
A Performance Evaluation of
Database Systems on Virtual

Machines

by

Umar Farooq Minhas

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Umar Farooq Minhas 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Umar Farooq Minhas

ii

Abstract

Virtual machine technologies offer simple and practical mechanisms to address
many manageability problems in database systems. For example, these technologies
allow for server consolidation, easier deployment, and more flexible provisioning.
Therefore, database systems are increasingly being run on virtual machines. This
offers many unique opportunities for database research. However, it is also impor-
tant to understand the cost of virtualization. Virtual machine technologies add
a layer of indirection between applications and the hardware that they use (e.g.
CPU, memory, disk). This added complexity results in a performance overhead
for software systems running in a virtual machine. In this thesis, we present an
experimental study of the overhead of running a database workload in a virtual
machine. Using a TPC-H workload running on PostgreSQL in a Xen virtual ma-
chine environment, we show that Xen does indeed introduce overhead for system
calls, page fault handling, and disk I/O. However, these overheads do not translate
to a high overhead in query execution time. We show that in all cases the average
overhead is less than 10% and, therefore, conclude that the advantages of running
a database system in a virtual machine do not come at a high cost in performance.

iii

Acknowledgements

Thanks to Allah who made this possible for me. I would like to thank my
mother, father and siblings (all seven of them) for their support and prayers through-
out my life. I would like to thank all those who are a part of my social circle here
at Waterloo, back home, in Pakistan and the rest of the world. I would also like
to thank my supervisor Professor Ashraf Aboulnaga for his extensive support and
patience. I further thank Professor Kenneth Salem, Professor Tim Brecht, and my
colleagues Oguzhan Ozmen and Jitendra Yadav for making contributions to this
work. I thank Professor Kenneth Salem and Ihab Ilyas for being my thesis readers.
Finally, I would like to thank the University of Waterloo for providing me with the
required support and an excellent academic experience throughout the program.

iv

Dedication

I dedicate this work to my parents.

v

Contents

1 Introduction 1

1.1 Virtualization – Past, Present and the Future 1

1.2 Challenges and Opportunities . 2

1.3 Database Systems and Virtualization 3

1.4 About this Thesis . 3

1.5 Organization . 4

2 Background 5

2.1 System Virtualization Techniques 5

2.1.1 Full Virtualization . 6

2.1.2 Para-virtualization . 7

2.1.3 Hardware Support for Virtualization 7

2.1.4 VMMs: State of the Art . 8

2.2 Problem Statement . 10

2.2.1 Motivation . 10

2.2.2 Problem Definition . 11

3 Experimental Testbed 13

3.1 Machine Configuration . 13

3.1.1 Base System . 13

3.1.2 Xen System . 13

3.2 PostreSQL Configuration . 14

3.3 Benchmark . 14

3.4 Tools . 15

3.4.1 mpstat . 15

vi

3.4.2 iostat . 15

3.4.3 strace . 15

3.4.4 sar . 16

3.4.5 top . 16

3.4.6 xentop . 16

4 Experimental Results 17

4.1 Warm Experiments . 17

4.1.1 Xen Overhead . 17

4.1.2 Run-time Breakdown . 20

4.1.3 System Call Time . 21

4.1.4 Page Fault Handling Time 27

4.1.5 Reducing Page Fault Overhead 29

4.1.6 Explaining User Time Slowdown 33

4.2 Cold Experiments . 34

4.2.1 Xen Overhead . 35

4.2.2 Disk Activity in Dom0 and DomU 38

4.2.3 DomU and Dom0 Caching 40

4.3 Overhead Under Different Base and Xen Versions 45

5 Related Work 48

5.1 Virtualization . 48

5.2 Xen . 49

5.2.1 Xen Performance Monitoring 50

5.3 Virtualization for Server Consolidation 51

6 Conclusion and Future Work 52

A DomU Configuration File 60

B Sort Program Source Code 61

C PL/PGSQL Function AccessRelR 62

D System Call Detail Data 63

vii

List of Tables

4.1 Overhead: Base vs. Xen. 18

4.2 Runtime Breakdown: User and System Time. 21

4.3 System Call Time. 23

4.4 System Call Details: Query 3. 25

4.5 System Call Details: Query 9. 26

4.6 Page Fault Handling: Base vs. Xen. 28

4.7 Overhead for Single Connection. 30

4.8 Runtime Breakdown for Single Connection. 31

4.9 Overhead: Bubble Sort . 34

4.10 Overhead for Cold Runs. 36

4.11 Runtime Breakdown for Cold Runs. 37

4.12 Disk Activity and I/O Wait: Base vs Xen. 39

4.13 Disk Activity: DomU Read-Ahead Off. 40

4.14 Prefetch Triggering . 41

4.15 Disk Activity: Synthetic Database. 43

4.16 Additional Experimental Settings. 45

4.17 Overhead: Base-I vs. Xen-I. 46

D.1 System Call Details: Query 1. 63

D.2 System Call Details: Query 2. 64

D.3 System Call Details: Query 3. 64

D.4 System Call Details: Query 4. 65

D.5 System Call Details: Query 5. 65

D.6 System Call Details: Query 6. 66

D.7 System Call Details: Query 7. 66

D.8 System Call Details: Query 8. 67

viii

D.9 System Call Details: Query 9. 67

D.10 System Call Details: Query 10. 68

D.11 System Call Details: Query 11. 68

D.12 System Call Details: Query 12. 69

D.13 System Call Details: Query 13. 69

D.14 System Call Details: Query 14. 70

D.15 System Call Details: Query 15. 70

D.16 System Call Details: Query 16. 71

D.17 System Call Details: Query 17. 71

D.18 System Call Details: Query 18. 72

D.19 System Call Details: Query 19. 72

D.20 System Call Details: Query 20. 73

D.21 System Call Details: Query 21. 73

D.22 System Call Details: Query 22. 74

ix

List of Figures

2.1 Machine Virtualization. 6

2.2 Hosted Virtual Machine Architecture. 8

2.3 Xen Virtualized Host. 9

2.4 PostgreSQL: Physical vs. Virtual Machine. 11

4.1 Relative Slowdown: Base vs. Xen. 19

4.2 Slowdown: User vs. System Time. 22

4.3 Base: Page Faults for Single Connection. 32

4.4 Xen: Page Faults for Single Connection. 32

x

Chapter 1

Introduction

Today, the term virtualization is used to refer to a variety of techniques that provide
a layer of indirection between the physical hardware and the software running above
it and separate the user-perceived notion of resources from their actual physical
implementation. Machine virtualization technologies are being increasingly used
to improve software systems, including database systems, and lower their total
cost of ownership. These technologies add a flexible and programmable layer of
software, the virtual machine monitor (VMM), between software systems and the
computing resources (such as CPU and disk) that they use. In effect, a VMM
allows the resources of a physical machine to be divided into multiple partitions.
Each partition, called a virtual machine (VM), can have an independent operating
system running different software applications isolated from other VMs running on
the same physical machine. This allows for efficient use and better manageability
of computing resources. In addition, VMMs also add flexibility by dynamically
changing the resource allocation to different VMs, suspending and resuming VMs,
and migrating VMs among physical machines, thus revolutionizing the software
development and deployment practices in various unique ways.

1.1 Virtualization – Past, Present and the Future

In the recent years, virtualization has once again emerged as a hot topic both in
academic circles and in industry, presenting new research opportunities. The focus
is to use virtualization to provide features like reliability, availability, security, and
performance in a multitude of software and hardware application domains. The first
system that allowed a computer to be partitioned and shared among multiple users,
by creating virtual machines, was developed by IBM in the 1960s. Back then, server
consolidation was one of its prime objectives, mainly to allow efficient utilization
and sharing of expensive server resources. The basic idea of server consolidation is
to combine multiple physical servers running different business applications in an
enterprise on to a single physical server, thus cutting down the costs by requiring
less hardware. IBM originally developed the concept of virtual machines simply

1

as a way of time-sharing expensive mainframe computers and to allow multiple
uses of a single machine [52]. For example, now the same machine could be used
for development and for production activities simply by running each of these in
separate virtual machines.

In the past, virtualization was mainly available on mainframe computer systems,
limiting its widespread use. Today, with the increasing proliferation of various
virtualization enabling technologies, it has a much wider spectrum of goals. Despite
of the fact that hardware is much cheaper now, server consolidation remains one
of the main objectives of virtualization. This is because in addition to the actual
hardware cost – which is a one time expense – there are maintenance costs and
costs associated with hiring trained personnel to manage these multiple servers.
By enabling server consolidation, virtualization offers the advantage of requiring
less hardware, less people to manage that hardware and also cuts on other possible
maintenance costs, for example, space and cooling requirements.

In addition to being cost effective, virtualization has several other benefits. It
provides better execution boundaries than an operating system does, therefore pro-
viding enhanced security. If the software running in one of the virtual machines
malfunctions, it does not affect other virtual machines running on the same physi-
cal host, thus providing fault isolation. Virtualization also offers the advantage of
high reliability, high availability, and ease of management. Furthermore, the use
of virtualization technologies has transformed various system configuration tasks
from the rigid boundaries of the hardware to the flexible arena of software. Allo-
cating more memory or CPU power, for example, to a virtual machine can now be
easily done in software by an administrator. Given the popularity of virtualization,
hardware vendors like Intel and AMD have already introduced the next generation
of processors that provide better support for virtualization. Evidently, it is going
to be a very promising technology in years to come. Virtualization is changing the
way we use computers and it is envisioned that this change will continue to become
more profound as the years go by.

1.2 Challenges and Opportunities

Rapid development of various virtualization technologies and their increasing use
for consolidation, manageability and security has opened a new world of challenges
both at the system administration and development levels. In addition to the exist-
ing administration tasks, system administrators are now faced with the challenges
of choosing the virtualization parameters to gain the optimal performance for their
specific applications and platforms. On the other hand, application developers are
motivated to devise different ways to enhance application performance by exploit-
ing the unique features made available to them by these virtualized platforms, e.g.,
dynamic resource provisioning. In an environment where resources are changing dy-
namically, applications should be made to run adaptively, reacting to those changes
and always staying tuned for the optimal performance. Potentially, we can design

2

virtualization aware applications that manage and optimize themselves to run on
a virtualized platform. This presents various unique opportunities for researchers
in the field of self-managing database systems and are likely to be exploited in the
coming years.

1.3 Database Systems and Virtualization

By running database systems in VMs and exploiting the flexibility provided by
the VMM, we can address many of the provisioning and tuning problems faced
by database systems. For example, we can allow many different database systems
running in VMs to share the same physical machine while providing them with
a guaranteed share of the resources of this machine [40]. As mentioned above,
this server consolidation is already widely used by many enterprises and service
providers, since it reduces the number of servers required by an organization, which
also reduces space, power, and cooling requirements. We could also use the VMM
to change the resource allocation to a database system in response to fluctuations
in the workload [31]. As another example, we could use virtualization to simplify
deploying database systems by providing VM images (i.e., suspended and saved
VMs) with pre-installed and pre-configured database systems. In this case, deploy-
ing a database system is simply a matter of starting a VM from the saved VM
image. Such pre-configured VM images are known as virtual appliances [49] and
are increasingly being used as a model for software deployment.

1.4 About this Thesis

In the previous section, we briefly describe only a few of the benefits that virtual
machine technologies can provide to database systems and other software systems.
These benefits are widely recognized in the IT industry, which has led to users
adopting virtual machine technologies at an increasing rate, and to hardware and
software vendors providing new features aimed specifically at improving support for
virtualization. However, the benefits of virtualization do not come without a cost.
Virtualization technologies introduce a layer of indirection between the underlying
physical hardware and the software running above it due to which the applications
running in a virtualized environment are bound to incur some performance overhead
when compared with the performance on a base system (without virtualization).
The goal of this thesis is to quantify the performance impact of running a database
management system on a virtualized platform. We ask the question: How much
performance do we lose by running a database system in a virtual machine?

To answer this question, we present a detailed experimental study of the per-
formance of the TPC-H benchmark on PostgreSQL. We compare the performance
on Linux without virtualization to the performance in a VM using the Xen hyper-
visor [59], currently one of the most popular VMMs. We show that the average

3

overhead is less than 10% and we report details on the nature and causes of this
overhead. We view this as an encouraging result, since it means that the benefits
of virtualization do not come at a high cost. Ours is not the first study to report
the overhead of virtualization. Other researchers have studied the performance
overhead of virtualization for web servers [16], networking applications [25], and
for consolidation of multi-tiered applications [32]. In this work, we focus on the
database system only and provide a detailed experimental study to characterize
how database workloads, in particular, are expected to perform when running in-
side a VM. To the best of our knowledge, we are the first to provide such a study
for database systems.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a brief
overview of the two leading system virtualizaton techniques followed by a descrip-
tion of our problem statement. In Chapter 3, we present our experimental testbed.
In Chapter 4, we present the details of the experiments conducted to evaluate the
virtualization overhead for database systems and discuss the results. In Chapter
5, we present related work. Finally, in Chapter 6, we conclude and describe our
future work.

4

Chapter 2

Background

In this chapter, we provide some basic information on virtualization technologies.
Also, we formally present the performance evaluation problem which is the focus of
this thesis in Section 2.2. Without loss of continuity, more advanced readers may
directly skip to Section 2.2.

