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Abstract 

Olefin/Paraffin separation, traditionally carried out by cryogenic distillation, is difficult to 

achieve due to the similar size and volatility of the components.  Recently, many studies have 

explored membrane separation methods that utilize a metal ion to facilitate preferential olefin 

transport across the membrane.  However, much of this work focuses on smaller molecules, C2-

C3, which are gaseous at room temperature, while little work has been done studying separation 

of larger molecules, C5 and greater, which are generally liquid at room temperature.  The 

processes developed to separate small molecules are not necessarily directly applicable to 

separate larger molecules.   

 

A polymer electrolyte membrane consisting of an active layer of polyethylene oxide (PEO) and 

silver tetrafluoroborate (AgBF4) has shown high selectivity for separating gaseous olefin/paraffin 

mixtures.  The current project investigates the feasibility of applying this membrane to the 

separation of pentene and pentane (liquid C5 olefin and paraffin).  Process variables investigated 

are the: pure component permeability ratio, equilibrium sorption uptakes, pure component 

diffusivities, and stable membrane lifetime.   

 

Permeation tests on individual species (n-pentane and 1-pentene) were performed in two 

operating modes with membranes of varying silver concentrations: direct liquid contact to the 

membrane, and vapour contact to the membrane.  The vapour contact mode showed improved 

membrane stability in comparison to the liquid contact mode.  The olefin/paraffin permeability 

ratio increases with increasing silver content in the membrane, however, the membrane 

selectivity is much lower than that achieved with smaller olefin/paraffin pairs.   

 

Selective chemical interactions between pentene and the membrane were observed, as the 

pentene sorption uptake is higher than that of pentane.  In addition, a residual fraction is 

observed – a fraction of the pentene does not desorb from the membrane at ambient conditions – 

indicating a permanent or semi-permanent interaction.  Desorption of pentane is determined to 

follow a Fickian diffusion model, while desorption of pentene appears to be governed by pseudo-

second order kinetics.    
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1. Introduction 

 

Olefins are extremely important chemical intermediates, produced through cracking of various 

hydrocarbon feeds, which are used to produce a wide range of chemical products.  These include 

various polymers, as well as a wide range of smaller chemicals.  After cracking, olefin molecules 

need to be separated from their corresponding paraffin molecules.  Olefin/paraffin separation is 

one of the most difficult separations to achieve because the molecules are similar in size and 

volatility.  Therefore, the traditionally employed method of separating these molecules by 

physical means (i.e., distillation) is very energy and capital intensive.   

 

One alternative to distillation is using membranes. The simplest membranes for this process are 

based on size sieving, and because the molecules to be separated are so similar in size, these 

membranes can hardly achieve a high selectivity.  Another class of membranes, known as 

facilitated transport membranes, utilize metal ions to complex with olefin molecules and 

facilitate their transfer across the membrane.  The most common metal ions used as carriers in 

facilitated transport membranes are Ag
+
 and Cu

+
, due to the reversibility of the complexes 

formed with olefin molecules.  Salts containing silver (I) are generally preferred over copper (I) 

salts due to their better performance for olefin/paraffin separation.   

 

A wide variety of facilitated transport membrane materials and configurations have been studied 

for separation of ethylene/ethane and propylene/propane mixtures.  Some of these systems, such 

as immobilized liquid membranes and polymer electrolyte membranes are becoming well 
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characterized.  Silver nitrate (AgNO3) is commonly used in immobilized liquid membranes 

because it displays high olefin binding capacity in aqueous environments, whereas silver 

tetraflouroborate (AgBF4) is shown to be very effective in polymer electrolyte membranes due to 

its high olefin sorption capacity in that environment.     

 

A polymer electrolyte membrane consisting of silver tetraflouroborate (AgBF4) dissolved in 

poly(ethylene oxide) (PEO) has been studied for ethylene/ethane and propylene/propane systems 

and is shown to result in high olefin fluxes as well as high olefin/paraffin permeability ratios.  

However, the membrane experiences a permanent decrease in performance after being exposed 

to the olefin molecules.  Also, this membrane system has not been studied using larger 

olefin/paraffin systems, which are liquid at room temperature.   

 

The objective of this study is to explore the behaviour of a PEO/AgBF4 polymer electrolyte 

membrane in regards to the separation performance of liquid olefin/paraffin systems, specifically 

n-pentane and 1-pentene.  Membranes with different silver contents are tested for pentene and 

pentane solubility, permeability and diffusivity.  The results can then be compared to each other 

(i.e., solubility ratio, permeability ratio, diffusivity ratio) and to similar results for 

ethylene/ethane and propylene/propane systems reported in the literature.   

 

Chapter 2 of the thesis is literature review which begins with a discussion of general background 

information on olefin significance and production.  This is followed by an overview of the both 

the physical approaches to olefin/paraffin separation (i.e., distillation and size sieving) and the 

chemical methods for olefin/paraffin separation (i.e., utilizing the interaction between olefins and 



3 

 

metal ions).  The next section discusses facilitated transport mechanisms in more detail, 

introducing various membrane formulations and configurations.  Section 2.5. elaborates on solid 

polymer electrolyte membranes, explains what makes an effective polymer matrix and an 

effective carrier salt, and discusses separation performance with ethylene/ethane and 

propylene/propane systems.  The final section of the literature review discusses studies that 

specifically target liquid olefin/paraffin separation systems.   

 

Chapter 3 outlines the experimental methods used to prepare the membranes, as well as to 

determine the permeability, solubility, and diffusivity values.   

 

Chapter 4 presents and discusses the results from each section of the study.  The pentene/pentane 

permeability ratio is determined from the vapour contact pure component permeation testing.  

This series of experiments also presents a relationship between the silver content of the 

membrane and the membrane stability.  The equilibrium sorption uptakes of pentene and pentane 

are then determined and compared.  This is followed by a discussion of the desorption kinetic 

data, including the residual fraction, model fitting, and the calculated diffusivities.   

 

Finally, Chapters 5 and 6 present the conclusions and recommendations of the study, 

respectively.   
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2. Literature Review 

 

2.1. Olefins 

 

Olefins are hydrocarbon compounds with the general chemical formula CnH2n.  They consist of 

carbon atoms joined together, where at least one pair of carbon atoms shares a double bond.  All 

of the other available bonding sites are filled with hydrogen atoms.  Olefins are formed during 

the processing of oil products (Gray and Handwerk, 2001).  Within the overall petrochemical 

refining process, there are numerous possible processes where olefins are produced (Gray and 

Hendwerk, 2001).  Olefins are desirable chemical intermediates.  They can be used to make 

polymers, including plastics and rubbers, as well as a wide range of smaller chemicals, including 

alcohols, epoxides, amines, and halides (Speight, 1991).   

 

Olefins have different properties and uses depending on their chain length and configuration.  

Table 1 shows the structures and properties of the straight chain C2 and C5 olefins and paraffins.  

The only structural difference between each corresponding pair is the presence or absence of the 

double bond.  Olefins can be used to make a wide variety of polymers and chemicals in part due 

to the varying structures and properties of different sized olefins and their isomers.   
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Table 1: Structure and Properties of C2 and C5 olefins and paraffins. 

 Ethane Ethylene n-Pentane 1-Pentene 

Structure 

 

 

 

 

Formula C
2
H
6
 C

2
H
4
 C

5
H
12
 C

5
H
10
 

Molecular 

Weight (g/mol) 
30.07 28.05 72.15 70.13 

Boiling Point 

(˚C) 
-88.6 -103.8 36.06 30.0 

     

Data from: CRC Handbook of Chemistry and Physics (93
rd
 Ed.) 

 

 

2.1.1. Importance/Uses 

 

Beginning in the 1920s, alcohols were produced from ethylene and propylene, which were 

formed during the cracking of petroleum.  With the development of new processes and 

applications, the utility of olefins expanded, and demand for them increased; so cracking of 

paraffins and heavy oils began for the specific purpose of olefin production (Speight, 1991).  

Olefins are now produced in large quantities.  For example, global ethylene production was 

126.7 million tonnes per year at the start of 2009, and is rapidly expanding (Nakamura, 2009).  

Five of the ten largest ethylene plants are located in the United States; however most of the 

growth in olefin production is occurring in the Middle East (mainly Iran and Saudi Arabia) 

(Nakamura, 2009).   
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Olefins are the building blocks for a wide range of chemical products and polymers.  Alcohols 

can be produced from olefins and can, in turn, be converted to ketones through catalytic 

oxidation or dehydrogenation (Speight, 1991).  Ethylene glycol, propylene glycol, and glycerin 

can all be derived from ethylene and propylene feeds.  Ethylene glycol is widely used in 

antifreeze and related applications, while glycerin has many applications including use as a 

solvent, use in cosmetics, and explosive production (Speight, 1991).  Olefins can also be 

halogenated, and halogenated alkenes can be converted to allyl alcohols, which lead to products 

such as glycerol (Speight, 1991).  Oxidation of ethylene produces ethylene oxide, and analogous 

products can be made using larger olefins.  Esters, mercaptans, sulfides, and amines can all be 

produced from olefins using one-step reaction pathways (Speight, 1991).   

 

Olefins are used to produce many types and sizes of polymers.  Ethylene, propylene, butene, and 

their mixtures can be polymerized into homopolymers or copolymers with a wide range of 

properties.  Smaller chains, such as dimers, trimers, and tetramers have their own uses, including 

use in gasolines (Speight, 1991).  Generally, for use in these specific reaction and applications, 

the purity of olefins needs to be very high (<99.9%) (Faiz and Li, 2012a).   

 

2.1.2. Production 

 

Olefins are generally produced by cracking of other hydrocarbons.  There are many different 

types of cracking processes that can be used depending on the feed mixture available and the 

desired products.   
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Thermal cracking originated as a process to increase the yield of gasoline from petroleum stocks.  

Subjecting petroleum hydrocarbons to very high temperatures causes them to thermally 

decompose into smaller hydrocarbons and produces olefin molecules (Speight, 1991).  Various 

manipulations or changes to the thermal cracking process are used to achieve specific process 

goals, one of which can be a higher yield of olefin molecules (Speight, 1991).  Catalytic 

cracking, which is similar to thermal cracking, but utilizes a catalyst to facilitate the reaction, has 

almost fully replaced thermal cracking for gasoline production, as it produces higher quality 

gasoline as well as a higher fraction of olefins (Gary and Handwerk, 2001).   

 

Steam cracking is a process more specifically geared to producing olefins (as opposed to 

gasoline).  Feedstocks of steam cracking processes for olefin production can be divided into two 

general categories: those derived from natural gas (e.g., ethane and propane) and those derived 

from crude oil/petroleum (e.g., naphtha and gas oil) (Ren et al., 2006).  Ethane and propane feeds 

will produce mainly ethylene and propylene, while naphtha and gas oil feeds can produce a 

wider range of olefins.  The steam cracking operation is followed by a series of separation and 

purification steps in order to collect the olefin products.  The first of these is a primary 

fractionation step to remove all the remaining large hydrocarbon fractions, which can be recycled 

(Ren et al., 2006).   

 

The final steps in olefin production are product recovery steps.  Separation of the products 

involves distillation, refrigeration, and extraction, and is achieved using chilling trains and 

fractionation towers.  Very low temperatures are normally required (Ren et al., 2006).  Low 

temperature distillation is carried out in large fractionator columns with multiple trays (Eldridge, 



8 

 

1993).  The capital and operating costs involved in building and operating these types of columns 

mean these columns are only economically feasible for separating streams that have a high olefin 

content (e.g., streams from high capacity ethylene crackers or refinery steam crackers) (Eldridge, 

1993).  These separation steps will be discussed in more detail later.   

 

More recently, researchers have been investigating methods to increase the yield of olefins 

produced from cracking units.  This work includes modelling steam cracking processes in order 

to optimize yields (Sadrameli and Green, 2005) and exploring catalysts that will result in higher 

olefin content in the product streams (Meng et al., 2006; Li et al., 2005).  Other research 

investigates possible less energy-intensive alternatives to steam cracking (Ren et al., 2006).   

