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Abstract

Epilepsy is a nervous system disorder which affects approximately 1% of the
world’s population. Nearly 25% of people who have epilepsy are resistant to tra-
ditional treatments such as medication and are not candidates for surgery [32].
A new form of treatment has emerged that attempts to disrupt epileptic activity
in the brain by electrically stimulating neural tissue. However, the nature of this
treatment requires that it is able to accurately predict the onset of a seizure in or-
der to time the intervention correctly. Recent studies suggest that EEG recordings
may be generated by a low dimensional nonlinear process [35] [36] [6]. This paper
will investigate nonlinearity tests, as well as the use of methods from the theory
of nonlinear dynamical systems in the prediction of seizures or seizure like events
(SLEs) from complex time series. To do this data is generated from a nonlinear
dynamical system with a stochastic time dependent parameter, which attempts to
emulate the different states of an epileptic brain. Two kinds of nonlinearity tests
were used in simulations, one which specifies a model in the alternative hypothesis
(Keenans test) and one which simply states that the process is ‘not linear’ (Surro-
gate data test). The tests were applied to the generated data, as well as a short
EEG recording from a person with epilepsy and a simple nonstationary example.
Both tests were able to correctly identify the model as nonlinear, neither test iden-
tified the EEG data as nonlinear and there were conflicting results when the tests
were applied to nonstationary data. Estimates of the correlation dimension and
Lyapunov exponent were then used to classify the preictal state of the model data.
Correlation dimensions showed the best ability to classify states, so they were used
in the prediction algorithm. The results of the simulation was that the correlation
dimension was able to successfully predict half of the SLEs, however there was
an alarmingly high false prediction rate. These results suggest that even though
a complicated model may fit the data better, when dealing with prediction it is
usually best to use a simple model. A simpler approach with better understood
statistical properties may be able to improve on the prediction of SLEs as well as
reduce the computational cost of performing them.
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Chapter 1

Introduction

1.1 Introduction to Dynamical Systems

Dynamical systems theory has its roots in classical mechanics where it is used to
study problems such as the motion of a pendulum or the flow of water through a
pipe. Abstractly speaking, a dynamical system is a mathematical representation
of a deterministic rule which describes the time evolution of a state vector in its
ambient space. I.D. Chueshov [10] describes dynamical systems theory, ‘The math-
ematical theory of dynamical systems is based on the qualitative theory of ordinary
differential equations’. It is sometimes impossible and often difficult to find actual
solutions of differential equations, so instead the long term behaviour of a general
class of solutions is studied. If a population pt eventually dies out for all values
of p0 < 100 and survives if p0 ≥ 100 where p0 is the initial population, this is
an example of a qualitative feature. Qualitative features can also be based on the
parameter values of the system.

The following definition of a dynamical system comes from Chueshov’s book
Introduction to the Theory of Infinite-Dimensional Dissipative Dynamical Sys-
tems [10]. A dynamical system consists of two components which are represented
by the pair (P,St). The object P is a set which defines the phase or state space
of the dynamical system, each vector in the phase space corresponds to a unique
state of the system. The time evolution of the dynamical system is represented by
a family of continuous mappings St from P → P ∀ t ∈ T, where T is a set which is
closed under addition and has an identity element. It defines the time domain of
the dynamical system and it is usually of the form [t0,∞) for continuous systems or
{t ∈ N | t ≥ t0} for discrete systems where t0 is the identity element. The mappings
St must have two properties:

St1+t2 = St1 ◦ St2 ∀t1, t2 ∈ T

and
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St0 = I.

The first property means that it does not matter whether you propagate the whole
time in one step or break it down into two or more smaller steps, the final result
will be the same. The second property is that the map corresponding to the initial
time is the identity map, it does not change anything. In practice the mappings
St are rarely explicitly known, instead a system of differential equations (differ-
ence maps) or a time series of observed measurements is all the information that
is known about the system. Additionally, there often exist unknown parameters
within the system of differential equations which need to be estimated. There is
small class of systems for which the mappings St can be solved for analytically
using the differential equations, however this means that alternative methods must
be used to study the vast majority of systems.

Suppose the mappings St define a continuous function x(t)=Stx0 for x0 ∈ P. A
dynamical system is called linear if

dx

dt
(t) = Ax(t)

in the continuous case or
xt+1 = Axt

in the discrete case, for some constant matrix A. This is an important class of dy-
namical systems because if the initial condition x0 is known, the solution x(t) of the
differential equation (called a trajectory of the dynamical system) can be solved for
analytically. On the other hand, nonlinear dynamical systems, in general cannot
be solved analytically. This has led to the development of a number of qualitative
methods which can be used to help understand the system. One of the ways to
analyze a nonlinear system is to look at the long term behaviour of trajectories in
general, instead of the behaviour of a single trajectory with a specific initial con-
dition. This is often the case for ergodic systems where the long term behaviour is
the same for all initial conditions (see Section 1.1.2 for more on ergodicity).

A fixed point of a dynamical system is a point x∗ ∈ P such that Stx
∗ = x∗,

∀t ∈ T . Fixed points are also called stationary or equilibrium points. Fixed points
are useful for describing certain systems, however there are many simple situations
where they are inadequate for describing the behaviour of the trajectory. As an ex-
ample of this, a trajectory is called periodic if there exists t̄ such that x(t+ t̄) = x(t),
∀t ∈ T , t̄ is called the period of the trajectory. Another generalization of the concept
of fixed points is an invariant set, where a subset U ⊆ P is invariant if StU ⊆ U ,
∀t ∈ T . Fixed points, periodic points and invariant sets are examples of qualitative
behaviour and are excellent tools for describing the long term behaviour of certain
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Figure 1.1: Example of phase spaces showing periodic (top left), quasi-periodic (top
right) and chaotic (bottom) behaviour.

dynamical systems, however their definition is still not quite broad enough to de-
scribe the chaotic dynamics found in some systems.

1.1.1 Chaos

Before we describe the phenomenon known as chaos, we define the concept of an
attractor. This is important because chaotic dynamics are often exhibited in the
presence of an attractor. Collet and Eckman [34] informally describe an attractor
as, ‘the set of points to which most points evolve’. A set U ⊆ P is defined to be an
attractor if: U is an invariant set and U has the property that for every bounded
set V ⊆ P ,

lim
t→∞

sup
u∈U

inf
v∈V

d(Stu, v) = 0

where d(·) is a distance function in P. In plain language this means that any ele-
ment u ∈ U will eventually be arbitrarily close to an element of V. Some definitions
of an attractor also require that there are no subsets of U which also have these
properties (U is minimal) [27].

There are many different definitions of chaos, for a more extensive look at the
definitions and their implications the reader is referred to [1]. The definition that
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is used here is, a subset U ⊆ P of a dynamical system is called chaotic if it satisfies
these two properties

• sensitivity to initial conditions,

• transitivity.

Sensitivity to initial conditions means that there exists r > 0 such that for each
initial condition u0 ∈ U and ε > 0 there exists another point u1 ∈ U and t ∈ T
such that

d(u0, u1) < ε

and
‖Stu0 − Sty0‖ ≥ r.

The implication of this is that two trajectories which are initially arbitrarily close
will eventually be separated by at least r units, making prediction difficult in the
presence of any uncertainty or measurement error. Sensitivity to initial conditions
is closely related to the condition of a positive largest Lyapunov exponent (see Sec-
tion 1.1.3) in other definitions of chaos.

Transitivity means that for any two open sets V1, V2 ⊆ U there exists t ∈ T such
that

StV1 ∩ V2 6= ∅,
The important of transitivity is to exclude situations where the sensitivity to initial
conditions is caused by trajectories that are simply diverging to infinity. Chaotic
dynamics can exist on the entire phase space or only in a subset of the phase space.
The most interesting situation occurs when the chaotic region is an attractor be-
cause this guarantees that the system will eventually be chaotic for a large number
of initial conditions. Such attractors are sometimes called strange or fractal attrac-
tors, however this term is also used for describing the geometry of the attractor
[27]. For an illustrative example of periodic and chaotic dynamics, see Figure 1.1.

