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Abstract

We present a security model for authenticated key establishment that allows for quan-

tum interactions between the adversary and quantum oracles that emulate classical parties,

resulting in a truly post-quantum security definition. We then give a generic construction

for a secure protocol in the quantum random oracle model by combining a signature scheme

which is existentially unforgeable under adaptive quantum chosen message attack in the

quantum random oracle model (EUF-qCMA-QRO secure) with an unauthenticated key es-

tablishment protocol which is secure against a passive adversary. This construction allows

us to give an explicit example of a secure protocol whose security is based on a variant

of the Diffie-Hellman problem for isogenies of supersingular elliptic curves; in particular,

generic security-strengthening transformations allow us to take a signature scheme which is

EUF-CMA-RO secure against a quantum adversary and transform it into an EUF-qCMA-

QRO signature scheme, which we combine with a standard secure unauthenticated key

establishment protocol to achieve the desired result.
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Chapter 1

Introduction

One of the primary objectives of cryptography is to enable secure communications over

public channels. Frequently this goal is achieved by establishing a shared secret among

communicating parties to be used for an encryption scheme; the process of establishing

such a shared secret is called key establishment. Of course, key establishment is not useful

if the communicating parties cannot be convinced that they are establishing keys with the

intended peers (rather than with a malicious third party who is hijacking the communi-

cations), and so for that reason so-called authenticated key establishment protocols have

been developed.

In order to talk about the efficacy of a protocol we need a suitable notion of “security;”

this is a delicate subject, as the specifications of party and attacker capabilities that lead to

the security definition (called the security model) must accurately reflect the security prop-

erties to be modelled. In light of the development of quantum computers, cryptographers

are becoming more and more interested in modelling post-quantum cryptography—classical

cryptographic protocols which are secure even against a quantum attacker1. Though post-

quantum security models have been proposed for encryption [12, 34] and signature schemes

[5], no adequate model has yet been proposed for authenticated key establishment. In this

work we propose such a security model.

1What exactly is meant by a “quantum attacker” depends on the specific security model. At the least,
a quantum attacker will have access to a quantum computer.
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The motivating idea of the security model presented here is that a post-quantum secu-

rity model must allow for quantum interactions between legitimate communicating parties

and an attacker; this leads naturally to the security model we present in Chapter 4. Once

the model is defined we give a general method for constructing a secure authenticated key

establishment protocol and give a specific example of a secure protocol.

1.1 Thesis Outline

The material in this thesis is covered in the following order. In the remainder of Chap-

ter 1 we cover the mathematical background of algebraic geometry and elliptic curves in

particular, the fundamentals of quantum information processing, some notions regarding

functions, and examples of computational assumptions used in cryptography. In Chapter

2 we discuss some fundamental parts of public-key cryptography that will enable us to

construct secure authenticated key establishment protocols. Chapter 3 is a discussion of

what a security model for authenticated key establishment should entail, and a survey

of some important security models. In Chapter 4 we detail our new security model for

post-quantum authenticated key establishment, and give a generic construction for secure

protocols in this model; in Chapter 5 we apply this construction to obtain a concrete exam-

ple of a secure authenticated key establishment protocol. Finally, we conclude and discuss

future work in Chapter 6.

1.2 Mathematical Background – Algebraic Geometry

To understand the construction we will use for a secure authenticated key establishment

protocol, one must first understand the fundamentals of algebraic geometry. We very

briefly cover the required definitions here, extracting the relevant parts of [33, Chapter I];

for a more thorough reference see, for instance, [14].
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1.2.1 Affine Varieties

Definition 1.1 (Affine n-Space). For a fixed field K, affine n-space over K is the set

An = {(x1, . . . , xn) : x1, . . . , xn ∈ K}, where K is the algebraic closure of K.

For any field L ⊆ K the set of L-rational points of An is the set

An(L) = {(x1, . . . , xn) : x1, . . . , xn ∈ L} = An ∩ Ln.

We will be concerned with special subsets of An called algebraic sets.

Definition 1.2 (Affine Algebraic Set). For any ideal J ⊆ K[x1, x2, . . . , xn] we associate

the set V (J) ⊆ An defined by

V (J) = {P ∈ An : f(P ) = 0 for all f ∈ J}.

Any set U ⊆ An of the form U = V (J) for some ideal J ⊆ K[x1, x2, . . . , xn] is called an

affine algebraic set.

Just as we can construct affine algebraic sets in An from ideals in K[x1, x2, . . . , xn], we

can construct ideals from affine algebraic sets.

Definition 1.3 (Ideal of an Affine Algebraic Set). For any affine algebraic set U ⊆ An we

associate the ideal I(U) defined by

I(U) = {f ∈ K[x1, x2, . . . , xn] : f(P ) = 0 for all P ∈ U}.

We call an affine algebraic set U an affine variety if its ideal I(U) is prime.

For any field L ⊆ K, we say that an affine algebraic set U is defined over L if I(U)

is generated by a set of polynomials in L[x1, x2, . . . , xn]. In this case the set of L-rational

points of U is the set U(L) = {(x1, . . . , xn) ∈ U : x1, . . . , xn ∈ L} = U ∩ An(L).

For any variety U ⊆ An, define its coordinate ring as K[U ] = K[x1, x2, . . . , xn]/I(U);

moreover, define its function field K(U) to be the field of fractions of K[U ]; i.e.,

K(U) ∼= (K[U ]×K[U ]\{0})/ ∼
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where ∼ is an equivalence relation defined by (f1, g1) ∼ (f2, g2) if and only if f1g2− f2g1 ∈
I(U). It is easy to see that K(U) is a finite-dimensional K-vector space; we define the

dimension of U—written dimU—to be the transcendence degree of K(U) over K; that is,

the size of the largest algebraically independent subset (over K) of K(U).

For the purposes of elliptic curve cryptography we require a type of variety which is

especially well-behaved.

Definition 1.4 (Non-Singular Point; Non-Singular Variety). Let U be a variety. By

Hilbert’s Basis Theorem [17, Section VIII.4, Theorem 4.9], I(U) is finitely-generated; say

I(U) = (f1, f2, . . . , ft) for some f1, f2, . . . , ft ∈ K[x1, x2, . . . , xn]. We say that P ∈ U is a

non-singular point of U if the Jacobian matrix

J(f1, . . . , ft) =

(
∂fi
∂xj

(P )

)
1≤i≤t
1≤j≤n

has rank n− dimU , where ∂fi
∂xj

(P ) is the formal partial derivative of fi with respect to xj
evaluated at P . We say that U is non-singular if each point of U is non-singular.

1.2.2 Projective Varieties

We now define a new space and type of variety derived from affine space and affine varieties.

Definition 1.5 (Projective n-space). Given a field K, projective n-space over K is defined

as

Pn = (An+1\{~0})/ ∼

where ∼ is the equivalence relation defined by (x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) if and only

if there is λ ∈ K\{0} such that xi = λyi for all 0 ≤ i ≤ n.

We denote the elements of Pn as [x0, x1, . . . , xn], where (x0, x1, . . . , xn) is any coset

representative. The values x0, x1, . . . , xn are called the homogeneous coordinates of the

point.

As in the case of affine n-space, we can consider the set of L-rational points in projective

n-space, defined as Pn(L) = {[x0, x1, . . . , xn] : xi ∈ L for all 0 ≤ i ≤ n}. As well, we will

consider projective algebraic sets; we first require the notion of a homogeneous polynomial.
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Definition 1.6 (Homogeneous Polynomial). A polynomial f ∈ K[x0, x1, . . . , xn] is said to

be homogeneous if there exists d ∈ N so that

f(λP ) = λdf(P )

for all λ ∈ K and for all P ∈ Pn. The number d is the degree of homogeneity.

An ideal is said to be homogeneous if it is generated by homogeneous polynomials.

Projective algebraic sets are defined in terms of homogeneous ideals.

Definition 1.7 (Projective Algebraic Set). Let J ⊆ K[x0, x1, . . . , xn] be a homogeneous

ideal. To J we associate a subset V (J) of Pn defined by

V (J) = {[x0, x1, . . . , xn] ∈ Pn : f(x0, x1, . . . , xn) = 0 for all homogeneous f ∈ J}

A subset U of Pn is called a projective algebraic set if U = V (J) for some homogeneous

ideal J of K[x0, x1, . . . , xn].

Analogous to the case of affine algebraic sets, we associate to every projective algebraic

set U a homogeneous ideal I(U) defined by

I(U) =
({
f ∈ K[x0, x1, . . . , xn] : f is homogeneous and f(P ) = 0 for all P ∈ U

})
and we say that a projective algebraic set is defined over a field L ⊆ K if its ideal is

generated homogeneous by polynomials in L[x0, x1, . . . , xn]. If U is defined over L, we

define the set of L-rational points of U as U(L) = U ∩ Pn(L).

Definition 1.8 (Projective Variety). An algebraic set U is called a projective variety if

I(U) is a homogeneous prime ideal.

We would like a notion of dimension and non-singularity for projective varieties; we

rely on the corresponding definitions for affine varieties.

Definition 1.9 (Dimension). Let U ⊆ Pn be a projective variety, and let S be a copy of

An contained in Pn such that U ∩ S 6= ∅. The dimension of U is dimU ∩ S, interpreted

as a variety in S.
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Definition 1.10 (Non-Singular Point; Non-Singular Projective Variety). Let P be a point

in a projective variety U , and let S be a copy of An contained in Pn and containing P . We

say that P is a non-singular point of U if it is a nonsingular point of U ∩ S, interpreted

as an affine variety of S. Moreover, U is said to be non-singular if each of its points is

non-singular.

Finally, we define the function field of a projective variety, and regular maps.

Definition 1.11 (Projective Coordinate Ring; Function Field). Let U be a projective

variety. The projective coordinate ring of U is the set K[U ] = K[x0, x1, . . . , xn]/I(U). The

function field of U is the set

K(U) =

{
F (x0, x1, . . . , xn) =

f(x0, x1, . . . , xn)

g(x0, x1, . . . , xn)
and g 6∈ I(U)

}
/ ∼

where ∼ is the equivalence relation defined by f1
g1
∼ f2

g2
if and only if f1g2 − f2g1 ∈ I(U).

Definition 1.12 (Regular Point; Regular Map). An element F ∈ K(U) is called regular

at a point P if it can be written as F = f
g

where g(P ) 6= 0. A map F is called regular if it

is regular at every point in its domain.

Remark 1.1. At different points P , it may be necessary to take different functions f and

g.

1.2.3 Rational Maps, Morphisms, and Isomorphisms

Here we consider important classes of functions between projective varieties, of which

isogenies (Section 1.2.5) are a special case. As the name suggests, isogeny-based cryptog-

raphy uses isogenies of certain algebraic varieties to achieve key establishment and other

cryptographic goals.

Definition 1.13 (Rational Map). Let U1 and U2 be projective varieties. A map φ : U1 →
U2 is called a rational map if there exist coordinate functions f0, f1, . . . , fm ∈ K(U1) such

that φ(P ) = [fi(P )]0≤i≤m for all P ∈ U1 at which f0, f1, . . . , fm are all defined.
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If there is λ ∈ K\{0} such that λf0, λf1, . . . , λfm ∈ L[x0, x1, . . . , xn] for some L ⊆ K
we say that φ is defined over L. We are concerned with especially well-behaved rational

maps, called morphisms.

Definition 1.14 (Regular Point). Let φ : U1 → U2 be a rational map, and let P ∈ U1. We

say that φ is regular at P if there exists g ∈ K(U1) so that, if the coordinate functions for φ

are f0, f1, . . . , fm, then g · fi is regular at P for each 0 ≤ i ≤ n, and, moreover, there is 0 ≤
i∗ ≤ m such that (g · fi∗)(P ) 6= 0. When such g exists, we define φ(P ) = [(g · fi)(P )]0≤i≤m.

A rational map which is regular at every point of its domain is called a morphism. This

naturally leads to the definition of isomorphism of projective varieties.

Definition 1.15 (Isomorphism; Isomorphic Varieties). Let U1 and U2 be projective vari-

eties. We say that φ : U1 → U2 is an isomorphism if there exists a morphism ψ so that

φ ◦ ψ = ιU2 , the identity on U2, and ψ ◦ φ = ιU1 , the identity on U1. When such an

isomorphism exists, we say that U1 and U2 are isomorphic.

If an isomorphism φ : U1 → U2 is defined over a field L, we sometimes say that U1 and

U2 are L-isomorphic for the sake of clarity. From the perspective of algebraic geometry,

isomorphic varieties are indistinguishable, and so for geometric problems it suffices to

consider any fixed representative in an isomorphism class. We will use this fact later.

1.2.4 Elliptic Curves

Definition 1.16 (Elliptic Curve [33, Section III.3]). An elliptic curve E is a nonsingular

curve (i.e., a projective variety of dimension one) of genus one, with a distinguished point

O, called the point at infinity.

We say that an elliptic curve E is defined over a field K if it is defined over K as an

algebraic set.

The following proposition more concretely characterizes elliptic curves.

Proposition 1.1 (Characterization of Elliptic Curves [33, Section III.3, Proposition 3.1]).

Let E be an elliptic curve defined over K. Then:
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i. There exist functions X, Y ∈ K(E) such that the map

φ : E → P2(K)

φ : [x0, . . . , xn] 7→ [X(x0, . . . , xn), Y (x0, . . . , xn), 1]

is an isomorphism of E onto a curve given by the Weierstrass Equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.1)

for some a1, . . . , a6 ∈ K satisfying φ(O) = [0, 1, 0]. The functions X and Y are called

Weierstrass coordinates for E.

ii. Any two Weierstrass equations for E are related by a linear change of variables of

the form

X = u2X ′ + r

Y = u3Y ′ + su2X ′ + t

for some u ∈ K\{0} and r, s, t ∈ K.

iii. Every non-singular cubic curve C given by a Weierstrass equation of the form (1.1)

is an elliptic curve defined over K with distinguished point O = [0, 1, 0].

In light of Proposition 1.1, we will exclusively speak of elliptic curves described by a

Weierstrass equation of the form (1.1); moreover, for brevity of notation, we will often

consider the finite points of an elliptic curve E/K as being pairs (x, y) ∈ A2(K), with the

point at infinity being denoted only by O. Whenever we define a function in terms of these

coordinates, we will specify the image of O separately. In this formalism, we can write

E = {(x, y) ∈ A2(K) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} t {O}. (1.2)

Remark 1.2 (Simplified Weierstrass Equation for Elliptic Curves). It can be shown (q.v.

[33, Section III.1]) that if charK 6= 2, 3 then the Weierstrass equation (1.1) can be further
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simplified to

C : Y 2Z = X3 + aXZ2 + bZ3

so that Equation (1.2) becomes

E = {(x, y) ∈ A2(K) : y2 = x3 + ax+ b} t {O}

for some a, b ∈ K, by a linear change of variables.

1.2.5 Isogenies

We can introduce group structure on an elliptic curve E in a natural way [33, Section

III.2, Proposition 2.2], and this group structure allows us to define a class of functions,

called isogenies, which preserve some of this algebraic structure, as well as the geometric

structure of the curves.

Definition 1.17 (Isogeny [33, Section III.4]). Let E and E ′ be elliptic curves defined

over a field K. An isogeny from E to E ′ is an algebraic morphism φ : E → E ′ such that

φ(OE) = OE′ .

We say that an isogeny φ : E → E ′ is defined over a field K if it is defined over K as a

rational map. The degree of an isogeny is its degree when considered as a rational map. If

φ is a separable isogeny, then deg φ = |kerφ| [9, Section 2].

For elliptic curves E and E ′, we say that E ′ is isogenous to E over K if and only if

there is an isogeny φ from E to E ′ defined over K such that φ(E) 6= {OE′}. It can be

shown (q.v. [33, Section III.6, Theorem 6.1]) that E ′ is isogenous to E over K if and only

if E is isogenous to E ′ over K; that is, the property of “being isogenous” is an equivalence

relation, and we defined the isogeny class of a curve E defined over K to be the set of

all curves E ′ which are isogenous to E, up to K-isomorphism as algebraic sets. Since any

algebraic morphism of curves is either constant or surjective [14, Chapter II, Section 6,

Proposition 6.8], if φ : E → E ′ is a nontrivial isogeny, then φ(E) = E ′.
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A theorem of Tate [36, Section 3, Theorem 1] says that if E and E ′ are defined over a

finite field K = GF (q), then E and E ′ are isogenous over K if and only if |E(K′)| = |E ′(K′)|
for every finite extension K′ of K.

