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Abstract 

Kernel methods have recently become popular in bioinformatics machine learning. Kernel 

methods allow linear algorithms to be applied to non-linear learning situations. By using 

kernels, non-linear learning problems can benefit from the statistical and runtime stability 

traditionally enjoyed by linear learning problems. However, traditional kernel learning 

frameworks use implicit feature spaces whose mathematical properties were hard to 

characterize. In order to address this problem, recent research has proposed a vector learning 

framework that uses landmark vectors which are unlabeled vectors belonging to the same 

distribution and the same input space as the training vectors. This thesis introduces an 

extension to the landmark vector learning framework that allows it to utilize two new classes 

of landmark vectors in the input space. This augmented learning framework is named the 

power landmark vector learning framework. A theoretical description of the power landmark 

vector learning framework is given along with proofs of new theoretical results. 

Experimental results show that the performance of the power landmark vector learning 

framework is comparable to traditional kernel learning frameworks. 
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Chapter 1 
Introduction 

Finding patterns out of chaos has been one of our innate abilities ever since our ancestors 

first walked upon the Earth hundreds of thousands of years ago. The ability to spot the 

yellow and white patterns of the back of a tiger amid the chaotic background of criss-

crossing branches and leaves had been integral to the survival of our primate ancestors in a 

primeval jungle. Modern quantitative physical sciences such as physics and astronomy also 

trace their origins to the attempts of Galileo and Kepler to deduce formulas and patterns out 

of physics experimental data and astronomical observation charts. Recently, humanity has 

acquired a powerful new tool — the computer — that allows it to deal with massive 

quantities of high dimensional data whose learning had previously been intractable to the 

human mind. This marriage of our hundred-thousand year old tradition of learning with our 

new-found computational capacities resulted in an exciting field called “machine learning”. 

 

Biology started out as a qualitative and taxonomic science. One hundred years ago, when 

people were using physics to explain everything from the universe to the macroscopic 

behaviour of atoms, biologists were still asking simple questions such as “how many species” 

and “what is the difference between fungi and bacteria”. However, with the advent of 

computers and the discovery of the informational aspects of genes and proteins, biology also 

became a computational science. The completion of the human genome sequencing project 

(Venter et al., 2001) — the “Apollo project of life science” — heralds the coming of the age 

of computation for biology. The marriage of massive computational capabilities of computers 
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and the in-the-large mathematical modeling of life processes and biological data has 

produced an exciting new field of study known as bioinformatics. 

 

1.1 Kernel learning framework 

There are two primary types of machine learning — linear machine learning and non-linear 

machine learning. Linear machine learning has a long history and many efficient algorithms 

have been proposed and implemented for linear machine learning tasks. The statistical and 

runtime properties of these algorithms have been thoroughly analyzed by mathematicians and 

computer scientists and are well understood. The most famous algorithms, such as the 

perceptron and the support vector machines, have already been in active use for quite a few 

decades. 

 

Non-linear machine learning, on the other hand, suffers from the lack of a uniform theoretical 

framework and problem-solving methodology enjoyed by linear machine learning. Past 

efforts in non-linear machine learning have led to the creation of many ad-hoc non-linear 

learning algorithms, each of which are applicable to only its own narrow band of very 

specific problems. Furthermore, these algorithms frequently suffered from local-extrema that 

caused them to return inaccurate or entirely false results, and their statistical and run-time 

properties were very hard to analyze mathematically. Since useful machine learning in 

bioinformatics is of a non-linear nature, a new non-linear learning framework with good 

statistical and run-time behaviours is urgently needed. 
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The breakthrough came with the introduction of the kernel learning framework by Vapnik et 

al. at the start of the 1990s. The ingenuity behind the kernel learning framework is the 

marriage of linear learning algorithms and a non-linear learning framework. A new class of 

mathematical functions, known as kernels, was employed that could transform non-linear 

relationships into linear relationships in a higher dimensional space. Thus linear learning 

algorithms could be easily applied to this higher dimensional space to detect those linear 

relationships, which can be interpreted as non-linear relationships in the original space. 

Therefore, when confronted with non-linear learning, rather than allowing decades of 

research into linear learning algorithms go to waste, the kernel learning framework cleverly 

recycles linear learning algorithms and allows them to work on non-linear relationships in an 

almost-transparent way, almost, but not totally transparent, since the kernel learning 

framework still has to modify the linear learning algorithms into a form known as the “dual 

form” before they can be applied to non-linear learning. A problem can now be posed: is it 

possible to apply linear learning algorithms, without any modification and in a totally 

transparent manner, to the set of training data exhibiting non-linear relationships? 

 

1.2 Previous work 

In his seminal paper (Balcan and Blum, 2005) mathematician Avrim Blum proposed a novel 

alternative to traditional kernel learning framework. Blum proposed that unlabeled vectors 

belonging to the same distribution and the same input space as the training vectors be used as 

a kind of landmark in the generation of a new space in which the non-linear relationships that 

exist between the training vectors in the original space becomes linear. The difference, 
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compared to traditional kernel learning framework, is that the new space in Blum’s 

framework can be explicitly accessed by any linear learning algorithm. Hence there is no 

need to modify linear learning algorithms and they can be applied, in a totally transparent 

manner, to the learning of non-linear relationships. 

 

1.3 Research description 

This thesis extends Blum’s work by introducing additional classes of vectors into the set of 

landmark vectors that can be used. This thesis also justifies, from a theoretical perspective, 

why the use of these additional classes of vectors as landmark vectors is mathematically 

sound. Specifically, this thesis introduces a new learning framework called the Power 

Landmark Vector Learning Framework that extends Blum’s framework by allowing 

Gaussian random vectors and input-space orthonormal bases vectors, in addition to the 

original unlabeled vectors belonging to the same distribution and the same input space as the 

training vectors, to be used as landmark vectors in the generation of the new linear learning 

space. The Power Landmark Vector Learning Framework is flexible and easy to use. A 

comprehensive theoretical foundation for the various mathematical properties of the 

framework is established in this thesis to provide some guarantees on the framework’s 

performance. Finally, the framework has potential future applications in dimensionality 

reduction and data visualization. 
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1.4 Thesis overview 

This thesis presents a comprehensive theoretical formulation of the Power Landmark Vector 

Learning Framework and applies it to the Gaussian Kernel and finite-dimensional Euclidean 

input spaces. Experiments are provided to demonstrate the soundness of some of the 

theoretical arguments and to show Power Landmark Vector Learning Framework working 

with real bioinformatics data. This chapter has presented a general introduction to the field of 

machine learning and bioinformatics. Chapter 2 covers basic background materials necessary 

for an understanding and appreciation of the nature of machine learning and the traditional 

kernel learning framework and introduces Blum’s landmark vector learning framework. 

Chapter 3 presents the main theoretical contribution of this thesis in the form of a 

comprehensive theoretical formulation of the Power Landmark Vector Learning Framework 

with proofs of some key results. Experimental results and discussions are provided in 

Chapter 4. Finally, conclusions and directions for future research are given in Chapter 5. 
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Chapter 2 
Background 

2.1 Overview 

The learning of patterns exhibited by massive amounts of numerical data compiled from 

physical experiments and observations has been as old as natural science itself. Galileo 

Galilei deduced his physics equations by deriving the numerical relationships between the 

various time, displacement, initial velocity and final velocity Figures he had recorded for the 

many experiments he had performed. Johannes Kepler formulated his three laws of planetary 

motion from years of painstaking work he did on discerning patterns in the numerical data 

recording the positions of planets compiled by Tycho Brahe. (Shawe-Taylor and Cristianini, 

2004). Perhaps it is not an exaggeration to say that one of the major reasons natural science 

came to its present-day level of sophistication is the human mind’s capacity to discern pattern 

from numbers. 

 

However, human minds are not without their limits. When it comes to certain problems in 

pattern recognition and data learning, our senses can only take us so far. Imagine the 

difficulty involved in discerning the 216 = 65,536 vectors in a sixteen-dimensional Euclidean 

space as belonging to the vertices of a sixteen-dimensional hypercube rotated slightly about 

the origin. Imagine the difficulty involved in using pencil and paper to find out the 

differences between microarray readouts for healthy cells and cancerous cells, when the data 

for each type of cell comprises hundreds of vectors, each of which is further contains 
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thousands of numbers. Clearly, when faced with the daunting task of discovering patterns 

within data gathered from modern science experiments, numerical data that are both massive 

in quantity and high in dimensionality, the human mind falls far short of the goal of even 

comprehending the meaning of the data, let alone finding any patterns hidden among them. 

 

With the advent of modern digital computers, we have a new technology at our disposal to 

quickly and accurately discover patterns hidden in data. The field of computer science that 

applies the computer to the task of discerning numerical patterns from massive amounts of 

data is known as “machine learning”. Its application to bioinformatics data forms the focus of 

this thesis. 

 

2.2 The perceptron 

In the early days of computer science, an efficient algorithm of machine learning known as 

the “Perceptron” was used (Rosenblatt, 1958) (Minsky and Papert, 1969). The perceptron 

algorithm learns a decision hyperplane separating the positive examples from the negative 

examples by starting with a rough estimate of where the decision hyperplane is going to be 

with one pair of positive and negative examples. It then refines its choice of the decision 

hyperplane by updating the weight vector of the decision hyperplane as new sample vectors 

of the positive and negative set become available (Figure 1). The updating is done in such a 

way that the decision hyperplane remains the dividing line between the positive and negative 

sample vectors for the currently given set of positive and negative samples. The “decision 



 

  8

hyperplane” takes the form of a regular line and a regular plane in ² and ³ spaces 

respectively. 

 

 

Figure 1: A simple demonstration of the perceptron algorithm. 

 

However, the perceptron algorithm offers no guarantees on the quality of the separating 

hyperplane it produces at the end of the learning process. The perceptron algorithm yields 

correct results as long as the decision hyperplane is able to divide the sample space into two 

half-spaces, each one of which contains only one class of the training data. It works properly 

even if the hyperplane is cutting very close to some of the training data vectors. Hence the 
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perceptron algorithm sometimes performed poorly when given actual test data. In machine 

learning this characteristic of the perceptron algorithm is called its “poor generalization 

capacity”. The poor generalization capacity of the perceptron algorithm prompted researchers 

to look for better algorithms that could provide a guarantee for the quality of the decision 

hyperplane they have learned. The most famous algorithm to accomplish this purpose is the 

support vector machine (SVM) algorithm (Duda and Hart, 1973; Cover, 1965; Smith, 1968; 

Vapnik and Lerner 1963; Vapnik and Chervonenkis 1964). 

 

2.3 SVM 

As shown in Figure 2, given two classes of training vectors, the SVM algorithm attempts to 

learn the decision hyperplane that carries the maximum “margin”. Margin is defined here to 

be the distance from the decision hyperplane to the nearest positive or nearest negative 

vectors. The vectors that determine the margin of the decision hyperplane are known as 

“support vectors”, hence the name “support vector machine”. Aside from quantifying the 

“quality” of the separating hyperplane, the SVM allows the added benefit that the resulting 

hyperplane maybe expressed as a linear combination of only the support vectors, while the 

rest of the training set maybe discarded after the learning is done. This allows a significant 

saving in the storage space requirements of the final decision hyperplane when it is applied to 

subsequent test data. Note that the decision hyperplane is always positioned such that the 

distance from the hyperplane to the nearest positive vector is equal to the distance from the 

hyperplane to the nearest negative vector. In practice, noise present within the training data 

will often make the data non-linearly separable (Figure 3). Therefore the SVM algorithm has 
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to tolerate the presence of negative training vectors in the positive halfspace and the presence 

of positive training vectors in the negative halfspace (Figure 3). These vectors, located on the 

“wrong side” of the decision hyperplane, are referred to as the “slack vectors” and their 

distances to the decision hyperplane are stored in the “slack variables”. The use of the margin 

concept quantified the quality of the decision hyperplane learned by the SVM algorithm, 

which makes the SVM one of the best and most-utilized algorithms of machine learning. 

 

 

Figure 2: A typical 2-dimensional hard-SVM with the decision hyperplane being a line that divides 

the plane into two half-planes. 

 



 

  11

 

Figure 3: A typical planar soft-SVM with off-side slack vectors and their associated slack variables 

shown. 

 

Both the perceptron and the SVM suffered from the fact that they were only capable of 

learning a linear decision hyperplane from the dataset they were given. If the positive and 

negative data were separated by a boundary that does not take the form of a straight line or 

something that approximates a straight line, then perceptrons and SVMs are unable to learn 

anything useful from the data. Figure 4 is an example of a non-linear boundary. In Figure 4, 

the x’s (representing positive sample data) are separated from the o’s (representing negative 

sample data) by a non-linear decision boundary. Since most machine-learning problems that 

arise in natural science are related to learning non-linear decision boundaries separating two 
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or more classes of data, a method of non-linear learning is urgently needed to make machine-

learning useful across a broad spectrum of learning tasks. 

 

 

Figure 4: An example of a non-linear decision boundary. 1 

 

One immediate solution is to propose ad hoc non-linear algorithms that are learning problem 

specific. In this case, one non-linear learning problem would be carefully scrutinized and 

studied by a group of computer scientists and domain experts, who would then propose one 

or more non-linear learning algorithms. These non-linear learning algorithms are specific to 

                                                      
1 This picture is hand-drawn using a tablet computer provided at the courtesy of Chris Long, who is a second 
year undergraduate computer science student at the University of Waterloo at the time this thesis was written. 



 

  13

one learning problem and could not be applied to any other learning problem. Furthermore, 

ad hoc non-linear learning algorithms often lacked statistical and probabilistic guarantees on 

their performance and suffered from local minima (Figure 5). This severely curtailed their 

usefulness in machine learning problems demanding high degrees of optimality and stability. 

On the other hand, the statistical and computational behaviours of perceptrons and SVMs 

were well understood (Rosenblatt, 1958; Fisher, 1986), and, being linear (hence convex) 

algorithms, they suffered no local minima. Therefore, researchers began to wonder if there 

existed a good way of adapting these linear learning algorithms to the task of non-linear 

learning. 