2.1 System Virtualization Techniques

Figure 2.1 shows the architecture of a typical virtualized host. The virtual machine
monitor (or the hypervisor) provides an interface – similar to the actual physi-
cal hardware – to the software (virtual machines) running above it. Each virtual
machine can be running any operating system from the set of operating systems
supported on a particular hypervisor. Figure 2.1 shows a host running n sepa-
rate virtual machines with n independent operating systems and their associated
applications. The hypervisor itself may be providing either a complete virtualiza-
tion of the underlying hardware through a technique called full virtualization or
a partial virtualization by using the para-virtualization technique. These are the
two widely used techniques to develop virtual machine systems today. Operating
system level virtualization is another technique in which virtual environments run
over an OS virtualization layer that is running over a standard operating system
which in turn is running over the physical hardware. The virtual environments in
OS level virtualization are different from virtual machines in that they do not run a
full-fledged guest operating system of their own. There is only one OS per physical
machine and various kernel structures along with virtual devices are replicated for
each virtual environment. Because OS level virtualization technologies only run
a single kernel, they provide a low overhead alternative to full virtualization and
para-virtualization when multiple copies of a single OS need to be run on a physical
machine. OpenVZ [28] and Virtuozzo [51] are examples of OS level virtualization
technologies. We next briefly discuss the full and para-virtualization techniques.
No further discussion on OS level virtualization is provided. We also describe
VMWare Workstation, a commercially available virtualization platform that uses

5

Figure 2.1: Machine Virtualization.

full-virtualization, and Xen, an open-source, para-virtualization based hypervisor
which we use in this work.

2.1.1 Full Virtualization

As apparent from its name, in full virtualization the capabilities of the underlying
physical hardware are fully replicated by the virtual machine monitor running above
it. In other words, the underlying hardware is exported to each virtual machine as
a complete physical system giving it the illusion that it is running on the actual
(unmodified) hardware. The first system produced by IBM back in the 1960s used
full virtualization. Since the virtual machine is a complete replica of the physical
machine, the operating systems and the applications do not need to be modified
to run on these VMs. This is the main advantage of using full virtualization tech-
niques. By requiring no changes, full virtualization enhances operating system and
application portability. However, this puts more work on the virtual machine mon-
itor. For instance, it is not always possible to efficiently virtualize the underlying
hardware completely. When virtualizing the inherently difficult-to-virtualize parts
of the underlying architecture (e.g., IA-32), full virtualization based VMMs cannot
always do a good job. This results in sub-optimal performance in some cases when
compared with other virtualization technologies.

The Intel IA-32 architecture, commonly known as the x86 or x86-32 architecture,
is one of the most popular computer system architectures, and is used in systems
ranging from personal computers to high end servers. Therefore, virtualizing the
x86 architecture is particularly attractive for the IT industry. However, the x86
architecture was not designed to be virtualized, at least not efficiently. For example,
some sensitive instructions of the x86 instruction set are allowed to be executed
in non-privileged mode. When running a single operating system on a machine,
this is not a big problem. However, it becomes a serious threat with multiple
virtual machines and can lead to intentional or accidental compromise of the entire

6

system. Furthermore, the x86 architecture supports a wide variety of devices (and
associated drivers). Providing a virtualized abstraction for these devices becomes
a great challenge. Lastly, the virtual memory management sub-system of the x86
architecture does not lend itself to efficient virtualization. All the virtual memory
calls made by the guest operating system to the CPU must be intercepted and
serviced by the VMM. The VMMs running on the x86 architecture need to use hacks
to virtualize hardware for each virtual machine. This situation is exacerbated even
more for VMMs providing full virtualization. Exposing some parts of the underlying
hardware to the virtual machines (e.g. page tables for virtual memory management)
can help reduce some of these inefficiencies. Para-virtualization based hypervisors,
which we describe next, implement such techniques.

2.1.2 Para-virtualization

Para-virtualization takes a different approach to design virtual machine systems.
Unlike full virtualization, a VMM based on para-virtualization does not try to
exactly replicate the capabilities of the underlying physical machine. As mentioned
above, one of the reasons why full virtualization fails to efficiently virtualize the
x86 architecture is that the VMM has to intervene very often. If the operating
systems are made aware of the hypervisor (or VMM) running below them, we can
reduce some of this overhead. In para-virtualization, instead of executing protected
instructions on the CPU, the operating systems are modified in a way that these
instructions go to the VMM. In this way, by introducing minimal changes in the
operating system, para-virtualization based VMMs work together with the guest
operating systems to achieve the best performance. It has been shown that the
performance of a para-virtualized hypervisor in many cases is very close to that of a
system without virtualization [4]. One obvious disadvantage of this technique is that
the operating system has to be ported to run over the para-virtualized hypervisor.
Fortunately, the applications in this case as well continue to run unmodified.

2.1.3 Hardware Support for Virtualization

The newly introduced server processors by Intel (Intel VT) and AMD (AMD-V),
with support for virtualization in hardware, can help reduce (or eliminate) many
of the inefficiencies still existent in current system virtualization techniques. These
processors provide better support for virtualization by addressing the issues present
in previous x86 processors that impeded efficient virtualization. Full virtualization
and para-virtualization techniques can equally benefit from these processors. We
note that neither of these two techniques has a clear edge over the other. Each has
its own advantages and disadvantages and can fulfill the needs of a virtualization
environment in a different way.

7

Figure 2.2: Hosted Virtual Machine Architecture.

2.1.4 VMMs: State of the Art

There are many different VMMs available today. Two very commonly used VMMs
are Xen and VMWare Workstation. Next, we present a brief introduction to these
two as representative VMMs of full virtualization (VMWare Workstation) and para-
virtualization (Xen) techniques.

VMWare Workstation

VMWare Inc. [53] has been involved in producing virtualization products for more
than a decade. One of the early PC hypervisors by VMWare was introduced in
the mid-1990s. Now there is a wide array of desktop and server products avail-
able from VMWare to enable virtualization of large scale server infrastructures as
well as desktop PCs. Along with Xen, VMWare Workstation is one of the most
popular platforms for x86 virtualization. It is a full virtualization based platform,
and therefore has the benefit of running guest operating systems and applications
unmodified. VMWare Workstation takes a unique approach to virtualizing the x86
architecture. The VMWare Workstation is not installed over the bare hardware.
Instead, it runs over the operating system already hosted on the machine. This is
known as the Hosted Virtual Machine Architecture and is shown in Figure 2.2.

VMWare Workstation does not completely run in the user space of the host
operating system. It installs a special driver, VMDriver, inside the operating system
kernel. In this manner, faster access to the physical devices is provided to the
VMs created by VMWare. Also, by using VMDriver, it cleverly avoids the duty of
virtualizing the wide array of x86 devices, leaving this task up to the host operating
system. Instead, it exports a generic set of devices to the VMs, greatly simplifying
the hypervisor design.

8

Figure 2.3: Xen Virtualized Host.

Xen

The Xen hypervisor is an open-source project originally developed at the Computer
Science Laboratory, Cambridge University, UK. Since then it has been transformed
into a company called XenSource [59]. It is one of the most widely used virtual-
ization platform for x86 and is a direct competitor of VMWare. Given the success
of Xen, Xensource has recently been acquired by Citrix [8]. Figure 2.3 gives an
overview of a virtualized system running Xen.

The Xen hypervisor sits directly above the bare hardware. Virtual machines,
known as domains in Xen terminology, run above the Xen hypervisor. The default
domain, labeled as Dom0 (short for Domain Zero) in Figure 2.3, is a privileged
domain automatically started by the Xen hypervisor at boot time. Dom0 is re-
sponsible for creating, configuring, controlling, and managing other domains which
are called the user-domains or DomUs. Xen uses the para-virtualization approach.
Therefore, it requires that the operating systems running in the virtual machines
(DomUs) be modified so that they execute sensitive instructions by calling the Xen
hypervisor instead of directly executing them on the actual hardware (CPU). These
calls are known as hypercalls in Xen terminology. The Xen hypervisor then executes
these (protected) instructions on the CPU on behalf of the virtual machines. This
provides enhanced security and fault isolation between the different VMs running
on the same system. However, special effort has been made to keep the number of
hypercalls to a minimum and thus reduce the number of times the Xen hypervisor
has to intervene in the execution of VMs. Also, note that in this case as well, user
applications run without modification in Xen DomUs.

It has been shown that in many cases the performance of a Xen virtualized
system is close to a system without virtualization. The performance benefits of
Xen come from the fact that it avoids trying to virtualize the hard-to-virtualize
parts of the x86 hardware. For example, to allow efficient virtualization of virtual
memory management, each virtual machine is provided with read-only access to
the hardware page tables. In this way, only the updates to the page tables need
to be processed by the Xen hypervisor. Furthermore, in standard operating sys-

9

tems, system call handlers are determined by a look-up table with the CPU. Xen
virtualization allows the guest operating system to register a system call handler
directly with the physical CPU instead of the virtual CPU, obviating the need for
the hypervisor to step in with every system call. Finally, like VMWare, Xen also
exports a small set of generic devices to the VMs allowing them to have fast ac-
cess to the actual physical devices through Dom0. The unmodified drivers for the
physical devices are hosted in Dom0, with the corresponding virtual drivers hosted
inside DomU. The requests to one of the physical devices made by DomUs are
serviced by Dom0 with the results returned to the requesting DomU, with many
optimizations to improve performance. In short, Xen has a lot to offer in terms of
performance and manageability. For a more detailed discussion of Xen, we refer
the reader to [48, 57].

2.2 Problem Statement

2.2.1 Motivation

As pointed out in the introduction, more and more organizations are shifting to-
wards a virtualized system architecture to reduce operational costs and to increase
return on investment. Therefore, it is reasonable to expect that an increasing
number of software systems, including database systems, would be running in a
virtualized environment in the coming years.

As we note from the previous section, the applications running in a VM have to
go through an additional layer of indirection (the VMM) to access the underlying
hardware. This added complexity results in a performance overhead. This overhead
may vary with the type and the particular implementation of the virtualization
technology used. We propose that it is important to know what kind of performance
overhead, if any, a database system is expected to incur while running a workload
inside a VM as compared to a dedicated physical machine.

From a service provider’s perspective, the problem of performance evaluation
is of particular importance to meet Service Level Agreements (SLAs) and/or to
ensure Quality of Service (QoS) for their customers. An SLA is an agreement or
contract between the service providers and the customers that, among other things,
may specify the performance guarantees which the customer is promised to have
and may result in penalties if violated by the service provider. Depending on the
application under consideration and the amount of load, the database system may
easily become a bottleneck especially in the face of I/O intensive workloads. Thus, it
is important to tune the performance of the database system to the new virtualized
environment, and in order to do this we need to have a precise characterization of
the behavior of the database system in this setting. The results that we present
aim to guide the database performance tuning process to a certain degree.

We define the database system performance evaluation problem, which is the
focus of this work, more formally in the next section.

10

(a) Non-virtualized host. (b) Xen-virtualized host.

Figure 2.4: PostgreSQL: Physical vs. Virtual Machine.

2.2.2 Problem Definition

We consider an architecture where a database system is running on:

(a) A physical machine with no virtualization, or

(b) Inside a virtual machine hosted on a physical machine.

In this thesis, we use PostgreSQL and Xen virtualization. We present this
setting in Figure 2.4. More details are presented in Chapter 3.

Next, we ask the questions:

1. How much performance degradation will a database system experience when
moving from setting (a) to setting (b)?

2. What are the possible causes of this overhead?

We want to quantify the performance gap between a database system running
on a non-virtualized physical machine and on a virtual machine given that the two
systems are identically configured, both in software and hardware. The two systems
should run the same operating system, with equal amounts of CPU power, memory,
etc., available.

The specific problem posed here is important in many ways. From an organiza-
tion’s point of view, the answer to the questions posed above may impede or ease
the migration of its database system to a virtualized setting. It is also important
for designers of virtualization technologies, operating systems, database systems,
and other applications to know the source of virtualization overhead. This can

11

help build more efficient and robust systems in the future. More generally, anyone
interested in the performance of virtualized applications would find the results of
this study valuable since some of the implications of this work are not particular to
database systems and can be applied to the performance tuning and study of other
virtualized applications.

To answer the questions posed above, we design and execute a set of detailed
experiments employing a rich set of performance monitoring tools that help us to
observe the behavior of the database system from many different aspects in both
settings. Chapter 3 describes the details of our experimental setup and Chapter 4
presents our findings regarding the observed overhead and its causes.

12

Chapter 3

Experimental Testbed

This chapter provides details about the hardware and software used in our ex-
periments. In particular, details are provided about the configuration of the non-
virtualized Linux system, the Xen virtualized system, the PostgreSQL DBMS, and
the benchmark used for performance evaluation. Various tools that we use to collect
different performance metrics are also discussed.

3.1 Machine Configuration

We use two identical machines for the experiments, one with a non-virtualized ver-
sion of Linux, referred to as the Base system, and the other with Xen virtualization,
referred to as the Xen system. Details of these systems are provided in the following
subsections.

3.1.1 Base System

The physical machine that we use as the Base system is a Sun Fire X4100 x64 Server
with two 2.2Ghz AMD Opteron Model 275 dual core processors, 8GB memory, two
SCSI 10K RPM drives each with 73GB of storage space formatted with ReiserFS
file system. The machine runs SUSE Linux 10.1 with version 2.6.18 of the kernel.

3.1.2 Xen System

The same hardware configuration as the Base system is used for the Xen system.
Our Xen system uses Xen 3.1, the latest stable release of Xen at the time of this
writing. The control domain of Xen, Dom0, is allocated 4GB of memory and uses
one virtual CPU (VCPU).

To run the database system, we create a single virtual machine (DomU in Xen
terminology). DomU is given one VCPU, 3GB memory, a single 10GB virtual disk

13

mapped as a file in Dom0 with ReiserFS as the file system. The same disk also
contains the PostgreSQL server and our test database. Similar to the Base system,
Dom0 and DomU run SUSE Linux 10.1 with version 2.6.18 of the kernel. Further-
more, they use different physical CPUs on the machine, which ensures that Dom0
has enough resources to do its work without throttling DomU or competing with it
for resources. The configuration file used for DomU can be found in Appendix A.

3.2 PostreSQL Configuration

As our database system, we use PostgreSQL 8.1.3 [33], which we refer to simply
as Postgres. Except for the buffer pool size, all the other Postgres configuration
parameters are used with their default values and we use the same configuration in
the Base and Xen system. For our work, it is important to isolate the performance
overhead introduced by Xen virtualization from those that might result from inad-
equate resource allocation to Postgres. The total size of our database is 2GB, so
we set the buffer pool size (configuration parameter shared buffer) for Postgres to
2GB. If the buffer pool (and the Linux cache) is already warmed up, this will allow
the queries to be satisfied from within the buffer pool, thus avoiding expensive disk
I/O. For experimental results, we distinguish between the system state with a warm
cache and that with a cold cache. The Postgres client and the server are run on the
same machine, i.e., on the Base system and inside the DomU for the Xen System.
The client adds a negligible overhead to the machine, consuming well below 1% of
the CPU and very little memory.