Let E be defined over a field of characteristic p > 0, and for each ` ∈ Z, let E[`] denote

the set of `-torsion points of E. If p - `, the map

[`] : E → E

[`] : P → `P

is separable and has degree `2; hence, since E[`] = ker [`] is a finite abelian group, it must be

that E[`] ∼= Z/`Z⊕Z/`Z, since any other rank 2 Abelian group of order `2 has elements of

order strictly greater than `, by the Fundamental Theorem of Finitely Generated Abelian

Groups [31, Chapter 10, Theorem 10.20]. Additionally, either E[pr] = {O} for all r ∈ Z,

or E[pr] ∼= Z/prZ for all r ∈ Z [33, Chapter V, Section 3, Theorem 3.1]; in the first case

we say that E is supersingular, while in the second case we say that E is ordinary. Any

two isogenous elliptic curves are either both ordinary or both supersingular. We will be

concerned primarily with supersingular elliptic curves for our cryptographic applications.

Any supersingular elliptic curve E is defined over GF (p2) for some prime p, and for

each prime ` 6= p there are ` + 1 isogenies of degree ` with domain E (though not all of

them are defined over GF (p2), in general) [9]. These isogenies of degree ` are in one-to-one

correspondence with the subgroups Φ of E of order `; moreover, each such subgroup is

the kernel of a unique isogeny φ, and we write φ(E) = E/Φ [33, Chapter III, Section 4,

Proposition 4.12]. Hence to specify an isogeny it suffices to specify its kernel, and conversely

given a subgroup Φ of E we can construct the isogeny φ whose kernel is Φ, using Vélu’s

formulae [38]. In particular, if Φ is generated by a point R ∈ E(GF (p2)), then we have

a compact representation of φ, and we can compute φ efficiently knowing only R [9]. We

will use such isogenies in an authenticated key establishment protocol in Chapter 5.

1.2.6 The j -Invariant

Associated to every elliptic curve E defined over K is a number j(E) ∈ K, called the

j-invariant of the curve. As the name suggests, the j-invariant is invariant under K-
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isomorphisms of algebraic sets, and so a j-invariant uniquely identifies a K-isomorphism

class of elliptic curves over K. Given an elliptic curve E, its j-invariant can be found in

polynomial-time; moreover, given a j-invariant j∗ ∈ K, one can find in polynomial time

the curve E with j(E) = j∗. Knowing this, we have a compact description of an elliptic

curve for the purposes of communication during a key establishment protocol.

1.3 Fundamentals of Quantum Information

Quantum computers operate in a fundamentally different way from classical computers; we

briefly cover the fundamentals here, along with some further results that will be necessary

in later sections. For a more complete introduction see, for instance, [20] or [28].

In classical computing, the fundamental unit of information is the bit, which takes on

values in {0, 1}. In quantum computing, the fundamental unit of information is the qubit,

whose state can be any unit length complex linear combination of the standard basis qubits

|0〉 and |1〉2. That is, the state of a qubit can be written as

|ψ〉 = α |0〉+ β |1〉

for some α, β ∈ C with |α|2 + |β2| = 1.

Just as we can consider classical bit strings of length n whose states are in {0, 1}n, for

quantum computing we consider systems of many qubits. If we have some qubits in states

|ψi〉 = α
(0)
i |0〉+ α

(1)
i |1〉 for 1 ≤ i ≤ n, then their joint state is the tensor product

|ψ1〉 ⊗ · · · ⊗ |ψn〉 =
∑

σ∈{0,1}n

n∏
i=1

α
(σi)
i |σ1〉 ⊗ · · · ⊗ |σn〉 .

For brevity, for σ ∈ {0, 1}n we use the notation |σ〉 = |σ1〉⊗ · · ·⊗ |σn〉. More generally, the

state of an n-qubit system is a unit length complex linear combination

|Ψ〉 =
∑

σ∈{0,1}n
ασ |σ〉 .

2For concreteness, we can choose an orthonormal basis {~v0, ~v1} for C2, and define |0〉 = ~v0 and |1〉 = ~v1.
The state of a qubit is just a unit length vector in this space.
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Moreover, any setM of size at most 2n can be embedded in {0, 1}n and so we can consider

states of the form

|Ψ〉 =
∑
m∈M

αm |m〉 ∈ CM

by identifying |m〉 with |σ〉, where σ is the embedding of m in {0, 1}n.

1.3.1 Operations on Qubits

In contrast with classical computing, where, in principle, any bitwise operation can be

implemented, on a quantum computer all operations must be reversible and must preserve

the inner product on
⊗n

j=1 C2 [28, Chapter 2, Section 2.2.2, Postulate 2]. For any fixed

basis of
⊗n

j=1 C2, this means that the admissible quantum operations are precisely the

unitary matrices of dimension 2n.

If n qubits are in some global state |Ψ〉, it is possible to apply a unitary operator to

some subset of them. If we apply the operator U on the first m qubits3 of the register,

the resultant state is U ⊗ I2n−m |Ψ〉; that is, the result is the same as if we had applied the

(also unitary) operator U ⊗ I2n−m to the whole register.

1.3.2 Quantum Function Queries

Given a function f : M→ T where (T ,+) is a group, we define the quantum gate Uf by

Uf : CM ⊗ CT → CM ⊗ CT

|m〉 |y〉 7→ |m〉 |y + f(m)〉 for all m ∈M, y ∈ T ,

extended linearly. Thus querying a function f on a superposition |ψ〉 of inputs is the same

as applying Uf to |ψ〉 |0〉.
3We can of course consider applying U to any m qubits of the register; we write only this result explicitly

for the sake of simplicity of notation. The result is similar.
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1.3.3 Measurements

Given a set of qubits in an unknown state, it is impossible to simply determine the state of

the qubits; rather, a measurement must be performed to extract some classical information.

Measurements are inherently probabilistic; in particular, if a set of qubits is in the state

|Ψ〉 =
∑

σ∈{0,1}n ασ |σ〉 then for each σ ∈ {0, 1}n, the classical result of the measurement is

σ with probability |ασ|2.4

In principle, measurements can appear at any point of a quantum algorithm, and it is

possible that not all qubits will be measured at the end of an algorithm. However, the

following two principles say that it suffices to consider only those algorithms all of whose

measurements are at the end, and which measure all available qubits.

Principle of Deferred Measurement [28, Section 4.4]: Measurements can always

be moved from an intermediate stage of a quantum circuit to the end of the circuit; if

the measurement results are used at any stage of the circuit then the classically-controlled

operations can be replaced by conditional quantum operations.

Principle of Implicit Measurement [28, Section 4.4]: Without loss of generality,

any qubits which are not measured at the end of a quantum circuit may be assumed to be

measured.

These principles will simplify our analysis of key establishment protocols in Chapter 4.

1.3.4 Distinguishing Quantum States

A fundamental problem in quantum information processing is the following: given a register

which is known to be either in state |ψ〉 or state |φ〉, determine which is the case. The

following result is a corollary of the Holevo-Helstrom theorem.

Theorem 1.2 (Corollary of the Holevo-Helstrom Theorem). Suppose a register is prepared

in either state |ψ0〉 or |ψ1〉, each with probability 1
2
. Any quantum algorithm which correctly

4In principle we can consider measurements in other bases; if {|ψi〉}2
n

i=1 is an orthonormal basis for⊗n
i=1 C2, then we can measure |Ψ〉 in this basis—for 1 ≤ i ≤ 2n, the result is |ψi〉 with probability

| 〈Ψ| ψi〉 |2. Such measurements can be implemented as a unitary operator followed by a standard mea-
surement, and so no generality is lost by considering only the standard measurement.
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identifies b such that the actual state prepared is |ψb〉 succeeds with probability at most

1

2
+

1

2

√
1− | 〈ψ0| ψ1〉 |2. (1.3)

where 〈ψ0| ψ1〉 is the standard inner product of |ψ0〉 and |ψ1〉. Moreover, for each such

pair of states, there is a measurement which succeeds with exactly the probability given in

Equation (1.3).

This theorem will be useful for analyzing the security of protocols in our security model

because the security definition in Chapter 4 relies on the computational indistinguishabil-

ity of certain quantum states. We will use Theorem 1.2 to show that certain quantum

states are indistinguishable provided that certain probability distributions are themselves

computationally indistinguishable.

1.4 Functions

We will require some useful notions about functions.

Definition 1.18 (Negligible Function). A function ε : N → R is said to be negligible if,

for every polynomial function p(λ) which is positive on N, there is a constant λp so that

ε(λ) < 1
p(λ)

for all λ > λp. A function which is not negligible is said to be non-negligible.

Negligible functions frequently arise in cryptographic security definitions, and, intu-

itively, they are used in security definitions to account for the possibility of an adversary

accomplishing some task “by chance.” The following lemma gives a number of useful

properties of negligible functions that we will use in later chapters.

Lemma 1.3. Let δ(λ) and ε(λ) be negligible functions, and let q(λ) be a polynomial

function which is positive on N. Then

i. δ(λ) + ε(λ) is negligible.

ii. δ(λ) · ε(λ) is negligible.
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iii. q(λ)ε(λ) is negligible.

Proof. i. For any polynomial p(λ), let λ
(δ)
2p and λ

(ε)
2p be such that

δ(λ) <
1

2p(λ)
for all λ > λ

(δ)
2p and

ε(λ) <
1

2p(λ)
for all λ > λ

(ε)
2p .

Then for all λ > max{λ(δ)
2p , λ

(ε)
2p } we see that

δ(λ) + ε(λ) <
1

2p(λ)
+

1

2p(λ)
=

1

p(λ)

so that δ(λ) + ε(λ) is negligible, as required.

ii. For any polynomial p(λ), let λ
(δ)
1 and λ

(ε)
p be such that

δ(λ) < 1 for all λ > λ
(δ)
1 and

ε(λ) <
1

p(λ)
for all λ > λ(ε)

p .

Then for all λ > max{λ(δ)
1 , λ

(ε)
p } we see that

δ(λ) · ε(λ) < 1 · 1

p(λ)
=

1

p(λ)

so that δ(λ) · ε(λ) is negligible, as required.

iii. For any polynomial p(λ), let λ
(ε)
pq be such that

ε(λ) <
1

p(λ)q(λ)
for all λ > λ(ε)

pq .

Clearly this is equivalent to

q(λ)ε(λ) <
1

p(λ)
for all λ > λ(ε)

pq ,
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so that q(λ)ε(λ) is negligible.

Remark 1.3. Lemma 1.3.i. generalizes to the sum of polynomially-many negligible func-

tions.

1.4.1 Hash Functions

For many cryptographic purposes we require a function which is easily computable, and

maps input of arbitrary length to a fixed output length. This prompts the following

definition.

Definition 1.19 (Hash Function, adapted from [16, Section 8.1]). A hash function is a

function h which takes as input a binary string5 of any length, and returns a binary string

of some fixed (and in particular, finite) length, which can be computed in polynomial time

in the length of input.

Often when we want to use hash functions for cryptographic purposes, we require

them to have specific security properties. Typical cryptographic security properties are

stated as the inability for some polynomial-time adversary to accomplish some task, except

with negligible probability. Of course, in order for the notion of “polynomial-time” to be

meaningful, what we really need is a family of hash functions {hk} with a corresponding

security parameter. For instance, we might define the family of hash functions H =

{hp,g}p prime

g∈Zp
by

hp,g : Z→ Zp
x 7→ gx

and then define the security parameter on this family as λ = blog2 pc. Then a security

property of this family would be stated as “there is no polynomial-time algorithm which,

5As discussed in Section 1.3, we can interpret any input m as a binary string, and so we will use hash
functions with domains other than {0, 1}∗, keeping in mind that we simply embed the domain in {0, 1}∗
in some canonical way.
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given h chosen uniformly at random from H, accomplishes some task in time which is

asymptotically polynomial in λ”. We state some standard security properties of hash

functions here.

Definition 1.20 (Preimage Resistance). A hash function family H = {ht}t∈T is said to be

preimage resistant if there is no polynomial-time algorithm which, given h chosen uniformly

at random from H, and y ∈ imh, returns x ∈ domh such that y = h(x) with non-negligible

probability.

Definition 1.21 (Second Preimage Resistance). A hash function family H = {ht}t∈T is

said to be second preimage resistant if there is no polynomial-time algorithm which, given

h chosen uniformly at random from H, and x ∈ domh, returns x′ ∈ domh\{x} such that

h(x) = h(x′) with non-negligible probability.

Definition 1.22 (Collision Resistance). A hash function family H = {ht}t∈T is said to be

collision resistant if there is no polynomial-time algorithm which, given h chosen uniformly

at random from H, finds x, x′ ∈ domh such that x 6= x′ and h(x) = h(x′) with non-

negligible probability.

1.5 Computational Assumptions

Often in order to prove that a cryptographic protocol is secure we need that some under-

lying computational problem is hard in some sense—for typical security definitions such

as those given in Chapter 2, we need that the problem cannot be solved in polynomial

time on a classical or quantum computer. The problems that underlie most cryptographic

algorithms are in NP; that is, there exist polynomial-size certificates for “yes” instances

of problems that can be verified in polynomial time. A proof that such a problem has no

polynomial-time solution would prove that P 6= NP. Given that no such proof currently

exists, cryptographers make security assumptions ; that is, they assume that there is no

polynomial-time algorithm for a given problem. Then a typical security proof follows the

argument that, if an efficient adversary can break the security of a protocol, then the un-

derlying problem can be solved in polynomial time, breaking the hardness assumption. In

this section we give some classical examples of security assumptions. and then describe the
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security properties required for supersingular isogeny-based cryptographic schemes, which

appear in later chapters.

1.5.1 Polynomial-Time Reducibility of Computational Problems

In order to quantify security we would like to be able to determine the “relative hardness”

of computational problems—in particular, we typically want to say that compromising the

security of a cryptosystem is harder than solving some standard problem. To this end we

introduce the notion of polynomial-time reducibility.

Definition 1.23 (Polynomial-Time Reducibility). Let C and D be computational prob-

lems. We say that C is polynomial-time reducible to D, denoted D ≥P C, if there is an

algorithm A which, using a polynomial number of queries to an oracle which solves D and

polynomial time otherwise, solves instances of C.

The notation D ≥P C is meant to suggest that we are ordering problems by difficulty;

if C is polynomial-time reducible to D, then being able to solve D efficiently allows one to

solve C efficiently, and in that sense D is “harder” than C.

1.5.2 Examples of Classical Computational Assumptions

Factoring and the RSA Problem

Perhaps the best known public-key encryption scheme is RSA, which is based on the be-

lieved hardness of factoring and related problems. Because of its historical and instructive

value, we discuss the computational problems associated with RSA here, and refer to them

in Chapter 2 when we give examples of signature schemes.

Definition 1.24 (Factoring Problem for RSA Moduli). Given an RSA modulus n = pq

where p and q are distinct odd primes, the factoring problem is to determine p and q.

The corresponding computational assumption, called the factoring assumption for RSA

moduli is that there is no polynomial-time algorithm which solves the factoring problem
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for RSA moduli on arbitrary inputs with non-negligible probability, where the security

parameter is λ = min{blog2 pc, blog2 qc}.

The security of the RSA cryptosystem and signature scheme is based on the hardness

of factoring RSA moduli in sense that if factoring is easy, then these schemes are certainly

insecure. However, there is no known proof of the contrapositive statement; that is, if

factoring is difficult, then the schemes are secure. Unfortunately, this is not sufficient for

a security proof; to rectify the issue, the following computational problem was devised.

Definition 1.25 (RSA Problem [30]). Given an RSA modulus n = pq, an integer e ∈
(Z/ϕ(n)Z)∗ (where ϕ is Euler’s totient function), and a number c ∈ Z/nZ, the RSA

problem is to find cd (mod n), where d is the unique integer in Z/ϕ(n)Z which satisfies

ed ≡ 1 (mod ϕ(n)).

The RSA assumption is that there is no polynomial-time algorithm which solves arbi-

trary instances of the RSA problem with non-negligible probability. This assumption is

standard in classical cryptography. It is clear that

Factoring ≥P RSA.