 

 

Figure 5: global minimum is the overall lowest point of the curve, while local minimum is lower than 

all of its immediate surroundings. Note that ad-hoc non-linear learning algorithms, not knowing 

where the global minimum is located, could end up stuck in local minima and obtain sub-optimal 

results 
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2.4 Kernels 

The breakthrough came in the 1990s with the “kernel trick” (Boser et al. 1992). Kernels were 

originally classes of symmetric and positive-semi definite functions of two arguments used in 

functional analysis to facilitate the solution of certain classes of integral equations. They 

were first mentioned in Mercer’s classical paper (Mercer, 1909), and were first formally 

introduced, in the functional analysis sense, in the seminal paper “Theory of Reproducing 

Kernels” by Aronszajn in the 1940s (Aronszajn, 1950). The finitely positive semi-definite 

properties of kernels were expounded upon in Saitoh’s theorem (Saitoh, 1988). In modern 

machine learning, kernels first appeared in the works of Aizermann, Bravermann and 

Rozoener (Aizermann et al. 1964). The concept was subsequently reintroduced to the modern 

machine learning community through the works of Boser, Guyon and Vapnik (Boser et al. 

1992). 

 

The primary motivation in a kernel’s ability to transform a non-linear relationship to a linear 

relationship lies in its implicit use of a φ function that maps non-linear data in the input space 

into a feature space with a higher number of dimensions in a process known as recoding. To 

understand why non-linear data will exhibit linear behaviours in higher dimensions, the 

simple example of a φ function given below is examined. The φ function below maps vectors 

in a two dimensional Euclidean input space into a three dimensional Euclidean feature space 

according to the following explicit form 

 

 φ(ρcosθ, ρsinθ) = ((ρcosθ)², √ 2   ρ²cosθsinθ, (ρsinθ)²). (1) 
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As we can see from Figure 6, before the φ-map, the vectors in the two circles can only be 

separated by a non-linear decision boundary in the form of another circle. However, after the 

φ-map, the vectors on the two circles can now be separated by a linear decision boundary in 

the form of a plane. Therefore, the φ-map is capable of transforming a non-linear relationship 

into a linear relationship. 

 

 

Figure 6: The two circles mapped from input space to feature space, plotted by MATLAB. 

 

However, the φ function will often map input-space vectors into a feature space with an 

extremely large number of dimensions. Sometimes the feature space will even reach an 

infinite number dimensions. Under these circumstances, the direct application of existing 

linear learning algorithms to mapped vectors in the feature space quickly becomes unwieldy. 
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Fortunately, such direct applications are not necessary. The φ mapping function and the 

feature space vectors are not actually used explicitly in the learning process. Instead, all 

learning is done based on computing the inner-products between pairs of feature vectors 

which are the φ-mappings of input space vectors into the feature space. Existing linear 

learning algorithms such as the perceptron and the SVM can be rewritten in such a way that 

they do not directly access the input vectors themselves but rather use only the inner products 

between pairs of input vectors to do their learning. The inner products between pairs of 

feature space input vectors are known as kernels. As an example of kernels, consider the 

mapping in equation (1). This mapping has the effect of transforming a quadratic, and hence 

non-linear, relationship in an 
2
 input space to a linear relationship in an 

3
 feature space. 

Now consider calculating the inner product of the φ mapped three dimensional vectors of two 

vectors x and z in the feature space. 

 

〈φ(ρ1cosθ, ρ1sinθ), φ(ρ2cosθ, ρ2sinθ)〉  

= 〈((ρ1cosθ)², √ 2   ρ1cosθ ρ1sinθ, (ρ1sinθ)²), ((ρ2cosθ)², √ 2  ρ2cosθρ2sinθ, (ρ2sinθ)²)〉 

= (ρ1cosθ)²(ρ2cosθ)² + 2ρ1²cosθsinθρ2²cosθsinθ + (ρ1sinθ)²(ρ2sinθ)² 

= (ρ1ρ2cosθcosθ + ρ1ρ2sinθsinθ)² 

= 〈(ρ1cosθ, ρ1sinθ), (ρ2cosθ, ρ2sinθ)〉2 

 

We come to the surprising discovery that the complicated inner product of two vectors 

mapped into a three-dimensional feature space turned out to be simply the square of the inner 
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product of the same two vectors calculated directly in the input space. Thus, kernels have 

very convenient representations in the input space. In fact, it is these input space 

representations of kernels that allow for very simple calculations in the transformation of 

non-linear relationships into linear relationships. Given linear algorithms that have been 

modified so that they only work with inner-products between input vectors, these inner 

products could then be trivially recoded with the kernel to immediately and transparently 

enable the modified linear algorithms to work on non-linear learning with all the statistical 

guarantees of their performance and accuracy in place and with no local minima problems. 

Moreover, the calculation of kernel values is often orders of magnitudes less complex than 

directly calculating the feature vectors using the φ-map and finding their inner product in a 

naïve algebraic way in the feature space. Thus the kernel method allows for a method of 

doing non-linear learning with a linear learning algorithm in a high-dimensional space 

without having to pay the corresponding price of a full φ-mapping of low-dimensional input-

space vectors into the high-dimensional feature space. It is this saving in computational costs 

that makes kernel methods the enabling tool in non-linear machine learning. 

 

2.5 The Blum landmark vector learning framework 

Under traditional kernel learning frameworks, only the set of labeled training vectors are 

available to a kernel learning algorithm. Therefore, the weight vector of the decision 

hyperplane that is ultimately learned by the kernel learning algorithm in the feature space is 

the linear combination of only the set of φ-mapped feature space vectors corresponding to the 

set of labeled training vectors in the input space. This traditional framework suffers from a 
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drawback: the feature space is kept implicit behind the kernel, so the user has no idea what 

the training vectors would look like after they have been mapped into the feature space of the 

kernel. To put this problem in a mathematical perspective, consider the quadratic kernel  

K(x, y) = 〈x, y〉². 

 

From the previous section we know that the quadratic kernel maps vectors in an 
2
 input 

space into an 
3
 feature space. The corresponding mapping function φ is defined as follows: 

 

 φ(x1, x2) = (x1², √ 2   x1x2, x2²) (2) 

 

However, a linear classification algorithm working under traditional kernel learning 

framework only works with vectors in the 
2
 input space by taking the input space inner-

product between two vectors and squaring that inner-product as per the quadratic kernel 

function. The linear classification algorithm does not know about what the vectors will be 

after they have been mapped into the feature space according to equation (2). In the example 

we have used here it is still possible, if we really desired it, to find out how the input space 

vectors are actually distributed in the feature space. On the other hand, if we are working 

with kernels whose feature space has a large or infinite number of dimensions, then it is no 

longer possible to calculate the explicit coordinates of vectors in the feature space. The 

incomputable feature space vectors make traditional kernel framework unwieldy for 

visualizing the linear distribution of the input-space vectors in the feature space. It also 
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prevents further analyses of particular mathematical or statistical properties of the feature 

space beyond those provided by the kernel. More importantly, it requires existing linear 

learning algorithms to be rewritten in the “dual-form” since the linear feature space is not 

explicitly available for the primal forms of the linear learning algorithms. A mathematical 

example of this recoding will be given in the next remark. Thus a more transparent 

framework employing the kernel function is needed. 

 

In (Blum, 2006) the authors proposed one such novel kernel learning framework that allows 

for transparent learning and has an explicit and computable feature space. This novel 

framework makes use of the potentially vast number of unlabeled vectors belonging to the 

same distribution and the same input space as the training vectors in the input space. Given a 

set of labeled training vectors {x(1), x(2), …, x(n)} and a set of unlabeled training vectors  

{z(1), z(2), …, z(d)} both of which belongs to a probability distribution called P, let a function  

F:P → FP be defined in the following way: 

 

 F(x) = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
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),(

)(

)1(

dzxK

zxK
M  (3) 

 

where x ∈ {x(1), x(2), …, x(n)} is a labeled training vector. We can see that the function F maps 

a labeled training vector from the original input space and probability distribution into an 
d
 

feature space called the FP space. Furthermore, the mapped vectors in the FP feature space 
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are explicitly accessible as their components are computed as the kernel evaluations between 

a training vector and each of the unlabeled vectors belonging to the same distribution and the 

same input space as the training vectors. Since the margin between the feature space vectors 

in the FP feature space is now made linear as proven by (Blum, 2006), one may now trivially 

apply any ordinary linear learning algorithm such as the perceptron and SVM in their primal 

forms without any modification to the FP feature space to do the needed learning. The linear 

learning done by these algorithms in the FP feature space is then transparently translated 

back into non-linear learning done in the input space by Blum’s landmark vector learning 

framework. 

 

Remark Notice that Blum’s landmark vector learning framework acts as a preprocessor that 

hides the complexities of the kernel learning framework from linear learning algorithms that 

were invented before kernels. The traditional kernel learning framework, as illustrated in 

(Shawe-Taylor and Cristianini, 2004), demands that traditional linear learning algorithms be 

modified to use only inner-products between pairs of input vectors during their execution. For 

example, consider the ridge regression algorithm discussed in (Shawe-Taylor and Cristianini, 

2004).  

 

The problem that the ridge regression algorithm sets out to solve is the finding of a linear 

function 
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 g(x) = 〈w, x〉 = ∑
=

n

i
ii xw

1
 (4) 

 

that would best interpolate a given training set S = {(x(1), y1), …, (x(l), yl)} of vectors  

x(i) = (x1
(i), x2

(i), …, xn
(i)) from set X ⊆ 

n
, where xj

(i) denotes the jth component of vector x(i), 

with corresponding labels yi from set Y ⊆ . Arrange the set of vectors xi into the following 

matrix form: 
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It becomes apparent that in order for equation (4) to best interpolate S it is necessary to 

minimize the following difference: 

 

 L(w, S) = || y – Xw ||² = (y – Xw)T(y – Xw) (5) 

 

where the function L(w, S) is called the “loss function” and serves as a measure of the 

amount that the predicted labels generated by equation (4) deviates from the true set of labels 

Y. 
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In order to find the weight vector w that will minimize equation (5) it is necessary to 

differentiate equation (5) with respect to w, we have 

 

w
SwL

∂
∂ ),(  = -2XTy + 2XTXw = 0 

moving -2XTy to the right hand side of the above equation and canceling out the coefficient, 

we have 

 

 XTXw = XTy (6) 

 

Solving for w in the above equation will yield the linear function of equation (4)’s form that 

will best interpolate set S. However, the inverse of XTX does not always exist or may be ill-

conditioned. Therefore it is necessary to introduce a “regularizer” to XTX to ensure that it will 

always have a well-behaved inverse and at the same time it will closely approximates the 

original XTX matrix itself. We introduce this “regularizer” by adding a constant λ to each 

entry on the main diagonal of XTX and rewrite equation (6) as 

 

 (XTX + λI)w = XTy (7) 

 

where I is an identity matrix whose dimension matches that of XTX. The final weight vector 

may now be computed as: 
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 w = (XTX + λI)-1XTy (8) 

 

This is the “primal form” for the ridge regression algorithm because in order to calculate w it 

is necessary to explicitly access the training vectors themselves due to the presence of terms 

in equation (8) such as XTX and XT which are not related to inner-products between pairs of 

training vectors. In order to enable ridge regression algorithm to work under traditional 

kernel learning frameworks, it is necessary to spend additional effort to rewrite the ridge 

regression algorithm so that it works with only the inner products between pairs of training 

vectors. 

 

To transform the ridge regression algorithm into a dual-form, we go back to equation (7) and 

start from there 

 

(XTX + λI)w = XTy 

 

Solving for w, we get: 

 

 w = λ-1XT(y – Xw) = XTα (9) 

 

The last expression shows that w can be written as a linear combination of training vectors 

with the weight vector being α = λ-1 (y – Xw). Hence, we have 
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α = λ-1 (y – Xw) 

λα = y – Xw 

λα = y – XXTα 

λα + XXTα = y 

(λI + XXT)α = y 

(λI + G)α = y 

 α = (G + λI)-1y (10) 

 

The matrix G is called Gram’s matrix, and its components are defined as Gj
(i) = 〈x(i), x(j)〉. 

Therefore Gram’s matrix consists purely of inner-products between pairs of training vectors. 

Since equation (10) accesses training vectors only through a Gram matrix, the ridge 

regression algorithm has now been rewritten in the dual form. 

 

The need to rewrite linear learning algorithms in dual forms is inconvenient. Blum’s 

landmark vector learning framework obviates the need of such rewrites by preprocessing, 

using a kernel, the training vectors into a new linear feature space that can be explicitly 

accessed by the unmodified primal forms of linear learning algorithms. If the ridge regression 

algorithm is applied under Blum’s landmark vector learning framework, then all the work 

that goes into the derivation of equations (9) and (10) is unnecessary. The primal form of 

ridge regression algorithm in equation (8) can be directly applied to non-linear data by 

defining the training matrix X as 

 



 

  25

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

),(),(),(

),(),(),(
),(),(),(

)(

)(
)(

)()()2()()1()(

)()2()2()2()1()2(

)()1()2()1()1()1(

)(

)2(

)1(

dlll

d

d

Tl

T

T

zxKzxKzxK

zxKzxKzxK
zxKzxKzxK

xF

xF
xF

X

L

MOMM

L

L

M
 

 

A final concept that we need to cover before introducing the core results from (Blum, 2006) 

is the PAC learning model. The PAC learning model is used throughout (Blum, 2006). A 

good and easy-to-understand introduction to the PAC learning model is found in (Rathi, 

2005). 

 

PAC Learning Model (Rathi) Let C be a class of boolean functions f : X → {-1, +1}. We say 

C is PAC-learnable if there exists an algorithm L such that for every f ∈ C, any probability 

distribution D, any ε where 0 ≤ ε < ½ and any δ where 0 ≤ δ < 1, algorithm L on input ε and δ 

and a set of random examples picked from any probability distribution D outputs at least with 

a probability 1 – δ, a function h : X → {-1, +1} such that error(h, f) ≤ ε. 