3.3 Benchmark

In order to evaluate the performance of our database system in the Base and Xen
systems, we use the TPC-H benchmark [45]. TPC-H is a decision support style
benchmark that consists of a set of 22 queries. These queries model a real world
data warehousing environment where complex ad-hoc queries are expected to be
run against the data warehouse. Each TPC-H query processes a large volume of
data (stressing the database system) and is aimed to answer a critical business
question. Depending on the hardware configuration and the scale factor used, the
run-time of these queries can vary from a few seconds to several hours.

We use the OSDL implementation of the TPC-H benchmark [30] with scale
factor 1. We use only the 22 queries of the benchmark, not the update streams.
This implementation of TPC-H is optimized for Postgres and utilizes several indexes
to improve performance. The total size of the database on disk, including all tables
and indexes is 2GB. We mainly use the run time of a query as a metric to compare
its performance across the Base and the Xen systems.

14

3.4 Tools

We use many different tools to monitor performance in the Base and Xen systems.
The tools that we use include mpstat, iostat, strace, sar, top and xentop. These
tools enable us to monitor various system resources including CPU utilization, disk
activity, system level paging, and per process metrics such as the number of page
faults and system calls. Next, we briefly describe the usage of these tools for
this work. For a more detailed and complete discussion of the usage and output
metrics reported by these tools, we refer the interested reader to the Linux manual
pages [22].

3.4.1 mpstat

This tool collects and reports system wide CPU utilization statistics for each avail-
able processor. The number of reports generated and the interval between the re-
ports is controlled through the command line arguments count and interval (time
in seconds), respectively. For each interval, the percentage of the total CPU time
spent in user, nice, system, iowait, irq, soft, steal and idle modes is reported sep-
arately. We use mpstat to break down the total run time of the 22 TPC-H queries
into these individual components.

3.4.2 iostat

This tool mainly reports input/output (I/O) statistics for devices, partitions and
network file systems (NFS). Additionally, it can also be used to report CPU utiliza-
tion statistics. Similar to mpstat, command line parameters allow us to specify the
count of reports and the interval between each report. We primarily use iostat

to monitor disk activity. Precisely, we gather the number of blocks read and the
number of blocks written to the physical (and/or virtual) disk using iostat.

3.4.3 strace

This tool can be used to intercept, record, and time the system calls made by a
program (or process) and the signals received by it. strace is widely used to learn
about the behavior of a program by tracing the system calls it makes. In order to
trace a program using strace, it does not need to be recompiled from source code.
This makes strace highly valued by system administrators for finding problems
that are otherwise non-trivial to track. In this work, we use strace to collect
process level statistics for the database system process responsible for serving the
queries. These statistics include the number of system calls, the type of system
calls, and the time to serve these system calls. We use these statistics to further
break down the system time component of the total run time of queries collected
using mpstat.

15

3.4.4 sar

Another very diverse tool with a variety of system monitoring capabilities is called
sar (short for System Activity Reporting). This tool can report system-wide statis-
tics on CPU utilization, disk utilization, network utilization, paging activity, con-
text switching, file access, interprocess communication, and other activity. We
primarily use sar to monitor the paging activity of a process.

3.4.5 top

top is one of the most widely used system monitoring tool for Linux/Unix plat-
forms. Among other things, it provides information about CPU utilization, memory
utilization, and network utilization. In this work, we use top to cross validate the
statistics collected from other tools.

3.4.6 xentop

xentop is a version of top modified for Xen and runs inside the control domain
(Dom0). It reports per-virtual-machine statistics for all virtual machines (or do-
mains) running on a Xen virtualized system. The metrics reported include CPU
utilization, network utilization, and virtual disk I/O statistics. We use xentop to
collect the CPU utilization statistics for Dom0 and DomU at the system level.

16

Chapter 4

Experimental Results

In this chapter we discuss in detail the various experiments conducted to evaluate
the performance gap between the Base and Xen systems under different scenarios.
We conduct two different sets of experiments. In the warm experiments, the Linux
file system cache and the Postgres buffer pool are warmed up before taking any
measurements. In the cold experiments, we start from cold file system and Postgres
caches. Unless otherwise stated, for all our measurements we repeat the experiment
five times and report the average measurement obtained from these five runs.

4.1 Warm Experiments

In this section we present the details of the experiments with warm file system and
database caches. The goal is to eliminate the impact of the complex and rather
expensive disk I/O factor in these experiments. Later, in the cold experiments, we
study virtualization overhead with disk I/O included.

In order to warm up the Postgres buffer pool and the Linux file system cache,
we run all the test queries once. Since our Base and Xen systems are adequately
provisioned, after the first run the data required by all queries is present in the main
memory, obviating the need for disk I/O in subsequent runs. Next, we present the
experiments conducted after the caches are warmed up.

4.1.1 Xen Overhead

As a first step in estimating the overhead introduced by Xen virtualization, we
carry out an experiment in which the 22 TPC-H queries are run in succession over
the Base and Xen systems and their run times are measured. Table 4.1 presents
the run time of each query reported by Postgres for the Base and Xen systems
respectively. Each value represents an average over five runs. The table also shows

17

Base Xen Abs Rel
TPC-H Runtime Runtime SlwDwn SlwDwn
Query (secs) (secs) (secs) (%)

Q1 14.19 15.30 1.11 7.82
Q2 0.12 0.17 0.05 40.39
Q3 5.20 6.98 1.78 34.35
Q4 0.74 1.07 0.33 44.00
Q5 4.53 5.99 1.46 32.21
Q6 1.40 2.12 0.73 52.03
Q7 4.09 5.32 1.23 30.14
Q8 1.39 1.98 0.59 42.05
Q9 10.99 12.81 1.81 16.49
Q10 5.04 6.36 1.32 26.17
Q11 0.78 0.94 0.16 20.82
Q12 1.85 2.73 0.88 47.32
Q13 14.02 15.27 1.25 8.93
Q14 0.66 0.90 0.24 37.12
Q15 1.24 1.66 0.42 34.32
Q16 1.89 2.18 0.29 15.17
Q17 0.39 0.47 0.08 19.45
Q18 9.38 11.54 2.17 23.12
Q19 5.26 6.33 1.07 20.41
Q20 0.59 0.94 0.35 60.03
Q21 2.79 3.65 0.86 31.03
Q22 1.59 1.70 0.10 6.58

Overall 88.14 106.43 18.30 20.76

Table 4.1: Overhead: Base vs. Xen.

18

Figure 4.1: Relative Slowdown: Base vs. Xen.

the absolute slowdown and the relative slowdown, defined as:

AbsSlwDwn = XenRunTime−BaseRunTime

RelSlwDwn = AbsSlwDwn
BaseRunTime ×100

From the table we can see that most queries experience a fairly large overhead
when moving from the Base system to Xen. However, it is important to note
that the amount of overhead (absolute or relative) experienced by each query is
different. For most of the queries the absolute slowdown does not exceed a couple
of seconds. Also, there is no correlation between the run time of a query and the
overhead experienced. That is, it is not generally true that longer running queries
are penalized more than the shorter running queries (or vice versa). For example,
Q1 and Q13 have a Base run time of about 14 seconds with the corresponding
absolute slowdown of about 1 second. On the other hand, Q5 and Q7 have a Base
run time of about 4 seconds but still their absolute slowdown is about the same
as that of Q1 and Q13. In fact, Q5 and Q7 are even more severely penalized as
compared to Q1 and Q13. That is why it is important, for accurate comparison, to
consider the relative slowdown for each query, illustrated in Figure 4.1. Clearly, Q1
and Q13 have a low (about 8%) relative slowdown as compared with Q5 and Q7
(about 30%). The important question that now arises is: what is the cause of this
overhead inside the Xen system? At first, this question may seem simple, however,
as we shall see, it lacks a simple explanation. This experiment proves that there is
an overhead associated with running TPC-H queries inside Xen, which motivated
us to delve deeper into our investigation and to find the possible cause(s) of this

19

overhead. This is precisely the focus of our next experiments.

4.1.2 Run-time Breakdown

In order to get an insight into the cause of the overhead, it is important to have a
clear understanding of how different components of the query run time are affected
by Xen virtualization. Using the mpstat tool, we provide a breakdown of the over-
all run time of the test queries into two components: user time and system time.
The goal is to know whether the majority of the overhead is coming from user time
or system time (or both). In the Postgres architecture, the master server process
spawns a worker child process (a postmaster process) that is responsible for han-
dling queries on a new connection to the Postgres database. In these experiments,
while the query is executing, the associated postmaster process, when assigned
to a processor, is either running in user (or application) mode or it is running in
system (or kernel) mode. Hence, the total run time of the query is the sum of user
time and system time. Here, it is important to clarify that the total run time of the
query is not always determined by only the user time and the system time. Other
factors that might contribute to the total run time include I/O wait time, time to
serve interrupt requests (irq), and idle time. For database workloads, the I/O wait
factor is particularly important. However, as mentioned before, by choosing the
system and Postgres parameters carefully, we make sure that there is no I/O wait
in the warm experiments. Also, the mpstat data shows that there is no irq time or
idle time. Thus, the following equation always holds:

QueryRunTime = UserT ime+ SystemTime± ε,

where ε is a small experimental error (40 to 80 milli-seconds). Table 4.2 provides
the user and system time break up for the 22 TPC-H queries running in the Base
and the Xen system.

Figure 4.2 shows the relative slowdown in user and system time. We can see that
both the user time and the system time of almost all queries experience slowdown
in Xen compared to Base. However, it is important to note that the slowdown in
user time is very small (less than 21%) as compared with the system time slowdown
(up to 210%). This slowdown in system time is expected since Xen adds overhead
to system level operations, and, it should not affect user level operations. However,
our results show that user time is also affected when moving to Xen, though the
slowdown is minor. We come back to discuss the user time slowdown in a later
section. For now, we focus on the question: Where does the slowdown in system
time come from?

The total system time can be divided into time to serve system calls, page faults,
exceptions, and interrupt requests. In order to answer the question posed above, it
is particularly valuable to know which component of the system time is responsible
for the majority of the overhead. Our experimental results (not presented here)
show that time to serve exceptions and interrupt requests is negligible and thus

20

Base Xen
TPC-H User time Sys time User time Sys time
Query (secs) (secs) (secs) (secs)

Q1 13.80 0.39 14.15 0.99
Q2 0.11 0.01 0.12 0.03
Q3 4.66 0.57 5.64 1.25
Q4 0.53 0.25 0.50 0.61
Q5 3.99 0.56 4.77 1.14
Q6 1.12 0.31 1.34 0.76
Q7 3.59 0.54 3.98 1.29
Q8 1.14 0.28 1.31 0.65
Q9 10.24 0.78 10.90 1.77
Q10 4.55 0.54 5.06 1.22
Q11 0.72 0.06 0.75 0.19
Q12 1.52 0.38 1.75 0.94
Q13 13.19 0.75 14.05 1.09
Q14 0.52 0.15 0.57 0.35
Q15 1.02 0.21 1.16 0.52
Q16 1.74 0.10 1.81 0.28
Q17 0.35 0.04 0.25 0.08
Q18 8.45 0.96 9.32 2.12
Q19 4.91 0.39 5.26 1.02
Q20 0.40 0.21 0.47 0.50
Q21 2.36 0.45 2.56 1.07
Q22 1.53 0.05 1.55 0.14

Table 4.2: Runtime Breakdown: User and System Time.

can be ignored. Therefore, for these queries, system time is attributable to either
system calls or page fault handling. In the following experiments, we present the
system time break down into these two components accompanied by a detailed
analysis.

4.1.3 System Call Time

It is expected that system calls will be slower in the Xen system than the Base
system. The way Xen is designed, some system calls (known as hypercalls in Xen
terminology) have to go through the Xen hypervisor (which is why Xen virtual-
ization is called para-virtualization). In the Base system, all the system calls are
directly handled by the operating system. A longer system time can therefore be
attributed to a longer execution path for system calls inside Xen. In this section,
we are interested to know: (a) How much slower are system calls in Xen?, and

21

Figure 4.2: Slowdown: User vs. System Time.

(b) How much of the overhead of virtualization can be attributed to slowdown in
system calls?

With a focus on these questions, we use the strace tool to collect the number
of system calls made by each query (more precisely, by the Postgres postmaster

process executing the query) and the time to serve these system calls. Table 4.3
presents these results for the 22 TPC-H queries in the Base and Xen systems. We
use the strace tool in summary mode to collect the data presented in Table 4.3 for
each query. The table also presents the slowdown in serving system calls, defined as:

RelSysCallT imeSlwDwn =
XenSysCallT ime−BaseSysCallT ime

BaseSysCallT ime
×100

As expected, the total time to serve system calls is higher inside Xen, increasing
up to 871% (for Q3) compared to the Base system. Other queries that incur a high
(>400%) system call overhead include Q6, Q7, Q16 and Q20. On the other hand,
Q13 is an exception to this rule and shows an improvement in the system call time
from Base to Xen. From Table 4.3 we also note that the number of system calls in
the Base and Xen systems is very similar. This is expected because the Postgres
code running on the Base and Xen systems is exactly the same and therefore we
should not expect its behavior to change when run in a VM. The strace tool
consistently reports a small difference between Base and Xen of around 15 system
calls. We talk more about this difference later. Most importantly, we note that for
all queries, system call time is a minor fraction of the total system time (≈ 2%).
This leads to an important conclusion: even though system calls are considerably
slower inside Xen, system call time is not the major source of overhead for these
queries because they spend a very minor fraction of their total time on system calls.

