

Problem Determination In Message-Flow

Internet Services Based On Statistical

Analysis of Event Logs

by

Yu Xu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

©Yu Xu 2009

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

In a message-flow Internet service where messages travel through multiple nodes, event log
analysis is one of the most important methods to identify the root causes of problems.
Traditional approaches for event log analysis have been largely based on expert systems that
build static dependency models on rules and patterns defined by human experts. However,
the semantic complexity and the various formats of event logs make it difficult to be modeled.
In addition, it is time consuming to maintain such static model for constantly evolving
Internet services. Recent research has been focused on building statistical models. However,
all of these models rely on the trace information provided by J2EE or .NET frameworks,
which are not available to all Internet services.

In this thesis, we propose a framework of problem determination based on statistical
analysis of event logs. We assume a unique message ID will be logged in multiple log lines
to trace the message flow in the system. A generic log adaptor is defined to extract valuable
information from the log entries. We also develop an algorithm of log event clustering and
log pattern clustering. Frequency analysis will be performed based on the log patterns in
order to build a statistical model of the system behaviors. Once the system is modeled, we
can determine problems by running a chi-square goodness of fit test using a sliding window
approach. As event logs are available on all major operating systems, we believe our
framework is a generic solution for problem determination in message-flow Internet services.

Our solution has been validated by the log data collected from the Blackberry Internet
Service (BIS) engine [4] , a wireless email service that serves millions of users across the
world. According to the test results, our solution shows high accuracy of problem
determination.

 iv

Acknowledgements

I would like to thank my advisor, Dr. Paul A.S. Ward, for his precious guidance and
continuous support throughout this work. I would also thank my family and my managers
Andy Van and Kevin McEachern in the BIS engine team for their support and assistance.

 v

Table of Contents

List of Figures..viii
List of Tables .. x
Chapter 1 Introduction .. 1

1.1 Motivation... 2
1.2 Contributions... 4
1.3 Organization.. 5

Chapter 2 Background and Related Work.. 6
2.1 Background: Log Analysis in Message-flow Internet Services ... 6
2.2 IBM Log and Trace Analyzer (LTA) ... 8

2.2.1 Event Parsing and Collection .. 8
2.2.2 Event Correlation.. 10
2.2.3 Limitation and Restrictions ... 10

2.3 X-Trace... 11
2.3.1 X-Trace Framework.. 11
2.3.2 Limitations and Restrictions.. 14

2.4 Pinpoint... 14
2.4.1 The Pinpoint Framework... 14
2.4.2 Limitations ... 16

2.5 Comparison ... 17
Chapter 3 Problem Determination ... 19

3.1 Log Analysis Framework... 20
3.2 Log Record.. 21

3.2.1 Log Format... 22
3.3 Log Parser and Filter ... 23
3.4 Log Event Clustering... 23

3.4.1 The Concept of Log Event .. 23
3.4.2 Skip Whitespace Algorithm .. 24
3.4.3 SLCT Algorithm... 26
3.4.4 The Reasons to Combine Two Algorithms .. 28

3.5 Log Pattern Clustering... 29
3.5.1 Log Correlation... 29

 vi

3.5.2 Definition of log pattern ..29
3.5.3 Pattern clustering ..30

3.6 Implementation Information and Data Structures ...31
3.7 Log Pattern Grouping ..35
3.8 Parameters for Chi-square Test ..38

3.8.1 Time Window ...38
3.8.2 Baseline ..38
3.8.3 Our Sliding Window Approach ...39

3.9 Input for Chi-square Test ...43
3.9.1 Metric One: The Numbers of Log Patterns ..43
3.9.2 Metric Two: Processing Time..44
3.9.3 Final Input: Merge the Two Metrics ..45

3.10 Chi-square Goodness of Fit Test ..46
3.10.1 Degrees of Freedom ..46
3.10.2 Chi-square Distribution Table..47

Chapter 4 Evaluation ...51
4.1 Simulation Environment ..51
4.2 Parameters for the Simulation Environment ...52
4.3 Case 1: Database Application Server Down ...53

4.3.1 Log Data Set ...53
4.3.2 Chi-square Test Results...55

4.4 Case 2: TCP Connection Error ...57
4.5 Case 3: Invalid User Status ..62
4.6 Case 4 to Case 7: Performance Issues...63

4.6.1 Case 4: 25% Impact Ratio and 2.5 Seconds Delay ...65
4.6.2 Case 5: 50% Impact Ratio and 5 Seconds Delay ..68
4.6.3 Case 6: 25% Impact Ratio and 5 Seconds Delay ..69
4.6.4 Case 7: 50% Impact Ratio and 2.5 Seconds Delay ...70
4.6.5 Conclusion..71

Chapter 5 Conclusion and Future Work ...72
5.1 Conclusion...72
5.2 Future Work ..73

 vii

References .. 74

 viii

List of Figures

Figure 1.1: An example of a message-flow Internet service .. 1
Figure 2.1: Linux command to search for log lines related to a particular message ID 7
Figure 2.2: Sample log lines correlated by message ID 65530... 7
Figure 2.3: Log views [1].. 8
Figure 2.4: Log analysis results [1]... 9
Figure 2.5: Import symptom database file [1] .. 9
Figure 2.6: Log records that have the same timestamp [1]... 10
Figure 2.7: A proxied HTTP request and the logical causal relations among network
elements visited [2] ... 11
Figure 2.8: An example of propagation of metadata for a HTTP request [2].......................... 12
Figure 2.9: An example of how the reports are generated [2] .. 13
Figure 2.10: An example of a website .. 13
Figure 2.11: The Pinpoint framework [3] ... 15
Figure 3.1: System architecture of our problem determination .. 20
Figure 3.2: A log line example in BIS .. 22
Figure 3.3: Examples of log lines classified as the same log event .. 24
Figure 3.4: The log event represented in Figure 3.3 ... 24
Figure 3.5 Log string format using the standard sprintf() function .. 24
Figure 3.6: The “skip whitespace” algorithm ... 25
Figure 3.7: Event logs representing two meanings... 26
Figure 3.8: Cluster candidates identified in Figure 3.7... 27
Figure 3.9: Log examples that cannot be identified by SLCT.. 28
Figure 3.10: A cluster identified by SLCT ... 28
Figure 3.11: Examples of event logs with message IDs ... 29
Figure 3.12: Log events correlated by the message ID 65538.. 30
Figure 3.13: Sample log patterns .. 30
Figure 3.14: Pattern matching algorithm ... 31
Figure 3.15: Data structures and classes ... 34
Figure 3.16: Cascade relationship among LogLine, LogEvent, and LogPattern classes........ 35
Figure 3.17: An example of patterns consisted of similar events ... 35
Figure 3.18: Actual log lines represented by event 30 and event 46 35
Figure 3.19: Code paths for the log events 30 and 46 .. 36
Figure 3.20: Results of grouped log patterns .. 38
Figure 3.21: An example of a sliding window (B=5, N=2).. 39

 ix

Figure 3.22: A potential false alarm (B=5, N=2).. 40
Figure 3.23: A problem occurs (B=5, N=2).. 40
Figure 3.24: Freeze the baseline (B=5, N=2).. 41
Figure 3.25: Baseline is shifted after the problem is resolved (B=5, N=2) 41
Figure 3.26: The sliding window algorithm ... 42
Figure 3.27: The first and the last log line related to the same message 44
Figure 3.28: Examples of SQL queries to the embedded SQLite database 44
Figure 4.1: Architecture of the simulation environment... 51
Figure 4.2: Identified log pattern groups .. 54
Figure 4.3: Number of abnormal log pattern groups .. 55
Figure 4.4: Percentage of abnormal log pattern groups.. 55
Figure 4.5: Sample log events in the log pattern 11 ... 57
Figure 4.6: Problem determination results for the TCP connection error............................... 58
Figure 4.7: Identified log pattern groups .. 59
Figure 4.8: Potential false alarms automatically corrected for the TCP connection error...... 61
Figure 4.9: Problem detection results for the invalid user status.. 63
Figure 4.10: Identified log pattern groups .. 65
Figure 4.11: Problem detection results for 25% ratio and 2.5 seconds delay......................... 66
Figure 4.12: Number of potential false alarms for 25% ratio and 2.5 seconds delay............. 67
Figure 4.13: Problem detection results for 50% ratio and 5 seconds delay............................ 68
Figure 4.14: Potential false alarms corrected by our sliding window approach..................... 69
Figure 4.15: Problem detection results for 25% ratio and 5 seconds delay............................ 70
Figure 4.16: Problem detection results for 50% ratio and 2.5 seconds delay......................... 71

 x

List of Tables

Table 2.1: A sample input matrix for data analysis [3]... 16
Table 2.2: Difference among the three solutions and our framework 18
Table 3.1: Syslog log format used in BIS ... 22
Table 3.2: Log severity information [26].. 23
Table 3.3: Regular expression rules for BIS... 23
Table 3.4: Results of the SLCT algorithm.. 28
Table 3.5: Implementation information .. 32
Table 3.6: Examples of log pattern data with one minute time window 38
Table 3.7: Examples of frequency data for log patterns ... 43
Table 3.8: Examples of frequency data based on the number of log patterns in group 1....... 43
Table 3.9: Examples of frequency data based on the number of log patterns in group 2....... 44
Table 3.10: Examples of number of patterns before being divided into two bins 45
Table 3.11: Examples of number of patterns after being divided into two bins..................... 45
Table 3.12: Critical values of chi-square distribution... 47
Table 3.13: How to calculate chi-square for goodness-of-fit Test.. 48
Table 3.14: Network traffic around the midnight ... 49
Table 4.1: Parameters for chi-square test.. 52
Table 4.2: Log data information ... 53
Table 4.3: Descriptions of the log pattern groups... 54
Table 4.4: Associations between points and timestamp ... 56
Table 4.5: Log pattern groups marked as abnormal when the first fault is injected............... 56
Table 4.6: Log data information ... 58
Table 4.7: Log pattern groups... 59
Table 4.8: Number of log patterns in group 1 divided into two bins...................................... 60
Table 4.9: Log pattern groups marked as abnormal in our chi-square test............................. 61
Table 4.10: Log data information ... 62
Table 4.11: Combination of impact ratio levels and delay levels... 64
Table 4.12: Log data information ... 64
Table 4.13: Log pattern groups... 65
Table 4.14: Messages divided into bins based on processing time... 65
Table 4.15: Messages divided into bins based on processing time... 69
Table 4.16: Messages divided into bins based on processing time... 71

1

Chapter 1
Introduction

Today’s large and dynamic Internet services are usually composed of multiple components.
In such systems, messages can pass through different components and create interactions
among them.

Figure 1.1: An example of a message-flow Internet service

Figure 1.1 shows a message flow of an email message that goes through an email system:
At first, the message is sent from an email client to an incoming MTA (Mail Transfer Agent)
via the SMTP port. Then the message will be routed though the system and eventually
forwarded to third-party email systems via the outgoing MTA.

As Internet services become more and more mission-critical, ideally they are expected to
be running continuously 24/7 without any problems. Any downtime will not only cost a great
deal in the form of lost reputation of the service but also bring possible penalties for failing to
meet service agreements with the customer. Therefore, large-scale Internet services such as
Blackberry Internet Service (BIS) Engine, a popular wireless email service developed by
Research In Motion, requires continuous monitoring. Hence, the developers and
administrators need some mechanisms to trace the flow of messages in order to monitor the
status of the system.

In general, there are several types of information and resources that can be used to monitor
a system, including trace information, event log files, or special metrics such as SNMP
reports. Among these resources, the event log contains the most straightforward information
about the system because the log text is expected to be human readable and understandable.

 CHAPTER 1. INTRODUCTION

2

In other words, event logs can help developers and administrators understand the behaviors
in a system in a straightforward way. Thus, log analysis is a very important approach to keep
track of the system status, as well as to determine the root causes of problems. However, due
to the large amount of log data generated by dynamic Internet services, it is very time-
consuming to find out useful information in the event log. In order to reduce the complexity
of log analysis, some frameworks have been invented to extract valuable information from
event logs and thereby detect the faults.

1.1 Motivation

Current approaches for log analysis can be categorized into the following two categories.

The first category is expert system that builds static dependency models on rules and
patterns defined by human experts. In other words, problems are determined in a static
manner. The IBM Log and Trace tool [1] converts syslog entries to the standard CBE [23]
format and performs problem determination by matching the keywords in the log entries with
the records in the symptom databases predefined by IBM experts. The correlation method
among log records can be based on Timestamp, URL, and Application ID. A combination of
these criteria or any user-defined criteria can also be used to correlate log entries. However,
the symptom databases only contain the symptoms for IBM software products. In other
words, this solution cannot be applied to the software products from other vendors.

A similar approach has been also applied to SNMP (Simple Network Management
Protocol [20]) with some useful visualization [21]. In this paper, events are correlated by the
rules defined by human experts. For example, a keyword such as “network card failure”
should be correlated with the error “interface failure” because it is a pattern observed by
system administrators.

Other frameworks such as Swatch [5] and SEC [6] require human experts to input
extensive knowledge about the system. These frameworks use regular expressions to extract
useful information from log entries and provide a configuration language to define the
expected message flows or code paths. Hence, this type of static approach is not only limited
to the knowledge that the experts understand about the system but is also vulnerable to the
changes in the system.

The second category of approach is to perform syslog analysis based on statistical models.
For instance, in [7][8] the authors use a text clustering algorithm instead of regular

 CHAPTER 1. INTRODUCTION

3

expressions to automate message typing. However, these approaches mainly focus on log
event clustering and do not provide any solutions for problem determination.

Naïve Bays algorithm and hidden Markov Model have been used in the paper [9][12] to
discover temporal patterns without predefined time windows. A similar approach in paper
[11] is to find periodic temporal patterns using a chi-square test. On the contrary, the paper
[14] correlates event logs within a predefined time window. The major limitation of these
approaches is that behaviors in these systems are expected to occur periodically. For instance,
a pattern consists of threshold violated and threshold reset events that occur every 30 seconds
may be indicative of hosts nearing their capacity limits [14]. Due to the dynamic nature of
message-flow Internet services, this condition is hard to be satisfied in every Internet service.

DNS traffic and query logs have been statistically investigated in [13] to detect spam
emails. However, due to the simplicity of DNS query logs, this paper does not look into the
different states or code paths of the log data. In addition, since the algorithm used in this
paper is highly coupled with DNS data and related parameters, it cannot be applied to other
protocols or systems.

X-Trace is an interesting framework that traces message flows, though it does not focus on
the statistical analysis. Instead, it provides a message-tracing framework that injects metadata
into network packets in order to trace how a particular request initialized by either clients or
administrators flows through the system. If any of the expected components are missing in
the flow, the missing components will be considered as faulty.

Pinpoint is by far the most similar approach to our solution. It dynamically traces real
client requests going through a message-flow system and uses data clustering and statistical
techniques to correlate failures of the requests to the components most likely to have caused
them [3]. However, this approach is built on top of the J2EE platform. In such a case,
components such as EJB, JSP pages or JSP tags are completely controlled and defined by the
J2EE application server, so developers do not have any control over the granularity in
statistical analysis. Furthermore, whether a request is successful or not in the Pinpoint
framework is detected by Java exceptions. These two limitations prevent the Pinpoint
framework from being a generic solution for common message-flow Internet services.