1.1.2 Ergodicity

Another concept which is central to the study of dynamical systems is ergodicity.
Ergodic theory is developed in a measure theoretic environment and it is based on
the idea of invariant measures. In our context, a measure µ is said to be invariant
if
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µ(S−1
t U) = µ(U)

for all measurable sets U ⊆ P and all t ∈ T . It is not always easy, or even possible,
to find an invariant measure for a given dynamical system. A dynamical system is
said to be ergodic with respect to the invariant measure µ, if every invariant set
U ⊆ P has µ(U) = 0 or µ(U) = 1. One useful result for ergodic systems is that the
long term behaviour of the system will be the same for almost all initial conditions.
This is especially important for time series data where the initial condition may
not be known, it allows results of analyses to be generalized across the system.

From the definition of ergodicity, it is not obvious how important a role it plays
in statistical analysis of dynamical systems. This connection is made by what
is possibly the most important result for ergodic dynamical systems, the ergodic
theorem.

Theorem 1.1.1 Let (P,St) be a dynamical system which is ergodic with respect to
the invariant measure µ and f an integrable function on P. The limit

f ∗(x) = lim
N→∞

1

N

N−1∑
t=0

f ◦ St(x)

exists µ-almost everywhere, moreover it is equal to the spatial average

f ∗ =
1

µ(P )

∫
fdµ

The ergodic theorem is such an important result that it is often viewed as an
alternative and equivalent definition for ergodicity. The relationship between the
ergodic theorem and time series data is analogous to the one between the strong
law of large numbers and independent data. It tells us that even though the data
from a single trajectory is dependent, the sample mean will converge to the true
mean of the system. This allows us to compute inferences on the mean using the
well understood methods for independent data.

Another concept which is often studied along side ergodicity is mixing. A dy-
namical system is said to be strongly mixing with respect to an invariant measure
µ if for every pair of sets U, V ⊆ P it has the property

lim
t→∞

µ(U ∩ StV ) = µ(U)µ(V ).

A mixing dynamical system has the property that after enough time, the initial con-
ditions can no longer be recovered from the current data. This statement is stronger
than corresponding statements about ergodic systems, so it is not surprising that
mixing implies ergodicity.
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1.1.3 Lyapunov Exponents

The Lyapunov exponents of a dynamical system are numbers which quantify the
divergence of two trajectories of the phase space which are initially very close.
For a dynamical system with a DP dimensional phase space, the exponents are
defined by the long term evolution of the principal axes of an infinitesimal DP -
sphere centered at x0. In general the Lyapunov exponents are dependent on the
initial condition, however for an ergodic system they will be the same for almost
all initial conditions. If we denote the length of the ith principal axis at time t by
di(t) then the ith Lyapunov exponents of the dynamical system are defined as

λi = lim
t→∞

lim
di(0)→0

1

t
log

(
di(t)

di(0)

)
i = 1..DP .

Existence of this limit has been shown under certain conditions (Oseledec theorem
[31]) however they do not exist for all systems. Traditionally the exponents are
ordered from largest to smallest, λ1 ≥ λ2 ≥ ... ≥ λDP

.

The largest exponent λ1 corresponds to the vector of maximum divergence while
the sum of the two largest exponents λ1 +λ2 corresponds to the plane of maximum
divergence and in general the sum of the first k exponents corresponds to the max-
imal k-dimensional divergence [44]. Many properties of a dynamical system can
be deduced from the exponents, for example a positive largest exponent indicates
sensitivity to initial conditions (one of the requirements of chaos). If the sum of
all the exponents is negative then the overall volume of objects in the phase space
goes to zero as t → ∞ i.e., the system is dissipative. It is extremely difficult to
solve for the exponents analytically and quite often it is necessary to solve them
numerically. For an in depth discussion on Lyapunov exponents and a numerical
method to calculate them from equations of motion, see Benettin et al [2].

1.1.4 Dimension

The box-counting dimension D is a geometric quantity which is used to partially
characterize an attractor. It measures the extent to which the attractor fills space.
If we denote Nε to be the number of boxes of side length ε that are required to
cover a set, then D is defined as

D = lim
ε→∞

log(Nε)

log( 1
epsilon

)
.

Methods to estimate the fractal dimension from the definition are based on count-
ing algorithms which can be very costly to compute. These algorithms require large
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Figure 1.2: The correlation integral C(r) scales with r, C(r) ∝ rν . By plotting
log(C(r)) against log(r) and estimating the slope of the resulting line we can esti-
mate the correlation dimension ν.

amounts of data in order to get good estimates and they take quite a long time to
compute. Additionally estimates of fractal dimension from time series have been
shown to be impractical due to the amount of data required to get precise estimates
[16]. Instead a related statistical quantity, ν ≤ D, known as the correlation dimen-
sion is often used because it is more easily estimated. The correlation integral of a
set of points {Xi}Ni=1 is defined as

C(r) = lim
N→∞

1

N2

N∑
i,j=1

ρ(r − ||Xi −Xj||)

where ρ is the Heaviside function defined as

ρ(x) =

{
0 x < 0
1 x ≥ 0

.

The correlation dimension scales with the correlation integral

C(r) ∝ rν

for small values of r. The motivation behind the correlation dimension is that in
higher dimension spaces there are more ways for points to be close together, thus
the rate at which C(r) increases depends on the dimension of the space. The stan-
dard way to estimate ν is to look at plots of log(C(r)) against log(r) and estimate
the slope of the line. For an example of these plots, see Figure 1.2
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Figure 1.3: A diagram depicting the components of a typical neuron

1.2 Introduction to brain biology

The following information on the nervous system can be found in the book Psy-
chology by David Myers, module 3 [29]. The nervous system is the human body’s
primary mode of information transmission. With the brain as its control centre the
nervous system controls movement, regulates internal organs and performs more
complex tasks such as learning. Information is transferred through the nervous
system by billions of cells called neurons or nerve cells. While there are many dif-
ferent kinds of neurons, they all share the same basic structure. A typical neuron
has a main cell body surrounded by tiny branch-like fibers called dendrites which
are used to receive information and a longer axon fiber which branches out at the
end to communicate information to other neurons. Figure 1.3 is a picture depicting
the typical neuron. The axon fiber may be surrounded by an insulating tissue called
the myelin sheath which increases the speed of information transmission. When a
neuron is stimulated by pressure, heat, light or other neurons it sends a brief elec-
trical charge down the axon called an action potential. Once the action potential
reaches the ends of the axon branches it triggers the release of a chemical stimulant
to be received by the dendrites of other neurons.

The following information about brain functions can be found in module 4 [29].
The nervous system is very compartmentalized, with many different groups of neu-
rons each performing very specific tasks. It should not be surprising that different
regions of the brain have their own functions. The deepest parts of the brain per-
form the more basic functions required for survival. Included in these deep brain
structures is the brain stem which regulates heartbeat, breathing and sleep. Di-
rectly on top of the brain stem is the thalamus which acts as a hub for sensory
information, receiving the information and then relaying it to the appropriate area.
The cerebellum is located right behind the brain stem, it is used in voluntary mo-
tion and in maintaining balance. The final part of these lower brain structures is
the limbic system, often thought of as the border between low and high levels of
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brain function. The limbic system consists of the amygdala, hypothalamus, hip-
pocampus and pituitary gland. Using the pituitary gland as a link to the hormone
system, the limbic system plays an important role in emotions such as fear and
anger as well moderating appetite and sex drive. Myers also writes that, ‘One lim-
bic system component, the hippocampus, is essential to memory processing’ [29].
Surrounding the interior regions is the largest part of the brain, the left and right
cerebral hemispheres. The cerebral hemispheres consist mostly of axon fibers that
connect the surface of the brain to the interior. Finally there is the cerebral cortex,
a thin layer of tightly packed cells about an eighth of an inch thick which covers
the outside of the brain. It is the cortex and its role in high level brain function
which distinguishes us from other animals. While most complicated actions require
interaction between the different lobes, it has been possible to localize the primary
region for many of them. The cortex has no natural divisions, however there is
human imposed structure which is used to help map out brain functions. The
frontal lobes are located at the front of the brain, they contain the part of the brain
that controls motor functions. The frontal lobe is also mainly responsible for many
advanced functions which are unique to humans such as language and problem
solving. Behind the frontal lobes at the top rear of the head is the parietal lobe,
it contains the part of the brain which interprets body sensations. At the back of
the brain are the occipital lobes, this part of the brain receives visual information.
Finally at the sides of the brain just above your ears is the temporal lobes, where
auditory information is received. An map of different regions of the brain can be
found in Figure 1.4.