22

Base Xen Rel
TPC-H Number SysCall System Number SysCall System SysCall
Query of Time Time of Time Time Time

SysCalls (ms) (ms) SysCalls (ms) (ms) SlwDwn
(%)

Q1 112 0.02 390.34 95 0.03 989.80 82.05
Q2 176 0.02 12.00 159 0.02 34.94 37.50
Q3 226 0.40 568.66 209 3.92 1253.02 871.44
Q4 138 0.02 245.08 121 0.02 613.04 39.74
Q5 204 0.13 557.38 188 0.42 1144.08 225.51
Q6 135 0.02 313.38 118 0.13 760.18 752.56
Q7 221 0.92 536.52 205 5.47 1294.16 491.20
Q8 1662 0.03 284.28 1645 0.13 645.50 386.92
Q9 348943 4.19 782.34 348926 11.45 1768.40 173.35
Q10 224 1.34 542.92 206 6.09 1219.52 353.00
Q11 161 0.02 61.76 144 0.02 191.36 31.17
Q12 144 0.10 378.46 127 0.38 942.58 278.30
Q13 34974 59.92 751.00 34957 34.92 1085.00 -41.73
Q14 155 0.06 147.70 104 0.08 354.36 42.16
Q15 244 0.07 206.24 221 0.09 521.86 38.17
Q16 268 0.35 101.62 251 1.83 283.14 426.85
Q17 6435 0.09 43.84 6418 0.14 81.64 43.46
Q18 308 16.97 962.12 291 65.89 2123.12 288.34
Q19 149 0.91 392.10 132 2.87 1023.72 215.08
Q20 4907 0.06 205.10 4893 0.30 496.00 423.45
Q21 579 0.02 451.40 562 0.05 1072.00 203.45
Q22 123 0.03 45.54 106 0.05 136.98 96.09

Table 4.3: System Call Time.

23

From the above discussion it is clear that the 22 TPC-H queries spend very little
time in system calls. Still, it is useful to know some of the system call details for
these queries. In particular, we want to know the type and number of system calls
made by each query and which of those system calls are more expensive in Xen as
compared with others. In Table 4.4 and Table 4.5, we present detailed system call
data for Q3 and Q9 respectively, this time using the strace tool with detail logging
mode. Q3 has the highest relative slowdown in system call time (from Table 4.3),
while Q9 makes the highest number of system calls. From Table 4.4 we note that
Q3 most frequently calls munmap, mmap, lseek and open. Also, even though all the
system calls are slower inside Xen, not all of them experience the same amount of
slowdown. For example, sendto is 813% slower inside Xen for Q3 while both close
and munmap are 300% (rounded) slower. Most of the other calls are about twice
as slow inside Xen as in Base. Furthermore, we note that the high system call time
slowdown of Q3 is attributed to a large number of calls to munmap. This is also
where it spends most of its system call time. In contrast to Q3, from Table 4.5 we
see that the total number of system calls made by Q9 is significantly larger (348943
vs. 226 in Base), the majority of which are lseek system calls. Also, the mremap,
munmap and sendto system calls are about 400% slower in Xen for Q9, while other
system calls do not show a noticeable slowdown. We note that a single instance of
any system call may take varying amount of time depending on the call parameters.
This results in a different amount of slowdown of the same system call for different
queries.

As mentioned before, the strace tool reports an average difference of 15 system
calls across Base and Xen for all queries. From Table 4.4 and Table 4.5 we note
that this difference arises as a result of different numbers of read and sendto system
calls in Base and Xen for both Q3 and Q9. This is also true for the remaining 20
TPC-H queries. We do not have a good explanation for this difference. Another
subtle point to note is that the total time to serve system calls for Q3 and Q9
presented in Table 4.3 and in the detail Tables 4.4 and 4.5 do not match. This
difference arises due to operating the strace tool in different modes. While taking
the measurements presented in Table 4.3, we use the strace tool in summary mode,
while for measurements in Table 4.4 and Table 4.5 we use it in detail mode. As
expected, in detail mode, strace introduces a higher overhead for logging every
system call as compared to the summary mode, thus resulting in a higher total
system call time. Therefore, the timing information presented in the detail tables
should be considered inaccurate. We conduct the detail experiments only to get
the type and number of system calls for each query. Thus, the detail tables should
be used to analyze these numbers only. We present detailed system call data for
all the queries in Appendix D.

The above discussion can be summarized as follows: (a) System calls are up to
871% slower inside Xen. (b) Some system calls incur a high overhead inside Xen as
compared to others e.g. munmap, mremap, sendto. (c) While system calls in Xen
are significantly slower than the Base system, this is not a major cause of slowdown
for database queries, since these queries do not spend that much time on system

24

Base Xen Rel
Number Time Number Time Slow

Query3 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 47.83
brk 17 0.26 16 0.63 144.2
close 6 0.08 6 0.35 328.22
fstat 3 0.02 3 0.04 71.12
gettimeofday 3 0.03 3 0.04 47.14
lseek 22 0.17 22 0.29 71.25
mmap 50 0.62 50 0.94 50.64
munmap 46 3.96 46 17.36 337.87
open 22 0.27 22 0.40 49.19
read 19 0.23 4 0.20 -12.02
recvfrom 3 0.39 3 0.07 -83.01
rt sigaction 13 0.10 13 0.17 68.27
rt sigprocmask 5 0.04 5 0.07 78.98
semctl 1 0.01 1 0.02 51.90
sendto 13 0.53 12 4.87 813.49
setitimer 2 0.02 2 0.03 52.26

Total 226 6.74 209 25.48

Table 4.4: System Call Details: Query 3.

25

Base Xen Rel
Number Time Number Time Slow

Query9 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 18.92
brk 10 0.13 9 0.17 36.82
close 6 0.10 6 0.17 69.63
fstat 3 0.03 3 0.04 30.08
gettimeofday 3 0.03 3 0.04 13.64
lseek 348784 3463.84 348784 4366.39 26.06
mmap 23 0.34 23 0.39 14.73
mremap 5 0.30 5 1.62 445.65
munmap 19 4.29 19 19.62 357.67
open 31 0.43 31 0.53 23.51
read 19 0.27 4 0.20 -26.91
recvfrom 3 0.57 3 0.06 -90.04
rt sigaction 13 0.13 13 0.17 31.7
rt sigprocmask 5 0.05 5 0.06 29.95
semctl 1 0.01 1 0.01 16.49
sendto 15 1.02 14 5.44 431.02
setitimer 2 0.02 2 0.029 21.69

Total 348943 3471.57 348926 4394.95

Table 4.5: System Call Details: Query 9.

26

calls. We next turn our attention to the second component of the system time, i.e.,
time to serve page faults.

4.1.4 Page Fault Handling Time

A page fault is an exception generated by the hardware when the page accessed by
the software is not loaded into physical memory (a major page fault) or has been
loaded into memory for some other process but is not mapped to the address space
of the faulting process (a minor page fault). Depending on the system configuration,
page faults can become a major performance bottle-neck. In the extreme case, they
can lead to severe performance degradation by subjecting a system to thrashing. For
a more comprehensive discussion of page faults and their performance implications,
we refer the interested reader to [38, 43]. Page fault handling is a significant source
of complexity for VMMs, including the Xen hypervisor, so it is important to study
their contribution to the observed overhead. To do so, (a) we measure the total
number of page faults generated by each query across Base and Xen, and (b) we
attempt to establish a relationship between slowdown and page faults.

It is important to clarify that for the warm experiments, we are only concerned
with minor page faults. Our settings are chosen such that all the pages required by
the queries can fit into physical memory and are already loaded during the warm-up
phase, thus avoiding major page faults. On the other hand, minor page faults can
still arise due to sharing of code and data pages between processes. Henceforth, we
refer to minor page faults simply as page faults.

For each query, we use the sar tool to measure the number of page faults
generated by the associated postmaster process. The results are presented in
Table 4.6 along with the relative slowdown of the queries (from Table 4.1). The
number of page faults generated by each query shows a slight variation from Base
to Xen. More importantly, there is a strong correlation between relative slowdown
and the number of page faults per second, which is also shown in the table and
is defined as the number of page faults generated in Xen divided by the total run
time of the query in Xen. In general, if a query has a higher number of page faults
per second, it will incur a higher run time overhead inside Xen. To highlight this
correlation, Table 4.6 is sorted by the number of page faults per second. This is
a very important conclusion and establishes the fact that page faults are a major
cause of database system slowdown in Xen.

Further investigation to find the reason behind the page faults indicates that the
majority of them are caused by accesses to database pages in the shared buffer cache
of Postgres. Like many database systems, Postgres uses worker processes, known as
postmaster processes, to execute user queries, and they all use one shared buffer
cache for database pages. When a postmaster process accesses a database page
(from a table or index), this page may already be in the shared buffer cache, but
the memory pages in which this database page resides may not be mapped to the

27

Base Xen Page Faults Rel
Page Faults Page Faults per Slowdown

second (%)

Q4 171697 171025 159509 44.00
Q20 131447 131974 140488 60.03
Q6 234509 232665 109531 52.03
Q14 98788 98016 108401 37.12
Q12 278330 276684 101342 47.32
Q15 139891 139898 84144 34.32
Q8 160503 159871 80702 42.05
Q2 13290 13005 75437 40.39
Q21 272679 272655 74700 31.03
Q7 351018 350303 65817 30.14
Q5 343477 342106 57136 32.21
Q11 51616 51116 54182 20.82
Q10 344395 340994 53593 26.17
Q3 370884 368685 52814 34.35
Q19 288348 286636 45261 20.41
Q17 27870 19609 42115 19.45
Q18 476445 473605 41029 23.12
Q16 70323 69902 32065 15.17
Q9 364944 362777 28326 16.49
Q22 30469 30540 17994 6.58
Q1 270281 269217 17594 7.82
Q13 98128 97738 6400 8.93

Table 4.6: Page Fault Handling: Base vs. Xen.

28

address space of the process. The process needs to map these pages to its address
space, which causes minor page faults.

As mentioned above, a higher number of page faults translates to a higher
overhead inside Xen. This indirectly implies that it takes longer to handle a page
fault in Xen than in the Base system. To verify this, we measure the time to handle
a page fault in the Base and Xen systems using the lat pagefault program that is
part of the lmbench tool kit [23]. The results indicate that it takes 1.67µs and
3.5µs to handle a page fault in the Base and Xen systems, respectively. This direct
measurement shows that page faults in Xen are more than twice as expensive as
they are in the Base system.

Since the page fault rate (page faults per second) is strongly correlated to over-
head, page fault handling is likely the major source of overhead for Xen. We turn
our attention next to reducing this overhead.

4.1.5 Reducing Page Fault Overhead

To reduce page fault overhead, we attempt to reduce the number of minor page
faults that happen when a postmaster process maps pages from the shared buffer
cache to its own process space. The key to reducing these page faults is to realize
that they only happen the first time the process touches a memory page from the
shared buffer cache. Once a page is mapped to the address space of a postmaster

process, the process can reuse this page without faulting.

In the previous experiments, each query is individually run from the command
line using the pgsql Postgres client, which means that there is a different client
process and a different database connection for each query. In the Postgres archi-
tecture, whenever a new connection to the database is initiated, the master server
process spawns a child worker process (a postmaster process) that is responsible for
handling requests on the new connection. This means that in our case each query
runs in a new postmaster process, which needs to map the buffer pool pages it uses
to its address space. Each query thus causes a large number of minor page faults.
To reduce the number of page faults, we repeat the experiments in Section 4.1.1,
but we run all queries in one pgsql client, using one database connection and one
postmaster process.

Table 4.7 presents the overhead in this new setting for the 22 TPC-H queries. In
this case, the overall run time of all queries decreases in both Base and Xen. More
importantly, the absolute and relative slowdown values are also lower compared to
Table 4.1. The break down of run time into user and system time for this case is
provided in Table 4.8. Clearly, the system time is significantly reduced in this case
compared with Table 4.2. The reduction in overall run time of the queries can be
explained by this reduction in the system time component. The user component of
run time is not significantly affected (compared with Table 4.2). The decrease in
system time, in turn, can be explained by an expected reduction in the number of
page faults in this setting.

29

Base Xen Abs Rel
TPC-H Runtime Runtime SlwDwn SlwDwn
Query (secs) (secs) (secs) (%)

Q1 13.3 14.04 0.74 5.55
Q2 0.1 0.12 0.02 18.29
Q3 4.61 5.82 1.21 26.23
Q4 0.4 0.42 0.01 2.94
Q5 4.14 4.97 0.84 20.22
Q6 0.98 1.05 0.08 7.82
Q7 3.52 3.66 0.14 3.91
Q8 1.1 1.24 0.14 12.52
Q9 10.52 11.36 0.83 7.91
Q10 4.57 4.69 0.12 2.58
Q11 0.67 0.71 0.04 6.64
Q12 1.38 1.45 0.07 5.25
Q13 13.36 14.1 0.75 5.59
Q14 0.51 0.59 0.08 16.71
Q15 0.99 1.23 0.24 23.67
Q16 1.73 1.72 -0.01 -0.42
Q17 0.33 0.35 0.02 4.8
Q18 8.86 10.13 1.27 14.36
Q19 4.84 5.05 0.22 4.46
Q20 0.35 0.41 0.06 17.39
Q21 2.3 2.48 0.18 7.84
Q22 1.53 1.56 0.03 1.64

Table 4.7: Overhead for Single Connection.

30

Base Xen
TPC-H User time Sys time User time Sys time
Query (secs) (secs) (secs) (secs)

Q1 13.25 0.00 13.89 0.00
Q2 0.10 0.00 0.11 0.00
Q3 4.56 0.04 5.66 0.09
Q4 0.40 0.00 0.40 0.00
Q5 4.11 0.01 4.90 0.02
Q6 0.97 0.01 1.03 0.01
Q7 3.47 0.04 3.55 0.08
Q8 1.08 0.01 1.19 0.03
Q9 10.33 0.15 10.83 0.41
Q10 4.48 0.07 4.67 0.12
Q11 0.66 0.00 0.68 0.02
Q12 1.36 0.01 1.43 0.01
Q13 12.63 0.65 13.24 0.71
Q14 0.5 0.01 0.56 0.02
Q15 0.95 0.02 1.18 0.03
Q16 1.70 0.02 1.66 0.03
Q17 0.33 0.00 0.33 0.01
Q18 8.41 0.42 9.13 0.89
Q19 4.80 0.01 4.96 0.04
Q20 0.35 0.00 0.40 0.00
Q21 2.29 0.00 2.45 0.00
Q22 1.52 0.00 1.53 0.00

Table 4.8: Runtime Breakdown for Single Connection.