Discrete Logarithms and the Diffie-Hellman Problem

Let G = 〈g〉 be a group of order n. For each h ∈ G there exists a unique x ∈ {0, 1, . . . , n−1}
such that h = gx. We call this number x the discrete logarithm of h with respect base g,

denoted logg h.

Definition 1.26 (Discrete Logarithm Problem). Given a group G = 〈g〉 and an element

h ∈ G, the Discrete Logarithm problem (DLP) is to find logg h.

For a given group G, the Discrete Logarithm Assumption for G is that there is no

polynomial-time (in size of input) algorithm which solves arbitrary instances of DLP in G

with non-negligible probability.

For a group G = 〈g〉 of order n, we call a triple (a, b, c) ∈ G3 a Diffie-Hellman triple if

there are x, y ∈ {0, 1, . . . , n} such that a = gx, b = gy and c = gxy. There are two common

security properties related to Diffie-Hellman triples, which we state here
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Definition 1.27 (Computational Diffie-Hellman Problem [10]). Given a group G = 〈g〉
and two elements a and b with a = gx and b = gy, where x and y are not given, the

Computational Diffie-Hellman problem (CDH) is to find gxy.

Definition 1.28 (Decisional Diffie-Hellman Problem [10]). Given a group G = 〈g〉 and a

triple (a, b, c) ∈ G3, the Decisional Diffie-Hellman problem (DDH) is to determine whether

(a, b, c) is a Diffie-Hellman triple.

The Computational Diffie-Hellman assumption for a given group G is that there is no

polynomial-time (in λ = blog2 nc) algorithm which solves arbitrary instances of the CDH

problem in G with non-negligible probability; similarly, the Decisional Diffie-Hellman as-

sumption in a group G is that there is no polynomial-time algorithm which solves arbitrary

instances of the DDH problem in G with non-negligible advantage over 1
2
. For certain

groups, these assumptions are standard. Moreover, it is clear that for any group

DLP ≥P CDH ≥P DDH.

1.5.3 Post-Quantum Computational Assumptions: Supersingu-

lar Elliptic Curve Isogenies

Unfortunately, many classical security assumptions—including, in particular, all the ex-

amples in Section 1.5.2—are known to be incorrect when we consider quantum algorithms.

In particular, Shor’s algorithm [32] solves both the factoring problem and the discrete

logarithm problem in polynomial-time, completely invalidating the security of RSA and

discrete logarithm-based cryptosystems. To that end, in order to ensure the security of

classical communications once quantum computers are developed we develop classical pro-

tocols which are resistant to attacks by quantum computers. The security of the vast

majority of current post-quantum cryptographic schemes is based upon the hardness of

problems in four broad areas: lattices (e.g., NTRU [15] and variants [19, 8]), multivari-

ate polynomials over finite fields (e.g., Unbalanced Oil and Vinegar [21]; Hidden Field

Equations [29]), hash functions (e.g., Merkle signatures [25]), and algebraic codes (e.g.,

McEliece [24]; Niederreiter [27]). Recently, however, cryptographic schemes whose security

is based on the quantum hardness of computing isogenies between supersingular elliptic
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curves have been proposed [9, 35, 18]. These schemes have extremely promising security

and efficiency results, and the underlying security assumptions are, in some sense, very

similar to the Diffie-Hellman problems. We will use these security assumptions to build

a secure authenticated key establishment protocol in Chapter 5, and so we present them

here.

In the following definitions, let p = `eAA `
eB
B f±1 be a prime, where `A and `B are distinct

small primes, and f is a small cofactor used to ensure that p is prime—we make no effort

to quantify what is meant by “small.” Moreover, let E be a supersingular elliptic curve

defined over K = GF (p2) with E(GF (p2)) ∼= Zp∓1⊕Zp∓1, and let {PA, QB} and {PB, QB}
be bases for E[`eAA ] and E[`eBB ], respectively.

Definition 1.29 (Supersingular Isogeny Problem). Let φA : E → EA be an isogeny with

kernel 〈mAPA + nAQA〉 where mA, nA are chosen uniformly at random from Z/`eAA Z, not

both divisible by `A. The supersingular isogeny problem (SSI) is, given E,EA, φA(PB),

and φA(QB), to find a generator of ker φA.

Definition 1.30 (Supersingular Computational Diffie-Hellman Problem). Let φA : E →
EA be an isogeny with kernel 〈mAPA + nAQA〉 where mA, nA are chosen uniformly at ran-

dom from Z/`eAA Z, not both divisible by `A. Similarly, let φB : E → EB be an isogeny with

kernel 〈mBPB + nBQB〉 where mB, nB are chosen uniformly at random from Z/`eBB Z, not

both divisible by `B. The supersingular computational Diffie-Hellman problem (SSCDH)

is to find the j-invariant of

EAB = E/ 〈mAPA + nAQA,mBPB + nBQB〉

given E,EA, EB, φA(PB), φA(QB), φB(PA), and φB(QA).

Definition 1.31 (Supersingular Decisional Diffie-Hellman Problem). Let φA : E → EA
be an isogeny with kernel 〈mAPA + nAQA〉 where mA, nA are chosen uniformly at random

from Z/`eAA Z, not both divisible by `A. Similarly, let φB : E → EB be an isogeny with

kernel 〈mBPB + nBQB〉 where mB, nB are chosen uniformly at random from Z/`eBB Z, not

both divisible by `B. Given a tuple

(E,EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC)
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where either EC = EAB = E/ 〈mAPA + nAQA,mBPB + nBQB〉 or EC is sampled uniformly

at random from the set of all curves of the form

E/ 〈xAPA + yAQA, xBPB + yBQB〉

where xA, yA and xB, yB are chosen with the same conditions as mA, nA and mB, nB, each

with probability 1
2
, the supersingular decisional Diffie-Hellman problem (SSDDH) is to

determine which is the case.

As in previous sections, the corresponding security assumptions is that arbitrary in-

stances of the above problems cannot be solved in polynomial-time with non-negligible

probability (non-negligible advantage in the case of SSDDH). At the time of writing, the

best known quantum algorithm for these problems runs in fully-exponential time O( 6
√
p)

[4]; thus these problems seem well-suited to being cryptographic primitives. Finally, ob-

serve that

SSI ≥P SSCDH ≥P SSDDH.
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Chapter 2

Public-Key Cryptography

In this chapter we discuss the fundamental concepts in public-key cryptography which allow

us to achieve authenticated key establishment. In particular, we discuss unauthenticated

key establishment protocols, and consider signature schemes as an authentication method.

In order to give specific examples of quantum-safe signature schemes we will introduce

the quantum random oracle model and given generic constructions that amplify security

properties of signature schemes in this model. We also introduce chameleon hash functions

as a tool for these constructions.

2.1 The Quantum Random Oracle Model

2.1.1 Random Oracles and the Random Oracle Model

For the purposes of provable security, often we model hash functions with desirable security

properties as an idealized, completely random function called a random oracle. In this

paradigm, known as the random oracle model, an adversary in a security game can only

obtain hash values by requesting them from the challenger. The challenger can maintain

a table of hash values and, whenever an oracle call is made check the table for a matching

entry and returns it or, if none is found, generate a uniformly random value and records

it as the hash value for that input. The main benefit of this choice is that it prevents

23



the adversary from using the structure of the hash function to obtain forgeries. Use of

the random oracle model is contentious among cryptographers since true random oracles

cannot be feasibly realized, and because it is known that there exist protocols which are

secure in the random oracle model but insecure when the random oracle is replaced by any

concrete hash function [6]. Nevertheless, because of their usefulness for provable security,

we use the random oracle model when necessary or when it greatly simplifies proofs.

2.1.2 Random Oracles in the Quantum Setting

When we move to the quantum setting, in recognition of the fact that any actual implemen-

tation will use a concrete hash function the most natural thing to do is to allow quantum

calls to the random oracle; this is known as the quantum random oracle model. It is easy to

see how this might cause trouble; it is not clear that the challenger can generate new ran-

dom values for queries to new inputs while at the same time maintaining consistency with

previously-returned hash values. For this reason, standard proof techniques in the classical

random oracle model do not necessarily translate well to the quantum setting. Fortunately

some progress has been made in developing proof techniques and constructions that work

in the quantum random oracle model (see, for instance, [37, 39]); in particular, in Section

2.4.4 we detail a construction due to Eaton and Song [11] which can be used to construct

a signature scheme which is secure in the quantum random oracle model from a signature

scheme which is merely secure in the classical random oracle model against an adversary

who can perform quantum computations. This construction will allow us to construct a

secure authenticated key establishment protocol in the model we present in Chapter 4.

2.2 Chameleon Hash Functions

Intuitively, chameleon hash functions, introduced in 1997 by Krawczyk and Rabin [22],

are a special type of hash function which are collision resistant for anybody who does

not know an associated piece of secret information, but for which collisions can easily be

found for any input given that piece of secret information. Since their introduction they

have been used to establish signature schemes with many desirable properties; particularly

non-repudiation, non-transferability, and recipient-specificity, which will not be discussed
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here. For our purposes, we will use these to construct signature schemes which are secure

in the quantum random oracle model. A precise definition of chameleon hash function is

given in Definition 2.1.

Definition 2.1 (Chameleon Hash Function (Adapted from [5, Definition 3.9])).

A chameleon hash function H is a tuple (KeyGen, H, Invert, Sample) of algorithms such

that:

1. KeyGen(λ) generates a private key/public key pair (sk, pk) with security parameter

λ;

2. Hpk(m, r) maps messages m to some target space Y ;

3. Sample(λ) samples r in such a way that Hpk(m, r) is distributed computationally

indistinguishably from uniform over the image of Hpk(m, ·) for every pair (pk,m);

4. Invertsk(h,m) produces r such that Hpk(m, r) = h (where (sk, pk) is generated

by KeyGen(λ)), with distribution computationally indistinguishable from that of

Sample(λ) conditioned on Hpk(m, r) = h; and,

5. For any pk, Hpk(·, ·) is collision resistant.

We say that a chameleon hash function is quantum-safe if the collision-resistance prop-

erty holds against a quantum adversary who can query the function in superposition.

2.3 Unauthenticated Key Establishment

Before discussing security models for authenticated key establishment we briefly discuss the

high-level idea of unauthenticated key establishment and provide some examples. Infor-

mally, an unauthenticated key establishment protocol is a way for a number of individuals

to exchange messages in public (i.e., potentially with eavesdroppers) and obtain a shared

secret key (i.e., some string that eavesdroppers cannot determine). Secrecy of the key is

typically derived from the assumed intractability of some computational problem. In the

two protocols we present, parties who wish to establish keys choose ephemeral secret keys

25



from which they derive ephemeral public values, which they exchange. Each party then,

using the other’s ephemeral public value and their own ephemeral secret keys constructs

a session key; if the construction is suitably chosen they both get the same key. The

computational assumption then is that it is difficult to “combine” the two public values

without knowing at least one of the underlying secret values. The prototypical example of

an unauthenticated key establishment protocol is the Diffie-Hellman protocol.

Diffie-Hellman Key Establishment

Definition 2.2 (Diffie-Hellman Key Establishment [10]). Suppose two parties A and B

wish to establish a key.

Global Parameters: Fix a cyclic group G of order n, and choose a generator g of G.

Ephemeral Key Generation: A chooses a ∈ Zn uniformly at random. Her ephemeral

secret key is a; her ephemeral public value is α = ga. Similarly, B chooses b ∈ Zn−1

uniformly at random. His ephemeral secret key is b; his ephemeral public value is β = gb.

Key Construction: A computes Ka = βa = (gb)a = gab. B computes Kb = αb = (gb)a =

gab. A and B share the same key.

Diffie-Hellman key establishment is illustrated in Figure 2.3

Global parameters: g,G = 〈g〉 , n = |G|
A B

a← Zn−1 b← Zn−1

α = ga β = gb
α−−−−−−−−−−−→
β←−−−−−−−−−−−

KA = βa = gab KB = αb = gab

KA = gab = KB

Figure 2.1: Diffie-Hellman Key Establishment

Notice that, by definition, if the Computational Diffie-Hellman assumption holds in G,

then no eavesdropper can compute the secret key for an instance of the Diffie-Hellman

protocol. Unfortunately, since the discrete logarithm problem can be solved efficiently by

quantum computers, Diffie-Hellman key establishment cannot be quantum-safe.
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Supersingular Elliptic Curve Isogeny Key Establishment

Definition 2.3 (Supersingular Elliptic Curve Isogeny Key Establishment (SSIKE) ([9])).

Suppose two parties A and B wish to establish a key.

Global Parameters: Fix a prime p = `eAA `
eB
B f ± 1 where `A and `B are small primes; a

supersingular elliptic curve E defined over GF (p2) such that E[`eAA ] and E[`eBB ] are defined

over GF (p2), and; bases {PA, QA} and {PB, QB} for E[`eAA ] and E[`eBB ], respectively.

Ephemeral Key Generation: A chooses mA, nA ∈ Z`eAA , not both divisible by `A, uni-

formly at random. Letting φA be the isogeny with domain E and kernel 〈mAPA + nAQA〉,
her ephemeral secret key is (mA, nA) and her ephemeral public value is

α = (EA = E/ 〈mAPA + nAQA〉 , φA(PB), φA(QB)).

Analogously, B chooses mB, nB ∈ Z`eBB , not both divisible by `B, uniformly at random.

Letting φB be the isogeny with domain E and kernel 〈mBPB + nBQB〉, his ephemeral

secret key is (mB, nB) and his ephemeral public value is

β = (EB = E/ 〈mBPB + nBQB〉 , φB(PA), φB(QA)).

Key Construction: A computes

Ka = j (EB/ 〈mAφB(PA) + nAφB(QA)〉) = (E/ 〈mAPA + nAQA,mBPB + nBQB〉) .

B computes

Kb = (EA/ 〈mBφA(PB) + nBφA(QB)〉) = (E/ 〈mBPB + nBQB,mAPA + nAQA〉) .

We have Ka = Kb.

It is clear that if the supersingular isogeny computational Diffie-Hellman problem is

intractable, then an eavesdropper cannot compute the derived key using the public infor-

mation exchanged in an instance of this protocol. SSCDH is conjectured to be infeasible
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for a quantum computer, and so SSIKE is a candidate for post-quantum unauthenticated

key establishment.

2.4 Signature Schemes

Definition 2.4 (Signature Scheme). A signature scheme is a triple (KeyGen, Sign,Verify),

where:

1. KeyGen is the key generation algorithm, which takes in a natural number λ and

outputs a key pair (sk, pk);

2. Sign is the (possibly randomized) signing algorithm, which takes in a message and

outputs a signature; and,

3. Verify is the verification algorithm, which takes in a message and signature and

outputs 1 if the signature is valid, and 0 otherwise.

When Sign is not a randomized algorithm we say that (KeyGen, Sign,Verify) is determin-

istic, and otherwise it is non-deterministic; when a signature scheme is non-deterministic,

if we wish to specify the signature on a message m signed with key sk and randomness r,

we write Signsk(m; r).

A signature scheme is correct if, whenever (sk, pk) is a valid private key/public key

pair, Verifypk(m, Signsk(m)) = 1 for all messages M , and if σ is not a valid signature for

m under private key sk, then Verifypk(m,σ) = 0.

2.4.1 Security of Signature Schemes

As with any type of cryptosystem, we must define what it means for a signature scheme

to be secure; naturally, there are many possible security definitions. We present the most

common classical and quantum definitions here; these will be sufficient for results in later

chapters.
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Definition 2.5 (Strong EUF-RMA Security). A signature scheme (KeyGen, Sign,Verify)

is strongly existentially unforgeable against a random message attack (strongly EUF-RMA

secure) if the advantage that any polynomial-time adversary has at winning the following

game is negligible:

1. The challenger C runs the key generation algorithm on input 1λ to obtain the key

pair (sk, pk), and publishes pk.

2. The adversary A sends an integer t to C.

3. C selects messages m1, . . . ,mt uniformly at random, and computes σi = Signsk(mi)

for 1 ≤ i ≤ t. C returns {(mi, σi)}ti=1.

4. A produces (m∗, σ∗). A wins the game if (m∗, σ∗) 6= (mi, σi) for 1 ≤ i ≤ t and

Verifypk(m∗, σ∗) = 1.

We say that a signature scheme is weakly EUF-RMA secure if it satisfies the require-

ments of Definition 2.5 with the additional requirement that, in step 4. of the game,

m∗ 6= mi for 1 ≤ i ≤ t.

