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Abstract

A straight line drawing of a graph is an open weak rectangle-of-influence (RI)
drawing, if there is no vertex in the relative interior of the axis parallel rect-
angle induced by the end points of each edge. Despite recent interest of the
graph drawing community in rectangle-of-influence drawings, no algorithm
is known to test whether a graph has a planar open weak RI-drawing, not
even for inner triangulated graphs.

In this thesis, we have two major contributions. First we study open weak
RI-drawings of plane graphs that must have a non-aligned frame, i.e., the
graph obtained from removing the interior of every filled triangle is drawn
such that no two vertices have the same coordinate. We introduce a new
way to assign labels to angles, i.e., instances of vertices on faces. Using this
labeling, we provide necessary and sufficient conditions characterizing those
plane graphs that have open weak RI-drawings with non-aligned frame. We
also give a polynomial algorithm to construct such a drawing if one exists.

Our second major result is a negative result: deciding if a planar graph
(i.e., one where we can choose the planar embedding) has an open weak
RI-drawing is NP-complete. NP-completeness holds even for open weak RI-
drawings with non-aligned frames.
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Chapter 1

Introduction

A graph is a discrete structure, consisting of vertices (sometimes also called
nodes or points) and a set of connections between vertices (sometimes called
edges, arcs or links.) We naturally visualize graphs as link-node diagrams.
In many applications this link-node diagram is in fact the actual subject of
interest. This defines the scope of graph drawings. Producing easily readable
diagrams can be very helpful for large and complex graphs. For large scale
relations we desire automated construction of such diagrams.

Constructing a diagram for a given graph is not hard, however, in certain
applications we would like to add some constraints to the way a diagram is
drawn. A common restriction is planarity, that is, no two links may intersect
or pass through a node they are not attached to. Another standard restriction
is to force links to be straight, defining straight-line drawings. It is easy to
see how these two constraints can improve readability of a diagram. Here,
we are interested only in diagrams with these two standard properties.

In this thesis, we study the diagrams that have an additional restriction:
The axis-aligned rectangle containing a link as its diameter should contain
no node in its interior. Figure 1.1(b) depicts an example of such a drawings.
This restriction makes the diagrams easier to read and the relative placement
of nodes and links more clear. We present algorithms to find such diagrams
for some classes of graphs. We also prove hardness of finding such diagram
if the input is an abstract graph without a fixed embedding.

Next we review some standard definitions before defining this problem
precisely and outlining our results.
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(a)

(b)

Figure 1.1: A plane graph G (a) and a open weak rectangle-of-influence
drawing of G (b).

1.1 Standard Notation

Here we review a set of standard definitions that are used extensively in the
domain of graph theory. These definitions can be found in any standard
graph theory textbook (e.g. see [7, 34]).

An undirected graph G is a pair consisting of a set of vertices V (G) and
a multiset of edges E(G) where each element e in E(G) is a pair (u, v), with
u, v ∈ V (G). A directed graph D is a pair consisting of a set of nodes V (D)
and a multiset of arcs E(D) where each element e in E(D) is an ordered pair
(u, v), with u, v ∈ V (D). We always use n to denote the number of vertices
of a graph G. The two vertices associated with each edge e are referred to
as the ends of e. For a directed edge e = (u, v), u and v are called tail and
head of e respectively.

A subgraph H of a graph G is a graph with V (H) ⊂ V (G) and E(H) ⊂
E(G). The graph induced in G by a set S ⊂ V (G), denoted as G[S], is the
maximal subgraph of G with V (G[S]) = S. Subdividing an edge (u, v) of a
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graph G is the act of removing (u, v) from G and adding a vertex z and edges
(u, z) and (z, v) to G. A graph H is a subdivision of G if it can be obtained
by iteratively subdividing edges of G.

In a graph G, a sequence (w1, w2, . . . , wk) of vertices is a w1wk-walk of
length k − 1 if (wi, wi+1) ∈ E(G) for all 1 ≤ i < k. A closed walk is a
walk that begins and ends in the same vertex. A path is a walk that visits
each vertex at most once. A cycle is a closed walk that visits each vertex
at most once except that it begins and ends in the same vertex. Pi and Ci

denote the path of length i − 1 and the cycle of length i, respectively. A
graph is connected if for any two vertices u and v, there is a uv-path in G.
A connected component of G is a maximal subgraph G[S] that is connected.
A graph is disconnected if it has more than 1 connected component. A set
S ⊂ V (G) is a cut set of the connected graph G if the graph G[V (G)− S] is
disconnected. A graph is i-connected if it has no cut set of size smaller than
i.

A graph can be represented in the plane by placing a unique point pw
for each w ∈ V (G) and then drawing a simple curve ce from pu to pv for
each e ∈ E(G) with e = (u, v). Such a representation is called a drawing
of the graph G. For simplicity the elements of the graph and the elements
of the drawing are mostly referred to in an interchangeable way, that is,
references to v and e are used instead of pv and ce, respectively. A straight-
line drawing of G is a drawing of G in which all edges are drawn as straight
line segments. A planar drawing of G is a drawing of G in which no two edges
cross anywhere except at their endpoints (see Figure 1.2). A graph is called
planar if it has a planar drawing. A set of planar drawings of a planar graph
G can be specified by giving for each vertex the cyclic order of edges around
it. Such a fixed ordering is called an embedding of the graph G. A planar
embedding of G is an embedding such that there exists some planar drawing
of G respecting it. A planar embedding divides the plane into topological
regions called faces. The unbounded region is called the outer face, all other
faces are called inner faces. Any vertex not on the outer face is called an
inner vertex. A plane graph is a planar graph with a planar embedding and
the outer face specified. The set of faces of G is denoted by F (G). An inner
triangulated graph is a plane graph in which every inner face is a triangle; it
is called triangulated if the outer face is also a triangle.

Note that in a planar embedding of a graph, each edge is adjacent to
exactly two faces or the same face twice. The dual of the plane graph G,
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Figure 1.2: A planar drawing (a) and a non-planar drawing (b) of the planar
graph G with V (G) = {a, b, c, d} and E(G) = {(a, b), (a, c), (b, c), (b, d)}.

denoted D(G), is the graph obtained from G as follows:

• For each face f of G there is a vertex vf in D(G),

• For each edge e in E(G) that is adjacent with faces fa and fb, there is
a (vfa , vfb) edge in D(G).

Note that D(G) is not necessarily simple, even if G is simple (see Figure 1.3).
Also, each planar embedding of G yields a planar embedding of D(G).

e

d

b

a

c

Figure 1.3: A graph G with 5 vertices, a, b, c, d, e (solid), and its dual (dashed
edges and hollow vertices).

1.2 Motivation and Problem Statement

Drawings of graphs have been a matter of interest for almost as long as
graphs themselves. As a class of drawings, proximity drawings have recently
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been studied extensively. In proximity drawings each edge shows a “close-
ness” relationship between its two ends and for any definition of “closeness”
a corresponding type of proximity drawing is defined. A strong proximity
drawing is a planar straight-line drawing in which two vertices are adjacent
if and only if they are “close” in some predefined sense. A weak proximity
drawing is a planar straight-line drawing in which two vertices are adjacent
only if they are “close”. In many applications two nodes can communicate
in some sense, if they are “close” to one another.

A common way to define proximity drawings is assigning a region of influ-
ence to each edge. Then two vertices are “close” if the corresponding region
does not contain any other vertices. For example, the proximity drawing
can model a graph modeling a method of communication where existence of
another node in the region of influence will cause interference in the commu-
nication.

In proximity drawings based on region of influence, if the region assigned
to an edge is defined to be the axis-parallel rectangle that has the two ends
of the edge as the two ends of its diameter, then the corresponding drawing
would be a rectangle-of-influence drawing. If the region assigned to a (u, v)
edge is the circle that has u and v as the two ends of one of its diagonals, then
the drawing would be a Gabriel drawing. A list of such types of drawings
is given in Table 1.1. In this thesis we will only study rectangle-of-influence
drawings.

Most early results were focusing on strong proximity drawings. Battista
et al. [4] suggested that weak proximity drawings deserve to be studied more.

The constraints that define different versions of proximity drawings arise
in computer graphics, computational geometry, pattern recognition, com-
putational morphology, numerical analysis, computational biology, and GIS
(e.g. see Chapter “Graph drawing” of [17]). One of the motivations for
rectangle-of-influence drawings as stated in [21] is rectangular visibility where
two vertices are rectangularly visible if the corresponding rectangle of influ-
ence is empty (e.g. see [25, 11]).

Planar rectangle-of-influence drawings have another useful property: In a
rectangle-of-influence drawing moving vertices without changing the relative
order of vertices cannot cause a vertex to enter the rectangle-of-influence of an
edge. This implies that a planar rectangle-of-influence drawing stays planar
as long as the relative order of vertices with respect to both coordinates is
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Name Region of influence
corresponding to
e = (u, v)

Illustration Ref.

Gabriel drawing The circle with (u, v)
as a diagonal

[14]

Rectangle-of-Influence
drawing

The axis-aligned rect-
angle with (u, v) as a
diagonal

[12]

Strip drawing The strip formed by
the locus of lines that
are perpendicular to
(u, v)

[8]

Relative neighborhood
drawing

The intersection of the
two circles that are
centered at u and v
and have radius d(u, v)

[32]

Table 1.1: Some possible ways to define the region of influence
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preserved. For example, using this property one can shift vertices and make
space for inserting drawings of other elements (e.g. labels) without worrying
about violating planarity.

Aside from known applications of rectangle-of-influence drawings, in this
thesis we show a strong structural relation between open planar rectangle-
of-influence drawings and rectangle-contact drawings, which in turn leads
to applications in VLSI design and architectural planning (e.g. see Chap-
ter “rectangular drawing algorithms” of [30]). We will introduce rectangle-
contact drawings in Section 2.3.

1.3 Prior Work

The rectangle-of-influence (RI for short) drawability problem was introduced
by Liotta et al. [21]. Recall that in a strong RI drawing of a graph, there
is an edge between two vertices of the graph if and only if there is no other
vertex in the axis-parallel rectangle defined by the two ends of every edge
(see Figure 1.4(a)). There are two variants of RI-drawings: In a closed RI-
drawing, the rectangle required to be empty is closed, whereas in an open
RI-drawing, only the relative interior of the rectangle is required to be empty.
Liotta et al. [21] gave complete characterization of cycles, wheels, outerpla-
nar graphs, and triangle-free graphs that are strong open RI drawable. For
strong closed RI drawable graphs, they presented complete characterization
of cycles, wheels and trees.

(a) (b)

Figure 1.4: A strong RI-drawing (a) and a weak RI-drawing (b).

Biedl et al. [5] were the first to study weak RI drawings. Recall that
this means that graphs are drawn such that for any edge the corresponding
axis-aligned rectangle is empty, but for all such empty rectangles the edge
is not necessarily present (see Figure 1.4(b)). They proved that a plane
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Figure 1.5: A graph with an open weak planar RI-drawing.One can show
that it has no open strong planar RI-drawing.

graph has a planar weak closed RI drawing if and only if it has no filled
triangle (i.e., a triangle that has vertices in its interior.) Furthermore, they
presented an algorithm to find such a drawing in an (n− 1)× (n− 1) grid in
linear time. Recently, Sadasivam and Zhang [29] improved this grid size to
(n− 3)× (n− 3). They also show that there are infinitely many weak closed
RI drawable graphs that admit no drawing on W ×H grid with H < n− 3
or W < n − 3. In the case of quadrangulations, Barrière and Huemer [2]
proved that all quadrangulated graphs admit weak closed RI drawings. They
presented an algorithm to find such a drawing in an (n− 2)× (n− 2) grid.

For open RI drawings, better bounds for the size of the drawing are
known. Miura and Nishizeki [24] presented an algorithm to find a small
weak open RI drawing of a given 4-connected graph, if the input graph has
more than 3 vertices on the outer face. Note that these two conditions imply
that there is no filled triangle in the input graph. Their grid size is W ×H
where W +H ≤ n. Zhang and Vaidya [35] also provided small weak open RI
drawings for inner triangulated 4-connected graphs with quadrangular outer
face. They do this by proving that the drawing presented by Fusy [13] is a
weak open RI drawing.

In this thesis, we focus on weak open RI-drawings. No necessary and
sufficient conditions or testing algorithms are known for the existence of
(weak planar) open RI-drawings, even for inner triangulated graphs. This
study was initiated by Miura, Matsuno and Nishizeki [23]. We briefly review
their results here to motivate our work, and give a detailed review in Chapter
4. Miura et al. first gave necessary and sufficient conditions for planar weak
open RI-drawability of triangulated planar graphs. Here all faces including
the outer-face are triangles, so the outer-face is a filled triangle, which severely
restricts the placement of the vertices not on the outer-face and hence makes
testing existence of a weak open RI-drawing easy.

8



Strong
RI-drawings

Weak
RI-drawings

Weak
RI-drawings
with non-aligned
frame

Closed cycles, wheels and
trees [21]

All graphs [5] All graphs [5]

Open cycles, wheels,
outerplanar graphs,
and triangle-free
graphs [21]

Triangulated graphs
and special cases of
inner triangulated
graphs [23]

All graphs (Chapter
4)

Table 1.2: Classes of graphs for which existence of planar RI-drawings can
be tested.

Miura et al. [23] also aimed to develop necessary and sufficient conditions
for existence of a weak open RI-drawing for inner triangulated graphs, but
did not succeed. Such a drawing imposes conditions on how filled triangles
are drawn; a natural first step is hence to remove the interior of all filled
triangles and try to draw the resulting frame graph while satisfying these
conditions. Miura et al. then changed their model a bit and only considered
what they called oblique drawings where no edges of the frame graph are
drawn horizontally or vertically. They still could not give necessary and
sufficient conditions for oblique drawings, but they gave one set of conditions
that are clearly necessary, and showed that adding one condition made them
sufficient. We review their result in more detail in Section 4.1. Table 1.2
contains a summary of known results on recognition of RI drawable plane
graphs.