 

Efficient PAC Learning Model (Rathi) We say that C is efficiently PAC-learnable if C is 

PAC-learnable and 

• the number of examples that L takes is bounded by some polynomial in n, 
ε
1  and 

δ
1  

• L runs in time asymptotically bounded by some polynomial in n, 
ε
1  and 

δ
1 . 
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used throughout (Blum, 2006) to express the number of unlabeled examples drawn i.i.d. from 

the distribution underlying the set of labeled training examples. 

 

With the required preliminary concepts and definitions covered in this and previous sections 

of this chapter, we now present two fundamental results from (Blum, 2006) 

 

Lemma (Blum) Consider a set S of labeled examples in Euclidean space such that there exists 

a linear separator defined by the weight vector w that separates the set S with margin γ and 

error 0. If we draw ⎥
⎦

⎤
⎢
⎣

⎡
+≥

δγε
1ln18

2d  examples z(1), …, z(d) i.i.d. from the distribution 

underlying S, then with probability ≥ 1 – δ, there exists a vector w' in span(z(1), …, z(d)) that 

defines a hyperplane that separates the set S with margin γ/2 and error at most ε. 

 

This lemma implies that if a set of training vectors is linearly separable with margin γ under a 

kernel, and we draw ⎥
⎦

⎤
⎢
⎣

⎡
+=

δγε
1ln18

2d  unlabeled vectors z(1), …, z(d) from the same 

distribution as the labeled training vectors we started out with, then with probability at least 

1 – δ there is a linear decision hyperplane, with w as its weight vector, in the feature space 

with error rate at most ε that can be written as the linear combination of the φ-mapped feature 

space vectors of the chosen unlabeled vectors z(1), …, z(d) in the form below: 
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w = ∑
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d
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i
i z

1

)( )(φα . 

 

According to definition of kernels, 〈w, φ(x)〉 = α1K(x, z(1)) + … + αdK(x, z(d)). An immediate 

implication is that if we treat K(x, z(i)) as the ith “feature” of x in the FP feature space 

constructed by equation (3), then with high probability the vector (α1, …, αd) is an 

approximate weight vector for a decision hyperplane in the FP space that will linearly 

discriminate between the φ-mapped vectors of the original training vectors. This leads to the 

following result. 

 

Corollary (Blum) If a set S of labeled training vectors becomes linearly separable after being 

mapped into the feature space associated with a kernel function K, then with probability at 

least 1 – δ, if ⎥
⎦

⎤
⎢
⎣

⎡
+=

δγε
1ln18

2d  unlabeled vectors z(1), …, z(d) are drawn from the 

distribution underlying S, the mapping 
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applied to the set S will produce a new feature space FP in which the set S becomes linearly 

separable with error at most ε. 
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2.6 Random projection 

Random projection is a mathematical technique commonly used for dimensionality 

reduction. A very famous lemma by Johnson and Lindenstrauss (Johnson and Lindenstrauss, 

1984) states that when vectors from a high-dimensional space are projected into a low-

dimensional space, distances and angles between all pairs of vectors are approximately 

preserved (Figure 7). The Johnson-Lindenstrauss lemma quantified the degree to which the 

approximation took place and fixed it in relation to the other parameters that characterized 

the original high-dimensional vectors. Numerous proofs have since been given for this 

observation (Frankl and Maehara, 1988; Indyk and Motwani, 1998; Dasgupta and Gupta, 

1999), with at least one of them being elementary (Dasgupta and Gupta, 1999). 
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Figure 7: A Johnson-Lindenstrauss random projection from three-dimensional space onto a plane. 

Note that the relative distances and orientations between the vectors are approximately preserved in 

the random projection. 

 

2.7 Chapter summary 

This chapter introduced various background materials that are necessary for a good 

understanding of the next chapter. The origins of learning and machine learning were 

discussed. Various classical machine learning algorithms such as the Perceptron and SVM 

are introduced and their operating principles discussed and illustrated. The rationale for a 

uniform non-linear learning framework was introduced at the end of the discussions on SVM. 
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Kernels were presented immediately afterwards as a viable framework for uniform non-linear 

learning. A detailed examination of a simple kernel was presented to clarify the various 

concepts associated with kernel learning inner products and the φ-mapping function. All of 

these ideas lead to the introduction of Blum’s landmark vector learning framework that 

presents a novel alternative to traditional kernel learning frameworks. Finally the idea of 

random projection is introduced that forms the prerequisite knowledge for the linear kernel 

proof discussed in Chapter 3. 
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Chapter 3 
New Theories and Designs 

3.1 The power landmark vector learning framework 

This section describes an original extension, proposed by this thesis, to Blum’s landmark 

vector learning framework. The new learning framework is called “the Power Landmark 

Vector Learning Framework”. 

 

Before proceeding further the concept of “landmark vectors” needs to be defined as it is very 

important to the main contribution of this thesis. Simply put, landmark vectors are vectors 

that belong to the same input space as the set of labeled training vectors given for a learning 

problem, but are distinct from any vectors in the training set. 

 

Example The set of unlabeled vectors {z(1), …, z(d)} are landmark vectors belonging to a 

probability distribution P used in Section 2.5. 

 

In the previous section we looked at Blum’s landmark vector learning framework. We 

learned that we could construct an FP feature space for a given training set X using the 

following function F : P → FP 
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where x ∈ X, K is a kernel function and {z(1), …, z(d)} is the set of landmark vectors. In the 

new feature space the coordinates for the feature vectors could be explicitly computed and 

accessed. 

 

We can then proceed to run an ordinary linear learning algorithm in this new feature space to 

directly learn the linear decision hyperplane separating the positive and negative vectors, 

perform dimensionality reduction to visualize the feature space itself, or study other 

mathematical and statistical properties of the feature space. 

 

A key concept underlying Blum’s landmark vector learning framework is the ability of the 

unlabeled vectors to express the linear combination needed to characterize the weight vector 

of the decision hyperplane properly. This argument is intuitively sound. Blum and Balcan 

further utilized probabilistic arguments to argue that this is in fact the case. However, a 

question was left at the end of Blum’s work concerning the necessity of having the landmark 

vectors belong to the same probability distribution as the training vectors. This section 

addresses this question and extends Blum’s landmark vector learning framework so that the 

resulting new framework is capable of accepting other types of landmark vectors that are not 

dependent on the probability distribution of the landmark vectors. 

 

Key Concept If the weight vector of a decision hyperplane in the feature space induced by a 

kernel is expressed as 
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where αi ∈  and {x(1), …, x(n)} is the training set, then with high probability the weight 

vector of the decision hyperplane can be equivalently expressed as 
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where βi ∈  and {z(1), …, z(n)} is the set of unlabeled landmark vectors. The βi’s are related 

to the αi’s through the following equation: 

 

 )(,)( )(

1

)( i
n

i

i
ii zx φφαβ ∑

=

=  (11) 

 

A key insight is that the weight vector in the feature space can be expressed as the linear 

combination of more than one set of feature space vectors. In traditional kernel learning 

problems, only the set of labeled training vectors is available to the kernel algorithm, thus the 

resulting decision hyperplane that is learned must necessarily be the linear combination of 

the φ-mapped feature space vectors of the labeled training vectors. This is due to the “what 

we learn can only come from what we already know” principle and the fact that the set of 

labeled training vectors is all that we know. If other types of vectors from the input space of 
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the training vectors are used, then it would be natural for one to question whether those types 

of vectors are capable of spanning a subspace in the kernel feature space the approximates 

the weight vector spanned by the linear combination of φ-mapped training vectors. (Blum, 

2006) has already shown that the φ-mapped vectors of the unlabeled vectors belonging to the 

same distribution and the same input space as the training vectors in the input space in the 

input space are capable of spanning such a subspace. We now propose the key question that 

extends Blum’s argument and gives rise to the power landmark vector learning framework. 

 

Key question proposed by this thesis If the weight vector of a decision hyperplane in the 

feature space induced by a kernel can be expressed as the linear combination of the set of φ-

mapped feature space vectors that are the images of a set of labeled training vectors in the 

input space, then is it possible, with high probability, that the weight vector of the same 

decision hyperplane can be equivalently expressed as the linear combination of a set of φ-

mapped feature space vectors that correspond to input-space Gaussian-random or orthogonal 

vectors that are independent of the training vector’s distribution? 

 

For kernels with a finite-dimensional feature space such as the quadratic kernel, one obvious 

strategy to guarantee the capture of the subspace containing the decision hyperplane by 

alternative sets of vectors other than the labeled training vectors is to find the vectors in the 

input space that, when mapped into the feature space through the φ-map, would yield a set of 

orthonormal bases for the feature space of the form (1, 0, 0, …. 0), (0, 1, …, 0), …,  

(0, 0, …, 1). As these artificial vectors do not exist naturally in the input space, we must start 
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with the orthonormal bases in the feature space and “back-map” them back into the input 

space. This problem of back-mapping is known as the kernel pre-image problem. Research in 

the kernel pre-image problem has not advanced sufficiently to readily allow one to perform 

this type of computation (Schölkopf and Smola, 2002; Kwok and Tsang, 2003). Furthermore, 

for kernels with infinite dimensional feature spaces, such as the Gaussian kernel, this strategy 

simply fails to work. Therefore alternatives must be sought. 

 

We will now present several theorems, corollaries, remarks and discussions that constitute a 

comprehensive theoretical description of the power landmark vector learning framework and 

some of the rationales behind its operation. 

 

A baseline argument is that the set of landmark vectors, upon being mapped into the feature 

space through the φ-map, should not all be mapped to the same vector in the feature space, as 

is the case with the feature space of a pathological kernel we will examine later in this 

chapter. For this argument, the thesis introduces a novel result called the Non-collapsible 

Principle, which states that a set of vectors spanning an n-dimensional Euclidean space 

should be able to span a subspace of at least n-dimensions in the feature space of a kernel. 

 

Non-collapsible principle A kernel that is good for the power landmark vector learning 

framework should preserve the dimensionality of the training set from the input space into 

the feature space. 
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Non-collapsible characterization If the φ-map of a given kernel is such that it contains, in its 

feature list, a repetition of all the dimensions of the input space, then the kernel is said to 

possess the Non-collapsible characterization. 

 

Remark The non-collapsible characterization is a sufficient, but not necessary, condition for a 

kernel to satisfy the non-collapsible principle. This means that there will exist other ways for 

a kernel to satisfy the non-collapsible principle. The investigation of these alternative venues 

will be a piece of future work for future graduate students in computer science and 

mathematics. 

 

Non-collapsible corollary for the Gaussian kernel If a set of n vectors span an n-dimensional 

space, then the φ-mapped feature space vectors of those n vectors will still span an n-

dimensional subspace in the feature space of the Gaussian kernel. 

 

Proof: If the n vectors are capable of spanning an n-dimensional space, then there exist no 

linear dependencies in this set of n vectors. That is, we let the set of n vectors be  

{x(1), …, x(n)}. Then there exists no sequence of real numbers c1, …, cm (1 ≤ m < n) such that 

c1
)( 1ix  + … + cm

)( mix  = )(ix ′ , where i1, …, im, i' ∈ {1, 2, …, n} and i1 ≠ … ≠ im ≠ i'. We now 

show that no new linear dependencies will arise among this set of n vectors after they have 

been mapped into the feature space via the φ-map. 
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Let us suppose that a new linear dependency did arise in the set {φ( )1(x ), …, φ( )(nx )}, that is, 

there now exists a sequence of real numbers c1, …, cm (1 ≤ m < n) such that c1 ( ))( 1ixφ  + … + 

cm ( ))( mixφ  = ( ))(ix ′φ , we now examine these φ-mapped feature space vectors in detail. 

 

Shawe-Taylor and Cristianini showed that the features of a vector in the feature space of the 

Gaussian kernel consisted of “all possible monomials of input features with no restriction 

placed on the degrees” (Shawe-Taylor and Cristianini, 2004). In the context of this proof, this 

means that the features of a φ-mapped vector will contain at least a repeat of all the 

individual input vector space coordinates of an x vector as its monomials with degree 1. That 

is, if the x vectors reside in a d-dimensional space, then we take an x vector out of the set, call 

it x*, then x* = (x*
1, x*

2, …, x*
d), where x*

i is the ith coordinate of the vector x* in the input 

space. According to Shawe-Taylor and Cristianini, φ(x*) looks like the following: 

 

φ(x*) = (1, x*
1, x*

2, …, x*
d, x*

1x*
2, x*

2x*
3, …, x*

dx*
1, 

 x*
1², x*

2², …,  x*
d², x*

1x*
2x*

3, …, ∏
=

j

k
ik

x
1

* , …) 

 

Notice that the set of components of x*: x*
1, x*

2, …, x*
d, are repeated in the components of 

φ(x*). It is this region in the components of φ(x*), which repeats the components of x*, that we 

are interested in and will focus on. Since c1 ( ))( 1ixφ  + … + cm ( ))( mixφ  = ( ))(ix ′φ , we have: 
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where )( ji
lx  denotes the lth feature of vector )( jix  in the input space. Thus we may obtain, from 

the above equation, the following set of equations: 
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where l = 1, …, d. Recombining these equations back into column vector notation, we have: 
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Hence, there exists a sequence of real numbers c1, …, cm such that equation (12) holds. 

However, the premise of the proof stated that there exists no sequence of real numbers c1, …, 

cm (1 ≤ m < n) such that (12) holds. Thus we have arrived at a contradiction. Therefore there 

will arise no new linear dependencies after the projection of the x vectors into feature space 

and the set of φ(x)’s will span a full n-dimensional subspace inside the Gaussian kernel 

feature space and the original theorem holds. □ 

 

Corollary It is immediately evident that the non-collapsible theorem can be readily applied to 

the quadratic kernel. □ 

 

Now that we have some guarantees on the kind of subspace that can be formed by a set of 

landmark vectors mapped into the Gaussian kernel feature space, we want to know if this 

subspace can in fact span the actual weight vector, for all would be in vain if this were not 

the case. From linear algebra we know that vectors cannot span directions that are 

perpendicular, or orthogonal, to it. Thus, a good indicator of a vector’s ability to characterize 

a vector space is whether the vector is orthogonal to that vector space. Mathematically, a 

vector x is orthogonal to a vector space V if for all vectors v ∈ V, 〈x, v〉 = 0. 