 

2.2. Physical Methods for Olefin/Paraffin Separation  

 

Physical separation methods refer to any means of olefin/paraffin separation that employ the 

physical differences between the species in order to achieve separation.  These properties could 

include size, shape, boiling point, vapour pressure, volatility, etc.  The major separation methods 

utilize either size and shape (size sieving methods) or vapour pressure differences (distillation).  

Each of these will be discussed in this section.   

 

2.2.1. Distillation 

 

Distillation is used to separate components in a liquid mixture based on the relative volatilities of 

the components to be separated.  When a mixture is heated the more volatile component, or the 
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component with the lowest boiling point, will preferentially vaporize until an equilibrium state is 

reached.  If the vapour product is then condensed, the resulting liquid will have a higher fraction 

of the more volatile component than the original mixture.  Conversely, the remaining liquid 

phase will have a lower concentration of the more volatile component than the original blend 

(Stichlmair and Fair, 1998).  This process can be used to separate a wide variety of liquid 

mixtures.   

 

The power of distillation is amplified by using a distillation column.  A distillation column is a 

staged process and separation, as described above, is achieved at each stage.  In a distillation 

column with trays, the vapour from one tray enters the tray above, while the liquid falls to the 

tray below.  In this fashion, the separation takes place on a continuous basis.  Each stage will 

operate at a slightly different temperature (getting cooler from bottom to top) and will result in 

different equilibrium compositions in each phase (vapour and liquid).  As a result, the fraction of 

the more volatile species will continue to increase over each stage (Stichlmair and Fair, 1998).  

The more trays there are in a distillation column, the better the separation of the original feed 

mixture will be (Speight, 1991).   

   

Distillation columns can be designed to achieve the desired separation performance by 

manipulating a number of factors.  These can include the size of the column, the number of 

trays/stages, the operating temperature, the feed rate and/or reflux rates, and the design of the 

trays.  Generally, as the desired purity of the final product increases, the number of stages 

required increases.  Therefore the size of the column required will increase.  Larger columns are 
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also required for more difficult separations, such as separating components with very similar 

volatilities, because a less significant fractionation will be achieved at each stage.  

 

Low Temperature Distillation 

 

Separating olefin-paraffin mixtures resulting from cracking is often done in a series of 

distillation columns designed for this purpose.  A common process scheme is displayed in Figure 

2-1.  For each olefin-paraffin pair, two columns may be required.  The first separates that size of 

molecule from the rest of the mixture (e.g., separation of ethylene and ethane from the remaining 

feed) while the second separates the olefin-paraffin pair from each other (e.g., separation of 

ethylene from ethane).  This continues with the larger pairs in order of molecular size (Eldridge, 

1993).   

 

Figure 2-1:  Conventional low temperature distillation process for Olefin-Paraffin Separation (Eldridge, 1993).  
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Distillation columns used for separating small molecules, such as small olefin paraffin mixtures, 

are generally only a few feet in diameter, but can be up to 200 feet high (Speight, 1991).  

Another source summarizes that ethylene and propylene recovery columns contain 150-200 trays 

and operate at a temperature of 183 to 233 K and 16 to 20 bar of pressure (Faiz and Li, 2012a) 

because of the very similar volatilities of the corresponding olefin-paraffin pairs.  Due to the 

large column size required, the capital costs for building these types of separation trains are very 

high.  In addition, the low temperature requirement resulting from the low boiling points of these 

molecules places huge energy demands on the process.  Cooling very large towers to very low 

temperatures requires huge amounts of energy.   

 

The results of a case study may be used to give a more specific idea of the temperatures and 

energy input required for ethylene-ethane and propylene-propane separation.  At a feed flow rate 

to the overall olefin production process of over 2,500 kmol/hr, the temperatures required for each 

species were: -101 to -30˚C for the C2 train, and -30 to 12 ˚C for the C3 train, and the energy 

cost of the separation process was determined to be $17 Million/Year based on optimized 

operating conditions (Tahouni et al., 2011).  

 

Extractive Distillation 

 

Extractive distillation involves using an additive/solvent to enhance the separation.  It is often 

utilized in distillation where the components to be separated have very similar boiling points and 

therefore a low relative volatility.  The addition of a third component, which may form an 

azeotropic mixture with one of the initial components, increases the relative volatility of the 
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mixture and allows for easier distillation (Speight, 1991).  It is very important that the additive 

used in extractive distillation, also known as the entrainer, should be easily separated from each 

of the products streams so that it can be reused in the process (Stichlmair and Fair, 1998).   

 

Extractive distillation has been studied for use in olefin-paraffin separations.  Systems of 

butane/butene/butadiene can use entrainers of furfural, acetonitrile, dimethylacetamid, n-

methylpyrrolidon, or dimethylformamid.  Propylene/propane distillation can be aided by the 

addition of acrylonitrile (Stichlmair and Fair, 1998).  Although this technique is promising, the 

commercial viability of extractive distillation is limited by suitable solvents.  It was suggested 

that extractive distillation offers no economic advantage over regular distillation for 

olefin/paraffin separations (Eldridge, 1993). 

 

However, more recently, a study investigating the separation of a cyclohexane/cyclohexene 

system using extractive distillation, showed that certain solvents can be used to increase the 

relative volatility of the system to the point where extractive distillation may become 

economically desirable.  Diethyl carbonate is identified as the most suitable entrainer for this 

system (Marrufo et al., 2011).   

 

2.2.2. Membrane Separations 

 

Olefin and paraffin molecules can be separated based on their relative size.  Due to the strength 

of the double bond drawing neighbouring carbon atoms in an olefin molecule closer together, 
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olefin molecules are generally slightly smaller than their corresponding paraffin molecules.  This 

may be manipulated to separate olefins from paraffins.   

 

The solution-diffusion model of membrane transport discusses diffusion of molecules across a 

dense membrane (Baker, 2004).  In this model, permeants first dissolve in the dense membrane 

material, and then diffuse across the membrane in the direction of a concentration gradient.  A 

dense membrane indicates that there are no large pores present for fluid to freely flow through.  

Instead, the free volume within the membrane consists of small gaps between polymer chains 

that are constantly changing due to the thermal motion of the polymer.  The molecules dissolved 

in the membrane diffuse through these small and dynamic spaces, and as a result will move in 

the direction of the applicable gradient (usually concentration or pressure).   

 

One of the main assumptions of the solution-diffusion model is that the rates of sorption and 

desorption of the permeant species into and out of the membrane are significantly faster than the 

rate of diffusion through the membrane.  This is generally satisfied for solution-diffusion 

membranes that do not involve any chemical interactions between the permeant and the 

membrane, but may not be satisfied when a chemical reaction or interaction is involved, which is 

the case for some facilitated transport membranes.   

 

Conventional Polymeric Membranes 

 

The effectiveness of separating olefins and paraffins using conventional (additive-free) polymer 

membranes is mainly dependant on the properties of the polymer selected, specifically the free 
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volume available within the polymer matrix.  In a review article on this topic, Faiz and Li 

(2012a) showed that olefin/paraffin pairs generally exhibited the same solubility, and that olefins 

were slightly more permeable through these types of membranes because of a higher diffusion 

rate due to their smaller molecular sizes.  For a viable separation process, it appears that a 

moderate Vf (free volume) for the polymeric membrane is required.  If the Vf is too small, the 

permeation rate will be extremely low.  As Vf increases, the permeation rates increase.  As the Vf 

increases further all species diffuse across the membrane very quickly, leading to a decrease in 

the selectivity.  The reported olefin/paraffin separation factors for C2 and C3 gaseous systems 

are generally in the range of 0.9 to 7 (Faiz and Li, 2012a).   

 

Advanced Polymeric Membranes  

 

Faiz and Li (2012a) also discussed advanced polymer membranes that contain additive groups to 

enhance the separation performance.  Adding functional groups or side chains of a specific size 

can be used to manipulate the Vf of the membrane and therefore its separation properties.  

Polyimide and co-polyimide membranes follow this approach, and incorporating such additive 

groups as acid anhydrides and diamines generally results in better olefin/paraffin separation (Faiz 

and Li, 2012a).  For example, using 4,40-(hexafluoroisopropylidene) diphthalic anhydride 

(6FDA), the ideal selectivity based on pure gas permeation rates is 3-4 for ethylene/ethane and 

10-16 for propylene/propane separation (Staudt-Bickel and Koros, 2000).  In a patent disclosure, 

polyimide membranes were claimed to have separation factors in the 10s for 1-butene/n-butane 

separation, and in the tens of thousands for 1,3-butadiene/n-butane separation (Shimazu et al. 
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1998).  These separation factors display an improvement over the conventional polymers 

discussed previously.   

 

Carbon Molecular Sieve Membranes 

 

Carbon molecular sieve (CMS) membranes are microporous carbon membranes prepared by 

pyrolysis of polymers or polymer precursors (Faiz and Li, 2012a).  Pyrolysis is carried out in an 

inert environment at elevated temperatures (usually 500 to 800  C) and converts organic material 

to carbon (Baker, 2004).  CMS membranes are generally brittle (Baker, 2004) and have poor 

mechanical strength when used alone (Faiz and Li, 2012a).  However, they show promising 

olefin/paraffin selectivities.   

 

A variety of factors come into play when discussing separation by microporous membranes.  

Size sieving is the simplest mechanism; smaller molecules will pass through pores more easily 

than larger molecules.  However, there are other dynamics at play as well.  When the membrane 

pores are small enough, molecules will collide with the pore walls more often than with other 

molecules.  This results in a phenomenon known as Knudsen diffusion, in which separation can 

be achieved between species that move at different average velocities (Baker, 2004).  In addition, 

adsorption occurs on the surface of the membrane and on the pore walls.  The components can 

then diffuse along the pore wall under a concentration gradient according to Fick’s law.  

Therefore, species that more strongly adsorb to the carbon membrane will preferentially pass 

through the membrane.  Through a combination of these factors, some microporous membranes 

are able to separate pairs of molecules of different sizes (Baker, 2004).   
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For example, both flat sheet and hollow fibre CMS membranes were prepared using the polymer 

Matrimid® 5218 (BTDA-DAPI), and an optimum ethylene/ethane selectivity of ~12 was 

achieved (Xu et al., 2011).  CMS membranes were also prepared by pyrolysis of a thin film of 

phenolic resin coated on the inside of a tube of alumina, and the separation performance was 

tested using ethane/ethylene and propane/propylene gas mixtures.   The resulting ethylene/ethane 

selectivity ranged from 2 to 11, while the propylene/propane selectivity was in the range of 10-

50 over the operating conditions of the study.  The membrane performance was found to be 

stable for at least 220 days (Fuertes and Menendez, 2002).   

 

Mixed Matrix Membranes 

 

Mixed matrix membranes (MMMs) are another type of unconventional membrane.  Mixed 

matrix membranes combine different types of materials in order to take advantage of the 

desirable properties of each individual material.  Mixed matrix membranes are made up of a bulk 

phase and a dispersed phase.  Generally, the dispersed phase is an inorganic solid material that 

has a very high selectivity towards the desired component.  This inorganic material may be, for 

example, a zeolite, a carbon molecular sieve, or nano-particles, among others.   These materials 

would not make viable membranes on their own due to their brittleness; they are too fragile to be 

used alone in a membrane process.  The bulk phase is generally a polymer, chosen because it is 

somewhat selective to the desired separation and also inherently flexible.  The bulk of the 

membrane being made of this flexible material is highly beneficial because the membrane will be 

stronger and more durable (Chung et al., 2007).  The resulting MMM has a higher selectivity 
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than the polymer component would have alone and is more flexible and therefore more viable 

than the inorganic material alone.   

 

For example, a MMM consisting of a polymer and a zeolite material is shown to have a higher 

olefin/paraffin selectivity than the polymer alone.  Specifically, when combined in a mixed 

matrix membrane, 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8) showed 

increases in propylene permeability and propylene/propane ideal selectivity of 258% and 150%, 

respectively (Zhang et al., 2012).   