In sum, none of the existing problem determination frameworks provides a completely
generic solution that meets the following requirements for message-flow Internet services.

 CHAPTER 1. INTRODUCTION

4

1. The solution should be generic and independent of any OS or middleware framework.

2. The solution should be completely dynamic and can adapt to the evolution of Internet
services.

3. The log correlation could be based on the nature of message-flow Internet services.

4. Little or no prior knowledge about the system is required.

5. There is no need to know how to determine if a message succeeds or fails.

6. Code paths, message flows, and states in the system could be completely controlled
by the application developers instead of the middleware application servers.

1.2 Contributions

This paper has the following five contributions.

1. This thesis explores new ways to perform log analysis by removing the dependency
on middleware platforms such as J2EE or .NET. We define a generic log adaptor to
convert event logs to into our event format. The log adaptor is independent on any OS
or framework. Though the CBE [23] already defines a similar event structure, we find
that most fields in CBE format and the complex grammar of CBE are not necessary
for a message-flow Internet service. Therefore, we create a lightweight event structure
and develop a log adaptor that uses regular expressions to extract information from
event logs. Unnecessary log entries can be also filtered out by customized filters.

2. We develop an algorithm of log event clustering that combines a text matching
technique with the modified version of SLCT [7] [8], a text clustering algorithm. The
log entries in our research contain more vocabularies and a more complicated
grammar if compared to the log data in other papers.

3. We develop an algorithm of log pattern clustering by correlating log events with the
same message ID. Clustered log patterns are divided into groups based on the
similarities among log patterns. Since each group of log patterns represents a system
behavior, we can build a precise statistical model of the system based on log patterns.

4. We introduce a sliding window technique into the chi-square goodness of fit test in
order to detect problems. Our sliding window algorithm significantly reduces the
number of false alarms in our test. Two types of metrics, including the number of

 CHAPTER 1. INTRODUCTION

5

patterns and the processing time of each message, are used in the chi-square goodness
of fit test to compare the data distribution in the current window against the history
data in the baseline. The test results show a high accuracy.

5. Other than the event log format, no prior knowledge about the system is required.
Furthermore, as the system evolves, e.g., upgrading to newer versions or changing log
formats, the statistical model can be rebuilt automatically without any human
involvement. Our assumption is that if the event logs can provide enough human
readable information for experts to investigate problems manually, then it also
provides enough input for our problem determination framework.

1.3 Organization

The remainder of this thesis is structured as follows. In chapter 2, we introduce the
background of our work and explain how to find out the root causes of a problem in the BIS
Engine. Afterwards we review three typical approaches for problem determination: LTA, X-
Trace, and Pinpoint. At the end, we compare the differences between them and our
framework. In chapter 3, we demonstrate the architecture of our framework and explain the
algorithms of how to perform clustering of log events and log patterns. We also discuss the
details of our sliding window algorithm of how to shift or freeze the sliding window.
Eventually we present the process of how to determine problems with the chi-square
goodness of fit test. Chapter 4 describes how we evaluate our framework with different log
data sets collected from the BIS engine. In the final chapter, we summarize our solution of
problem determination for message-flow Internet services and discuss some possible future
work.

6

Chapter 2

Background and Related Work

In the previous chapter, we discuss some papers about log analysis and identify two major
types of solutions: expert systems and statistical models. In the background section, we use
the BIS engine system as an example to demonstrate how to perform log analysis manually
to identify the root cause of a problem in a message-flow Internet service. Then we focus on
three typical approaches of problem determination. Section 2.1 gives a brief introduction
about LTA (Log Trace Analyzer). In section 2.2, we introduce the basic idea of the X-Trace
framework. In the last section, we will give a detailed analysis of the Pinpoint framework
because it is the most similar solution to our approach. At last, we compare the differences
between these systems and our framework.

2.1 Background: Log Analysis in Message-flow Internet Services

The focus of this thesis is problem determination: detecting problems and identifying root
causes based on event logs. In a message-flow Internet service, one of the most important
methods to monitor system status is to analyze the event log since it contains the most
straightforward information, human readable text. In general, for each message comes into an
Internet service, the important states and the basic flow of the message will be logged in the
event logs. However, current approaches do not address the problem that applications can
spread debugging, warning and error information across multiple log lines in one or multiple
log files. For instance, if a message routes through three components (Here a component can
be anything, e.g., a process, a thread, a Java class or a C++ library), it is very common that
each component writes its own information about the same message to the event logs. Hence,
there will be at least three log lines related to the same message to be logged across one or
multiple log files. From an Internet service’s point of view, such a sequence of log lines
could be considered as a log pattern because each sequence could represent a certain type of
system behavior. Handling such multi-line log events requires the ability to automate the log
message types.

Let us use the BIS[4] engine as an example. As shown in Figure 1.1, the BIS system is a
distributed system composed of multiple components running on multiple machines.

 CHAPTER 2. BACKGROUND AND RELATED WORK

7

Whenever an email message comes into the BIS system via the inbound SMTP server, a
unique message ID will be generated and assigned to that particular message. The message
then transmits to the CentralProcess, the database application server and eventually hits the
out-bound MTA where the message is forwarded to third party email systems. The metadata
containing the message ID will be forwarded to all components in the system until it leaves
the system. In each component, developers write debugging logs that contain a message ID
field using the standard syslog mechanism on Linux. Therefore, the log lines related to the
same message ID can be retrieved with the following Linux command.
grep $message_id $log_file_name

Figure 2.1: Linux command to search for log lines related to a particular message ID

Imagining that we receive a phone call from a customer complaining that his or her email
service is not working, and we find that the message ID assigned to the last message for this
user is 65530, as shown in the first log line in Figure 2.2. In order to collect more detailed
information about the problem, system administrators search for all log lines related to this
particular message ID 65530 by running the Linux command “grep 65530 event.log” in the
log file directory. The corresponding search results in Figure 2.2 show that the sequential log
lines represent important states of the message and related debugging information such as
user names and session data. According to the last log line, we can confirm that this error is
due to a broken database connection, and therefore we can make corresponding actions to fix
the problem.
Nov 6 15:21:48 Data,3034209200,65530,ReceiverTask::ReceivedData,"man_id=544243646,srp_id
=TEST,mailhost_id=1,sender=HTTP_SERVER,sender_addr=,receivertask_qsize=0"
…
Nov 6 15:21:48 CentralProcess1 [9386]: DEBUG,Directory processing
time,33926064,65530,ConnectorManager::svc,"Directory processing time, user_id=544243646, srp_id=test,
directory_lookup_time=0 msec, avg=0 msec, queue_time=0 msec, proxy=localhost"
…
Nov 6 15:21:48 CentralProcess1 [18478]: WARNING, database_lookup_failed, 1409307728, 65530, ,”
database lookup failed, userid=544243646”

Figure 2.2: Sample log lines correlated by message ID 65530

These log entries in BIS contain more vocabularies and more complicated grammar of log
text when compared to the log data in other papers. More importantly, every log entry is
required to contain a message ID. None of the current approaches has ever addressed
problem determination based on multi-line log events that can be correlated by unique

 CHAPTER 2. BACKGROUND AND RELATED WORK

8

message IDs. Hence, the purpose of this thesis is to resolve this problem. In the next three
sections, we will discuss three popular log analysis frameworks and explain why they do not
meet the requirements for problem determination in the message-flow Internet services like
the BIS engine.

2.2 IBM Log and Trace Analyzer (LTA)

LTA is an Eclipse-based tool that enables viewing, analysis, and correlation of log files
generated by IBM WebSphere Application Server, IBM HTTP Server, IBM DB2 Universal
Database, and Apache HTTP Server[1]. The LTA is built based on Java and Eclipse
environment and it actually includes two major components: a log analysis tool and a
profiling tool.

2.2.1 Event Parsing and Collection

The log analysis tool allows us to import various log files. The formats of the original log
data may vary depending on the OS and software product version. For instance, Apache
HTTP server uses the standard syslog while the log data of IBM DB2 database server is in its
own format. Hence, all log entries need to be converted to a standard Common Base Event
(CBE) format for further analysis. In fact, LTA uses an XML-base format to describe the log
events and the relationships between events.

Figure 2.3: Log views [1]

 CHAPTER 2. BACKGROUND AND RELATED WORK

9

Figure 2.3 shows the GUI of the log importer. The property field on the right side of the
window represents the attributes in CBE format.

Figure 2.4: Log analysis results [1]

In order to find the problems in the log data, the LTA compares the keywords in the log
lines against the predefined symbols in symptom databases. If the match for a particular
keyword is found in the symptom databases, corresponding analysis results will be displayed
on the GUI, as illustrated in Figure 2.4.

Figure 2.5: Import symptom database file [1]

IBM also provides many symptom databases for different IBM software products.
Therefore, we can import symptom databases that can be loaded to analyze and correlate log
files. As shown in Figure 2.5, two input sources are available, including the IBM FTP site
and the local machine.

 CHAPTER 2. BACKGROUND AND RELATED WORK

10

The log records can be also filtered based on the CBE properties. We can create
customized filters to exam the log entries. Finding and sorting the log entries can be done in
the GUI.

2.2.2 Event Correlation

The log records in LTA can be correlated by time, URLs, or application IDs. There are
actually two categories of correlations. The first one is log interaction, e.g., ordering log
records by timestamp. The second correlation is log thread correlation. That is to say, the log
data generated by the same thread will be correlated together. Figure 2.6 depicts how two log
records with the same timestamp are correlated together.

Figure 2.6: Log records that have the same timestamp [1]

2.2.3 Limitation and Restrictions

As discussed in the previous section, the LTA is actually an expert system that detects
problems based on the keywords in the symptom database. Once the system evolves, the
system administrators need to find an updated version of the symptom database in order to
match the new keywords in the event logs. Furthermore, the LTA only provides symptom
database for IBM products, so it is not possible to use this framework in third-party systems.
The last limitation of LTA is that the log correlations cannot be easily customized.

 CHAPTER 2. BACKGROUND AND RELATED WORK

11

2.3 X-Trace

X-Trace is a tracing framework that provides a comprehensive view for systems that adopt it
[2]. Since Internet services are generally composed of distributed components such as web
servers, application servers and database servers, it is always difficult to trace the flows of
messages that travel through the components. The major purpose of the X-Trace framework
is to resolve the tracing issue.

2.3.1 X-Trace Framework

After administrators invoke the tracing feature, the X-Trace framework injects metadata with
a unique task identifier into every network packet. The metadata is forwarded to the next
component or lower layers through protocol interfaces. If multiple tasks are created when a
request comes to the system, then they must be constructed in a recursive manner. Since all
related operations are tagged with the same task ID, eventually these tasks will create a
resulting task tree.

Figure 2.7: A proxied HTTP request and the logical causal

relations among network elements visited [2]

Figure 2.7 illustrates an example of the task tree that reveals the relationship among
application layer, TCP layer, and IP layer involved by a HTTP request. If the X-Trace
framework is applied to all these layers and components, then no prior knowledge about the
dependencies is required.

In X-Trace, the tracing metadata is composed of a task ID field and an optional TreeInfo
field. The TreeInfo consists of three variables: ParentID, OpID and EdgeType [2]. The parent

 CHAPTER 2. BACKGROUND AND RELATED WORK

12

ID is used to identify the previous layer from which the metadata is passed. The OpID refers
to the operation type. The TaskID, ParentID and OpID together form a primary key.

Two functions, pushDown() and pushNext(), are used to propagate the tasks along a
message path. The purpose of the pushDown() function is to copy metadata from one layer to
the lower layer. The pushNext() function is used to propagate X-Tree data to the next
component in the same layer. Figure 2.8 demonstrates an example of how the propagation
works for a HTTP request.

Figure 2.8: An example of propagation of metadata for a HTTP request[2]

When a node in the path receives a message that contains metadata, it generates a report
and sends it to the X-Trace analysis center. The report contains a timestamp, a TaskID, and
optional metadata. As illustrated in Figure 2.9, the X-Trace server reconstructs the resulting
tree based on these reports.

 CHAPTER 2. BACKGROUND AND RELATED WORK

13

Figure 2.9: An example of how the reports are generated [2]

After the X-Trace framework is deployed, it builds a tree based on the X-Trace reports sent
from all components. Once such a tree is completed, it can be used as a baseline to determine
problems in the system. Let us use a website as an example to demonstrate how the X-Trace
framework works. In general, a website is composed of a front-end web server and a backend
database server. Hence, the problem can occur either in the web server or in the database.
The fault we consider in this scenario is a wrong parameter for the database connection in the
web server’s configuration file. When a HTTP request comes to the web server, the metadata
will not be propagated to the database because the connection to the database server cannot
be established due to the wrong parameter. Thus, the X-Trace center receives only one report
from the web server. On the contrary, if the database connection is established, successful
requests should contain the reports from both the web server and the database server. Since
we are expecting two reports, the missing report indicates a possible problem in the database.

Figure 2.10: An example of a website

 CHAPTER 2. BACKGROUND AND RELATED WORK

14

2.3.2 Limitations and Restrictions

The first limitation of X-Trace is that components on the path must take the responsibility of
propagating the metadata. In other words, we need to modify the source code of the existing
components in order to add the X-Trace metadata into the network packets.

Second, enabling the X-Trace framework will certainly have some impact on the
performance of the system because it adds extra metadata into every network packet.

Third, the message-flow tree constructed in X-Trace only represents the relationships
among components. That means this framework can only detect faulty components but fails
to identify the actual root cause of the problem.

Last, the X-Trace framework does not create any statistical models. Instead, it provides
some visualization diagrams of the network status for administrators and developers to
identify successful and unsuccessful requests. In other words, human experts are required to
be involved in this progress.

2.4 Pinpoint

Pinpoint is the most similar framework to our approach, so we give a very intensive analysis
of this framework in this section. We also discuss the drawback and limitations of the
Pinpoint framework and explain why it is not a generic solution for all Internet services.

2.4.1 The Pinpoint Framework

Pinpoint is a framework for root cause analysis on the J2EE platform that requires no
knowledge of the application components [3]. Since most of the root cause analysis
techniques are based on static dependency models built by human experts, the Pinpoint paper
propose a new framework that handles the problem determination based on a statistical
model.

The major functionalities of Pinpoint include the following two parts:

1) It allows us to trace client requests that pass through the entire system. In fact, the
request concept in Pinpoint is the same as the ones in X-Trace and our framework.
Tracing message flows can help us build a statistical model about the system while
the static dependency model cannot.

 CHAPTER 2. BACKGROUND AND RELATED WORK

15

2) It also performs data clustering and uses statistical techniques to correlate the failures
of request to the components most likely to have caused those failures [3]. By
correlating the failures and components, Pinpoint attempts to find the combinations
of components that are believed to cause the problems.

The Pinpoint framework makes two important assumptions. The first one is that the
requests in the system must be balanced in the different combinations of the components. In
other words, if multiple components are always related to the same fault, then there is no way
to distinguish these components for this particular fault. The second assumption is that the
requests are independent to each other in case of failures. That is to say, failed requests
should not be caused by the activities of other requests. The Pinpoint framework can be
represented in the following figure.