 

If a vector x is orthogonal to a vector space V, then x is useless in characterizing V because it 

will not add to any linear combination characterizing V. For the power landmark vector 

learning framework we would like the set of landmark vectors, upon being mapped into the 

feature space by the φ-map, to be non-orthogonal to the subspace containing the decision 
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hyperplane spanned by the φ-mapped labeled training vectors. This way, the φ-mapped 

landmark vectors may span a subspace in feature space that could adequately contain the 

subspace of the decision hyperplane. For this purpose, this thesis introduces another novel 

result, the Non-orthogonal Principle. 

 

Non-orthogonal Principle In other words, a kernel that is good for the power landmark 

vector learning framework should prevent two vectors that are non-orthogonal in the input 

space from becoming orthogonal in the feature space. 

 

Non-orthogonal Characterization If a kernel returns large values when it is evaluated on a 

landmark vector and a training vector, or, barring that, if the kernel will not return 0 for 

valuation between any pair of landmark vector and training vector, then the kernel is said to 

possess the non-orthogonal characterization. 

 

Remark As in the non-collapsible case, the non-orthogonal characterization is a sufficient, 

but not necessary, condition for a kernel to obey the non-orthogonal characterization. This 

means that there will exist other ways for a kernel to satisfy the non-orthogonal principle. 

The investigation of these alternative venues will be a piece of future work for future 

graduate students in computer science and mathematics. 

 



 

  41

Non-orthogonal Corollary for the Gaussian Kernel No two vectors in the input space may, 

after being mapped into the feature space of the Gaussian kernel, become orthogonal to each 

other in the Gaussian kernel feature space. 

 

Before we delve into a proof for the above theorem, one definition and two remarks are in 

order. 

 

Definition of l² space If x = (x1, x2, …, xn, …) is a vector with a countably infinite number of 

components such that the sum 

 

∞<∑
∞

=1

2

i
ix  

 

and y is another vector of the same type as x, let the inner product between x and y be defined 

as 

 

∑
∞

=

=
1

,
i

ii yxyx  

 

It is easy to show that the above inner product also converges. The resulting inner-product 

space is known as l². (Shawe-Taylor and Cristianini, 2004) 

 

Remark The feature space of the Gaussian kernel is an l² space. 
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Remark Naturally one would want to re-cycle the strategy employed in the proof of the non-

collapsible theorem. That is, assuming that 

 

〈φ(x), φ(z)〉 = 0 

 

when  

 

〈x, z〉 ≠ 0 

 

and show that this entails that 

 

〈(1, x1, …, xn, …), (1, z1, …, zn, …)〉 = 0 

1 + x1z1 + … + xnzn + … = 0 

 

which implies that 

 

x1z1 + … + xnzn = 0 

 

contradicting with the fact that x and z are non-orthogonal. 
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However, for this theorem there is an added complication from the fact that the individual 

components in the φ-mapped vector can now no longer be kept independent of each other as 

in the proof for the non-collapsible theorem. This is because the inner-product demands that 

the components be added to each other. Since the feature space of the Gaussian kernel are 

infinite dimensional, just because  

 

 x1z1 + … + xnzn ≠ 0 (13) 

 

does not imply that 

 

1 + x1z1 + … + xnzn + … ≠ 0 

 

since other terms in the above converging infinite sum might cancel out with the non-zero 

value of equation (13). 

 

However, we should not be so preoccupied with the feature space mappings, because it 

worked so well for the non-collapsible theorem case, that we lose the overall vision of the 

kernel itself. The insight is that the Gaussian kernel itself is the inner-product of two vectors 

mapped into the Gaussian feature space, and we know that that kernel cannot yield any zero 

values. 
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Non-orthogonal Theorem (restated) No two vectors in the input space may, after being 

mapped into the feature space of the Gaussian kernel, become orthogonal to each other in the 

Gaussian kernel feature space. 

 

Proof According to Shawe-Taylor and Cristianini, the form of the Gaussian kernel is 

exp
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
− 2

2

2σ
zx vv

 (Shawe-Taylor and Cristianini, 2004). Since the exponential function does 

not yield any 0 or negative values, the inner product of any two input space vectors φ-

mapped into the Gaussian feature space cannot be 0 and hence the φ-mapped feature space 

projection vectors of any two input-space vectors cannot be orthogonal to each other.  □ 

 

Remark An examination of equation (11) also shows that large values for the inner-products 

between landmark vectors and training vectors can help the βi’s to better approximate the 

αi’s. 

 

The non-collapsible theorem establishes a guarantee that a set of n landmark vectors, if they 

are capable of spanning an n-dimensional space, will still be capable of spanning an n-

dimensional subspace in the Gaussian feature space after mapping via the φ-map. This 

theorem prevents n input space linearly independent landmark vectors from being mapped 

into the same vector in the feature space. This is necessary in order for the landmark vectors 

to span an n-dimensional subspace required to span the weight vector. 
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Despite the seemingly infinite dimension of the Gaussian feature space, a collection of n 

labeled training vectors, even after being mapped into this infinite dimensional feature space 

through the φ-map, can still span at most an n-dimensional subspace in the feature space. 

Since the weight vector is expressed as a linear combination of the φ-mapped labeled 

training vectors, we have that the decision hyperplane itself is an n-1 dimensional object 

contained within the n-dimensional subspace spanned by the set of n φ-mapped labeled 

training vectors. 

 

Now we have two facts:  

 

1. A set of n random vectors that can span an n-dimensional space in the input space can 

likewise span an n-dimensional subspace in the feature space after φ-map. 

2. The decision hyperplane itself is contained in an n-dimensional subspace spanned by 

the n labeled training vectors in the feature space. 

 

It remains to find out how well the n-dimensional subspace in point 1 could characterize the 

n-dimensional subspace in point 2. In other words how well could the n random vectors span 

the weight vector that is formed from the linear combination of training vectors? 

 

To this question the non-orthogonal theorem provides a satisfactory lower-bound answer. As 

shown in the proof of the non-orthogonal theorem for the Gaussian kernel, in a Gaussian 
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kernel feature space it is impossible for orthogonal vectors to exist. Thus we have that for 

any pair of input-space vectors x and z 

 

〈φ(x), φ(z)〉 ≠ 0 

 

where φ is the mapping function underlying the Gaussian kernel. The non-orthogonal 

theorem guarantees that it is impossible for any φ-mapped landmark vector to exist entirely 

outside of the subspace of the decision hyperplane. Thus the non-orthogonal theorem 

prevents the occurrence of landmark vectors whose φ-mappings are totally orthogonal to the 

decision hyperplane and cannot be used in the formation of the final landmark vector linear 

combination of the weight vector of the decision hyperplane. Furthermore, the non-

orthogonality experiments in Chapter 4 will demonstrate that the φ-mapped landmark vectors 

are actually capable of providing good characterizations of the subspace spanned by the φ-

mapped training vectors. 

 

The linear independence of random vectors experiments performed in Chapter 4 

demonstrates that, with high probability, the generated random vectors in an input vector 

space will form a linearly independent set. We could also deliberately construct the set of 

orthonormal basis vectors for the input vector space to ensure the linear independence of the 

landmark vectors. Together, these two types of vectors allow us to apply the non-collapsible 

theorem, the non-orthogonal theorem and previous discussions to provide an answer to the 

key question posed at the start of this section in the affirmative. 
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Answer to Key Question Yes, If the weight vector of a decision hyperplane in the feature 

space induced by a kernel can be expressed as the linear combination of the set of φ-mapped 

feature space vectors that are the images of a set of labeled training vectors in the input 

space, then is it possible, with high probability, that the same decision hyperplane can be 

equivalently expressed as the linear combination of a set φ-mapped feature space vectors that 

are of the following types: 

 

1. Gaussian normal random vectors 

2. Input space orthonormal basis vectors 

 

This is because the feature space does not distinguish between feature vectors that are of the 

random vector type, input-space orthonormal basis vector type, unlabeled data type or 

labeled training data type. Once mapped into the feature space all vectors are equal in 

significance. The different types of input space vectors lose their own unique input-space 

properties, and in the case of the labeled training vectors, their labels, as soon as they are 

mapped into the feature space. To the Gaussian kernel, all feature vectors are infinite-

dimensional l² space vectors without any labels, distributions or any other properties 

attached. As long as the underlying kernel-induced feature space and the set of φ-mapped 

landmark vectors satisfy the linear algebraic properties outlined in the non-collapsible 

theorem and the non-orthogonal theorem, then the power landmark vector learning 

framework is capable of generating, through the particular linear learning algorithm 
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employed in the feature space, the specific linear combination of the landmark vectors, in the 

form of the α sequence, that are needed to give rise to a weight vector that closely 

approximates the original weight vector learned using labeled training data only. 

 

3.2 A retrospective on Section 4.6 of (Blum, 2006) 

In Section 4.6 of (Blum, 2006) Blum gave a kernel for which the power landmark vector 

learning framework developed in this thesis would fail to work. Paraphrasing Blum’s 

pathological kernel, the definition of the φ-map for the pathological kernel is as follows: 

 

 

 

Blum employed a complicated and abstract argument involving half-spaces to demonstrate 

the necessity of having the distribution of the randomly chosen unlabeled vectors belonging 

to the same distribution and the same input space as the training vectors in the input space. 

His conclusion also demonstrated why the power landmark learning framework will fail for 

the above feature space. Using the theories developed for the power landmark learning 

framework, we can now more easily see why power landmark learning will fail for the above 
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pathological feature space and kernel. The Gaussian normal random vectors, the input-space 

orthonormal bases vectors, and most types of landmark vectors other than the unlabeled 

vectors belonging to the same distribution and the same input space as the training vectors in 

the input space would most likely not belong to the distribution of the learning problem. This 

pathological kernel, when applied under the power landmark vector learning framework, will 

violate the non-collapsible theorem by collapsing all landmark vectors into a single (1, 1, 1) 

vector. Hence, the φ-mapped landmark vectors in this pathological feature space would only 

be able to span a vector in the direction of the (1, 1, 1) vector. This vector would deviate 

from most weight vectors spanned by training examples under the Gaussian kernel. The 

deviations would become so great that the power landmark vector learning framework is 

made ineffective. 

 

This example demonstrates the fact that the utility of the power landmark vector learning 

framework is not universal. The validity of the power landmark vector learning framework 

must be justified on a per-kernel basis. This example also demonstrates that the non-

collapsible theorem and the non-orthogonal theorem may be used for identifying the kernels 

that will work under the power landmark vector learning framework. 

 

Stated simply, the two theorems hold for the Gaussian kernel because the feature vector 

space of the Gaussian kernel subsumes the input vector space. These properties of the 

Gaussian kernel allow it to meet the non-collapsible and non-orthogonal principles, hence 

making it a good kernel for use by the power landmark vector learning framework. Such 
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properties, however, do not apply to all kernels and all input spaces, the pathological kernel 

discussed in this section being the best example. Thus, the power landmark vector learning 

framework must be justified on a per-kernel and per-input space basis. 

 

3.3 Benefits of the power landmark vector learning framework 

The power landmark vector learning framework naturally inherits the benefits of Blum’s 

landmark vector learning framework. The power landmark vector learning framework offers 

an explicit and easy way to access the feature space. It also preprocesses the non-linear input 

space based training vectors in a manner similar to Blum’s framework and produces a feature 

space in which traditional linear learning algorithms such as the Perceptron and the SVM can 

be applied without any modification. More importantly, the power landmark vector learning 

framework improves upon Blum’s landmark vector learning framework by allowing 

additional classes of landmark vectors from the input space to be utilized for the learning 

process. As experiments in Chapter 4 will show, the power landmark vector learning 

framework has potential applications in dimensionality reduction and data visualization. 

Finally, the power landmark vector learning framework is an alternative framework of 

learning using kernel theory, thus by learning and understanding the principles of power 

landmark learning framework one could obtain a better grasp and a clearer conceptual 

understanding of the various theoretical underpinnings of kernel methods in general. 
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3.4 Relevance to bioinformatics 

The power landmark learning framework provides an alternative to traditional kernel 

learning frameworks by making linear feature spaces explicit. Since many modern 

bioinformatics learning problems involve the use of kernels, the power landmark learning 

framework could be applied to these bioinformatics learning problems. Due to the explicit 

feature space involved in power landmark learning, the feature vectors corresponding to the 

training vectors in the input space could be explicitly examined and used for other purposes. 

Potentially, a fewer number of landmark vectors are needed than the total number of all input 

training vectors. This observation implies that power landmark learning may be used to 

reduce the runtime of bioinformatics learning problems from O(n²) to O(nl), where l is the 

number of landmark vectors. Power landmark learning also has potential applications to 

dimensionality reduction and data visualization tasks in bioinformatics machine learning. All 

of these serve to make power landmark learning highly relevant and suitable for non-linear 

machine learning problems that arise in bioinformatics. In fact, the entire Chapter 4 involves 

the application of the power landmark vector learning framework to the discovery of non-

linear relationships existing within each of the three bioinformatics machine-learning 

datasets. 

 

3.5 The linear kernel 

The linear kernel is simply the Euclidean inner product (dot product) between two vectors in 

n
. Let x = (x1, …, xn) and y = (y1, …, yn) be two vectors in 

n
, with x1, …, xn ∈  and y1, 

…, yn ∈ , then the linear kernel K(x, y) is defined as: 
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nnnn yxyxyxyyyxxxyxyxK +++=== LLL 22112121 ),,,(),,,,(,),(  

 

The linear kernel is the most basic and simple kernel. In fact, other kernels could be seen as 

generalizations of the basic linear kernel into higher-dimensional Euclidean space or the 

infinite-dimensional l² space. Historically the field of kernel methods also traces its origins to 

a generalization of the concept of the regular dot-product in Euclidean space. 

 

Before the question is addressed in the present context, one more study done by (Vempala, 

2004) needs to be mentioned. It is the lemma 1.3 shown on page 2 of (Vempala, 2004). 

 

Lemma (Santosh) Let each entry of an n × d matrix R be chosen independently from  

N(0, 1). Let v = 
k

1 RTu for u ∈ 
n
. Then for any ε > 0, 

1. (||v||²) = ||u||². 