31

Figure 4.3: Base: Page Faults for Single Connection.

Figure 4.4: Xen: Page Faults for Single Connection.

To verify that the number of page faults is indeed reduced, we conduct an
experiment in which we establish a database connection and run the same query
multiple times on this connection, measuring the number of page faults in each
run. Figures 4.3 and 4.4 present the results for the 22 TPC-H queries for the Base
and Xen systems, respectively. Clearly, we can see that the number of page faults
in the second and later runs of each query is almost identical, and is a lot smaller
than the number of page faults in the first run. This is true for both the Base and
Xen systems. In the first run, the required pages from the shared buffer cache get
mapped to the address space of the postmaster process, and they can be used in
the subsequent runs without faulting.

Using one database connection for all queries is a fairly simple way to reduce the
overhead of virtualization. Indeed, many applications do use one connection for all
their queries, so these experiments do not suggest a new way of writing database
applications. However, they do show that virtualization introduces new types of

32

overheads, and that there may be simple ways to reduce these overheads.

We note that the average relative slowdown of the 22 TPC-H queries using
one database connection is only 9.8%. This can be further reduced by using newer
server CPUs that have hardware support for virtualization and include features that
enable efficient system level operations, for example, faster page fault handling. The
CPUs of the machines that we use in our experiments do not have this support, so
the 9.8% can be viewed as a worst case performance overhead that can likely be
improved.

4.1.6 Explaining User Time Slowdown

In the previous experiments, we focus on the system time component of run time
for each query. As noted from Figure 4.2 in Section 4.1.2, user time also experiences
a slowdown, though not as large as system time. As described before, the slowdown
in system time inside Xen is expected and we can attribute it to the para-virtualized
design of Xen. However, the slowdown in user time is surprising and thus we explore
it further in this experiment. Our goal is to establish whether the slowdown in user
time can be observed for other (simple) applications or is something particular to
the Postgres database system or the TPC-H benchmark under consideration. In
order to do this, we run a purely user level program in Base and Xen and measure
its user time slowdown.

We consider a very simple program that sorts a list of integers. The program
first generates an integer list in reverse sorted order. Next, it uses the bubble sort
algorithm to sort this list. The source code of the sort program can be found in
Appendix B. Since this program is purely a user level program, the total run time
is expected to be entirely dominated by the user time, with zero system time. Ta-
ble 4.9 presents the break down of the total run-time of the sort program into user
time and system time. The size of the list to be sorted is varied from one experi-
ment to the next. We also present the observed slowdown in user time defined as:

UserT imeSlowDown = XenUserT ime−BaseUserT ime
BaseUserT ime ×100

We can see that the total run time of the sort program is largely due to user
time, as expected. Furthermore, we still see an average slowdown of 3.6% in user
time. This relative slowdown is almost constant (4% rounded) for lists of varying
sizes. This implies that the absolute slowdown in user time inside Xen is not fixed
and depends on the total execution time of the application.

User time slowdown in Xen can be attributed to poor CPU cache performance.
In a recent study, Padala et al. [32] conclude that the main performance overhead
in Xen is due to the increased number of CPU cache misses. Poor CPU cache
performance will affect not only system time, but also user time. This is because the

33

Base Xen User
List Run User System Run User System time
Size time time time time time time SlwDwn

(secs) (secs) (secs) (secs) (secs) (secs) (%)

10k 1.14 1.14 0.00 1.18 1.18 0.00 3.59
20k 4.56 4.55 0.00 4.72 4.72 0.00 3.71
30k 10.27 10.27 0.00 10.65 10.65 0.00 3.74
40k 18.3 18.29 0.01 18.95 18.93 0.00 3.53
50k 28.59 28.57 0.02 29.57 29.57 0.00 3.51
100k 114.37 114.28 0.07 118.32 118.32 0.00 3.54

Table 4.9: Overhead: Bubble Sort

Xen code and data compete for CPU cache with the user code and data, resulting
in a high number of cache misses and thus reduced performance.

From the above discussion, we conclude that the user time slowdown is not
something particular to the database systems. Rather, this can be observed for
even simple user level applications. The sort program presented in this section
experiences an average slowdown of 3.6% in user time. We attribute this slowdown
to an increased number of CPU cache misses inside Xen, as established by Padala
et al. [32].

4.2 Cold Experiments

Next, we turn our attention to the case where we carry out the experiments starting
with cold file system and database caches. This is achieved in the Base system by
restarting Postgres and flushing the Linux file system caches before running each
query. In Xen, we flush the Linux file system caches for both DomU (the Postgres
VM) and Dom0 (the control VM) and restart Postgres inside DomU. More con-
cretely, we drop the Linux caches by writing 3 to /proc/sys/vm/drop caches [12].
This feature is supported in Linux kernel version 2.6.16 and above. Clearing the
Postgres and Linux caches in this manner ensures that all data required by a query
is read from disk, thereby bringing an important (and usually very costly) factor
into play, namely physical disk I/O. Because of the very nature of its application,
a database system usually needs to retrieve large amounts of data (read data from
the disk) or perform updates (write data back to disk). Therefore, depending on
the system configuration, the size of the database, and the type of workload, I/O
can very easily become a bottleneck. Moreover, it is generally accepted that Xen
adds a high overhead to the I/O path, making the bottleneck even worse. In the
Xen architecture, whenever DomU needs to read or write from the (virtual) disk,
it issues a read/write system call to the virtual block device. This is translated
into a read/write system call to the actual device, a disk in this case, hosted in
Dom0. Eventually, Dom0 is responsible to serve these calls on behalf of DomU and

34

the data that is read (or written) by Dom0 is copied to (or from) DomU. However,
this copying of data is not explicitly performed. Instead, Dom0 reads the data
into an empty page and then exchanges this page with an empty page provided by
DomU. This technique is called page-flipping in Xen and aims to reduce the I/O
overhead of Xen. Even with this optimization in place, retrieving data from disk
is a fairly complex process inside Xen with a longer I/O path as compared to the
Base system. Therefore, we expect to see larger slowdowns in these experiments.

4.2.1 Xen Overhead

Like the warm experiments, we start our investigation of the Xen overhead in the
cold case by repeating the experiment presented in Section 4.1.1. We perform cold
runs of the 22 TPC-H queries in the Base and Xen systems and measure their run
time. Table 4.10 reports the run time of each query in both cases and the slowdown
between Base and Xen.

Surprisingly, the slowdown experienced by the queries when moving from the
Base system to Xen is not at all high. In fact, the average relative slowdown for
all the queries is even less than that reported in the warm experiments (Table 4.1).
From these results, we conclude that the I/O path in Xen is not as slow as commonly
believed. There is still an overhead for most of the queries, but, it is generally low.
This experiment proves that the benefits of Xen virtualization come with a very
low cost, even in the cold case.

We obtain the run time break down of these queries as in the warm case in
Table 4.11. Note that we only present the user, system and I/O wait times for
these queries. Other components including nice, irq, soft and idle are either zero
or so small that they can be ignored in this analysis. From Table 4.11 we can see
that most of the run time of these queries is spent in the iowait state, waiting
for disk I/O. On average, the queries spend 77% and 79% of their run time in the
Base and Xen systems, respectively, waiting for disk I/O. In the warm case, query
run time did not have an iowait component. Other experiments, which we do not
present here, verify that in these runs, the number of system calls and page faults
are unchanged from the warm case. Also, the time to serve system calls and page
faults represents a small fraction of query run time as in the warm case. It should
be noted that in this case, for the Base system, the total run time of the query is the
sum of the user, system, and I/O wait components. However, because the run time
accounting of time components is more complex in a Xen system, the component
times do not add up to the total run time of the query. Some of the system and
iowait time of the query is reported in Dom0 because it reads data from disk on
behalf of DomU. However, for simplicity, we do not provide the time reported in
Dom0.

What is surprising and rather counter-intuitive in the results of Table 4.10 is
that some queries run faster in Xen than in the Base system, namely Q4, Q9, Q12,
Q21 and Q22. In the following experiments, we try to explain why this interesting
effect happens.

35

Base Xen Abs Rel
TPC-H Runtime Runtime SlwDwn SlwDwn
Query (secs) (secs) (secs) (%)

Q1 22.12 22.09 -0.04 -0.17
Q2 2.14 2.25 0.11 5.17
Q3 26.48 29.88 3.39 12.81
Q4 59.62 46.07 -13.55 -22.73
Q5 24.24 27.89 3.66 15.08
Q6 19.86 22.57 2.71 13.62
Q7 25.28 28.89 3.61 14.28
Q8 171.19 178.42 7.23 4.22
Q9 798.9 776.21 -22.69 -2.84
Q10 24.00 28.14 4.14 17.25
Q11 3.11 3.81 0.70 22.35
Q12 51.46 43.92 -7.54 -14.65
Q13 17.10 18.01 0.91 5.35
Q14 20.18 24.06 3.89 19.27
Q15 20.09 22.94 2.85 14.17
Q16 6.94 7.83 0.89 12.81
Q17 29.45 31.83 2.38 8.08
Q18 26.88 31.46 4.58 17.03
Q19 20.67 23.13 2.45 11.87
Q20 277.16 280.71 3.56 1.28
Q21 623.30 612.61 -10.69 -1.71
Q22 26.00 22.03 -3.97 -15.26

Table 4.10: Overhead for Cold Runs.

36

Base Xen
User Sys IOWait User Sys IOWait
time time time time time time
(secs) (secs) (secs) (secs) (secs) (secs)

Q1 13.02 2.72 6.27 11.09 2.04 6.23
Q2 0.08 0.14 1.93 0.01 0.00 2.04
Q3 4.78 3.98 17.73 2.63 0.98 23.05
Q4 0.50 2.55 56.16 0.05 0.10 44.6
Q5 3.76 3.70 16.63 1.89 1.51 18.13
Q6 1.02 2.88 15.87 0.56 0.20 20.58
Q7 3.87 3.79 17.46 1.78 0.77 23.58
Q8 1.24 2.26 166.99 0.45 0.38 174.34
Q9 10.76 6.67 778.41 2.79 0.15 759.66
Q10 4.05 3.58 16.2 2.28 1.75 17.93
Q11 0.61 0.40 2.15 0.40 0.10 2.96
Q12 1.43 3.30 46.53 0.69 0.46 40.24
Q13 12.91 1.51 3.60 14.33 1.22 1.79
Q14 0.59 1.65 17.81 0.35 0.07 23.00
Q15 1.13 2.06 16.68 0.62 0.14 21.09
Q16 1.63 0.58 4.80 1.01 0.12 6.36
Q17 0.28 0.33 28.71 0.05 0.02 31.15
Q18 7.80 3.80 15.19 5.36 2.34 17.58
Q19 4.07 3.16 13.39 2.49 1.45 13.22
Q20 0.57 2.27 273.22 0.07 0.01 277.45
Q21 2.70 4.62 613.49 0.05 0.02 604.99
Q22 1.46 0.28 24.18 0.67 0.10 20.55

Table 4.11: Runtime Breakdown for Cold Runs.

37

4.2.2 Disk Activity in Dom0 and DomU

In order to get an answer to the question posed in the previous section, we measure
the amount of data accessed by each query by measuring the amount of data read
from the disk storing the TPC-H database using the iostat tool. For the Base
system, we need to monitor only the physical disk storing the database. However,
for the Xen system, we need to monitor both the physical disk accessed by Dom0
(on behalf of DomU) and the virtual disk inside DomU. Observing disk activity at
these two levels allows us to distinguish between the data read from the physical
disk by Dom0 and the data required by each query and read from the virtual disk
in DomU.

Table 4.12 presents the amount of data read in each case and the iowait time
(from Table 4.11) in the Base system and in DomU. Interestingly, for the queries
that run faster inside Xen, the I/O wait time is lower than the Base system. The
speedup of these queries can be entirely attributed to this reduction in I/O wait
time. Fortunately, this reduction can be very easily explained by looking at the
amount of data accessed by each query. Focusing on the disk statistics from the
Base system and from inside DomU, we can clearly see that these numbers are
almost equal, i.e., the Base system and DomU read the same amount of data. This
is expected because we are running the same 22 TPC-H queries against the same
test database. However, if we look at the amount of data read in Dom0, we find
that for the faster queries, Dom0 reads a lot more data than required by DomU,
and DomU, in turn, reads more data than required by the query. This trend is
consistent among all the faster queries, and is due to aggressive prefetching as we
explain next.