Figure 2.11: The Pinpoint framework [3]

The basic idea of how to trace a message in Pinpoint is to store all the components that a
message uses when it routes through the system. Since the Pinpoint relies on the J2EE
application server to keep track of the message flow among components, the information that
Pinpoint can use is completely controlled by the J2EE platform. In general, components in

 CHAPTER 2. BACKGROUND AND RELATED WORK

16

Pinpoint include software components, EJB (Enterprise Java Bean), component versions, or
even database files.

A request ID will be assigned to each request by the J2EE application server. The request
ID will be forwarded to the next component by the J2EE framework. This is an advantage of
the Pinpoint framework, as it is not required to modify the application-level code to
propagate the metadata as what X-Trace needs. In the current implementation of Pinpoint,
the request ID is actually stored in thread-specific local state.

The Pinpoint uses the Java exceptions to determine failures. It tries to catch exceptions as
more as possible in order to find out the root cause of a problem that might be masked by the
other high-level errors. There are two types of failures in Pinpoint. The first type of failure is
internal failure, which means the failure might be masked and invisible to end users. The
second one is called external failure, as it is visible to end users.

Once the request traces and related logs are collected and analyzed, an input matrix, shown
in following table, can be generated for further data analysis.

Table 2.1: A sample input matrix for data analysis [3]

Pinpoint uses a data clustering algorithm called UPGMA to group similar data points
together in order to detect whether the client requests are successful or not.

The Pinpoint framework is validated with the J2EE PetStore demonstration application by
manually injecting different types of faults into the system. The testing results show good
accuracy.

2.4.2 Limitations

The major limitation of Pinpoint is that it cannot distinguish between sets of components that
are tightly coupled and are always used together [3]. On the contrary, the components in our

 CHAPTER 2. BACKGROUND AND RELATED WORK

17

framework can be completely independent if the event logs are correctly written by the
developers.

The second major limitation is that Pinpoint is built based on the J2EE platform, so it is not
a generic solution for all Internet services. For instance, many open source projects such as
MySQL and Apache are not implemented on top of J2EE, so Pinpoint cannot be applied to
these systems.

Pinpoint also relies on the Java exception handler to catch failures. Therefore, if the system
behavior is changing dramatically but no exception is thrown, e.g., high CPU usage due to
DDOS attack, Pinpoint will fail to detect the significant change in the system immediately.

Last, Pinpoint focuses on the component level, so it does not know about the internal states
of each component. Given the increasing complexities of large, dynamic Internet services, a
finer granularity would be necessary for developers and administrators to analyze the root
causes of problems.

2.5 Comparison

In the previous sections, we have discussed three popular solutions for problem
determination. In this section, we use the following table to illustrate the major differences
between these solutions and our framework.

 LTA X-Trace Pinpoint Our framework

Model
(Category) Expert system

Expert system based
on visualization

diagrams

Statistical model
built based on
UPGMA and

Jaccard similarity
coefficient

Statistical model built
based on the chi-square
goodness of fit test with

a sliding window
approach

Input source

Traces, event
logs collected

from IBM
products

Metadata injected by
X-Trace

Trace information
provided by the
J2EE platform

Text log files

Root cause
analysis

Symptom
databases

Identified by human
experts based on
visualizations of

network diagrams

Failures detected by
Java exceptions

Detect changes in the
system by comparing
test log data against

baseline

Log
correlation

Application ID,
timestamp, or

thread ID

Client request ID is
assigned at the

network protocol level
by the X-Trace

framework

Client request ID
assigned by the

J2EE application
server.

Correlate the log records
by the message ID

logged in every log line.

 CHAPTER 2. BACKGROUND AND RELATED WORK

18

Component
granularities

Controlled by
log records and

symptom
databases

Network level, e.g.,
machine names or host

names

J2EE components
such as EJB, JSP

and JSP tags

At log record level. The
more details the

application developers
put into the event logs,

the more precise the
model is

Table 2.2: Difference among the three solutions and our framework

 CHAPTER 3. PROBLEM DETERMINATION

19

Chapter 3

Problem Determination

In this chapter, we will describe the details of our problem determination framework. At first
we briefly introduce the architecture of our framework and discuss how the components in
our framework work together to perform problem determination. Then we will focus on the
algorithms of log event clustering and log pattern clustering. Eventually we will explain how
to detect problem using the chi-square goodness of fit test and the corresponding sliding
window algorithm.

 CHAPTER 3. PROBLEM DETERMINATION

20

3.1 Log Analysis Framework

Embedded
Database

Log Parser And Filter

Log Files

Load log lines from disk

Log Event Clustering

Log Pattern Clustering

Parse and filter log lines

Identify log events

Save identified log events,
identified log patterns and

log lines to database

Frequency Analyzer

Load log
events, patterns

and log lines

Calculate frequency
based on different

base lines and save
log frequency data

Log pattern Grouping

Load
frequency

data

Build baseline and define
 related parameters

Generate test reports and
output diagrams

Log event and log
pattern clustering Frequency Analysis

Applications

Write logs

Developers and
system administrators

Chi-square goodness
of fit test

Figure 3.1: System architecture of our problem determination

As shown in Figure 3.1, our framework is composed of the following components:

1) Input
The input of our framework is log file in text format. We do not define the process of how to
collect log files because it is not our concern here. The only requirement about the log format
is that a message ID should be logged in each log line.

2) Log event and pattern clustering

 CHAPTER 3. PROBLEM DETERMINATION

21

The next step is to identify the clustering of log events and log patterns in the log data. First,
we use regular expressions to parse log entries in order to extract useful information from the
log text. Log entries can be also filtered by customized filters. We develop a text-matching
algorithm and a text-clustering algorithm to identify log events. The log pattern clustering
can be done by correlating the log events with the same message ID. Eventually, the
classified log events, patterns, and log text will be inserted into an embedded database
(SQLite) for further analysis.

3) Frequency analysis
In this step, we calculate the frequency of log patterns in each time window by running some
complex SQL queries on the SQLite database. We are interested in two types of data: the
number of log patterns and the processing time of each log pattern. Eventually we can build a
statistical model that describes the statistics of behaviors in the system.

4) Testing
The results of frequency analysis will be used as input for our chi-square test. We run a chi-
square goodness of fit test to determine if the new event logs fit the statistical model in the
baseline. We also develop a sliding window algorithm that does not only fit the trend of
dynamic workload of Internet service but also significantly reduces the number of false
alarms.

5) Output
The output of our framework would be summary tables and diagrams about abnormal
behaviors detected in the system. If the diagrams and tables show a significant change in the
system, developers or administrators could look into the corresponding abnormal log patterns
to find out the root cause.

In the following sections, we will discuss the details of the above steps one by one.

3.2 Log Record

A log file may contain multiple log lines. From a log analysis point of view, each log line can
be regarded as a log record. Since the smallest granularity of data in our framework is the log
line, all algorithms and operations would be performed at the log line level.

 CHAPTER 3. PROBLEM DETERMINATION

22

3.2.1 Log Format

In general, event logs contain a variety of information about the system status, including
events from various applications, processes, as well as user requests such as incoming or
outgoing messages. Furthermore, event logs are usually written in a certain format, e.g., a
timestamp when the event occurs following by a readable text string that describes the actual
event. The syslog RFC [26] requires a log record to contain a timestamp, a string identifying
the source of the message, and a free-format 1024-byte ASCII description of the event. In the
BIS engine, all types of event logs, including debugging information, warnings, or critical
errors, are logged using the standard syslog mechanism on Linux. Below is a sample log line
in the BIS engine.
Sep 20 03:25:00 host1 CentralProcess1 [9386]: DEBUG, receive status, 3006249904, 65538,
ReceiverTask::ReceivedStatus,"status=COMPLETED, sender_addr=127.0.0.1:40877"

Figure 3.2: A log line example in BIS

The log line in Figure 3.2 indicates that a component named CentralProcess1 running on
host1 received a COMPLETED status from 127.0.0.1 at 3:25, Sep 20. Further log analysis
shows that the event log format used in BIS can be described in the following table:

Field Value Description
Timestamp Jun 2 15:00:15 The timestamp when the event occurs

Hostname host1 The host machine on which the process is
running

Component CentralProcess1 The name of the application

Process ID [20315] A unique ID to identify a process in a Unix
or Linux system

Log Text
DEBUG, receive status, 3006249904, 65538,
ReceiverTask::ReceivedStatus,"status=COMP
LETED, sender_addr=127.0.0.1:40877"

1024-bytes ASCII descriptions of the event

Log Severity DEBUG Log severity level

Message ID 65538 A unique integer to identify a message in
the BIS engine

Table 3.1: Syslog log format used in BIS

• Log Severity

The log severities field used in BIS follows the standard syslog protocol. Table 3.2
describes the error codes and corresponding explanations.

Numerical code Text code Severity
0 EMERGENCY Emergency: system is unusable

 CHAPTER 3. PROBLEM DETERMINATION

23

1 ALERT Alert: action must be taken immediately
2 CRITICAL Critical: critical conditions
3 ERROR Error: error conditions
4 WARNING Warning: warning conditions
5 NOTICE Notice: normal but significant condition
6 INFO Informational: informational messages
7 DEBUG Debug: debugging messages

Table 3.2: Log severity information [26]

• Log Text

The log text field can contain any number of user-defined elements as long as the length
is equal to or less than 1024 bytes. Furthermore, a message ID is required to be logged in
the log text field so that multiple log lines can be correlated.

3.3 Log Parser and Filter

The only prior knowledge about the system required by our framework is the log format.
Once the format is determined, information can be extracted from the log records and
unnecessary data can be filtered out. For the BIS engine, we use the following regular
expressions to perform log parsing and filtering.

Field Regular expression
TIME_STAMP (.{3}\\s*.*?\\s.*?)\\s.*?[\\d*].*
HOST_NAME .{3}\\s*.*?\\s.*?\\s(.*?)\\s.*?[\\d*].*

COMPONENT_NAME .{3}\\s*.*?\\s.*?\\s.*?\\s(.*?)\\[\\d*\\].*
LOG_LEVEL .{3}\\s*.*?\\s.*?\\s.*?\\s(.*?)\\[\\d*\\]:\\s(.*?),.*
LOG_TEXT .*?\\[\\d*\\]:\\s(.*)

MESSAGE_ID .*[\\d*]:.*,.*,.*,(\\d+),.*

Table 3.3: Regular expression rules for BIS

3.4 Log Event Clustering

3.4.1 The Concept of Log Event

The log event is one of the most important concepts in our framework. In a distributed
system that generates different types of logs, it is very common that many log entries are
written in a similar format. These log messages generally look very alike except that certain

 CHAPTER 3. PROBLEM DETERMINATION

24

attributes or values are different. For instance, the only differences between the following
two log lines are the values of the ip parameter and the port parameter.
Sep 20 03:25:00 host1 CentralProcess1 [9386]: DEBUG, receive status, 3006249904, 65538,
ReceiverTask::ReceivedStatus,"Receive COMPLETED status, ip=10.3.2.1, port=40877"
Sep 20 03:25:01 host1 CentralProcess1 [9386]: DEBUG, receive status, 3006249904, 65539,
ReceiverTask::ReceivedStatus,"Receive COMPLETE status, ip=10.3.2.2, port=40878"

Figure 3.3: Examples of log lines classified as the same log event

From observers’ point of view, both of the log lines in Figure 3.3 represent the same event
type that indicates the component CentralProcess1 receives a COMPLETED status from the
sender. Therefore, they represent a cluster in the first dimension and correspond to the same
log event defined in Figure 3.4. The timestamp field, the message ID field, and the values of
the ip and port parameters are replaced with wildcards “*”.
* host1 CentralProcess1[*]: DEBUG,receive status,*,*,ReceiverTask::ReceivedStatus,
"Reveived COMPLETED status, ip=*, port=*"

Figure 3.4: The log event represented in Figure 3.3

The reason why such type of event is generated is that log events are usually written by
developers using certain string formatting functions, e.g.,

sprintf(“%s host1 CentralProcess1[%u]: DEBUG,receive status,%u,ReceiverTask::ReceivedStatus,
"Reveived COMPLETED status, ip=%s, port=%u", strTimeStamp, nProcessID, nMessageID, strIP, nPort);

Figure 3.5 Log string format using the standard sprintf() function

If the same event is logged many times, we can find many similar log lines in the log files.
For small log data sets, we might be able to identify the log event types by manually
reviewing the log lines. However, for large log data sets, this process needs to be automated
using data mining techniques. In the following subsection, we will represent a data clustering
algorithm based on the nature of the string format of event log.

3.4.2 Skip Whitespace Algorithm

Our purpose is to identify log event types automatically, so we develop an algorithm called
“skip whitespace” that identifies log events based on the similarities between two log lines.
The process of how to perform clustering on the log examples in Figure 3.4 is as below.

1. The log data passed into the algorithm should have been already normalized, e.g.,
being parsed using the regular expressions described in section 3.3. Only three

 CHAPTER 3. PROBLEM DETERMINATION

25

fields including timestamp, the message ID, and the log text are required while
other fields can be omitted.

2. For each log text field, words are split on spaces or any predefined symbols. If a
word contains an equal sign ‘=’ or any other predefined symbols, we split the word
into two parts and remove the symbol and the right part. For example, the string
“ip=10.3.2.1” can be divided into a left part “ip” and a right part “10.3.2.1”. In such
a case, the left part “ip” remains while the equal sign and the right part “10.3.2.1”
will be removed.

3. For the first log line, since the log event map is empty at this time, we create a new
log event based on the first log line and insert it into the log event map.

4. We continue to classify the rest of the log lines by comparing them with the
existing log events. If the similarity between a new log line and any of the existing
log events is higher than a predefined threshold, then the new log line should be
identified as the existing log event. Otherwise, we create a new log event based on
that log line.

5. The above process will be applied to all log entries.

Figure 3.6: The “skip whitespace” algorithm

One thing we need to address is how to calculate the similarities between two log lines.
Considering the two log lines in Figure 3.6 as examples, we compare the first character in of
the first log line with the first character in the second log line. If they are identical, we
increase the matching counter by one and move the current position to the next character. If
they are not identical, we skip the rest characters of the word and jump to the first character

 CHAPTER 3. PROBLEM DETERMINATION

26

of the next word. When we reach the end of either log line, we calculate the similarities
between these two log lines by dividing the matching counter by the total number of
characters of the first log line. If the result is larger than a predefined threshold (default value
is 70), then these two log lines should be similar enough to be identified as the same log
event. For instance, the similarity of the two log lines in Figure 3.6 can be calculated as
below:
 Similarity = (8 + 1 + 3 + 1 + 6) / (8 + 1 + 9 + 1 + 6) = 75% > 70%

Equation 3.1: Log event similarity

Since the result 75% is higher than the default threshold 70%, these two log lines should be
identified as the same log event. When the classification is done, we will have a log event
map that contains all log events identified in the training log data.