2. P(|||v||² - ||u||²| ≥ ε||u||²) < 2e-(ε² - ε³)(k/4) 

where ||v|| denotes the Euclidean norm of a vector v and P(x) denotes the probability of 

event x. 

 

Note that point 2 is essentially saying that with high probability, the norm of u will be 

approximately preserved to a high degree through the selection of a suitable pair of (ε, k) 

values when it has been projected into a lower dimensional space in the form of vector v. 
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Since the pair-wise distances between pairs of data vectors in a high dimensional space is the 

norm of the vector formed by joining the starting data vector to the ending data vector, that 

norm will also be preserved when the data vectors themselves are projected into a lower 

dimensional space. This is the theoretical basis underlying much of (Blum, 2006)’s work and 

is also the theoretical basis for some of the arguments in this section. 

 

My theorem: If P is linearly separable in the φ-space induced by a linear kernel K, let x(1), …, 

x(d) be d uniform random vectors whose components are generated in an independent and 

identically distributed manner, let F(x) = 
d

1 (K(x, x(1)), …, K(x, x(d)))T, then F(P) is linearly 

separable over 
d
. 

 

Proof: Take the random vectors {x(i)} and form the following matrix: 
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where xj
(i) denotes the jth component of vector i. 

 

For any vector u in the input space 
n
, 
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F(u) 
d

1
= (K(u, x(1))   K(u, x(2))   …   K(u, x(d)))T 
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This is essentially the same form of Johnson-Lindenstrauss style random projection as seen 

in lemma (Santosh). If the ability of Johnson-Lindenstrauss style random projection to 

approximately preserve linear margins can be ascertained (see Section 5.2.4), then we can 

conclude that P remains linearly separable in F(P) in the sense of lemma (Santosh). □ 

 

3.6 The positive semi-definite kernel 

The positive semi-definite (PSD) kernel is defined in proposition 3.22 of (Shawe-Taylor and 

Cristianini, 2004). If A is an n × n symmetric and positive semi-definite matrix, and x and z 

are n-dimensional vectors, then the PSD kernel is defined as: K(x, z) = xTAz. The reason the 

PSD kernel can be considered a kernel is because the matrix A, due to its symmetry and 

positive semi-definiteness, can be expressed as the product VTDV. The matrix D is a diagonal 
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matrix containing the non-negative eigenvalues of the matrix A and V is the orthogonal 

matrix containing eigenvectors corresponding to the eigenvalues in D. Let D  be the matrix 

that results from taking the square root of each entry in D. Note that D D  = D. Thus,  

A = VT D D V and  

 

K(x, z)  = xTAz  

= xTVTDVz  

= xTVT D T D Vz  

= ( D Vx)T D Vz  

= 〈 D Vx, D Vz〉  

 

which is a Euclidean inner product for the vectors D Vx and D Vz. These two products 

are essentially projections of the vectors x and z into a new space spanned by the vectors of 

(V D )T. Since matrices defined on the pair-wise Euclidean inner products are always 

symmetric and positive semi-definite, the PSD kernel is likewise symmetric and positive 

semi-definite. 

 

In a sense, the PSD kernel can be viewed as an extension of the linear kernel. The proof of its 

validity under the uniform random landmark vectors learning framework will likewise follow 

the proof for the linear kernel case. 
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My Theorem: Let x(1), …, x(d) be d uniform random vectors whose components are generated 

independently and identically from the N(0, 1) distribution. Let  

F(x) = 
d

1 (K(x, x(1)), …, K(x, x(d)))T, where K is a PSD kernel. If P is linearly separable in 

the φ-space induced by K, then F(P) is linearly separable over d. 

 

Proof: Let {x(1), …, x(d)} be a set of d n-dimensional random vectors whose components are 

generated independently and identically from the N(0, 1) distribution. 

 

Also, let A be any symmetric and positive semi-definite matrix: 
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For any vector u in the input space n, 

 

F(u) = 
d

1
(K(u, x(1))   K(u, x(2))   …   K(u, x(d)))T 

 = 
d

1
(x(1)TAu   x(2)TAu   …   x(d)TAu)T 
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From statistics (Feller, 1968) we know that a linear combination of N(0, 1) random variables 

is itself another N(0, 1) random variable. Hence we could treat the symmetric and positive 

semi-definite matrix A as supplying a matrix of weights to the random landmark vectors to 

form the linear combination that will give rise to a new N(0, 1) random variable. By 

renaming these new random variables using the following scheme: 
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we could simplify expression (14) into: 
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This is essentially the same form of Johnson-Lindenstrauss style random projection as seen 

in lemma (Santosh). If the ability of Johnson-Lindenstrauss style random projection to 

approximately preserve linear margins can be ascertained (see Section 5.2.4), then we can 

conclude that P remains linearly separable in F(P) in the sense of lemma (Santosh). □ 
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3.7 Experimental procedures 

The algorithms that allow the power landmark vector learning framework to be applied to the 

learning experiments done in Chapter 4 are presented here. 

 

Algorithm 1 

Given: 

• X an l × n matrix representing the input training set to the power landmark 

 vector learning framework, consisting of l n-dimensional training vectors. 

• Y an l dimensional vector representing the labels for each of the l n-

 dimensional training vectors. 

• Z a d × n matrix representing the set of d n-dimensional landmark 

 vectors that are either Gaussian random or input-space orthogonal. 

• K the Gaussian kernel 

Find: 

• r prediction accuracy under the power landmark vector learning framework 

Procedure: 

1. For each vector x ∈ X, construct the FP feature space vector  

F(x) = (K(x, z(1)), …, K(x, z(d)))T, where z(1), …, z(d) ∈ Z. 

2. Compile all the FP feature space vectors constructed in step 1 into a new matrix F(X). 

3. Feed F(X) and Y as input to the unmodified, primal form of a classical linear learning 

algorithm. 

4. Obtain prediction accuracy result r after algorithm in step 3 completes execution. 
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5. Compare with prediction accuracies obtained under traditional kernel learning 

frameworks. 

 

Algorithm 2 

Given: 

• X an l × n matrix representing the input training set to the power  landmark 

 vector learning framework, consisting of l n-dimensional training vectors. 

• Y an l dimensional vector representing the labels for each of the l n-

 dimensional training vectors. 

• Z a 3 × n matrix representing the 3 n-dimensional landmark vectors that are 

 either Gaussian random or randomized input-space orthogonal that 

 will form the bases for the three dimensional Euclidean space used for 

 data visualization 

• K the Gaussian kernel 

Find: 

• Three dimensional plots in which the two classes of training vectors are represented 

by vectors in space of two different colors. 

Procedure: 

1. For each vector x ∈ X, construct the FP feature space vector  

F(x) = (K(x, z(1)), K(x, z(2)), K(x, z(3)))T, where z(1), z(2), z(3) ∈ Z. 
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2. For each FP feature space vector constructed in step 1, plot it into a three dimensional 

Euclidean space, with one color used for feature vectors with label “-1” and another 

color used for feature vectors with label “+1”. 

3. For the actual experiments that were performed in Chapter 4, vectors indicating 

healthy condition are colored green and vectors indicating ill condition are colored 

red. 

4. Output the three dimensional plot. Assess quality of plot by examining how well 

vectors of the same color have clustered in the plot. 

 

Algorithm 3 

Given: 

• X an l × n matrix representing the input training set to the power landmark 

 vector learning framework, consisting of l n-dimensional training vectors. 

• Y an l dimensional vector representing the labels for each of the l n-

 dimensional training vectors. 

• Z a d × n matrix representing the set of d n-dimensional landmark 

 vectors that are either Gaussian random or input-space orthogonal. 

• K the Gaussian kernel 

Find: 

• v a 8-dimensional vector that maintain the eight tally counts for the 

 number of kernel evaluations, x, that fall within each of the eight ranges: 
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 x >1, 1> x >10-1, 10-1 > x > 10-2, 10-2 > x > 10-3, 10-3 > x > 10-4,  

 10-4 > x > 10-5, 10-5 > x > 10-6, 10-6 > x. 

Procedure: 

1. Initialize v as the zero-vector. 

2. For each vector x ∈ X, construct the FP feature space vector  

F(x) = (K(x, z(1)), …, K(x, z(d)))T, where z(1), …, z(d) ∈ Z. 

3. Compile all the FP feature space vectors constructed in step 1 into a new matrix F(X). 

4. Examine the value of each entry, x, in the matrix F(X) to determine which of the eight 

ranges x >1, 1> x >10-1, 10-1 > x > 10-2, 10-2 > x > 10-3, 10-3 > x > 10-4, 10-4 > x > 10-5, 

10-5 > x > 10-6, 10-6 > x it falls within. 

5. Increment the appropriate entry in vector v as per result of step 4 for each entry in the 

matrix F(X) 

6. Repeat steps 4 and 5 for all entries in the matrix F(X) 

7. Output vector v, plot into bar graph if desired. 

 

Algorithm 4 

Given: 

• Z a d × n matrix representing the set of d n-dimensional Gaussian-random

 landmark vectors. 

Find: 

• b the boolean that answers whether or not no vector in Z maybe expressed as 

 a linear combination of other vectors in Z 
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Procedure: 

1. Perform Gauss-Jordan elimination on Z. 

2. Note number of non-zero rows in Z after step 1 completes. Assign this number to r. 

3. If r = d or r = n, then b ← true, else b ← false. 

4. Plot r versus d as a bar graph. 

 

3.8 Chapter summary 

This chapter presents the Power Landmark Vector Learning Framework as the major 

theoretical contribution of this thesis. The chapter started with several observations of some 

of the powerful ideas behind Blum’s work which was not explicitly stated by Blum. It then 

proposes a key question concerning the possibility of extending Blum’s framework to two 

new classes of vectors and proceeds to answer it. An entire framework for a style of kernel 

learning based on two new classes of vectors was formulated in the process of answering the 

key question. This thesis’s work culminates in the introduction of the non-collapsible and 

non-orthogonal theorems and the two proofs proposed to show that these theorems work for 

the feature space of the Gaussian kernel. Together, the two theorems also provide a way of 

quickly identifying kernels that are not viable under the Power Landmark Vector Learning 

Framework. Finally the answer to the key question is given in the affirmative. Some follow-

up discussions on the benefits of the Power Landmark Vector Learning Framework, its 

relevance to bioinformatics, and a retrospect on the pathological kernel discussed in Blum’s 

paper were given. Two more proofs were given which show the suitability of applying the 

linear kernel and the PSD kernel under the Power Landmark Vector Learning Framework 
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using the technique of Johnson-Lindenstrauss random projection. Finally, algorithmic 

procedures were given for all the major tasks that are to be accomplished in Chapter 4. 
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Chapter 4 
Experiments, Results and Discussions 

4.1 Experimental setup 

4.1.1 Gaussian-random landmark vector mapping 

This experiment tests the ability of Gaussian random landmark vectors to generate FP spaces 

that could adequately capture or approximate the feature space in which the original decision 

hyperplane resides. The results of this experiment will be in the form of a graph. The graph is 

a line graph documenting the experimentally observed relationship between the accuracy of 

learning and the number of input-space Gaussian Random landmark vectors used to generate 

the FP space. This experiment uses algorithm 1 from Section 3.7. 

 

4.1.2 Input-space orthonormal landmark vector mapping 

This experiment tests the ability of input-space orthonormal landmark vectors to generate FP 

spaces that could adequately capture or approximate the feature space in which the original 

decision hyperplane resides. The results of this experiment will be in the form of a graph. 

The graph is a line graph documenting the experimentally observed relationship between the 

accuracy of learning and the number of input-space orthonormal landmark vectors used to 

generate the FP space. This experiment uses algorithm 1 from Section 3.7. 
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4.1.3 Data visualization 

This is where we push the power landmark vector learning framework to the limit and see 

how it performs with just three landmark vectors. Two graphs will be shown in this section. 

The first graph shows how well vectors belonging to a same class cluster with each other in 

the three dimensional space generated by applying the power landmark vector on the training 

set with three Gaussian random landmark vectors. The second graph shows how well vectors 

belonging to a same class cluster with each other in the three dimensional space generated by 

applying the power landmark vector on the training set with three randomized input-space 

orthonormal bases landmark vectors. This experiment uses algorithm 2 from Section 3.7. 

 

4.1.4 Non-orthogonality experiment 

This experiments test whether the Gaussian kernel is “well-behaved” in terms of the non-

orthogonal principle. In other words, this experiment will record the values of all Gaussian 

kernel valuations from a trial and sort the values according to their magnitude into eight 

logarithmic categories. The results of this experiment will be in the form of a graph. The 

graph is a bar graph. The graph depicts the number of kernel evaluations, x, that fall into each 

of the eight logarithmic ranges. The ranges are: x >1, 1> x >10-1, 10-1 > x > 10-2,  

10-2 > x > 10-3, 10-3 > x > 10-4, 10-4 > x > 10-5, 10-5 > x > 10-6, 10-6 > x. This experiment uses 

algorithm 3 from Section 3.7. 
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4.1.5 Linear independence of random vectors 

A quick way of showing the mutual linear independence of a group of random vectors is to 

put them into a matrix and perform Gaussian-Jordon elimination on the matrix and 

demonstrate that the rank of the resulting matrix is equal to the number of random vectors in 

the group. This section will perform such an experiment for each type of input vector space 

associated with each learning problem by formatting them into a matrix and apply Matlab’s 

rank() function to calculate the rank. It will contain one double-bar graph. The x axis of 

that bar graph will indicate the number of Gaussian random vectors used to form the matrix 

from a moderately small number to a number that moderately exceeds the dimensionality of 

the input space. For each set of random vectors generated, a pair of bars will appear above 

the corresponding x-position, the first bar, which is blue, will be the number of mutually 

linearly independent random vectors, the second bar, which is yellow, will be the number of 

random vectors that are linearly dependent on the other vectors. This experiment uses 

algorithm 4 from Section 3.7. 