1.2.1 Recording brain activity

Scientists have been able to map out these areas of the brain by recording the
electrical, chemical and magnetic signals that are constantly being created by our
brains. Magnetic signals are recorded from the brain using fMRI (functional mag-
netic resonance imaging) scans. fMRI scans are a special case of MRI scans, which
work by putting the brain into a magnetic field to cause its atoms to align and then
disrupting them by sending a radio wave through. As the atoms work to realign
themselves they disrupt the magnetic field and allow the researcher to generate
2D images of the concentration of atoms in the brain. When a neuron is active it
requires more oxygen than an inactive neuron, this increase in oxygen alters the
magnetic effects in the surrounding area and allows us to determine which regions of
the brain are most active. Chemical signals in the brain are recorded using a PET
(positron emission tomography) scan. The PET scan uses the fact that neurons
use glucose as ‘food’ to determine which regions of the brain are most active. To
do this they give the brain a temporarily radioactive form of glucose and monitor
where the food is going to determine which brain regions are active.
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Figure 1.4: This image is from [30]. This image shows the different parts of the
brain, as well as the different regions of the cerebral cortex.

EEG (electroencephalogram) recordings are amplified recordings of the electric
potentials generated by the neurons in the brain. They are recorded using tiny
electrodes placed on the scalp or directly against brain tissue. Unlike MRI or PET
scans which use time averages to monitor which regions of the brain are active,
EEG recordings give an overall picture of what is happening in the brain on much
smaller time scales. The spatial scale of EEG recordings depends on both the num-
ber and placement of electrodes. The number of electrodes can be as low as two
for intracranial EEG recordings where the target area is very localized. For more
exploratory kinds of analyses, caps are worn against the scalp which can have up
to 256 electrodes distributed around the head. As the number of electrodes on a
net increase so to does the price of the net, which means many researchers must
compromise spatial resolution in order to lower cost.

One way which EEG recordings can be analyzed is by computing their Fourier
transform and looking at the power spectrum. Researchers have shown that large
amounts of power in different frequency bands correspond to the different stages of
the sleep cycle. For example a large portion of the power in alpha band (8-13Hz)
is a characteristic of a wakeful person where as power in the theta band (4-7Hz)
indicates the first stage of sleeping. Another common way to analyze EEG record-
ings is with the idea of an event related potential (ERP). An ERP is a very specific
waveform that is generated when a stimulus is shown to a participant, however that
waveform is usually hidden amongst other brain activity. ERP analysis is based
on repeating the same stimulus a large number of times and then averaging all the
signals together in hopes to cancel out unrelated brain activity and get a clearer
picture of the ERP. Although the general shape of an ERP is the same for all
people and all stimuli, they can differ in their timing and amplitude. This allows
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researchers to look for differences in the ERP across different groups of people,
for example comparing the ERP of a university student population to that of an
elderly population. Another way that researchers are able to use ERPs is to change
the instructions given to a participant, by instructing a person whether or not to
remember the stimuli which are presented they are able to affect the ERP.

There are a number of issues which need to be dealt with before an EEG record-
ing can be analyzed in a meaningful way. The recording picks up a 60Hz electrical
signal which is given off by the electrical equipment in the room. This is generally
dealt with by running the signal through a notch filter1 to get rid of all 60Hz ac-
tivity, including anything that was generated by the brain. Additional noise comes
from electric potentials generated by muscle activity, such as blinking or jaw clench-
ing. It is sometimes possible to regress out the contribution from blinking, however
most data which contains muscle activity is simply thrown out of the analysis. An-
other issue is that correlations between electrodes may be spurious due to volume
conduction in the head.

A property of field potentials is that they can only be measured up to a con-
stant, meaning that one must look at the difference between electric potentials in
order to generate a physically meaningful quantity. In EEG recordings differences
are obtained by comparing the electric potential at each electrode to a single ref-
erence point. The ideal reference point is one where there is no electrical activity
present however there is no place on the scalp which fits this criteria. Reference
electrodes are often placed on the ears or mastoid bones because they are thought
to be the area with the least amount of electrical activity. Sometimes electrodes
are referenced to two points on opposite sides, this is called a bipolar reference.
The advantage of a bipolar reference is that it does a good job capturing localized
activity, however global activity that is common to both references is lost during
this process. Another option is to rereference against the average voltage of all the
electrodes, this method is independent of the initial reference point.

1A notch filter is used to filter out the contributions from a specific frequency
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Chapter 2

Epilepsy and Seizure Prediction

Epilepsy is a nervous system disorder where abnormally coherent firing of a region
of neurons causes a temporary loss of brain function [9]. This loss of brain function
is called a seizure and their intensity can range from no physical signs to severe con-
vulsions. From an electrical perspective the transition into the seizure corresponds
to a change from high complexity possibly chaotic activity to low complexity pos-
sibly rhythmic behaviour [9]. The region where a seizure originates is called the
epileptogenic focus, from there the electrical patterns spread to other areas of the
brain. Iasemidis et al [17] write that, ‘For some types of epilepsy (e.g focal or
partial) these events are caused by structural changes in neuronal circuitry within
localized regions of the cerebral cortex’. In focal epilepsy, the epileptogenic focus
is the region of the brain where the seizure activity originates. When the epilep-
togenic focus is in the hippocampus some of the structural abnormalities that can
occur include loss of neurons and dendritic simplification1. Characteristic activities
of the neurons inside the epileptogenic focus are periodic firing of action potentials,
followed by prolonged periods without firing. Hypothesized reasons for the spread
of seizure activity include lack of inhibitory ability of surrounding cells, propagation
of action potentials and/or sustained synchrony recruiting distant neurons into the
process [23].

Epilepsy affects about 1% of the world’s population and of those people about
25% are immune to traditional therapies [32]. Additionally, treatment through
surgery requires the removal of a portion of the brain, a process which often leads
to impaired cognition, language and motor control [9]. Recently a new method
of treating epilepsy has been the focus of much research. The method entails the
suppression and interruption of epileptic EEG activity using low voltage electrical
stimulation of neuronal tissue at the appropriate time before seizure onset [9].
However sufficient knowledge about the mechanics of epilepsy are not known to
effectively control the seizures. In order to successfully suppress imminent seizures,

1Dendritic simplification is characterized by retracting branches in dendrite fibers
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we must be able to accurately predict their onset time. When the control method
is applied at the appropriate time it can interrupt the synchronization of neurons,
returning the brain to a normal state [13].

2.1 Linear versus nonlinear models

Due to its complex and unpredictable behaviour, EEG signals can be thought to
be generated by a high dimensional linear stochastic process [20]. Methods based
on linear stochastic models have been shown to only be able to detect seizures at
most a few seconds before their onset [14]. During the last two decades there has
been a shift in thinking that perhaps the complex EEG signals are generated by a
low dimensional nonlinear process. This is largely due to a greater understanding
of chaos and the ability of low dimensional nonlinear systems to exhibit complex
dynamics. It should be noted though, that just because low dimensional systems
may exhibit complex dynamics does not imply that all complex systems are low
dimensional.