3.4.3 SLCT Algorithm

When using the above “skip whitespace” algorithm to cluster log events, we find a serious
problem. The log lines in Figure 3.7 would be classified as the same event because of the
high similarities among them. However, if we manually review these log lines, we can see
they actually represent two different meanings: the first two log lines represent RECEIVED
events while the last two lines indicate SENT events.
Log line 1: Received COMPLETED status, sender_addr=127.0.0.1
Log line 2: Received COMPLETED status, sender_addr=127.0.0.1
Log line 3: Sent COMPLETED status, sender_addr=127.0.0.1
Log line 4: Sent COMPLETED status, sender_addr=127.0.0.1

Figure 3.7: Event logs representing two meanings

Therefore, using log similarity is not reliable enough to identify the log events in a
complex Internet service like BIS. In order to resolve this problem, we need to apply a
modified version of the SLCT algorithm [7] to the log events that have been already
identified by the skip-whitespace algorithm. The SLCT algorithm detects the word clusters in
the log events by computing the statistical information of each word. Briefly speaking, if a
word in a fixed position in multiple lines has the support of at least K (a predefined
threshold), then a new word cluster is detected. The details of the modified version of the
SLCT algorithm [8] can be described as below:

 CHAPTER 3. PROBLEM DETERMINATION

27

1. Split words on white spaces or commas in log lines that have been identified as the
same event. If a word contains an equal sign, then the left part to the equal sign can be
regarded as an attribute and the right part to the equal sign is considered as a value.
For instance, if an input string is “job_id=545678”, then the string “job_id” is the
attribute while the string “546678” is the value. A set of fixed attributes are defined as

)},(),...,,{(11 kk vnvn , where n is the position of the attribute in a log line and v
represents the value of the attribute. The algorithm makes a pass over all log lines
belong to the same event and builds an attribute summary.

2. Then we build all possible cluster candidates by calculating the occurrence of each
attribute in each position. Candidates with support higher than K (=2) will be reported
as a cluster and added to a temporary cluster map.

3. After the frequency analysis for a log event is done, we check the temporary cluster
map and see if it contains more than one item. If so, the original log event will be split
into new events according to the clusters in the temporary map.

Figure 3.8: Cluster candidates identified in Figure 3.7

For instance, as shown in Figure 3.8, the words Received occur at the same position in the
line 1 and line 2 while the world Sent occurs in the line 3 and line 4, so a set of fixed
attributes {(1, ‘Received), (1, ‘Send’)} becomes two cluster candidates. Since the number of

 CHAPTER 3. PROBLEM DETERMINATION

28

occurrences of the word Received or Sent are both equal to predefined threshold K (K=2),
the original log event 1 will be split into two new events: log event 2 and log event 3. The
new log event 2 represents the original line 1 and line 2 and the new log event 3 represents
the original line 3 and line 4.

Log line
number Log text Cluster candidate

keyword
Original log

event ID
New log
event ID

1 Received COMPLETED status,
sender_addr=127.0.0.1

receive 1 2

2 Received COMPLETED status,
sender_addr=127.0.0.1

receive 1 2

3 Sent COMPLETED status,
sender_addr=127.0.0.1

sent 1 3

4 Sent COMPLETED status,
sender_addr=127.0.0.1

sent 1 3

Table 3.4: Results of the SLCT algorithm

3.4.4 The Reasons to Combine Two Algorithms

First, as we have discussed in the previous section, the whitespace algorithm cannot
distinguish the difference between two similar log lines.

On the other hand, the SLCT algorithm is not able to resolve the following problem where
a word has a support of K in two log lines that actually represent two different events.
Log example 1: RECEIVED COMPLETED STATUS FROM COMPONENT
Log example 2: SENT COMMITTED STATUS TO COMPONENT

Figure 3.9: Log examples that cannot be identified by SLCT

Considering the log lines in Figure 3.9 as examples, since the cluster candidates such as
STATUS and COMPONENT have occurred twice, which is equal to the predefined threshold
(support K=2), the SLCT algorithm will consider these two log lines as the same log event.
Logevent: * * STATUS * COMPONENT

Figure 3.10: A cluster identified by SLCT

However, if we manually review the log texts, it is obvious these two lines have different
meanings: The first log line indicates that a status is received while the second one means a
status is sent.
 Similarity = (0 + 1+ 3 + 1 + 6 + 0 + 1 + 9) / (8 + 1 + 9 + 1 + 6 + 1 + 4 + 9) = 54%

Equation 3.2: Log event similarity

 CHAPTER 3. PROBLEM DETERMINATION

29

Fortunately, the whitespace algorithm is able to resolve this issue because the similarity
between these two log lines is lower than the predefined similarity threshold. Hence, they
would not be identified as the same event by the skip-whitespace algorithm. By combining
the skip-whitespace and SLCT algorithms, we would be able to overcome the disadvantage
of each algorithm and create a more accurate result of log event clustering.

3.5 Log Pattern Clustering

3.5.1 Log Correlation

In expert systems, log lines are usually correlated by rules defined by experts. In our
framework, we have an assumption that a unique message ID will be logged in every log line.
From a message-flow system’s point of view, such a message ID is very necessary for
developers and administrators to trace the flow and the status of a message traveling through
all components.
Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,User not in cache,3079662512,
65538,UserCache::FindUser,"User not found in cache,user_id=5371100000, state=0"

Sep 20 03:25:01 host1 CentralProcess1[9386]: DEBUG,receive status,3006249904,
65538,ReceiverTask::ReceivedStatus,"status=COMMITTED,sender_addr=127.0.0.1"

Sep 20 03:25:02 host1 CentralProcess1[9386]: DEBUG,receive status,3006249904,
65538,ReceiverTask::ReceivedStatus,"status=COMPLETED,sender_addr=127.0.0.1"

Figure 3.11: Examples of event logs with message IDs

As shown in Figure 3.11, three log lines related to the same message ID 65538 are
displayed in a sequential order in which the log lines are logged. The message ID can be
extracted using the regular expression rules defined in Table 3.3.

3.5.2 Definition of log pattern

In this thesis, a log pattern is defined as a collection of log events correlated by the same
message ID. The algorithm of how to detect clusters in the log patterns will be described in
this section. Since the event ID of log records has already been identified in section 3.4, we
can correlate the log events with the same message ID. As we have discussed in the previous
section, a log pattern is defined as below.

A log pattern = a sequence of log events correlated by the same message ID.

 CHAPTER 3. PROBLEM DETERMINATION

30

EventID=30, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,HTTP Session received
notification,3021577136,65538,HTTP::ReceiveDataCallback,"handler_id=1, session_id=1212
EventID=31, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,Received
Data,3034209200,65538,ReceiverTask::ReceivedData,"man_id=123456789,srp_id=TEST,mailhost_id=1,sende
r=HTTP_SERVER,sender_addr=,receivertask_qsize=0"
EventID=32, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,Thread pool
enqueue,3034209200,65538,JobThreadPool::Enqueue,"asyncid=0,jobtype=SEND_MESSAGE_WORK"
…
EventID=36, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,get
proxy,57060272,65538,ConnectorManager::GetProxy,"get proxy, asyncid=65538,
user_id=123456789,srp_id=TEST
EventID=37, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,Directory processing
time,33926064,65538,ConnectorManager::svc,"Directory processing time, user_id=123456789, srp_id=TEST,
directory_lookup_time=0 msec, proxy=localhost"
….
EventID=74, LogLine=Sep 20 03:25:01 host1 CentralProcess1[9386]: DEBUG,get user
result,47610800,65538,UserManager::GetUser_Result," get user
result,asyncid=65538,user_id=123456789,srp_id=TEST,time=15 msec

Figure 3.12: Log events correlated by the message ID 65538

The log events correlated by the message ID 65538 are shown in Figure 3.12, which can be
described as a temporary pattern 1 using the following log pattern format:
temp_pattern_1=30,31,32,35,36,37,38,40,42,43,44,48,54,55,56,57,58,59,60,61,62,63,65,74
temp_pattern_2=1,2,5,6,7,14,15,17,19,20,22,23,24,25,26,29,30,31,32,34,35,36,40,42,48,49,50,51,52,53,54,55,5
6
temp_pattern_3=19,20,22,23,24,25,26,29,30,31,32,34,35,36,37,38,39,49,51,52,53,54
temp_pattern_4=1,2,5,6,7,14,15,17,18,19,20,22,23,24,25,26,29,30,31,32,42,48,49,50,51,52,53,54,55,56
…

Figure 3.13: Sample log patterns

We apply the above log correlation algorithm to all log lines and insert all possible log
pattern formats into a temporal list for further analysis. Each item in the list might contain
various numbers of log event IDs, as illustrated in Figure 3.13. The number of temporal
patterns should be equal to the number of unique message IDs in the log data.

3.5.3 Pattern clustering

In the next step, we need to identify unique patterns in the temporal pattern list using a
matching algorithm. First, we select an item from the temporal list and compare it with the
existing patterns in the log pattern map. If the item in the list is a subset of or equal to an
existing item in the log pattern map, it is identified as an existing pattern. If the item is a
superset of a record in the log pattern map, the existing record in the map is replaced with the

 CHAPTER 3. PROBLEM DETERMINATION

31

item. If there is no existing pattern that matches the item, then a new pattern is created and
added to the log pattern map. The procedure is subsequently applied to all items in the
temporal pattern list.

Figure 3.14: Pattern matching algorithm

An example of how the matching algorithm applies to three log lines is illustrated in Figure
3.14. Our assumption is that a log pattern 1 already exists in the pattern table. The first item
in the temporal pattern list identified as pattern 1 because it is a subset of pattern 1 ({1,2,3,4}
∈ {1,2,3,4,5}). Then we compare the second item with the log pattern 1. Though the first 3
events are identical, the rest do not match ({1,2,3,8,9,10} != {1,2,3,4,5}). Therefore, we
create a new pattern 2 based on item 2. Item 3 is considered as a superset of pattern 1, so the
old events in the pattern 1 will be replaced with the new events in item 3.

Moreover, the sequential order in which the log entries are log logged is highly dependent
on the syslog mechanism and does not always reflect the real situation, so the order of log
events is ignored in our clustering algorithm. In other words, our solution does not consider
partial order.

3.6 Implementation Information and Data Structures

Platform Linux, Windows

 CHAPTER 3. PROBLEM DETERMINATION

32

Lines of code 12,500 lines C++

Configuration Files 2

Number of Classes 36

Table 3.5: Implementation information

Table 3.5 shows the implementation information about our log analysis framework. The
project contains about 12,500 lines of C++ code and 36 C++ classes. It also supports both
Linux and Windows platforms and accepts a configuration file name as an argument. Below
are some important C++ classes that need to be elaborated.

• LogLine class
class LogLine
{
public:
 LogLine();
 ~LogLine();
 bool Parse(const std::string& strLogLine);
 bool Filter(const std::string& strLogLine);
…
private:
 int m_nSeqID;
 int m_nLogEventID;
 int m_nLogPatternID;
 int m_nMessageID;
 int m_nLogLevel;
 int m_nTimestamp;
 std::string m_strComponentName;
 std::string m_strHostName;
….
};

The LogLine class contains the most important variables related to the log record. For
instance, the m_nMessageID variable represents the unique message ID logged in each line.
The m_nLogEventID and m_nLogPatternID variables indicate the corresponding event ID
and pattern ID of the particular instance of the LogLine class.

• LogEvent class
class LogEvent
{
public:
 LogEvent();
 ~LogEvent();
 void Initialize();
 int DetectClusters(LogLine *pLogLine);

 CHAPTER 3. PROBLEM DETERMINATION

33

 int AnalyzeWordFrequency(LogLine *pLogLine);
 int Purify(LogPattern& clsLogPattern, SQLiteInterface& clsSQLiteInterface,
std::vector<LogLine *> &vectNewLogLine);
 int SplitEvent(const int nEventID, std::multimap<int, LogLine *> &mmapNewEvent, bool
bNeedSplit = true);
 double GetSimilarity(LogLine *pSrcLogLine, LogLine *pDestLogLine);
…
private:
 MULTIMAP_LOG_EVENT m_mmapLogEvent;
 MAP_LOG_EVENT m_mapLogEvent;
 MAP_LOG_WORD m_mapLogWord;
…
};

Each instance of the LogEvent class represents a log event identified in the log data. The
aggregation relationship between the LogEvent class and the LogLine class is because a log
event can represent multiple log lines. In memory, multiple LogLine instances share the same
LogEvent instance according to the log event ID.

• LogPattern class
class LogPattern
{
public:
 LogPattern ();
 ~LogPattern ();
 void Initialize();
 int Classify(MAP_LOG_EVENT &mapLogEvent, SQLiteInterface& m_clsSQLiteInterface);
 bool GetSimilarGropus(MMAP_LOG_SIMILAR_GROUP &mmapLogSimilarGroup, int
&nGroupCount);
 bool GetSimilarity(int nSrcPatternID, MAP_LOG_EVENT &mapSrcLogEvent,
 int nDestPatternID, MAP_LOG_EVENT &mapDestLogEvent);
 int Compare(MAP_LOG_EVENT &mapSrcLogEvent, MAP_LOG_EVENT
&mapDestLogEvent);
…
private:
 MAP_LOG_PATTERN m_mapLogPattern;
 int m_nLogPatternSeqID;
 std::string m_strDatabaseDir;
...
};

Each instance of the LogPattern class represents a unique log pattern, and thus a
LogPattern instance can be referenced by one or many LogEvent instances and LogLine
instances.

 CHAPTER 3. PROBLEM DETERMINATION

34

Figure 3.15: Data structures and classes

In Figure 3.15, we demonstrate the relationships among the three major classes using
standard UML. The multiplicity indicator “0..*, 1” means zero or many objects can be
associated with another object. The arrowhead at the end of the line indicates the direction of
the association. The member functions and interfaces are omitted in the diagram. We
summarize their relationships below.

• Each log event represents a unique log message type. Each instance of the
LogEvent class can be referenced by one or many instances of the LogLine class

• A log pattern consists of a sequence of log events correlated by the same message
ID. Each instance of the LogPattern class can be referenced by one or multiple
instances of the log event class.

 CHAPTER 3. PROBLEM DETERMINATION

35

typedef std::map<int , LogLine *> MAP_LOG_EVENT;
typedef std::map<int , MAP_LOG_EVENT > MAP_LOG_PATTERN;

Figure 3.16: Cascade relationship among LogLine, LogEvent, and LogPattern classes

Figure 3.16 shows a cascade relationship among these classes. For instance, whenever an
old log event is split into two new events during the log event clustering, all LogLine
instances referencing the old log event should be updated to reference the new log event. The
same mechanism should be also used when any of the log patterns are modified. In such a
case, the log event instances referencing the old log pattern should be pointed to the new log
pattern instance.

In other words, the relationship among LogLine, LogEvent, and LogPattern is very similar
to the cascade foreign keys in a RDBMS database system. The corresponding reference keys
are log line sequence ID, log event ID and log pattern ID.

3.7 Log Pattern Grouping

After pattern clustering is finished, we find an interesting factor in the results: some of the
log patterns share many common log events.
PatternID=1, Events=30,31,32,35,36,37,38,40,42,43,44,48,57,58,59,60,63,65,74
PatternID=2, Events=31,32,35,36,37,38,40,42,43,44,46,48,57,58,59,60,63,65,74
PatternID=3, Events=31,32,35,36,37,38,40,42,43,44,46,54,55,56,57,58,59,60,61,62,63,74,75,76
PatternID=10, Events=30,31,32,35,36,37,38,40,42,43,44,54,55,56,57,58,59,60,61,62,63,74,75,76
…….