 

2.2.3. Limitations of Physical Separation Methods 

 

Since distillation is based on the relative volatility of the components to be separated, 

olefin/paraffin separation by distillation is also difficult due to their similar volatilities.  As a 

result, the distillation columns required to separate olefins from their corresponding paraffins 

need to be extremely large.  In addition, smaller olefins and paraffins have very low boiling 

points.  This means that the distillation columns must be operated at very cold temperatures (i.e., 

cryogenic distillation).  Building these large columns is very capital intensive, and operating 

these large and very cold columns requires large amounts of energy.   

 

The performance of size sieving membranes for olefin/paraffin separation is also limited.  In 

general, a high permeability and selectivity cannot be reached within the same system (Faiz and 

Li, 2012a).  Various innovative membrane variants have been studied in order to improve the 

overall performance, with varying degrees of success, but the trade-off relationship between 
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membrane permeance and selectivity still exists.  Also, the inclusion of other, more complicated 

membrane components can lead to further complications such as decreased performance over 

time.  For example, prolonged use of the membrane may lead to plasticization of the membrane 

and significantly decreased performance (Faiz and Li, 2012a).   

 

Since corresponding olefin/paraffin pairs are so similar in size and shape, they are difficult to 

separate using physical means.  As an alternative, many researchers are investigating separation 

methods that utilize the chemical difference between the two types of molecules (i.e. the 

presence or absence of a double bond between carbon atoms) to separate them. 

 

2.3. Chemical Methods for Olefin/Paraffin Separation 

 

In order to utilize the difference in chemical functionality between olefins and paraffins, the 

chemical method for olefin/paraffin separation must be based upon the double bond.  This can be 

achieved by using a material that will selectively form a specific complex with the double bond 

in the olefin molecule.  Some metal ions are capable of forming this type of complex, and can be 

applied in different ways to achieve the separation.  Specifically, copper (I) and silver (I) ions 

have been studied and shown to form a reversible complex with olefin molecules.  Silver and 

copper are preferable over other transition metals mainly because of the reversibility of the 

complexes, their safety and low cost (Azhin et al., 2008).  The interaction between the metal ions 

and the olefin molecules is stronger than simple Van der Waals forces, and specific to the olefin 

molecules.  This allows for a high selectivity and high capacity of olefin sorption and transport 

(Faiz and Li, 2012a).   
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There are a variety of methods being investigated to take advantage of these specific complexes.  

Two categories that have been heavily explored are absorption processes and facilitated transport 

membranes.  Absorption processes involve the transfer of olefin molecules from one phase to 

another through coordination with the metal ion.  Facilitated transport membranes incorporate 

the metal ion into membranes where the ions act as a carrier or pathway for the olefin molecules 

across the membrane.  These processes can be used alone or in conjunction with other separation 

technology.  For example, a membrane process may be used to reduce the load on a distillation 

column by feeding the olefin product from the column to a membrane module for further 

purification.  This approach would reduce the required purity of the distillation product, making 

the overall separation easier and reducing overall energy requirements.   

 

2.3.1. Metal Olefin Complex 

 

Particular transition metals can form a selective complex with olefin molecules.  These metals 

include copper (I), silver (I), palladium (II), mercury (II) and platinum (II).  Copper (I) and silver 

(I) are the most viable for use in olefin separation because the complexes formed are reversible.  

Conversely, palladium (II), platinum (II) and mercury (II) form relatively stable complexes 

(Safarik and Eldridge, 1998), which are less promising for use in olefin separation because the 

complexes are difficult to reverse, which would make the overall separation process more 

difficult.   
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The complexes formed between these metals and olefin molecules were first satisfactorily 

described using the Dewar-Chatt model, and the interaction is termed π-bond complexation 

(Safarik and Eldridge, 1998).  Ionic silver and copper will be discussed further later due to their 

applicability to olefin separation.   

 

Silver (I) and copper (I) cations each have empty outermost s orbitals due to the electron lost 

during their oxidation from atom to ion.  This empty s orbital acts as an electron acceptor, and 

interacts with the (full) π bonding orbital of the olefin molecule to form a new orbital sharing the 

electrons of the olefin π bond.  The π* (antibonding) orbitals of the olefin molecule then accept 

electrons from the (full) outermost d orbitals of the metal, forming another bond (Eldridge, 1993; 

Safarik and Eldridge, 1998).  These interactions are illustrated in Figure 2-2.  Note that the 

orbital labels indicated represent an Ag
+
 ion, however the coordination is the same for a Cu

+
 ion.   

 

 

Figure 2-2: Silver-Olefin Complex (Eldridge, 1993). 

 

From an alternate perspective, the olefin-metal complex may be described using resonance 

structures (Burgess and Steel, 2011).  The metal ion can be in one of two states: interacting with 
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the π bond of the olefin molecule, or ‘breaking’ that bond and interacting with each carbon atom 

separately.  Figure 2-3 shows the general metal-olefin complex with resonance.   

 

 

 

Figure 2-3:  Resonance present in the metal-olefin complex (Burgess and Steel, 2011). 

 

To be used in absorption processes or facilitated transport membranes for olefin separation, the 

metal ion in the system must be available to interact with the olefin.  Therefore, the interaction 

between the metal ion and the other components of the system should be minimized.  

Accordingly, the metal cation must dissociate from its negative counterion.  For this to be 

thermodynamically favourable, the lattice energy of the salt should be as small as possible.  The 

lattice energy of silver is less than that of copper, and it is thus a better material to use in this 

type of process (J. H. Kim et al., 2004).   

 

In addition to a weak interaction with the counterion, the metal ion should have relatively weak 

interaction with the olefin molecule itself.  This is because the reversibility of the complex is 

very important.  When the complexes are used for olefin-paraffin separation, it is crucial that the 

metal ion releases the olefin after interacting with it.  Systems involving silver ions are being 

studied more extensively than others for this reason (Faiz and Li, 2012b). 
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Silver ions can complex with more than one olefin molecule at a time, and this results in many 

possible structures for the overall complex.  These structures can be extremely large and 

incorporate a large degree of complexity (Burgess and Steel, 2011).  For example, a silver ion 

can form a larger complex with multiple ethylene molecules at any given time.  Measurements of 

gas phase association energetics between silver ions and ethylene molecules show that it is 

energetically favourable for a single silver ion to form complexes with up to three ethylene 

molecules.  The first two molecules are shown to complex quite strongly to the Ag
+
 ion, while 

the strength of interaction with the third is smaller but still significant (Jiang and Dai, 2008).  

More ethylene molecules can interact with the silver ion (up to 6), but beyond the third ethylene 

molecule, the bond energies become too small to exhibit any stability (Burgess and Steel, 2011).   

 

2.3.2. Reactive Absorption 

 

Reactive absorption, which is based on reversible chemical complexation, utilizes a mass 

separating agent to separate a desired component from a mixture.  The feed mixture is contacted 

with the mass separating agent that specifically interacts with the target compound.  After the 

system is allowed to reach equilibrium, the phases can be separated using physical means.  The 

phase containing the target compound can then be treated in such a way as to reverse the 

complex, releasing the target compound and recovering the separating agent.  This process can 

be enhanced by a pressure or temperature change, or the addition of another species (Safarik and 

Eldridge, 1998).   
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Absorption processes utilizing copper (I) or silver (I) have potential for use in olefin recovery 

(Eldridge, 1993).  As discussed above, silver salts are generally more favourable.  In olefin-

paraffin separation processes, the target compound is the olefin molecule and the mass separating 

agent is the silver ion.  The silver ion can be incorporated into a solution as a silver salt, and an 

olefin-paraffin mixture can be separated through contact with the silver salt solution.  The olefin 

will complex with the silver ion and be transferred into a separate phase, away from the paraffin.   

 

As an alternative to direct contact between the feed stream and the solution containing the mass 

separating agent, the two phases can be separated by a membrane.  This eliminates a step in the 

overall process, that is, the separation of the two phases after contact is no longer needed.  The 

performance of this type of system will increase further if the membrane used is also selective 

towards olefins.  For example, a SPEEK/polypropylene composite membrane is used to contact 

an ethylene/ethane feed stream with an aqueous silver nitrate solution, resulting in 

ethylene/ethane selectivities as high as 2700 (Nymeijer et al., 2004).  Modelling of a similar 

process, utilizing AgBF4 in pace of AgNO3, and applied to the separation of propylene/propane 

mixtures, concluded that the process was physically feasible, and that its economic viability will 

depend on feed cost (Chilukuri et al., 2007).   

 

2.4. Facilitated Transport Membranes 

 

Incorporating silver ions into membranes in order to achieve selective olefin transport has 

become a widely researched topic.  These membranes come in many forms, but are based on the 

same basic principle: the silver ion forms a reversible complex with the olefin molecules, and 
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provides them with a path to move across the membrane.  This allows the olefin molecules to 

cross the membrane in the direction of a pressure or concentration gradient at a drastically faster 

rate than the corresponding paraffin.  The chemistry and coordination theory of the silver-olefin 

complex is briefly discussed in section 2.3.1.   

 

Facilitated transport membranes for olefin-paraffin separation can be prepared in a variety of 

ways.  They can be homogeneous membranes, composite membranes consisting of more than 

one layer, or multiphase membranes where one phase is dispersed in the other.  Some facilitated 

transport membranes operate in a hydrated state, some operate dry.  Most have a flexible organic 

polymer as their base component.  The silver salt can be included as an aqueous solution, 

dissolved into the polymer matrix itself, or even as an ionic liquid.  These membranes can also 

be configured in different ways: flat sheets, spiral wound, or hollow fibre membranes.  Each 

variation has advantages and disadvantages, but overall, facilitated transport membranes show 

better separation performance than size-sieving membranes.   

 

2.4.1. Supported Liquid Membranes 

 

Immobilized liquid membranes for facilitated transport consist of a carrier solution suspended in 

the pores of a polymer matrix (Faiz and Li, 2012b).  For olefin-paraffin separation, the solution 

contains silver ions that will facilitate preferential olefin transport across the membrane.  The 

carrier solution is held in place by capillary forces within the pores of the membrane (Ravanchi 

et al., 2010).   In this type of membrane, the porous polymer membrane is only a supporting layer 
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for the liquid containing the active olefin carrier (Azhin et al., 2008).  Silver nitrate is a highly 

studied carrier for use in these types of membranes  

 

Another type of membrane is described in US Patent # 7,361,800 (Herrera et al., 2008).  A 

polysaccharide membrane, specifically chitosan, is chelated with silver (I) or copper (I) and used 

to separate mixtures of olefins and paraffins.  AgNO3 was used as an appropriate olefin carrier, 

and the concentration of the solution used ranges from 3-12 M.  The membrane operates with 

water present in the membrane, and in fact requires water to operate effectively.  The required 

pre-treatment steps as specified by the patent are: humidification, demisting, and treatment to 

remove sulphur compounds (Herrera et al., 2008).  The membrane as described shows excellent 

performance for propane-propylene separation.  For example, with an AgNO3 concentration of 

5M, the flux of propylene through the membrane was 16.3 L/(m
2
·hr) while the flux of propane 

was <0.003 L/(m
2
·hr) at room temperature and an operating pressure of ~100 psig (Herrera et al., 

2008).  This type of membrane does not involve free flowing liquid, but the membrane in in a 

highly hydrated state. 

 

Another example, also using AgNO3 to separate propane from propylene, employed 

polyvinilydene diflouride (PVDF) as the polymer support (Ravanchi et al., 2010).  These 

membranes achieved separation factors up to ~250 using 50:50 propylene:propane feeds.  The 

concentration of propylene in the permeate stream reached as high as 99.63% (Ravanchi et al., 

2010).  Based on these two examples, it is evident that supported liquid membranes using silver 

nitrate as a carrier have potential for use in olefin-paraffin separation applications.   
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Supported liquid membranes for olefin/paraffin separation often use aqueous solutions of silver.  