1.4 Our Results

In Chapter 2 we give some definitions that will be used throughout the thesis.
In Chapter 3 we introduce a new way to assign labels to the angles of a plane
graph. This way of labeling is used in the following chapters extensively.
In Chapters 4 and 5 we study RI drawings of plane and planar graphs,
respectively. These two chapters contain the core of our contribution. We
will conclude in Chapter 6.
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1.4.1 Plane Graphs

In chapter 4 we study a slight variant of oblique drawings that we call draw-
ings with non-aligned frame, which means that no two vertices of the frame
graph have the same x-coordinate or the same y-coordinate. We give nec-
essary and sufficient conditions for a plane graph to have a planar weak
open RI-drawing with a non-aligned frames. Our results applies to any plane
graph (whereas Miura et al. required an inner triangulated graph). Having
a non-aligned frame is crucial for our algorithm to work, but of course is a
very artificial restriction. We view this as a first step towards to the exact
characterization of weak open RI-drawable plane graphs.

Note that every drawing with non-aligned frame is oblique, but the other
direction does not hold (and in fact, in Chapter 6 we give an example of
a graph that has a RI drawing with an oblique frame, but no RI drawing
with a non-aligned frame). The two concepts are the same if the outer-face
is nice in some sense; this is the additional condition by Miura et al.. So
the thesis supersedes the results by Miura et al., but improves it in that we
exactly characterize the graphs that have a non-aligned frame drawing and
can handle graphs that are not inner triangulated.

Our proof is algorithmic and yields a test of whether a plane graph has a
planar weak open RI-drawing with non-aligned frame; it also constructs such
a drawing if one exists. Also, the algorithm is developed via a detour into
rectangular drawings and proves a correspondence between RI-drawings and
rectangular drawings that may be of independent interest.

1.4.2 Planar Graphs

Our drawability result crucially relies on using the dual graph, hence it cannot
be applied if the planar embedding is not fixed (i.e. the graph is planar, rather
than plane).

Liotta in Chapter “proximity drawings” of [30] points out that “it would
be interesting to characterize which planar graphs have a weak open rectangle
of influence drawing”. In chapter 5, we show that most likely there is no
quickly verifiable characterization of planar graphs that admit weak open
RI drawings. To be exact, we prove NP-completeness of the problem of
deciding if an open RI-drawing for a given planar graph exists by a reduction

10



from NOT-ALL-EQUAL-3-SAT. To the best of our knowledge, this is the first
hardness result regarding RI drawings. The graphs that we construct are
2-connected and the truth assignment is made based on flipping 3-connected
components of this constructed graph, very similar (and based on) a proof
by Garg and Tamassia [15].
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Chapter 2

Preliminaries

In this chapter we present some more definitions and a few well-known results.
These definitions will be used extensively in the next chapters.

2.1 More definitions

Assume G is a plane graph. A triangle of G is called filled if there is at
least one vertex inside the triangle. Crucial for our study is the frame graph,
which is the graph obtained by removing the inside of every filled triangle
(see Figure 2.1). In order to create RI-drawings, we will create drawings of
the frame graph and then “paste in” drawings of the filled triangles. Recall
that filled triangles play an important role in RI-drawings, as Biedl et al.[5]
showed that all graphs that do not have any filled triangles are closed RI-
drawable and hence also open RI-drawable.

Also crucial is the concept of angles of a plane graph. In an embedding of
a graph G, each instance of a vertex v appearing in a face is called an angle.
Note that each angle can also be identified by a vertex v and two edges (or
one edge twice) that appear consecutively around v. For an angle α, let f(α)
and v(α) denote the corresponding face and vertex, respectively. The angles
on the outer face are outer angles and the angles on the inner faces are called
inner angles. Two angles are adjacent if they share an edge and are on the
same face. A chain C = (α0, α1, . . . , αk−1) of angles is a sequence of distinct
adjacent angles along a face. We will denote the number of angles in C by
|C| (see Figure 2.2).

12



(a) (b)

Figure 2.1: A graph (a) and the corresponding frame graph (b).

α0

α1

α2

α3
β

Figure 2.2: A chain of outer angles C = (α0, α1, α2, α3) with |C| = 4 and a
chain of inner angles B = (β) with |B| = 1.

2.1.1 Duals and Surrounding-dual

Given a plane graph G, the dual graph D(G) is obtained by creating a
vertex vf for every face f , and adding an edge (vf , vg) whenever faces f and
g share an edge. The vertex of D(G) corresponding to the outer face of G
is called the outer face vertex. The inner-dual graph D−(G) is obtained by
removing the outer face vertex of D(G). The angles in D(G) are in natural
1-1 correspondence with the angles of G: The angle at vertex v in face f
corresponds in the dual graph to the angle at vertex vf in the face formed
where v used to be (see Figure 2.3(a)).

Here we define a modification to the dual graph. The surrounding-dual
of a graph G, denoted D∗(G), is obtained from D(G) by replacing the outer
face vertex and any other vertex v that has degree k > 3 with a cycle of
length k such that each edge of v in D(G) is incident to one the vertices of
this cycle (see Figures 2.3 and 2.4). More formally, D∗(G) is obtained from
G as follows:

(i) Let G+ be the graph obtained from G by adding one vertex vf in the
outer face and each non-triangular inner face f .

(ii) For each angle α at an instance of a vertex u on a non-triangular face

13



α

β

(a)

α

γ

γ1
i

γ2
i

αi

(b)

Figure 2.3: An angle α of G and the corresponding angle β in D(G) and γ
in D∗(G).

(a) (b)

Figure 2.4: A graph G (solid) along with its dual D(G) (hollow vertices
and dashed edges) (a) and its surrounding dual D∗(G) (hollow vertices and
dashed edges) (b).

or outer face f , add an edge from u to vf in G+ at the place (in the
cyclic order around u) where α was.

(iii) Then D∗(G) is the graph dual of G+ with the outer face vertex removed,
i.e. D−(G+).

Observe that there is a one-to-many correspondence between angles of G and
the angles of D∗(G) (see angles α and αi in Figure 2.3(b)).

14



2.1.2 Flipping a Graph

Recall that a plane graph has a fixed cyclic order of edges at every vertex and
a fixed outer face. If we reverse the order at all vertices, then we obtain a
different planar embedding, which corresponds to having flipped (mirrored)
the planar drawing (see Figure 2.5). We will sometimes need to do this for
subgraphs. So let G be a planar graph with a fixed planar embedding and let
G′ be a subgraph of G such that for all vertices v in G, the edges of v in G′

form a consecutive set in the ordering of edges of v in the planar embedding of
G. The planar embedding obtained by flipping G′ is the embedding resulting
by reversing the order of edges in G′ at each vertex in G. We will only apply
this operation at subgraphs for which the resulting embedding is again planar.

b

a

c

d de eb

c

a

Figure 2.5: Two drawings of the same planar graph with embeddings that
are flipped versions of each other.

2.2 RI-drawings

Recall that a planar straight-line drawing of a planar graph is a drawing with-
out edge crossing where all edges are straight line segments. Such a drawing
is called a planar weak open rectangle-of-influence (RI for short) drawing if
for every edge (v, w), the relative interior of the axis-parallel rectangle de-
fined by v and w contains no other vertex. The drawings in Figure 2.6(a)
and Figure 2.6(b) are both planar weak open RI drawings. Since we will
rarely consider any other type of RI-drawing, we omit the classifiers “pla-
nar”, “weak” and “open” occasionally.

A straight-line drawing of a graph is oblique if no edge in the drawing is
axis parallel. It is non-aligned if no axis parallel line intersects two or more
vertices of the graph. Every non-aligned drawing is oblique, but not vice
versa.
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u

v

(a)

u

v

(b)

Figure 2.6: A drawing that is both a weak open RI drawing and a weak
closed RI drawing (a) and another weak open RI drawing of the same plane
graph that is not a weak closed RI drawing (b).

Recall Biedl et al. [5] proved that a graph has a closed RI-drawing if
and only if it has no filled triangle. Also, a non-aligned open RI-drawing by
definition of non-aligned has no vertices on the boundary of any axis-aligned
rectangle induced by an edge, except for the two ends of that edge. This
means any non-aligned RI-drawing is a closed RI-drawing. Also, it is easy to
see (and we will formally show it in Chapter 4) that any closed RI-drawing
can be made into a non-aligned RI-drawing by moving some of the vertices
by a small amount. Therefore, a graph has a non-aligned open RI-drawing
if and only if it has no filled triangle.

2.3 Orthogonal Drawings and Relatives

In this section we introduce several types of drawings that are in contrast with
oblique drawings: A straight-line drawing of a graph is called an orthogonal
drawing if all edges are axis aligned.1 Figures 2.7(a and b) show two different
orthogonal drawings of the same plane graph. We will be using orthogonal
drawings in both our major results, showing an strong connection between
RI-drawings and special cases of orthogonal drawings. The following types
of drawings are all orthogonal drawings.

1In the graph drawing literature sometimes the term “orthogonal drawing” is used to
refer to a drawing that has edges drawn as a series of axis-aligned line segments. Such a
drawing need not be a straight-line drawing and might introduce bends on edges. Here,
we do not consider such drawings: for us an orthogonal drawing has no bends.
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(a) (b)

Figure 2.7: Two orthogonal drawings of the same graph.

(a) (b) (c)

Figure 2.8: A graph G (a), its surrounding-dual D∗(G) (b), and a subdivision
of D∗(G) (c).

A planar orthogonal drawing of a plane graph G is said to be a rectangle-
contact drawing of G with respect to a subset of faces F ′ ⊂ F (G), if:

• each face in F ′ has a rectangular boundary, and

• each edge of G is adjacent with at least one of the faces in F ′.

(For example, see Figures 2.9(a,b, and c).)

A planar orthogonal drawing of a graph G is called an inner-rectangular
drawing if all inner faces in the drawing have a rectangular boundary (e.g.
see Figures 2.9(b and c)). In other words, it is a rectangle-contact drawing
of G with respect to F ′ where F ′ is the set of all inner faces of G.

An inner-rectangular drawing of a graph G is a rectangular drawing if
the outer face is also a rectangle. In other words, a rectangular drawing is
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(a) (b) (c)

Figure 2.9: A rectangle-contact drawing (a, faces of F ′ are hatched), an
inner-rectangular drawing (b), and a rectangular drawing (c) of the graph
depicted in Figure 2.8(c).

a rectangle-contact drawing with respect to all faces F (G) (e.g. see Figure
2.9(c)).

The next four types of orthogonal drawings corresponding to a graph G
are not drawings of G itself, but drawings of some subdivision of D∗(G), i.e.
the dual graph of G with vertices of high degree replaced by cycles.

A rectangle-contact dual drawing of G is a rectangle-contact drawing of
a subdivision of D∗(G) with respect to the set of faces of D∗(G) that cor-
respond to vertices of G. Figures 2.9(a,b, and c) depict rectangle-contact
dual drawings of the graph in Figure 2.8(a). In fact, a rectangle-contact dual
drawing of a graph gives us a representation of the vertices of the graph by
a set of non-overlapping rectangles, where two rectangles touch if and only if
there is an edge between their corresponding vertices. Drawing planar graphs
as contact graphs is a topic of its own that we will not review in detail here.
Rectangle-contact dual drawings are crucial for our arguments in Chapter 4.

An inner-rectangular dual drawing of G is an inner-rectangular drawing
of a subdivision of D∗(G). Figures 2.9(b, and c) depict inner-rectangular
dual drawings of the graph in Figure 2.8(a).2

A rectangular dual drawing of G is a rectangular drawing of a subdivision
of D∗(G). Figure 2.9(c) depicts a rectangular dual drawing of the graph in
Figure 2.8(a).

2In the literature, “inner-rectangular dual drawing” usually refers to a drawing of a
subdivision of D(G), not D∗(G). Our drawing type perhaps should be called “inner-
rectangular surround-dual drawing”, but we drop “surround” to keep things somewhat
shorter.

18



2.4 Networks Flows and Circulations

In the next chapters, we will be referring to the concept of network flows. In
Chapter 4 we will use some network flow algorithms to construct restricted
orthogonal drawings. In Chapter 5 we will use some hardness result on
network flows. Here we briefly recall some definitions regarding network
flows and circulations.

Let G be a directed graph with a capacity set s(e) ⊆ R assigned to
each edge e ∈ E(G) and a consumption s(v) ∈ R assigned to each vertex
v ∈ V (G). A valid flow assignment is an assignment of a flow f(e) ∈ R to
each edge e ∈ E(G) such that:

• f(e) ∈ s(e) for any e ∈ E. 3

• The sum of the flow of the incoming edges of v minus the sum of the
flow of the outgoing edges of v is equal to the consumption of v.

In chapter 4 we will be using network flow to find orthogonal drawing of a
graph that will help us find an RI-drawing with a non-aligned frame of a
given graph.

A circulation is a special case of a network flow in which all vertices have
consumption f(v) = 0. Garg et al. [15] showed that, given an undirected
graph G with a discrete capacity set for each edge, it is NP-hard to assign
directions to the edges of G so that the resulting graph has a valid circulation.
In chapter 5 we will present a reduction from a special case of this problem to
prove NP-hardness of the problem of finding an open RI-drawing of a given
planar graph.

3Note that this definition is different from the usual definition of network flows and in
fact is a generalization of “normal” network flow, where s(e) = [0, c] for some capacity c.
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Chapter 3

Axis-Count Labelings

In this chapter, we will define a new way of assigning labels to angles of
a graph drawing that captures the combinatorial structure of the drawing.
The definition is such that it includes the labeling methods defined in the RI
drawing literature [23] as well as the labeling methods defined for rectilinear
drawings (e.g. see [30, 3]). In Chapter 4 we use this labeling to construct
open weak RI-drawings with non-aligned frames. In Chapter 5 we solve a
given instance of NOT-ALL-EQUAL-3-SAT based on such labeling of an open
RI-drawing of a planar graph. We believe this new type of labeling to be of
independent interest.

A labeling is an assignment of real numbers to each angle α of a plane
graph G. For any drawing of G, the free rays of an angle α are axis-aligned
rays with apex at v(α) that extend into f(α); e.g. any right angle that is not
axis-aligned has exactly one free ray. An Axis-Count labeling (AC for short)
for a straight-line drawing of a graph is a labeling defined as follows: Let ΓG

be a straight-line drawing of a graph G. Based on ΓG, to each angle α of G
we assign a label `(α) ∈ {0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4} that counts how many
coordinate axes are covered by this angle (see Figure 3.1). More precisely,
let 0 ≤ a ≤ 2 be the number of axis-aligned edges of α in ΓG. Let b be the
number of free rays of α, that is, the number of coordinate axes contained in
the strict interior of the angle α in ΓG. Then `(α) = a

2
+ b. A few examples

of drawings and corresponding AC labelings are given in Figure 3.2.