For these queries, Dom0 aggressively caches data for the DomU file based on
the disk access pattern of DomU. This causes more data than necessary to be
read from disk, but it helps performance by removing I/O from the critical path
of query execution and hence reducing I/O wait times. The Linux kernel uses a
technique called read-ahead to cache data in advance from a file, aiming to improve
disk performance and to reduce I/O wait time [5]. To investigate the faster queries
further, we repeat this experiment with the Linux read-ahead mechanism turned off
in DomU. This is achieved by setting the max readahead parameter for the block
device inside DomU to 0. Turning prefetching off in Dom0 did not have an effect
on the results. The results with prefetching turned off in DomU are presented in
Table 4.13. We also present the amount of actual data read by the query. This is
calculated by getting the number of heap and index pages accessed by the query
and multiplying the total number of pages with the Postgres page size, 8KB. The
information regarding heap and index pages is retrieved from the catalog tables
inside Postgres. It can be noted that in the absence of prefetching, the amount of
data read by DomU is very close to the actual data and the queries no longer run
faster inside Xen. We note that now Dom0 reads less data than before but there
is still a considerable gap between Dom0 data and DomU data. As we note above,
our experiments show that turning read-ahead off inside Dom0 does not affect the

38

Base Xen
Data Read IOWait Dom0 Data DomU Data IOWait

(MB) (secs) (MB) (MB) (secs)

Q1 1040 6.27 1045 1040 6.23
Q2 41 1.93 43 41 2.04
Q3 1386 17.73 1392 1385 23.05
Q4 920 56.16 1347 920 44.6
Q5 1311 16.63 1318 1311 18.13
Q6 1056 15.87 1062 1056 20.58
Q7 1342 17.46 1349 1342 23.58
Q8 623 166.99 955 623 174.34
Q9 1512 778.41 2660 1511 759.66
Q10 1308 16.2 1315 1308 17.93
Q11 145 2.15 147 145 2.96
Q12 1302 46.53 1325 1302 40.24
Q13 269 3.60 271 269 1.79
Q14 539 17.81 998 539 23.00
Q15 871 16.68 1047 871 21.09
Q16 205 4.80 207 205 6.36
Q17 90 28.71 162 90 31.15
Q18 1308 15.19 1315 1308 17.58
Q19 1082 13.39 1088 1082 13.22
Q20 541 273.22 1034 542 277.45
Q21 1127 613.49 2175 1129 604.99
Q22 106 24.18 124 106 20.55

Table 4.12: Disk Activity and I/O Wait: Base vs Xen.

amount of data read in DomU or Dom0. Since Dom0 is running a modified Linux
kernel, we are not sure whether it respects the max readahead flag or not. If we
assume that setting the max readahead to 0 inside Dom0 actually disables the Linux
read-ahead mechanism, then we are left to conjecture that there is some other form
of page caching implemented in Linux kernel (or Xen) besides read-ahead that
results in this extra data. However, at this point, we are unable to clearly identify
a particular technique responsible for such a behavior. The important point to note
is that the speedup is explained by whether prefetching is turned on or off in DomU.
Dom0 prefetching is not affected by the read-ahead flag but this is not essential
to our results. From this point onwards we focus on the case where prefetching is
turned on in both DomU and Dom0.

From the above discussion, we conclude that when the Linux read-ahead mech-
anism is on in DomU, extra data is read in both domains because of which the I/O
wait time goes down and consequently queries end up running faster. Note that not
all queries for which Dom0 reads extra data run faster (see Table 4.10 and 4.12).

39

Dom0 Data DomU Data Actual Data Runtime
(MB) (MB) (MB) (secs)

Q4 1158 701 698 161
Q9 2593 1434 1429 830
Q12 1304 1131 1127 93
Q21 2119 1118 1114 611
Q22 125 106 104 28

Table 4.13: Disk Activity: DomU Read-Ahead Off.

The extra reads do not always remove I/Os from the critical path. However, when
queries do run faster, it is due to aggressive prefetching. We next try to answer the
question: what triggers prefetching in DomU and Dom0?

4.2.3 DomU and Dom0 Caching

The prefetching or read-ahead algorithm implemented as a part of the Linux kernel
looks for specific patterns in the I/O requests, and accordingly decides to prefetch
(or not to prefetch). The only data access pattern that triggers prefetching is
sequential access from the disk. If a program is accessing data sequentially, the
read-ahead algorithm assumes that the data blocks following the blocks currently
being accessed will soon be read. Thus, instead of waiting for the program to issue
a read call to those blocks, it prefetches them, always staying ahead. If later these
blocks are actually required, the request can be served from the cache thus resulting
in significant savings in I/O wait time. Read-ahead is a standard and widely tested
technique used by the Linux kernel to improve disk performance. Since the read-
ahead mechanism is triggered following a specific access pattern, we need to look
at the pattern in which the data is being requested by the TPC-H queries. For this
reason, we next look at the data access patterns for the 22 TPC-H queries with a
focus on the 5 queries that run faster in Xen.

Deducing Query Access Patterns from Query Plans

In order to get an idea of the query access patterns, we study the query execution
plans of all the queries. We observe the following pattern: the queries that access
either the lineitem table or the orders table – the two largest tables in the TPC-H
database – using an index scan are the ones that read more data in Dom0. On the
other hand, the queries that access these two tables using sequential scan, bitmap
heap scan, or bitmap index scan, do not generate extra reads in Dom0. The only
exception to this rule is Q14 which does a bitmap heap scan on the lineitem table
but still reads extra data. To verify that accessing the lineitem or orders table using
an index causes extra data to be read, we run the queries on a copy of these two
tables created without any index. Our results show that in the absence of indexes,

40

Program Prefetching in DomU Prefetching in Dom0

1 No No
2 Yes Yes
3a No No
3b Yes Yes

Table 4.14: Prefetch Triggering

there is no extra data read in Dom0. Thus we conclude that indexed access is
the cause of aggressive prefetching in Dom0. As mentioned above, the read-ahead
algorithm is triggered by a sequential access to data. However, our results show
that indexed (mostly random) access is causing aggressive caching in Dom0. We
next try to find a possible explanation for this effect. We carry out two separate
experiments (a) we use three synthetic programs to access a large file inside Xen,
without using Postgres, and (b) we run queries against a synthetic table in Postgres
inside Xen. We present these two experiments next.

Synthetic Programs

To better understand the cause of prefetch triggering in DomU and consequently
in Dom0, we conduct an experiment where we create a large file, about 1GB on
disk, inside DomU and three synthetic programs that access this file in pages of
size 4KB using slightly different patterns. The first program reads the entire file
one page at a time, with each page k pages apart – where k is a fixed integer.
The second program also reads the entire file but this time two pages at a time,
each pair k pages apart. Finally, the third program logically divides the file into
three partitions: partition 1 followed by a gap partition followed by partition 2.
It then reads pages alternatingly from partition 1 and partition 2 and within each
partition follows the access pattern as in: (a) the first program, or (b) the second
program. This third program is used to mimic the behavior of accessing a table
using an index inside Postgres, where we alternate between accessing the index
partition and the heap partition. Partition 1 and partition 2 logically correspond
to the index partition and heap partition respectively, in Postgres terminology.

We monitor the disk activity of these programs inside Dom0 and DomU, again
using the iostat tool. Our results, presented in Table 4.14, show that programs
1 and 3a do not trigger prefetching either in DomU or Dom0. On the other hand,
programs 2 and 3b trigger prefetching in DomU and consequently in Dom0. Based
on our observations from this experiment, we draw the following conclusions:

• In order to trigger prefetching in Dom0, it is first necessary to trigger prefetch-
ing in DomU. Dom0 never independently decides to do prefetching in any of
the programs presented above.

41

• If two (or more) read requests to a file otherwise randomly accessed are
batched, this triggers the prefetching mechanism in DomU and consequently
in Dom0.

We further note that in programs 2 and 3b, the value of the following two ratios
is comparable and is close to or greater than 2.

Dom0Data
DomUData ≈

DomUData
DomUActualData

What this means is that DomU reads almost twice the amount of data that
is actually required. Dom0, in turn, reads twice the amount of data that DomU
requires. This brings out the fact that two-level prefetching in DomU and Dom0
creates an effect which in many cases results in twice more data being read than
what is actually required. The prefetch activity of DomU is getting magnified in
Dom0. We name this as the prefetch magnification effect. To answer why this
effect is happening and whether it can be replicated inside Postgres, we present an
experiment in the next section using a Postgres table.

Synthetic Database

In the previous section, we use three simple programs to test the Linux caching
behavior inside DomU and Dom0. In this section, we shift our focus back to the
Postgres database system because our main goal is to explain why certain database
queries trigger aggressive prefetching in Dom0. In order to do this, we create
a database table, RelationR , with three integer columns, a date column and a
character column with a fixed length of 200 characters. This character column is
added to increase the size of the table on disk. The table has total 2,000,142 rows,
with a size of 505 MB on disk. One of the integer columns, row-id, is a sequence
from 1 to 2000142 and uniquely identifies each row of RelationR. We also create a
clustered index on the row-id column. Having a clustered index on row-id means
that the table is stored on disk physically sorted by the row-id values. The size of
the index on disk is 43 MB.

Next, we create a function AccessRelR to access rows from RelationR using
the indexed column, row-id. The function takes an integer offset as a parameter
and accesses the data starting from row-id = 1 up to 2000142 in a loop, adding
offset in every iteration. For example, an offset value of 1 means that every row of
the RelationR is accessed while setting it to 1000 means that every 1000th row is
accessed. By controlling this offset parameter we can control the number of rows
touched by our function, and correspondingly the amount of index and heap blocks
accessed from disk. The source code of our function is presented in Appendix C.

In this experiment, we execute the function AccessRelR with varying values of
offset and monitor the disk activity using iostat. In Table 4.15, we present the

42

Dom0 DomU Actual Heap Heap Index Index
Offset Data Data Data Blocks Blocks Blocks Blocks

(MB) (MB) (MB) Read Hit Read Hit

1 560 549 547 64521 1935620 5487 8000541
10 560 549 547 64521 135493 5487 795661
50 558 479 355 40002 0 5487 154739
100 436 201 199 20001 0 5487 74626
200 242 123 121 10000 0 5487 34567
400 144 84 79 5000 0 5049 14978
800 93 42 39 2500 0 2535 7478
1000 80 34 32 2000 0 2032 5978
2000 43 18 16 1000 0 1027 2978
4000 23 10 8 500 0 524 1478
8000 14 6 4 250 0 273 728
10000 12 6 3 200 0 223 578

Table 4.15: Disk Activity: Synthetic Database.

amount of data accessed by Dom0 and DomU by calling our function with varying
offset values. We also present the number of heap and index blocks read and hit.
A heap (index) block hit occurs when the heap (index) page accessed by the query
is already present in the buffer pool. The Actual Data column in Table 4.15 is the
amount of data actually accessed by the query. It is the sum of heap and index
blocks accessed, multiplied by the Postgres page size of 8 KB.

As in the case of TPC-H queries, there is always some amount of extra data read
in DomU and Dom0, for all the values of offset presented in Table 4.15. However,
with the value of offset less than 50, the gap between Dom0 data and DomU data is
fairly small (≈11 MB). This is because a considerable portion of the table is being
accessed in this case. Also, since we use the clustered index on row-id, the rows
are retrieved sequentially from RelationR. This results in a high number of heap
block hits because many rows contained in a particular heap page are accessed
before the next heap block needs to be read from the disk. More interestingly,
starting with the offset value set to 50, the gap between Dom0 and DomU data
grows considerably. The ratio of Dom0 data to DomU data is 2 or greater for values
of offset > 50. This is another example of the prefetch magnification effect that
we also saw in the previous section for synthetic programs 2 and 3b. To explain
why this happens for offset values ≥ 50, we note that 31 rows of RelationR fit
into a single heap block. This is simply calculated as the number of total rows in
RelationR (2000142) divided by the total number of heap blocks (64521). As soon
as the value of offset crosses this threshold of 31 rows, every new row accessed is
contained in a heap page that is not already present in the Postgres buffer pool (or
Linux cache). This results in zero heap block hits, as can be seen from Table 4.15,
and causes a large amount of extra data to be read.

43

Let us try to see exactly what happens when the heap pages are accessed with
an offset value, say 50. First, we note that Postgres requests data in pages of size
8KB from the disk. However, the page size used by the Linux file system in our case
is 4KB. This means that every call by Postgres to read an 8KB page retrieves two
consecutive 4KB pages from the file system. The Linux read-ahead algorithm sees
the access to these two pages as a sign of sequentiality and read-ahead is initiated.
Let us assume that, at the start, the read-ahead window size is equal to the size
of the original request, i.e., it reads two pages in addition to the two requested by
Postgres. All this is done inside DomU. Now, since the DomU file system is a file in
the Dom0 file system, the Dom0 Linux kernel will see a request to read four pages
sequentially, two original and two read-ahead, on the DomU file. Detecting this
sequential access on the DomU file, the read-ahead algorithm inside Dom0 will see
an advantage to reading, say, eight pages (i.e., a read-ahead window size of four
pages). In this way, the prefetching activity of DomU is magnified in Dom0. Before
accessing the next heap page there has to be an lseek system call on the heap file
because the pages are accessed randomly through an index. Whenever the Linux
read-ahead algorithm sees an lseek on a file, it turns off read-ahead. Thus, in every
iteration, read-ahead is first turned on and then turned off. This cycle continues
until the function returns.

We also note that accessing RelationR using a bitmap index scan on row-id
does not result in extra data, as also seen with the TPC-H queries. We verify this
by running a query of the form: SELECT * FROM RelationR WHERE row-id
BETWEEN 50000 AND 100000. The query of this form is efficiently executed by
using a bitmap index scan. and we verify that the Postgres optimizer does indeed
choose an execution plan with bitmap index scan to execute the above query. We
calculate the Dom0 and DomU data accessed for the query and the results show
that Dom0 and DomU data is almost the same, essentially proving that bitmap
index scan, like sequential scan, does not cause the prefetch magnification effect.
We note that a bitmap index scan is different from a simple index scan in the respect
that it first retrieves all the required row ids from the index, sorts them and then
accesses the heap blocks in sorted order. In this respect, the behavior of a bitmap
index scan can thus be compared with that of a sequential scan in that the heap
blocks are accessed sequentially. Here it is important to clarify that even though
bitmap index scan and sequential scan trigger prefetching they do not cause extra
data to be read. In sequential scan (and bitmap index scan), pages are accessed as
fast as they can be accessed leaving no opportunity for Dom0 to prefetch “ahead”
of DomU or read more data than is required by DomU.