2.1.1 Testing for nonlinearity

There are many different methods available to test the linearity hypothesis in time
series data. Note that by linear stochastic process it is meant that the time series
it can be written as

Xt = et +
∞∑
i=1

aiXt−i + biet−i

where
∑∞

i=1 ‖ai‖ < ∞,
∑∞

i=1 ‖bi‖ < ∞ and et is i.i.d with mean zero and finite
variance. In the case where et is normally distributed the process is completely de-
scribed by it’s covariance structure [7]. These methods can vary in the statement
of their assumptions and alternate hypotheses, so it is necessary that these factors
be carefully considered when choosing which test is suitable for a specific situation.

There are a number of tests which attempt to reject the linearity hypothesis by
looking for quadratic (or higher order, finite) components in the data. [21] [37]. The
benefits of these methods are easy implementation, fast computation and knowl-
edge of the distribution under the null hypothesis. The downside of such methods
is that they are very restrictive in the kind of nonlinearity they can detect. It is
quite easy to construct counter-examples which do not fit the model in the alternate
hypothesis, causing the test accept the null hypothesis even though the process is

13



nonlinear.

Another class of tests look for general dependencies in the data which are not
explained by a linear model [42] [3]. These tests are more robust than the previous
ones because they do not restrict themselves to only detecting certain types of non-
linearity. These methods however, have none of the benefits of the previous tests.
Implementation is difficult due to a large number of parameters which must be
estimated, quantities which detect general dependencies are usually quite difficult
to estimate and their distribution must be estimated using bootstrap techniques.

It should be noted that both types of tests have a few other problems which still
need to be overcome. The results of these tests all depend on a stationarity assump-
tion, which is difficult to justify without already knowing the form of the model.
Additionally linear models can be arbitrarily complicated, hence the hypothesis
that a process is linear is infinite dimensional. Having an infinite dimensional null
hypothesis changes the dynamics of hypothesis testing, common properties such as
degrees of freedom are no longer applicable and comparisons between the and the
null and the data now involve both finite and infinite objects.

The surrogate data method tests the hypothesis that the time series was gener-
ated by a linear stochastic process. This method will be discussed in more depth,
because it has previously been applied in the context of EEG recordings [42] [35]
[36]. For a review of some of the other possible tests, see [37] and [8].

Linear surrogate data

A linear surrogate data set is an artificially generated set which has the same lin-
ear properties (autocorrelation function) as the original but does not constrain any
other properties. These surrogate datasets can be created using ARMA or Fourier
transform (FT) based methods. A discussion on these methods and how they differ
can be found in a paper by Theiler et al [42]. The FT method involves computing
the FT of the original signal, randomizing the phase of the coefficients while keeping
their magnitude constant and then finding the inverse FT to get a new time series.
The result of this process is a time series which has the same linear properties of
the original series.
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Surrogate data method

The surrogate data method as described in [42] is performed as follows:

• select a null hypothesis which specifies the model of the data,

• create surrogate data sets which share certain properties with the original
data set,

• calculate values of a quantity R for original and surrogate data sets,

• estimate probability distribution of R under H0 using surrogate values,

• calculate probability of getting a value Rorig under H0(p-value).

The properties which must be inherited by the surrogate data depend on the model
specified in the null hypothesis. The power of this test will be determined by the
choice of the statistic R, ideally it would be a quantity which is not completely
determined by the model in the null hypothesis. In the case of of looking for non-
linearity in data, the hypothesis is that the data is generated by a linear stochastic
process {Xt}. With this hypothesis we can then use the linear surrogate data
method which is mentioned above to create additional datasets having the same
covariance structure as the original data. The choice of the quantity R should be
one that is sensitive to nonlinearities in the data. Some popular options include
correlation dimension, maximum Lyapunov exponent or redundancy which is an
extension of the concept of mutual information (see Section 3.1.1) defined as

R(X1, ..., XN) =
N∑
i=1

H(Xi)−H(X1, ..., XN).

The Lyapunov exponents may not be defined for the system, however this is not a
concern. Wolf [44] states, ‘While the existence of this limit has been questioned,
the fact is that the orbital divergence of any data set may be quantified’. There
are several options for estimating the distribution of R, including normality tests
like Kolmogorov-Smirnov or bootstrapping methods. To compute the p-value of
the test, we define a statistic

Zobs =
‖Rorig − R̄‖

sR

where R̄, sR are the sample mean and standard deviation respectively. In the case
where R is normally distributed, Z follows a t-distribution with Ns − 1 degrees of
freedom, where Ns is the number of surrogate data sets used. Using this method
nonlinearities have been found in human EEG when R is the redundancy [35] [36]
and when R is the correlation dimension [6].
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There are some problems with the method of surrogate data which may result
in higher false rejection rates than anticipated. The Fourier transform method
for generating surrogate data has difficulty reproducing long correlation times and
the periodic assumptions of the transform can sometimes introduce spurious high
frequency components [42]. In order to ensure that the the test is performing up
to theoretical expectations, it is required to have fast decaying auto-correlations

∞∑
j=1

jγ2
j <∞,

as well as periodic boundary points x0 = xN . A discussion about the additional
conditions which must be met to compensate for the above difficulties can be found
in [7].

2.1.2 Nonlinearity test example

In this section we will look at the performance of two different nonlinearity tests,
one which specifies an alternative form for the time series and one which is open
ended. For the former we will be using Keenans test [21] and for the latter we
will be using the surrogate data method. For Keenans test the choice of parameter
M is not critical [8], in our application we take it to be M=10, the order of the
linear model that is fit. For the surrogate data method, twenty surrogate datasets
were generated and the statistic that was used to capture nonlinearities was the
correlation integral. The value of r was chosen to be appropriate with the scale of
the data after visual inspection.

These tests will be administered to three different data sets, our model for the
epileptic brain (see Section 4.1), an EEG recording from an actual epileptic brain
(see Section 2.4) and a simple non-stationary time series. For the model and real
epileptic data, the tests were performed on 1001 point segments of the data during
the interictal state. The non-stationary data was defined as follows,

Xt = −1

2
Xt−1 + et t = 1..500

Xt =
1

3
Xt−1 + et t = 501..1000

where X0 = 0, et is normally distributed with mean zero and unit variance

The results of the nonlinearity tests can be found in Table 2.1.2. Both tests were
able to correctly classify the model data as nonlinear, however neither test classified
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Nonlinearity test results
Keenans Test (p-value) Surrogate Data (p-value)

Model Data F=1353.40 ( ¡0.001) Z=31.02 (¡0.001)
Real Data F=1.23 (0.268) Z=0.51 (.309)

Non-Stationary Data F=0.20 (0.655) Z=10.06 ( ¡0.001)

Table 2.1: Results of nonlinearity tests

the real data as nonlinear. The non-stationary data had some very interesting
results, Keenan’s test classified it as linear and the surrogate data test as nonlinear.
A closer look at the data provides some insight into why the test give conflicting
results. Keenans test looks for a quadratic model as an alternative and since the
underlying model is not quadratic it does not reject the linearity hypothesis. The
surrogate data method does not look for a specific alternative and instead it is
sensitive to changes in the covariance structure, the test detects the change point
in the model and rejects the linearity hypothesis.