Next, we show some properties of AC labels of drawings:
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3

0
1

3.5

0.5

(a)

Figure 3.1: The AC labels of the angles around two vertices of a straight-line
drawing of a plane graph.

Lemma 3.1 In any AC labeling of a connected graph, the following proper-
ties hold:

a) The sum of labels around each vertex is 4.

b) Let α1 and α2 be two consecutive angles on vertex v, sharing the edge e
(see Figure 3.3). Let α be the angle that replaces α1 and α2 when removing
e from the drawing. Then `(α) = `(α1) + `(α2).

c) The sum of labels on an inner face with k angles is 2k − 4.

d) The sum of labels on the outer face with k angles is 2k + 4.

Proof. We prove each property separately:

(a) This property holds since there are exactly four axis-aligned rays with
apex at v and each of them contributes exactly 1 to the sum of the AC
labels around v: It either is in the interior of exactly one angle or it
belongs to two angles if there is an edge drawn on it, and then adds 1/2
to the label of both angles.
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Figure 3.2: An oblique RI-drawing (a), an orthogonal drawing (b) and a
drawing with both oblique and axis aligned edges (c) with corresponding AC
labelings.

(b) This is straightforward to check by definition of AC labels.

(c) We prove this property using induction. It is easy to check that the claim
holds for triangles (Figure 3.4 illustrates some of these cases).
Now consider the case of a face f with k > 3 angles. It is well known
that there is a pair of vertices α and β on the boundary of f such that
the line segment αβ is completely inside f and intersects f only at its
endpoints. Such line segment is called a chord of a polygon (e.g. see
[17]). Let f1 and f2 be the faces obtained from subdividing f by drawing
this (α, β) edge. Let the number of the angles in f1 and f2 be k1 and k2,
respectively. Since two angles were replaced by four new angles, we have
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α1α2

e

Figure 3.3: Label α with `(α) = `(α1) + `(α2) depicting Property b of AC
labels.

k1 + k2 = k + 2. By induction, the sum of inner angles of f1 and f2 is
2k1−4 and 2k2−4 respectively. By property (b) of AC labelings, the sum
of the inner angles of f is the sum of AC labels of f1 and f2. Therefore,
the sum of the AC labels of f is 2k1+2k2−8 = 2(k1+k2−2)−4 = 2k−4.

(d) The proof here is similar to the proof of property (c) except that the
base case occurs when all outer angles are convex, and hence there is no
chord in the outer face.
So we must prove that the property holds if the outer face is convex. If G
is a path with all vertices on a straight line, then it is straightforward to
verify that the property holds. Let us assume that G is not a path drawn
on a straight line. Since the outer face is convex, there is no vertex in G
with two outer angles. Therefore the boundary of the outer face of G is
a cycle S of length k. Consider the graph G[S] formed by the edges of
S, in the induced drawing. By property (c) the sum of the AC label of
the inner angles of G[S] is 2k − 4. By property (a) the sum of the AC
label on all angles of G[S] is 4k. Therefore the sum of the AC labels on
the outer angles of G[S] which is the same as the sum of the AC labels
on the outer angles of G would be 4k − (2k − 4) = 2k + 4.

�

3.1 AC labelings of Orthogonal Drawings

As mentioned earlier, our AC labeling extends a labeling for orthogonal draw-
ings defined as follows:
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0
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(a)

2

0

0

(b)

0

1.5

0.5

(c)

1

0.5

0.5

(d)

Figure 3.4: Some possible AC labelings of a triangle.

In an orthogonal drawing of a graph G, a (graph-theoretic) angle has
label i ∈ {1, 2, 3, 4} if it is drawn with (geometric) angle iπ/2. The following
result was proved by Miura et al. [22] and also follows from a prior result on
orthogonal-shape drawings by Tamassia [31].

Lemma 3.2 [22] A labeling of a plane connected graph G with labels in
{1, 2, 3, 4} can be realized as an orthogonal drawing such that each (graph-
theoretic) angle of label i has (geometric) angle of iπ/2, if the labeling satisfies

(a) For each vertex, the labels of incident angles sum to 4.

(b) The sum of the labels on an inner face f is 2k−4, where k is the number
of angles on the face.

(c) The sum of the labels on the outer-face is 2k + 4, where k is the number
of angles on the outer-face.

We call such a labeling OD-admissible. Note that by Lemma 3.1 an AC
labeling satisfies the above conditions. Furthermore, Lemma 3.2 implies that
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any OD-admissible labeling of a graph G is an AC labeling of some drawing
of G. Therefore, an AC labeling corresponds to some orthogonal drawing, if
and only if all its labels are in {1, 2, 3, 4}.

3.2 AC labeling of RI-drawings

In this section, we give some necessary conditions of AC labels in RI-drawings;
some of these will be crucial for our arguments in the next chapters.

Most of our RI-drawings are oblique (no axis-aligned edges). In this case
`(α) ∈ {0, 1, 2, 3, 4} counts the number of coordinate axes contained in angle
α. This type of labeling for an oblique RI-drawing was introduced and used
extensively in [23].

v(β)

v(α)

v(α′)

v(β′)
0

0

Figure 3.5: Two adjacent angles having label 0 in an RI drawing.

The rest of this section is concerned with proving properties of labelings of
RI-drawings that will be needed later. Unfortunately, some of them (Lemma
3.12 and the results leading to Corollary 3.1 and 3.2) require a lengthy proof.

Lemma 3.3 In any planar RI-drawing, the sequence of AC labels along a
face f does not contain 00.

Proof. Assume two angles α and β are adjacent in face f . Let α′ and β ′ be
the two other angles of f that are adjacent with α and β, respectively (pos-
sibly α′ = β ′.) The vertices v(α′) and v(β ′) must be outside the axis-aligned
rectangle induced by (v(α), v(β)). If both angles α and β have label 0, then
the segments (v(α), v(α′)) and (v(β), v(β ′)) intersect, contradicting planarity
(see Figure 3.5). �

25



Lemma 3.4 In an oblique RI-drawing of a graph, the AC labels of any tri-
angular inner face consists of two 1s and one 0.

Proof. This was already proved in [23], using a case analysis, but an al-
ternative proof is as follows: By Property (c) of Lemma 3.1 the sum of the
labels at inner angles of a triangle is 2. Since we have an oblique drawing, all
labels are integers. Also by Lemma 3.3 there is at most one angle of label 0
in the inner face. Therefore there must be exactly two angles of label 1 and
one angle of label 0 in the inner face of any triangle. �

3.2.1 Relative Closeness

The following definition will be useful: Let C = (α0, α1, α2) be a chain of
three angles in a drawing of a graph such that (v(α0), v(α1)) and (v(α1), v(α2))
are oblique and `(α1) = 1. We say that v(α2) is strictly closer to v(α1)
than v(α0) if the order of coordinates with respect to the free ray of α1 is
v(α1), v(α2), v(α0) (see Figure 3.6(a)). We say that v(α2) is closer to v(α1)
than v(α0) if v(α2) is strictly closer to v(α1) than v(α0), or v(α2) and v(α0)
tie with respect to the free ray (see Figure 3.6(b))). For example, if the free
ray from α1 goes upward, then v(α2) is closer to v(α1) than v(α0) if the y-
coordinates satisfy y(v(α1)) < y(v(α2)) ≤ y(v(α0)); and if the y-coordinates
satisfy y(v(α1)) < y(v(α2)) < y(v(α0)), then v(α2) is strictly closer to v(α1)
than v(α0).

v(α2)

v(α0)

v(α1)

(a)

v(α2)

v(α1)

v(α0)

(b)

Figure 3.6: A chain (α0, α1, α2) such that v(α2) is strictly closer to v(α1)
than v(α0) (a) and the same vertices in a drawing where v(α2) and v(α0) tie
with respect to the free ray (b).
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3.2.2 Hooks and Cages

We need two definitions that will make our work easier later on. Each of
these two gadgets is a short path with some constraints on the placement of
each vertex. Later we will prove that any chain of angles that has labels of
the form 01+0 has one of these two gadgets at one of its ends.

Definition 3.1 Let (α0, α1, α2, α3) be a chain of four angles on four distinct
vertices drawn in the plane. We say the sequence (v(α0), v(α1), v(α2), v(α3))
is a hook if the following holds (see Figure 3.7):

• `(α1) = 0 and `(α2) = 1, and

• v(α1) is closer to v(α2) than v(α3)

v(α2)

v(α1)

v(α3)

Figure 3.7: A hook (v(α0), v(α1), v(α2), v(α3)) rotated so that y(v(α2)) <
y(v(α0)).

Lemma 3.5 In any planar open RI-drawing, if (v(α0), v(α1), v(α2), v(α3))
is a hook, then v(α0) is located on the free ray of α2.

Proof. Presume after possible rotation and mirroring of the drawing that
the free ray of α2 goes upward as in Figure 3.7, with v(α1) left of the free ray.
If v(α0) were left of the free ray, it would be in the rectangle of (v(α1), v(α2)).
If it were right of the free ray, it would be in the rectangle of (v(α2), v(α3)), or
(v(α1), v(α0)) would intersect (v(α2), v(α3)). So it must be on the free ray. �
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v(α2)

v(α1)

v(α3)

(a)

v(α2)

v(α1)

v(α3)

v(β0)

(b)

v(α2)

v(α1)

v(α3)

v(β0)

(c)

Figure 3.8: For the proof of Lemma 3.6.

Lemma 3.6 Let C = (α0, α1, α2, α3) be a chain in a face with more than
5 angles such that (v(α0), v(α1), v(α2), v(α3)) is a hook in a planar oblique
RI-drawing. Let β0 and β1 be the angles before α0 on the same face such that
v(β0) is adjacent with v(α0). Then one of the following holds:

• `(α0) = 4;

• `(α0) = 3 and `(β0) > 0;

• `(α0) = 3, `(β0) = 0, and `(β1) = 4.

Proof. By Lemma 3.3, α0 cannot have label 0 since α1 does. If α0 had
label 1, then v(β0) would either be in the rectangle defined by (v(α1)v(α2)) or
(v(α0)v(β0)) would intersect (v(α1)v(α2)). If α0 had label 2, then v(β0) would
either be in the rectangle defined by (v(α2)v(α3)) or (v(α0)v(β0)) would in-
tersect (v(α2)v(α3)). If α0 has label 4 then the lemma holds.

Now assume that α0 has label 3 (see Figure 3.8(b)). If β0 has a label
in {1, 2, 3, 4}, the second condition of the lemma holds. Otherwise, the only
valid placement for v(β1) would be on the line segment between v(α0) and
v(α2). In that case, by similar arguments to what we already showed, β1

can only have label 4 (see Figure 3.8(c)). Such sequence satisfies the last
condition of the Lemma. �

Definition 3.2 Let (α0, α1, α2, α3, α4) be a chain of five angles on five dis-
tinct vertices drawn in the plane. We say (v(α0), v(α1), v(α2), v(α3), v(α4))
is a cage if the following holds (see Figure 3.9):
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v(α4)

v(α2)

v(α1)

v(α3)
v(α0)

v(α4)

v(α2)

v(α1)

v(α3)v(α0)

Figure 3.9: A cage (v(α0), v(α1), v(α2), v(α3), v(α4)) with v(α0) on the free
ray of α2 (a) and on the free ray of α3 (b).

• `(α1) = 0 and `(α2) = `(α3) = 1;

• v(α2) is closer to v(α3) than v(α4);

• v(α3) is closer to v(α2) than v(α1).

Lemma 3.7 If (v(α0), v(α1), v(α2), v(α3), v(α4)) is a cage, then in any pla-
nar open RI-drawing v(α0) is located on the free ray of α2 or α3.

Proof. The arguments are similar to that of Lemma 3.5 and we do not
repeat them here. �

Lemmas 3.5 and 3.7 imply that:

Corollary 3.1 A non-aligned RI-drawing of a graph does not contain a cage
or a hook.

Lemma 3.8 Let C = (α0, α1, α2, α3, α4) be a chain in a face with more than
5 angles in an oblique RI-drawing of a 2-connected graph such that
(v(α0), v(α1), v(α2), v(α3), v(α4)) is a cage. Let β0 and β1 be the angles before
α0 on the same face such that v(β0) is adjacent with v(α0). Then one of the
following holds:

• `(α0) = 4;

• `(α0) = 3 and `(β0) > 0;
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• `(α0) = 3, `(β0) = 0, and `(β1) = 4;

• `(α0) = 1 and `(β0) = 4;

v(α4)

v(α2)

v(α1)

v(α3)
v(α0)

(a)

v(α4)

v(α2)

v(α1)

v(α3)

v(α0)

v(β0)

(b)

v(α4)

v(α2)

v(α1)

v(α3)

v(α0)

v(β0)

v(β1)

(c)

v(α4)

v(α2)

v(α1)

v(α3)

v(α1)

v(β0)

v(β1)

(d)

Figure 3.10: For the proof of Lemma 3.8, Case 1.

Proof. By Lemma 3.7 there are two possible placements for v(α0), one
where v(α0) lies on the free ray of α2, and one where v(α0) lies on the free
ray of α3.

Case 1 Assume v(α0) lies on the free ray of α2 (see Figure 3.10(a)): The
proof is similar to the proof of Lemma 3.6. By Lemma 3.3, α0 cannot have
label 0. If α0 had label 1, then v(β0) would either be in the rectangle defined
by (v(α1)v(α2)) or (v(α0)v(β0)) would intersect (v(α1)v(α2)). If α0 had label
2, then v(β0) would either be in the rectangle defined by (v(α2)v(α3)) or
(v(α0)v(β0)) would intersect (v(α2)v(α3)). If α0 has label 4 then the lemma
holds. Now assume that α0 has label 3 (see Figure 3.10(b)). If β0 has a label
in {1, 2, 3, 4}, the second condition of the lemma holds. Otherwise, the only
valid placement for v(β1) is on the line segment between v(α0) and v(α2)
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v(α4)

v(α2)

v(α1)

v(α3)v(α0)

(a)

v(α4)

v(α2)

v(α1)

v(α3)

v(α0)

v(β0)

(b)

v(α4)

v(α2)

v(α1)

v(α3)

v(α0)

v(β0)
v(β1)

(c)

Figure 3.11: For the proof of Lemma 3.8, Case 2.

(see Figure 3.10(c)). In that case, by similar arguments to what we already
showed, β1 can only have label 4 (see Figure 3.10(d)). Such a sequence
satisfies the last condition of the lemma.