Definition 2.6 (Strong EUF-CMA Security). A signature scheme (KeyGen, Sign,Verify)

is strongly existentially unforgeable against an adaptive chosen message attack (strongly

EUF-CMA secure) if the advantage that any polynomial-time adversary has at winning

the following game is negligible:

1. The challenger C runs the key generation algorithm on input 1λ to obtain the key

pair (sk, pk), and publishes pk.

2. For i = 1, 2, . . . , t:

a) The adversary A sends a message mi to C.

b) C returns σi = Signsk(mi).

3. A produces (m∗, σ∗). A wins the game if (m∗, σ∗) 6= (mi, σi) for 1 ≤ i ≤ t and

Verifypk(m∗, σ∗) = 1.

29



We say that a signature scheme is weakly EUF-CMA secure if it satisfies the require-

ments of Definition 2.6 with the additional requirement that, in step 3. of the game,

m∗ 6= mi for 1 ≤ i ≤ t.

In Definitions 2.5 and 2.6, part of the win condition for the adversary in the game

is that the adversary’s output message/signature pair must not have been provided by

the challenger. These definitions are reasonable for classical security definitions, but they

break down when we consider an adversary who is allowed to obtain signatures on quan-

tum superpositions of messages; this is because there is not a reasonable notion of which

messages the adversary has asked C to sign. This necessitates the following quantum-safe

security definition.

Definition 2.7 (Strong EUF-qCMA Security). A signature scheme (KeyGen, Sign,Verify)

is strongly existentially unforgeable against a quantum adaptive chosen message attack

(strongly EUF-qCMA secure) if the advantage that any polynomial-time adversary has

at winning the following game is negligible:

1. The challenger C runs the key generation algorithm on input 1λ to obtain the key

pair (sk, pk), and publishes pk.

2. For i = 1, 2, . . . , t:

a) The adversary A sends a register in superposition of messages and target qubits

|ψi〉 =
∑

m,y αm,y |m〉 |y〉.

b) C returns USignsk
|ψi〉 =

∑
m,y αm,y |m〉 |y + Signsk(m)〉

3. A produces (m∗1, σ
∗
1), (m∗2, σ

∗
2), . . . , (m∗t+1, σ

∗
t+1). A wins the game if the (m∗i , σ

∗
i ) are

distinct and Verifypk(m∗i , σ
∗
i ) = 1 for 1 ≤ i ≤ t+ 1.

We say that a signature scheme is weakly EUF-qCMA secure if it satisfies the require-

ments of Definition 2.7 with the additional requirement that, in step 3. of the game, the

messages mi are pairwise distinct.

The requirement that to win A must produce one more valid message/signature pair

than signing queries he makes is intuitively justified by the fact that the output of each

such query, when measured, will yield a valid message/signature pair, and so it is trivial

for A to produce t such pairs. The (t+ 1)th such pair is the forgery.
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2.4.2 Security of Signatures in Random Oracle Models

The security definitions presented in the previous section intentionally make no mention

of random oracles. For the purposes of this work we will always assume that a quantum

adversary has quantum access to any hash functions used in a protocol unless otherwise

specified. In the event that we do wish to specify the model in which the security prop-

erty holds, we modify the security property name appropriately; for quantumly-accessible

random oracles we append -QRO, and for only classically-accessible random oracles we

append -RO.

2.4.3 Examples of Signature Schemes

RSA Signatures

For the sake of demonstrating the concept, here we present arguably the simplest signature

scheme: RSA signatures [30, Section IV]. As might be expected from the name, the compu-

tational problem whose hardness underlines RSA signature is the RSA problem (Definition

1.25).

Definition 2.8 (RSA Signatures (Adapted from [30, Sections IV-VI])).

Global Parameters: A random oracle O.

Key Generation: On input 1λ choose two distinct primes p, q with blog2 pc = blog2 qc =

λ, and define n = pq. Choose e ∈ (Z\ϕ(n)Z)∗, and let d ≡ e−1 (mod ϕ(n)). The private

key is d. The public key is (n, e).

Signing: To sign a message m ∈ Z, compute σ = O(m)d (mod n). The signature is σ.

Verification: To verify a signature σ on a message m, compute σe (mod n). If the result

is O(m), the signature is valid; otherwise it is invalid.

RSA signatures are EUF-CMA-RO secure under the RSA assumption, but of course

they are not quantum-safe, since the RSA assumption does not hold against quantum

adversaries.
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Signatures from Supersingular Elliptic Curve Isogenies

Here we present a signature scheme due to Sun et al. [35] which is secure even when the

adversary can perform polynomially-bounded quantum computations, under the SSCDH

assumption. This signature scheme is what is known as a strong designated verifier (SDV)

signature scheme; it differs from a standard signature scheme in that, in addition to the

signer, the verifier must possess a private key/public key pair used for verification. When

the signer wants to sign a message, he chooses an intended recipient and uses their public

key (along with his own secret key) to sign the message; then only the intended recipient

can verify the signature. For the purposes of authentication in key establishment, this in

some sense limited form of signature is sufficient, and we will use it to construct a secure

protocol in Chapter 5.

Definition 2.9 (Sun SDV Signatures [35, Section III]).

Public parameter setup: On input 1λ, choose two distinct small primes `S and `V ,

integers eS and eV , and a small cofactor f such that p = `eSS `
eV
V f ± 1 is prime, eS log2 `S ≈

eV log2 `V , and blog2 pc = λ . Choose an elliptic curve E which is supersingular and defined

over K = GF (p2), and bases {PS, QS} and {PV , QV } for E[`eSS ] and E[`eVV ], respectively.

These are the global parameters.

Signing Key Generation: On input 1λ, choose two integers mS, nS ∈ Z/`eSS Z, not both

divisible by `S, uniformly at random. The private key is (mS, nS).

Set RS = mSPS + nSQS, and define φS to be the isogeny with kernel 〈RS〉. Set

ES = E/ 〈RS〉. The public key is (ES, φS(PV ), φS(QV )).

Verification Key Generation: On input 1λ, choose two integers mV , nV ∈ Z/`eVV Z, not

both divisible by `V , uniformly at random. The private key is (mV , nV ).

Set RV = mV PV + nVQV , and define φV to be the isogeny with kernel 〈RV 〉. Set

EV = E/ 〈RV 〉. The public key is (EV , φV (PS), φV (QS)).

Signing: To sign a message m with private signing key (mS, nS) and public verification

key (EV , φV (PS), φV (QS)), compute

ESV = EV / 〈mSφV (PS) + nSφV (QS)〉 ;
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the signature is then σ = H(m||j(ESV )).

Verification: To verify a signature σ on m with public signing key (ES, φS(PV ), φS(QV ))

and private verification key mV , nV , compute

EV S = ES/ 〈mV φS(PV ) + nV φS(QV )〉 ;

the signature is valid if σ = H(m||j(EV S)).

Theorem 2.1 (Correctness of Sun SDV Signatures). The scheme described in Definition

2.9 is correct.

Proof. Observe that

ESV = EV / 〈mSφV (PS) + nSφV (QS)〉
= (E/ 〈mV PV + nVQV 〉) / 〈φV (mSPS + nSQS)〉
= E/ 〈mV PV + nVQV ,mSPS + nSQS〉
= (E/ 〈mSPS + nSQS〉) / 〈φS(mV PV + nVQV )〉
= ES/ 〈mV φS(PV ) + nV φS(QV )〉 = EV S;

the result follows.

Theorem 2.2 (Security of Sun SDV Signatures; Derived from [35, Proposition IV.1]).

Under the SSCDH assumption, the signature scheme described in Definition 2.9 is strongly

EUF-CMA-RO secure against an adversary who can perform polynomially-bounded quan-

tum computations.

2.4.4 Secure Signatures in the Quantum Random Oracle Model

We would like to use a signature scheme for authentication in an authenticated key es-

tablishment protocol which is secure in a post-quantum model where the adversary can

make quantum queries to oracles which emulate classical parties, and to any random or-

acles. For this purpose, it is clear that we require a signature scheme which is, at the

very least, EUF-qCMA secure in the quantum random oracle model (EUF-qCMA-QRO
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secure). Unfortunately, the Sun strong designated verifier signature scheme has only been

proven to be strongly EUF-CMA-RO secure. In this section we describe a construction

which yields a strongly EUF-CMA-QRO secure signature scheme from a strongly or weakly

EUF-CMA-RO signature scheme, which solves part of this problem.

Theorem 2.3 (Construction of Strongly EUF-CMA-QRO Signatures [11, Theorem 4]). Let

(KeyGen, Sign,Verify) be a signature scheme which is EUF-CMA-RO against a quantum

adversary, and let H = (KeyGen(H), H, Sample, Invert) be a quantum-safe chameleon hash

function. Define a new signature scheme (KeyGen(Q), Sign(Q),Verify(Q)) in the following

way:

1. KeyGen(Q)(λ):

(a) Set (sk, pk) = KeyGen(λ)

(b) Set (sk(H), pk(H)) = KeyGen(H)(λ)

(c) Return (sk(Q) = (sk, sk(H)), pk(Q) = (pk, pk(H)))

2. Sign
(Q)

(sk,sk(H))
(m):

(a) Set r(H) = Sample(λ)

(b) Set σ = Signsk(r(H))

(c) Set M = O(m||σ), where O is a random oracle

(d) Set rI = Invert(sk(H), r(H),M)

(e) Return σ(Q) = (σ, rI)

3. Verify
(Q)

(pk,pk(H))
(m, (σ, rI)):

(a) Set M = O(m||σ)

(b) Set r(H) = H
(H)
pk (M, rI)

(c) Output Verifypk(r(H), σ)

The signature scheme (KeyGen(Q), Sign(Q),Verify(Q)) is correct; moreover, it is also

EUF-CMA-QRO secure.
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2.4.5 Generic Construction of EUF-qCMA Secure Signatures

In Section 4.5 we give a generic construction for a secure authenticated key establishment

protocol which uses an EUF-qCMA signature scheme as a subroutine; in order for this

to be useful, we of course need to have such a signature scheme. In this section we

present a construction due to Boneh and Zhandry [5] which yields an EUF-qCMA signature

scheme from a signature scheme which is EUF-CMA against an adversary who can perform

quantum computations, and quantumly-accessible random oracles.

Theorem 2.4 (Construction of EUF-qCMA Signatures [5, Construction 3.12]). Let S =

(KeyGen, Sign,Verify) be a signature scheme which is EUF-CMA against an adversary who

can perform quantum computations. Let Q be a set of pairwise independent functions, and

let H be a random oracle. Define S ′ = (KeyGen′, Sign′,Verify′) in the following way:

1. KeyGen′(1λ) = KeyGen(1λ).

2. To sign a message m with private key sk, choose Q ∈ Q and r ∈ {0, 1}k at random.

The signature is

Sign′sk(m) = (r, Signsk(H(m, r);Q(m)))

3. To verify a signature (r, σ) by a party with key pair (sk, pk) on a message m, we

compute

Verify′pk(m, (r, σ)) = Verifypk(H(m, r), σ).

The signature scheme S ′ is correct; moreover, if S is EUF-CMA-RO secure against an

adversary who can perform quantum computations, then S ′ is EUF-qCMA-RO secure, and

if S is EUF-CMA-QRO secure, then S ′ is EUF-qCMA-QRO secure.

Notice that the family Q of independent functions is only used to specify randomness

for input to the signing function, and so if the signature scheme is deterministic we can

simplify this construction by omitting Q. This observation is stated explicitly in the

following corollary.

Corollary 2.5. Let S = (KeyGen, Sign,Verify) be a deterministic signature scheme. Let

H be a random oracle. Define S ′ = (KeyGen′, Sign′,Verify′) in the following way:
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1. KeyGen′(1λ) = KeyGen(1λ).

2. To sign a message m with private key sk, choose r ∈ {0, 1}k at random. The signature

is

Sign′sk(m) = (r, Signsk(H(m, r)))

3. To verify a signature (r, σ) by a party with key pair (sk, pk) on a message m, we

compute

Verify′pk(m, (r, σ)) = Verifypk(H(m, r), σ).

The signature scheme S ′ is correct; moreover, if S is EUF-CMA-RO secure against an

adversary who can perform quantum computations, then S ′ is EUF-qCMA-RO secure,

and if S is EUF-CMA-QRO secure, then S ′ is EUF-qCMA-QRO secure.
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Chapter 3

Security of Authenticated Key

Establishment

In this chapter we present general notions of what a security model for authenticated key

establishment must do, and given examples of prominent security models. This will serve

to motivate the model and constructions in Chapter 4, and highlight the novelty of our

new security model.

3.1 Basic Format of a Security Model

We first fix some general terminology which is expounded upon in a security model. A

protocol is a set of procedures used to establish a secret key among two or more parties.

A session is a specific instance of an execution of a protocol. If a party P is establishing

a key in session Ψ, then the parties with whom it is (or at least believes it is) establishing

a key are peers to Ψ.

All communication among parties is routed through the adversary ; that is, if parties

wish to communicate, they send their messages to the adversary and indicate the intended

recipient. What exactly the adversary is allowed to do with these messages depends on

the goals of the model. For the purpose of modelling authenticated key establishment the

adversary should be able to modify messages arbitrarily, or even drop messages entirely;
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however, it is often useful to consider adversaries which are restricted to only delivering

messages which have been sent, and only to their intended recipient. These restricted ad-

versaries are eavesdroppers (rather than active adversaries) and so such a security model

models unauthenticated key establishment—as mentioned in Chapter 2, we can use unau-

thenticated key establishment protocols as building blocks for authenticated protocols.

A model must also specify what it means for a protocol to be secure. In the case of the

models presented here, security is defined in terms of a security game which it is infeasible

for an adversary to win with high probability (typically with non-negligible probability

or with non-negligible advantage). The game involves the adversary interacting with a

challenger in some way, and then being issued a computational challenge. If the adversary

successfully completes the challenge we say that the adversary wins the game.

Then a security model must define:

1. The capabilities of honest parties;

2. The capabilities of the adversary;

3. How the adversary can interact with parties; and,

4. The computational task used to define security;

these are the aspects of the security models that we focus on in this chapter.

3.2 The Bellare-Rogaway Model

Bellare and Rogaway were the first to formalize the notion of a security model for au-

thenticated key establishment [2], following in the footsteps of Goldwasser and Micali [13]

who formalized the notion of provable security of encryption schemes. In principle Bellare

and Rogaway’s model can be used to model protocols that achieve goals other than key

establishment, such as mutual authentication. We present the model in full generality,

and mention specifically how authenticated key establishment fits into the framework as

appropriate.
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3.2.1 Protocols

We begin with the formal definition of a general protocol, and then explain how an au-

thenticated key establishment protocol can be modelled in this way.

Definition 3.1 (Protocol). A protocol Π is a function which takes as input

1. 1λ: the security parameter;

2. i ∈ I ⊆ {0, 1}∗: the identity of the sender;

3. j ∈ I ⊆ {0, 1}∗: the identity of the intended partner;

4. a ∈ {0, 1}∗: the secret information of the sender;

5. κ ∈ {0, 1}∗: a record of the previous messages in this invocation of the protocol; and

6. r ∈ {0, 1}∞: the random input for the sender

and which outputs (m, δ, α) = Π(1λ, i, j, a, κ, r), where

1. m ∈ {0, 1}∗ is the message to be sent;

2. δ ∈ {ε, 0, 1} is the decision made; and,

3. α ∈ {0, 1}∗ is the private output.

The intuition for Definition 3.1 is the following. Each party has an associated identifi-

cation string i ∈ I; the adversary A is not a party and has no such identifier. Parties can

have associated private information a—the “long-lived key”—which can be used during

key establishment; generally these keys will be established by a key generation algorithm

associated to a protocol, before the protocol is to be run. Once the security parameter,

identities, and secret keys are fixed, the output of the protocol depends only on the previous

messages received in a given session and potentially some random coin tosses.

Given these parameters, the output of a protocol includes an outgoing message (poten-

tially empty) to the party identified by j, a decision as to whether to accept the last received

messages, and potentially some private output. For key establishment, the private output

is the computed key, and the decisions indicates whether all messages received at this point

in the protocol have been accepted and hence whether a key should be constructed.
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3.2.2 Adversarial Model

The adversary A is a classical Turing machine with access to a stream of random bits and

oracles Πs
i,j which model parties attempting to communicate; in particular, Πs

i,j models

party Pi attempting to communicate with party Pj in session s, for any admissible i, j, s.