2.2 Prediction using nonlinear models

There are some difficulties with estimating nonlinear quantities from an EEG
recording due to the nature of the signal. Estimation of nonlinear quantities such
as correlation dimension or Lyapunov exponents require long, noise free and sta-
tionary signals none of which are guaranteed in EEG [15]. Despite these limitations
many interesting results have stemmed from the nonlinear analysis of epileptic EEG
and other seizure like events. Lehnertz and Elger [23] [24] have shown that in in-
tracranial EEG recordings the correlation dimension exhibits different dynamics at
the epileptic focus. They have also shown that the behaviour of the correlation
dimension at the focus shows the existence of a preictal state lasting from 4-25
minutes. Ouyang et al [32] show that by replacing the hard boundary Heaviside
function with a softer boundary Gaussian in estimating the correlation dimension,
it becomes better at classifying the ictal states in rat EEG. Similarly, Iasemidis et al
[18] [17] have shown that localization of the epileptic focus in human EEG record-
ings is possible using a modified ‘short term’ Lyapunov exponent (STL). They also
show that the STL characterizes a preictal state in over 90% of seizures with a
mean preictal length of over 30 minutes. Attempts to turn this method into a real
time prediction algorithm with dynamic site selection resulted in 82% of seizures
successfully predicted with a mean anticipation time of 71.7 minutes and 0.16 false
positives per hour [19]. This method however does not offer an accurate prediction
of the time until the seizure, just that there will be one in the future. A number of
other nonlinear quantities such as Kolmogorov entropy, local expansion exponents
and dissipation have also been shown to be able to identify a preictal state in human
EEG on the scale of several minutes [28].
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2.3 Alternate prediction methods

There has been some criticism of the use of nonlinear methods in seizure prediction
[26]. These criticisms include the validity of nonlinearity tests, the nonstationarity
of EEG signals and results being more important than model fit. This has led to
the development of several statistical algorithms for seizure prediction. Statistical
methods will ideally provide a more robust method for identifying the preictal state
from short noisy EEG recordings. As well, these statistical methods are often less
computationally intensive than nonlinear methods and the hope is that this will
make online implementation much more practical.

Chiu et al [9] have been able to classify the ictal states of seizure like events
(SLEs) of extracellular field recordings from in-vitro rat hippocampal slices. Using
a wavelet based ANN they were able to classify the preictal states with a 83%
true positive rate and a 80% true negative rate. Additionally they showed that
typically ignored high frequency components in the 100-400Hz range are crucial
to the classification of SLEs [11]. Attempts to use this method as a real time
prediction algorithm were able to predict 70% of seizures with a mean prediction
time of 36 seconds and mean error of 14 seconds [12]. Ouyang et al [25] have shown
that the preictal state in rat EEG could be classified using recurrence quantification
analysis. They have also produced a wavelet based algorithm which can classify
ictal states with a mean anticipation time of 7 minutes and less false positives than
their previous methods [33]. Winterhalder et al used measures of synchrony in
human intracranial EEG to predict 60% of seizures with a false positive rate of
0.15 per hour. [43].

2.4 Real data

For an example of actual EEG data from people with epilepsy, see Figure 2.1. The
first recording is sampled at 500Hz and is 1500000 points (or 50 minutes) long,
it contains a single ictal event. The second recording is also sampled at 500Hz
but is 841000 points (or 28 minutes) long, it also contains an ictal event. The
onset of the ictal events can be seen clearly, they correspond to the regions of
increased amplitude. It should be noted however that this increase is likely not
due to increased brain activity but electrical activity created by muscles due to
the more physical aspects of seizures. Also this is raw EEG data, there is a large
amount of preprocessing which must be done before it would be ready for rigorous
analysis. See Table 2.1.2 for the results of nonlinearity tests applied to this data.
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Figure 2.1: Two EEG recordings of seizures from a person with epilepsy.
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Chapter 3

Methods

In many real life situations we do not observe the full system evolving in its phase
space and all we have is a finite amount of data sampled from an observable in
order quantify the dynamical system. An observable of a dynamical system is any
smooth function of the trajectory of the system. Such analyses are made possible
by an important theorem by Floris Takens which allows us to reconstruct the phase
space of a dynamical system from an observable [41].

Theorem 3.0.1 Let P be a compact manifold of dimension DP . For pairs (ϕ,y),
ϕ:P→ P a smooth diffeomorphism and f:P→ R a smooth observable then the map
Φ(ϕ,f):P→ R2DP +1 defined by: Φ(ϕ,f)(x) = {f(x), f(ϕ(x)), ... , f(ϕ2m+1(x))} is an
embedding.

In this context the meaning of smooth is a continuous second derivative and
embedding is an injective function from P → R2DP +1 such that Φ is a diffeomor-
phism between P and Φ(P ).

3.1 Method of delays

Takens theorem is the basis for a method to reconstruct the phase space called
‘The Method of Delays’. The time series {xt}nt=1 is a set of measurements of the
observable at equally spaced time steps. We define a set of measurements of Φ(φ,y)

as yt = [xt, xt+τ , ..., xt+(d0−1)τ ], the points {yt}n−d0t=1 make up our phase space recon-
struction. The value d0 is the minimum embedding dimension of the object we’re
looking to embed, it is bounded above by the unknown quantity 2DP + 1. The
value τ is a time lag which represents an iteration of ϕ. It should be noted that
the points {yt} only represent the active regions 1 of the phase space, meaning it

1The active region of the phase space is the points which are visited by the current trajectory
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Figure 3.1: Projections of the phase space of the Lorenz equations onto the XY,
XZ and ZY planes (top). Projection of the reconstructed phase space onto the XY,
XZ and ZY planes (bottom). The phase space is reconstructed using the observable
f(x, y, z) = sin(y)− x3 + 2y and the parameters τ = 5 and d0 = 3

may only reconstruct a portion of the phase space. It is important that our recon-
struction contains all relevant regions of the phase space, such as an attractor, so
that quantities describing these features can be accurately estimated. In order for
this to happen, it is required that the dynamical system be ergodic. See Figure 3.1
for plots of the phase space of the Lorenz equations, as well as a reconstruction of
the phase space from the observable f(x, y, z) = sin(y)− x3 + 2z with parameters
τ = 5 and d0 = 3. This reconstruction is done with 10 000 data points in three
dimensions, however when dealing with smaller amounts of data and/or higher di-
mensional reconstructions the quality of the reconstruction may decrease. Also,
it should be noted that the axes of the original phase space do not correspond to
specific axes in the reconstruction and a rotation or scaling transformation may be
required to make the spaces more visually similar.

3.1.1 Estimating τ

When estimating the parameters for the method of delays, τ is typically estimated
first. This is because most methods for estimating d0 are dependent on τ . In the
case of an infinite amount of noise free data, any value of τ would suffice, how-
ever this is rarely the case. By carefully choosing the value of τ to maximize the
amount of information about the attractor contained in each vector (or by minimiz-
ing the redundant information) we can reduce the minimum embedding dimension
d0. However, we must be careful not to chose τ so big that successive points become
independent or we will lose the structure of the object that we are trying to embed.
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There are several methods of estimating τ including one based on the auto-
correlation function [38] as well as one based on Fourier analysis [18]. The method
that is used in this paper is based on mutual information, a concept from informa-
tion theory developed by Shannon [40].

Mutual Information Method

If the set {α1, α2...αK} defines the possible states of a time series Xt, with associated
probabilities PrX(αi) then the entropy of the time series is defined as

H(X) = −
K∑
i=1

PrX(αi) log2(PrX(αi)).

The entropy of a time series is a measurement of its uncertainty and is measured
in bits. Similarly we can define the joint entropy of two signals X, Y by

H(X, Y ) = −
KX ,KY∑
i,j=1

Pr{X,Y }(αi, βj) log2(Pr{X,Y }(αi, βj)).

From here we define the mutual information (MI) of two signals, it measures
the reduction in entropy of the signal X given knowledge about the signal Y. In
other words it measures the amount of shared information between the two signals,
it is defined as:

MI(X, Y ) = H(X)+H(Y )−H(X, Y ) =

KX ,KY∑
i,j=1

Pr{X,Y }(αi, βj) log2

(
Pr{X,Y }(αi, βj)

PrX(αi)PrY (βj)

)
.

The mutual information method takes τ to be the first local minimum of the
lagged mutual information function MIτ (Xt, Xt+τ ).