 

4.2 Protein subcellular localization dataset 

The dataset used in this section of the experiments is supplied at the courtesy of Cory 

Spender from Simon Fraser University, Canada. The dataset was used in a study done in 

(Gardy et al. 2003). The dataset concerns the prediction of subcellular localization sites for 

proteins found in Gram-negative bacteria. The dataset consists of 391 input vectors. Each 

input vector has 20 features. Therefore the input space is 
20

. There are 3 different labels 

representing the three different localization sites for subcellular proteins. Hence the training 
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vectors could fall into three classes. Five-fold cross validation was done in Sections 4.2.1and 

4.2.2 to derive the final classification accuracy results. 

 

Canonical kernel learning using traditional kernel learning framework is performed at the 

beginning of this section of experiments by libSVM. The results of the learning are shown in 

Figure 8. The canonical cross-validated prediction accuracy for this section is established by 

libSVM to be 83.12% 

 

 

Figure 8: results of canonical kernel learning of Section 4.2 dataset by libSVM. 
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4.2.1 Gaussian-random landmark vector mapping 
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Figure 9: Results of the Gaussian random landmark vector projection experiments for Section 4.2. 

The horizontal dashed line indicates canonical classification accuracy under traditional kernel 

learning framework. 

 

Remark For sufficient number of random vectors the performance of the Power Landmark 

Framework rivals that of tradition kernel learning framework. This demonstrates the validity 

of the Power Landmark Vector Learning Framework. Also note that far less than 391 random 

vectors, which is the total size of the training set, were needed in order to achieve 

performance comparable with traditional kernel learning framework. This demonstrates the 
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potential for dimensionality reduction that exists within the Power Landmark Vector 

Learning Framework. 

 

4.2.2 Input-space orthonormal landmark vector mapping 
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Figure 10: Results of the input-space orthonormal bases landmark vector projection experiments for 

Section 4.2. The horizontal dashed line indicates canonical classification accuracy under traditional 

kernel learning framework. 

 

Remark These results confirm the ability of input-space orthonormal bases landmark vectors 

to approximate the decision hyperplane, albeit with a slightly less degree of accuracy 
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compared to the Gaussian normal random landmark vectors if one were to examine the 

numerical data. 

 

4.2.3 Data visualization 

 

Figure 11: Results of data visualization using Gaussian normal landmark random vectors for Section 

4.2. 
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Figure 12: Results of data visualization using randomized input-space orthonormal bases landmark 

vectors for Section 4.2. 

 

Remark: The green, red and blue plot vectors represent the three different localization sites of 

subcellular proteins. The two data visualizations all indicate that the training vectors for these 

three different classes have clustered into three layers in the FP space. The green layer is at 

the very front relative to the reader. The red layer is in the middle. The blue layer is at the 

back. 
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4.2.4 Non-orthogonality test 
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Figure 13: Results of the non-orthogonality test experiment for Section 4.2. 

 

Remark This experiment demonstrates that most inner-products under the Gaussian kernel 

tend to be “well-behaved” in that their values lie well away from small values toward the 

right-side of the x-axis in Figure 13. Since small kernel values indicate near-orthogonality, 

these “well-behaved” values mean that Gaussian random vectors tend to be rather related to 

most training vectors. 
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4.2.5 Linear independence of random vectors 

0

5

10

15

20

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

number of random R20 vectors

# linearly independent vectors
# linearly dependent vectors

 

Figure 14: Results of the linear independence of random vectors experiment for the input space of 

Section 4.2. 

 

Remark As expected, the generated 
20

 random vectors form linearly independent sets. The 

presence of linearly dependent random vectors in the later trials is due to the number of 

random vectors generated exceeding the dimensionality of the input space of the training 

vectors. 
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4.3 Pima aboriginals diabetes dataset 

The Pima aboriginals diabetes dataset is provided at the courtesy of National Institute of 

Diabetes and Digestive and Kidney Diseases and Vincent Sigillito of the Applied Physics 

Laboratory of the Johns Hopkins University who was the original donor of the dataset. The 

actual data itself is obtained by the author of this thesis from the FTP site of the University of 

California at Irvine. 

 

This data had been used in the past by (Smith et al., 1988) to investigate possible vital signs 

that may be used to indicate the presence of diabetes within patients according to World 

Health Organization (WHO) standards. The aboriginal patients who volunteered for the study 

conducted to gather the original data live near Phoenix, Arizona, US. Smith et al. were able 

to achieve a classification accuracy of 76% on the dataset. This accuracy closely mirrored the 

accuracies achieved under the power landmarks vector learning framework in this thesis. 

 

There are a total of 768 training instances included in this dataset. Out of these training 

instances, 759 are actually used. The 7 remaining training instances had missing attributes 

after they have been processed by libSVM and hence had to be discarded. Each training 

instance has 8 features and class variable that provides the label for that training instance. 

The features have to do with the various measurable vital signs pertinent to the diabetic 

condition such as plasma glucose concentration, diastolic blood pressure and body mass 

index (BMI) that are measured for each patient. The class variable takes on the binary value 

of 0 or 1 with 0 indicating a healthy person and 1 indicating a diabetic patient. 
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Canonical kernel learning using traditional kernel learning framework is performed at the 

beginning of this section of experiments by libSVM. The results of the learning are shown in 

Figure 15. The canonical cross-validated prediction accuracy for this section is established by 

libSVM to be 77.474% 

 

 

Figure 15: results of canonical kernel learning of Section 4.3 dataset by libSVM. 
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4.3.1 Gaussian-random landmark vector mapping 
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Figure 16: Results of the Gaussian random landmark vector projection experiments for Section 4.3. 

The horizontal dashed line indicates canonical classification accuracy under traditional kernel 

learning framework. 

 

Remark For sufficient number of random vectors the performance of the Power Landmark 

Framework rivals that of tradition kernel learning framework. This demonstrates the validity 

of the Power Landmark Vector Learning Framework. Also note that far less than 759 random 

vectors, which is the total size of the training set for Section 4.3, were needed in order to 

achieve performance comparable with traditional kernel learning framework. This 
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demonstrates the potential for dimensionality reduction that exists within the Power 

Landmark Vector Learning Framework. 

 

4.3.2 Input-space orthonormal landmark vector mapping 
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Figure 17: Results of the input-space orthonormal bases landmark vector projection experiments for 

Section 4.3. The horizontal dashed line indicates canonical classification accuracy under traditional 

kernel learning framework. 

 

Remark These results confirm the ability of input-space orthonormal bases landmark vectors 

to approximate the decision hyperplane, albeit with a slightly less degree of accuracy 



 

  79

compared to the Gaussian normal random landmark vectors if one were to examine the 

numerical data. 

 

4.3.3 Data visualization 

 

Figure 18: Results of data visualization experiment using Gaussian normal landmark random vectors 

for Section 4.3. 
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Figure 19: Results of data visualization experiment using randomized input-space orthonormal bases 

landmark vectors for Section 4.3. 

 

Remark Each green vector indicates a patient who is tested and found to be negative for 

diabetes. Each red vector indicates a patient who is tested and found to be positive for 

diabetes. The data visualization results for random landmark vectors in this section seem to 

cluster better than the data visualization results for the input-space orthonormal bases 

landmark vectors. The green vectors are seen tightly clustered together in Figure 18 with the 

red vectors appearing in a layer in front of the cluster from the vantage point of the reader. 

These visualization results seen in Figure 18 seem to resonate with the case seen in Figure 

18, where red vectors indicating a diseased condition are also spread out more than green 
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vectors indicating a relatively healthy condition. The visualization results in Figure 18 also 

means that patients with diabetes will have more varied vital sign readings than patients 

without diabetes, making a diabetic condition potentially harder to diagnose than non-

diabetic conditions because the vital sign characteristics for the diabetic conditions are spread 

out into a broader spectrum. 

 

4.3.4 Non-orthogonality test 
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Figure 20: Results of the non-orthogonality test experiment for Section 4.3. 

 

Remark This experiment demonstrates that all inner-products under the Gaussian kernel for 

Section 4.3 tend to be “well-behaved” in that their values lie well away from small values 
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toward the right-side of the x-axis in Figure 20. Since small kernel values indicate near-

orthogonality, these “well-behaved” values mean that Gaussian random vectors generated for 

Section 4.3 tend to be rather related to most training vectors in Section 4.3. 

 

4.3.5 Linear independence of random vectors 
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Figure 21: Results of the linear independence of random vectors experiment for the input space of 

Section 4.3. 

 

Remark As expected, the generated 
8
 random vectors form linearly independent sets. The 

presence of linearly dependent random vectors in the later trials is due to the number of 
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random vectors generated exceeding the dimensionality of the input space of the training 

vectors. 

 

4.4 Wisconsin breast cancer dataset 

The Wisconsin breast cancer dataset is provided at the courtesy of Dr. William H. Wolberg 

of the University of Wisconsin Hospitals, Madison (Mangasarian and Wolberg, 1990; 

Wolberg and Mangasarian, 1990; Mangasarian et al., 1990; Bennett and Mangasarian, 1992). 

The actual data itself is obtained by the author of this thesis from the FTP site of the 

University of California at Irvine. 

 

This data has been used in the past by (Wolberg and Mangasarian, 1990) and (Zhang, 1992) 

to investigate the possibility of applying machine learning to the task of learning to 

distinguish between benign outgrowth and malignant outgrowth. The patients who 

volunteered for this study are divided into 8 groups that participated in the study separately in 

a period of time spanning from January 1989 to November 1991. Wolberg and Zhang’s 

algorithms achieved prediction accuracies of 92.2% to 95.9%. These accuracies are surpassed 

slightly by the power landmark vector learning framework which had achieved prediction 

accuracies ranging from 96.2% to 97.8%. 

 

There are a total of 699 training instances in this dataset. Out of these training instances, only 

683 are actually used. The 16 remaining training instances had missing attributes, in the form 

of ‘?’ features, in the original dataset. These 16 instances were thus unusable to power 
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landmark learning and had to be discarded. Each training instance has 9 features, one of 

which is the patient id number and is disregarded by the power landmark learning framework 

because it has no relationship to the patient’s cancer conditions. The 8 remaining features 

used by the learning framework have to do with the various biological properties of the 

outgrowth such as clump thickness, cell size, cell shape, nucleus state and marginal adhesion. 

A class variable comes at the end of each training instance that provides a label for that 

training instance. The class variable takes on the binary value of 2 and 4 with 2 indicating a 

benign outgrowth and 4 indicating a malignant outgrowth. 

 

Canonical kernel learning using traditional kernel learning framework is performed at the 

beginning of this section of experiments by libSVM. The results of the learning are shown in 

Figure 22. The canonical cross-validated prediction accuracy for this section is established by 

libSVM to be 97.22%. 
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Figure 22: results of canonical kernel learning of Section 4.4 dataset by libSVM. 
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4.4.1 Gaussian-random landmark vector mapping 
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Figure 23: Results of the Gaussian random landmark vector projection experiments for Section 4.4. 

The horizontal dashed line indicates canonical classification accuracy under traditional kernel 

learning framework. 

 

Remark For sufficient number of random vectors the performance of the Power Landmark 

Framework rivals, and even exceeds on several occasions, that of tradition kernel learning 

framework. This demonstrates the validity of the Power Landmark Vector Learning 

Framework. Also note that far less than 683 random vectors, which is the total size of the 

training set for Section 4.4, were needed in order to achieve performance comparable with 
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traditional kernel learning framework. This demonstrates the potential for dimensionality 

reduction that exists within the Power Landmark Vector Learning Framework. 

 

4.4.2 Input-space orthonormal landmark vector mapping 
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Figure 24: Results of the input-space orthonormal bases landmark vector projection experiments for 

Section 4.4. The horizontal dashed line indicates canonical classification accuracy under traditional 

kernel learning framework. 

 

Remark The performance of the input-space orthonormal bases landmark vectors in this 

experiment has been surprisingly good. Although these landmark vectors consistently deliver 

a slightly less degree of accuracy compared to the canonical kernel learning framework, they 
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have been consistently more accurate than most corresponding sets of random landmark 

vectors used in Section 4.4.1. Readers should note that the y-axis of Figure 24 has to be 

magnified to the 50% to 100% range in order to sufficiently delineate the difference between 

the landmark vector performance plot and the canonical kernel learning performance denoted 

to by the dashed line, whereas such a magnification was not necessary for Figure 23. This is 

a phenomenon that is not observed in any other experiments of the same type. 

 

4.4.3 Data visualization 

 

Figure 25: Results of data visualization experiment using Gaussian normal landmark random vectors 

for Section 4.4. 
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Figure 26: Results of data visualization experiment using randomized input-space orthonormal bases 

landmark vectors for Section 4.4. 

 

Remark Each green vector indicates a patient who is tested and found to have benign 

outgrowth on the breast. Each red vector indicates a patient who is tested and found to have 

malignant outgrowth on the breast. The data visualization for input-space orthonormal bases 

landmark vectors in this section gives particularly excellent visualization results of the two 

classes of vectors. The green vectors are seen tightly clustered into a narrow long band in 

Figure 26 that is well separated from the red vectors, which also appear well clustered in a 

layer that appears in front of the narrow green band from the vantage vector of the reader. 

Also of note from Figure 25 is the fact that the green vectors representing benign outgrowth 

are more clustered than the red vectors representing malevolent outgrowth, this might 

indicate that benign outgrowths have more in common with each other than malignant 
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outgrowth. It also indicates that malignant outgrowths, which represent the onset of true 

instances breast cancer, might be more difficult to diagnose than benign outgrowths due to 

their more varied characteristics that cause the red vectors to spread out more. The data 

visualization contained in Figure 26 represents the best visualization achieved out of all three 

sets of experiments and is a demonstration of the data visualization utility of the power 

landmark vector learning framework. 

 

4.4.4 Non-orthogonality test 
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Figure 27: Results of the non-orthogonality test experiment for Section 4.4. 

 



 

  91

Remark This experiment demonstrates that all inner-products under the Gaussian kernel for 

Section 4.4 tend to be “well-behaved” in that their values lie well away from small values 

toward the right-hand side of the x-axis in Figure 27. Since small kernel values indicate near-

orthogonality, these “well-behaved” values mean that Gaussian random vectors generated for 

Section 4.4 tend to be rather related to most training vectors in Section 4.4. 