The adversary activates Πs
i,j(x) to obtain the message (m, δ) that Pi would send to Pj in

session s upon receiving message x. We let κsi,j denote the concatenation of all messages

received so far by Πs
i,j; setting

Π(1λ, i, j, a, κsi,j||x, rsi,j) = (ms
i,j(x), δsi,j(x), αsi,j(x)),

when A queries Πs
i,j on input x, the oracle returns

Πs
i,j(x) = (ms

i,j(x), δsi,j(x))

and we update κsi,j = κsi,j||x.

For the purposes of authenticated key establishment we give the adversary the ability

to reveal a session secret αsi,j for an oracle Πs
i,j. If the adversary has issued a reveal query

against an oracle that oracle is said to be open and is otherwise unopened. An oracle is

called fresh if it is unopened, has accepted, and has not engaged in a matching conversation

(defined in section 3.2.3) with an opened oracle.

We say that an adversary is benign if its action is restricted to choosing pairs (Πs
i,j,Π

t
j,i)

of oracles and then faithfully relaying messages between them, in order. The notion of a

benign adversary will appear in the security definition for protocols.

3.2.3 Security Definition

The security definition for the Bellare-Rogaway model relies primarily on the notion of a

matching conversation. Informally, the conversation of an oracle is the ordered concate-

nation of all messages sent and received by the oracle in the run of a protocol; oracles

have matching conversations if the incoming messages of one’s conversation are the out-

going messages of the other (in order), and vice versa. Given this definition of matching

conversation, we can define security in terms of a security game.
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To begin, the adversary is provided with the necessary oracles for the game. The adver-

sary is allowed to interact with the oracles as usual and perform (classical, polynomially-

bounded) computations. The adversary must eventually choose a fresh oracle Πs
i,j and issue

a test query. Upon receiving a test query, b ∈ {0, 1} is chosen uniformly at random and,

if b = 0 the correct secret key αsi,j is returned while otherwise a random string is chosen

according to Sλ, where {Sλ}λ∈N is the ensemble of distributions of session keys determined

by the protocol Π, indexed by the security parameter. After this query the adversary can

no longer interact with the oracles and must output a guess b′ to b; the adversary wins if

b′ = b. This security game is one component of the following security definition.

Definition 3.2 (Secure Key Exchange Protocol). A key exchange protocol Π with cor-

responding oracles {Πs
i,j} i,j∈I

s∈{0,1}∗
is secure in the Bellare-Rogaway model if the following

hold.

1. If A is a benign adversary who completes a session between Πs
i,j and Πt

j,i, then Πs
i,j

and Πt
j,i both accept; moreover αsi,j = αtj,i and this value is distributed over the space

of possible keys according to Sλ,

2. If two oracles have matching conversations, then they both accept and output the

same secret information α.

3. The probability of an oracle accepting when there is no adversary with a matching

conversation is negligibly (in the security parameter) greater than 1
2
.

4. The probability of the adversary correctly guessing the bit in a test query against a

fresh oracle is negligible in the security parameter.

Notice that this is an indistinguishability definition; that is, the adversary doesn’t need

to be able to construct a session key, but simply determine whether a revealed string is the

correct key for a session or not. This was in line with the philosophy of provable security

at the time when the model was proposed, and has perpetuated until the present; each of

the security models presented in this chapter will adopt this philosophy, as will the new

model we present in Chapter 4.
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3.3 The Canetti-Krawczyk Model

The Canetti-Krawczyk model [7] was designed with the philosophy that the most fun-

damental application of authenticated key establishment is to enable the construction of

secret keys for symmetric key encryption schemes for implementing secure communications

channels. To that end, the security model and definition used is such that if two parties

use a secure protocol to establish a session key and then use that key for a sufficiently

secure symmetric key encryption scheme, then the parties can be assured of the authen-

ticity and secrecy of the messages sent and received using that key, in contrast with the

Bellare-Rogaway model and related models. Moreover, while [2] focuses on the shared-key

scenario (when all parties share the same LL-key), in [7] the authors instead primarily

consider the public-key setting, where each party has their own private key/public key pair

to use for authentication.

3.3.1 Parties, Protocols, and Sessions

A party P is a polynomial-time machine with an associated secret key/public key pair

(sk, pk); for the purposes of the security experiment there are a polynomial number (chosen

by the adversary) of parties that can participate in key establishment. A protocol is a

specification of a set of subroutines used to establish keys; in particular these subroutines

specify procedures for responding to messages and other requests.

Parties can run arbitrarily many instances of the protocol; each such instance is called

a session. Each session is identified by a string s; session identifiers may be repeated, but

not twice at the same party. Sessions are initiated when the adversary issues a command

(P ,P ′, s, role) to party P ; in this case the peer is P ′ and session identifier is s. Parties

store session-specific information, such as the party’s role (initiator or responder), peer

(i.e., the party with whom a key is being established) ephemeral information and messages

sent and received in the session. Pairs of sessions initiated by commands (Pi,Pj, s, role)

and (Pj,Pi, s, role′) are called matching sessions.

After enough messages have been sent and received, a session terminates according to

the specifications of the protocol. At the time of session termination, either a session key

is computed or special output is produced indicating that the session is invalid; in either
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case the session’s owner records this result and deletes all other memory associated with

that session. We also allow for session keys to expire; when the adversary issues such a

command to a party, that party deletes the session key associated to the indicated session.

3.3.2 Adversarial Model

As in the Bellare-Rogaway model, the adversary A is a polynomial-time machine through

which all messages between parties are routed. The adversary interacts with parties by

delivering messages to them and issuing action requests (such as to begin a session).

To model secret information leakage the adversary can also issue SessionStateReveal,

SessionKeyReveal and Corrupt queries. As the names suggest, SessionStateReveal(s)

reveals all state-specific information a session’s owner has saved for a given session s, a

SessionKeyReveal(s) query reveals the session key (if the party has that key in memory)

for session s and Corrupt(P) causes the party P to become adversarially-controlled and

all that party’s memory is revealed to the adversary.

3.3.3 Security Definition

A session owned by party Pi is said to be locally exposed if its state or key have been

revealed by the adversary before it is expired, or if Pi is corrupted before it is expired. A

session is exposed if it or its matching session is locally exposed and is otherwise fresh. For

the security game, the adversary is allowed a single Test query; when this query is issued

on a fresh, complete, unexpired session s, the challenger will choose a bit b uniformly at

random. If b = 0 the true session key will be revealed, while if b = 1 and random key will

be revealed. At this point, the adversary continues to interact as usual with the parties,

except that he cannot expose the test session. Eventually the adversary gives a guess b′,

and wins the security game if b′ = b. This prompts the security definition:

Definition 3.3 (Secure Key Exchange Protocol). A protocol Π is secure in the Canetti-

Krawczyk model if the following hold:

1. If two parties complete matching sessions they output the same session key; and,
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2. The advantage any adversary has in guessing the bit used in a fresh, complete,

unexpired test session is a negligible function of the security parameter.

3.4 A Model for Quantum Cryptography

Once quantum computers become a reality, it will be possible (in principle, at least) to use

them to establish secure session keys. In particular, parties may use quantum computers to

compute values they otherwise couldn’t in polynomial time; or, more interestingly, parties

may exchange qubits as part of a protocol and use these qubits in key establishment. In

particular, in 1984, Bennett and Brassard [3] demonstrated a way to use quantum key

distribution to establish keys in an information-theoretically secure way in the presence

of an eavesdropper. In this section we present a security model due to Mosca, Stebila,

and Ustaoğlu [26] which was designed to formally analyze the security properties of that

protocol, known as BB84, in an active adversarial model.

The model presented here is an extension of the extended Canetti-Krawczyk model [23],

which extends the Canetti-Kracwczyk model by giving the adversary new information-

reveal queries which do not necessarily immediately expose an associated session—this

means that the adversary is more powerful and can launch new types of attacks. We do

not cover these new queries here, because they are not the main technical contribution of

the security model in [26].

3.4.1 Parties, Protocols, and Sessions

In this model, a party P is a pair of polynomial-time machines (CP , QP), where CP is

classical, with source of random bits, and QP is quantum. The classical machine can

activate the quantum machine using a special activation request and can likewise receive

the results of quantum measurements. Both machines can have messages delivered to

them by the adversary. We assume that the link between the machines is noiseless and

perfectly secure; that is, the adversary cannot tamper with measurement values being

passed from QP to CP , and cannot interfere with activation requests sent from CP to QP .

For authentication parties may have an associated secret key/public key pair.
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As usual, a protocol is a collection of subroutines which output a shared secret key

among parties. In this model, some subroutines of the protocol may be quantum, and the

key is eventually returned by the classical machine. As well, a session is an execution of

a protocol at a party. Parties store session-specific information called the session state,

including a unique session identifier while the session is active, and when the session com-

pletes the and the classical machine outputs either ⊥ (a value indicating failure) or a tuple

(κ, id, ~v, ~u) where:

1. κ is the session key;

2. id is the party identifier of the peer;

3. ~v = (~v1, . . . , ~vt) is a vector of vectors of public values which bind the key to the public

information used in the session; and,

4. ~u = (~u1, . . . , ~ut) is a vector of vectors of public values used to authenticate the peer

identified by id in the session.

Intuitively, we think of ~vi as the session-specific public values provided by the jth party

in the session (the public ephemeral value). The session key is, of course, kept secret.

Naturally, a protocol is said to be correct if whenever it is executed according to its

specifications and when all messages are relayed faithfully, the parties participating in

the protocol output the same key κ.

Aside from session keys, parties may store in memory value pairs of the form (x,X),

where x is a private value associated to a public value X; for instance, if parties are

participating in Diffie-Hellman key establishment, such a value pair might be (a, ga). This

value pair formalism is used to streamline the definition of special information-reveal queries

the adversary can perform.

3.4.2 Adversarial Model and the Security Definition

Like a party, the adversary A is a pair of machines (CA, QA) where CA is classical and

QA is quantum. The time and memory of these machines may be bounded; typically we

consider polynomially-bounded computation time and storage. The adversary performs
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computations and can interact with all the parties; in particular all communication (clas-

sical and quantum) is routed through the adversary. The adversary can also establish

dishonest parties and corrupt honest parties; parties cannot, a priori, distinguish between

honest and dishonest parties.

The information-reveal queries of the Bellare-Rogaway and Canetti-Krawczyk models

have been streamlined into a single Partner(X) query; when this query is issued to a party,

if that party has a value pair (x,X) in memory then the corresponding private value x is

returned; in the special case of Partner(Ψ) for a session identifier Ψ, the session key (if

it exists) is revealed. If the adversary has issued the query Partner(X) to a party that

has in its memory a value pair (x,X) then the adversary is said to be partner to X. The

adversary is never partner to X until it issues Partner(X).

This leads to the definition of a fresh session.

Definition 3.4 (Fresh Session). A session Ψ owned by an honest party P is said to be

fresh if:

1. The adversary has not revealed the session key for any session with the same public

output vector as Ψ (including Ψ itself);

2. For each ~vi there is some entry to which A is not partner; and,

3. For each ~ui there was, at the time of session completion, some entry to which A was

not partner.

Intuitively, this says that for a fresh session, the adversary must not have revealed

all secret authentication information for parties participating in the protocol before the

session was complete, and must never reveal all session-specific information for a party

participating in the session.

As in the Canetti-Krawczyk model, the adversary must eventually issue a Test query,

specifying a session. If the session does not yet have a session key, the returned value

is ⊥ and the adversary loses. Otherwise the challenger chooses b ∈ {0, 1} uniformly at

random and, if b = 0, reveals the session key and if b = 1 reveals a randomly-chosen key.

The adversary can continue to interact with the parties in any way provided that the test
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session remains fresh, and eventually returns a bit b′. The adversary wins the game if

b′ = b. A protocol is secure if no adversary satisfying specified constraints on computation

time and memory can win this game with probability non-negligibly greater than 1
2
.
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Chapter 4

A Security Model for Post-Quantum

Authenticated Key Establishment

In this chapter we discuss our new security model for authenticated key establishment.

The primary difference between this model and the ones presented in Chapter 3 is that the

security definition for this model allows quantum interactions between the adversary and

quantum emulators for strictly classical parties, in much the same way that the security

game for EUF-qCMA security of signature schemes allows for quantum queries to a signing

oracle in order to create a stronger security definition. We then present a generic construc-

tion of a secure protocol using a signature scheme and a key establishment protocol which

is secure in a restricted model with a passive adversary.

4.1 Motivation

Whenever a security model is proposed, it is important to motivate the specific choices

made by the model; in particular, we would like to justify choices by considering their

implications in the context of real-world communications security and in the broader con-

text of theoretical cryptography. Most aspects of this model—parties, protocols, and the

concept of sessions, for instance—are standard and need no further justification; the most

fundamental change is allowing quantum queries to ordinarily classical procedures. In this
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section we make a case for this decision.

Perhaps the most natural justification of this decision is that protocols which are se-

cure in this model when run on classical machines remain secure when run on a quantum

computer instead. The use of this is clear: a quantum cryptographic routine could, in

principle, be simplified by having a subroutine that requires secure classical communica-

tions; for instance, in order to establish which bits are agreed-upon in the BB84 protocol

[3], parties must communicate classically. If a classical authenticated key establishment

protocol is known to be secure even when the adversary is allowed to pass quantum su-

perpositions of messages between parties, then parties to the larger cryptographic routine

can simply simulate classical computers running the protocol and still be assured of the

desired security properties.

In the context of theoretical cryptography, it is sometimes useful to have security defi-

nitions which are stronger than might be strictly necessary, so that protocols can be used

as parts of more complicated protocols with different security definitions, while still allow-

ing the security proofs to go smoothly. In this case, if a cryptographic protocol requires

an authenticated key establishment protocol as a subroutine, and its security definition

requires that the protocol must remain secure even when, for instance, there is an active

quantum adversary, then a key establishment protocol which is only known to be secure

in the Canetti-Krawczyk model with a quantum adversary may not be sufficient for the

purposes of the security proof. For this reason our new security model may be a useful

theoretical tool for constructing generic subroutines for more complicated cryptographic

protocols.

4.2 Definitions

4.2.1 Parties, Protocols, and Sessions

Definition 4.1 (Party). A party P is an interactive classical Turing machine with access

to a source of a random bits.

Associated to each party P is a (possibly empty) private key/public key pair (sk, pk).

For the purposes of the model, it is assumed that each party has a genuine copy of each
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other party’s public key—this is what will allow authentication. Moreover, to each party

is associated a unique identifier id—it is assumed that each party has a genuine copy of

each other party’s identifier.

Definition 4.2 (Protocol). A protocol Π is a specification of a set of subroutines, to be

run by some number of parties, for the purpose of establishing a session key.

A protocol Π is said to be correct if, when Π is executed according to its specifications

and when all messages are relayed faithfully (i.e., without changes to their content or

ordering), all parties involved compute the same key.

As in the security models presented in Chapter 3, protocols are message-driven; that

is, upon receiving a message, a party computes the response message and sends it to the

intended recipient. The party does no further computations and sends no more messages

until it is activated again by an incoming message.

Definition 4.3 (Session). A session Ψ is an instantiation of a protocol at a given party.

Associated to each session is a unique6 session identifier Ψ, chosen by the session’s

owner. If a party P owns a session Ψ, the parties with whom P believes they are attempting

to establish a key are called peers to P in session Ψ, and the peers’ associated sessions (if

they exist) are called matching sessions.

If a party P with identifier id who owns a given session Ψ, with matching session Ψ′

and peer P ′ with identifier id′ has received messages m1, . . . ,mk−1 in this session, then we

denote by

P(Ψ,Ψ′, id, id′; pk, pk′, sk;m1, . . . ,mk; rΨ)

the message that P sends given that the next message it receives in this session is mk, and

it uses randomness rΨ for this session. For brevity, we abbreviate this expression as P(mk)

if the other inputs are clear from context.

6Since parties need not consult one another, there is, in principle, the possibility that two parties may
choose the same session identifier for some sessions. This possibility can be eliminated by, for instance,
requiring that the session identifier contain the party’s identity.
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4.2.2 Invalid Messages

In a classical key establishment security model, it is typical to have a mechanism by which

a party can prematurely end a session in the event that it receives an “invalid” message;

what exactly constitutes an invalid message is defined by a given protocol, but typically an

invalid message is one which either does not make sense in the context of the protocol or

which fails to validate under the public key of the party believed to have sent the message.