Implementation

To estimate the joint probability distribution Pr{X,Y } we first discretized the time
series by dividing the range of each signal into eight equal sized bins for a total of 64
bins and denote the number of observations from the (i,j) bin by Ni,j. The number
of bins is important for getting good estimates of the probability distribution. If
there are too many bins there will not be enough data to get a reliable estimate,
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Figure 3.2: A plot of the time lagged mutual information MI(Xt, Xt+T ) against
T. the first local minimum of this function is used as an estimate for τ . In this
example the value of τ would be 10.

while if the number of bins is too small important features of the distribution will
be averaged over and lost. We then define a simple frequency based estimate of the
probability distribution by

P̂ r{X,Y }(αi, βj) =
Ni,j

N
, i, j = 1..8.

We similarly define the marginal distributions by

̂PrX(αi) =
8∑
i=1

Ni,j

N
, i = 1..8.

Using these estimates of the probability distributions we then estimateMI(Xt, Xt+τ )
for values of τ ranging from 0 to 50. The value of τ for the method of delays is
taken to be the first local minimum of MI(Xt, Xt+τ ). See Figure 3.2 for an example
of this method.

3.1.2 Estimating d0

The estimation of d0 has been done using a variety of different methods. One
technique called the invariant method is to measure an invariant property of the
attractor for several values of d0. The idea is that the invariant property will not
be invariant for values of d0 which are too small and will be a constant for values
of d0 which are large enough. The minimum embedding dimension is thus taken to
be the smallest value of d0 such that the invariant is constant [16]. Another more
statistical method for determining d0 is based on estimating the dimensionality
of the attractor using singular value decomposition [4]. There are also methods
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Figure 3.3: A plot of the value E1(d) against d used in the Cao method. The value
of d0 is estimated to be the value for which E1(d) stops changing. For this example
we take the value of d0 to be 7.

which deal with a concept of false neighbors. The idea is that if you are projecting
points into a space which is too small then points will be forced together, creating
false neighbors which would not actually be close together in a large enough space.
These methods monitor false neighbors as the dimension d0 increases, and chose
the value of d0 where false neighbors no longer exist [22]. The method that will
be used in this paper is an extension of the nearest neighbors method called Cao’s
method [5].

Cao’s Method

We denote the ith vector in our d0 = d dimensional phase space reconstruction as
yi(d) and the index of the nearest neighbour to yi(d) as n(i,d). With this notation
we define the quantity

a(i, d) =
||yi(d+ 1)− yn(i,d)(d+ 1)||
||yi(d)− yn(i,d)(d)||

which will be large for false neighbours but relatively small for true neighbours. We
then estimate the spatial average of this quantity

E(d) =
1

N − τd
∑
i

a(i, d)

and monitor its behaviour as we increase the dimension. If the value of

E1(d) =
E(d+ 1)

E(d)
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stops changing for all d ≥ k then the value of the minimum embedding dimension
is taken to be d0 = k + 1. Figure 3.3 shows a sample plot of E1(d).

3.2 Estimating Lyapunov exponents

In order to estimate Lyapunov exponents from our time series, we will use the
popular Wolf algorithm [44]. The ideal way to estimate the maximum exponent
is to monitor the longterm behaviour of a pair of trajectories in the phase space,
however since we are dealing with observational data we only have one trajectory
in the phase space. The algorithm deals with this issue by considering two points
in the phase space to be from different trajectories if their temporal separation is
large enough. Another problem which arises in monitoring longterm behaviour is
that trajectories can undergo what is called a ‘folding process’ where two separated
trajectories are brought back together. These folding processes are a result of the
exponential separation of trajectories on a bounded attractor [44]. To deal with
this problem the algorithm goes through a replacement step just before folding
occurs, recording the current trajectories’ contribution to the estimate and then
replacing one of the trajectories. Replacement trajectories are chosen to be as close
as possible to the remaining trajectory while trying to maintain the orientation of
the original trajectories. Keeping these things in mind we denote the time of the ith

replacement as ti, the initial separation of the trajectories after the ith replacement
as L0(i) and the separation of the trajectories at the end of the ith replacement as
L1(i). With this notation we define our estimate

λ̂1 =
1

N

∑
i

log
L0(i)

L1(i)

where the range of summation depends on the number of replacement steps. For a
visualization of the algorithm see Figure 3.4.

3.2.1 Implementation details

The above section is just an outline of how the Wolf algorithm works, however in
practice there are a number of details which need to be ironed out before it can
be applied. The following implementation details were specifically tailored to the
model we will use to emulate the epileptic brain (see Section 4.1). The first step in
the algorithm is to the choose the point u0, this trajectory will be the fiducial trajec-
tory which does not get replaced. Next we need to choose a second point which lies
on a different trajectory and is as close to the first as possible. In order to do this
we need to define what exactly makes a point on a different trajectory. Wolf con-
siders two vectors to be from different trajectories if they are separated by at least
one orbital period [44]. One method to estimate the mean orbital period (MOP) is
to choose a time corresponding to the most powerful frequency present in spectral
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Figure 3.4: A diagram outlining the steps involved of the Wolf algorithm.

analysis, for our model we will take the value MOP = 10 based on the average time
until folding seen in Figure 3.5. Also when choosing a second point we must have
an acceptable range of initial separations. Due to computer precision limitations
we must define an minimum acceptable separation, this stops us from choosing two
points which the computer cannot distinguish from each other. Based on the soft-
ware used for our simulations we will set this value equal to DISTMIN = 10−5.
Similarly we must set a maximum allowable separation between trajectories, this
is because with finite amounts of data it is not always possible to find points as
close as we would like. By looking at a plot of separation as a function of time (see
Figure 3.5) we choose this value to be DISTMAX = 0.25, a value large enough to
help the algorithm run smoothly.

The next step is to propagate both of the trajectories until just before folding
occurs. This step is best done manually by a trained researcher, however this is
not always practical. Since our eventual goal is to be able to predict seizures in
real time we will be using an automated alternative of initializing replacements.
The algorithm will automatically trigger a replacement every ∆t = 9 steps. To
choose a value for ∆t, the average time between ’folding’ was estimated visually
from Figure3.5.

Once the decision has been made to make a replacement, the next step is to
find a replacement point. When we are looking for a replacement point we use the
same parameters MOP, ∆t, DISTMIN and DISTMAX used in choosing the second
trajectory. Wolf implements an additional constraint on the maximum allowable
change in orientation, however there are reports that this is unnecessary when only
estimating the maximum exponent in the presence of an ergodic measure [39].
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Figure 3.5: A plot of the distance between two trajectories over time. This plot
is used to tune parameters in the Wolf algorithm. By looking at the amount of
time between folding we can determine how long to let systems propagate between
replacements. Also by looking at the distance between trajectories after folding, we
can determine an appropriate value for the maximum allowable distance between
points during replacement.

This replacement process is repeated until the fiducial trajectory reaches the
end of the data. One other implementation detail that must be looked at is the
possibility that no suitable replacement point is found. In this situation we go
back several time steps to a point where there will hopefully be an acceptable
replacement. For our implementation we will simply go back a single time step at
a time until we reach a time when a replacement is found.

3.2.2 Alternate Interpretation

Now we consider an alternate interpretation of this estimate which leads to a more
complete understanding of the exponents. First we define a set of points {di}ti=0

where di is the distance between the trajectories at time i. Based on the definition
of Lyapunov exponents, the long term behaviour of these exponents should follow
the relation

di = d0e
λi.

Next we perform variance and mean stabilizing transformations, giving us a new
set {wi}ti=1 defined by

wi = log(di)− log(di−1).