 

4.4.5 Linear independence of random vectors 
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Figure 28: Results of the linear independence of random vectors experiment for the input space of 

experiment 4.4 
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Remark As expected, the generated 
9
 random vectors form a linearly independent set. The 

presence of linearly dependent random vectors in the later trials is due to the number of 

random vectors generated exceeding the dimensionality of the input space of the training 

vectors. 

4.5 Mushrooms Dataset 

In order to test the robustness of the power landmark vector learning framework, the 

mushrooms dataset is used in this final experiment. The mushrooms dataset is a classical 

dataset renowned for the difficulty of producing a good classifier for it. This dataset is not 

directly related to bioinformatics proper, but is included here in order to demonstrate the 

universality of the power landmark vector learning framework for kernels that are good such 

as the Gaussian kernel. Thanks go to Dr. Li for pointing out this dataset to me. 

 

The mushrooms dataset is also known as the “agaricus-lepiota” dataset which reflects the 

genus and species names for the particular family of mushrooms being investigated. The 

dataset is provided at the courtesy of Dr. Jeff Schlimmer of Carnegie Mellon University. 

Schlimmer extracted the data out of (Lincoff, 1981) The actual data itself is obtained by the 

author from a mirror of the FTP site of the University of California at Irvine. 

 

This data has been investigated in the past by (Schlimmer, 1987) using the STAGGER 

program to achieve an asymptotical classification accuracy of 95% after reviewing 1000 

labeled training vectors. This data has also been investigated in the past by (Iba et al., 1988) 

using the HILLARY program to achieve approximately the same accuracy. 
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There are a total of 8124 labeled training vectors in this dataset. Out of these training vectors, 

only 4257 are actually used. The remaining training vectors had missing attributes after 

scaling by libSVM, thus preventing their being used properly by the FP space generating 

program. Each training vector has 22 features, one of which is the same for all training 

vectors and is disregarded by the power landmark learning framework because it has no 

discriminative power. The 21 remaining features used by the learning framework have to do 

with the various shapes, sizes and colors of various parts of the mushroom and its odor, 

population and habitat. A class variable comes at the end of each training vector that provides 

a label for that training vector. The class variable takes on the binary value of “p” and “e” 

with “p” indicating poisonous and “e” indicating edible. 

 

Canonical kernel learning using traditional kernel learning framework is performed at the 

beginning of this section of experiments by libSVM. The results of the learning are shown in 

Figure 29. The canonical cross-validated prediction accuracy for this section is established by 

libSVM to be 100%. 
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Figure 29: results of canonical kernel learning of Section 4.5 dataset by libSVM. 
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4.5.1 Gaussian-random landmark vector mapping 

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

47 95 142 190 238 285 333 380 428 476 523 571 619 666 714 761

# of N(0, 1) random landmark vectors

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

 

Figure 30: Results of the Gaussian random landmark vector projection experiments for Section 4.5. 

The horizontal dashed line indicates canonical classification accuracy under traditional kernel 

learning framework. 

 

Remark For sufficient number of random vectors the performance of the Power Landmark 

Framework rivals that of the tradition kernel learning framework. This demonstrates the 

validity of the Power Landmark Vector Learning Framework. Also note that far less than 

4257 random vectors, which is the total size of the training set for Section 4.5, were needed 

in order to achieve performance comparable with traditional kernel learning framework. This 



 

  96

demonstrates the potential for dimensionality reduction that exists within the Power 

Landmark Vector Learning Framework. 

 

4.5.2 Input-space orthonormal landmark vector mapping 
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Figure 31: Results of the input-space orthonormal bases landmark vector projection experiments for 

Section 4.5. The horizontal dashed line indicates canonical classification accuracy under traditional 

kernel learning framework. 

 

Remark These results confirm the ability of input-space orthonormal bases landmark vectors 

to approximate the decision hyperplane, albeit with a 5% decrease of accuracy compared to 

the best Gaussian normal random landmark vectors if one were to examine the details. 
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4.5.3 Data visualization 

 

Figure 32: Results of data visualization experiment using Gaussian normal landmark random vectors 

for Section 4.5. 
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Figure 33: Results of data visualization experiment using randomized input-space orthonormal bases 

landmark vectors for Section 4.5. 

 

Remark Each green vector indicates a mushroom that is tested and found to be edible. Each 

red vector indicates a mushroom that is tested and found to be poisonous. Similar to the data 

visualization experiment in Section 4.4, the data visualization for input-space orthonormal 

bases landmark vectors in this section gives particularly excellent visualization results of the 

two classes of vectors. The green vectors are seen tightly clustered into several narrow bands 

in Figure 33. The red vectors are also sent tightly clustered into several narrow bands in 

Figure 33. The green bands and the red bands are well separated from each other. 

 

4.5.4 Non-orthogonality test 
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Figure 34: Results of the non-orthogonality test experiment for Section 4.5. 
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Remark This experiment demonstrates that most inner-products under the Gaussian kernel 

tend to be “well-behaved” in that their values lie well away from small values toward the 

right-side of the x-axis in Figure 34. Since small kernel values indicate near-orthogonality, 

these “well-behaved” values mean that Gaussian random vectors tend to be rather related to 

most training vectors. 

 

4.5.5 Linear independence of random vectors 
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Figure 35: Results of the linear independence of random vectors experiment for the input space of 

experiment 4.5 
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Remark As expected, the generated 
21

 random vectors form a linearly independent set. 

 

4.6 Chapter summary 

The Power Landmark Vector Learning Framework introduced in Chapter 3 was applied to a 

variety of bioinformatics learning situations that have been previously studied in literature. 

The objective of these experiments is to verify the theoretical arguments made in Chapter 3 

and also to compare the performance of the power landmark vector learning framework 

against more traditional kernel learning framework. The results derived are all very 

satisfactory. They indicate that the performance of the power landmark vector learning 

framework on all the bioinformatics learning situations investigated in this chapter are 

comparable to that of traditional kernel learning framework. In particular, the power 

landmark vector learning framework was able to provide good data visualization results for 

the Pima aboriginal diabetes dataset and the Wisconsin breast cancer dataset with particularly 

good results for the latter dataset under the orthonormal bases landmark vectors. The 

experiments also confirmed that randomly generated Gaussian normal vectors tend to form 

linearly independent sets and that the kernel evaluations under most learning situations in the 

framework tend to be “well-behaved”. 
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Chapter 5 
Conclusions and Future Work 

In this thesis a framework called the Power Landmark Vector Learning Framework has been 

introduced. The Power Landmark Vector Learning Framework uses Gaussian random 

vectors or orthonormal bases vectors in the input space as “landmark vectors” to perform 

learning of actual training data. An entire theoretical framework has been established in this 

thesis to justify the validity of applying the Power Landmark Vector Learning Framework to 

linear, quadratic and Gaussian kernels and their associated finite-dimensional Euclidean 

input spaces. Subsequently, several experiments were designed to test the power landmark 

vector learning framework on several bioinformatics datasets that have been previously 

studied in the literature to establish final and conclusive evidence for the efficacy of the 

power landmark vector learning framework. 

 

5.1 Contributions 

The main contribution of this thesis has been the extension of Blum’s landmark vector 

learning framework into a more complete and general framework capable of using Gaussian 

normal random vectors and orthonormal bases vectors as landmark vectors in generating the 

linear feature space required for the final learning. The most significant theoretical 

contribution of this thesis lies in the proving of two original theoretical results — the non-

collapsible theorem and the non-orthogonal theorem — for the Gaussian kernel. This thesis 

has also established the non-collapsible principle and non-orthogonal principle as two 
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necessary, but not sufficient, conditions to test whether the power landmark vector learning 

framework will work successfully with a given kernel or not. Sufficiency has subsequently 

been established from an empirical perspective. Finally, this thesis’ explanations of the 

relevant background mathematical materials and concepts, mostly from the area of advanced 

linear algebra and functional analysis, that is required for the readers to understand both 

Blum’s framework and the power framework of this thesis, serve to further educate the 

readers and provide them with a clearer and firmer grasp of the theories and mathematical 

beauty of the field of kernel-enabled machine learning. 

 

5.2 Future research 

The works of this thesis opens up an extremely rich and fertile field for future investigations 

and research. Listed below are several main areas of future endeavour that may bear fruitful 

findings. 

 

5.2.1 Extension into other kernels and non-vectorial input spaces 

Perhaps the most urgently required work is to extend the utility of the Power Landmark 

Vector Learning Framework into other kernels and input spaces. In this thesis, the Power 

Landmark Vector Learning Framework has been shown to work for the Gaussian kernel 

coupled with the finite-dimensional ordinary Euclidean 
n
 vectorial input space only. 

However, there exists far greater number of other kernels than the Gaussian kernel, and there 

also exist a whole variety of possible input spaces, some of them not vectorial at all. A good 
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example of a popular non-Gaussian kernel with a non-vectorial input space is the class of 

kernels that work with textual strings that are described in detail in Chapter 10 of (Shawe-

Taylor and Cristianini, 2004). The input spaces for these kernels are the Σn spaces, where Σ is 

the set of basic symbols for the language of the text. For example, for the English language Σ 

= {‘A’, …, ‘Z’, ‘a’, …, ‘z’, punctuation marks, space, ‘0’, …, ‘9’}. The training set for these 

textual kernels might be the concatenated texts of paragraphs, entire articles or even short 

books. The landmarks needed for these kernels to work with might be short, randomly 

generated text fragments such as ‘ca’, ‘dbd’, ‘sad’, ‘dam’, etc. It could also be possible that 

more robust landmarks are required for text learning to work with the power landmark vector 

learning framework. The extension into text kernels could have ready applications in terms of 

genome and proteome related learning tasks, where long strings of DNA and amino acid 

molecules are abstracted into long strings of letters and kernels are employed to find patterns 

and similarities exhibited by massive quantities of those strings. The landmarks used in these 

circumstances could be of the form ‘A’, ‘T’, ‘G’, ‘GATC’, ‘Q’, ‘QVED’, etc. 

 

5.2.2 Further work on dimensionality reduction 

Together, the non-collapsible theorem and the non-orthogonal theorem provide a solid 

foundation for justifying the validity of the power landmark vector framework on a basic 

level. They also provide a basic guarantee that at most the same number of landmarks as the 

number of training vectors is needed. Experiments in Chapter 4, however, show that far less 

landmark vectors are needed than the total number of training vectors. This implies that the 

power landmark vector learning framework could also be used for dimensionality reduction. 
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However, theoretical work is lacking on the exact extent to which this dimensionality 

reduction is possible under the power landmark vector learning framework, and the qualities 

of the dataset itself that would make this dimensionality reduction possible. This thesis 

proposes a tentative direction for future research where the kernel principle component 

analysis (KPCA) algorithm is used to determine the actual dimensionality of the training data 

and the landmark vector projections of the principle components be used to generate the FP 

space for linear learning. It is also conceivable that there exist better theoretical frameworks 

capable of justifying the ability of most data sets to be dimensionally reduced in the power 

landmark vector learning framework. These frameworks should also be investigated. 

 

5.2.3 Random vectors and non-orthogonality 

In this thesis experiments were used to demonstrate that, with high probability, identically 

and independently generated random Gaussian normal vectors are linearly independent. 

Further probabilistic theoretical arguments are needed to conclusively show that this is 

indeed the case. The orthogonality argument whose validity is vindicated by the experiments 

would also benefit from more theoretical studies to justify why, from the perspective of 

actual machine learning data, would the non-orthogonality argument work out so well with 

the Gaussian kernel returning well-behaved values most of the time. Furthermore, the non-

orthogonal argument, by itself, seems to be a slightly weak argument in justifying the 

superior performance observed with power landmark vector learning problems observed in 

the experiments as it only characterizes the impossibility of the lower-bound worst-case 

problems. Thus, the power landmark vector learning framework would greatly benefit from a 
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stronger theoretical framework able to fully provide probabilistic measures on the 

performance of power landmark vector learning framework in real machine learning 

situations. 

 

5.2.4 Johnson-Lindenstrauss random projection 

As mentioned towards the end of Sections 3.5 and 3.6, it is necessary to show that the 

Johnson-Lindenstrauss random projection would approximately preserve linear margins 

before we could conclude that the FP space remains linearly separable under the linear and 

PSD kernels. A possible starting point for showing that the Johnson-Lindenstrauss random 

projection approximately preserves linear margins is the fact that pair-wise distances and 

angles between the linearly separable vectors in distribution P is approximately preserved in 

the F(P) space. This preservation of distances and angles would preserve the orientation of 

the high dimensional vectors to each other in the low dimensional subspace, hence preserving 

the linear quality of the margin. 

 

5.2.5 Better Data Visualization 

Each data visualization three-dimensional MATLAB plot has been rotated and oriented in a 

way that attempts to delineate the separation between vectors with different labels as good as 

possible as per suggestions from Dr. McConkey. However, as earlier experiments have 

shown, small numbers of landmark vectors tend to corrupt the linear margin that exists 

between data of differing classes in the feature space. Since data visualization is about 

pushing the power landmark vector learning framework to the limit of using only three 
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landmark vectors, that the resulting data visualizations are less than idea is thus 

understandable. In the future, it would be good to investigate alternative ways of performing 

the data visualization under the power landmark vector learning framework such that the 

linear margin that exists between data of differing classes in the feature space gets preserved 

to as great an extent as possible. 
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Appendix A 
Pima Aboriginals Dataset in Detail 

The information found in tabular forms in this and the next appendix that are meant to fully 

describe the nature and the content of two of the datasets used for the thesis lab are taken 

(almost) verbatim from the “names” file that accompanies each dataset. 

 

The dataset used in the second experiment is the Pima aboriginals dataset. The original name 

of this dataset is Pima Indians dataset, but the use of the word “Indians” to refer to the 

aboriginal people of the Americas maybe politically incorrect in the modern age. Therefore 

the name “Pima aboriginals” is used throughout thesis proper to refer to this dataset. If the 

words “Pima Indians” are seen anywhere in this appendix they are intended to mean “Pima 

aboriginals” by the thesis author. 

 

Table 1: Detailed summary of Pima aboriginals dataset. 