If we are to allow the adversary to deliver quantum superpositions of messages, however,

it does not make sense to consider such termination for two reasons:

1. The party who receives the superposition of messages cannot simply read off the de-

livered messages, and thus cannot easily tell whether or not to terminate the session.

Measuring the state would collapse it and defeat the purpose of considering quantum

queries entirely.

2. Even if the party could read off the messages in the superposition, it is possible that

some messages in the superposition are valid while some are invalid. It is not clear

what should be done in this scenario.7

For this reason we introduce a special failure character ⊥ to be used whenever a session

would be terminated. We define P(Ψ,Ψ′, id, id′; pk, pk′, sk;m1, . . . ,mk; rΨ) =⊥ whenever

mk is an invalid message, and we further define all further messages in a session after

a response has been ⊥ to be ⊥. This formalism essentially allows a session to be in a

superposition of terminated and active.

4.3 Party and Adversarial Capabilities

Aside from classical computations, parties can issue a special Send(id,m) command; this

requests that the adversary deliver message m to the party identified by the identifier id.

Parties may store private/public value pairs (k,K) in memory, associated to sessions. In

7One might argue that a superposition of messages should be declared invalid if there is any invalid
message in the superposition with non-zero amplitude. This idea may appear natural, but it is not easily
implemented (see point 1.) and results in a weaker security definition than we propose.
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particular, for a key establishment session Ψ a party may draw an ephemeral secret key

skΨ and derive a corresponding ephemeral public value pkΨ.

In order to make protocols meaningfully quantum-resistant, for the purposes of the

security experiment the challenger will provide a quantum messaging oracle OP for each

party P , defined inductively as follows. Before OP receives any messages in session Ψ with

matching session Ψ′ and peer P ′ with identifier id′, we define

OP(Ψ) |m1〉 |y〉 = |m1〉 |y ⊕ P(Ψ,Ψ′, id, id′; pk, pk′, sk;m1; rΨ)〉

for all m1 ∈ M; notice that the session Ψ considered by OP must be given as classical

input. OP then holds onto the first register, and returns the second. After receiving k − 1

messages, OP will be holding onto k−1 registers; when it is queried again, we can consider

its input as the first k + 1 registers of some global state

|Γ〉 =
∑

αm1,...,mk−1,mk,y |m1〉 · · · |mk−1〉︸ ︷︷ ︸
Held by Challenger

Provided by A︷ ︸︸ ︷
|mk〉 |y〉

∣∣µm1,...,mk−1,mk,y

〉︸ ︷︷ ︸
Remaining registers

.

Then its action is defined by

OP(Ψ) |m1〉 · · · |mk−1〉 |mk〉 |y〉 = |m1〉 · · · |mk−1〉 |mk〉 |y ⊕ P(mk)〉 .

If P does not own a given session Ψ̂, we simply define OP(Ψ̂) |m〉 |y〉 = |m〉 |y⊕ ⊥〉. For

simplicity, for the purposes of the security experiment, the adversary interacts only with

these quantum messaging oracles.

In addition to standard quantum computations, the adversary interacts with the quan-

tum messaging oracles by delivering (quantum superpositions of) messages to them. The

adversary may also issue the following:

1. RevealEphemeralKey(id,Ψ): If the party identified by id owns a session Ψ, the

challenger reveals any ephemeral secret key8 associated to the session and party.

8In this context, “ephemeral secret key” refers to session-specific information derived from the random
input; in particular, it does not depend on incoming messages or any other quantities. In this way, the
result of this query is strictly classical. This can be done without loss of generality.
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2. RevealPrivateKey(id): Requests the party identified by id to provide their private

key.

3. Corrupt(id): When this command is issued, the party identified by the identifier id

becomes adversarially-controlled; the adversary learns all classical information known

by the party, is given all quantum memory associated to the party, and chooses all

future actions it performs.

As well, the adversary may issue the following quantum query: RevealSessionKey(id,Ψ),

defined in the following way. If K(Ψ,Ψ′, id, id′; pk, pk′, sk;m1, . . . ,mk; rΨ) is the key that

the party identified by id would compute in session Ψ with peer identifier id′ and matching

session Ψ′, and it has so far received messages m1, . . . ,mk, then if the global state is

|Γ〉 =
∑

αm1,...,mk,y |m1〉 · · · |mk〉︸ ︷︷ ︸
Held by Challenger

Provided by A︷︸︸︷
|y〉 |µm1,...,mk,y〉︸ ︷︷ ︸

Remaining registers

,

the result of this query is defined by

|m1〉 · · · |mk〉 |y〉 7→ |m1〉 · · · |mk〉 |y ⊕K(Ψ,Ψ′, id, id′; pk, pk′, sk;m1, . . . ,mk; rΨ)〉 .

As a result of this query OP returns the first k + 1 registers of the global state (that is, it

returns the target register provided by the adversary, and the received message registers it

was holding).

4.4 The Security Experiment

A session Ψ owned by party P with peer P ′ and partner session Ψ′ is said to be “clean” if

all of the following are true:

1. At the time of session completion, neither P nor P ′ was adversarially-controlled.

2. At the time of session completion, A had not issued RequestPrivateKey(id) nor

RequestPrivateKey(id′).
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3. A has not revealed the ephemeral secret key for Ψ or Ψ′.

4. A has not issued RevealSessionKey(id,Ψ) nor RevealSessionKey(id′,Ψ′).

The security experiment is the following: the adversary issues a Test(id,Ψ) query on

a clean session Ψ owned by the party with identifier id, defined in the following way. The

adversary provides a target register |y〉, and the challenger selects b ∈ {0, 1} uniformly at

random. If b = 1, Test(id,Ψ) acts like a RevealSessionKey query; if b = 0, the result is

defined by

|m1〉 · · · |mk〉 |y〉 7→ |m1〉 · · · |mk〉 |y ⊕R(m1, . . .mk)〉

where for each tuple of messages, R(m1,m2, . . . ,mk) is a random string in K with the stip-

ulation that if K(Ψ,Ψ′, id, id′; pk, pk′, sk;m1, . . . ,mk; rΨ) =⊥, then R(m1, . . . ,mk) =⊥.

In any case, all k + 1 of these registers is returned. We say that the key establishment

protocol Π is secure if for any polynomial time adversary A, the probability that A can

correctly guess the value of b is at most negligibly greater than 1
2
.

4.5 Generic Constructions for Secure Protocols using

Signature Schemes

In this section we discuss how to use a signature scheme to provide authentication to an

unauthenticated key exchange protocol. The idea is simple: if each party simply signs

every message that they send along with their identifier, the identifier of the intended

recipient, the session identifier and peer session identifier (if known), then any protocol

which is secure when messages are delivered faithfully becomes a protocol which is secure

even with an active adversary. More precisely, we prove the following theorem.

Theorem 4.1. Let S = (KeyGen, Sign,Verify) be a strongly EUF-qCMA secure signature

scheme, and let Π be a two-round key establishment protocol which is secure when the

adversary A in the security game is required to deliver all messages faithfully. Consider

the protocol Π′ with the following properties:

1. Each party P ′k has a key pair (skk, pkk) for S and, moreover, each party knows each

other party’s public key.
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2. Whenever an initiating party P ′I would send a message m, it instead sends the triple

(m,Ψ(I), σ), where

σ = SignskI
(m, idI , idR,Ψ

(I))

where idR is the identifier of the intended recipient, and Ψ(I) is the session in which

the message is being sent.

3. Whenever a responding party P ′R would respond to a message (m,Ψ(I), σ) from an

initiating party P ′I with a message m′, it computes b = VerifypkI
(m, idI , idR,Ψ

(I), σ).

If b = 0, P ′R responds with (⊥,⊥,⊥); otherwise, P ′R computes

σ′ = SignskR
(m′, idI , idR,Ψ

(I),Ψ(R))

and responds with (m′,Ψ(R), σ′).

4. Whenever a party Pk would compute a session key for a session Ψ(k) with partner

P` and partner session Ψ(`), it determines whether the signature in the message it

received was valid; if not it outputs session key ⊥. If the signature is valid, it outputs

the session key as usual.

The protocol Π′ is secure.

To prove Theorem 4.1, we will first show that no adversary can construct messages

for which the probability amplitude of correctly-signed messages that were not sent in

a clean session is non-negligible by using such an adversary as a signature forger in the

strongly EUF-qCMA game. Then, given that the probability amplitude of a valid unsent

message is negligible, we show that any adversary that distinguishes a superposition of

session keys from a superposition of random strings breaks the security of the underlying

unauthenticated key establishment protocol, contradicting the assumptions of the theorem,

and thus establishing the security of this new protocol.

For the first part of the argument, we must first show how, given an instance (pk) of

the strongly EUF-qCMA game, we can emulate a quantum messaging oracle OPk for a

party Pk with public key pk for S.

For an unauthenticated key exchange protocol Π, let the parties be denoted by Pk for

some values of k, and for each such party let P ′k denote the corresponding party for protocol
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Π′ defined as in Theorem 4.1. Notice that

P ′k(m,σ) =

{
(Pk(m), SignskPk

(Pk(m)) if VerifypkP′
(m,σ) = 1

(⊥,⊥) otherwise
.

Then, to emulate the quantum messaging oracle, first write P(m) to an auxiliary register

to obtain ∑
m,σ,y

αm,σ |m〉 |σ〉 |P(m)〉 |y〉 .

Use the strongly EUF-qCMA signing oracle on the third register to obtain∑
m,σ,y

αm,σ |m〉 |σ〉 |P(m)〉 |Signsk(P(m))〉 |y〉 .

Then apply UVerify, defined by

UVerify : |m〉 |σ〉 |m′〉 |σ′〉 |y〉 |z〉 7→

{
|m〉 |σ〉 |m′〉 |σ′〉 |y ⊕m′〉 |z ⊕ σ′〉 if Verify(m,σ) = 1

|m〉 |σ〉 |m′〉 |σ′〉 |y⊕ ⊥〉 |z⊕ ⊥〉 otherwise

to obtain ∑
m,σ,y

αm,σ |m〉 |σ〉 |P(m)〉 |Signsk(P(m))〉 |y ⊕ P(m,σ)〉 ;

the last register is the one we give to A. Note in particular that we are holding onto

the registers that contain valid message/signature pairs; in fact, we hold one such pair of

registers for each query we make to the signing oracle. It follows that if we can persuade A
to send us a pair of registers which, when measured, yield a valid message-signature pair

different from those that we will obtain by measuring the registers we already hold, then

with non-negligible probability we can win the strongly EUF-qCMA game.

Knowing that we can use the quantum signing oracle for the strongly EUF-qCMA

game to emulate a quantum messaging oracle for a party, we show that the security of

the signature scheme restricts the class of messages that an adversary can construct. The

results are presented in the following technical lemmas.

We first demonstrate two restrictions that we can place on the behaviour of A without

loss of generality.
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Lemma 4.2. Suppose there is an adversary A who wins the security game for Π′ with

advantage Adv who delivers two or more messages to a single party in a given session.

Then there is an adversary A′ who wins the security game for Π′ with the same advantage

who never delivers two or more messages to a single party in a given session.

Proof. The response to any message delivered to a party in a given session beyond the first

is (⊥,⊥); this is because Π is a two-round key establishment protocol and so any message

delivered beyond the first is invalid. Let A′ be defined as A is, except that whenever A′

would deliver the second message to a party in a given session, it instead simply writes

(⊥,⊥) to its target register. It is clear that A′ wins the security game with the same

probability as A.

Lemma 4.3. Suppose there is an adversary A who wins the security game for Π′ with

advantage Adv, and who at some point sends the last register of the global state

|Γ〉 =
∑
~µ,m,σ

α~µ,m,σ |~µ〉 |m,σ〉

to a responding party PR in session Ψ′, who believes they are participating in a session Ψ

with initiating party PI , such that ∑
VerifyskI

(m,σ)=1

∑
~µ

|α~µ,m,σ|2

is negligible. Then there is an adversary A′ who wins the security game with advantage

Adv′ which differs only negligibly from Adv, such that A′ never sends a register in such a

state.

Proof. Let A be such an adversary. First we show that Ψ′ cannot possibly be the session

on which A will choose to be tested. Suppose to the contrary that Ψ′ is the test session.

The global state after the Test query will be

|Γ〉 =
∑

VerifyskI
(m,σ)=0

∑
~µ

α~µ,m,σ |~µ〉 |m,σ〉 |⊥〉+
∑

VerifyskI
(m,σ)=1

∑
~µ

α~µ,m,σ |~µ〉 |m,σ〉 |κb(m)〉
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where κb(m) is either a correct key for session Ψ′ on incoming message m, or a random

string; in particular, in either case is it not ⊥.

Consider the state

|Γ′〉 =
∑

VerifyskI
(m,σ)=0

∑
~µ

α~µ,m,σ |~µ〉 |m,σ〉 |⊥〉+
∑

VerifyskI
(m,σ)=1

∑
~µ

α~µ,m,σ |~µ〉 |m,σ〉 |r(m)〉

for randomly chosen strings r(m). In particular, observe that the ensembles D = {Dλ,r}
and D′ = {Dλ,r} of measurement outcomes of |Γ〉 and |Γ′〉 (parameterized by the secu-

rity parameter and random input) are computationally indistinguishable by the previous

lemma, since if they were not, we could distinguish |Γ〉 from |Γ′〉 with non-negligible ad-

vantage. In particular, in this case this means that if A were instead given |Γ′〉, and then

performed his measurement in order to guess the value b, the result would, except with

negligible probability, be indistinguishable from the result of measuring |Γ〉, regardless of

the value of b. Since |Γ′〉 carries no information about b, A can’t possibly guess b by

measuring |Γ′〉 with probability different from 1
2
. Thus when measuring |Γ〉 and guessing,

A guesses correctly with probability at most negligibly greater than 1
2
, contradicting our

assumption. Hence Ψ′ cannot be the test session.

By a similar argument, A can construct a register that is indistinguishable from the

response PR would give on this input register. Hence A′ proceeds exactly as A would,

except that whenever he would send a register as described in the statement of the lemma,

he instead constructs an indistinguishable register.

SinceA deals with at most polynomially-many registers, we can make as many substitu-

tions of this kind as required and the probability that the resultant state is distinguishable

from the correct state is negligible; hence, A′, defined in this way, wins the security game

with advantage at most negligibly different from Adv, as required.

Hence we can assume without loss of generality that our adversary A never delivers

more than one message in a session and never delivers a superposition of messages for

which the total probability amplitude of the valid content is negligible. This will allow

us to use an adversary A who delivers a superposition of messages in a session for which
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the amplitude of a valid, but unsent, message is non-negligible as a forger for a signature

scheme; this tells us then that the probability of the adversary delivering such a message

is negligible.

Lemma 4.4. Let A be an adversary who wins the security game with non-negligible

advantage. Let

|Γ〉 =
∑

~µ,mI ,σI

α~µ,mI ,σI |~µ〉 |mI , σI〉

be the global state after the last register is delivered by A to PR in a clean session. Further,

let (m∗, σ∗) be the message and signature that PI would send in this session. Let

F = {(mI , σI) : VerifypkI
(mI , σI) = 1 and (mI , σI) 6= (m∗I , σ

∗
I )}

be the set of potential “forgeries.” If (KeyGen, Sign,Verify) is strongly EUF-qCMA, then

except with negligible probability, the quantity Φ, defined by

Φ ≡
∑

~µ,(mI ,σI)∈F

|α~µ,mI ,σI |
2

is negligible.

Proof. We show how to forge a signature against (KeyGen, Sign,Verify) in the strongly

EUF-qCMA game if Φ is non-negligible.

Suppose we are given an instance (pk) of the EUF-qCMA game. We will run A es-

sentially as normal, by establishing public key/private key pairs for as many parties as

A requires; for one party Pi∗ chosen at random, however, we will set their private key as

pk (and the underlying secret key will remain unknown to us). With probability at least
1

p(λ)
, where p(λ) is a bound on the number of parties A requires (and which is at most

polynomial in λ), we have selected the initiator of this clean session. In particular this

means that, at least until the session is over, A will not issue RequestPrivateKey(idi∗),

and so we will not have to produce it. Whenever a party needs to sign a message we use

their private key, unless that party is Pi∗ , in which case we simply use the signing oracle

from the strongly EUF-qCMA game, as described above. Notice that by our assumption

that A never delivers two or more messages to a party in the same session, each time we
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query the signing oracle we are querying it for a different session; since the session identifier

is included in the signed message, this means that, in particular, if we measure the results

of our queries to the signing oracle we will never obtain the same message/signature pairs.