Case 2 Assume v(α0) lies on the free ray of α3 (see Figure 3.11(a)): By
Lemma 3.3, α0 cannot have label 0. If α0 had label 2, then v(β0) would either
be in the rectangle defined by (v(α2)v(α3)) or (v(α0)v(β0)) would intersect
(v(α2)v(α3)). If α0 had label 3, then v(β0) would either be in the rectangle
defined by (v(α3)v(α4)) or (v(α0)v(β0)) would intersect (v(α3)v(α4)). If α0

had label 4 then the lemma holds. Now, assume that α0 has label 1 (see
Figure 3.11(b)). Then β0 can only have a label in {0, 4}. If β0 has label
4 the lemma holds. Assume that β0 has label 0 (see Figure 3.11(c)). In
that case there can be no path connecting v(β1) to v(α0) other than the
path (v(β1), v(β0), v(α0)), for all vertices on such a path would have to be on
the free rays of alpha2 and alpha3 and hence the path can never leave that
quadrant. But there are two such paths by 2-connectivity, a contradiction. �
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3.2.3 Upper Bound on the Sum of the Labels of a

Chain

Next we show that in a non-aligned drawing there can be no chain with labels
of the form 01+0. This will be crucial for our recognition algorithm later.

Lemma 3.9 Let C = (α0, α1, . . . , αk+1) be a chain of angles in a planar
oblique RI-drawing. Assume that the sequence of labels of the angles in C ′ =
(α1, α2, . . . , αk) is of the form 01+0. Then at least one of the following holds:

• (v(α0), v(α1), v(α2), v(α3)) is a hook.

• (v(αk+1), v(αk), v(αk−1), v(αk−2)) is a hook.

• (v(α0), v(α1), v(α2), v(α3), v(α4)) is a cage.

• (v(αk+1), v(αk), v(αk−1), v(αk−2), v(αk−3)) is a cage.

Proof. Assume neither (v(α0), v(α1), v(α2), v(α3)) nor (v(αk+1), v(αk),
v(αk−1), v(αk−2)) is a hook. We prove that in such a case, (v(α0), v(α1), v(α2),
v(α3), v(α4)) or (v(αk+1), v(αk), v(αk−1), v(αk−2), v(αk−3)) is a cage. Observe
that k ≥ 3 since C ′ has the form 01+0.

For any 1 < i < k, `(αi) = 1, and hence αi has exactly one free ray, which
is an axis-aligned ray that extends from vertex v(αi) of the angle αi into the
face f(αi).

v(αi)

v(αi−1)

v(αi+1)

(a)

Figure 3.12: `(αi+1) = 0 implies a hook.
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v(αi)

v(αi+1)

v(αi+2)

v(αi−1)

(a)

v(αi)

v(αi+1)

v(αi+2)

v(αi−1)

(b)

Figure 3.13: For the proof of Lemma 3.9, Case 1. The drawing in Case 1
(a) and the valid placements of v(αi−2) where it can only lie on the dashed
segments (b).

v(αi)

v(αi−1)

v(αi+1)

v(αi+2)

(a)

v(αi)

v(αi−1)

v(αi+1)

v(αi+2)

(b)

v(αi)

v(αi−1)

v(αi+1)

v(αi+2)

1

(c)

Figure 3.14: For the proof of Lemma 3.9, Case 2.

Since α1 has label 0 and (v(α0), v(α1), v(α2), v(α3)) is not a hook, there-
fore v(α3) is closer to v(α2) than v(α1). Now let 1 < i < k be maximal
such that αi has label 1 and v(αi+1) is closer to v(αi) than v(αi−1). After
possible rotation and flipping we may assume that the free ray at αi goes
upward and v(αi−1) is left of v(αi). If αi+1 had label 0 then i + 1 = k and
(v(αk+1), v(αk), v(αk−1), v(αk−2)) would be a hook (see Figure 3.12) contra-
dicting the assumption. So `(αi+1) = 1. By choice of i, v(αi+2) is not
closer to v(αi+1) than v(αi), so x(v(αi+2)) < x(v(αi)). Also, x(v(αi+2)) ≥
x(v(αi−1)), otherwise either v(αi−1) would be in the rectangle defined by
(v(αi+1), v(αi+2)) or (v(αi+1), v(αi+2)) and (v(αi−1), v(αi)) cross. We have
two cases:

Case 1 x(v(αi+2)) = x(v(αi−1)) (see Figure 3.13(a)): In this case, we prove
that `(αi−1) = 0. Since i > 1, `(αi−1) ≤ 2, so x(v(αi−1)) < x(v(αi−2)). Be-
cause of the three segments (v(αi+1), v(αi+2)), (v(αi+1), v(αi+2)), and (v(αi+1),
v(αi+2)) the only valid placement of v(αi−2) is on the free ray of αi or αi+1,
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and below v(αi+1) (see Figure 3.13(b)). Hence `(αi−1) = 0 and therefore,
i = 2. This means that (v(α0), v(α1), v(α2), v(α3), v(α4)) is a cage.

Case 2 v(αi+2) is to the right of v(αi−1) (see Figure 3.14(a)): We can as-
sume that αi+2 does not have label 0, for if it did, then we could argue that
i = k−2 and by similar arguments to what we had in the last case (v(αk+1),
v(αk), v(αk−1), v(αk−2), v(αk−3)) would be a cage (see Figure 3.14(b)). So
αi+2 has label 1, and by choice of i, v(αi+1) is strictly closer to v(αi+2) than
v(αi+3) (see Figure 3.14(c)). So y(v(αi+3)) < y(v(αi+1)) ≤ y(v(αi−1)). But
now regardless of the placement of v(αi+3), either edge (v(αi+2), v(αi+3)) in-
tersects (v(αi−1), v(αi)), or v(αi+3) is in the rectangle defined by (v(αi−1),
v(αi)), or v(αi−1) is in the rectangle defined by (v(αi+2), v(αi+3)). Either
way, we do not have a planar oblique RI-drawing, a contradiction. �

Combining Lemma 3.9 with Corollary 3.1 yields:

Corollary 3.2 Let C be a chain of angles in a planar non-aligned RI-drawing.
Then the sequence of the labels of the angles in C cannot be of the form 01+0.

If an RI-drawing is oblique, then it may have hooks or cages, but only if
nearby angles have special labels. More precisely:

Lemma 3.10 In an oblique RI-drawing of a 2-connected graph let C =
(α1, α2, . . . , αk) be a chain appearing in a face with more than 5 angles such
that C has labels of the form 01+0. Then there is a chain C ′ containing
C such that the sequence of the labels of the elements of C ′ has one of the
following forms or the reverse thereof:

• 01+04, or

• 01+03x where x > 0, or

• 01+0304, or

• 01+014.

Proof. Let β1, β0, and α0 be the three angles preceding α1. By Lemma 3.9
there is a cage or a hook at one end of the chain C.

Suppose after possible reversal of C that (v(α0), v(α1), v(α2), v(α3)) is a
hook. By Lemma 3.6 one of the following holds:
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• `(α0) = 4, in which case C ′ = (α0, α1, . . . , αk) satisfies the first condi-
tion of the lemma;

• `(α0) = 3 and `(β0) > 0, in which case C ′ = (β0, α0, . . . , αk) satisfies
the second condition of the lemma;

• `(α0) = 3, `(β0) = 0, and `(β1) = 4, in which case C ′ = (β1, β0,
α0, . . . , αk) satisfies the third condition of the lemma.

If there is no hook at either end of the chain, then by Lemma 3.9 we can as-
sume that after possible reversal of C that (v(α0), v(α1), v(α2), v(α3), v(α4))
is a cage. Since `(α1) = 0 by Lemma 3.8, we have four cases of labels for
α0, β0, β1. The first three cases are handled as in the last paragraph. For the
last case, we have that:

• `(α0) = 1 and `(β0) = 4, in which case C ′ = (β0, α0, . . . , αk) satisfies
the forth condition of the lemma.

�

We need these observations to lower-bound the sum of labels in a chain.

Lemma 3.11 Let C be a chain of angles in a planar oblique RI-drawing of
a 2-connected graph. Then the sum of the labels of the angles of C is at least
|C| − 3.

Proof. We prove this using induction. Since the labels are not negative
and by Lemma 3.3 there are no two adjacent angles of label 0 in C, the claim
holds if C has 5 or fewer angles. Let S be the sequence of labels of the angles
of C; we aim to show

∑
s∈S s ≥ |S| − 3. We have several cases:

Case 1 S begins with a label x > 0: Let S2 be the sequence of labels
such that S = (x, S2). Then by induction

∑
s∈S2

s ≥ |S2| − 3 and therefore

∑

s∈S

s =
∑

s∈S2

s+ x ≥ |S2| − 3 + 1 = |S| − 3.

Case 2 S ends with a label x > 0: This is similar to Case 1.
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Figure 3.15: An RI-drawing with a chain with labels of the form 01010.

For the next cases we can assume S = (0, S1, 0, S2, . . . , Sk, 0) where Si

contains no 0. Si is non-empty by Lemma 3.3. We call each such a Si a
block. A block that is of the form 1+ is called a bad block. By Lemma 3.9
each bad block has a cage or a hook on one of its ends. We say a block is left
leaning if it has a cage or a hook on its beginning, right leaning otherwise.
Note that each bad block satisfies the conditions of Lemma 3.9, therefore, if
Si, i < k, is right-leaning, then Si+1 begins with 4 or 3 or 14, and similarly
for left-leaning.

Case 3 There is a block Si that has label-sum at least |Si|+ 3: Assume
S = (S ′, Si, S

′′). By induction
∑

s∈S′ s ≥ |S ′| − 3 and
∑

s∈S′′ s ≥ |S ′′| − 3.
Therefore

∑

s∈S

s =
∑

s∈S′

s+
∑

s∈Si

s+
∑

s∈S′′

s

≥ |S ′| − 3 + |Si|+ 3 + |S ′′| − 3

= |S| − 3

as desired.

Case 4 There are two bad blocks Si−1 and Si+1 leaning towards the same
block Si: We show that this case is included in Case 3. In this case, each of
these bad blocks fit into the description of Lemma 3.9. Note that the third
item of Lemma 3.9 cannot apply, otherwise we would have a 4 in one of the
bad blocks which contradicts the definition. Therefore, by Lemma 3.10 Si

contains a 4, or Si contains a 3x and a x′3 with x, x′ ≥ 1 as prefix and suffix.
In either case, the label-sum of Si would be greater or equal to |Si|+ 3, and
hence we are in Case 3.
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Case 5 None of the previous cases applies:
Note that by Lemma 3.10 no two bad blocks can be leaning towards each
other. Since we are not in Case 4, each bad block leans towards a unique
block in S, except perhaps the leftmost and rightmost block (which might
be bad blocks that are leaning towards the two ends of S). By Lemma 3.10
the label-sum of a block Si that is being leaned upon by some bad block is
at least |Si|+2. Any block Sj that is not a bad block has label-sum at least
|Sj| + 1. This means that excluding the leftmost and rightmost bad blocks,
on average the label-sum of each block Sl is at least |Sl| + 1. There are k
blocks and k + 1 0s in S, therefore the label-sum of all labels in all blocks is
at least |S| − 3. �

Lemma 3.12 In an oblique RI-drawing of a 2-connected graph the sum of
the labels of a chain C of angles is in the range [|C| − 3, 3|C|+ 3].

Proof. The lower bound is implied by Lemma 3.11 directly. For the upper
bound, let S be the sequence of labels of angles of C.

(a) (b)

Figure 3.16: A chain of angles on distinct vertices (a) and the drawing in-
duced by the chain as discussed in Lemma 3.12 (b).

By 2-connectivity we can assume that no vertex has two angles in C,
otherwise it would appear twice on a face and be a cut-vertex. Consider
Figure 3.16(a). In that case the vertices of C induce a path. Let us look at
the drawing of this path along with the edges of the first and last elements
of C (Figure 3.16(b)). Then there is a unique chain C ′ with |C ′| = |C| in
such drawing, such that C ′ lies on the other side of the path and on the same
vertices as C. Let S and S ′ be the sequence of labels of angles of C and C ′,
respectively. Then

∑
s∈S s +

∑
s∈S′ s = 4|S|. Also, by Lemma 3.11 we have∑

s∈S′ s ≥ |S ′| − 3 = |S| − 3. Therefore
∑

s∈S

s = 4|S| −
∑

s∈S′

s ≤ 4|S| − (|S| − 3) = 3|S|+ 3

37



as desired. �

3.3 Graphs with a Triangular Outer Face

We will eventually use AC labels to characterize exactly which graphs have
an RI-drawing with a non-aligned frame. For this we use the frame of a
graph, which is the graph obtained by removing the inside of filled triangles.
In this section, we need to discuss how to draw these filled triangles, i.e. how
to draw a planar graph with a triangular outer face.

This investigation was started by Miura et al. [23]. They showed that
if T is a maximal filled triangle of an inner triangulated graph G, and if T
has an RI-drawing then the inside of T has some easily verifiable structural
properties. Also, the structure of the graph inside T imposes restrictions as
to which labels of the angles of T must or must not be 0 or 1 in an oblique
RI-drawing of the frame-graph of G (and vice versa, any oblique RI-drawing
of the frame-graph can be expanded to an RI-drawing of all of G.)

Now we will refine these restrictions so that they still hold even if the
graph G is not inner triangulated.

Lemma 3.13 Given a plane graph G with triangular outer face, one can
compute in linear time all possible labelings of the outer face that could oc-
cur in an open RI-drawing of G with oblique outer face. Furthermore, any
drawing of the outer face with such an AC labeling can be completed to an
RI-drawing of G in linear time.

Proof. First, we observe some properties of such an RI-drawing. Let α, β
and γ be the outer angles of G. By Lemma 3.4 the inner angles of a triangle
are {0, 1, 1}, so by Lemma 3.1 the outer angles have labels {4, 3, 3}. There-
fore, without loss of generality, assume `(α) = 4 and `(β) = `(γ) = 3. Then
all vertices must be on the boundary of the rectangle defined by (v(β), v(γ))
(see Figure 3.17(a)). Some of these vertices lie on one of the horizontal
edges and some on one of the vertical edges of the border of this rectangle.
Traversing these vertices along the border of this rectangle therefore gives an
arrangement (v1, v2, . . . , vk) of the vertices in V (G)\{v(α)} with v1 = v(β)
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and vk = v(γ), and an index l, such that for every edge e of G one of the
following holds:

• e connects v(α) and a vertex vi, with 1 ≤ i ≤ k,

• e connects vi and vj , with 1 ≤ i ≤ l < j ≤ k,

• e connects vi and vi+1, with 1 ≤ i < k.