From the above discussion, we conclude that seemingly random access (using
an index) to a table in Postgres inside DomU in fact generates a pattern that is
seen as a sequential access by the Linux prefetching algorithm in Dom0 for our
particular setting of DomU and Dom0. This causes the kernel to prefetch data
from the file storing the table, which from the Dom0 view is also the file storing
the DomU file system. Furthermore, together the two-level file system prefetching
inside DomU and Dom0 results in the prefetch magnification effect. Collectively,

44

Setting Linux Kernel Xen Version

Base-I 2.6.16 N/A
Base-II 2.6.18 N/A
Xen-I 2.6.16 3.0.2
Xen-II 2.6.18 3.1

Table 4.16: Additional Experimental Settings.

our results from the synthetic programs presented in the previous section and from
the synthetic database presented in this section explain why sequential access and
bitmap index scan do not cause an excessive amount of data to be read in Dom0
and why indexed access causes this effect. This explains the behavior of the TPC-
H queries that run faster inside DomU. As mentioned before, these queries use an
indexed access to retrieve data from either the lineitem table or the orders table
in the TPC-H database and thus trigger the prefetch magnification effect. This
reduces the I/O wait time, consequently reducing the run time of these queries.
The above discussion offers one explanation for the behavior of faster queries and
why the prefetch magnification effect occurs. However, it still does not explain the
behavior of other queries. This is a possible topic of our future work.

4.3 Overhead Under Different Base and Xen Ver-

sions

In our last experiment, we repeat the experiment that was presented in Section 4.1.5
(Table 4.8) where we run the 22 TPC-H queries on a single database connection
in Base and Xen and measure their run time, this time with slightly different
versions of the Linux kernel and Xen. The goal of this experiment is to provide
a sense of the kind of performance variations one is expected to see when moving
from one version of Xen and/or Linux kernel to the next. We present a set of
different software configurations for our test machines in Table 4.16, where Base-
II and Xen-II are the settings used in all our previous experiments for the Base
and Xen systems, respectively. In this experiment, we use the Base-I and Xen-I
settings. Note that these settings differ only in the version of Xen or Linux. All
other configuration parameters are kept exactly the same. The results for Base-I
and Xen-I are presented in Table 4.17.

Comparing these results with the ones presented earlier in Table 4.8, we see
that for a majority of the queries the run time has improved from Base-I to Base-II
and from Xen-I to Xen-II. However, this is not significant and is expected because
of the possible enhancements and bug fixes introduced in the newer releases. More
importantly, we note that even with the older version of the Linux kernel and Xen,
the average slowdown is still small, about 7.62%. It is also important to note
that the relative order of the slowdown of queries changes from one version to the

45

Base-I Xen-I Abs Rel
TPC-H Runtime Runtime SlwDwn SlwDwn
Query (secs) (secs) (secs) (%)

Q1 13.7 14.06 0.35 2.58
Q2 0.10 0.12 0.02 23.92
Q3 4.83 5.07 0.23 4.81
Q4 0.46 0.44 -0.02 -4.28
Q5 4.25 4.96 0.70 16.58
Q6 1.04 1.22 0.18 17.66
Q7 3.59 3.93 0.34 9.36
Q8 1.21 1.21 0.00 0.36
Q9 10.83 12.7 1.86 17.22
Q10 4.50 4.86 0.36 8.05
Q11 0.70 0.81 0.10 14.53
Q12 1.45 1.50 0.05 3.53
Q13 13.64 13.94 0.30 2.23
Q14 0.51 0.55 0.04 8.41
Q15 1.06 1.10 0.03 3.22
Q16 1.78 1.93 0.15 8.40
Q17 0.35 0.39 0.04 11.34
Q18 9.09 9.91 0.81 8.95
Q19 5.16 5.17 0.01 0.14
Q20 0.36 0.40 0.04 11.16
Q21 2.26 2.21 -0.04 -1.94
Q22 1.54 1.56 0.02 1.32

Table 4.17: Overhead: Base-I vs. Xen-I.

46

next. For example, in Table 4.8, Q3 and Q15 experience the highest amount of
relative slowdown while in Table 4.17, Q2 and Q6 are the ones with the highest
relative slowdown. Similarly, different queries qualify as the least affected queries
in Table 4.8 and Table 4.17. The same queries having the same behavior are
exhibiting different ordering of relative slowdown. This brings out the fact that the
underlying cause of the slowdown may not remain the same from one version to
the next. Hence, looking for a specific cause of overhead in our experiments is not
worthwhile because, as noted, it is changing with versions. Lastly, we note that the
slowdown introduced by Xen virutalization and the one introduced by difference
in versions is quite comparable and is small. In other words, the variations in
performance from one version to the next are within the bounds of the overhead
that we observe and try to explain during the course of this study.

From this experiment we conclude that it is not worthwhile to invest extensive
time and effort to delve deeper into the study of virtualization overhead and to ac-
count for this overhead to the very last millisecond. This is because the differences
introduced by Xen virtualization are small and comparable from one version to the
next. Also, the underlying cause of virtualization overhead is not constant and is
sensitive to the version of the hypervisor as well as the version of the underlying
Linux kernel. The most important conclusion, however, is that the virtualization
overhead of Xen is consistently small for the different settings presented in Ta-
ble 4.16.

47

Chapter 5

Related Work

At the time of this writing, we are unaware of any work done specifically in the
area of performance evaluation for database systems running in a virtualized envi-
ronment. In this chapter, we present work related to virtualization in general, and
previous work dealing with various performance aspects of different virtualization
technologies that can be compared with our work.

5.1 Virtualization

The use of virtualization provides flexibility and improved manageability by enhanc-
ing availability, performance isolation, security, memory management, and adaptive
control of resources. Additionally, it allows for easy deployment, checkpointing, and
migration of virtual machines. This resulted in a resurgence of interest in virtual-
ization technologies. Today, different commercial and open source implementations
of virtualization platforms exist that enable the benefits of virtualization to varying
degrees. Popular virtualization technologies include Xen [59], OpenVZ [28], User
Mode Linux [47], VMWare [53], and Microsoft Virtual Server [26], among others.
In this work, we focus on the Xen VMM [59].

In [10], the authors detail the use of virtualization for high-availability and
load balancing. They present the design and evaluation of the techniques that
enable them to do live migration of operating systems using Xen virtual machines.
They show that the virtual machines can be migrated from one physical machine to
another while the OSes that they host continue to run, keeping the service downtime
to as low as 60ms. In this way, virtualization can be used to enable high availability
and is particularly attractive to application domains with liveness constraints such
as data center and cluster environments. Other work that exploits the ease of use
of virtualization for migration includes [18, 21, 37, 56].

It is often important to guarantee a minimum level of performance for partic-
ular applications hosted by service providers, for example, to meet service level
agreements (SLAs). Increasingly, service providers are using virtual machines to

48

partition one physical machine, each partition servicing different clients. In other
words, a provider may allocate virtual machines hosted on a single physical ma-
chine to multiple clients. In order to ensure a minimum performance guarantee
to each client, it is important that applications running in one virtual machine
do not throttle the applications running in other virtual machines hosted on the
same physical machine by consuming an unfair share of the physical resources. The
solution to this problem comes easy with the use of virtulization. Virtualization
platforms enforce performance isolation between different virtual machines and in
turn, the applications running on these VMs – as shown in [16]. Different virtualiza-
tion platforms vary in their ability to enable performance isolation between virtual
machines. In [24], a benchmark to evaluate the degree of performance isolation
offered by various virtualization technologies is presented.

Virtualization has also been used to provide added security. Terra, an architec-
ture for trusted computing presented in [14], uses a trusted virtual machine monitor
(TVMM) to enable running multiple applications on commodity hardware, each
with different security requirements. [54] presents the use of the Xen VMM to
host multiple virtual honeypots on a single server. A honeypot is a trap to detect
illegal use of information systems usually initiated by malware. Honeypots are used
to detect and counteract attacks on a larger network and have been found very ef-
fective against certain types of attacks. Without virtualization, each honeypot has
to be hosted on a separate physical machine impeding large scale deployments. As
another example of the use of virtualization for added security, researchers at the
University of Michigan have designed virtual machine based security services that
are operating system independent [11].

Virtualization enables the optimal use of available computing resources through
dynamic allocation. The allocation of resources is no longer restricted to the rigid
boundaries of hardware. Adding more memory or CPU power to a (virtual) ma-
chine can now be done by using a single VMM command. Per-VM level resource
allocation can easily be varied to get the best performance [40], depending on the
available resources, the workloads running in different virtual machines, and the
service level agreements. The dynamic resource provisioning aspect of virtualiza-
tion can be effectively used to do load balancing to achieve optimal performance
even under sustained loads [31].

5.2 Xen

Xen was first proposed in [4], where the authors also provide a comparative per-
formance evaluation with baseline Linux (Base system, in our case), VMWare [53]
and User-mode Linux [47]. They use a variety of micro-benchmarks and system-
wide tests to evaluate the performance of these platforms and compare them with
that of Xen. Using the lmbench [23], OSDB [27], SPEC CPU2000 [41], and SPEC
Web99 [42] benchmarks, they show that the virtualization overhead of Xen is quite
small when compared with these other platforms and its performance is very close

49

to the baseline Linux. These results are independently reproduced by another set
of researchers in [9]. Both [4] and [9] focus on the overall performance of Xen
virtualization when compared with that of alternative virtualization platforms and
baseline Linux. However, in this work we exclusively focus on only one specific
application, the database system, and try to study in detail how its performance
differs from Base to Xen.

5.2.1 Xen Performance Monitoring

In [7] and [17], a performance monitoring tool for Xen called XenMon (short for Xen
Performance Monitor), is presented. XenMon reports various performance metrics
per domain (VM) including CPU usage, blocked time, allocated time, and I/O
count. In order to establish the usefulness of these different metrics, the authors
present a performance case study for a web server that focuses on the specific
question: how is the performance of a web server affected by the amount of CPU
allocated to Dom0? Dom0 (the control VM) hosts the device drivers and serves
the I/O requests for other VMs. Therefore, the question posed above becomes
important, especially if the user VM is hosting an I/O intensive application. They
consider only one VM running on Xen in addition to Dom0, i.e., DomU. The web
server is hosted inside DomU. Using XenMon, they conclude that for such a setting,
the best performance is achieved when the ratio of CPU allocation between Dom0
and DomU is kept at 1:2. Similar to our work, they focus on only two domains and
evaluate the performance of a specific application, a web server, while in our case
it is a database system (Postgres). However, we are not dealing with the question
of how much resources to allocate to Dom0 and DomU to get the best performance
for Postgres. Rather, by using the default resource allocation (except memory),
our goal is to study and analyze the cause of slowdown for a database workload
running inside DomU, providing possible explanations for this overhead.

In another similar study, Menon et al. [25] present Xenoprof – a toolkit to
facilitate system-wide statistical profiling of a Xen system. It is modeled after the
OProfile tool [29] and reports various low-level metrics including CPU clock cycles,
instruction execution, TLB and cache misses etc. Similar to our work, Menon
et al. analyze the performance overhead experienced by a networking application
(we focus on Postgres) running inside Xen and then try to find the source of this
overhead. Xenoprof enabled them to attribute the overhead to various low-level
sources. More concretely, they were able to pinpoint the subsystem in the kernel
that causes the observed overhead in the networking application. In the end, they
provide some guidelines to virtualizing the network for optimal performance in Xen.
In this study, we analyze the performance of the database system at the application
level using the query run time as the performance metric rather than the low-level
system counters offered by Xenoprof and other such tools.

50

5.3 Virtualization for Server Consolidation

In a more recent work, Padala et al. [32] study and evaluate the performance of
the Xen and OpenVZ [28] virtualization platforms for server consolidation. They
consider a multi-tiered application with a web server tier and a database tier under
various configurations. Our settings can be compared with the two-node, one-
instance setting presented in their report with the focus on the database node only.
They use RUBiS [36] – a benchmark that simulates an online auction web-site – for
the performance evaluation. Similar to our work, they use various tools to gather
CPU statistics for Base, Xen, and OpenVZ. In addition, they use Xenoprof [58]
to gather various low-level performance counters, e.g., TLB and L2 cache misses.
They conclude that OpenVZ is superior to Xen when it comes to performance for
server consolidation. In most cases, OpenVZ and the Base system have comparable
performance. They also report that the performance overhead for the database tier
is small for both virtualization platforms. Another – and perhaps more important
– conclusion is that the performance overhead of Xen comes from poor CPU cache
performance inside Xen and increased L2 cache misses. In this work, we use their
results to attribute the observed slowdown in user time to poor CPU cache per-
formance in Xen. Also, instead of looking at the broader problem of evaluating
virtualization technologies for server consolidation, we focus only on the perfor-
mance evaluation of the database system and in much more detail compared to
what is presented in [32].

51

Chapter 6

Conclusion and Future Work

In this thesis, we start with a goal to answer some of the very basic questions
regarding the performance of a database system running inside a Xen virtual ma-
chine. Specifically, we aim to collect concrete measurements representing the gap
in database system performance between the Base and Xen systems, and then to
explain this overhead by finding its cause; in the end giving some clues to avoid it.
With this goal in mind, we carry out a series of fairly detailed experiments using
identically configured Postgres servers running the TPC-H benchmark on the Base
system and inside DomU on the Xen system. Using our experiments, we address
several unique facets of this problem that ultimately enable us to provide an in-
depth performance analysis of the 22 TPC-H queries under Base and Xen. We
draw the following major conclusions from our experimental results:

• When moving from the Base system to Xen, all 22 TPC-H queries experience
a slowdown in run time in the warm case. The average relative slowdown
of the TPC-H queries in the warm case using a new database connection
for every query is 29.5%. However, by using one database connection, this
overhead can be reduced to only 9.8%. Furthermore, we view this as a worst
case overhead that can likely be further improved by using newer server CPUs
with hardware support for virtualization and other such optimizations.

• The system time component of the total run time of all queries experiences a
considerably large slowdown of up to 210% under Xen. On the other hand,
the user time is slowed down by less than 21%. This result incited a deeper
investigation of the system time slowdown.

• The number of system calls made by the Postgres process while executing a
query remains fairly constant across Base and Xen. System call time is up
to 871% slower inside Xen. However, for these queries, the total time spent
on system calls is a minor fraction of the system time. Thus, while system
calls in Xen are significantly slower than the Base system, this is not a major
cause of slowdown for database queries, since these queries do not spend that
much time on system calls.