Moreover, because of the construction we use to model the party from the signing oracle,

each use of the signing oracle results in a register which will, with probability 1, yield a

valid message/signature pair upon measurement. In particular, this means that if A ever

sends us a superposition of messages for which the probability amplitude of a forged mes-

sage is non-negligible, then by measuring that register and the registers we hold, we will

obtain q+ 1 distinct valid message/signature pairs, where q is the number of calls we have

made to the signing oracle.

A will perform some unitary operations on the qubits he holds; thus the global state

becomes

|Γ〉 =
∑

~µ,mI ,σI

α~µ,mI ,σI |~µ〉 |m∗, σ∗〉 |mI , σI〉

and A sends the last register to PR (i.e., to us). If we now measure the qubits we hold, then

with probability Φ, we will obtain q+1 valid message/signature pairs. If Φ is non-negligible,

we can win the strongly EUF-qCMA game for our signature scheme; since the signature

scheme is strongly EUF-qCMA, this forgery can occur with at most negligible probability,

and so the probability that Φ
p(λ)

is non-negligible (and hence that Φ is non-negligible) is

negligible, as required.

Lemma 4.5. Let

|Γ〉 =
∑

~µ,mI ,σI ,mR,σR

α~µ,mI ,σI ,mR,σR |~µ〉 |mI , σI〉 |mR, σR〉

be the global state after the completion of a clean session Ψ owned by PR, the responding

party, where the second register is the message register sent by A to PR, and the third is

the message register sent by A to PI , the initiating party, if it exists. Let (m∗I , σ
∗
I ) be the

message and signature that would actually be sent by PI in step 3e of the protocol, and let

(m∗R, σ
∗
R) be the message and signature that PR would respond with if the messages were

relayed faithfully. Let

F = {(mI , σI ,mR, σR) : Verifypkι
(mι, σι) = 1 and (mι, σι) 6= (m∗ι , σ

∗
ι ) for some ι ∈ {I, R}}
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be the set of potential tuples containing a “forged” signature. If (KeyGen, Sign,Verify) is

strongly EUF-qCMA, then, except with negligible probability, the quantity Φ, defined by

Φ ≡
∑

(mI ,σI ,mR,σR)∈F

∑
~µ

|α~µ,mI ,σI ,mR,σR |
2

is negligible.

Proof. Define

FI = {(mI , σI ,mR, σR) ∈ F : VerifypkI
(mI , σI) = 1 and (mI , σI) 6= (m∗I , σ

∗
I )}, and

F¬I = {(mI , σI ,mR, σR) ∈ F : VerifypkI
(mI , σI) = 0 or (mI , σI) = (m∗I , σ

∗
I )}

and observe that F = FI tF¬I . By Lemma 4.4, we know that

ΦI =
∑

(mI ,σI ,mR,σR)∈FI

∑
~µ

|α~µ,mI ,σI ,mR,σR |
2

is negligible. Then we need only prove that

Φ¬I =
∑

(mI ,σImR,σR)∈F¬I

∑
~µ

|α~µ,mR,σR,mI ,σI |
2

is negligible, since Φ = ΦI + Φ¬I . As in the proof of lemma 4.4, we can try to win the

EUF-qCMA game by choosing a random party P and hoping that A “forges” a signature

against them; then we measure the registers we hold to obtain a forgery. This succeeds

with probability at least Φ¬I , and so this quantity must be negligible except with negligible

probability, as required.

Lemma 4.6. Let

|Γ〉 =
∑
m∈M

αm |m〉+
∑
c∈C

αc |c〉 and

|Γ′〉 =
∑
m∈M

αm |m〉+
∑
c∈C

αc |r(c)〉

be normalized quantum states, where M and C are disjoint, nonempty, finite sets, r(c) 6∈M
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for all c ∈ C, and
∑

c∈C |αc|2 is negligible. Then the advantage that any adversary has in

distinguishing |Γ〉 from |Γ′〉 is negligible.

Proof. Note that 1 − | 〈Γ| Γ′〉 |2 ≤ 2
∑

c∈C |αc|2. The result then follows from the Holevo-

Helstrom theorem.

Lemma 4.7. Consider the following state distinguishing game for some fixed quantum

states states |Γ0〉, |Γ1〉, |Γ′0〉 and |Γ′1〉:

i. C selects b ∈ {0, 1} uniformly at random, and sends |Γb〉 to A.

ii. A performs some computations and outputs a guess b′.

iii. A wins if b′ = b.

Let A be an adversary for this game, and now consider the following game:

i. C selects b ∈ {0, 1} uniformly at random, and sends |ψb〉 to A.

ii. A performs some computations and outputs a guess b′.

iii. A wins if b′ = b.

The probability that A wins the second game differs from the probability that A wins the

first game by at most

1

2

(√
1− | 〈Γ0| Γ′0〉 |2 +

√
1− | 〈Γ1| Γ′1〉 |2

)
Proof. Consider the problem of distinguishing |Γ0〉 from |Γ′0〉. By Theorem 1.2 the advan-

tage that any procedure has in distinguishing these two states is at most 1
2

√
1− | 〈Γ0| Γ′0〉 |2.

Consider the following distinguishing procedure: given a state |Γ′′0〉 which is either in

the state |Γ0〉 or |Γ′0〉, each with probability 1
2
, give the state to A. If A produces the guess
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b′ = 0, guess that the state is |Γ0〉, and otherwise guess that the state is |Γ′0〉. Then

P [This Procedure is Correct] = P [b′ = 0 ∧ |Γ′′0〉 = |Γ0〉] + P [b′ = 1 ∧ |Γ′′0〉 = |Γ′0〉]
= P [b′ = 0| |Γ′′0〉 = |Γ0〉] · P [|Γ′′0〉 = |Γ0〉]

+ P [b′ = 1| |Γ′′0〉 = |Γ′0〉] · P [|Γ′′0〉 = |Γ′0〉]

=
1

2
P [b′ = 0| |Γ′′0〉 = |Γ0〉]

+
1

2
(1− P [b′ = 0| |Γ′′0〉 = |Γ′0〉])

so that

P [This Procedure is Correct] =
1

2
+

1

2
(P [b′ = 0| |Γ′′0〉 = |Γ0〉]− P [b′ = 0| |Γ′′0〉 = |Γ′0〉])

If this quantity is not at least 1
2
, we obtain a strictly better procedure by switching our

guesses; in any case, there is a procedure that can be used to distinguish |Γ0〉 from |Γ′0〉
with advantage 1

2
(P [b′ = 0| |Γ′′0〉 = |Γ0〉]− P [b′ = 0| |Γ′′0〉 = |Γ′0〉]), and so

|P [b′ = 0| |Γ′′0〉 = |Γ0〉]− P [b′ = 0| |Γ′′0〉 = |Γ′0〉]| ≤
√

1− | 〈Γ0| Γ′0〉 |2.

A similar argument gives that

|P [b′ = 1| |Γ′′1〉 = |Γ1〉]− P [b′ = 1| |Γ′′1〉 = |Γ′1〉]| ≤
√

1− | 〈Γ1| Γ′1〉 |2.

Let |Γ〉 be the state given to A in the first game, and |Γ′〉 be the state given to A in
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the second game. Then

|P [A wins the first game]− P [A wins the second game]|
= |P [b′ = 0 ∧ |Γ〉 = |Γ0〉] + P [b′ = 1 ∧ |Γ〉 = |Γ1〉]

− P [b′ = 0 ∧ |Γ′〉 = |Γ′0〉]− P [b′ = 1 ∧ |Γ′〉 = |Γ′1〉]|
≤ |P [b′ = 0| |Γ〉 = |Γ0〉]P [|Γ〉 = |Γ0〉]− P [b′ = 0| |Γ′′0〉 = |Γ′0〉]P [|Γ′〉 = |Γ0〉]|

+ |P [b′ = 1| |Γ〉 = |Γ1〉]P [|Γ〉 = |Γ1〉]− P [b′ = 1| |Γ′′1〉 = |Γ′1〉]P [|Γ′〉 = |Γ1〉]|

≤1

2

(√
1− | 〈Γ0| Γ′0〉 |2 +

√
1− | 〈Γ1| Γ′1〉 |2

)
as required.

Corollary 4.8. Suppose the global state in an instance of the security experiment for the

protocol just before the Test query is issued by A be

|Γ〉 =
∑
~µ

α~µ,m∗I ,σ∗I ,m∗R,σ∗R |m
∗
I , σ

∗
I 〉 |m∗R, σ∗R〉

+
∑
~µ

VerifypkI
(mI ,σI)=0

or VerifypkR
(mR,σR)=0

α~µ,mI ,σI ,mR,σR |m∗I , σ∗I 〉 |m∗R, σ∗R〉

+
∑
~µ

(mI ,σI ,mR,σR)∈F

α~µ,mI ,σI ,mR,σR |m∗I , σ∗I 〉 |m∗R, σ∗R〉

where (m∗I , σ
∗
I ) is the message/signature pair that would actually have been sent by the

initiating party in the test session, and (m∗R, σ
∗
R) is the corresponding response. After the

Test query is issued, the challenger selects b uniformly at random from {0, 1}, and should
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return the last three registers of the global state

|Γb〉 =
∑
~µ

α~µ,m∗I ,σ∗I ,m∗R,σ∗R |m
∗
I , σ

∗
I 〉 |m∗R, σ∗R〉 |κb(m∗I ,m∗R)〉

+
∑
~µ

VerifypkI
(mI ,σI)=0

or VerifypkR
(mR,σR)=0

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |⊥〉

+
∑
~µ

(mI ,σI ,mR,σR)∈F

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |κb(mI ,mR)〉

to A, where as before κ0(mI ,mR) is the session key corresponding to messages mI ,mR and

κ1(mI ,mR) is simply a random function. If instead C returns the last three registers of the

state

|Γ′b〉 =
∑
~µ

α~µ,m∗I ,σ∗I ,m∗R,σ∗R |m
∗
I , σ

∗
I 〉 |m∗R, σ∗R〉 |κb(m∗I ,m∗R)〉

+
∑
~µ

VerifypkI
(mI ,σI)=0

or VerifypkR
(mR,σR)=0

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |⊥〉

+
∑
~µ

(mI ,σI ,mR,σR)∈F

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |κ1(mI ,mR)〉

then except with negligible probability, the probability that A guesses the value of b cor-

rectly given this state differs at most negligibly from the probability that A guesses the

value of b correctly given |Γb〉, regardless of the value of b.

Corollary 4.9. Let |Γ〉 be drawn from one of the following distributions, each with prob-

ability 1
2
:

∆ :
∑
~µ

α∗~µ |~µ〉 |m∗〉+
∑

~µ;m∈M

α~µ,m |~µ〉 |m〉+
∑
~µ; c∈C

α~µ,c |~µ〉 |c〉 for m∗ ← D and

∆̂ :
∑
~µ

α∗~µ |~µ〉 |m̂∗〉+
∑

~µ;m∈M

α~µ,m |~µ〉 |m〉+
∑
~µ; c∈C

α~µ,c |~µ〉 |r(c)〉 for m̂∗ ← D̂
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where D and D′ are probability distributions on some set, M , C, and the supports of D and

D̂ are disjoint, finite, nonempty sets, r(c) 6∈M for all c ∈ C, and
∑

~µ; c∈C |αc|2 is negligible.

Then if there is an efficient quantum adversary A which determines from which distribution

|Γ〉 is drawn with non-negligible advantage Adv, then there is an efficient procedure, using

A as a subroutine, which distinguishes D from D̂ with non-negligible advantage.

Proof. Let A be as described. Suppose you are given m̃ and wish to know from which

distribution it is drawn. Construct the state

|Γ′〉 =
∑
~µ

α∗~µ |~µ〉 |m̃〉+
∑

~µ;m∈M

α~µ,m |~µ〉 |m〉+
∑
~µ; c∈C

α~µ,c |~µ〉 |c〉 .

Notice that if m̃ is drawn from D then |Γ′〉 is drawn from ∆, while if m̃ is drawn from D̂,

then
√

1− | 〈Γ| Γ′〉 |2 is negligible; hence the probability that A wins the game given |Γ′〉
differs only negligibly from the probability that A wins the game given a true sample from

∆ or ∆̂ by Lemma 4.7.

We will guess that m̃ is drawn from D if A guesses that |Γ′〉 is drawn from ∆, and we

guess that m̃ is drawn from D̂ if A guesses that |Γ′〉 is drawn from ∆̂. The probability

that we guess correctly is then

P [We guess correctly]

= P [A guesses ∆ | m̃← D] + P [A guesses ∆̂ | m̃← D̂]

≥ P [A guesses ∆ | |Γ〉 ← ∆] + P [A guesses ∆̂ | |Γ′〉 ← ∆̂]

− |P [A is correct | |Γ〉 ← ∆ or ∆̂]− P [A is correct | |Γ〉 = |Γ′〉]|

≥ 1

2
+ Adv − ε

for a negligible function ε. Indeed, this procedure works with non-negligible advantage

Adv − ε, as required.

Finally we are able to prove the security of the constructed protocol Π′.

Proof (Theorem 4.1). Suppose we are faced with an instance of the security game for Π;

that is, given the messages sent by the initiator PI in session Ψ with responder PR in
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session Ψ′ are m∗I and m∗R, respectively, we wish to determine whether a given string κb
is the true session key for session Ψ if b = 0, or a random string if b = 1. Suppose to

the contrary that there is an adversary A who wins the security game against Π′ with

non-negligible advantage Adv. We will use A as a distinguisher for our instance of the

security game against Π.

Before starting an instance of A, select two indices i∗, j∗ which are less than the

(polynomially-bounded) number of parties p that A will require. Further, choose a number

s∗ less than the (polynomially-bounded) number of pairs of session ψ that A will use. Run

A essentially as usual, but with the following modifications.

Set the private key/public key information for Pi∗ and Pj∗ to that of PI and PR,

respectively. If A initiates fewer than s∗ sessions, if its s∗th session is not initiated by Pi∗
with responder Pj∗ , or if its s∗th session is not the test session, abort and select new i∗, j∗

and s∗.

Given that A initiates the s∗th with initiator Pi∗ and responder Pj∗ , set the session

identifier as Ψ and the peer session identifier as Ψ′. Set the initiator’s outgoing message

as (m∗I , σ
∗
I = SignskI

(idI , idR; Ψ;m∗I ; rΨ)) and the responder’s message as (m∗R, σ
∗
R), where

σ∗R = SignskR
(idI , idR; Ψ,Ψ′;m∗R; rΨ′). If this is not eventually the test session, abort and

choose i∗, j∗ and s∗ again; in particular, if A ever issues a command that would make either

session no longer clean, abort.

By Lemma 4.5, we know that the adversary cannot construct a state for which the

amplitude of a valid responding message is non-negligible; hence by Lemma 4.3 we know

that A must pass some registers to the responding party Pj∗ , since otherwise the proba-

bility amplitude of states for which the session key obtained from the registers sent to the

initiating party will be valid for Ψ is negligible, and there will be no matching session Ψ′ to

test. Moreover, the adversary must either deliver some response registers to the initiating

party or the test session must be Ψ′, since otherwise the adversary cannot win the game
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with non-negligible advantage. In either case, the global state before the test session is

|Γ〉 =
∑
~µ

α~µ,m∗I ,σ∗I ,m∗R,σ∗R |m
∗
I , σ

∗
I 〉 |m∗R, σ∗R〉

+
∑
~µ

VerifypkI
(mI ,σI)=0

or VerifypkR
(mR,σR)=0

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉

+
∑
~µ

(mI ,σI ,mR,σR)∈F

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉

where the second register is the one delivered to Pj∗ and the third is the one obtained

from Pj∗ in session Ψ′, possibly after applying some unitary operator, and, except with

negligible probability,

Φ =
∑
~µ

(mI ,σI ,mR,σR)∈F

|α~µ,mI ,σI ,mR,σR |

is negligible, again by Lemma 4.5.