α

γ

β

(a)

β

γ

vl

α

(b)

vl

v(γ)v(β)

(c)

Figure 3.17: A triangle and the locus (dashed) of possible placement of ver-
tices inside the triangle in an open RI-drawing (a). An open RI-drawing
of a filled triangle G (b), and the corresponding drawing of vertices of
V (G)\{v(α)} on two lines (c).

In fact, vertices v1, v2, . . . , vl are on the same axis aligned line as v(β) while
vertices vl+1, vl+2, . . . , vk are on the same axis aligned line as v(γ) (see Fig-
ure 3.17(b)). Note that if there is a vertex on the common end of the two
lines, we can move it by some small distance so that it is only on one of the
lines and the drawing is still valid. Therefore, we can restate the problem
as follows: To draw G, we need to find a drawing of vertices V (G)\{v(α)}
on two lines such that v(γ) and v(β) are the first vertices of the two lines
(see Figure 3.17(c)). Cornelsen et al. [10] give a linear algorithm that finds
a drawing of a graph on two lines, if one exists. Their algorithm works even
if some edges are constrained to have their endpoints on different lines. It is
easy to modify their algorithm to work for graphs with a fixed embedding.
We need to make sure that v(γ) and v(β) to be the last vertices. For this,
we only need to care about the connected component of V (G)\{v(α)} that
contains v(γ) and v(β). To force v(γ) and v(β) are the last vertices in the
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drawing of such a component, we can add two dummy vertices v′γ and v′β
that are adjacent to v(γ) and v(β) respectively. We also add dummy edges
(v′γ , v

′
β) and (v(γ), v(β)) that are restricted to have their ends on different

lines. The only way to draw the cycle (v(γ), v(β), v′β, v
′
γ) without crossing is

to place v′β and v′γ on the same side of v(β) and v(γ). Since there can be no
edge from that side to v(β) and v(γ), v′β and v′γ are on the ends of the two
lines. Removing them will result in a drawing of the component containing
v(β) and v(γ) such that v(β) and v(γ) are on the two ends of the two lines.
Hence, finding the drawing of this modified graph will give us the required
structure, and we can add v(α) to it to obtain an open RI-drawing of G.

So to find all possible labelings, try all possible assignments of {3, 3, 4}
to {α, β, γ}, and for each of them, try whether graph G can be drawn on two
lines as explained above. Since there are O(1) labellings and the algorithm
in [10] takes linear time, this can be done in linear time. �

40



Chapter 4

Testing RI-Drawability of
Plane Graphs

No necessary and sufficient conditions or testing algorithms are known for
the existence of weak open RI-drawings, even for inner triangulated graphs.
Miura et al. [23] aimed to develop necessary and sufficient condition for all
inner triangulated graphs, but did not succeed. As discussed in Section 3.3
such a drawing imposes conditions on how filled triangles are drawn; a natural
first step is hence to remove the interior of all filled triangles and try to draw
the resulting graph while satisfying these conditions.

So, let G be a plane graph. Let F be the frame graph of G, that is,
the graph obtained by removing the inside of filled triangles of G. In this
chapter we give a constructive algorithm to decide whether G admits an open
RI drawing such that F is drawn non-aligned. Here, we assume the outer
face is not a triangle, as we already handled that case in Lemma 3.13. First
we review the results of Miura et al. [23] who also used the frame graph.

4.1 Review of Miura et al. [23]

Miura et al. first test for every filled triangle T whether the graph inside T
has an RI-drawing. If this fails for any T then clearly G has no RI-drawing
either. So in the following we always assume that all interiors of all filled
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triangles of T have an RI-drawing, at least under some restrictions on the
drawing of T .

Next, Miura et al. compute the restrictions made by a filled triangle T .
Note that Miura et al. study only oblique drawings of the frame graph, and
for such drawings their labeling is the same as the AC labeling. Recall that
T must have labels {0, 1, 1} in any non-aligned RI-drawing ΓF of the frame
graph. In a corresponding RI-drawing of G, the only place to put the vertices
inside T is on the two coordinate axes from the two vertices labeled 1 in T as
discussed in Section 3.3. In an inner triangulated graph, the vertex labeled
0 on T hence must be adjacent to all vertices inside T . So they obtain:

Lemma 4.1 [23] Let G be a plane inner triangulated graph. If T = {a, b, c}
is a triangle of the frame graph that is a filled triangle in G, and if a is
not adjacent to all vertices inside T , then in any open RI-drawing of G with
oblique frame, the induced oblique RI-drawing of the frame has AC label 1 at
a.

Note that the generalization of this lemma to general plane graphs would
be Lemma 3.13 as we give an algorithm that decides what angles of the outer
triangle need to have label 1 so that we can complete the RI-drawing. So
there is a set A of inner angles of the frame graph F that must be labeled 1 in
any non-aligned (hence oblique) RI-drawing of F induced by an RI-drawing
of G. Moreover, if we can find a non-aligned RI-drawing of F that has these
AC labels, then it can be expanded into an open RI-drawing of graph G.

(a)

1
1

1

1

(b)

Figure 4.1: Graph G (a) and its frame graph F with forced AC labels (b).

Definition 4.1 (based on [23]) A labeling of the angles of the frame graph
F with labels in {0, 1, 2, 3, 4} is a decent labeling if
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(a) the labels at every vertex sum to 4, and
(b) every inner triangle has labels {0, 1, 1}, and every angle in A is labeled 1,
where A is the set of restrictions implied by the filled triangles. The labeling
is called good if additionally
(c) the outer angles have labels {2, 3, 4}.

Note that (a) and (b) are also properties of AC labelings, hence the
necessity of them is justified. In other words (and as also shown by Miura
et al.) if G is an inner triangulated graph and has an open RI-drawing with
oblique frame, then F has a decent labeling. However, Miura et al. also
showed a graph where this is not sufficient. Hence they added condition
(c) which forces the outer face to consist of four chains that are monotone
in x and y. This condition is not necessary, but they show that adding it
gives sufficient conditions: any graph that has a good labeling has an oblique
RI-drawing.

4.2 Overview of the Algorithm

We show here that modifying restrictions (b) and (c) of Definition 4.1 gives
conditions that are both necessary and sufficient, for RI-drawings with non-
aligned frame. We switched the drawing model from “oblique frame” to
“non-aligned frame” precisely so that we could find necessary and sufficient
conditions. Characterizing the existence of drawings with oblique frame re-
mains an open problem.

We also realized that with minor changes our results (first presented in
[1]) work for all plane graphs, not just inner triangulated graphs as in [23]
and [1].

Definition 4.2 A labeling of the angles of the frame graph F with labels in
{0, 1, 2, 3, 4} is RI-admissible if it satisfies
(a) the labels at every vertex sum to 4,
(b’) the labels at each inner face with k angles sums to 2k − 4, and every
angle in A is labeled 1, where A is the set of restrictions implied by the filled
triangles, and
(c’) there is no chain of angles with labels of the form 01∗0.
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Note that condition (b’) implies condition (b). Replacing (b) with (b’) was
not necessary if we only cared about inner triangulated graphs.

The main result of this chapter is:

Theorem 4.1 A plane graph G has a planar weak open RI-drawing with
non-aligned frame if and only if the frame graph F has an RI-admissible
labeling.

The proof of this theorem will require multiple steps.

The necessity of conditions (a) and (b’) follows directly from Lemma 3.1
and condition (c’) is necessary by Corollary 3.2.

We do not prove sufficiency directly; instead we give an algorithm that
tests whether a graph G has a planar weak open RI-drawing with non-aligned
frame, and the steps of the algorithm will imply sufficiency of the conditions
on the labeling. Here is an outline of our algorithm:

(i) Compute the frame graph F (see Figure 4.1).

(ii) For every triangle T of F that was filled in G, compute whether the
interior of T is realizable in an open RI-drawing as in Lemma 3.13. If
this fails for any triangle, then G has no open RI-drawing. Else, let A
be the set of angles of F that must have label 1 (see Figure 4.1).

(iii) Construct D (see Figure 4.2), which is a subdivision of the surround-
dual. More precisely, it is the dual graph of F after adding a degree 3k
vertex in each non-triangle face with k angles.

(iv) Find an OD-admissible labeling of D that corresponds to a rectangle-
contact dual drawing of F and respects A in some sense. See Figure 4.7.
If there is none, stop: G does not have an RI-drawing with F drawn
non-aligned. Otherwise, use the OD-admissible labeling to create a
rectangle-contact dual drawing ΓD of F that respects A in some sense.

(v) Expand the orthogonal drawing ΓD into a rectangular drawing ΓD′ of a
super-graph D′ ofD. Do this by adding edges and vertices to the graph,
without changing the rectangular faces, so that ΓD′ also respects A (see
Figure 4.7).
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(vi) Construct the dual graph D(D′) and then remove the outer face vertex.
The resulting inner triangulated graph F ′ is a super-graph of the frame-
graph F (see Figure 4.8).

(vii) From the OD-admissible labeling of D′, extract an RI-admissible label-
ing of F ′. This labeling is decent, and in fact, it is good. See Figure 4.8.

(viii) Using this good labeling and the fact that F ′ is inner triangulated,
create a non-aligned RI-drawing of F ′ using a variant of the algorithm
presented in [23]. See Figure 4.9.

(ix) Then insert the filled triangles (which is possible by choice of A) to
obtain an open RI-drawing with non-aligned frame of a super-graph G′

of G.

(x) Remove the vertices of VG′\VG from the drawing (see Figure 4.9).

Steps (i), (iii) and (x) are straightforward. Also, steps (ii) and (ix) are
doable by Lemma 3.13. We give definitions and details for the other steps
below.

4.2.1 Definition of D

D is a subdivision of the surrounding dual of F , D∗(F). Here we show how
graph D is defined. Let F be the frame-graph, i.e., F is a plane graph
without any filled triangle. Let F+ be the graph obtained from F by adding
one vertex vf in each non-triangular face f . For every angle α at a vertex
u on a non-triangular face f , we add three edges from u to vf in F+ at the
place (in the cyclic order around u) where α was. Thus, a vertex that appears
twice on a non-triangular face f of F would have 6 edges to vf , though not
all of them would be consecutive. Now let D be the dual graph of F+, i.e.,
D(F+). See Figure 4.2.

A vertex-face of D is a face f of D that corresponds to a vertex v of
F (see Figure 4.3). The rest of the faces of D are called facial-cycle-faces.
Note that each facial-cycle-face f corresponds to some non-triangular face g
of F . Also, any vertex v of D that corresponds to a triangle T of F+ (and
consequently F), is called a triangle-vertex. Any vertex of D that is not a
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α
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αi

v

Figure 4.2: The graph F from Figure 4.1 (gray vertices and dotted edges),
the added vertices to each non-triangular face of F (circles as vertices and
dashed edges), and the graph D (solid).

triangle-vertex is a facial-cycle-vertex. Figure 4.3 highlights the vertex-face
of D corresponding to the vertex v of F as drawn in Figure 4.2.

There is a correspondence between angles of D and F+. For every angle
α at a triangular face of F there is a corresponding inner angle β of D at a
triangle-vertex. For every angle αi at a non-triangular face f of F , there are
four corresponding inner angles β1

i , β
2
i , β

3
i , β

4
i of D at four facial-cycle-vertices

(see Figure 4.2).

4.2.2 Non-aligned RI-Drawings and Rectangle-contact

Dual Drawings

Recall that in step (ii) we determined a set of angles A of the frame graph
F . We know that any open RI-drawing of G, the induced drawing of F
has AC labeling 1 at all angles in A. We use the same set A to restrict
orthogonal drawings of D. Note that all such angles are on triangular inner
faces. More precisely, we say that an orthogonal drawing ΓD of D respects
A if for every angle α ∈ A, the corresponding angle in ΓD has AC label 1,
i.e. it has geometric angle π/2. Since α belonged to a triangular face this
corresponding angle is well-defined.
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v

Figure 4.3: A vertex-face of the graph D (solid edges) depicted in Figure 4.2
corresponding to the vertex v of F (dotted edges).

In this part, we aim to show that step (iv) is correct: IfD cannot be drawn
as a rectangle-contact dual drawing of F that respects A, then F does not
have a non-aligned open RI-drawing. We prove this by showing that from any
non-aligned open RI-drawing of F , a drawing of D that is a rectangle-contact
dual drawing of F with corresponding angles can be constructed.

Definition 4.3 We say that a non-aligned RI-drawing ΓF of F and a draw-
ing ΓD of D that is a rectangle-contact dual drawing of F have the same inner
structure if for any angle α at a triangular face of F and its corresponding
angle β in D, angle α has AC label 1 if and only if the angle β has AC label
1.

We will not be countering drawings directly, but instead go via labels;
by Lemma 3.2 we know exactly when a set of labels can be realized as an
orthogonal drawing.

Theorem 4.2 For any RI-admissible labeling of F , there exists an OD-
admissible labeling of D that corresponds to a rectangle-contact drawing of F
and has the same inner structure.

Proof. Assume we have a non-aligned RI-drawing of F , and let `F(.) be
the corresponding AC labeling of angles of F . We show how to convert `F(.)
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into an OD-admissible labeling `D(.) of the angles of D. To avoid confusion,
we use RI-label to refer to the labels of angles of F and OD-labels to refer to
the labels of angles of D. We define `D(.) as follows:

If α is an angle of F at a triangular face with corresponding angle β of
D, then set `D(β) = 2 − `F(α). Since α has RI-label 0 or 1, hence β has
OD-label 1 or 2, and it has OD-label 1 if and only if α has RI-label 1, so the
two sets of labels have the same inner structure (see Figure 4.4).

1
1

0

1

1

2

Figure 4.4: Translation of the labels of angles of triangular inner faces of F
(solid edges) to labels of the angles of D (dashed edges).

If α is an angle of F at a non-triangular face, then assigning OD-labels
to its corresponding 4 angles of D is more complicated (and in particular,
not always a local operation.) Let α0, . . . , αk−1 be angles in clockwise order
around some non-triangular face of F ; addition in the following is modulo
k. For each αi, let β

1
i , . . . , β

4
i be the four corresponding inner angles of D, in

clockwise order around the face. Now for each i (see also Figure 4.5):

• If `F(αi) = 0, then assign OD-labels 2, 2, 2, 2 to β1
i , β

2
i , β

3
i , β

4
i .