Figure 3.17: An example of patterns consisted of similar events

If we take a look at the first two log lines in Figure 3.17, we can see that log pattern 4 and
log pattern 5 share many identical log events such as 31, 32, 35, 36, 37, 38, 40, 42, 43, 44, 48,
57, 58, 59, 60, 63, 65, and 74. The only difference between them is that the first log pattern
contains the log event 30 while the second one contains the log event 46. We are very curious
to know why these patterns look alike, so we manually review the log text of each log event.
EventID=30, LogLine=Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,HTTP Session received
notification,3021577136,65538,HTTPSession::ReceiveDataCallback,"handler_id=1, session_id=1212"
EventID=46, LogLine=Sep 20 03:25:11 host1 CentralProcess1[9386]: VERBOSE,SMTP new
job,3048000432,65549,SMTPClientHandler::Handle_Rcpt,"handler_id=13,socket=172,mail_from=test@test.co
m,rcpt_to=test@test.com"

Figure 3.18: Actual log lines represented by event 30 and event 46

 CHAPTER 3. PROBLEM DETERMINATION

36

Further investigation shows that each group of these similar patterns actually represents a
system behavior and the difference between the log patterns in the same group describes the
different code paths or states. To help readers understand it better, we draw the following
execution paths for the log event 30 and the log event 46.

HTTP or
SMTP ?

Log event 30
Job from HTTP

Log event 46
Job from SMTP

Job done?

Log event 74
Job committed

Log event 65
Job completed

Yes

Log event 70
Job Requeued

Log event 75
Job timeout

No

Log event 32, 35, 36, 38,40, 42, 43, 44...
Processing job...

Retry N times?

No

HTTP SMTP

Retry+1

Yes

...

Figure 3.19: Code paths for the log events 30 and 46

 CHAPTER 3. PROBLEM DETERMINATION

37

As we can see in Figure 3.19, t. The only difference is that the messages represented by the
log pattern 1 come from the HTTP mail server and the messages identified as log pattern 2
come from the SMTP server.

The major reason why we need to group these patterns is that by grouping the similar log
patterns, we would be able to understand what system behaviors can be observed in the log
data. Furthermore, if we use these groups of log patterns as input data for the chi-square
goodness of fit test, we cannot only determine if there is a problem in the system but also
identify which groups of system behaviors have been changed. The abnormal groups can be
very useful information when we try to detect the root cause of the problems.

The grouping algorithm is very similar to the one used for the log event clustering. We
calculate the similarities between two patterns by dividing the number of identical event IDs
of two patterns by the smaller number of the list of the log event IDs. For instance, if two
patterns are both composed of 10 events and nine out of the events are identical, then the
similarity can be calculated as 9 divided by 10, which is 90%. A more concrete example is
shown in the follow equation by computing the similarities between the log pattern 1 and log
pattern 2 in Figure 3.17.

Similarity_Of_Pattern_1_and_Pattern_2 = 18/19 = 94.7%

Equation 3.3: Formula to compute similarities between two log patterns

Since the result 94.7% is higher than the default value of the similarity threshold (80%),
log pattern 1 and log pattern 2 should be grouped together. The final grouping results of the
log patterns in Figure 3.17 are shown in the following figure.
GroupID=1, PatternID=4, Events=30,31,32,35,36,37,38,40,42,43,44,48,54,55,56,57,58,59,60,61,62,63,65,74,
GroupID=1, PatternID=5, Events=31,32,35,36,37,38,40,42,43,44,46,48,54,55,56,57,58,59,60,61,62,63,65,74,
GroupID=1, PatternID=9, Events=31,32,35,36,37,38,40,42,43,44,46,54,55,56,57,58,59,60,61,62,63,74,75,76,77,
GroupID=1, PatternID=10,
Events=30,31,32,35,36,37,38,40,42,43,44,54,55,56,57,58,59,60,61,62,63,74,75,76,77,
GroupID=1, PatternID=11, Events=30,31,32,35,36,37,38,40,42,43,44,54,55,56,57,58,59,60,61,62,63,65,70,74,
76,77
GroupID=1, PatternID=12, Events=31,32,35,36,37,38,40,42,43,44,46,54,55,56,57,58,59,60,61,62,63,65,70,74,
76,77

GroupID=2, PatternID=6, Events=31,32,42,43,46,47,48,54,55,56,57,62,63,65,74,
GroupID=2, PatternID=7, Events=30,31,32,42,43,47,54,55,56,57,62,63,65,74,
GroupID=2, PatternID=13, Events=31,32,42,43,46,47,54,55,56,57,62,63,65,70,74,76,77,

 CHAPTER 3. PROBLEM DETERMINATION

38

Figure 3.20: Results of grouped log patterns

The format of the grouping result can be described as below:

 GroupID=m, PatternID=n, Events=$LIST_OF_LOG_EVENTS
The GroupID is a unique integer that identifies a group of log patterns. The PatternID field

represents the unique identifier of a log pattern and the LIST_OF_EVENTS_ASC field is
composed of a sequence of log events that could be correlated by the same message ID. The
list of log event ID is sorted in ascending order.

3.8 Parameters for Chi-square Test

In this section, we will discuss some important parameters used in our chi-square test.

3.8.1 Time Window

Before we run the chi-square test, we need to perform frequency analysis over the data of the
log patterns to generate input data. Therefore, the first parameter in our test is the length of a
time window where log data will be aggregated. For instance, if we define the time window
length as 1 minute, then each row in the following table represents the statistical information
of log patterns during a one minute period.

Group1 Pattern_2 Pattern_4 Pattern_7 Pattern_8 …
20081031153644.00 6 4 7 0 …
20081031154644.00 4 6 5 0 …
20081031155644.00 5 0 5 0 …
20081031160644.00 7 0 14 0 …
20081031161644.00 3 0 4 0 …

… … … … … …
Table 3.6: Examples of log pattern data with one minute time window

3.8.2 Baseline

In this thesis, a baseline is defined as a sequential time windows where the system activities
are considered normal. We compare the data in a test time window against the data in the
baseline to determine if the distribution of log patterns in the new windows fits the
distributions in the baseline. The total length of the baseline equals to the size of the baseline
times the length of a time window. Considering the time window to be one minute in Table

 CHAPTER 3. PROBLEM DETERMINATION

39

3.6, if we set the size of baseline window to five, then the log data in the first five minutes
will be regarded as the first baseline.

3.8.3 Our Sliding Window Approach

As the behaviors in an Internet service can vary in different periods, it is not practical to use
the data in a fixed baseline to represent the normal activities of the whole day. To resolve this
problem, we need to introduce a sliding window technique that allows the baseline to shift.
Therefore, we develop an algorithm that controls how to shift or freeze the sliding window.
The sliding window algorithm works as follows:

First, we choose the first B time windows in the log data as the first baseline and the B+1
time window as the current window. We then compare the distribution in the current time
window against the first baseline. If the chi-square test result rejects the null hypothesis that
the data is normally distributed if compared to the baseline, we believe that there are
potential faults in the current time window. Here we refer fault-free samples as “Good”
windows and faulty samples as “Bad” windows. We temporarily mark the current time
window as a “Bad” window, as illustrated in Figure 3.21, and continue testing the data in the
rest of the N-1 time windows.

Figure 3.21: An example of a sliding window (B=5, N=2)

If the test result shows that the time windows from B+1 to B+N are not all “Bad” windows,
we consider the N+1 window previously marked as a “Bad” window to be a potential false
alarm and hence change the status of the N+1 window from “Bad” to “Good”. Then we slide
the baseline by one window and move the current time window to B+2, as shown in Figure
3.22. Now we will compare the data in the B+2 window against the second baseline line
composed of windows from 2 to B+1.

 CHAPTER 3. PROBLEM DETERMINATION

40

Figure 3.22: A potential false alarm (B=5, N=2)

On the contrary, if the chi-square test results indicate that all the next N time windows are
“Bad” windows, as shown in Figure 3.23, we believe that a problem actually occurred within
the B+1 time window. Therefore, we formally mark the B+1 window as “Bad” and then set
the system status to abnormal.

Good Good GoodGood Good Bad Bad

The
current

baseline

Problem occurs(B+1)

The first baseline (1 to B) N windows (B+1 to B+N)

Figure 3.23: A problem occurs (B=5, N=2)

Once we detect a problem, we freeze the baseline instead of sliding to the next window. As
shown in Figure 3.24, we move the test window to the B+2 window and compare the B+2
time window against the frozen baseline.

 CHAPTER 3. PROBLEM DETERMINATION

41

Good Good GoodGood Good Bad ...

The
current

baseline

The current
window(B+2)

...

Problem
stars
here

Freeze the baseline (1 to B) N windows (B+2 to B+N+2)

Figure 3.24: Freeze the baseline (B=5, N=2)

Furthermore, if we find that the X to X+N time windows are all “Good” windows and the
current system status is abnormal, we believe the system has recovered somewhere during
the time window X. Therefore, we slide the beginning of the baseline from 1 to X and also
move the current test time window to X + B. The time span that the problem lasts should be
X–B windows.

Figure 3.25: Baseline is shifted after the problem is resolved (B=5, N=2)

The above approach will be applied to all time windows in the data set, so eventually we
could generate a history diagram showing the status changes of the system.

 CHAPTER 3. PROBLEM DETERMINATION

42

T=total number of time windows
B=baseline size
N=the number of continuous “Bad” or “Good” windows to be considered as a change in the system
TimeWindow=array of information about the system
CurrentBaselinePosition = B
CurrentSystemStatus=”normal”
for i = B … T-N do
 if CurrentSystemStatus is “normal” then
 if TimeWindow[i] is temporarily detected as a “BAD” window then
 FalseAlarm false
 for j = i+1 … i+1+N do
 if TimeWindow[j] is not a “BAD” window then
 FalseAlarm true
 break
 end if
 end for
 if FalseAlarm is false then
 TimeWindow[i] “Good”
 Shift the baseline by 1
 CurrentBaselinePosition CurrentBaselinePosition + 1;
 else
 CurrentSystemStatus “abnormal”
 TimeWindow[i] “Bad”
 Freeze the baseline
 end if
 end if
 else
 SystemRecovered true;
 for j = i … i+N do
 if TimeWindow[j] is detected as a “BAD” window then
 SystemRecovered false;
 break
 end if
 end for
 if SystemRecovered is true then
 CurrentSystemStatus “normal”
 TimeWindow[i] “Good”
 Shift the baseline and current time window by B
 CurrentBaselinePosition CurrentBaselinePosition + B;
 i i + B
 end if
 end if
end for

Figure 3.26: The sliding window algorithm

 CHAPTER 3. PROBLEM DETERMINATION

43

3.9 Input for Chi-square Test

In our framework, we are interested in two types of metrics. The first type is the numbers of
log patterns observed in each time window. Our expectation is that whenever a problem
occurs, the developers should log warning and error messages. Thus, the log patterns
representing abnormal behaviors will be generated and a different distribution against the
baseline is created. The second metric is the processing time of messages of different patterns.
We expect the performance issues in an Internet service can be detected based on this metric.

3.9.1 Metric One: The Numbers of Log Patterns

If we assume the length of time window is set to one minute, then each row in Table 3.7
represents the number of different patterns observed in one minute. The timestamp column
indicates the beginning of that particular time window.

Time stamp Pattern_2 Pattern_3 Pattern_4 Pattern_5 Pattern_7 Pattern_8 Pattern_13 Pattern_14

20081031153644 6 7 4 0 7 0 3 0

20081031154644 4 42 6 0 5 0 3 0

20081031155644 5 6 0 0 5 0 0 2

20081031160644 7 8 0 0 14 0 3 0

20081031161644 3 5 0 0 4 0 1 0

… … … … … … … … …

Table 3.7: Examples of frequency data for log patterns

In section 3.7, we have discussed the similarities among log patterns. Before performing
the chi-square test, we divide the original frequency table into multiple tables so that each
table contains only the information of the log patterns in the same group. The chi-square test
will be performed based on the frequency data of each group instead of all groups. For
instance, the frequency data in Table 3.7 is split into two groups in Table 3.8 and Table 3.9.

Group 1 Pattern_2 Pattern_4 Pattern_7 Pattern_8 …
20081031153644 6 4 7 0 …
20081031154644 4 6 5 0 …
20081031155644 5 0 5 0 …
20081031160644 7 0 14 0 …
20081031161644 3 0 4 0 …

… … … … … …

Table 3.8: Examples of frequency data based on the number of log patterns in group 1

 CHAPTER 3. PROBLEM DETERMINATION

44

Group 2 Pattern_3 Pattern_5 Pattern_13 Pattern_14 …
20081031153644 7 0 3 0 …
20081031154644 42 0 3 0 …
20081031155644 6 0 0 2 …
20081031160644 8 0 3 0 …
20081031161644 5 0 1 0 …

… … … … … …

Table 3.9: Examples of frequency data based on the number of log patterns in group 2

3.9.2 Metric Two: Processing Time

The way we calculate the processing time is to find the interval between the timestamp of the
first log line and the timestamp of the last log line that can be correlated by the same message
ID.
The first log line: Sep 20 03:25:00 host1 CentralProcess1[9386]: DEBUG,HTTP Session received
notification,3021577136,65538,HTTPSession::ReceiveDataCallback,"handler_id=1, session_id=1212
The last log line: Sep 20 03:25:01 host1 CentralProcess1[9386]: DEBUG,get user
result,47610800,65538,UserManager::GetUser_Result," get user
result,asyncid=65538,user_id=123456789,srp_id=TEST,time=15 msec

Figure 3.27: The first and the last log line related to the same message

For instance, as shown in Figure 3.27, the processing time for the message with message
ID 65538 is 1 second, which is calculated by subtracting 03:25:01 by 03:25:00. Since the log
patterns of the message have been already identified at this point, we can calculate the
average processing time for each log pattern by running some complex SQL queries to the
embedded database SQLite. First, we select the number of messages identified as a particular
pattern in a time window using SQL query 1 in Figure 3.28. Then we compute the processing
time for each individual message using SQL query 2. The result min_timetamp is defined as
the timestamp of the first log line of the multi-lines for a message and the result
max_timestamp refers to the timestamp of the last log line.
SQL query 1: select log_pattern_id, count(distinct(message_id)) from la_log_line where log_pattern_id=%d
and message_id != 0 and time_stamp>%d and time_stamp<%d

SQL2 query2 :select message_id, min(time_stamp) as min_time, max(time_stamp) as max_time from
la_log_line where time_stamp>=%d and time_stamp<%d and message_id in (select distinct(message_id) as
distinct_message_id from la_log_line where log_pattern_id=%d and time_stamp>=%d and time_stamp<%d)
group by message_id

Figure 3.28: Examples of SQL queries to the embedded SQLite database

 CHAPTER 3. PROBLEM DETERMINATION

45

The processing time of a message can be calculated using the following equation.
Processing time = max_timestamp – min_timestamp

3.9.3 Final Input: Merge the Two Metrics

The next step is to divide the messages into two bins. We define a parameter called
BIN_INTERVAL so that the messages with processing time less than or equal to
BIN_INTERVAL will be placed into bin 1 while the messages with processing time more
than BIN_INTERVAL will be placed into bin 2. Let us assume every message should be
completed in 1 second in the system according to our performance requirement. Therefore,
messages will be put to two bins depending on whether the message is completed in 1 second
or not. The original data in Table 3.10 will be split into two bins demonstrated in Table 3.11.