Therefore, they need to operate in a humidified environment to avoid membrane dryout (Azhin 

et al., 2008).  Humidification of the process streams will result in additional operating cost 

incurred through the humidification and subsequent water removal from the gas streams.  In 

addition, even with humidification of all process streams, the membranes can still experience 

solvent loss (Faiz and Li, 2012b).  Drying of the membrane results in a drastic increase in 

permeation of both olefin and paraffin, causing a drop in selectivity (Ravanchi et al., 2010).  As 

water leaves the membrane, the silver salts lose their solvent, and the silver ions will no longer 

be available to facilitate olefin transport.  The loss of water also decreases the mobility of the 

polymer chains, causing the membrane to become rigid, contributing to membrane resistance.  

Therefore, even with humidification, the system still needs to be periodically shut down and re-

hydrated to restore the membrane performance.  This is not desirable in an industrial setting.   

 

Another major issue with these types of facilitated transport membranes is the reactivity of the 

silver ion with various system components or possible contaminants, resulting in inactive carrier 

or even dangerous by-products.  Silver ions can be reduced to silver nanoparticles, which 

destroys their function as olefin carriers.  Silver ions can also react with possible system 

contaminants such as sulphur compounds.  Worst of all is acetylene, which can react with silver 

ions to form silver acetylede, an explosive compound (Pinnau and Toy, 2001).  This imposes a 

significant safety concern.  In order to operate these systems in their current states, all of these 

harmful contaminants need to be removed.   
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2.4.2. Flowing Liquid Membranes 

 

An alternative to the supported liquid membranes discussed above is a flowing liquid membrane, 

in which the carrier solution is flowing in a layer between two hydrophobic microporous 

membrane sheets (Faiz and Li, 2012b).  The membranes are hydrophobic in order to ease 

hydrocarbon diffusion through the membrane into the carrier solution, which will preferentially 

transport the olefin molecules.  These membranes were also prepared and tested with AgNO3 as 

the carrier.  The resulting permeability and selectivity were higher than corresponding 

immobilized liquid membranes (Teramoto et al., 1989).  Increasing the silver nitrate 

concentration in the flowing liquid phase acted to increase the permeation of ethylene through 

the facilitated transport effect, while simultaneously decreasing the permeation of ethane, 

through an increase in the solution viscosity and the salting out effect (Teramoto et al., 1989).   

 

Stability of the barrier membranes is a significant issue, as the membrane can be damaged by 

solvent loss or by impurities in the feed and then needs to be replaced frequently.  In particular, 

silver and silver oxide particles can build up on the membranes, decreasing the permeation rate 

of olefin through the membrane due to clogging of the membrane and losses of the carrier ions 

available (Faiz and Li, 2012b).   

 

2.4.3. Ionic Liquid Membranes 

 

In ionic liquid membranes, liquid salts are used between two barrier membranes for olefin 

transport instead of salt solutions.  Ionic liquids have lower vapour pressures than aqueous 



28 

 

solutions, so evaporative loss of liquid is less of an issue.  One advantage of ionic liquids is that 

the silver ion can be incorporated directly into the structure of the membrane itself, as part of the 

salt, as opposed to being included as a solute (Olivier-Bourbigou et al., 2010).  This makes it 

easier to achieve high levels of silver concentration while still maintaining a mechanically sound 

membran. It is also possible to incorporate both the silver ion and an olefin ligand into the 

organic liquid.  For examples, incorporating Ag
+
 and pentene into an ionic liquid membrane 

resulted in a pentene/pentane selectivity of ~500 (Huang et al., 2008).   

 

Ionic liquids have many advantages, including thermal and chemical stabilities, and the ability to 

customize an ionic liquid to a wide variety of specific applications (Li et al., 2012).  However, 

ionic liquid membranes are still relatively new, and more studies are needed to have a good 

understanding about ionic liquids.  There is very little data surrounding the long term stability of 

ionic liquid membranes (Faiz and Li, 2012b).  This is something that should be further 

investigated and considered before ionic liquid membranes can be adapted for use.   

 

The mechanism of transport in ionic liquid membranes containing silver salts and olefin ligands 

has been investigated.  Three possible mechanisms are described: diffusion of the olefin-silver 

complex with release on the permeate side of the membrane, a hopping mechanism of the olefin 

molecule from one silver ion to another, or a Grotthus type mechanism similar to the movement 

of protons through water (Jiang and Dai, 2008).  In this type of membrane it is likely that all 

three of these types of transfer occur at some stage (Jiang and Dai, 2008).   
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2.4.4. Membrane Electrolytes 

 

Membrane electrolytes, also known as solid polymer electrolyte membranes, are membranes in 

which a metal salt is dissolved in a polymer matrix (Faiz and Li, 2012b).  The polymer chains are 

sufficiently mobile that all of the components of the membrane can move fairly freely, so no 

plasticizers or solvents are required (Faiz and Li, 2012b).  Solid polymer electrolyte membranes 

for olefin-paraffin separation make use of a silver salt dissolved in a membrane matrix in order to 

facilitate olefin transport across the membrane.  These membranes will be discussed in detail in 

the next section.     

 

2.5. Solid Polymer Electrolyte Membranes for Olefin/Paraffin Separation 

 

The performance of a solid polymer electrolyte membrane will depend on interactions between 

the polymer matrix, the silver cation, the counterion, and the olefin.  When choosing the polymer 

material and the counterion, the relative strength of these interactions needs to be considered.  

The interaction between the polymer matrix and the silver ion needs to be strong enough to hold 

the silver in place, but not so strong as to prevent the silver ion from forming a complex with the 

incoming olefin molecules.  In addition, the interaction between the silver ion and the negative 

counterion should be fairly weak, so that the metal ion is free to interact with the olefin 

molecules.   
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2.5.1. Mechanism of Transport in Solid Polymer Electrolyte Membranes 

 

In solid polymer electrolyte membranes, there are two types of transport in effect.  Firstly, there 

is the solution-diffusion movement of uncomplexed olefin and paraffin.  The molecules sorb into 

the membrane matrix and then move by diffusion, or Fickian transport, across the membrane 

under a concentration gradient.  Molecules will travel from a high concentration to a low 

concentration by diffusion.  This diffusion occurs due to segmental motion of the polymer chains 

(Liu et al., 2004), or the redistribution of free volume (empty space) in the membrane.  Both the 

olefin and the paraffin in the system will cross the membrane by Fickian diffusion at 

approximately the same rate, as they are very similar in size.   

 

In addition to solution-diffusion of uncomplexed olefin and paraffin molecules, facilitated 

transport also contributes to olefin transport when a carrier, in this case silver ions, is used to 

facilitate olefin transport across the membrane.  The rate of the facilitated transport of olefin is 

much faster than the rate of solution-diffusion of uncomplexed molecules across the membrane.  

This is necessary in order for separation to occur, so that substantially more olefin will pass 

through the membrane than paraffin.  For a highly effective membrane, the non-facilitated 

transport should be negligible compared to the facilitated transport.   

 

There are different theories as to the mechanism for facilitated olefin transport across these types 

of membranes.  One possibility involves the olefin molecules ‘hopping’ from a silver ion to 

another silver ion across the membrane in the direction of the concentration gradient, possibly 

following the polymer chain along the way.  Another possibility comprises of an olefin molecule 
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forming a fairly strong bond with a silver ion, and the pair diffuses across the membrane together 

(Pinnau and Toy, 2001).   

 

The selectivity achieved depends on the rate of transport of the olefin and the paraffin.  

Therefore, the effect of the silver salt on the solution and diffusion of the paraffin molecule 

should also be considered when discussing the separation performance of these membranes.  

This effect was investigated using PA12-PTMO/AgBF4 membranes.  The polymer PA12-PTMP 

used was a block copolymer consisting of 20 wt% nylon-12 and 80 wt% tetramethylene oxide 

(Merkel et al., 2003).  The solubility of ethane and ethylene were determined at various AgBF4 

concentrations.  Addition of the silver salt greatly increased the sorption of ethylene, as expected, 

but also significantly decreased the uptake of the ethane (Merkel et al., 2003).  A combination of 

these two effects contributes to the very high selectivity reported with these types of membranes.  

The diffusivity of both olefins and paraffins initially decreases with the addition of silver salt to a 

polymer membrane.  This is because the addition of silver salt makes the polymer film denser.  

Once the silver salt concentration reaches a threshold level, the diffusivity of the olefin begins to 

drastically increase due to the facilitated transport component, but the diffusivity of the paraffin 

continues to decrease.   

 

A study investigating a poly(N-vinyl pyrrolidone) (PVP)/AgCF3SO3 polymer electrolyte 

membrane for separation of propylene from propane showed an ideal separation factor of almost 

1500 (Kim et al., 2002).  In order to further clarify the mechanism of olefin transport in these 

membranes, work was done to characterize the anions in the system using FT-Raman spectra.  

The CF3SO3
-
 anions in the membrane can be in one of three states: free ions, ion pairs with Ag

+
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ions, or ionic aggregates with Ag
+
 ions.  As the AgCF3SO3 concentration in the membrane 

increases, the ions move from free ions, to ion pairs, and then to ionic aggregates.  However, it 

was determined that when exposed to an olefin environment (in this case exposed to propylene) 

all of the CF3SO3
-
 anions reverted to free ions, regardless of the AgCF3SO3 concentration in the 

membrane (Kim et al., 2002).  This leads to the conclusion that olefin molecules act as a solvent 

for silver polymer electrolytes, and through their coordination with the silver ions, the olefin 

molecules break up the ionic interactions of the silver salts.  Furthermore, this study 

characterized PVP/AgCF3SO3 samples with and without propylene using FT-IR, and it was 

found that the coordination of the silver ion with the carbonyl oxygen atom in the PVP backbone 

was maintained throughout propylene sorption, though it is weakened (Kim et al., 2002).  This 

information can reveal a partial mechanism for the olefin transport across solid polymer 

electrolyte membranes with silver ions.  Regardless of silver salt concentration and the original 

state of the ionic interactions, when olefin is introduced to the system, the silver ion will 

dissociate with the anion to preferentially complex with the olefin molecule, while maintaining 

the coordinate bond with the polymer backbone.   

 

Although this helps clarify the picture, it still does not determine whether the olefin transport 

occurs by a “hopping” mechanism or the pair diffusion mechanism.  The olefin molecule could 

interact with a line of silver ions in the manner described above, or could complex with only one 

silver ion and be transported across the membrane by the movement of the polymer chains.   

  

The observed threshold silver concentration, at which facilitated transport begins to occur, lends 

support for the “hopping” mechanism.  The threshold concentration is defined as the 
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concentration of silver salt at which facilitated transport is evident and a dramatic increase in 

olefin/paraffin selectivity begins to occur.  At this point the silver ions dispersed in the polymer 

matrix will be close enough together to allow for “hopping” to occur (Merkel et al., 2003).  At 

silver concentrations below the threshold concentration, both the olefin and paraffin molecules 

have very low diffusivities, and are slow to move through the membrane, resulting in very little 

separation despite the drastic difference in their sorption behaviour.  However, at a concentration 

above the threshold, the mobility of the olefin molecules increases dramatically, causing a 

meaningful separation of the olefin/paraffin pair.   

 

Experiments show that olefins are relatively strongly held by silver ions in polymer membranes, 

but are rapidly exchanged for other olefins (J. H. Kim et al., 2004).  This also lends support to 

the theory of the “hopping” mechanism.   

 

It is also shown that the total coordination number of the silver ions in a solid polymer 

electrolyte membrane is fairly constant at ~3.  This indicates that the sum of the number of polar 

oxygen atoms coordinated with a silver ion, and the number of olefin molecules coordinated with 

a silver ion is a constant (J. H. Kim et al., 2004).  This affects the threshold concentration of the 

membranes because the 3 coordination sites available per silver ion will preferentially fill with 

oxygen atoms from the polymer.  It follows that in order to be an active olefin carrier, the 

number of silver ions needs to be greater than the number of polymer oxygen atoms divided by 

three.  In other words, the threshold concentration occurs at a [polymer repeating unit]:[Ag
+
] 

ratio of approximately 3:1 (J. H. Kim et al., 2004).  The ratio will vary slightly between polymers 

due to the strength of the polymer-silver interaction.   If the silver-polymer interaction strength is 
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greater than the silver-olefin interaction, the threshold silver concentration will be larger, and 

vice versa (J. H. Kim et al., 2004).   