• If `F(αi) = 2, then assign OD-labels 1, 2, 2, 1 to β1
i , β

2
i , β

3
i , β

4
i .

• If `F(αi) = 3, then assign OD-labels 1, 1, 2, 1 to β1
i , β

2
i , β

3
i , β

4
i .

• If `F(αi) = 4, then assign OD-labels 1, 1, 1, 1 to β1
i , β

2
i , β

3
i , β

4
i .

• The most complicated case is `F(αi) = 1. We assign either OD-labels
1, 2, 2, 2 or OD-labels 2, 2, 2, 1 to β1

i , β
2
i , β

3
i , β

4
i , but the choice between

these depends on the neighborhood.
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Explore from angle αi both clockwise and counter-clockwise along the
face until we obtain a maximal subsequence where all RI-labels are
1. Say this sequence is αj , . . . , αl. By Corollary 3.2, the sequence
αj−1, αj, . . . , αl, αl+1 does not have the form 01+0, so one of αj−1 and
αl+1 has RI-label ≥ 2. If `RI(αj−1) ≥ 2, then assign OD-labels 1, 2, 2, 2
to β1

i , β
2
i , β

3
i , β

4
i (and also to all other corresponding angles in that sub-

sequence), else assign OD-labels 2, 2, 2, 1 to β1
i , β

2
i , β

3
i , β

4
i .

Finally, for all angles of D that have not been labeled yet, we set the
OD-label such that the sum of labels around the vertex is 4. (This happens
only at facial-cycle-vertices at the angles that do not have a corresponding
angle in F .) We verify that the labeling is OD-admissible and corresponds
to a drawing of D that is a rectangle-contact dual drawing of F :

4

2

0

1
1 1

2

2
2

2
2 2

2 2 2
2 2

2 2 2
1

1
1

1
1

1
1

3

11
1

12

2
2 2

2
2

1

2

22

3

22

1
2

Figure 4.5: Conversion of RI-labels of F (solid) to OD-admissible labels of
D (dashed).

• Every vertex-face f of D with k angles has exactly 4 angles that have
OD-label 1 and k − 4 angles with OD-label 2, since the RI-labels at
the corresponding vertex v sum to 4. By construction, an RI-label i at
vertex v gives rise to i angles with OD-label 1 at f (this holds even if
v is on a non-triangular face of F .) Also by construction, the rest of
the angles of f are assigned OD-label 2. Therefore, in any realization
of this OD-labeling as an orthogonal drawing, vertex-faces are drawn
as rectangles.

• The OD-labels at every vertex v of D sum to 4. For if v is a triangle-
vertex corresponding to a triangular face T of F , T has RI-labels
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{0, 1, 1}, which correspond to OD-labels {2, 1, 1} in D. Otherwise,
if v is a facial-cycle-vertex, then by construction of the OD-labels the
total is 4 (see Figure 4.5).

• We claim that every angle α of D that is on a facial-cycle-face of F has
OD-label in {1, 2, 3} (see Figure 4.6).

Recall that by construction of D the boundary of f(α) is a cycle. Also
`D(α) is defined as 4 minus the sum of other OD-labels at the vertex
v that supports α. Since there is at least one other OD-label at v, and
it is 1 or 2, hence `D(α) ≤ 3.

αi+1

αi

β4
i

α

β1
i+1

Figure 4.6: The angle α on a facial-cycle-face.

It is harder to show that `D(α) > 0. Assume to the contrary that
`D(α) ≤ 0. Since, by the construction of D, there are at most two
other angles at v, hence there must be exactly two (say β4

i and β1
i+1)

and they must both have OD-label 2. From the construction of the
OD-labels of D and the way we handled the case `F(αi) = 1, this
can happen only if `F(αi) = 0 = `F (αi+1). By Lemma 3.3 no two
consecutive angles in a non-aligned RI-drawing have AC label 0, so
this cannot happen.

• Now we show that the OD-labels on each inner face of D sum to 2k−4,
where k is the number of angles on f . This is easy to observe for
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vertex-faces of D, since by what we showed in the first bullet they
are labeled with k − 4 labels of 2 and 4 labels of 1. So we assume f
to be a facial-cycle-face of D that corresponds to an inner face g of
F . Let t = k/3 be the number of the angles on g. By Lemma 3.1,
the sum of the RI-labels of the angles α1, . . . , αt of g is 2t − 4. The
angles B = {β1

1 , . . . , β
4
1 , β

1
2 , . . . , β

4
2 , . . . , β

1
t , . . . , β

4
t } cover all angles at

the vertices of f except the angles that belong to f . Observe that any
RI-label i on g creates total OD-label of 8− i on its four corresponding
angles. Therefore, the sum of the OD-labels in B is 8t − (2t − 4) =
6t + 4. There are k vertices on f , hence the sum of the OD-labels of
the vertices on f is 4k = 12t; therefore the sum of the OD-labels at f
is 12t− (6t+ 4) = 6t− 4 = 2k − 4 as desired.

• Finally we need to show that the OD-labels on the outer angles of D
sum to 2k+4, where k is the number of angles on the outer face of D.

The proof is identical to the one for the last statement. The only
difference is that for the outer face of F , the RI-labels of F sum to
4k + 4. This, combined with the logic of the last statement, yields the
desired equation.

Hence the labeling of D is OD-admissible. Since any vertex-face of D has
exactly four labels 1 and all other labels are 2, any orthogonal drawing that
realizes the labeling (which exists by Lemma 3.2) is a rectangle-contact dual
drawing of F . �

Remark 4.1 Note that Theorem 3.2 implies a correspondence between
rectangle-contact dual drawings and non-aligned RI-drawings: For any non-
aligned RI-drawing of a graph F , there exists a rectangle-contact dual drawing
of F that has the same inner structure.

We note here that the proof did not use anything about the RI-drawing
except that the corresponding AC labeling is a decent labeling for which the
sequence of labels at non-triangular faces does not contain 01∗0. This will
be crucial for the sufficiency in Theorem 4.1 later.

The contrapositive of Theorem 4.2 proves correctness of step (iv). If D
does not admit a rectangle-contact dual drawing of F that respects A, then
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F cannot have a non-aligned RI-drawing with all angles in A having AC
label 1.

Corollary 4.1 Step (iv) is correct.

Figure 4.7 shows an OD-admissible labeling that respects the restrictions
of Figure 4.2, and the corresponding rectangle-contact dual drawing. We have
not yet discussed how to implement step (iv); this will be done in Section
4.3.

f0

f1

f3

f2

f6

f5

f7

f9

f10

f8

f4

(a)

f9

f1
f0f2

f8

f6

f4 f3

f5

f7

f10

(b)

Figure 4.7: GraphD with the restrictions on AC labels (a), and an rectangle-
contact dual drawing expanded to a rectangular drawing by adding dashed
edges and shaded rectangles (b).
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4.2.3 From Rectangle-contact Dual Drawing to Non-

aligned RI-drawing

Lemma 4.2 Any drawing ΓD of D that is a rectangle-contact dual drawing
of F and respects A can be expanded into a rectangular drawing ΓD′ of a
plane graph D′ such that:

• ΓD′ is a rectangular dual drawing of some super graph F ′ of F ,

• D′ has size O(|D|),

• No edge of is drawn inside faces of D that correspond to vertices of F ,
though subdivision vertices might be added on their boundary, and

• ΓD′ respects A.

Proof. As part of his orthogonal-shape approach to orthogonal graph
drawing, Tamassia ([31], see also [3]) provided an algorithm to add a linear
number of vertices and edges to an orthogonal drawing to turn it into a rect-
angular drawing without changing directions of edges. The algorithm does
not create any vertex of degree 4. Applying this algorithm to the drawing
ΓD gives a rectangular drawing ΓD′ of a graph D′ and only adds vertices and
edges in non-rectangular faces. Hence all angles at faces ofD that correspond
to vertices of F are preserved. All inner faces of ΓD′ are rectangles, hence it
is a rectangle-contact dual drawing of some graph F ′ that is a super graph
of F . All AC labels at rectangular faces of γD are unchanged in γD′, so γ′

D

respects A. �

Lemma 4.3 If D′ has a rectangular drawing ΓD′ that respects A, then there
is a super graph F ′ of F that has a good labeling.

Proof. We prove this by converting the OD-admissible labeling of ΓD′ into
an RI-admissible labeling of F ′, hence more or less the reverse of the proof
of Theorem 4.2. We refer to the labels of angles of D′ and F ′ by OD-labels
and RI-labels, respectively. Note that any two axis aligned rectangles can
touch at most once. Let F ′ be the touching graph of the faces of ΓD′ , that
is, F ′ is the dual of D′ after removing all degree 2 vertices of D′. For every
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angle α of F ′, let i be the number of angles in D′ that correspond to α and
that have OD-label 1 (i.e., their geometric angle is π/2.) Set `RI(α) = i (see
Figure 4.8).

Since every vertex of D′ has degree ≤ 3 and γD′ is a rectangular draw-
ing, every inner vertex of D′ has OD-labels {2, 2} or {1, 1, 2} at its angles.
Every inner triangle of F ′ corresponds to one vertex of degree 3 in D′ and
hence receives RI-labels {1, 1, 0}. Since every face of the drawing of D′ is
a rectangle, the RI-labels at any vertex of F ′ sum to 4. Also, any angle in
A obtains RI-label 1 since its corresponding angle had OD-label 1, so the
resulting labeling is decent. But in fact it is good: in a rectangular drawing,
any rectangle adjacent to the outer face has at least two angles of value π/2
on its boundary, in the corners that are at outer vertices; therefore each outer
angle of F ′ will be assigned label at least 2. �

02

1

1

Figure 4.8: The drawing ΓD′ (dotted edges) and the graph F ′.

Lemma 4.4 If F ′ has a good labeling, then F ′ has a non-aligned RI-drawing
with this AC labeling.

Proof. We can apply Miura et al.’s algorithm to construct an RI-drawing
of F ′ that has the given good labeling as its AC labeling. However, their
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algorithm only promises an oblique drawing of F ′; it need not be non-aligned.
But we can modify their algorithm to make the drawing non-aligned.

They construct two directed acyclic graphs (DAGs) X and Y of linear
size on the vertices of the given graph (here F ′), where a (u, v) edge in X im-
plies x(u) < x(v) (respectively (u, v) in Y implies y(u) < y(v).) They show
that any placement of the vertices in the plane that respects the restrictions
forced by these two graphs can be completed into an open RI-drawing that
induces the given labeling as its AC labeling. Then, they construct a drawing
using the fact that x(v) (resp. y(v)) can be the length of the longest path
ending in v in X (resp. in Y ). Here we modify their algorithm by using a
topological order in place of longest paths; then all coordinates are distinct.
This gives us a non-aligned drawing of F ′ in a |V (F ′)| × |V (F ′)| grid that
has the given good labeling as its AC labeling. �

4.3 Putting it All Together

If a plane graph G has an open RI-drawing with non-aligned frame F , then
F has a rectangle-contact dual drawing with the same inner structure (The-
orem 4.2). Hence we can find a rectangle-contact dual drawing of F that re-
spects A, expand it to a rectangular drawing that is a rectangular dual draw-
ing of some super graph F ′ of F (Lemma 4.2), extract a good labeling from
it (Lemma 4.3), and create a non-aligned RI-drawing from it (Lemma 4.4).
See also Figure 4.9. Insert the filled triangles which is possible since A has
been respected (Lemma 3.13.) Now delete the added vertices and edges; this
results in the desired open RI-drawing with non-aligned frame of G. This
proves correctness of the algorithm.

Our proof was constructive and gives rise to an algorithm to test whether
G has an open RI-drawing with non-aligned frame. It remains to analyze the
run-time of this algorithm. Most steps are clearly doable in linear time. The
bottleneck is the time to test whether D can be drawn as a rectangle-contact
drawing of F that respects A.

There are multiple approaches to related problems, and none of the faster
ones unfortunately seems applicable. Rahman et al. [28] presented a linear
algorithm to find an orthogonal drawing of a plane graph that has no bends,
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if one exists. But it is not clear how to impose the restriction of respecting
A or having rectangular faces.

Miura et al. [22] reduced testing the existence of OD-admissible labels to
a matching problem, and it is a simple exercise to additionally impose that
angles corresponding to A obtain AC label 1. They show that this matching
can be found O(n1.5/ logn) time. But their algorithm requires knowing which
of the angles on the outer face are convex and reflex (otherwise the time
complexity increases much more.)

We use here a flow-approach inspired by Tamassia’s work [31] on orthog-
onal drawing with minimum number of bends on edges. Tamassia created
a flow network of a plane graph that encodes the shapes (i.e., abstract de-
scriptions via bends and angles) of all possible plane orthogonal drawings.
Given a plane graph G, his algorithm creates a graph H that has a vertex
φf for every face f and a vertex φv for every vertex of G. Here, we simplify
the construction as we do not allow bends. For each vertex v of G we set
s(φv) = −4. For each face f of G with k angles we set s(φf) = 2k − 4 if
f is an inner face, otherwise s(φf) = 2k + 4. Then for angle α in G, there
is an edge e from vertex φf(α) of H to vertex φv(α) of H with capacity set
s(e) = {1, 2, 3, 4}. Then, in the solution of the corresponding network flow,
the label of α would be f(e). It is easy to verify such a labeling has the
properties of Lemma 3.2 and is OD-admissible, and hence realizable as an
orthogonal drawing.

To apply this algorithm to the graph D for constructing a rectangle-
contact dual drawing of F that respects A, we modify capacity sets of edges
in two steps. First, any edge of H that corresponds to an angle α on a
vertex-face of D has its capacity restricted to {1, 2}. This guarantees that
vertex-faces will be drawn as rectangles. Second, for any edge of H that
corresponds to an angle α ∈ A the only element in the capacity set is 1. This
ensures that the OD-admissible labeling respects A.

Tamassia’s result required finding a minimum-cost flow as his construc-
tion has some extra edges that correspond to the bends on the final drawing.
Since we forbid bends on edges, we only need to find a feasible flow, which
can be done in O(n1.5 log n) time [16]. Recently, Cornelsen and Karrenbauer
[9] introduced ways to use the planarity of H to find a solution in O(n1.5).

Theorem 4.3 Let G be a plane graph. In O(n1.5) time, we can test whether

56



G has a planar weak open RI-drawing with non-aligned frame, and if so,
construct it.