Row num Timestamp Pattern 1 Pattern 2
1 20090204165026 102 43
2 20090204165126 97 38
3 20090204165226 101 41
4 20090204165326 103 42
5 20090204165426 102 41
6 20090204165526 96 34
7 20090204165626 93 39
8 20090204165726 38 15
9 20090204165826 45 18
10 20090204165926 49 21

Table 3.10: Examples of number of patterns before being divided into two bins

Row num Timestamp Pattern1_bin1 Pattern1_bin2 Pattern2_bin1 Patter2_bin2
1 20090204165026 100 2 42 1
2 20090204165126 96 1 38 0
3 20090204165226 101 0 41 0
4 20090204165326 103 0 42 0
5 20090204165426 102 0 41 0
6 20090204165526 94 2 33 1
7 20090204165626 87 6 36 3
8 20090204165726 17 21 6 9
9 20090204165826 26 19 11 7

10 20090204165926 33 16 15 6

Table 3.11: Examples of number of patterns after being divided into two bins

 CHAPTER 3. PROBLEM DETERMINATION

46

The columns Pattern1_bin1 and Pattern1_bin2 represent the two bins for pattern 1. The
number in each cell indicates the number of messages where the processing time falls into
that particular bin during that time window. For example, there are total 93 messages
identified as pattern 1 in the seventh time window, which is shown in the seventh row in
Table 3.10. Since the processing time of 87 messages is less than 1 second while the
remaining six messages have a processing time of more than 1 second, the original 93
messages are divided into two bins: Pattern1_bin1 with 87 messages and Pattern1_bin2 with
6 messages, as shown in the 7th row in Table 3.11.

3.10 Chi-square Goodness of Fit Test

In statistics, a chi-square goodness of fit test describes how well a statistical model fits a set
of observations [19]. In this thesis, the purpose of the chi-square test is to detect if the
observed system behaviors in the new log data fit the statistical model built based on history
log data in the baseline.

The chi-square statistic is a sum of differences between observed and expected outcome
frequencies, each squared and divided by the expectation:

∑ −
=

E
EOX

2
2)(

Equation 3.4: Chi-square function

Where:

O = an observed frequency

E = an expected (theoretical) frequency, asserted by the null hypothesis

The result of chi-square can be compared to the chi-square distribution table to determine
the goodness of fit.

3.10.1 Degrees of Freedom

In statistics, the phrase degree of freedom is used to describe the number of values in the
final calculation of a statistic that are free to vary [17]. In order to determine the degrees of
freedom in a chi-square distribution, one takes the total number of columns of observed

 CHAPTER 3. PROBLEM DETERMINATION

47

frequencies, subtracts one and then multiples by the number of rows of observed frequencies
minus one.

)1__(*)1__(__ −−= ColumnsOfNumberRowsOfNumberFreedomOfDegree

Equation 3.5: The formula to calculate degree of freedom

In our tests, the maximum number of patterns found in the log data sets could be more than
300, which results in a very large degree of freedom. After grouping log patterns using the
algorithm in the previous section, the number of features is significantly reduced in the chi-
square test performed within each group.

3.10.2 Chi-square Distribution Table

Table 3.12 shows the critical values of the chi-square distribution with the corresponding
probability and degrees of freedom. To determine the critical value of a chi-square
distribution with a specific degree of freedom, we could go to the given probability column
and the desired degree of freedom row. For example, the critical value for a chi-square test
with .05 probability and four degrees of freedom is 9.48773, as shown in the italic and bold
text in Table 3.12.

Probability

Degree
of Freedom

.250 .100 .050 .025

1 1.32330 2.70554 3.84146 5.02389

2 2.77259 4.60517 5.99146 7.37776

3 4.10834 6.25139 7.81473 9.34840

4 5.38527 7.77944 9.48773 11.14329

5 6.62568 9.23636 11.07050 12.83250

6 7.84080 10.64464 12.59159 14.44938

7 9.03715 12.01704 14.06714 16.01276

8 10.21885 13.36157 15.50731 17.53455

… … … … …

Table 3.12: Critical values of chi-square distribution

Since a chi-square probability of less than or equal to 0.05 (or the chi-square statistic being
at or larger than the 0.05 critical point) is commonly used in chi-square tests[18], we also

 CHAPTER 3. PROBLEM DETERMINATION

48

choose 0.05 as the default probability for our chi-square test. If the chi-square value
computed in our test is equal to or higher than the critical value given a 0.05 probability, then
we should reject the null hypothesis that the data are normally distributed. In other words, the
observed behaviors in the new log data do not fit the statistical model built based on the log
data in the baseline. The most possible reason would be that there is a significant change in
the system behaviors.

The chi-square test can be used to assess two types of comparisons: tests of goodness of fit
and tests of independence. In our thesis, we use the first type of the chi-square distribution to
determine whether the test data fits the observed distribution in the baseline. For instance, if
we assume each row represents the data in a time window and the size of sliding window is
three, then the first three rows of data will be regarded as the baseline that represents normal
behaviors in the system. The purpose of the first chi-square goodness of fit test is to find out
whether the data in the current time window, the 4th row, follows the distribution of the log
patterns observed in the first three rows.

 Column 1 Column 2 Column 3 Row total
Row 1 a b c R1=a+b+c
Row 2 d e f R2=d+e+f
Row 3 g h i R3=g+h+i
Column total C1=a+d+g C2=b+e+h C3=c+f+i T=a+b+c+d+e+f+g+h+i
Row 4 j k l R4=j+k+l

Table 3.13: How to calculate chi-square for goodness-of-fit Test

Since the expected values of the fourth row are still unknown at this time, we need to
calculate them based on the first three rows. In general, the "theoretical frequency" for any
cell (under the null hypothesis) in a goodness of fit test is calculated as [18]:

nNEi /=

For instance, the expected value of cell [4, 1] (row 4, column 1) should be

3/)(]1,3[gdaE ++=

However, such an expected value does not fit the dynamic workload in our log training
data. Considering the log data collected at midnight when most people are not working, there
would be less email traffic in the system. For instance, the amount of email traffic would
gradually decrease to a small amount at midnight, as shown in Table 3.14.

Time span Number of log pattern1 Number of log pattern2 Number of log pattern3

 CHAPTER 3. PROBLEM DETERMINATION

49

10:00pm to 11:00pm 2000 200 20
11:00pm to 12:00pm 1000 100 10
12:00pm to 1:00am 500 50 5
1:00am to 2:00am 250 25 2

Table 3.14: Network traffic around the midnight

If we use the average mean as expected value, then the expected value for cell [4, 1] (1:00
am to 2:00 am) would be (2000 + 1000+ 500)/3 = 1167. Hence the computed chi-square
value will be much higher than the critical value, which means the distribution of the current
time window (the 4th row) does not fit the distribution in the current baseline (the 1st to the 3rd
rows). However, in reality, if we look at the big picture, the numbers of all log patterns
decrease at the same pace, which perfectly matches the nature trend of workload in an
Internet service like BIS during midnight. In such a case, we could not simply draw a
conclusion that there is a significant change or a problem in the system.

To resolve this issue, we develop use a modified version of the method originally used to
calculate the expected values in chi-square test of independence. This method shows a very
good result in our test. In the original chi-square independence test, the expected value of cell
[4, 1] (row 4, column 1) should be calculated as below

Expected Value[4,1]= 4*
4

1)(*)(R
RT

jClkj
lkjihgfedcba

jgda
⎟
⎠
⎞

⎜
⎝
⎛

+
+

=++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++++++++

+++

In our modified version, since the last row should not be included in the baseline, the
formula to compute the expected value [4, 1] is changed as below.

Expected Value [4, 1] = 4*1)(*)(R
T
Clkj

ihgfedcba
gda

⎟
⎠
⎞

⎜
⎝
⎛=++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++++++

++

So the corresponding chi-square value of cell [4, 1] can be calculated as

4*1

4*1
2

2
]1,4[

R
T
C

R
T
Cg

X
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

=

 And the final chi-square value should be ∑
=

−
=

3

1],4[

2
],4[],4[2

,4

)(

c c

cc
c E

EO
X

We believe such a formula is more suitable to our log analysis because it reduces the false
alarms introduced by the reasonable changes of system behaviors or network traffic in a

 CHAPTER 3. PROBLEM DETERMINATION

50

message-flow Internet service. The biggest difference between our method and the chi-square
test of independence is that we remove the last row from the total value. On the contrary, the
last row will be included in the total value in the chi-square test of independence.

In a chi-square goodness of fit test, the degree of freedom equals to the number of log
patterns minus one. Entering the chi-square distribution in Table 3.12 with a given degree of
freedom and a 0.05 probability, we can find the corresponding critical value.

If the chi-square value of the current time window is smaller than the computed critical
value, we accept the null hypothesis that the new row and the sliding window have equal or
similar distribution. In other words, we believe there are no significant changes of log
patterns in the current time window when compared to the baseline.

Once the chi-square test is done in the current time window, we shift or freeze the baseline
and the current time window according to the test result. The detailed steps and related
algorithm has already been discussed in the section 3.8.3.

51

Chapter 4

Evaluation

In this chapter, we discuss seven log data sets generated by the Blackberry Internet Service
(BIS) system to evaluate our solution. We inject faults in a simulation environment and
evaluate how well our proposed approach fares in detecting anomalies.

4.1 Simulation Environment

Our simulation test-bed, shown in Figure 4.1, includes a workload generator called
EmailSimulator, two components including CentralProcess1 and CentralProcess2 that handle
most of the business logic, a database application server that stores user information, and a
GSM Network Simulator that simulates the requests and responses from Blackberry devices.
There are two major types of messages in the simulation environment. The first one is called
Message To Handheld (MTH), which is sent from the EmailSimulator to the BIS engine and
then delivered to the handheld. The other one is called Message From Handheld (MFH) that
is sent from handheld to BIS and eventually delivered to the EmailSimulator.

Figure 4.1: Architecture of the simulation environment

 CHAPTER 4. EVALUATION

52

The EmailSimulator generates steady MTH traffic by sending a fixed number of emails per
second to the CentralProcess1 server via SMTP and HTTP ports. The MTH messages travel
through the CentralProcess1 server, the database application server, and the CentralProcess2
server. Eventually it arrives at the GSM Network Simulator. At the same time, the GSM
Network Simulator generates MFH messages that will be delivered to the EmailSimulator in
a reversed order from which the MTH travels.

In our test, we send two MTH messages (one via SMTP and one via HTTP) per second
from the EmailSimulator to the CentralProcess1, as well as one MFH message per second
from the GSM Network Simulator to the CentralProcess2. We also develop a fault injection
module that uses some scripts to inject faults into the systems to simulate different types of
problems. The monitor module collects the corresponding log files and system statuses from
the simulation environment.

4.2 Parameters for the Simulation Environment

Parameter Value Description

Time window length 1
minute

The number of log patterns in the log files will be aggregated for
each period of 1 minute.

Baseline size 5 A baseline is composed of 5 continuous time windows

N support for sliding window 2 A problem is detected if there is a sequence of N windows where
the distribution of the observed log patterns does not fit the baseline.

Normal processing time 1
second

BIN number 2

Data is divided into 2 bins: Messages completed in 1 second will be
placed in BIN1; otherwise they will be placed in BIN2

Table 4.1: Parameters for chi-square test

The parameter “normal processing time” is based on our expectation for the system that all
messages should be completed in 1 second in a LAN environment. As for other parameters,
as long as there are enough samples generated during each time window, they should not
have a significant impact on our test results. Moreover, the same parameters will be used to
detect seven different types of faults, including network errors, application errors, and
performance issues, so we can assume our problem detection algorithm does not heavily rely
on the parameter tuning.

 CHAPTER 4. EVALUATION

53

4.3 Case 1: Database Application Server Down

The first fault simulates a system error where a critical component such as the database
server is down in the system. At the beginning, the simulation environment will be running
without any problems for 25 minutes. Then we manually shutdown the database application
server by running “kill -9 PID” commands on Linux. At this point, we expect the log patterns
to change significantly because lots of warnings and errors should be logged when the
database server is down. Since these warnings and errors would not be observed in the
baseline, we have an expectation that the distribution of the log patterns during the downtime
of the database does not fit the distribution in the baseline. After the database server has been
shut down for 5 minutes, we restart the database server. In such a case, the log patterns are
expected to change back to the ones in the baseline gradually. We repeat the shutdown-restart
test scenario three times, so the entire test takes about 90 minutes ((25 + 5)*3) to run.

4.3.1 Log Data Set

Below is a summary table about the log data we collect in the first test case. There are total
four log files generated by two components as each component writes logs to a log file that
rotates every hour.

Table 4.2: Log data information

GroupID=1, PatternID=1, Events=1,2,3,4,5,59,60,61,62,64,
GroupID=1, PatternID=10, Events=1,4,5,6,9,19,20,22,50,60,61,62,64,76,

GroupID=2, PatternID=2,

Name Value

Number of log files 4

Number of components 2

Total log file size 70 Mbytes

Number of log lines generated by CentralProcess1 214,438

Number of log lines generated by CentralProcess2 67,885

Number of identified log events 61

Number of identified log patterns 12

Number of identified log pattern groups 4

 CHAPTER 4. EVALUATION

54

Events=1,4,5,6,9,19,20,22,33,35,38,39,40,41,43,44,50,60,61,62,63,64,65,70,71,72,73,82,83,87,
GroupID=2, PatternID=5,
Events=1,4,5,6,9,19,20,22,35,38,39,40,41,43,44,45,60,61,62,63,64,65,70,71,72,73,74,82,83,84,87,
GroupID=2, PatternID=6, Events=1,4,5,6,9,19,20,22,33,35,38,39,40,41,43,60,61,62,64,66,70,71,72,73,
GroupID=2, PatternID=11,
Events=1,4,5,6,9,19,20,22,35,38,39,40,41,43,44,45,51,52,53,60,61,62,63,64,65,70,72,73,74,82,83,84,87,
GroupID=2, PatternID=12,
Events=1,4,5,6,9,19,20,22,33,35,38,39,40,41,43,44,53,60,61,62,63,64,65,70,72,73,74,82,83,84,87,
GroupID=2, PatternID=13,
Events=1,4,5,6,9,19,20,22,35,38,39,40,41,43,44,45,50,60,61,62,63,64,65,70,71,72,73,82,83,87,

GroupID=3, PatternID=7, Events=33,35,38,39,40,46,47,64,66,69,73,77,85,
GroupID=3, PatternID=8, Events=33,35,38,39,40,46,64,66,69,71,73,77,85,

GroupID=4, PatternID=9, Events=35,38,39,40,41,46,64,67,70,72,73,85,86,
GroupID=4, PatternID=3,
Events=5,10,12,13,14,15,16,21,23,25,27,29,35,38,39,40,41,43,54,56,57,58,70,71,72,73,78,79,80,
GroupID=4, PatternID=4, Events=10,17,18,21,23,25,27,28,

Figure 4.2: Identified log pattern groups

There are four groups of log patterns identified in the log data. We manually review the log
text and summarize each log pattern group in the following table.