 

In solid polymer electrolytes, both anions and cations have enough mobility to support 

conductivity and transport through the membrane without any solvent (Pinnau and Toy, 2001).   

 

2.5.2. Selection of Polymer 

 

In choosing a polymer to use with silver ions in a solid polymer electrolyte membrane for olefin 

separation, there are two main criteria.  The first is that the functional group present in the 

polymer can form coordinate bonds with the silver ion.  The second is that the polymer is 

relatively flexible, which is important because it allows movement and therefore transport 

through the membrane (Pinnau and Toy, 2001).  PEO is a good polymer for these membranes 

because it has electron-donating ether oxygen atoms that can interact with silver and has low 

barriers to bond rotation, meaning the polymer chains are flexible (Pinnau and Toy, 2001).   

 

Metal ions can readily coordinate with polar oxygen atoms in all of the following functional 

groups: ether, amide, ester and ketone (J. H. Kim et al., 2004).  Amides form quite strong 

coordinate bonds with Ag
+
, while the complex between esters and Ag

+
 ions are much weaker.  

Ketone-Ag
+
 bonds are of intermediate strength, and similar in strength to the olefin-Ag

+
 bond (J. 

H. Kim et al., 2004).  For optimal olefin transport, the bond between the silver ion and the 

functional group of the polymer should be relatively weak.  This will allow the silver ion to 

interact most freely with the olefin molecule.   
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The hard-soft acid-base theory can also be used to justify the choice of PEO as a good choice for 

a solid polymer electrolyte membrane.  Hard acids and hard bases (which hold their electrons 

tightly) will preferentially interact with each other, while soft acids and soft bases (which have a 

lower electronegativity and hold their electrons more loosely) will preferentially interact with 

each other as well (Pinnau and Toy, 2001).  The Ag
+
 ion is a soft acid and the oxygen molecules 

in PEO are hard bases, so the interaction between them will be relatively weak.  This is 

beneficial because the silver ion is then available to interact with olefin molecules (Pinnau and 

Toy, 2001).   

 

A negative impact of using PEO as the polymer matrix is that PEO is a polar polymer, and polar 

polymers can act as reducing agents for silver salts (Kim et al., 2006).  This means that Ag
+ 

ions 

will be reduced to Ag atoms, and therefore lose their ability to complex with olefin molecules.  

This will lead to reduction of separation performance over time.  This also occurs with PVP and 

POZ (J. H. Kim et al., 2004).    However, research investigating methods to extend the life of 

these types of membranes is ongoing.   One possible solution is to add plasticizers (such as 

phthalates) to the membrane in order to prevent the reduction of silver ions to silver particles.  

This is effective because the plasticizers coordinate with the silver ions in such a way as to 

prevent them from reducing (J. H. Kim et al., 2004).    

 

Another possible solution to this problem is the use of non-polar polymers to disperse the silver 

salts.  This would be beneficial because the non-polar polymers do not act as reducing agents, 

and therefore would not reduce the silver ions to silver particles, maintaining their ability to 

complex with the olefin molecules.  However, the drawback of this approach is that the non-
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polar polymers lack the ability to dissolve the silver salts. They can only physically disperse 

them.   These polymers may still be effective because, as discussed previously, once the 

membrane is exposed to an olefin environment the olefin molecules can act as a solvent for the 

silver salts.  The olefin molecules would dissolve the silver salts, and the silver cations would 

then facilitate transport of the olefins across the membrane.  This idea was tested using PDMS as 

a model polymer (Kim et al., 2006).  Membranes were prepared using various silver salts at 

various concentrations.  The highest selectivity values were achieved using AgBF4; both the pure 

gas permeability ratio and the mixed gas selectivity were ~200 (Kim et al., 2006).  This shows 

that the olefin can dissolve the silver salt that has been dispersed in PDMS.  However, the 

selectivity values achieved are much lower than those achieved using the PEO/AgBF4 system.  

Studies examining PEO/AgBF4 membranes at similar silver concentrations to the PDMS study 

show olefin-paraffin permeability ratios on the order of 10
3
 to 10

4
 (Liu et al., 2004), or more 

specifically 1000-5500 (Pinnau and Toy, 2001).  This indicates that the olefin molecules were 

not able to dissolve all of the silver salt, and that dissolving the salt in the membrane itself is 

more effective.   

 

The PEO/AgBF4 membrane shows a very high selectivity for olefin-paraffin separation.  The 

PEO matrix is rubbery and provides enough chain flexibility to facilitate olefin transport without 

the use of any solvents or plasticizers.  This is not the case for other similar systems.  For 

example, Nafion-AgBF4 or PVA-AgBF4 require either the addition of a solvent (such as water) 

to the system or addition of a plasticizer to the matrix to achieve facilitated olefin transport 

(Pinnau and Toy, 2001).  Neither of these options is desirable.  One significant advantage of 

solid polymer electrolyte membranes is that they can operate in the absence of water.   
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The mobility of PEO is further increased through the addition of AgBF4. Adding silver salts to 

PEO is shown to disrupt the crystallinity of the polymer, thereby increasing its chain mobility 

(Sunderrajan et al., 2001). This should in turn be beneficial for Ag
+
-olefin mobility, and 

therefore for separation performance as well.   

 

2.5.3. Selection of Anion 

 

In solid polymer electrolyte membranes, it is important that the silver ions are free for maximum 

interaction with the olefin molecules.  For this to occur, the silver ion should have minimum 

interactions with other components of the system.  A negative counter-ion is required to balance 

the charge of the silver ion and stabilize the system, and the properties of this anion have 

significant impacts on the separation performance of the membranes.  An anion that has a weak 

interaction with the silver ion is desirable.  Smaller anions that are strongly electronegative (e.g., 

F
-
, Cl

-
 and NO3

-
) are less viable candidates for olefin transport because they form stronger 

complexes with metal ions.  Alternatively, larger anions with lower electronegativity values form 

silver salts with lower lattice energies (i.e., weaker interactions) (Kim et al., 2003).  This makes 

them more suitable for olefin separation applications.  Examples of these types of anions include 

BF4
-
, CF3SO3

-
 and ClO4

-
.   

 

Solid polymer electrolyte membranes consisting of various silver salts dispersed in POZ were 

studied for propylene sorption with the objective of determining the anion effect.  The olefin is 

most soluble in the POZ/AgBF4 membranes, and least soluble in the AgNO3 membranes.  
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Membranes made with AgCF3SO3 showed intermediate sorption capacity (J. H. Kim et al., 

2004).  This is in agreement with the theory described above; the larger anions result in better 

olefin interaction capabilities.   

 

Olefin solubility is one measure of the potential effectiveness of olefin separation using a solid 

polymer electrolyte membrane.  Theoretically, a higher olefin solubility in a membrane will 

result in easier and faster transport of the olefin across the membrane.  The solubility of propane 

and propylene in solid polymer electrolyte membranes consisting of PEO and various silver salts 

were measured by Sunderrajan et al.  (2001). The salts tested included salts recommended above 

(large with low electronegativity) as well as silver nitrate.  It was shown that olefin solubility had 

a strong dependence on the counteranion present.  Olefin solubility in the membrane varied with 

anion as follows: AgBF4 >> AgCF3SO3 > AgCF3CO2 > AgNO3 > PEO alone (Sunderrajan et al., 

2001).  These results display the importance of the silver salt dissolving in the PEO matrix.  A 

solid polymer electrolyte membrane should be a solid solution, with the silver salt evenly 

distributed throughout the polymer matrix (Liu et al., 2004).  In order for the silver ion to 

complex with the olefin, it needs to dissolve in the PEO, but in order to do this it needs to 

dissociate from its counteranion.  Silver nitrate shows excellent olefin uptake in aqueous 

environments, but preforms poorly here because it does not absorb well into the PEO 

(Sunderrajan et al., 2001).  Alternatively, silver tetrafluoroborate dissociates fully in PEO, which 

helps explain the increased olefin solubility of the PEO/AgBF4 system.   

 

Wide angle X-ray diffraction data shows that the crystallinity of PEO is disrupted by the addition 

of silver salts.  AgNO3 and AgBF4 are both studied, and AgBF4 is shown to have a greater effect 
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than AgNO3, indicating that AgBF4 is more readily soluble in PEO than AgNO3.  In fact, the 

crystallinity of PEO is completely gone when the concentration of AgBF4 is >10% (Sunderrajan 

et al., 2001).  The authors attribute this to the difference in lattice energies of the two salts.  Salts 

with lower lattice energies, or weaker bonds, are more soluble in PEO.   

 

2.5.4. Membrane Performance for Gaseous Olefin/Paraffin Separations 

 

Solid polymer electrolyte membranes, including those made up of poly(ethylene oxide) and 

silver tetrafluoroborate (PEO and AgBF4), have been studied for use in separation of gaseous 

olefin/paraffin mixtures, with promising results.  In particular, PEO/AgBF4 membranes have 

been tested for ethylene/ethane and propylene/propane selectivities and displayed very good 

results.   

 

Sorption refers to the amount of a permeant a membrane can hold at equilibrium.  Theoretically, 

the silver ions in the polymer electrolyte membranes will coordinate with olefin molecules, 

resulting in higher sorption uptake.  For a PEO/AgBF4 system with a silver salt content of 81.5g 

AgBF4/100 g membrane, the equilibrium propylene uptake was 8.46 g of propylene/100 g film.  

By contrast, the equilibrium sorption uptake of PEO alone was only 0.30 g propylene/100 g film 

(Sunderrajan et al., 2001).   

 

Pure gas selectivity, which refers to the permeance of pure olefin divided by the permeance of 

pure paraffin for a given membrane sample, is shown in Table 2 for a polymer electrolyte 

membrane consisting of AgBF4 dissolved in a PEO matrix.  Another study reports similar 
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findings, and an olefin-paraffin permeability ratio on the order of 10
3
 to 10

4
 was observed (Liu et 

al., 2004).   

 

Table 2: Pure Gas Selectivity Values for a PEO/AgBF4 Solid Polymer Electrolyte Membrane (Pinnau and Toy, 2001) 

Composition Pure Gas Selectivity 

wt % AgBF4 Ethylene/Ethane Propylene/Propane 

33 1.8 2.0 

50 >160 >260 

67 >1000 >1000 

80 >5500 >4000 

 

 

However, when tested with mixed gases, the selectivities achieved were significantly lower.  The 

highest selectivity values achieved were ~120 for ethylene/ethane and ~260 for 

propylene/propane.  This is attributed to an increase in the paraffin permeance in a mixed gas 

setting.  The movement of the olefin molecules through the membrane causes more motion in the 

polymer matrix, allowing easier passage to the paraffin molecules (Pinnau and Toy, 2001).   

 

It is commonly reported that facilitated transport membranes containing silver ions will degrade 

with time.  Exposure to light, water, and polar polymer matrices can all contribute to expediting 

the reduction of Ag
+
 to Ag (Faiz and Li, 2012b).  In the current system, PEO is a polar polymer, 

which can contribute to the reduction of the silver ions in the membrane (Liu et al., 2004).   

 

In particular, in PEO/AgBF4 membranes used for olefin paraffin separation, olefin permeance 

and selectivity tend to decrease with increased pressure.  This was attributed to a partial 

saturation of the membrane (Pinnau and Toy, 2001).  Interestingly, cycling feed pressure was 
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shown to have an irreversible, negative effect on propylene permeability.  This may be attributed 

to silver salt precipitation from the membrane under exposure to the olefin feed (Liu et al., 

2004).  Another observation indicates that although the selectivity of the membrane remains 

unchanged for an operating period of 16 hours, the permeance of both the olefin and paraffin 

decrease by 50%.  This can also be attributed to crystallization of the silver salt in the polymer 

matrix (Pinnau and Toy, 2001).   