When the Test query is issued, if the test session is Ψ apply the map:

|mR, σR〉 |y〉 7→


|mR, σR〉 |y ⊕ κb〉 if mR = m∗R and σR = σ∗R
|mR, σR〉 |y⊕ ⊥〉 if VerifyskR

(mR, σR) = 0

|mR, σR〉 |y ⊕ ρ(mR)〉 otherwise

to the register received by Pi∗ in session Ψ and the target register provided by A, where ρ

maps pairs of messages to random strings. If instead the test session is Ψ′, apply the map

|mI , σI〉 |y〉 7→


|mI , σI〉 |y ⊕ κb〉 if mI = m∗I and σI = σ∗I
|mI , σI〉 |y ⊕ ⊥〉 if VerifyskI

(mI , σI) = 0

|mI , σI〉 |y ⊕ ρ(mI)〉 otherwise
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In either case, the global state after the test query is

|Γ〉 =
∑
~µ,y

α~µ,m∗I ,σ∗I ,m∗R,σ∗R |m
∗
I , σ

∗
I 〉 |m∗R, σ∗R〉 |y ⊕ κb〉

+
∑
~µ,y

VerifypkI
(mI ,σI)=0

or VerifypkR
(mR,σR)=0

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |y ⊕ ⊥〉

+
∑
~µ,y

(mI ,σI ,mR,σR)∈F

α~µ,mI ,σI ,mR,σR |mI , σI〉 |mR, σR〉 |y ⊕ ρ′(mI ,mR)〉 .

Notice that this is simply |Γ′b〉 from Corollary 4.8, and so A will guess b correctly (in

the context of its security game) with advantage Adv − ε for some negligible function ε.

Then, by Corollary 4.9, this correct guess will be the correct guess for our security game

with advantage Adv − ε − ε′ where ε′ is negligible; in particular, our advantage is non-

negligible provided that we have chosen the correct i∗, j∗, and s∗. Since we choose these

correctly with probability at least 1
p2ψ

, a polynomial fraction, we see that our probability

of winning the game using A as a subroutine is at least 1
2

+ Adv−ε−ε′
p2ψ

which is non-negligibly

greater than a half; that is, protocol Π is insecure. This is a contradiction, and so no such

adversary A must exist; that is, the protocol Π′ is secure.
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Chapter 5

A Secure Protocol from

Supersingular Elliptic Curve

Isogenies

In this chapter we apply the generic construction from Section 4.5 to construct a secure

authenticated key establishment protocol whose underlying computational problem is the

Supersingular Isogeny Decision Diffie-Hellman Problem (SSDDH). The underling key es-

tablishment protocol is De Feo, Jao, and Plût’s scheme [9], with authentication provided

by a signature scheme constructed by applying Eaton and Song’s [11] and Boneh and

Zhandry’s [5] transformations to Sun et. al’s [35] strong designated verifier signature

scheme, similar to the method applied in Soukharev, Jao, and Seshadri’s work [34].

To begin we define the required global parameters. For authentication we require

1. pA = `eSS `
eV
V fA ± 1, a prime, where `S and `V are prime, and fA is a small cofactor

used so that pA is prime;

2. EA, a supersingular elliptic curve defined over KA = GF (p2
A);

3. {PS, QS} and {PV , QV }, bases for EA[`eSS ] and EA[`eVV ], respectively;

4. H = (KeyGen(Hc), Hc, Invert, Sample), a quantum-safe chameleon hash function; and,
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5. O1,O2,O3, random oracles.

For key establishment we require

1. pK = `eII `
eR
R fK ± 1, a prime, where `I and `R are prime, and fK is a small cofactor

used so that pK is prime;

2. EK , a supersingular elliptic curve defined over KK = GF (p2
K); and,

3. {PI , QI} and {PR, QR}, bases for EK [`eII ] and EK [`eRR ], respectively.

Each party Pk must establish authentication keys; associated to each will be a private

key and public key for signing and a private key and public key for verification. In partic-

ular, Pk selects m
(k)
S , n

(k)
S ∈ Z/`eSS Z not both divisible by `S uniformly at random, and sets

E
(k)
S = EA/

〈
m

(k)
S PS + n

(k)
S QS

〉
. Further define φ

(k)
S to be the isogeny with domain EA and

image E
(k)
S . Similarly Pk selects m

(k)
V , n

(k)
V ∈ Z/`eVV Z not both divisible by `V uniformly

at random, sets E
(k)
V = EA/

〈
m

(k)
V PV + n

(k)
V QV

〉
, and further sets φ

(k)
V to be the isogeny

with domain EA and image E
(k)
V . The party must also select a private key/public key pair

(sk
(k)
H , pk

(k)
H ) for the chameleon hash function. Then Pk’s authentication key pair is

(sk(k), pk(k)) =
(
(sk

(k)
S , sk

(k)
V , sk

(k)
H ), (pk

(k)
S , pk

(k)
V , pk

(k)
H )
)

=
((

(m
(k)
S , n

(k)
S ), (m

(k)
V , n

(k)
V ), sk

(k)
H

)
,(

(E
(k)
S , φ

(k)
S (PV ), φ

(k)
S (QV )), (E

(k)
V , φ

(k)
V (PS), φ

(k)
V (QS)), pk

(k)
H

))
.

Then associated to each ordered pair (Pk,P`) of parties is a curve E
(k,`)
SV defined by

E
(k,`)
SV = E

(`)
V /

〈
m

(k)
S φ

(`)
V (PS) + n

(k)
S φ

(`)
V (QS)

〉
= E

(k)
S /

〈
m

(`)
V φ

(k)
S (PV ) + n

(`)
V φ

(k)
S (QV )

〉
which both Pk and P` can compute using their secret keys and the other’s public keys.

This curve will be used for Pk to sign a message to P`.

The protocol is as follows (here Pk is the initiator and P` is the responder).

1. Upon being instructed to start a session with P`, Pk:
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a) Selects a session identifier Ψ;

b) Selects x
(Ψ)
I , y

(Ψ)
I ∈ Z/`eII Z, not both divisible by `I , uniformly at random;

c) Constructs R(Ψ) = x
(Ψ)
I PI + y

(Ψ)
I QI , defines φ(Ψ) to be the isogeny with kernel〈

R(Ψ)
〉
, and sets

m(Ψ) = (E(Ψ) = EK/
〈
R(Ψ)

〉
, φ(Ψ)(PR), φ(Ψ)(QR), idk, id`,Ψ);

d) Selects r(Ψ) ∈ {0, 1}∗ at random;

e) Sets

σ(Ψ) = (σ1, σ2, σ3)

= (Sample(λ),O1(r(Ψ)||j(E(k,`)
SV )), Invert

sk
(k)
H

(r(Ψ),O2(O3(m(Ψ), σ1)||σ2))),

and;

f) Activates Send(id`,m
(Ψ), σ(Ψ))

2. Upon receiving (m,σ), P`:

a) Computes

b(Ψ′) =

{
1 if σ2 = O1(H

pk
(k)
H

(O2(O3(m,σ1)||σ2), σ3)||j(E(k,`)
SV ))

0 otherwise
;

If b(Ψ′) = 0 the delivered message is invalid and is hence rejected; then P`
activates Send(idk;⊥,⊥,⊥). Otherwise, P`:

b) Selects a session identifier Ψ′;

c) Selects x
(Ψ′)
R , y

(Ψ′)
R ∈ Z/`eRR Z, not both divisible by `R, uniformly at random;

d) Constructs R(Ψ′) = x
(Ψ′)
R PR+y

(Ψ′)
R QR, defines φ(Ψ′) to be the isogeny with kernel〈

R(Ψ′)
〉
, and sets

m(Ψ′) = (E(Ψ′) = EK/
〈
R(Ψ′)

〉
, φ(Ψ′)(PI), φ

(Ψ′)(QI), idk, id`,Ψ,Ψ
′);

e) Selects r(Ψ′) ∈ {0, 1}∗ at random;
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f) Sets

σ(Ψ′) = (σ1, σ2, σ3)

= (Sample(λ),O1(r(Ψ′)||j(E(`,k)
SV )), Invert

sk
(`)
H

(r(Ψ′),O2(O3(m(Ψ′), σ1)||σ2))),

and;

g) Activates Send(id`,m
(Ψ′), σ(Ψ′))

After receiving the message, if P` needs to compute the session key, it computes

K(Ψ′) =

{
⊥ if b(Ψ′) = 0

m1/
〈
x

(Ψ′)
R m2 + y

(Ψ′)
R m3

〉
otherwise

.

3. Upon receiving (m,σ), Pk computes

b(Ψ) =

{
1 if σ2 = O1(H

pk
(`)
H

(O2(O3(m,σ1)||σ2), σ3)||j(E(`,k)
SV ))

0 otherwise
;

After receiving the message, if Pk needs to compute the session key, it computes

K(Ψ) =

{
⊥ if b(Ψ) = 0

m1/
〈
x

(Ψ)
I m2 + y

(Ψ)
I m3

〉
otherwise

.

Theorem 5.1 (Correctness of the Scheme). The scheme described above is correct.

Proof. Suppose that all messages are relayed faithfully. It is clear that b(Ψ′) = 1 and
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b(Ψ) = 1 in this case, and so

K(Ψ) = j
(
E(Ψ′)/

〈
x

(Ψ)
I φ(Ψ′)(PI) + y

(Ψ)
I φ(Ψ′)(QI)

〉)
= j

((
EK/

〈
x

(Ψ′)
R PR + y

(Ψ′)
R QR

〉)
/
〈
φ(Ψ′)

(
x

(Ψ)
I PI + y

(Ψ)
I QI

)〉)
= j

(
EK/

〈
x

(Ψ′)
R PR + y

(Ψ′)
R QR, x

(Ψ)
I PI + y

(Ψ)
I QI

〉)
= j

((
EK/

〈
x

(Ψ)
I PI + y

(Ψ′)
I QI

〉)
/
〈
φΨ

(
x

(Ψ′)
R PR + y

(Ψ′)
R QR

)〉)
= j

(
EΨ/

〈
x

(Ψ′)
R φΨ(PR) + y

(Ψ′)
R φΨ(QR)

〉)
= K(Ψ′);

that is, the session keys are equal, as required.

Theorem 5.2 (Security of the Scheme). Under the Supersingular Isogeny Decisional Diffie-

Hellman assumption, the scheme described above is secure in the security model described

in Chapter 4 in the quantum random oracle model.

Proof. By Theorem 4.1 it suffices to show that the underlying signature scheme is EUF-

qCMA, and that the underlying key establishment protocol is secure if the adversary is

restricted to delivering messages faithfully.

The signature scheme is constructed by applying the constructions from Theorem 2.3

and Corollary 2.5 to Sun et al.’s SDV signature scheme, which is EUF-CMA against an

adversary who can perform polynomially-bounded quantum computations in the random

oracle model by Theorem 2.2. Thus the signature scheme in use is EUF-qCMA with

quantumly-accessible random oracles, as required.

The underlying key establishment protocol is simply the protocol from [9, Section 3.1],

with some additional information included in each message. We show that this is secure

when all messages are relayed faithfully. Suppose there is an adversary A who breaks the

security of the protocol with advantage ε while relaying all messages faithfully. Suppose

we are faced with an instance

(E,EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC)

of the Supersingular Isogeny Decision Diffie-Hellman problem. To solve the problem,

choose an integer i∗ between 1 and ψ, a polynomial upper bound on the number of ses-
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sion pairs that A will require. Run A as usual, except that if the i∗th session pair is

reached, set the initiator’s message as EA, φA(PB), φA(QB)) and the responder’s message

as (EB, φB(PA), φB(QA)). If A requests a session key reveal on either session in this session

pair, if this session pair is not reached, or if neither session in the pair is the test session,

abort. Otherwise, one of the sessions is the test session, and in that session A must deliver

the appropriate message to the appropriate party. When the Test query is issued, write

EC to the appropriate target registers. If EC = EAB, then it is the proper session key for

the session, while if EC 6= EAB, it is simply a random element of the keyspace. Thus by

guessing that EC = EAB if and only if A guesses that the key is the true session key, we

solve the Supersingular Isogeny Decisional Diffie-Hellman problem with advantage ε. The

probability that we select the correct session pair is at least 1
ψ

, and so our overall advan-

tage is ε
ψ

; thus under the Supersingular Isogeny Decisional Diffie-Hellman assumption ε
ψ

is

negligible, and hence ε is negligible; that is, the scheme is secure against an adversary who

is restricted to delivering messages faithfully.

Hence the protocol is indeed secure, as required.
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Chapter 6

Conclusions and Future Work

We have presented a security model for authenticated key establishment in which the

adversary can deliver quantum superpositions of messages to parties who would ordinarily

be participating in a classical protocol, analogous to allowing quantum signing queries in

EUF-qCMA security of signature schemes or quantum encryption/decryption queries in

standard post-quantum security definitions of encryption [5, 12]. We demonstrate that the

corresponding new security definition is achievable by constructing a specific example of

a secure key establishment protocol assuming the quantum hardness of a Diffie-Hellman-

type problem for isogenies of supersingular elliptic curves, and give a generic construction

for secure protocols using sufficiently secure signature schemes and unauthenticated key

establishment protocols.

Although I would argue that the security model and definition presented in Chapter 4 is

a natural one for post-quantum authenticated key establishment, before it is to be adopted

it remains to establish a separation between this security definition and, for instance,

the more standard Canetti-Krawczyk model with a quantum adversary—that is, we must

show that there are protocols which are secure in the Canetti-Krawczyk model when the

adversary has access to a quantum computer which are insecure when the adversary can

deliver quantum superpositions of messages. We would like to establish this separation to

demonstrate the necessity of our post-quantum security model and to convince people of

its utility. Once this separation is established, we can work toward answering the following

questions:
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• Are current “post-quantum” authenticated key establishment protocols secure in this

model?

• Are their other simple generic constructions for secure protocols? Does the encrypt-

and-MAC paradigm from [1, Section 3.2] carry over the same way the signature-based

method [1, Section 3.1] does?

• Are the protocols that arise from these generic constructions efficient? If not, how

can we do better?

• How can we modify the model to include more sophisticated security properties such

as key compromise impersonation resilience and resilience against malicious insiders

[23]?
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[38] Jacques Vélu. Isogénies Entre Courbes Elliptiques. C. R. Acad. Sci. Paris Sér. A-B,

273:A238 – A241, 1971.

[39] Mark Zhandry. Secure Identity-Based Encryption in the Quantum Random Oracle

Model. In Proceedings of CRYPTO, 2012.

82


	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Thesis Outline
	Mathematical Background – Algebraic Geometry
	Affine Varieties
	Projective Varieties
	Rational Maps, Morphisms, and Isomorphisms
	Elliptic Curves
	Isogenies
	The j-Invariant

	Fundamentals of Quantum Information
	Operations on Qubits
	Quantum Function Queries
	Measurements
	Distinguishing Quantum States

	Functions
	Hash Functions

	Computational Assumptions
	Polynomial-Time Reducibility of Computational Problems
	Examples of Classical Computational Assumptions
	Post-Quantum Computational Assumptions: Supersingular Elliptic Curve Isogenies


	Public-Key Cryptography
	The Quantum Random Oracle Model
	Random Oracles and the Random Oracle Model
	Random Oracles in the Quantum Setting

	Chameleon Hash Functions
	Unauthenticated Key Establishment
	Signature Schemes
	Security of Signature Schemes
	Security of Signatures in Random Oracle Models
	Examples of Signature Schemes
	Secure Signatures in the Quantum Random Oracle Model
	Generic Construction of EUF-qCMA Secure Signatures


	Security of Authenticated Key Establishment
	Basic Format of a Security Model
	The Bellare-Rogaway Model
	Protocols
	Adversarial Model
	Security Definition

	The Canetti-Krawczyk Model
	Parties, Protocols, and Sessions
	Adversarial Model
	Security Definition

	A Model for Quantum Cryptography
	Parties, Protocols, and Sessions
	Adversarial Model and the Security Definition


	A Security Model for Post-Quantum Authenticated Key Establishment
	Motivation
	Definitions
	Parties, Protocols, and Sessions
	Invalid Messages

	Party and Adversarial Capabilities
	The Security Experiment
	Generic Constructions for Secure Protocols using Signature Schemes

	A Secure Protocol from Supersingular Elliptic Curve Isogenies
	Conclusions and Future Work
	References