Table 4.3: Descriptions of the log pattern groups

Group ID Description

1 Other Jobs

2 MTH (Message to Handheld)

3 Other Jobs

4 MFH (Message from Handheld)

 CHAPTER 4. EVALUATION

55

4.3.2 Chi-square Test Results

Number of abnormal log pattern groups

0

0.5

1

1.5

2

2.5

15 26 28 30 32 56 58 60 62 86 88 90 92 95

Number of
abnormal log
pattern groups

Problem
occurs

Problem
occurs

Problem
occurs

Problem
resolved

Problem
resolved

Problem
resolved

Figure 4.3: Number of abnormal log pattern groups

Percentage of abnormal log pattern groups

0

20

40

60

80

100

120

26 28 30 32 56 58 60 62 86 88 90 92 95 9899

Percentage of
abnormal log
pattern groups

Problem
occurs

Problem
occurs

Problem
occurs

Problem
resolved

Problem
resolved

Problem
resolved

Figure 4.4: Percentage of abnormal log pattern groups

The solid line in Figure 4.3 represents the number of abnormal log pattern groups detected by
the chi-square test using our sliding window approach discussed in 3.8.3. The dashed line in
Figure 4.4 means the percentage of abnormal groups, which equals to the number of
abnormal groups divided by the total number of groups observed during that particular time

 CHAPTER 4. EVALUATION

56

window. The boxes with text and arrows point to the time windows where the problem or the
system recovery is detected by our framework.

Point Time window Descriptions of changes in the system
26 20091022213851 to 20091022213951 The first problem occurs at 20081022213806
32 20091022214351 to 20091022214451 The first problem is solved at 20081022214306
56 20091022220851 to 20091022220951 The second problem occurs at 20081022220806
62 20091022221351 to 20091022221451 The second problem is solved at 20081022221307
86 20091022223851 to 20091022223951 The third problem occurs 20081022223807
92 20091022224351 to 20091022224451 The third problem is solved at 20081022224307

Table 4.4: Associations between points and timestamp

As illustrated in Table 4.4, the faults and the recovery all occur in the middle of the time
window and these six changes are all detected immediately in the next time windows. In the
following sections, we will discuss the changes of system status one by one.

• Problem occurs: System status changes from normal to abnormal
 Figure 4.3 shows that at the 26th, 56th and 86th points on the solid line, two groups of

patterns are detected as abnormal groups in those time windows. At the same time, the
dashed line also indicates 66.5% or 100% groups are marked as abnormal. These non-zero
numbers indicate that a problem occurred in the system. The abnormal groups for this fault
include group 2 and group 4, which are associated with MTH and MFH messages according
to Table 4.3. This fault affects all components that depend on the database server. Therefore,
we would suspect a shared component such as the base server is causing the problem.

Timestamp Groups marked as abnormal Number of log pattern 11
20091022220551.00 n/a 0
20091022220651.00 n/a 0
20091022220751.00 n/a 3
20091022220851.00 Group2; Group4 2
20091022220951.00 Group2; Group4 6
20091022221051.00 Group2; Group4 4
20091022221151.00 Group2 8
20091022221251.00 Group2 5

Table 4.5: Log pattern groups marked as abnormal when the first fault is injected

Furthermore, as shown in Table 4.5, there is a significant change in the number of pattern
11 in the MTH log pattern group when the problem occurs. As illustrated in Figure 4.5, this
pattern actually represents the warning events that would be logged when a database server is

 CHAPTER 4. EVALUATION

57

not available. This finding confirms our suspicion that the root cause is in the database, so
system administrators can take corresponding actions to resolve the problem.
…
LogEventID=51, LogLine=Oct 22 20:38:11 host1 CentralProcess1[21451]: WARNING,Connection lost
reconnect,31968176,67700,ConnectionPool::GrabConnection,"pool=LBAC_POOL,host=local”
LogEventID=52, LogLine=Oct 22 20:38:11 host1 CentralProcess1[21451]: WARNING,Set host not
available,31968176,67700,ConnectionPool::SetHostStatus,"pool=LBAC_POOL,host=local”
LogEventID=84, LogLine=Oct 22 20:38:11 host1 CentralProcess1[21451]:
[USER_CONNECTOR][DBConnectorManager::GetDatabaseServer],Event=grab_db_connection_failed,Desc
=asyncid=67538, jobid=67700, userid=123456789, serviceid=TEST, LOG_LEVEL=WARNING
…

Figure 4.5: Sample log events in the log pattern 11

Three minutes (three time windows) after the problem occurs, the number of abnormal log
pattern group drops to one and the MFH group 4 previously marked as abnormal disappears
on the figure. The reason is that the BIS system stops processing MFH messages when the
database is down. In such a case, there would be not enough samples for the chi-square test
to compare the distribution, so this MFH group is removed from the chi-square test result.

• Problems last: System status remains abnormal
The continuous non-zero values of abnormal groups in the five “Bad” windows indicate

the problem lasts during the five minutes, which also matches the actual situation.

• Problems resolved: System status changes from abnormal to normal
At the 32nd, 62nd and 92nd points, the values and the percentage of abnormal groups drops

back to zero after the database server is restarted. This test proves that our algorithm is not
only capable of detecting problems but also allows us to discover system recoveries, which
can help us properly understand the status of the system.

4.4 Case 2: TCP Connection Error

This fault simulates a network error when the TCP connections from the CentralProcess1 and
CentralProcess2 components are randomly closed by the database application server. We
modify the source code of the database application server to explicitly close 25% of the TCP
client connections by calling the standard close() socket API function. The whole experiment
lasts 20 minutes. In the first 9 minutes, the system is running fault-free. At 9:01, we activate
a fault in our target system, so the problem actually occurs in the 10th time window.
According to our observation, once a TCP connection is closed, both of the CentralProcess1

 CHAPTER 4. EVALUATION

58

and the CentralProcess2 components start to output warning and error messages in the event
logs.

Table 4.6: Log data information

Problem detection results for the TCP connection error

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

Number of abnormal
log pattern groups

Percentage of
abnormal log pattern
groups

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2

Percentage of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 66.7 66.7 100 66.7 66.7 66.7 66.7 100 66.7 66.7 50

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

Problem
occurs

Problem
lasts

Figure 4.6: Problem determination results for the TCP connection error

Name Value

Number of log files 2

Number of components 2

Total log file size 33 Mbytes

Number of log lines generated by CentralProcess1 109,615

Number of log lines generated by CentralProcess2 28,917

Number of identified log events 71

Number of identify log patterns 12

Number of identified log pattern groups 4

 CHAPTER 4. EVALUATION

59

Figure 4.6 shows that the problem is detected correctly and it lasts until the test is finished.
Though this test result looks quite similar to the previous one, the major difference lies in
how the messages are being retried in these two test cases.
GroupID=1, PatternID=1,
Events=1,2,5,6,7,17,18,20,30,31,32,34,35,36,37,40,42,43,44,63,64,65,66,67,68,69,70,71,72,85,86,
GroupID=1, PatternID=6,
Events=1,2,5,6,7,17,18,20,31,32,34,35,36,37,40,42,43,44,45,63,64,65,66,67,68,69,70,71,72,85,86,
GroupID=1, PatternID=7, Events=1,2,5,6,7,17,18,20,30,31,32,34,35,36,37,40,46,63,64,65,66,67,68,69,70,71,72,
GroupID=1, PatternID=8, Events=1,2,5,6,7,17,18,20,30,31,32,34,35,36,37,40,47,63,64,65,66,67,68,69,70,71,72,
GroupID=1, PatternID=13,
Events=1,2,5,6,7,17,18,20,31,32,34,35,36,37,40,45,46,63,64,65,66,67,68,69,70,71,72,
GroupID=2, PatternID=2,
Events=7,8,10,11,13,14,19,21,23,24,26,29,32,34,35,36,37,42,43,44,54,56,59,67,68,76,77,78,79,81,85,86,
GroupID=2, PatternID=4,
Events=7,8,10,11,13,14,19,21,23,25,26,29,32,34,35,36,37,49,54,56,59,62,67,68,73,76,77,80,82,84,85,86,87,90,
GroupID=2, PatternID=17, Events=7,8,10,11,13,14,19,21,23,26,29,32,34,35,36,37,49,54,59,60,68,77,85,86,89,
GroupID=3, PatternID=11, Events=30,31,32,34,35,36,37,49,50,65,68,70,73,85,86,
GroupID=3, PatternID=12, Events=31,32,34,35,36,37,45,49,50,52,53,65,68,70,73,85,86,
GroupID=4, PatternID=5, Events=8,15,16,19,26,28,

Figure 4.7: Identified log pattern groups

Table 4.7: Log pattern groups

If we compare the log pattern groups between these two tests, we can find there is a big
difference. In the previous test case, the CentralProcess1 and CentralProcess2 components
keep trying to reconnect to the database server. However, they do not succeed because the
database is down. The database is marked as unavailable and the whole system stops
functioning. During the downtime, the whole system does not accept any new requests.
Therefore, most of the MTH and MFH messages in the test case 1 are completed in 1 second
when the database is up, which meets our expectation of the performance.

In this test, since we only randomly close 25% of the TCP connections. When a database
client tries to reconnect, there is a 75% chance that a new TCP connection will be

Group ID Description

1 MTH (Message to Handheld)

2 MFH (Message from Handheld)

3 MTH(failures)

4 MFH (failures)

 CHAPTER 4. EVALUATION

60

successfully established. Therefore, the entire system is still functioning. However, if the
TCP connection is still not established after a certain numbers of retries, some messages
would be considered as timed out and then dropped from the processing queue. Hence, the
log pattern group 3 and log pattern group 4, which are two different code paths generated by
the timeout warnings and error messages, can be observed during the “Bad” time windows.
However, due to the low probability that a message will be actually dropped (e.g., if a
message is tried 3 times, then the probability it will be dropped due to the TCP connection
error is 25%*25%*25%=1.5625%), the number of samples of the abnormal groups generated
during the “Bad” windows in fact does not meet the minimum number of samples required
by a chi-square test.

Fortunately, each time when the same message is retried, the CentralProcess1 and
CentralProcess2 will generate event logs that indicate the message with the same message ID
is being resent. According to our method of calculating the processing time of a message,
these retried messages will be put in BIN2 of each pattern. As illustrated in Table 4.8, the
significant change between two BINS starting from 09:01 will be detected by our chi-square
goodness of fit test.

Time window Pattern1_bin1 Pattern1_bin2 Pattern6_bin1 Pattern6_bin2
6:01 196 1 136 2
7:01 200 3 141 3
8:01 201 0 141 0
9:01 94 22 46 11

10:01 89 29 46 13
11:01 78 35 35 15
12:01 78 26 28 17
13:01 80 25 27 17

Table 4.8: Number of log patterns in group 1 divided into two bins

 CHAPTER 4. EVALUATION

61

Potential false alarms for the TCP connection error

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

1.2

Number of
abnormal log
pattern groups

Number of
potential false
alarms
automatically
corrected by our
sliding window
apporach

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2

Number of potential false alarms automatically
corrected by our sliding window apporach

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

Problem
occurs

Problem
lastsPotential

False
alarms

Figure 4.8: Potential false alarms automatically corrected for the TCP connection error

Figure 4.8 illustrates in time window 8, a potential false alarm is automatically corrected
by our sliding window algorithm. As we discussed in Section 3.8.3, if and only if there are a
sequential N (N=2 in this test) time windows identified as “Bad” windows, then a problem is
confirmed. Otherwise, the current window temporarily marked as “Bad” window turns out to
be a potential false alarm.

 Time window Timestamp Groups temporarily marked as abnormal
W7 6:01 N/A
W8 7:01 Group1
W9 8:01 N/A

Table 4.9: Log pattern groups marked as abnormal in our chi-square test

As shown in Table 4.9, although the log pattern group 1 is temporarily marked as an
abnormal group in the time window 8, it is not detected as a “Bad” window in the next time
window 9. Hence, this potential false alarm is automatically corrected. The test result also
proves that our sliding window technique is able to automatically detect and correct potential
false alarms in our chi-square test.

 CHAPTER 4. EVALUATION

62

In sum, our algorithm has been proven capable of detecting the following problems in test
case 1 and test case 2:

Case 1: System errors represented by the log patterns of warning or error messages that are
not observed in the baseline.

Case 2: If there are not enough samples of warning and error log patterns, we can still use
the distribution of the two bins of messages to identify performance issues or abnormal
behaviors caused by abnormal processing time.

4.5 Case 3: Invalid User Status

In this test case, we simulate an application error where the statuses of 25% of users are
accidentally marked as invalid in the database. This is a very common error when system
administrators are performing database operations during system upgrades. The problem also
occurs in the 10th time window, which is between 9:01 and 10:00. The Test result shows that
the problem I correctly detected without any potential false alarms.

The log events and log patterns are similar to the ones in test case 2 except that the
abnormal change in the log patterns is related to the user errors instead of TCP errors, so we
are not going to give detailed analysis here.

Table 4.10: Log data information

Name Value

Number of log files 2

Number of components 2

Total log file size 40 Mbytes

Number of log lines generated by CentralProcess1 144,294

Number of log lines generated by CentralProcess2 32,0000

Number of identified log events 76

Number of identify log patterns 16

Number of identified log pattern groups 5

 CHAPTER 4. EVALUATION

63

Problem detection results for invalid user status

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

30

35

40

45

Number of
abnormal
log pattern
groups

Percentage
of abnormal
log pattern
groups

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2

Percentage of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 40 40 40 40 40 40 40 40 40 40

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19

Problem
occurs

Problem
lasts

Figure 4.9: Problem detection results for the invalid user status

4.6 Case 4 to Case 7: Performance Issues

In the first three test cases, we have already simulated system errors such as unavailable hosts
as well as application errors like invalid user statuses. In this section, we simulate
performance issues in a system by manually injecting some delay into the processing of
messages.

Since we assume most of the messages will be finished in less than a second in our testing
environment, we define 2.5 seconds as a low-level delay and 5 seconds as a high-level delay.
In like manner, 25% of user impact ratio is defined as a low-level impact and 50% of user
impact ratio is defined as a high-level impact. All possible combinations of these two levels
of problems are shown in the following table.

Test scenario Low level delay(2.5 seconds) High level delay(5 seconds)

Low-level impact ratio

(25%)

Inject 2.5 seconds delay into 25%

messages

Inject 5 seconds delay into 25%

messages

High level impact ratio Inject 2.5 seconds delay into 50% of Inject 5 seconds delay into 50%

 CHAPTER 4. EVALUATION

64

(50%) messages messages

Table 4.11: Combination of impact ratio levels and delay levels

For each of the impact levels and delay levels, the whole test lasts for 20 minutes. In the
first 9 minutes, the system is running without any problems. At 9:01, we start to inject the
fault, so the problem always occurs in the 10th time window. Afterwards, the problem lasts
until the end of the test. We modify the source code in the database application server to call
the sleep() function before sending back responses to the CentralProcess1 and
CentralProcess2.

