1 8
−1 64
−1 128

9
−1 4

1 8
1 16
−1 128
−1 256

10
−1 4

2 16
−1 256
−1 512

11
−1 8

2 32
−1 512
−1 1024

12
−1 4

1 32
1 64
−1 1024
−1 2048

13
−1 8

1 64
1 128
−1 2048
−1 4096

14
−1 8
−1 16

1 32
1 64
1 256
−1 4096
−1 8192

15
−1 16
−1 32

1 64
1 128
1 512
−1 8192
−1 16384

16
1 2
−1 4
−1 8
−1 32

2 128
1 1024
−1 16384
−1 32768

57

17
1 4
−1 8
−1 16
−1 64

2 256
1 2048
−1 32768
−1 65536

18
1 4
−2 16
−1 32

1 256
1 512
1 4096
−1 65536
−1 131072

19
1 8
−2 32
−1 64

1 512
1 1024
1 8192
−1 131072
−1 262144

20
1 4
−1 16
−2 64
−1 128

1 256
1 512
1 2048
1 16384
−1 262144
−1 524288

58

	Author's Declaration
	Abstract
	Acknowledgements
	List of Symbols
	Introduction
	Overview of Combinatorics on Words
	Contributions of the Thesis
	Chapter Outlines

	Background and Related Work
	Preliminaries
	Previous Work
	Important Theorems

	One-Dimensional Lyndon–Schützenberger Theorems
	One-Dimensional Extension of the First Theorem
	One-Dimensional Extension of the Second Theorem

	Two-Dimensional Lyndon–Schützenberger Theorems
	Overlapping Two-Dimensional Generalization of the First Theorem
	Bordered Two-Dimensional Generalization of the First Theorem
	Two-Dimensional Generalization of the Second Theorem

	Two-Dimensional Primitivity and Periodicity
	Enumerating One-Dimensional Primitive Words
	Enumerating Two-Dimensional Primitive Words
	Checking if a Two-Dimensional Word is Primitive

	Two-Dimensional Borders
	Enumerating One-Dimensional Bordered Words
	Enumerating Two-Dimensional Bordered Words
	Checking if a Two-Dimensional Word is Bordered

	Conclusions
	References
	Data for the Enumeration of Two-Dimensional Unbordered Words