 

2.6. Processes for Separating Liquid Olefins and Paraffins 

 

All of the research discussed above focuses on separating gaseous olefin-paraffin mixtures.  The 

referenced studies focused on ethylene-ethane and/or propylene-propane, with a few including 

butylene-butane.  It would be incorrect to assume that these processes can be directly applied to 

larger olefins, which will be in liquid form at room temperature, and produce the same separation 

performance.  Some properties of liquid hydrocarbon mixtures can be quite different from those 

of small gaseous hydrocarbons mainly in molecular sizes, hydrophobicity, and vapour pressure.  

This section will discuss some of the limited work that has been done in this area.  Of particular 

interest are methods for separating pentene-pentane (C5) and hexane-hexane (C6) mixtures, and 

work utilizing facilitated transport membranes with silver ion carriers.     

 

2.6.1. Absorption Processes 

 

Properties of the solvents used in traditional absorption/extraction processes for olefin/paraffin 

separation contribute to lower than desirable selectivities.  Small and volatile organic solvents 
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can lead to solvent loss or instability of the metal ion carrier, and generally have a small 

temperature range under which they operate effectively (Li et al., 2012).  Ionic liquids offer an 

alternative.  For example, separation of 1-hexene from n-hexane can be achieved through 

contacting the olefin/paraffin mixture with an ionic liquid separating agent.  It has been shown 

that this the performance of this process improves with the addition of silver ions to the ionic 

liquid mass separating agent (Li et al., 2012).   

 

2.6.2. Facilitated Transport Membranes 

 

There are a variety of silver containing facilitated transport membranes being investigated for 

separation of C5 and C6 olefins and paraffins.   

 

Ag
+
-Nafion films of varying thicknesses were investigated for use in separating C6 mixtures 

(Rabago et al., 1996).  These feed mixtures contained n-hexane, 1-hexene, and 1,5-hexadiene 

dissolved in isooctane saturated water at room temperature – they are not pure olefin/paraffin 

mixtures.  The permeation rates of the paraffin through the membrane were small enough to go 

undetected, and the study focused on the separation of the mono-olefin from the di-olefin, with 

selectivities (1,5-hexadiene/1-hexene) ranging from 50-70.  In addition, the diffusion coefficients 

for 1,5-hexadiene and 1-hexene were calculated to be 4.1 x 10
-8

 and 1.1x 10
-8

 cm
2
·s

-1
, 

respectively (Rabago et al., 1996).  A benefit of using perfluorosulfonated ionomer membranes 

like Nafion is that the sulfonate group binds the silver ion in such a way that it prevents the 

reduction of silver ions to silver particles (Choi et al., 2006).   

 



43 

 

However, perfluorosulfonated ionomer membranes such as Naifon are both expensive and 

complex to produce and use (Choi et al., 2006).  Sulfonated poly(ether ether)ketone (SPEEK) is 

a less expensive alternative that can also achieve long term stability.  SPEEK-AgNO3 

membranes on polyester supports were used to separate isoprene from n-pentane (Choi et al., 

2006).  This study was performed at room temperature.  The state of the feed stream (vapour or 

liquid) was not specified, however the use of a gas chromatograph implies that the permeate 

stream is vapour.  Highly sulfonated SPEEK membranes showed the highest di-olefin flux and 

selectivity, and were stable over at least 100 hours.  However, membranes with lower degrees of 

sulfonation did deteriorate over time (Choi et al., 2006).  This implies that silver ion reduction 

still takes place when not all of the silver ions are bound to sulfonate groups.   

 

Solid polymer electrolyte membrane were also used for the separation of isoprene from pentane.  

Cellulose Acetate (CA) is used to dissolve either AgClO4 or AgBF4 silver salts in order to 

facilitate transport of the di-olefin   (S. H. Kim et al., 2004).  The membranes were tested using a 

mixed gas of 50/50 isoprene and pentane, with a sweep gas of helium on the permeate side of the 

membrane.  The maximum isoprene/pentane selectivity achieved was 53 for the CA-AgClO4 

membranes and 83 for the CA-AgBF4 membranes (S. H. Kim et al., 2004).  These selectivites 

are very good, however they are smaller than the ethylene/ethane and propylene/propane 

selectivities achieved using PEO/AgBF4 membranes discussed earlier.   

 

Heterogeneous hybrid membranes of AgCl dispersed in PMMA have been tested for their 

sorption properties using liquid cyclohexane and cyclohexene (Shen et al., 2007).  These 

membranes bear resemblance to the mixed matrix membranes described earlier, where an 



44 

 

inorganic but highly selective phase is dispersed within an organic matrix.  Recall that these are 

not polymer electrolyte membranes, as the silver salt is not dissolved in the membrane, rather is 

it dispersed.  The sorption capacity of these membranes for the olefin was quite high, at ~1g 

olefin sorbed/1 g membrane at ambient conditions.  This was much higher than the 

corresponding paraffin sorption, giving solubility ratios ranging from 50-130 (Shen et al., 2007).   

 

There is a high volume of work available investigating membrane separation processes for C2 

and C3 olefin/paraffin mixtures.  However, there is much less work discussing the separation of 

C5 and C6 olefin/paraffin mixtures.  In particular, many of the membranes that have been 

demonstrated to result in excellent olefin/paraffin separation performance for C2 and C3 

olefin/paraffin separation have not been tested using larger hydrocarbons.  The present study will 

apply a PEO/AgBF4 polymer electrolyte membrane that has shown very high olefin/paraffin 

selectivities for C2 and C3 systems to C5s.   

 

This system will be investigated using pure component permeation, equilibrium sorption uptake, 

and desorption kinetic studies.  The stability of the system will also be evaluated, and the results 

will be compared to the C2 and C3 data.   
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3. Experimental 

 

3.1. Membrane Preparation 

 

3.1.1. Membrane Casting 

 

Poly(ethylene oxide) (PEO) (procured from PolySciences Inc, MW = 1,000,000) was dissolved 

in deionized water at a concentration of 4wt%, and stirred overnight at room temperature until 

homogeneous.  The mass of silver tetrafluoroborate (AgBF4) (procured from Aldrich Chemicals) 

required to achieve a desired AgBF4:PEO ratio was calculated and then measured.  A few drops 

of deionized water were added to the crystals in an amber bottle until dissolved.  This solution 

was then added to the PEO solution.  The two solutions were stirred for ten minutes at room 

temperature, and there was no observed precipitation.  The AgBF4, as well as any mixture 

containing it, were shielded from light at all times, and exposure to air was minimized.   

 

The solution was then cast into a membrane on a plate in one of three different ways.  The 

method used depended on the type of membranes being prepared and the experiment that the 

membrane was to be used for.  The three types of membranes prepared were:  
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1. A composite membrane consisting of the PEO/AgBF4 mixture cast onto a 

polyethersulfone (PES) membrane substrate (procured from Separo); to be used for 

permeation testing 

2. A homogeneous PEO/AgBF4 solid polymer electrolyte membrane; to be used for 

sorption/desorption testing 

3. A composite membrane consisting of the PEO/AgBF4 mixture cast onto a piece of filter 

paper (procured from Whatman International); to be used for sorption/desorption testing 

of membranes with higher concentrations of AgBF4 (due to decreased stability in the 

homogeneous membranes). 

 

The composite membranes were cast onto glass plates, and the homogeneous membranes were 

prepared on Teflon plates.   

 

3.1.2. Membrane Drying and Storage 

 

Each of the membranes was dried using a multi-step process.  First, they were dried in a 40˚C, 

nitrogen (N2) purged oven for 24 hours.  Next, they were dried in a vacuum oven at room 

temperature for an additional 24 hours.  The membranes that were used in vapour permeation 

testing were dried further inside the permeation cell; they were placed under vacuum for 4-5 

hours at room temperature once already in the cell but before permeation testing began.   
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All of the membrane samples were stored at room temperature in a desiccator and shielded from 

light at all times.  Some membrane samples were also stored in the vacuum oven (under vacuum) 

for short periods of time (a few days).   

 

3.2. Permeation Testing 

 

To achieve olefin-paraffin separation, the facilitated transport membrane should allow for higher 

permeation rates of olefin than of paraffin.  In this study, n-pentane and 1-pentene were used as 

the model paraffin and olefin, respectively.  In this series of tests, the permeation rates of pentene 

and pentane through solid polymer electrolyte membranes of various silver salt concentrations 

were measured separately.  A dead end stainless steel permeation cell is used, and vacuum is 

applied to the permeate side of the membrane.  The permeate is collected using a liquid N2 cold 

trap and then weighed to determine a permeation rate.  The effective area of the membrane for 

permeation was 14.9 cm
2
.  All permeation tests were performed at room temperature (25˚C). 

 

3.2.1. Liquid Contact 

 

In the initial experimental set-up, the liquid pentane (procured from VWR) or pentene (procured 

from Air Liquide) was in direct contact with the solid polymer electrolyte membrane.  The 

apparatus is displayed in Figure 3-1.   
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Figure 3-1: Dead End Permeation Cell with Pure Component Liquid Feed – Liquid Contact 

 

However, it was soon determined that the direct liquid contact between the membrane and 

pentene led to rapid degradation and failure of the membrane.  The damage to the membrane 

occurred so quickly that it was not possible to measure a steady-state permeation rate at any 

point.  Placing a sheet of poly(ether block amide) (PEBA) between the active layer of the 

membrane and the liquid olefin did little to alleviate the problem.  Therefore, the direct liquid 

contact methodology was set aside.   

 

3.2.2. Vapour Contact 

 

An alternative to placing the liquid olefin in direct contact with the membrane surface is to invert 

the permeation cell, resulting in the penetrant’s vapour contacting the membrane surface instead 

of the penetrant liquid.  A schematic of this is shown in Figure 3-2.  The permeation rate of the 
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olefin and paraffin species can still be measured and compared, and the damage to the membrane 

is slowed.  During the experiments, the vacuum level on the permeate side was maintained at 700  

mmHg, while the feed side was at 1 atm.   

 

Each permeation period was timed, and the initial and final mass of the permeate sample 

collection tube was recorded.   From this data, the permeation rate can be calculated by dividing 

the change in mass by the elapsed time.   

 

 

Figure 3-2: Dead End Permeation Cell with Pure Component Liquid Feed – Vapour Contact  

 

The permeation rate can then be normalized by the area of the membrane sample used for 

permeation in order to calculate the flux.  The permeability coefficient is determined from the 

permeation flux normalized by trans-membrane pressure and membrane thickenss.  The olefin-

paraffin permeability ratio can be calculated by directly dividing the permeation rate of the olefin 
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by the permeation rate of the paraffin, as the other variables affecting the flux are unchanged 

(membrane area, membrane thickness, vacuum level on the permeate side).   

 

3.3. Equilibrium Sorption Testing 

 

According to solution-diffusion model, the rate of permeation of a species through a membrane 

depends on the rates of two separate steps: solution of the penetrant in the membrane matrix, and 

diffusion of the penetrant through the membrane.   The permeability can be roughly 

approximated by the product of the solubility and the diffusion coefficient.  In order to 

investigate this permeation and separation process further, these variables were studied.   

 

The equilibrium sorption of pentane and pentene in PEO/AgBF4 solid polymer electrolyte 

membranes, and the effective diffusion coefficients of pentane and pentene in the membranes, 

were measured through a series of sorption-desorption tests.  Membrane samples of known mass 

and composition were submerged in pure pentane and pure pentene liquid, separately.  They 

were left overnight to allow the system to reach equilibrium.  The membrane samples were then 

quickly removed to a nitrogen purged balance, where their mass was recorded as a function of 

time.  The highest mass recorded at the beginning of this stage was assumed to be the 

equilibrium sorption mass.   

 

The equilibrium sorption uptake values of the homogeneous membranes were calculated using:  
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Eq #1 

 

The equilibrium sorption uptake values of the membranes cast on filter paper were determined 

using:  

 

 
                

      

      
 

Eq #2 

 

 

Where: 

Meq = mass of the membrane at equilibrium (=M0 + mass of sorbate) 

M0 = initial mass of the membrane  

MFP = mass of the filter paper (for membranes with a filter paper backing) 

 

The pentene/pentane sorption ratio of each membrane sample can be calculated by dividing the 

sorption uptake of pentene by the sorption uptake of pentane.  This will give an idea of the 

membrane’s solubility selectivity and potential for use in liquid olefin-paraffin separation.   