Original Owners National Institute of Diabetes and Digestive and Kidney 

Diseases 

 

Donor of database Vincent Sigillito (vgs@aplcen.apl.jhu.edu) 

Research Center, RMI Group Leader 

Applied Physics Laboratory 

The Johns Hopkins University 
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Johns Hopkins Road 

Laurel, MD 20707 

(301) 953-6231 

 

Past Usage Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., 

and Johannes, R. S. (1988). Using the ADAP learning algorithm 

to forecast the onset of diabetes mellitus.  In Proceedings of the 

Symposium on Computer Applications and Medical Care (pp. 

261--265).  IEEE Computer Society Press. 

 

The diagnostic, binary-valued variable investigated is whether 

the patient shows signs of diabetes according to World Health 

Organization criteria (i.e., if the 2 hour post-load plasma glucose 

was at least 200 mg/dl at any survey  examination or if found 

during routine medical care). The population lives near Phoenix, 

Arizona, USA. 

 

Results: Their ADAP algorithm makes a real-valued prediction 

between 0 and 1.  This was transformed into a binary decision 

using a cutoff of 0.448. Using 576 training instances, the 

sensitivity and specificity of their algorithm was 76% on the 

remaining 192 instances. 
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Relevant Information Several constraints were placed on the selection of these 

instances from a larger database.  In particular, all patients here 

are females at least 21 years old of Pima Indian heritage.  ADAP 

is an adaptive learning routine that generates and executes digital 

analogs of perceptron-like devices. It is a unique algorithm; see 

the paper for details. 

 

Size of training set 768 labeled training vectors 

Number of features 8 

Number of training 

vectors with missing 

features 

0 

 

Also note that the terms “feature” and “attribute” are equivalent. The term “feature” is used 

more frequently in machine learning while the term “attribute” is used more frequently in 

natural science. This thesis belongs in the field of machine learning. Thus, the term “feature” 

is used throughout this thesis. 

 

Table 2: List of features of the Pima aboriginals dataset 

# Feature description µ σ 
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1 Number of times pregnant 3.8 3.4 

2 Plasma glucose concentration a 2 hours in an oral glucose 

tolerance test 

120.9 32.0 

3 Diastolic blood pressure (mm Hg) 69.1 19.4 

4 Triceps skin fold thickness (mm) 20.5 16.0 

5 2-Hour serum insulin (µU/ml) 79.8 115.2 

6 Body mass index (weight in kg/(height in m)²) 32.0 7.9 

7 Diabetes pedigree function 0.5 0.3 

8 Age (years) 33.2 11.8 

 

Again, the terms “label” and “class” are equivalent. The term “label” is used more frequently 

in machine learning while the term “class” is used more frequently in natural science. This 

thesis belongs in the field of machine learning. Thus, the term “label” is used throughout this 

thesis. 

 

Table 3: List of labels of the Pima aboriginals dataset 

Label Value Label description # of instances with label 

0 Tested negative for diabetes 500 

1 Tested positive for diabetes 268 

 

Based on the above output model, two more experiments were done for this appendix on the 

Pima aboriginals dataset. The first experiment extracts the α weights of all the support 
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vectors and produces a bar plot of the magnitudes of the weights. The resulting bar plots are 

shown in Figure 36 and Figure 37. The second experiment performs a data visualization, 

much like the data visualizations shown in the main thesis, on the set of support vectors. The 

result of this data visualization is shown in Figure 38. 
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Figure 36: Weights of positive label support vectors for the Pima aboriginals dataset. 
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Weights of Negative Label Support Vectors
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Figure 37: Weights of negative label support vectors for the Pima aboriginals dataset. 

 

As we can see from Figure 36 and Figure 37, the weights of all support vectors of both label 

types are fairly consistent with the exception of a few support vectors which are not weighed 

as heavily as the other weight vectors. With Figure 36 and Figure 37, a biologist may notice 

the vectors with the smaller weights and isolate them into another file and do something 

interesting with them. This is because in machine learning any vectors with a weight that 

deviates significantly from other weights may hold further information relating to the 

underlying distribution of the Pima aboriginal diabetes biological problem at hand. 
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Figure 38: Data visualization of the support vectors of the Pima aboriginals dataset. 

 

As we can see from Figure 38, the green support vectors are situated roughly in the layer 

above the red support vectors. However, since large number of support vectors are needed to 

form the resulting hyperplane, the data visualization of this appendix still looks cluttered and 

less than ideal. Finally, as noted in Figure 18, red vectors indicating a diseased condition are 

spread out more than green vectors indicating a relatively healthy condition. The 

visualization results in Figure 18 means that patients with diabetes will have more varied 

vital sign readings than patients without diabetes, making a diabetic condition potentially 

harder to diagnose than non-diabetic conditions because the vital sign characteristics for the 

diabetic conditions are spread out into a broader spectrum. 
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Future work 

During the question and answer phase of this thesis the author responded to Dr. McConkey’s 

question about the transparency of support vector machines with the answer that weights will 

be given at the end of the training phase that will delineate the importance of the features 

with respect to one another. Upon close examination of the output model file it was realized 

that the weights are not assigned to the input space features, but rather to each of the training 

vectors. In the future it would be helpful to find a way of training the vectors under the power 

landmark vector learning framework such that weights underlining the importance of each 

feature/attribute in the input file could be given at the end of the training phase. Having this 

information will greatly aid the biologist in weighing the relative importance of each feature 

in order to decide how the list of features should be narrow down so that the biologist can 

concentrate on those features that play the most roles in determining the biological label of 

the training and testing set. 
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Appendix B 
Wisconsin Breast Cancer Dataset in Detail 

 

Table 4: Detailed summary of the Wisconsin breast cancer dataset. 

Citation Request This breast cancer databases was obtained from the University of 

Wisconsin Hospitals, Madison from Dr. William H. Wolberg.  If 

you publish results when using this database, then please include 

this information in your acknowledgements.  Also, please cite one 

or more of: 

 

1. O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via 

linear programming", SIAM News, Volume 23, Number 5, 

September 1990, pp 1 & 18. 

 

2. William H. Wolberg and O.L. Mangasarian: "Multisurface 

method of pattern separation for medical diagnosis applied to 

breast cytology", Proceedings of the National Academy of 

Sciences, U.S.A., Volume 87, December 1990, pp 9193-9196. 

 

3. O. L. Mangasarian, R. Setiono, and W.H. Wolberg: "Pattern 

recognition via linear programming: Theory and application to 

medical diagnosis", in: "Large-scale numerical optimization", 
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Thomas F. Coleman and Yuying Li, editors, SIAM Publications, 

Philadelphia 1990, pp 22-30. 

 

4. K. P. Bennett & O. L. Mangasarian: "Robust linear 

programming discrimination of two linearly inseparable sets", 

Optimization Methods and Software 1, 1992, 23-34 (Gordon & 

Breach Science Publishers). 

 

Title Wisconsin Breast Cancer Database (January 8, 1991) 

Sources Dr. WIlliam H. Wolberg (physician) 

University of Wisconsin Hospitals 

Madison, Wisconsin 

USA 

Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu) 

Received by David W. Aha (aha@cs.jhu.edu) 

Date: 15 July 1992 

 

Past Usage Attributes 2 through 10 have been used to represent instances. 

Each instance has one of 2 possible classes: benign or malignant. 

 

1. Wolberg, W. H. and Mangasarian, O. L. (1990). Multisurface 

method of pattern separation for medical diagnosis applied to 
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breast cytology. In Proceedings of the National Academy of 

Sciences, 87: 9193—9196. 

• Size of data set: only 369 instances (at that point in time) 

• Collected classification results: 1 trial only 

• Two pairs of parallel hyperplanes were found to be 

consistent with 50% of the data 

• Accuracy on remaining 50% of dataset: 93.5% 

• Three pairs of parallel hyperplanes were found to be 

consistent with 67% of data 

• Accuracy on remaining 33% of dataset: 95.9% 

 

2. Zhang, J. (1992). Selecting typical instances in instance-based 

learning. In Proceedings of the Ninth International Machine 

Learning Conference (pp. 470--479). Aberdeen, Scotland: 

Morgan Kaufmann. 

• Size of data set: only 369 instances (at that point in time) 

• Applied 4 instance-based learning algorithms  

• Collected classification results averaged over 10 trials 

• Best accuracy result:  

1. 1-nearest neighbor: 93.7% 

2. Trained on 200 instances, tested on the other 169 
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• Also of interest: 

1. Using only typical instances: 92.2% (storing only 

23.1 instances) 

2. Trained on 200 instances, tested on the other 169 

 

Relevant Information Samples arrive periodically as Dr. Wolberg reports his clinical 

cases. The database therefore reflects this chronological grouping 

of the data. This grouping information appears immediately 

below, having been removed from the data itself: 

 

Group 1: 367 instances (January 1989) 

Group 2: 70 instances (October 1989) 

Group 3: 31 instances (February 1990) 

Group 4: 17 instances (April 1990) 

Group 5: 48 instances (August 1990) 

Group 6: 49 instances (Updated January 1991) 

Group 7: 31 instances (June 1991) 

Group 8: 86 instances (November 1991) 

________________________________________ 

Total: 699 vectors (as of the donated database on 15 July 1992) 

 

Note that the results summarized above in Past Usage refer to a 
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dataset of size 369, while Group 1 has only 367 instances.  This is 

because it originally contained 369 instances; 2 were removed. 

The following statements summarizes changes to the original 

Group 1's set of data: 

 

##### Group 1 : 367 vectors: 200B 167M (January 1989) 

##### Revised Jan 10, 1991: Replaced zero bare nuclei in 

1080185 & 1187805 

##### Revised Nov 22,1991: Removed 

765878,4,5,9,7,10,10,10,3,8,1 no record 

##### Removed 484201,2,7,8,8,4,3,10,3,4,1 zero epithelial 

##### Changed 0 to 1 in field 6 of sample 1219406 

##### Changed 0 to 1 in field 8 of following sample: 

##### 1182404,2,3,1,1,1,2,0,1,1,1 

 

Size of training set 699 labeled training vectors (as of 15 July 1992) 

 

Number of features 10 

Number of training 

vectors with missing 

features 

16 

 

Comment: There are 16 instances in Groups 1 to 6 that contain a 

single missing (i.e., unavailable) attribute value, now denoted by 
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"?". 

 

 

 

Table 5: List of features of the Wisconsin breast cancer dataset 

# Feature description Domain Comment 

1 Sample code number Id number This field was irrelevant 

and was taken out. 

2 Clump Thickness 1 – 10  

3 Uniformity of Cell Size 1 – 10  

4 Uniformity of Cell Shape 1 – 10  

5 Marginal Adhesion 1 – 10  

6 Single Epithelial Cell Size 1 – 10  

7 Bare Nuclei 1 – 10  

8 Bland Chromatin 1 – 10  

9 Normal Nucleoli 1 – 10  

10 Mitoses 1 – 10  

 

 

Table 6: List of labels of the Wisconsin breast cancer dataset 

Label Value Label description # of instances with label 

2 Benign 458 (65.5%) 
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4 Malignant 241 (34.5%) 

 

Based on the above output model, two more experiments were done for this appendix on the 

Wisconsin breast cancer dataset. The first experiment extracts the α weights of all the support 

vectors and produces a bar plot of the magnitudes of the weights. The resulting bar plots are 

shown in Figure 39 and Figure 40. The second experiment performs a data visualization, 

much like the data visualizations shown in the main thesis, on the set of support vectors. The 

result of this data visualization is shown in . 
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Figure 39: Weights of positive label support vectors for the Wisconsin breast cancer dataset. 
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Weights of Negative Label Support Vectors
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Figure 40: Weights of negative label support vectors for the Wisconsin breast cancer dataset. 

 

As we can see from Figure 39 and Figure 40, the weights of all support vectors of both label 

types are fairly consistent with the exception of a few support vectors (support vectors 5, 10 

and 32 of the positive set of support vectors, and support vectors 26, 28 and 33 of the 

negative set of support vectors) which are not weighed as heavily as the other weight vectors. 

With Figure 39 and Figure 40, a biologist may notice the vectors with the smaller weights 

and isolate them into another file and do something interesting with them. This is because in 

machine learning any vectors with a weight that deviates significantly from other weights 

may hold further information relating to the underlying distribution of the Wisconsin breast 

cancer biological problem at hand. 



 

  123

 

 

Figure 41: Data visualization of the support vectors of the Wisconsin breast cancer dataset. 

 

This is essentially Figure 26 with all non-support vectors taken out. The clarity of this data 

visualization, compared to the one seen in figure Figure 38, owes a great deal to the small 

number of support vectors that are needed to form the decision hyperplane. The green 

support vectors indicating patients with benign outgrowth and the red support vectors 

indicating patients with malignant outgrowth are still seen to fall roughly on two planes. But 

the vectors are not as tightly clustered as they were in Figure 26 since we only have the 

support vectors this time. With the added extra clarity of Figure 41 we may actually see that 

some of the green support vectors do fall in front of the red support vectors at this time. 

Finally, as noted in Figure 25 and Figure 26, the green vectors representing benign outgrowth 

are more clustered than the red vectors representing malevolent outgrowth, this might 
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indicate that benign outgrowths have more in common with each other than malignant 

outgrowth. It also indicates that malignant outgrowths, which represent the onset of true 

instances breast cancer, might be more difficult to diagnose than benign outgrowths due to 

their more varied characteristics that cause the red vectors to spread out more. 

 

Future work 

During the question and answer phase of this thesis the author responded to Dr. McConkey’s 

question about the transparency of support vector machines with the answer that weights will 

be given at the end of the training phase that will delineate the importance of the features 

with respect to one another. Upon close examination of the output model file it was realized 

that the weights are not assigned to the input space features, but rather to each of the training 

vectors. In the future it would be helpful to find a way of training the vectors under the power 

landmark vector learning framework such that weights underlining the importance of each 

feature/attribute in the input file could be given at the end of the training phase. Having this 

information will greatly aid the biologist in weighing the relative importance of each feature 

in order to decide how the list of features should be narrow down so that the biologist can 

concentrate on those features that play the most important roles in determining the biological 

label of the training and testing set. 
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