Table 4.12: Log data information

The log data information about these four test cases is illustrated in Table 4.12. One
interesting factor we can find in the table is that in most cases, if the impact ratio of two sets
of log data is identical, then there would be more log events, more log patterns or more log
groups identified in the log data set with higher levels of delay. For instance, the number of
log events (59) and the number of log patterns (8) in the second column “25% ratio/5.0s
delay” are larger than the values (51 & 7) of the corresponding cells in the first column. The
same rule can be also observed in the data with identical delay but different impact ratio. Our
explanation for such phenomenon is that when more users are get impacted by the problem
or the injected delay is higher, the BIS engine system will naturally generate more types of

Name 25% ratio/2.5s
delay

25% ratio/5.0s
delay

50% ratio/2.5s
delay

50% ratio/5.0s
delay

Number of log files 4 2 2 4

Total log file size 22.6 M 20.3M 20.4M 18.9M

Number of log lines generated by
CentralProcess1 81,121 71,686 72,177 65,023

Number of log lines generated by
CentralProcess2 23,070 21,839 21,972 21,400

Number of identified Log events 51 59 68 61

Number of identified log patterns 7 8 5 9

Number of identified log pattern
groups 2 2 2 3

 CHAPTER 4. EVALUATION

65

warning and error logs and thus create more code paths. In the next sections, we describe the
test result of each test scenario.

4.6.1 Case 4: 25% Impact Ratio and 2.5 Seconds Delay

GroupID=1, PatternID=1,
Events=1,2,5,6,7,14,15,17,18,19,20,22,23,24,25,26,29,30,31,32,35,36,40,48,49,50,51,52,53,54,55,56,
GroupID=1, PatternID=3,
Events=1,2,5,6,7,14,15,17,19,20,22,23,24,25,26,29,30,31,32,34,35,36,40,42,48,49,50,51,52,53,54,55,56,
GroupID=1, PatternID=4, Events=19,20,22,23,24,25,26,29,30,31,32,34,35,36,37,38,39,49,51,52,53,54,
GroupID=1, PatternID=5, Events=1,2,5,6,7,14,15,17,19,20,29,30,31,32,34,36,41,48,49,50,53,54,55,56,
GroupID=1, PatternID=6,
Events=1,2,5,6,7,14,15,17,18,19,20,22,23,24,25,26,29,30,31,32,42,48,49,50,51,52,53,54,55,56,
GroupID=1, PatternID=7, Events=1,2,5,6,7,14,15,17,18,19,20,29,30,31,32,41,48,49,50,53,54,55,56,

GroupID=2, PatternID=2,
Events=7,8,9,10,11,12,13,16,20,22,23,24,25,26,29,30,31,32,35,36,40,44,45,46,47,51,52,57,58,60,62,63,

Figure 4.10: Identified log pattern groups

Table 4.13: Log pattern groups

There are only two groups of log patterns found in this case. In fact, after manually
reviewing the events identified in this log data set, we could not find any warnings or errors.
The reason could be that the database operation timeout is set to 3 seconds in our test, so no
retried or timeout log events would be generated. Hence, the problem detected in this test
case is purely based on the different distributions of message processing time.

Time window Pattern1_bin1 Pattern1_bin2 Pattern6_bin1 Pattern6_bin2
6:01 105 1 43 1
7:01 104 0 42 0
8:01 95 3 34 1
9:01 82 12 32 7

10:01 4 36 2 14
11:01 8 39 2 16
12:01 12 37 6 15
13:01 13 33 2 11

Table 4.14: Messages divided into bins based on processing time

Group ID Description

1 MTH (Message to Handheld)

2 MFH (Message from Handheld)

 CHAPTER 4. EVALUATION

66

As shown in Table 4.14, there is a significant change in the distribution between BIN1 and
BIN2 starting from 9:01, which can be detected by our chi-square. The overall detection
results are shown in the following figure.

Problems detection results for 25% ratio and 2.5 seconds delay

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

Number of abnormal
log pattern groups

Percentage of
abnormal log pattern
groups

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2

Percentage of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10 w 11 w 12 w 13 w 14 w 15 w 16 w 17 w 18 w 19 w 20

Problem
occurs

Problem
lasts

Figure 4.11: Problem detection results for 25% ratio and 2.5 seconds delay

 CHAPTER 4. EVALUATION

67

Potential false alarms for 25% ratio and 2.5 seconds delay

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

1.2

Number of abnormal
log pattern groups

Number of potential
false alarms

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2

Number of potential false alarms 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10 w 11 w 12 w 13 w 14 w 15 w 16 w 17 w 18 w 19 w 20

Problem
occurs

Problem
lasts

False
alarms

Figure 4.12: Number of potential false alarms for 25% ratio and 2.5 seconds delay

These potential false alarms are actually caused by a log pattern that indicates the user
information can be retrieved from the cache instead of querying the database if the user data
has not expired in the memory yet. Since these are not common log patterns that can be
observed in sequential N time windows, they are automatically corrected by our sliding
window algorithm.

 CHAPTER 4. EVALUATION

68

4.6.2 Case 5: 50% Impact Ratio and 5 Seconds Delay

Problem detection results for 50% ratio and 5 seconds delay

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

Number of
abnormal log
pattern groups

Percentage of
abnormal log
pattern groups

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 2 2 2 1 1 1 1 2 2 2 2

Percentage of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 100 100 66.7 33.3 33.3 33.3 50 66.7 66.7 66.7 66.7

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

Problem
occurs

Problem
lasts

Figure 4.13: Problem detection results for 50% ratio and 5 seconds delay

In this test, the CentralProcess2 connected to the database will regard the injected 5
seconds delay as a symbol that the database is temporarily down and therefore refuse to
accept new requests from the GSM Network Simulator. For instance, as shown in Table 4.15,
the number of pattern 1 in the MFH group decreases to a very small number starting from the
time window between 9:01 and 10:01. On the contrary, the total number of MTH messages
remains almost the same, but the distribution of messages in two bins changes significantly
after the problem occurs. If we compare the number of pattern 2 in BIN1 and BIN2 before
and after the time window 9:01, we can see that the total number of log pattern 2 does not
change significantly. However, the distribution of messages in two bins is reversed, which
can be also detected by our chi-square goodness of fit test.

Time window Pattern1_bin1 Pattern1_bin2 Pattern2_bin1 Pattern2_bin2
6:01 102 2 56 4
7:01 96 8 47 13
8:01 91 2 54 6
9:01 1 3 15 50
10:01 2 3 33 61

 CHAPTER 4. EVALUATION

69

11:01 2 1 31 62
12:01 6 0 31 64
13:01 4 0 30 64

Table 4.15: Messages divided into bins based on processing time

Potential false alarms automatically corrected for 50% ratio and 5 seconds delay

0

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

Number of
abnormal log
pattern groups

Number of
potential false
alarms

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 100 100 66.7 33.3 33.3 33.3 50 66.7 66.7 66.7 66.7

Number of potential false alarms 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

Problem
lasts

Two
potential
false alarms

Problem
occurs

Figure 4.14: Potential false alarms corrected by our sliding window approach

Again, two potential false alarms are automatically corrected by our sliding window
approach.

4.6.3 Case 6: 25% Impact Ratio and 5 Seconds Delay

The test results and the root cause of the problems in this log data set are identical to the case
5, so we do not give further analysis here.

 CHAPTER 4. EVALUATION

70

Problem detection results for 25% ratio and 5 seconds delay

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

Number of
abnormal log
pattern groups

Number of false
alarms

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2

Number of false alarms 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10 w 11 w 12 w 13 w 14 w 15 w 16 w 17 w 18 w 19 w 20

Problem
occurs

Problem
lasts

Two potential false
alarms

Figure 4.15: Problem detection results for 25% ratio and 5 seconds delay

4.6.4 Case 7: 50% Impact Ratio and 2.5 Seconds Delay

Problem detection results for 50% ratio and 2.5 seconds delay

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

Number of
abnormal log
pattern groups

Percentage of
abnormal log
pattern groups

Number of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 0

Percentage of abnormal log pattern groups 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 0

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10 w 11 w 12 w 13 w 14 w 15 w 16 w 17 w 18 w 19 w 20

Problem
actually
occurs

Problem
detected

 CHAPTER 4. EVALUATION

71

Figure 4.16: Problem detection results for 50% ratio and 2.5 seconds delay

The test results and the root cause of the problems in this log data set are almost identical to
the case 3. However, after the problem occurs in the 10th time window, our algorithm does
not detect the problem immediately. Instead, the problem is detected in the 11th time window.
As shown in Table 4.16, there is a change in the number of log patterns in the 10th time
window between 9:01 and 10:01. However, such a change is not considered as significant in
our chi-square test, so our chi-square accepts that the null hypothesis that the data is normally
distributed if compared to the baseline. Since the injected performance impact is set to low
level in this test, we think such a delay in the detection result is reasonable. Furthermore, the
problem detection result can still help system administrators find the abnormal groups and
identify the root cause of the problem.

Time window Pattern1_bin1 Pattern1_bin2 Pattern4_bin1 Pattern4_bin2
6:01 94 0 25 0

7:01 99 0 21 0

8:01 92 0 28 0

9:01 56 6 11 2

10:01 2 4 1 1

11:01 6 4 0 1

12:01 4 3 2 2

13:01 3 3 2 2

Table 4.16: Messages divided into bins based on processing time

4.6.5 Conclusion

In the last four test cases, we reuse the parameters in the first three tests to perform chi-
square goodness of fit over the log data collected from the system where different levels of
impact ratio and performance delay are injected. The test results still show an excellent
accuracy. Therefore, if our model is properly trained for a particular system, we believe our
solution can be used to detect two major types of faults including system errors represented
by error event logs and performance issues indicated by abnormal processing time.

72

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we explore a new method of problem determination in message-flow Internet
services based on event log analysis. From our work, we can draw the following conclusions.

First, we define the concepts of log events and log patterns in a message-flow Internet
service where messages can be correlated by message ID. In such a system, the number of
log patterns and the processing time of messages during each time window can be used to
describe an accurate statistical model of the system.

Second, we develop a clustering algorithm that combines the “skip-whitespace” algorithm
and the SLCT algorithm to identify log events. In addition, we also describe how to identify
log patterns by correlating log events with the same message IDs, and develop a grouping
algorithm that divides the log patterns into different groups.

Third, we propose a modified version of the chi-square goodness of fit test with a sliding
window approach. Our sliding window algorithm can properly determine whether the
baseline and the current time window should be shifted or frozen according to the chi-square
result. The test results prove that our sliding window approach can significantly reduce the
false alarms in our chi-square goodness of fit test. Moreover, we also provide a visualization
diagram to indicate the number and the percentage of abnormal log pattern groups. With the
help of such system status information, developers and administrators can identify the root
causes of problems in a more straightforward way.

Last, we evaluate our solution with seven different types of log data sets collected from the
BIS engine, including system errors and application errors. According to the test results, our
solution shows promising accuracy.

From the discussion above, we conclude that our solution is a feasible and efficient
solution for problem determination in message-flow Internet services.

 CHAPTER 5. CONCLUSION AND FUTURE WORK

73

5.2 Future Work

There are still some potential extensions for our work, which include:

1. Though the test results in our simulation environment show high accuracy, we have
not finished the evaluation with the log data sets collected from our internal test
environments or even a production environment. The complexity of message-flow
systems and the nature of syslog mean that unlimited formats of text descriptions
could introduce many potential problems in the log event clustering and log pattern
clustering.

2. The parameters used in our algorithm are either hardcoded or determined according
to our performance requirement for the test environment. In the future, we want to
use machine learning to determine the proper values for these parameters
automatically.

3. Some fields in the syslog have not been used in our approach. For instance, the
values of the log severity field such as debugging, warning, and critical contain
very useful information about the system status. We could add these fields to the
input of our chi-square algorithm and give it a higher weight in the test.

4. There is much practical work left for other Internet services, especially the systems
without the concept of message ID. For example, we would like to apply our
framework to the Apache access logs and see if our solution could still correctly
determine problems. A possible change would be that in Apache access logs, a log
event can be equal to a log pattern since there is no concept of message ID and thus
there would be no correlation by message ID. Our expectation is that our chi-square
goodness of fit test with the sliding window approach can still be applied to the
statistical data of the Apache event logs.

74

References

[1] IBM Corporation. LTA (Log and Trace Analyzer) Version 1.0.1, manual. IBM Corporation,
2003.

[2] Rodrigo Fonseca George Porter Randy H. Katz Scott Shenker Ion Stoica. X-Trace: A
Pervasive Network Tracing Framework. 1999.

[3] Mike Y. Chen, Emre Kıcıman*, Eugene Fratkin*, Armando Fox*, Eric. Brewer. Pinpoint:
Problem Determination in Large, Dynamic Internet Services. 2002.

[4] Research In Motion. BIS (Blackberry Internet Service),
http://na.blackberry.com/eng/services/internet/. 2009.

[5] Stephen E. Automated System Monitoring and Notification With Swatch. 1993.

[6] Risto V. SEC- A lightweight event correlation tool. 2002.

[7] Jon Stearley. Towards Informatics analysis of syslog. 2004.

[8] Risto Vaarandi. A Data Clustering Algorithm for Mining patterns From Event Logs. 2003.

[9] Andreas Wespi, Marc Dacier and Herve Debar. An Intrusion Detection System based on the
Teiresias Pattern Discovery Algorithm. 1999.

[10] Sivan Sabato. Analyzing system Logs: A New View of What Is Important (event ranking).
2007.

[11] Sheng Ma and Joseph L. Hellerstein. Mining Partially Periodic Event Patterns with Unknown
Periods. 2001.

[12] Tao Li, Feng Liang, Sheng Ma. An Integrated Framework on Mining Logs Files for
Computing System Management. 2005.

[13] Yasuo Musashi, Ryuichi Matsuba. Statistical Analysis in Log Files of SMTP server and DNS.
2003.

[14] J.L.Hellerstein, S.Ma, C.-S.Perng. Discovering Actionable Patterns in Event Data. 2002.

[15] James E. Webviz: A Tool for World Wide Web access log analysis. 1994.

[16] Dan Gunter, Brian Tier. NetLogger: A Toolkit for Distributed System Performance Analysis.
2000.

75

[17] Wikipedia. Degrees of freedom,
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics). 2009.

[18] Wikipedia. Pearson’s chi-square test, http://en.wikipedia.org/wiki/Pearson%27s_chi-
square_test. 2009

[19] Wikipedia. Goodness of fit, http://en.wikipedia.org/wiki/Goodness_of_fit. 2009.

[20] J. Case. RFC1157: Simple Network Management Protocol (SNMP),
http://www.ietf.org/rfc/rfc1157.txt. 1990.

[21] J. L. Hellerstein, S. Ma, and C. Perng. Discovering actionable patterns in event data,. IBM
Systems Journal, vol. 41, no. 3, 2002.

[22] IBM. Tivoli Business Systems Manager, 2001, http://www.tivoli.com

[23] Common Base Event , http://www.ibm.com/developerworks/library/specification/ws-
cbe/

[24] Ruoming Jin Breitbart, Y. Muoh, C. Data Discretization Unification, 2007

[25] Sotiris Kotsiantis, Dimitris Kanellopoulos. Discretization Techniques: A recent survey. 2006.

[26] C. Lonvick. RFC 3164 - The BSD Syslog Protocol. 2001.