 

3.4. Desorption Kinetics and Modelling 

 

Once placed in the nitrogen purged balance, the penetrant will quickly begin to desorb out of the 

membrane.  This process occurs very quickly due to the high volatility of pentene and pentane.  

In order to capture accurate kinetic data, the desorption was filmed.  A stopwatch as well as the 
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digital readout of the balance were included within the picture of the video, and these were later 

tabulated at frequent intervals in order to achieve a full picture of the desorption kinetics.   

 

This desorption kinetic data can be compared to a model in order to estimate the diffusivities of 

pentene and pentane within the membrane.  The membrane can be modelled as a plane of 

thickness l with diffusivity D.  For the situation described above, and assuming a pure diffusion 

process, the following equation (Crank and Park, 1968) can be used to model the desorption of 

the penetrant:  

 

 

 

 

 

Eq #3 

 

where, Mt is the amount of penetrant desorbed, M∞ is the total amount of penetrant that will 

desorb, D is the diffusivity of the penetrant in the membrane, and l is the membrane thickness.  

This model assumes desorption governed by pure diffusion, from both sides of a membrane film, 

where the surrounding penetrant concentration has undergone a step change from 100% to zero.   

 

By fitting the desorption data to this model, the diffusivities of the two compounds can be 

determined and compared, which may give another idea about the diffusivity selectivity of the 

membrane.  Another benefit of the data fitting is to determine whether the desorption process is 

controlled by simple diffusion, or whether there are some other limiting factors.  The interaction 
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between the silver ions and the olefin molecules may present a complication to this relatively 

simple model.   
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4. Results and Discussion 

 

The two main sets of experiments performed in this study were permeation testing of pure 

pentene and pure pentane through PEO/AgBF4 solid polymer electrolyte membranes, and 

sorption/desorption testing of pure pentene and pure pentane in a PEO/AgBF4 solid polymer 

electrolyte films.  The sorption/desorption testing can give information about the equilibrium 

sorption characteristics of the membrane, and can be used to determine the effective diffusivity 

of each penetrant in the membrane.   

 

4.1. Permeation Testing 

 

4.1.1. Permeability Ratio 

 

The pentene/pentane permeability ratio is a measure of the ideal selectivity that can be achieved 

in a membrane for a given separation.  However, the mixed gas selectivity can vary from the 

pure gas selectivity, possibly due to the olefin ‘opening up’ the membrane and making a pathway 

for the paraffin.  The pentene/pentane permeability ratios for membranes of various silver salt 

concentrations are displayed in Figure 4-1.   

 



55 

 

 

Figure 4-1: Pentene/Pentane Permeability Ratio of PEO-AgBF4 Membranes with Various Silver Salt Concentrations 

 

The permeability ratio stays at ~1 until an AgBF4 content of ~2.5g AgBF4/1g PEO is reached.  

After this concentration, the permeability ratio beings to increase.  This is in agreement with 

literature data that shows the mixed gas ethylene/ethane selectivity of PEO/AgBF4 membranes 

increases with silver concentration in the membrane (Pinnau and Toy, 2001).  This result is also 

congruous with many studies that suggest a threshold concentration, at which the silver ions are 

close enough together to allow for hopping of the olefin molecules from one silver ion to another 

(Merkel et al., 2003).  Before the threshold concentration, little or no separation occurs, because 

the silver ions are too far apart to facilitate transport across the membrane.  In this case, the 

threshold concentration appears to be ~2.5 g AgBF4/g PEO.   
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4.1.2. Stability 

 

Like the permeability ratio, membrane stability varied with membrane composition.  As the 

silver salt concentration in the membrane increased, the stability of the membrane decreased.  A 

membrane with 1g AgBF4/1g PEO was tested for durability with pentene permeation.  As shown 

in Figure 4-2, the pentene permeation rate is stable for ~25 hours before beginning to increase 

quickly.  Beyond 38 hours, the permeation rate quickly became too large to measure, indicating 

complete membrane failure.   

 

 

Figure 4-2: Pentene Permeation Rate through a PEO/AgBF4 membrane with a composition of 1g AgBF4/1gPEO 
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cause the membrane to fail.  This phenomenon occurs more quickly the higher the silver 

concentration, which also agrees with the results reported in literature.  Permeation data for 

pentene through a membrane with a composition of 3g AgBF4/1g PEO is shown in Figure 4-3.  

This membrane operates with fairly stable permeation until ~120 min, or 2 hours.  Beyond this 

time, the permeation rate grew to the point where it was too high to measure, indicating complete 

membrane failure.  

 

 

Figure 4-3: Pentene Permeation Rate through a PEO/AgBF4 membrane with a composition of 3g AgBF4/1gPEO 

 

Tripling the silver concentration in the membrane from a 1:1 to a 3:1 AgBF4:PEO ratio (by mass) 
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membrane lifespan from 30 to only 2 hours.  This is a drastic change and will need to be 
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4.2. Equilibrium Sorption Testing 

 

The equilibrium sorption uptakes of n-pentane and 1-pentene are displayed in Figure 4-4.  Due to 

the volatility of the pentene and pentane, the experimental error in determining the sorption 

uptake is considerably high (~10%).  Nevertheless, at low silver concentrations, the sorption 

uptakes of the olefin and paraffin are low.  However, they both increase up to a silver salt 

concentration of 2:1 (AgBF4:PEO by mass), after which they begin to decrease.  This could be 

due to membrane degradation, possibly due to increased membrane swelling, or silver reduction.  

The membrane sorbs more olefin than paraffin at a given silver concentration in the membrane.    

 

 

Figure 4-4: Equilibrium Sorption of Pentene and Pentane in PEO/AgBF4 Membrane with Varying Silver Concentration 
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The highest sorption uptakes of both pentene and pentane occurs at a membrane concentration of 

around 1.98 g AgBF4/g PEO.  The increased sorption of pentene occurs due to the interaction of 

the olefin molecule with the silver ions within the PEO matrix.  This can result in swelling of the 

polymer matrix, which can then allow even more pentene into the matrix.  However, when the 

silver concentration increases beyond this ratio, the sorption uptake of the membrane begins to 

decrease.   

 

As mentioned above, the sorption uptake of olefin is always higher than the sorption uptake of 

paraffin. This can be seen more clearly in Figure 4-5, where the sorption ratios for all of the data 

points are greater than one.  This indicates the membrane preferentially sorbs olefins, which is 

expected.  However, the preferential sorption of pentene over pentane is not as significant as the 

preferential sorption for cyclohexene/cyclohexane reported in the literature where sorption ratios 

ranging from 50 to 130 were observed (Shen et al, 2007).   

 

 

Figure 4-5: Ratio of Pentene Sorption to Pentane Sorption in Membranes with Different Silver Contents 
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4.3. Desorption Kinetics 

 

The desorption kinetic data collected for n-pentane and 1-pentene leaving PEO/AgBF4 

membranes with various silver concentrations can be used to derive a variety of useful data.  

Firstly, the amount of penetrant desorbed, when compared to the amount of penetrant sorbed, 

will give a good indication of the type of interaction occurring between the various components.  

Secondly, fitting the desorption data to a kinetic model can be used to evaluate the diffusivity of 

the penetrants in the polymer electrolyte films.  Finally, exploring multiple models using the 

kinetic desorption data and comparing the resulting plots can be used to determine the kinetics of 

the limiting step in desorption, which may be affecting the overall process.   

 

Figure 4-6  to 4-14, show the desorption kinetics of pentene and pentane from the membranes 

with different silver contents.  They all display similar patterns.  The equilibrium sorption uptake 

of pentene is always greater than that of pentane, as shown in the sorption studies.  Pentane 

desorbs faster in each case and reaches zero fairly quickly.  This suggests that there is no 

chemical interaction or permanent binding between the membrane and the paraffin molecules.  

However, pentene desorbs more slowly, and there is always a certain amount of pentene 

remaining in the membrane even after a prolonged period of desorption.  This indicates that there 

are some specific chemical interactions between the olefin and the membrane, and that part of 

the interactions is permanent or semi-permanent and causes permanent binding of the olefin 

molecules to the membrane.  To the author’s knowledge, this phenomenon has not been observed 

in the work reported in literature.   
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Figure 4-6: Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 0.415 g AgBF4/g PEO 

 

 

Figure 4-7: Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 0.498 g AgBF4/g PEO 
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Figure 4-8: Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 0.806 g AgBF4/g PEO 

 

Figure 4-9 Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 1.054 g AgBF4/g PEO 
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Figure 4-10: Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 1.233 g AgBF4/g PEO 

 

Figure 4-11: Desorption Kinetics of Pentane and Pentene from 2 Membranes with Silver Content 1.980 g AgBF4/g PEO 
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Figure 4-12: Desorption Kinetics of Pentane and Pentene from a Membrane with Silver Content 2.060 g AgBF4/g PEO 

 

Figure 4-13: Desorption Kinetics of Pentane and Pentene from 2 Membranes with Silver Content 2.741 g AgBF4/g PEO 
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Figure 4-14: Desorption Kinetics of Pentane and Pentene from 2 Membranes with Silver Content 3.025 g AgBF4/g PEO 

 

4.3.1. Residual Fraction of Pentene in the Membrane 

 

From Figure 4-6 toFigure 4-14, it is clear that the amount of pentene remaining sorbed in the 

membrane after desorption ceases to occur increases with an increase in the silver content in the 

membrane.  This amount will be referred to as the residual fraction: the fraction of the pentene 

that sorbs into the membrane that does not come out after desorption.  Figure 4-15 shows the 

residual fraction as a function of the membrane composition.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

M
as

s 
o

f 
so

rb
at

e
(g

)/
g 

m
e

m
b

ra
n

e
 

 

Time (min) 

Sample 2 - Pentane

Sample 2 - Pentene

Sample 1 - Pentane

Sample 1 - Pentene

3.025 g AgBF4/g PEO 



66 

 

 

Figure 4-15: Fraction of Residual Pentene in Membrane After Desorption 

The residual fraction increases with increasing silver salt concentration in the membrane.  This 

follows logically from the idea that the pentene molecules are strongly sorbed to silver ions in 

the membrane and some of them will form permanent binding that will not break up when 

subjected to desorption to release olefin from the membrane.  If there are more silver ions 

present, then more olefin molecules will be held in the membrane.   
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Figure 4-16: Modelling Desorption of Pentane from a Membrane with Silver Content 0.415 g AgBF4/g PEO 

 

 

Figure 4-17: Modelling Desorption of Pentene from a Membrane with Silver Content 0.415 g AgBF4/g PEO 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Fr
ac

ti
o

n
 P

e
n

ta
n

e
 D

e
so

rb
e

d
 

Time (min) 

Experimental

Model

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Fr
ac

ti
o

n
 P

e
n

te
n

e
 D

e
so

rb
e

d
 

Time (min) 

Experimental

Model

0.415 g AgBF4/g PEO 

0.415 g AgBF4/g PEO 



68 

 

 

 

Figure 4-18: Modelling Desorption of Pentane from a Membrane with Silver Content 0.498 g AgBF4/g PEO 

 

Figure 4-19: Modelling Desorption of Pentene from a Membrane with Silver Content 0.498 g AgBF4/g PEO 
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Figure 4-20: Modelling Desorption of Pentane from a Membrane with Silver Content 0.806 g AgBF4/g PEO 

 

Figure 4-21: Modelling Desorption of Pentene from a Membrane with Silver Content 0.806 g AgBF4/g PEO 
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Figure 4-22: Modelling Desorption of Pentane from a Membrane with Silver Content 1.054 g AgBF4/g PEO 

 

Figure 4-23: Modelling Desorption of Pentene from a Membrane with Silver Content 1.054 g AgBF4/g PEO 
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Figure 4-24: Modelling Desorption of Pentane from a Membrane with Silver Content 1.233 g AgBF4/g PEO 