Based on the relation between dt and λ we see that the long term average value
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Figure 3.6: Plot of simulated model data along with estimates of the correlation di-
mension (top) and Lyapunov exponents (middle) calculated on 250 point windows.

of wi should be w̄ = λ. However it can be shown that an estimate based on this
average would be the same as the Wolf estimate (in the case of no replacements)

lim
t→∞

1

t

t∑
i=1

wi = lim
t→∞

1

t
(wt − w0) (3.1)

= lim
t→∞

1

t
(log(dt)− log(d0)) (3.2)

= lim
t→∞

1

t
log

(
dt
d0

)
(3.3)

3.3 Estimating Correlation Dimension

In order to estimate the correlation dimension ν, we estimate the slope of the linear
relation between log(C(r)) and log(r). The first step is to chose the scaling region,

we do this by looking at plots of the log(Ĉ(r)) against log(r). The scaling region

is chosen to be the values of r for which the linear relationship between log(Ĉ(r))
and log(r) appears to hold, for our model the region was between 0.05 and 0.25.
We then estimate the correlation integral C(r) for twenty evenly spaced values of r
in the scaling region. We define our estimate of the correlation integral, sometimes
called the correlation sum as

Ĉ(r) =
1

N2

N∑
i,j

ρ(r − ||xi − xj||).

We then estimate the slope of the linear relationship using the least squares esti-
mator. See Figure 1.2 for a sample plot of log(C(r)) and log(r).
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Chapter 4

Simulations

The purpose of the study is to create a simple mathematical model which mimics
the temporal dynamics of the epileptic brain. The model will have a time depen-
dent parameter which spend most of its time in a range which will exhibit chaotic
dynamics, this will be the interictal state. Occasionally the parameter will slowly
wander towards a value which will turn the system into a lower complexity, this will
be the preictal and ictal states. We will then look at the ability of Lyapunov expo-
nents and correlation dimension to classify the preictal state as well as accurately
predict the onset of the ictal state.

4.1 Model

The model that we used to model the epileptic brain is built around the logistic
equation

xt+1 = ktxt(1− xt),

with 0 ≤ x0 ≤ 1. This system converges to a fixed point for values of kt between 0
and 3. It starts to experience period doubling from 3 until approximately 3.57. At
kt=3.57 the system start to exhibit chaotic behaviour for most values, although cer-
tain values still exhibit periodic behaviour. For our model we use a time dependent
parameter defined as

k0 = 3.8,

kt+1 =


3.8 kt > 3.9, kt = 1.8
1.7 1.8 < kt < 3.7
kt +Normal(0, 0.1) 3.7 ≤ kt ≤ 3.9
kt + 0.02 kt < 1.8

.
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Figure 4.1: A sample plot of the data (bottom) and the parameter (top) of our
model when a SLE occurs.

For values of kt between 3.75 and 3.9 the model is considered to be in the in-
terictal state, for kt between 3.7 and 3.75 the model is considered to be in the
preictal state and when kt drops below 3.7 the model enters the ictal state which
will be called a seizure like event (SLE). To see a plot of data simulated from this
model see Figure 4.1. We generate 30 datasets using this model for t=1..10000
and values of x0 generated from a uniform[0,1] distribution. The number of SLEs
that occurred in each set of data ranged from one to six, with a median value of two.

4.2 Phase Space Reconstruction

The first step towards estimating the maximum Lyapunov exponent and correlation
dimension is to reconstruct the phase space using the ‘Method of Delays’ described
in Section 3.1. In order to do this we must estimate the parameters d0 and τ .

In order to choose a value of τ for this model we use the mutual information
method from Section 3.1.1 on N=250 point segments of interictal data. In total
there were 4605 segments of interictal data with a mean estimated value of 10.6
and a median of 10. For our model we take the value of the time lag τ to be 10.

Now that we have fixed our value of τ we use Cao’s Method to estimate the
minimum embedding dimension. Similar to when we estimated τ we will estimate
d0 for many segments of interictal data, except this time we will use segments that
are N=1000 points long. In order to determine the minimum embedding dimension
plots of E1(d) were looked at individually and the value d0 was manually chosen.
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Figure 4.2: QQ plots of the correlation dimensions and Lyapunov exponents. The
correlation dimension does not deviate much from the normal quantiles, however
the Lyapunov exponents are quite different for the low quantiles.

Analysis of 100 segments gives a mean value of 6.4 and a median of 6, we take the
value of our minimum embedding dimension to be d0 = 6.

4.3 Classification

Classifying preictal states is actually quite different from predicting SLEs. When
we attempt to classify states, we perform a post hoc analysis of the data with com-
plete knowledge of the model parameters. On the other hand, prediction is done
using only current and past data with no knowledge of the parameters. While these
analyses are not directly useful in the prediction of SLEs, they can be interpreted
as a measure of predictability. By performing these classifications using different
methods, we can determine which method will be the best at predicting SLEs.

In order to classify the preictal states we will use Lyapunov exponents and corre-
lation dimensions, calculated on 250 and 500 point windows. Let ψ be the quantity
we are calculating to classify states, then define the sample mean and standard
deviation of the quantity during the interictal period as µψ and σψ respectively.
Figure 3.6 contains a plot of interictal data along with the corresponding estimates
of the correlation dimensions and Lyapunov exponents. The estimates of the cor-
relation dimension seem to be quite large, this is likely an artifact created by the
small amounts of data that is being used in the computations. However this issue
is not addressed because it is the ability of the estimates to predict seizures that
is of interest, not their actual value. We assume that during the interictal state ψ
is distributed as Normal(µψ, σψ). For each SLE the preictal event is defined to be
all the window of data just before the SLE. We define our test statistic as

Zobs =

∣∣µψ − ψ̄∣∣
σψ

.
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Classification Results
Within Trial Between Trail

LE (250) 2% 2%
LE (500) 0% 0%
CD (250) 19% 23%
CD (500) 23% 14%

Table 4.1: Results of preictal classification

Under our assumptions this quantity follows Normal(0, 1), and hence it is said
to classify the preictal state if Zobs > Zcrit = 1.645. The normal quantile plots
in Figure 4.2 suggest the assumption may not be valid. The correlation dimension
deviates from normality at the tails and the since it is strictly positive there is some
quantile bunching around zero. The Lyapunov exponents appear to be normally
distributed on the upper half of the quantiles, however they deviate greatly from
normality below the median. The classifications were run twice, the first with µψ
and σψ calculated for each of the 30 datasets (within subjects) and then calculated
based on all the data (between subjects). The results of the classifications can be
found in Table 4.3, from the table we can see that the correlation dimension on
250 point windows does the best job classifying the preictal states. Since there
was no measurement of false positives in this classification, it may be that they do
not do a good job predicting SLEs or that there is much room for improvement by
parameter tuning.

4.4 Prediction

Based on the results of the classification analyses, we will attempt to predict the
SLEs using correlation dimensions calculated on 250 point windows. The first time
series will be used in order to establish an initial estimate of µψ and σψ. We shall
identify windows as being preictal in the same way we did in the classification
section, except that we take Zcrit = NUMBER. A SLE will be predicted if we
classify a preictal state in 3 consecutive windows. A prediction is said to be a false
positive if there are 2 consecutive windows that are classified as interictal, before
a SLE has occurred. This algorithm successfully predicted 34 out of 68 (or 50%)
SLE’s, however it falsely predicted seizures 372 out of 406 (or 91%) of the time.
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Chapter 5

Conclusions

Using nonlinear quantities to perform predictions on complex time series is a
method which has many complications, limiting the class of problems where it
can be effectively implemented. There are difficulties that arise when calculating
nonlinear quantities as well as a very large number of parameters which must be
tuned in order to get reliable estimates. Moreover, ergodicity plays a large role in
estimating these nonlinear quantities and it is very difficult to test for it in time
series data. Another important aspect of these analyses is having a useful criteria
for deciding when they are appropriate, namely low dimensional nonlinear systems.
Tests which claim that data is generated by a nonlinear process can be unreliable
and are not sufficient to validate the use of nonlinear methods because they do not
address dimensionality.