We briefly return to the sufficiency for Theorem 4.1. If F has a decent
labeling with no chain of angles having labels of the form 01∗0, then as men-
tioned after Theorem 4.2,D can be drawn as a rectangle-contact dual drawing
of F that respects A. Steps (iv-x) of the algorithm then construct a planar
weak open RI-drawing of G with non-aligned frame, proving Theorem 4.1.
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Figure 4.9: The RI-drawing of F ′ obtained by the labeling (unspecified labels
are 1) (a) and the RI-drawing of G obtained by putting the inside of filled
triangles back in and removing the dummy vertices (b).
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Chapter 5

Hardness of Testing
RI-Drawability of Planar
Graphs

All the results established so far study only plane graphs. For the case of
planar graphs, no specific algorithm has been proposed. Of course, in the case
of triconnected graphs, the two problems are quite similar in the sense that
by fixing the outer face of a triconnected graph, a unique planar embedding is
implied. Therefore the positive results regarding triconnected plane graphs,
imply some positive results about some classes of planar graphs. Here, we
prove that deciding whether a planar graph admits an open RI drawing or
not is NP-hard. This is in contrast with closed RI drawings, where given a
planar graph, we only need to find an embedding without filled triangles, if
one exists. Biedl et al. [6] present a polynomial time algorithm to find such
an embedding. Therefore, the same problem is polynomially solvable, for
closed RI drawings.

The reduction presented here is similar to, and in fact based on, the one by
Garg and Tamassia [15] used for proving NP-hardness of finding orthogonal
drawings of a given planar graph. Their proof uses an intermediate reduction
from NOT-ALL-EQUAL-3-SAT to the integer switch-flow problem. Given an
undirected graph G with a set of integer capacities s(e) assigned to each
edge e of G, the integer switch-flow problem asks for a valid orientation of

the edges of G,
−→
G , such that there is a valid solution for the corresponding
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circulation instance on
−→
G . We study this problem in a special case which is

still NP-hard.

Given an instance I of NOT-ALL-EQUAL-3-SAT, our reduction are as fol-
lows:

(i) Then I is reduced to an instance D(I) of the integer switch-flow prob-
lem, consisting of a graph Φ with special properties and a function s,
associating a set of integers to each edge of Φ.

(ii) A graph GOD is defined in such a way that that GOD has an orthogonal
drawing if and only if D(I) is satisfiable.

(iii) Based on GOD, a graph GRI is defined such that GOD is a subgraph of
GRI .

(iv) Then, we prove that if GOD admits an orthogonal drawing then GRI

admits an open RI drawing.

(v) Finally, we show that if GRI admits an open RI drawing, then I is
satisfiable.

Steps (i) and (ii) are exactly as published by Garg and Tamassia [15]
(except for some change in constants); we briefly review them. Steps (iii),
(iv) and (v) define our contribution. All the steps are explained in following
sections.

Here we show that the problem is in NP. Note that any graph that admits
an RI-drawing, admits one with all vertices on an n× n grid. The reason of
this is that so long as the order of vertices on both coordinates is preserved,
we can move vertices around and no vertex would enter the interior of a
rectangle-of-influence. This means that our problem is in NP. Assuming
correctness of these steps gives us the following result:

Theorem 5.1 The problem of deciding if a planar graph is open RI drawable
is NP-complete.

60



aΠ

bΠ

cΠ

(a)

1

0

1

aΠ

bΠ

cΠ

(b)

Figure 5.1: The graph Π (a) and the only labeling of its frame that admits
an RI-drawing (b).

5.1 Tendrils and Wiggles

To define the graphs GRI and GOD, we require some definitions and inter-
mediate gadgets first.

A rectilinear i-wiggle M , for a positive integer i, is a path of length 8i+1.
The two ends of a rectilinear i-wiggle M are its designated vertices sM and
tM . The 2-wiggle is depicted in Figure 5.2. The RI i-wiggle W is constructed
from the rectilinear i-wiggle M by replacing each edge (u, v) of the rectilinear
i-wiggle where u, v /∈ {sM , tM} with an instance of the graph Π depicted in
Figure 5.1 such that u and v correspond to bΠ and aΠ, respectively, where u is
closer to sM in M than v. Then the designated vertices of W , sW and tW , are
the designated vertices of M . An RI 1-wiggle is depicted in Figure 5.3. We
refer to the initial rectilinear i-wiggle that W was built upon as the backbone
of W .

sM
tM

Figure 5.2: A rectilinear 2-wiggle.

The partial i-tendril P is an undirected graph, with four designated ver-
tices, aP , bP , cP and dP . The partial 1-tendril P is the graph shown in
Figure 5.4(a). The partial i-tendril P is constructed from the partial (i− 1)-
tendril Pi−1, by attaching a partial 1-tendril P1 to Pi−1. To be exact, this
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sW tW

Figure 5.3: An RI 1-wiggle.

attachment is done by adding an edge connecting dP1 with aPi−1
and another

edge connecting cP1 with bPi−1
. Then, aP , bP , cP and dP are aP1 , bP1 , cPi−1

and dPi−1
(see Figure 5.4(b)).

A rectilinear i-tendril R is an undirected graph with two designated ver-
tices sR and tR. The rectilinear i-tendril R is constructed from the partial
i-tendril P , as follows:

• There are four vertices a, b, c and d in R, with edges (a, b) and (c, d).

• There is an edge between aP and a, bP and b, cP and c, and dP and d.

• There are two designated vertices sR and tR in R.

• There is an edge connecting sR to a and an edge connecting tR to d.

(See Figures 5.4(c) and 5.6.)

bPaP

cPdP

(a)

bPaP

Pi−1

(b)

bPaP

cP

dP

a

tR

cd

b
sR

(c)

Figure 5.4: A partial 1-tendril P (a), construction of a partial i-tendril P
from a partial 1-tendril P1 and a partial (i − 1)-tendril Pi−1 (b) and the
construction of a rectilinear i-tendril from a partial i-tendril (c).
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bP

cP

dP

a b
cd

aP

sD

tD

Figure 5.5: The construction of a diagonal i-tendril from a rectilinear i-
tendril.

Lemma 5.1 [15] Any rectilinear i-tendril R has exactly one planar embed-
ding that places both sR and tR in the outer face.

The diagonal i-tendril is constructed from the rectilinear i-tendril by
adding a diagonal edge in each four-cycle such that:

• For any two four-cycles that share an edge, the diagonal edges inside
them cover both ends of the common edge.

• A diagonal edge meets the vertex adjacent to the designated vertex sR
of the i-tendril.

(See Figure 5.5.)

The RI i-tendril is constructed from the diagonal i-tendril by replacing
each triangle by the graph Π depicted in Figure 5.1, such that:

• The edge (aΠ, cΠ) corresponds to the diagonal edge,

• The planar embedding of Π is maintained, i.e., the counter clockwise
order is {aΠ, bΠ, cΠ} along the triangle.

(See Figure 5.6(b))
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tR

sR

(a)

sT

tT

(b)

Figure 5.6: A rectilinear 1-tendril R (a) and an RI 1-tendril T (b).

Lemma 5.2 Any RI i-tendril T has exactly one plane embedding that places
both sT and tT in the outer face.

Proof. We know that there exists a planar embedding of T , as our con-
struction can produce one. Let T ′ be the rectilinear i-tendril that was the
base of construction of T . Adding the edge connecting sT ′ and tT ′ to T ′ will
result in a subdivision of a triconnected graph. Since Π is triconnected, after
adding the diagonal edges and copies of Π, the resulting graph would also
be a subdivision of a triconnected graph, and hence will have a unique plane
embedding. �

In following sections we construct a graph and substitute some of its edges
with tendrils and wiggles. Then the truth assignment to each pair of literals
in the NOT-ALL-EQUAL-3-SAT instance is done based on whether some tendril
is flipped or not.

Now we define a measure for the amount that a subgraph can “turn” in
some sense. Presume a straight-line drawing is fixed. The contribution of
a set of angles is the sum of the labels of the angles in the set minus twice
of the size of the set. Let the contribution of a subgraph to a face f be the
contribution of the set of angles of f that have both edges in the subgraph.
The contribution roughly corresponds to the turn-angle, i.e., by how much
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we deviate from the straight path at the angle. Note that in the drawing
of an RI i-tendril, the two paths on the outer face “spiral”; we prove this
formally in the following lemma.
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Figure 5.7: An RI-drawing of the frame graph of an RI tendril along with its
AC labeling that is an RI-admissible labeling.

Lemma 5.3 Let A and B be the two maximal chains on the outer face of
an RI i-tendril that have no angle on sR and tR such that |A| < |B|. Then
in any open RI-drawing, the contribution of A and B is in [8i−3, 8i+4] and
[−8i− 4,−8i+ 2], respectively.

Proof. Fix an arbitrary RI-drawing of the RI i-tendril, and consider the
induced RI-drawing of its frame graph(which is a diagonal i-tendril) and
graph Π. Let FΠ be the frame graph of the graph Π; FΠ is a triangle. Any
open RI drawing of Π induces the same angular labeling of FΠ, which is the
one shown in the Figure 5.1(b). This holds because only one vertex of FΠ, is
adjacent with all the vertices inside Π.

Therefore, by Lemmas 3.4 and 4.1, we have the unique AC labeling for
FΠ and hence a unique AC labelling of the inner angles of the diagonal i-
tendril (see Figure 5.7). Therefore, we know that the labels assigned to the
outside angles of the RI tendril are uniquely defined, except at the vertices
s′T and t′T that are adjacent to sT and tT , respectively. Since the inner angles
at t′T and s′T already have total label 1 because of the restrictions of filled
triangles, therefore, each of the outer angles at t′T and s′T has label in [0, 3],
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so can contribute anything between −2 to 1 to the total contribution of A
and B. As for the rest of the angles, by the fixed label of inner angles there
are 8i+ 2 angles of label 3 in B and 8i angles of label 1 in A. The rest have
label 2 which do not change the contribution. Therefore, the contribution of
B is in [8i− 2, 8i+ 4] and the contribution of A is in [−8i− 4,−8i+ 2], and
the lemma holds. �

By substituting an edge (u, v) by a graph H with two designated vertices
sH and tH , we mean identifying each of u and v with sH and tH , respec-
tively, and then removing (u, v). We later substitute some of the edges of
a special 2-connected graph with wiggles and tendrils, such that the contri-
bution of these wiggles and tendrils to the faces of that graph help us solve
NOT-ALL-EQUAL-3-SAT.

Lemma 5.4 Let ΓG be an RI-drawing of a 2-connected graph that has one
of its edges substituted by an i-wiggle W . Then the contribution of W to each
of its adjacent faces is in [−8i− 4, 8i+ 4].

Proof. Let us look at the contribution of any (of the two) maximal chain
of outer angles that does not have an element on sW and tW , in the draw-
ing induced by the vertices of W . It is easy to see that the backbone of W
(which is a path with 8i + 1 edges) is drawn oblique, since each triangle in
W contains Π and therefore a clique of size 3 inside, and hence cannot have
an axis aligned edge. By Lemma 3.12 on page 34 the sum of the labels of
this backbone on either side (excluding the angles at sW and tW ) must be in
[8i − 3, 3(8i) + 3]. This implies that the contribution of the backbone is in
[−8i − 3, 8i + 3]. Now we consider the triangles attached to the backbone.
Let us start by looking at the drawing induced by the vertices of the back-
bone. Attaching such triangle {x, y, z} to edge (x, y) of the backbone does
not change the contribution to the outer face of this partial drawing (since
it is always 4 by Lemma 3.1). Since the outer face consists of the two paths
from sW to tW , and one of them was not changed when attaching {x, y, z},
both paths retain the same contribution after adding to one of them. Re-
peating the argument and attaching triangles one by one shows the result.
�
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5.2 The Intermediate Reduction

The reduction in this section is taken from [15].

Let I be an instance of NOT-ALL-EQUAL-3-SAT with n pairs of literals
{xi, xi} and m clauses {c1, c2, . . . , cm}. For 1 ≤ i ≤ n, let αi and βi denote
the number of occurrences of xi and xi, respectively. Let θ = 74mn+9. Also,
we define γi = (2i−1)θ and δi = 2iθ. Let the graph Φ be an undirected graph
with a set of integer capacities s(e) associated to each of its edges e ∈ E(Φ),
constructed as follows:

• For any literal xi (resp. xi), there is a literal vertex vxi
(resp. vxi

) in
Φ,

• For any clause ci, there is a clause vertex vci in Φ,

• There is a dummy vertex z in Φ,

• For any pair of literals {xi, xi} there is a literal-literal edge e = (vxi
, vxi)

in Φ with s(e) = {αiγi + βiδi}.

• For any literal xi and any clause c, there is a clause-literal edge e =
(vxi

, vc) in Φ. If xi ∈ c, s(e) = {γi}, otherwise, s(e) = {0}.

• For any literal xi and any clause c, there exists a clause-literal edge
e = (vxi

, vc) in Φ. If xi ∈ c, s(e) = {δi}, otherwise, s(e) = {0}.

• For any clause cj , there exists a clause-dummy edge e = (vcj , z) in Φ.
Also, s(e) = {0, 1, . . . , ηj − 2θ}, where ηj is the sum of the members of
the capacity sets of the clause-literal edges incident with vcj . Note that
clause-literal edges have a single valid capacity, so ηj is well-defined.

• For any literal xi, there is a literal-dummy edge e = (vxi
, z) in Φ, with

s(e) = {βiδi}.

• For any literal xi, there is a literal-dummy edge e = (vxi
, z) in Φ, with

s(e) = {αiγi}.

Theorem 5.2 [15] Let D(I) be the switch-flow instance corresponding to the
graph Φ and the capacity function s. Then D(I) is satisfiable if and only if
I is satisfiable. Also, a satisfying solution for I can be constructed from a
satisfying solution of D(I) in polynomial time.
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5.3 The Graphs GRI and GOD

In this section we review the construction of GOD which was used in [15] to
prove NP-hardness of orthogonal drawablity of planar graphs. In the end of
the section we will introduce a new graph GRI .

vc3vc2vc1

vx1
vx2 vx3 vx3

vx2vx1

(a)

vc3vc2vc1

vx1
vx2 vx3 vx3

vx2vx1

(b)

Figure 5.8: An example of the graph Φ corresponding to a
NOT-ALL-EQUAL-3-SAT with three variables and three clauses (a) and the
corresponding graph P (b)

Let us construct a drawing ΓΦ of Φ (see Figure 5.8(a)). Place all ver-
tices associated with literals on a horizontal line, so that pairs of literals
corresponding to the same boolean variable are adjacent on the line. Place
all vertices associated with clauses on another horizontal line below the first
one, such that no three of the clause-literal edges, when drawn as straight
line segments, cross at the same point. Place z between the two lines, and to
the left of all vertices. Draw all edges that are not incident to z as straight
lines. Draw edges incident to z as curves that do not intersect any other
edge. The crossings only occur on edges between clauses and literals. Also,
only two edges pass through each crossing.