 

Figure 4-25: Modelling Desorption of Pentene from a Membrane with Silver Content 1.233 g AgBF4/g PEO 
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Figure 4-26: Modelling Desorption of Pentane from a Membrane with Silver Content 1.980 g AgBF4/g PEO (Sample A) 

 

Figure 4-27: Modelling Desorption of Pentene from a Membrane with Silver Content 1.980 g AgBF4/g PEO (Sample A) 
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Figure 4-28: Modelling Desorption of Pentane from a Membrane with Silver Content 1.980 g AgBF4/g PEO (Sample B) 

 

Figure 4-29: Modelling Desorption of Pentene from a Membrane with Silver Content 1.980 g AgBF4/g PEO (Sample B) 
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Figure 4-30: Modelling Desorption of Pentane from a Membrane with Silver Content 2.060 g AgBF4/g PEO 

 

Figure 4-31: Modelling Desorption of Pentene from a Membrane with Silver Content 2.060 g AgBF4/g PEO 
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Figure 4-32: Modelling Desorption of Pentane from a Membrane with Silver Content 2.741 g AgBF4/g PEO (Sample A) 

 

Figure 4-33: Modelling Desorption of Pentene from a Membrane with Silver Content 2.741 g AgBF4/g PEO (Sample A) 
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Figure 4-34: Modelling Desorption of Pentane from a Membrane with Silver Content 2.741 g AgBF4/g PEO (Sample B) 

 

Figure 4-35: Modelling Desorption of Pentene from a Membrane with Silver Content 2.741 g AgBF4/g PEO (Sample B) 
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Figure 4-36: Modelling Desorption of Pentane from a Membrane with Silver Content 3.025 g AgBF4/g PEO (Sample A) 

 

Figure 4-37: Modelling Desorption of Pentene from a Membrane with Silver Content 3.025 g AgBF4/g PEO (Sample A) 
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Figure 4-38: Modelling Desorption of Pentane from a Membrane with Silver Content 3.025 g AgBF4/g PEO (Sample B) 

 

 

Figure 4-39: Modelling Desorption of Pentene from a Membrane with Silver Content 3.025 g AgBF4/g PEO (Sample B) 
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The desorption kinetics data were fit to the diffusion model (Eq #3) and the diffusivities of 

pentene and pentane were determined.  This was done by calculating the sum of squared errors 

(SSE) between the experimental data the model predictions, which were determined using Eq #3 

truncated at m=10.  The ‘solver’ function in Excel was used to vary the diffusivity value from an 

initial guess in order to determine the D value that minimizes the SSE for each case.  The model 

calculations using the diffusivity so determined are also presented in Figure 4-16 to Figure 4-39 

for comparisons.  It can be seen that the pentane curves fit the model extremely well – in most 

cases achieving complete overlap with a very low SSE.  However, the pentene desorption curves 

do not fit the model as smoothly.  This is because the desorption of pentane in the membrane is 

purely based on solution-diffusion, with no chemical interaction between pentane and the 

membrane.  Conversely, the deviation of pentene from the model curves suggests that the 

desorption process may not be diffusion controlled, and that there may be other factors in play, 

because of their chemical interactions.  This is expected, as the silver ions interact with the olefin 

molecules via complexation. Therefore, not only do the silver ions hold some olefin molecules 

permanently or semi-permanently as shown by the aforementioned residual fraction, the release 

of the olefin molecules from the silver containing membranes may not be governed by the 

Fickian diffusion process alone because the complexation between the pentene molecules and the 

silver in the membrane needs to be broken in order for the pentene molecules to leave the 

membrane.   

 

Figure 4-40 displays the observed diffusivity values determined by modelling the desorption 

kinetics as described above.   
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Figure 4-40: Diffusivities of Pentene and Pentane in PEO/AgBF4 Membranes With Different Silver Contents 
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Figure 4-41: Diffusivity Ratio (Diffusivity of Pentene/Diffusivity of Pentane) in PEO/AgBF4 Membranes With Different 

Silver Contents 
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silver ions and olefin molecules, one can conclude that the process is not governed by the 

physical diffusion only.   

 

Other possible mechanisms include the pseudo-first order model, pseudo-second order model, or 

Elovich model.  The general equations for each of these models are presented below:  

 

 Pseudo-first order model: (
  

  
)           Eq #4 

 Pseudo-second order model: (
  

  
)            Eq #5 

 Elovich model: (
  

  
)        Eq #6 

 

where q represents the amount of pentene desorbed at time t normalized by the total amount of 

pentene desorbed at equilibrium.  In other words q is the fraction of the maximum pentene 

desorption that has been achieved at time t.  k1, k2, a and α are parameters characterizing the 

desorption system.  Especially, the first and second order equations take into account the 

chemical interactions between the sorbate and membrane.     

 

The pseudo-first order and pseudo-second order equations can be directly integrated and 

linearized to give equations #7 and #8. The boundary conditions applied were qt = 0 @ t = 0 and 

qt = qt @ t = t, where qe represents the amount of pentene desorbed at equilibrium.   

 

 Pseudo-first order model:   (  
  

  
)       Eq #7 
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 Pseudo-second order model: 
 

  
 

 

   
  

 

  
  Eq #8 

 

The Elovich model can be integrated and linearized as well, and by assuming that aαt >> 1 and 

applying the same boundary conditions as above, equation #9 results (Ho and McKay, 2002). 

 

 Elovich model:                    Eq #9 

 

Therefore, by plotting   (  
  

  
) vs t, t/q vs t, and q vs ln(t), the data can be compared to the 

three models (Ho and McKay, 2002).  One set of these plots, for a membrane containing 1.233 g 

AgBF4/g PEO, is presented in Figure 4-42 to Figure 4-44.  Similar results can also be found for 

other membranes containing different silver contents. For instance, the desorption data for the 

membrane containing 1.890 g AgBF4/g PEO as compared to the 3 models are shown in Figure 

4-45 toFigure 4-47.  For illustration purposes only, membranes with mid-range silver contents 

(i.e., 1.233 and 1.890 g AgBF4/g PEO) were chosen as representatives for the evaluation of the 

pentene desorption mechanism.   
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Figure 4-42: Desorption of Pentene from Membrane with Silver Content 1.233 g AgBF4/g PEO – Testing 1st Order Model 

 

 

Figure 4-43: Desorption of Pentene from Membrane with Silver Content 1.233 g AgBF4/g PEO – Testing 2nd Order 
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Figure 4-44: Desorption of Pentene from Membrane with Silver Content 1.233 g AgBF4/g PEO – Testing Elovich Model 
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Figure 4-45: Desorption of Pentene from Membrane with Silver Content 1.890 g AgBF4/g PEO – Testing 1st Order Model 

 

 

Figure 4-46: Desorption of Pentene from Membrane with Silver Content 1.890 g AgBF4/g PEO – Testing 2nd Order 
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Figure 4-47: Desorption of Pentene from Membrane with Silver Content 1.890 g AgBF4/g PEO – Testing Elovich Model 
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surface is fast.  It must be faster than the desorption reaction, because the process is governed by 

a pseudo-second order reaction mechanism and not by diffusion.   

 

4.4. General Discussion 

 

This study investigates the permeation, sorption, and desorption behaviour of a C5 olefin and 

paraffin in AgBF4/PEO polyelectrolyte membranes.  The membrane is observed to behave very 

differently towards pentene and pentane, in both liquid and vapour forms, as to the gaseous C2 

and C3 olefins and paraffins.   

 

The equilibrium sorption uptake of pentene is in the range of 0.15 to 1.60 g pentene/g membrane, 

depending on the silver content in the membrane.  This uptake is much higher than propylene 

uptake (maximum value of 0.084 g propylene/g membrane) reported in literature for a membrane 

made of the same materials (Sunnderrajan et al., 2001).   

 

In terms of membrane stability, olefin molecules tend to have a negative impact on membrane 

performance.  In this study, liquid pentene caused membrane failure.  Gaseous olefin molecules 

have been shown to have irreversible negative effects on the membrane performance, which is 

noticeable within a short period of time.  It appears that the damage to the membrane caused by 

the liquid olefin is more severe than that caused by the gaseous olefin.  This is primarily due to 

the increased sorption uptake of liquid olefin in the membrane.  When the membrane sorbs the 

liquid olefin molecules, it results in swelling of the membrane, and some of the sorbed olefin 

molecules form permanent bonds with the silver in the membrane.  
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5. Conclusions 

 

The threshold silver concentration in the membrane, at which the pentene/pentane permeability 

ratio begins to increase, appears to be ~2.5 g AgBF4/g PEO.  Beyond this concentration, the 

silver ions in the membrane are close enough together to allow hopping of pentene molecules 

from site to site across the membrane, thereby transporting pentene molecules across the 

membrane. 

 

Increasing silver concentration in the membrane significantly decreases the stable operating 

period of the membrane.  For example, increasing the PEO:AgBF4 ratio from 1:1 to 3:1 

decreased the membrane lifetime from 30 to 2 hours.  This is found to be correlated to the 

permanent or semi-permanent bonds between pentene molecules and the silver in the membrane.   

 

The maximum sorption for pentene and pentane was shown to occur at a moderate silver 

concentration in the membrane.  At all silver salt concentrations tested, the pentene sorption was 

higher than the pentane sorption.  This is in agreement with physical reasoning that silver ions in 

the membrane have a strong affinity to unsaturated olefin molecules.  

 

By fitting the desorption kinetic data of pentene and pentane from the membrane to a diffusion-

based model, the effective diffusivity of the penetrant was determined.  Pentane was shown to 

have a generally higher diffusivity than that of pentene.  However, the observed pentene 
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diffusivity is not be the true diffusivity, as the desorption rate is not truly governed by a simple 

diffusion mechanism.   

 

It was found that a fraction of pentene sorbed in the membrane was held permanently or semi-

permanently by the silver ions in the membrane, and this portion of the pentene sorbate could not 

be released from the membrane when subjected to desorption at ambient conditions.  Pseudo-2
nd

 

order kinetics was shown to describe the pentene release from the membrane well for the portion 

that could be desorbed, due to the interaction of the pentene with the silver ions in the 

membrane.   
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6. Recommendations 

 

Based on the present study, the following are recommended for further studies: 

 

(1) Investigate possible methods to improve membrane stability.  Alternative polymers or 

polymer blends should be explored in order to minimize membrane swelling and therefore 

prevent membrane failure.  Such polymers should be able to form polymer electrolytes with 

AgBF4, which has been shown to complex olefin molecules and can be used as a facilitating 

agent for olefin transport across the membrane.  

 

(2)  Once the membrane stability is improved, further directions of inquiry should be to: 

 

(A)  Test the permeation, sorption, and desorption of a pentene/pentane mixture using the   

polymer electrolyte membranes.  From literature it is evident that the behaviour of olefins  

and paraffins in polymer electrolyte membranes changes when they are together.   

 

(B) Test the permeation, sorption, and desorption of olefin/paraffin pairs of different  

chain lengths using the polymer electrolyte membranes. Observing the behaviour of  

butene/butane and hexene/hexane systems, for example, will give better insight into the  

effect of chain length of the permeants on their membrane interactions.   
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Appendix A – Sample Calculations 

 

Determining Pentene Flux: 

 

For a membrane content of 3g AgBF4/g PEO: 
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Determining Pentane Flux 

 

For a membrane content of 3g AgBF4/g PEO: 
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Determining Pentene/Pentane Permeability Ratio 

 

For a membrane content of 3g AgBF4/g PEO: 
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Determining Sorption Uptake 

 

For a homogeneous membrane with silver content 0.415 g AgBF4/g PEO:  
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For a membrane cast on filter paper with silver content 2.741 g AgBF4/g PEO:  
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Determining Pentene/Pentane Sorption Ratio 

 

For a homogeneous membrane with silver content 0.415 g AgBF4/g PEO  

 

               
                       

                       
 

               
     

     
 

                    

 

For a membrane cast on filter paper with silver content 2.741 g AgBF4/g PEO:  

 

               
                       

                       
 

               
     

     
 

                    

 