There are a number of different tests for nonlinearity, however they all share
some common problems. A linear process can be arbitrarily complicated and hence
the null hypothesis that a process is linear is infinite dimensional. This means that
for some linear models a test will have very little power to reject the null hypothesis
with only a finite amount of data. Another potential complication with these tests
is that they assume that the process is stationary. If this assumption is not valid,
then depending on the nature of a nonstationarity it could cause the test to falsely
classify the process as nonlinear. There is also a decision to be made about the
form of the alternative hypothesis. Tests which specify a model in the alternate
hypothesis end up restricting the types of nonlinearities they can identify, however
tests which do not specify an alternate model often require large amounts of data
and have higher computation times.

Ergodicity is instrumental for computing statistics on dynamical systems. It
plays the role of a law of large numbers, allowing us to estimate the spatial mean
of the system despite the time dependence in the data. Ergodicity also allows us to
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generalize results across the entire dynamical system instead of restricting them to
a single trajectory. When reconstructing the phase space of a dynamical system,
it is ergodicity that ensures us that we are reconstructing the important regions
of the system. All these reasons combined with the fact that it is very difficult to
determine whether a system is ergodic from time series data means that ergodicity
must always be a concern when predicting using nonlinear quantities.

There are many problems and parameters which must be dealt with in order
to estimate nonlinear quantities such as Lyapunov exponents and correlation di-
mensions. The first step in estimating either quantity is to reconstruct the phase
space of the dynamical system, this involves choosing the parameters τ and d0 from
the method of delays. When estimating Lyapunov exponents, geometric ’folding’
and the need for two trajectories need to be dealt with. To do this algorithms like
Wolf’s [44] must be used, however this adds a number of other parameters which
must be estimated for each model. When estimating the correlation dimension, the
scaling region is another parameter which must be estimated. It takes a lot of data
and computation time to get good estimates of the correlation integrals for many
values of r.

Due to these complications with a nonlinear dynamics approach, perhaps a more
statistical approach to prediction in complex time series may give better results.
The statistical properties of less complex quantities such as variance are much better
understood than those of nonlinear quantities. As well, estimates of these quantities
are much easier to compute and they have lower estimate variance. Another benefit
of simple models is that the effects of noise on such predictors are better understood,
this is especially important in EEG data where noise is commonplace. Finally, it
is important to remember that when dealing with prediction simpler models often
get better results, even when more complicated models seem to fit better.
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Appendix A

Matlab Code

A.1 Phase Space Reconstruction

function PSpace=getPhase(D,t,d)

%Input is (data, tau, d0)

PSpace=zeros(length(D)-(d-1)*t,d);

for i=1:d

PSpace(:,i)=D(1+(i-1)*t:length(D)-(d-i)*t);

end

end

A.2 Wolf Algorithm

function [L] = wolfLE(D)

% D is a vector of data

tau=10; % Parameters for method of delays

d0=6;

distMAX=0.4; % Parameters for algorithm implementation

distMIN=0.0001;

MOP=10;

dt=8;

P=getPhase(D,tau,d0); % Phase space reconstruction

N=length(P(:,1));

M=floor((N-1)/dt);

t=1; % Initial values
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L=0;

n=0;

dcrit = 0;

% Finding initial point of second trajectory

for j=1:N-dt

if norm(P(t,:)-P(j,:)) < distMAX && norm(P(t,:)-P(j,:)) > distMIN

&& abs(t-j) > MOP

dcrit=norm(P((t),:)-P(j,:));

n=j;

break

end

end

for j=n+1:N-dt

if norm(P(t,:)-P(j,:)) < dcrit && norm(P(t,:)-P(j,:)) > 0.0001

n=j;

dcrit=norm(P(t,:)-P(j,:));

end

end

% Performs algorithm

for i=1:M

L1=norm(P(t,:)-P(n,:));

n=n+dt;

t=t+dt;

L2=norm(P(t,:)-P(n,:));

L=L + log2(L2/L1);

n=replacement(P,n,t,0);

end

L=L/(M*dt);

end

function n=replacement(P,nOld,t,h)

% P is the phase space

% nOld is the point being replaced

% t is the point of the fiducial trajectory

% h is a parameter for when a replacement point can’t be found

dt=8; % Algorithm parameters

distMIN=0.0001;

distMAX=0.4;

MOP=10;
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N=length(P(:,1)); %Initial values

dcrit=0;

n=0;

%Find repalcement point

for j=1:N-dt

if norm(P((t-h),:)-P(j,:)) < distMAX && norm(P((t-h),:)-P(j,:)) > distMIN

&& abs((t-h)-j) > MOP

dcrit=norm(P((t-h),:)-P(j,:));

n=j;

break

end

end

for j=n+1:N-dt

if norm(P((t-h),:)-P(j,:)) < dcrit && norm(P((t-h),:)-P(j,:)) > distMIN

&& abs((t-h)-j) > MOP

dcrit=norm(P((t-h),:)-P(j,:));

n=j;

end

end

%If no replacement found, move t back two points

if dcrit == 0

n=replacement(P,nOld,t,h+2);

end

end

A.3 Estimating correlation dimension

function B=CorrDim(D,t,d)

%Input is data, tau, d0

P=getPhase(D,t,d); % Initial values

r=0.05:0.02:0.25;

N=length(r);

c=zeros(1,N);

%Calculate correlation dimension for all values of r

for i=1:length(r)

c(i)=C(P,r(i));

end

% Least squares estimate of slope
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B=(N.*sum(log(c).*log(r)) - sum(log(r)).*sum(log(c)))/(N.*sum(r.^2)-sum(r).^2);

end

function x=C(P,r)

% Input is phase space and r value

N=length(P(:,1)); % Initial values

count=0;

%Count points which are closer than r units

for i=1:N

for j=1:N

if norm(P(i,:)-P(j,:))<r

count=count+1;

end

end

end

x=count/N.^2;

end

A.4 Surrogate Data

function s=getSurrogate(x)

% Input original data

% Properties of original data

N=length(x);

m=(N-1)/2;

xBar=mean(x);

F=fft(x)/sqrt(2.*pi.*N);

A=zeros(1,m);

for j=1:m

A(j)=abs(F(j+1));

end

%Randomized phase

p=rand(1,N).*(2*pi);

%Create surrogate data

s=zeros(1,N);

for j=1:N
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count=0;

for k=1:m

count=count+2.*A(k).*cos(2.*pi.*j.*k/N+p(k));

end

s(j)=xBar + sqrt(2*pi/N).*count;

end

A.5 Surrogate Data Test

function [Z]=Surrogate(x,M,r)

%Input is data and number of surrogate datasets

% and value of r in correlation integral

%Output is test statistic

N=length(x); %Initial values

d=6;

t=10;

y=zeros(M,N);

Q=zeros(1,M);

%Generate surrogate data

for i=1:M

y(i,:)=getSurrogate(x);

end

%Calculate R for real data

P=getPhase(x,t,d);

R=C(P,r);

%Calculate R for surrogate data

for i=1:M

P=getPhase(y(i,:),t,d);

Q(i)=C(P,r);

end

%Calculate test statistic

Z=abs(R-mean(Q))/sqrt(var(Q));

A.6 Keenan’s Test

function Z=Keenan(Data,M)

%Input is data and order of models
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%Output is test statistic

N=length(Data); %Initial Values

X=zeros(N-M,M+1);

%Fitting linear model and

% estimating residuals

for i=M+1:N

X(i-M,:)=[1,Data(i-M:i-1)];

end

Y=Data(M+1:N);

B=inv(X’*X)*X’*Y’;

Yhat=X*B;

e=Y’-Yhat;

%Fitting quadratic model and

% estimating residuals

Y2=Yhat.^2;

B2=inv(X’*X)*X’*Y2;

Yhat2=X*B2;

e2=Y2-Yhat2;

%Fitting linear residuals to

% quadratic ones

Y3=e;

X3(:,1)=zeros(1,N-M)+1;

X3(:,2)=e2;

B3=inv(X3’*X3)*X3’*Y3;

%Calculate test statistic

n=B3(2).* sum(e2.^2).^(1/2);

F=(n.^2.*(N-2*M-2))/(sum(e.^2)-n.^2);
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