Now, construct a plane graph P from the drawing ΓΦ, by simply replacing
each crossing with a vertex of degree 4, called a crossing vertex (see Figure
5.8(b)). Doing this, each clause-literal edge is replaced by a series of edges.
We call these edges the fragments of the original edge. The capacity set of
each fragment is inherited from the original edge. It is easy to verify that
there is a solution on the integer switch-flow instance on P , if and only if
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Figure 5.9: The dual-like D corresponding to the graph Φ of Figure 5.8.

there is a valid solution on the integer switch-flow instance on Φ. The reason
is that by construction no two clause-literal edges share a common value in
their capacities. Therefore, in any valid solution of the integer switch-flow
instance, at each crossing vertex, the two fragments originating from the
same edge will have the same direction.

Lemma 5.5 [15] P is triconnected.

Note that this means that there is a unique dual D(P ) of P . Let D be
the graph D(P ) (see Figure 5.9). Construct the graph GOD from the graph
P as follows:
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First, replace each vertex of D by a binary tree with d leaves so that each
of its neighbors in D is adjacent with one of the leafs of the binary tree. Let
D′ be the result of this modification. Then substitute some edges of D′ with
tendrils and wiggles as follows. Let e be an edge of D′ that also is an edge
of D (i.e., not part of the binary trees that were added.) Let e′ be its dual
in P .

• If e′ is a clause-dummy edge then we know s(e′) = {1, . . . , c} for some
c. Substitute e with a rectilinear c-wiggle W .

• Otherwise s(e′) has only one entry, say s(e′) = {c} for some c. Substi-
tute e with a rectilinear c-tendril Tc.

We refer to the vertices and faces of GOD that correspond to vertices and
faces of D′ as the primary vertices and faces of GOD, respectively.

GRI is constructed similarly, with the difference that we use RI tendrils
and RI wiggles instead of rectilinear tendrils and rectilinear wiggles, respec-
tively. Note that each RI tendril (resp. wiggle) contains a rectilinear tendril
(resp. wiggle) as a subgraph, so GOD is a subgraph of GRI .

Lemma 5.6 [15] All the embeddings of GOD are obtained by choosing one
of the two possible flips for each rectilinear tendril.

Corollary 5.1 All the embeddings of GRI are obtained by choosing one of
the two possible flips for each RI tendril and fixing the embedding of each RI
wiggle.

So the choice of how to embed/flip each wiggle or tendril corresponds to
choosing how to direct the corresponding edge in the switch-flow problem,
and the difficulty will be to show that any RI-drawing yields a solution that
maintains balances at vertices.

5.4 From ΓOD to ΓRI

In this section, we prove that for every orthogonal drawing of GOD, there is
an open RI drawing of GRI . In fact, we prove that for any OD-admissible
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Figure 5.10: The OD-admissible labeling of a rectilinear tendril (a) and ex-
tracting RI-admissible labeling for the diagonal tendril (b).

labeling of GOD, there is an open RI drawing of GRI with non-aligned frame.
This way, we can show that if I is satisfiable, then GRI is open RI drawable.

We do this by transforming an OD-admissible labeling `OD(.) of GOD to
an RI-admissible labeling `RI(.) of GRI . Let H

′ be the subgraph of GRI that
is isomorphic to GOD as described in previous sections. Fix the embedding
of H ′ based on the embedding of GOD. If an angle appears in both H ′ and
GOD assign the same label to it in H ′ as it has in the OD-admissible labeling
of GOD. Next, we add the diagonals of the RI tendrils. Each 4-cycle in GOD

must have 4 angles labelled 1 in the OD-admissible labeling. As shown in
Figure 5.10, we can then assign labels 0 and 1 to the sides of the diagonals
so that the constraints forced by the filled triangles are satisfied.

Next we must label the angles of the triangles of the frame of an RI-
wiggle M . Let M ′ be the backbone of M , which is a wiggle in H ′ (see
Figure 5.11(a)). Let u be the neighbor of sT in M ′. Let v be the other
neighbor of u in M ′. Let α be an angle at u with label larger than 1. There
exists such an α since the sum of labels around u is 4. Then, we embed the
triangle of M at (u, v) on the side of M ′ where α is. Let the angles inside
the triangle be labelled 1 at u, 0 at v, and 1 at the third vertex; this satisfies
the condition for the filled triangle (see Figures 5.11(c)). Also, the remaining
angle on this side of v maintains its label, so there is still a label of value
greater than 1 at v. Therefore, we can iterate to the next edge on the path
from sT to tT and replace it with a triangle (see Figure 5.11(d)). We do this
iteratively for all edges of the back bone that have no end in {sT , tT}.

Lemma 5.7 The labeling of the frame graph of GRI as constructed above is
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RI-admissible.

Proof. The construction preserves the total labels around each vertex.
Also, for each vertex added to a face, the total label around that face is
increased by 2. The labels of the angles of the binary trees with primary
vertices has not been changed, and therefore they contain no label 0. Also,
except for the inside of triangles, no label of 0 is placed on a face, meaning
there is no chain with labels of the form 01∗0. The only property that re-
mains to be verified is that the labeling respects the inside of filled triangles,
i.e., in each triangle the vertex that is not adjacent to all vertices inside that
triangle has label 1. This property holds by the way labels 011 where as-
signed to angles of the frame of instances of the graph Π. �

5.5 From ΓRI to an Integer Switch-flow Solu-

tion

In this section, we will construct a valid solution for the integer switch-flow of
P , and hence Φ, from an open RI drawing ΓRI of GRI . The proof is similar
to the ones proposed in [15] except that we need different constants since
the contribution of RI i-tendrils fluctuates more. We will assign directions to
edges of Φ by looking at the tendrils of GRI in ΓRI . Recall that by Lemma 5.3
each side of an RI i-tendril T has contribution either roughly 8i or roughly
−8i. We use this to model the direction and amount of flow in the edge of
P that corresponds to T that has a single valid capacity value i. Also, based
on the shape of the RI wiggles in ΓRI , we will assign directions and flow to
the clause-dummy edges of P . Recall that by Lemma 5.4 the contribution
of either sides of an RI i-wiggle W is roughly between 8i and −8i. This will
help us assign direction and flow to the corresponding edge of P that has
capacity [−i, i].

Recall that by Lemma 5.3 the contribution of an RI i-tendril of GRI to
a primary face is either between 8i − 2 and 8i + 4 or between −8i − 4 and
−8i + 2. Similarly, by Lemma 5.4 the contribution of an RI i-wiggle to a
primary face of GRI is between −8i− 3 and 8i+ 3.

For each k-tendril T in GRI , let the significant contribution of T to f be
8k if its contribution to f is between 8k − 2 and 8k + 4, and −8k otherwise.
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This means that by Lemma 5.3 the difference between the contribution and
the significant contribution of a tendril is at most 4. Also, let the significant
contribution of a wiggle W to a face f be its contribution to f rounded to
the closest multiple of 8. Clearly the difference between the contribution and
the significant contribution of a wiggle is also at most 4.

Lemma 5.8 If n ≥ 3 and m ≥ 3, then the magnitude of the total contribu-
tion of primary vertices to a nondummy face is at most 70nm and at least
−70nm.

Proof. Garg et al. [15] proved that the total number of primary vertices on
a nondummy face is at most 35nm. Since each primary vertex contributes
at most 2 and at least −2 to each face, the total contribution of primary
vertices to a nondummy face is bounded by −70nm and 70nm. �

Lemma 5.9 Let f be a primary face of GRI that is not the outer face. Let
τ(f) and ω(f) be the total significant contribution of tendrils and wiggles of
f respectively. Then

|τ(f) + ω(f)| < θ

where θ is 74mn+ 9.

Proof. Let τ ′(f) and ω′(f) be the total contribution of tendrils and wiggles
of f respectively. Let ν(f) be the number of primary vertices on the boundary
of f . Since GRI is biconnected, each such a vertex has exactly one angle in
f . Let ν ′(f) be the sum of the labels of these angles minus 2ν(f). Then,
by Lemma 3.1, we have τ ′(f) + ω′(f) + ν ′(f) = −4. Since by construction
of P and D each face has at most nm tendrils, and the difference of the
contribution and significant contribution of a tendril is at most 4, |τ ′(f) −
τ(f)| ≤ 4mn. Also, since any face except the outer face has at most 1 wiggle,
|ω′(f)− ω(f)| ≤ 4. By Lemma 5.8 we know |ν ′(f)| ≤ 70nm.

Putting it all together, we have:

|τ(f) + ω(f)| ≤ |τ ′(f) + ω′(f) + ν ′(f)|

+|τ ′(f)− τ(f)|+ |ω′(f)− ω(f)|+ | − ν ′(f)|

≤ 4 + 4mn+ 4 + 70mn

which concludes the lemma. �
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Lemma 5.10 From any open RI drawing of GRI , a valid solution to the
integer switch-flow instance of Φ can be constructed.

Proof. Let the flow of each edge e to each vertex v in P be the same as
the significant contribution of the dual edge e′ of e to the dual face v′ of v in
GRI , divided by 8. By Lemma 5.3 and definition of significant contribution
of tendrils, the amount of the flow assigned to each edge corresponding to
a tendril is a valid range of values assigned to that edge. By Lemma 5.4
and the definition of significant contribution of wiggles, the amount of the
flow assigned to each edge corresponding to a wiggle is within the valid value
assigned to that edge. Also, by Lemma 5.9 we know that the sum of the flow
to all but one of the vertices is 0, and hence is 0 to all vertices. This means
that the constructed switch-flow network is valid. Hence a valid solution for
switch-flow network of Φ can be constructed based on the flips of the tendrils
and the labels of the angles in the open RI drawing of GRI . �

This proves the other direction of the reduction and hence NP-completeness
of testing whether a planar graph has a planar weak open RI-drawing.
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Figure 5.11: The backbone of an RI wiggle W (a) and its corresponding
labeling (b) and the two first iterations of obtaining an RI-admissible labeling
for W (c and d).
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Chapter 6

Conclusion

In this chapter, we review and conclude the work done in this thesis. In
Section 6.1 we will discuss different types of RI drawings that have been
studied here, and look at some examples that distinguish between these types.
Then, in Section 6.2 we will review some of the results presented in this
document, and also propose some interesting open problems.

6.1 Three Models of RI-drawings

In this thesis, we have studied three types of planar weak open RI-drawings:
those without any restrictions on coordinates; those where the frame is
oblique; and those where the frame is non-aligned. Clearly every non-aligned
RI-drawing is oblique, and any of them is an unrestricted RI-drawing. We
now briefly discuss that these models are truly different in the sense that
there are graphs that have a drawing in one model, but not the other.

Lemma 6.1 There exists an inner triangulated graph that has a planar weak
open RI drawing, but admits no planar weak open RI drawing with oblique
frame.

Proof. Figure 6.1 shows an example of an open RI drawing of a graph that
admits no open RI drawing in which the frame graph is oblique. For assume
it did, and consider the induced AC labeling of the frame which then uses
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only integer labels. Note that the label at angle α must be 1, for the incident
vertex must have label-sum 4, and every inner angle has AC label 0 or 1.
Similarly the angle β must have AC label 1, forcing AC label 0 onto γ. But
the vertex at γ is not adjacent to all vertices inside the separating triangle
and so must not have AC label 0. Contradiction. �

α β

γ

Figure 6.1: An RI drawable graph admitting no RI drawing with oblique
frame.

Lemma 6.2 There exists an inner triangulated graph that has a planar weak
open RI drawing with oblique frame, but does not admit a planar weak open
RI drawing with non-aligned frame.

Proof. Figure 6.2 shows a graph (and its frame) that has a planar weak
open RI-drawing with oblique frame. Assume we could draw it with non-
aligned frame. Observe that the structure of the separating triangles forces
all the AC labels in the frame as indicated. Since the AC labels at a vertex
sum to 4, therefore α0 and α2 have AC label 0, while α1 has AC label 1.
Hence the outer-face has a sub-sequence 010 among its AC labels, which is
impossible in a non-aligned drawing (Corollary 3.2.) �

However, as was shown implicitly in Lemma 4.4, if a graph has an oblique
RI-drawing such that all outer angles have AC label 2,3, or 4, then the
drawing can be converted to a non-aligned RI-drawing with the same AC
labels by extracting the good labeling. So the concepts of oblique and non-
aligned coincide if the outer-face is “nice” in the sense of consisting of four
chains that are x-monotone and y-monotone.
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Figure 6.2: A graph that has an RI-drawing with an oblique frame (a), but
the forced AC labels in the frame (b) force some vertices to be aligned.

6.2 Review and Open Problems

We have presented an algorithm to find a planar weak open RI drawing with
non-aligned frame of a given planar graph G with fixed embedding, if there
exists such a drawing. We also characterized existence of such drawings in
terms of properties of AC labelings.

Also, we showed that if the embedding is not fixed, the problem of decid-
ing if the given graph has a planar weak open RI drawing is NP-complete.

Our results also imply a correspondence between non-aligned planar weak
RI-drawings and a class of orthogonal drawings. Theorem 4.2 shows that any
non-aligned planar weak RI-drawing can be converted to a rectangular dual
drawing with the same inner structure. Steps (v)-(x) of our algorithm (see
Section 4.2) show that any rectangular dual drawing can be converted to a
non-aligned planar weak RI-drawing, that preserves the inner structure. So
apart from modifications near the outer-face (rectangles can “slide outward”),
there is a one-to-one correspondence between non-aligned planar weak RI-
drawings and rectangular dual drawings.

The most pressing open problem is what happens when we want to drop
“with non-aligned frame” for planar weak open RI-drawings of plane graphs.
Can we efficiently test whether a given plane graph has a weak open planar
RI-drawing? It is quite easy to find necessary conditions for this problem,
but are they sufficient? And if they are sufficient, how easy is it to test
whether a graph has a labeling that satisfies these conditions? Neither of
these questions appears straight forward to answer.
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