52

• Creating a new connection to the database for each run of each query gen-
erates a large number of minor page faults. These faults are caused due to
the mapping of pages from the shared buffer cache of Postgres to the address
space of the postmaster process executing the query. The page faults are
more than twice as expensive in Xen as they are in the Base system (3.5 µs in
Xen vs. 1.67 µs in Base). We find that there is a strong correlation between
the page fault rate (page faults per second) and the overall slowdown of the
query. We, therefore, conclude that page fault handling is the major source
of overhead for Xen.

• The number of minor page faults can be reduced by using a single connection
to the database and the queries can be made to run faster. The reduction in
query run time is due to a significant decrease in system time, which in turn
is due to a reduction in the number of minor page faults. Realizing that the
mapping of the pages from the Postgres shared buffer cache has to take place
only once is the key to reducing these minor page faults. We conclude that
using one database connection for all queries is a fairly simple way to reduce
the virtualization overhead of Xen.

• Using a purely user level program, bubble sort, we show that Xen consis-
tently slows down the user time component of total run time. We attribute
this slowdown to the increased number of CPU cache misses inside Xen, as
established by Padala et al. [32].

• Similar to the warm experiments, while running experiments with cold caches
the relative slowdown is not very high. Surprisingly, some queries even run
faster inside Xen. The queries that are slower in Xen experience an average
slowdown of 12.2%, and those that are faster experience an average “slow-
down” of -9.6%. Overall, the average slowdown for all 22 TPC-H queries is
6.2%. This leads us to conclude that the widely accepted notion of a slower
I/O path inside Xen may not be true and that the cost of Xen virtualization
is low even in the cold case.

• Prefetching in DomU and Dom0 explains the behavior of the queries that
run faster inside Xen. These queries access the lineitem table and the orders
table using an index scan. This access pattern causes DomU to prefetch data
from the disk and consequently triggers aggressive prefetching in Dom0. This
causes more data than necessary to be read from disk, but helps performance
by removing I/O from the critical path of query execution and hence reducing
the I/O wait time. This explains the behavior of the queries that run faster
in Xen, but it does not extend to other TPC-H queries.

• Lastly, we observe that there are variations in performance among different
versions of the Xen hypervisor and of the underlying Linux kernel. In the
presence of this sensitivity of performance to these factors, it is difficult to
attribute the cause of the (small) virtualization overhead to any single source
or to account for this overhead to the very last millisecond.

53

As mentioned before, our system is not highly optimized. For example, the file
system in DomU is mounted as a file in Dom0. This setting is known as a file-backed
virtual block device (VBD) in Xen terminology. File-backed VBDs are known to be
inefficient, especially under I/O intensive workloads. Additionally, the CPUs of the
machines that we use in our experiments do not have hardware support for virtual-
ization. Therefore, the results that we present should be treated as the worst-case
performance of the 22 TPC-H queries. One possible direction for future work is to
try different configurations of the virtual machine (DomU). As mentioned, the way
the virtual disks are mapped from DomU to Dom0 is an important configuration
parameter. It would be interesting to observe the database system performance
when the virtual disk inside DomU is mapped to a physical disk in Dom0 or by
using raw disk in Dom0 for the DomU virtual disk. By having a physical disk
exported as a VBD from Dom0, we expect the overhead of doing I/O inside DomU
to be further reduced. Secondly, by harnessing the power of the next generation of
processors with virtualization support in hardware (e.g., Intel-VT and AMD-V), we
should expect the performance gap to become smaller or even vanish completely.
This can be easily verified by repeating our experiments on the newer hardware
with a different configuration. We can also try different database workloads with
varying resource demands and applications, e.g., the RUBiS [36], TPC-W [46], or
TPC-C [44] benchmarks. This will help answer the question whether only the
TPC-H workload exhibits the behavior reported in this study, or whether these
other benchmarks also show similar results. Additionally, we can evaluate differ-
ent virtualization technologies such as OpenVZ, VMWare, User Mode Linux, and
Xen against each other specifically for database workloads and provide compara-
tive results that would help system administrators to decide which technology suits
their database workload in the best possible way. Finally, having these results for
various different database systems, e.g., MySQL, Oracle, DB2, will bring another
dimension to this work making the results more rich and practically useful.

Increasingly, efficient virtualization technologies have been designed in the re-
cent years resulting in their wide acceptance. Today, even with the added complex-
ity and layer(s) of indirection, it is possible to get near-to-base performance under
a virtualized system. This essentially means that the benefits of virtualization are
coming with a very low cost. With advances in hardware technology to support
virtualization and by exploiting the unique features made available to the software,
this situation is expected to improve even further in the future. By understand-
ing different virtualization technologies and how they interact with the hardware,
operating system, applications, and the inter-virtual machine interactions, we can
increasingly build better systems. Moving in this direction, this study explores
various aspects of interaction between the Xen virtual machine monitor and the
Postgres database system using the TPC-H database benchmark. Hopefully, our
work will guide future research in the area of virtualization and database systems.

54

References

[1] ESX Server 2 Administration Guide. v2.5.1, VMWare 2005.

[2] Ashraf Aboulnaga, Cristiana Amza, and Kenneth Salem. Virtualization and
databases: State of the art and research challenges. In Proc. of the Interna-
tional Conference on Data Engineering (ICDE), 2007. (Advanced Technology
Seminar).

[3] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. A comparative evalua-
tion of transparent scaling techniques for dynamic content servers. In Proc. of
the International Conference on Data Engineering (ICDE), 2005.

[4] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proc. ACM Symposium on Operating Systems Principles
(SOSP), October 2003. 7, 49, 50

[5] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly,
CA, United States, second edition, 2002. 38

[6] Vineet Chadha, Ramesh Illikkal, Ravi Iyer, Jaideep Moses, Donald Newell,
and Renato J. O. Figueiredo. I/O processing in a virtualized platform: a
simulation-driven approach. In Proc. Virtual Execution Environments (VEE),
2007.

[7] Ludmila Cherkasova and Rob Gardner. Measuring CPU overhead for I/O
processing in the Xen Virtual Machine Monitor. In USENIX Annual Technical
Conference, General Track, 2005. 50

[8] Citrix. http://www.citrix.com/. 9

[9] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson,
Jason Herne, and Jeanna Neefe Matthews. Xen and the art of repeated re-
search. In Proc. USENIX’04, FREENIX Track. 50

[10] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proc. ACM/USENIX Symp. on Networked Systems Design and
Implementation (NSDI), May 2005. 48

55

[11] Virtual-machine Based Security Services. http://www.eecs.umich.edu/virtual/.
49

[12] How to drop caches in Linux. http://www.linuxinsight.com/proc sys vm drop caches.html.
34

[13] Renato Figueiredo, Peter A. Dinda, and Jose Fortes. Resource virtualization
renaissance. IEEE Computer, 38(1), 2005.

[14] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: A virtual machine-based platform for trusted computing. In Proc. of
the Symposium on Operating Systems Principles (SOSP), October 2003. 49

[15] Jim Gray and Daniel Siewiorek. High-availability computer systems. IEEE
Computer, 24(9), 1991.

[16] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. En-
forcing performance isolation across virtual machines in Xen. In Proc.
ACM/IFIP/USENIX 7th International Middleware Conf., November 2006. 4,
49

[17] Diwaker Gupta, Rob Gardner, and Lucy Cherkasova. XenMon: QoS monitor-
ing and performance profiling tool. Technical Report HPL-2005-187, HP Labs,
2005. 50

[18] Wei Huangy, Jiuxing Liuz, Bulent Abaliz, and Dhabaleswar K. Panda. A
case for high performance computing with virtual machines. In Proc. of the
International Conference on Supercomputing (ICS), June 2006. 48

[19] IBM Corporation. Dynamic logical partitioning in IBM e-
Server pSeries. White paper available at http://www-
03.ibm.com/servers/eserver/pseries/hardware/whitepapers/dlpar.html,
2002.

[20] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan, David E. Lowell, Mike
Wray, Tom Christian, Nigel Edwards, Chris Dalton, and Frederic Gittler. Sof-
tUDC: A software-based data center for utility computing. IEEE Computer,
November 2004.

[21] Michael Kozuch and Mahadev Satyanarayanan. Internet suspend /resume. In
Proc. of the Workshop on Mobile Computing Systems and Applications, June
2002. 48

[22] Linux Manual Pages. http://www.linuxmanpages.com/. 15

[23] LMbench: Tools for Performance Analysis. http://lmbench.sourceforge.net/.
29, 49

56

[24] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd Deshane,
Demetrios Dimatos, Gary Hamilton, Michael McCabe, and James Owens.
Quantifying the performance isolation properties of virtualization systems. In
Proc. of the Workshop on Experimental Computer Science (ExpCS), June 2007.
49

[25] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman,
and Willy Zwaenepoel. Diagnosing performance overheads in the Xen virtual
machine environment. In Proc. of Virtual Execution Environments (VEE),
June 2005. 4, 50

[26] Microsoft Corporation. Microsoft Virtual Server 2005 R2 Technical Overview.
Microsoft Corp. White Paper, 2005. 48

[27] The Open Source Database Benchmark. http://osdb.sourceforge.net/. 49

[28] OpenVZ – An Open-source Server Virtualization Project. http://openvz.org/.
5, 48, 51

[29] Oprofile. http://oprofile.sourceforge.net/. 50

[30] OSDL Database Test Suite 3. http://sourceforge.net/projects/osdldbt. 14

[31] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant, and Kenneth Salem. Adaptive control of vir-
tualized resources in utility computing environments. In Proc. EuroSys, March
2007. 3, 49

[32] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, and Kang G.
Shin. Performance evaluation of virtualization technologies for server consol-
idation. Technical Report HPL-2007-59, HP Labs, April 2007. 4, 33, 34, 51,
53

[33] PostgreSQL: An Open-source Database Management System.
http://www.postgresql.org/. 14

[34] Robert Rose. Survey of system virtualization techniques.

[35] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current
technology and future trends. IEEE Computer, 38(5), 2005.

[36] RUBIS. http://rubis.objectweb.org/. 51, 54

[37] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Mon-
ica S. Lam, and Mendel Rosenblum. Optimizing the migration of virtual
computers. In Proc. of the Symposium on Operating System Design and Im-
plementation (OSDI), December 2002. 48

[38] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. Wiley & Sons, seventh edition, 2006. 27

57

[39] James E. Smith and Ravi Nair. The architecture of virtual machines. IEEE
Computer, 38(5), 2005.

[40] Ahmed A. Soror, Ashraf Aboulnaga, and Kenneth Salem. Database virtu-
alization: A new frontier for database tuning and physical design. In Proc.
Workshop on Self-Managing Database Systems (SMDB), April 2007. 3, 49

[41] SPEC CPU2000. http://www.spec.org/cpu2000/. 49

[42] SPEC Web99. http://www.spec.org/web99/. 49

[43] William Stallings. Operating Systems. Prentice Hall, fourth edition, 2002. 27

[44] TPC-C. http://www.tpc.org/tpcc/. 54

[45] TPC-H: An Ad-hoc, Decision Support Benchmark. http://www.tpc.org/tpch/.
14

[46] TPC-W. http://www.tpc.org/tpcw/. 54

[47] User Mode Linux. http://user-mode-linux.sourceforge.net/. 48, 49

[48] University of Cambridge Computer Laboratory. Xen Users’ Manual. v3.0,
2005. 10

[49] Virtual Appliances. http://www.virtualappliances.net/. 3

[50] Virtual Iron. http://www.virtualiron.com/.

[51] SWsoft Virtuozzo - An OS Virtualization Solution.
http://www.swsoft.com/en/products/virtuozzo/. 5

[52] Tom Van Vleck. The IBM 360/67 and CP/CMS.
http://www.multicians.org/thvv/360-67.html. 2

[53] VMware. http://www.vmware.com/. 8, 48, 49

[54] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm. In Proc. of the Symposium
on Operating Systems Principles (SOSP), October 2005. 49

[55] Carl A. Waldspurger. Memory resource management in VMware ESX
Server. In Proc. Symposium on Operating Systems Design and Implementation
(OSDI), December 2002.

[56] Andrew Whitaker, Richard Cox, Marianne Shaw, and Steven Gribble. Con-
structing services with interposable virtual hardware. In Proc. of the Sympo-
sium on Networked Systems Design and Implementations (NSDI), 2004. 48

[57] Xen Intro. http://wiki.xensource.com/xenwiki/XenIntro. 10

58

[58] XENOPROF – System-wide Profiler for Xen VM.
http://xenoprof.sourceforge.net/. 51

[59] XenSource. http://www.xensource.com/. 3, 9, 48

59

Appendix A

DomU Configuration File

kernel = "/boot/vmlinux-syms-2.6.18-xenU"

ramdisk= "/boot/initrd-xen"

memory = 3072

name = "marroo-vm-20"

disk = [’file:/scratch/xen/domains/nugget3/diskimage,sda1,w’,

’file:/scratch/xen/domains/nugget3/swapimage,sda2,w’]

root = "/dev/sda1 ro"

extra = "3"

vif = [’mac=aa:cc:00:00:00:01, bridge=xenbr0’]

60

Appendix B

Sort Program Source Code

Courtesy of Professor Kenneth Salem, University of Waterloo.

/* sort.c

* Test program to sort a large number of integers.

*

* Can be used to stress virtual memory system by increasing SIZE.

*

*/

#define SIZE 30000

int A[SIZE];

int main()

{ int i, j, tmp;

/* first initialize the array, in reverse sorted order */

for (i = 0; i < SIZE; i++) {

A[i] = (SIZE-1) - i;

}

/* then sort! */

for (i = 0; i < SIZE; i++) {

for (j = 0; j < (SIZE-1); j++) {

if (A[j] > A[j + 1]) { /* out of order -> need to swap ! */

tmp = A[j];

A[j] = A[j + 1];

A[j + 1] = tmp;

}

}

}

return(0);

}

61

Appendix C

PL/PGSQL Function AccessRelR

CREATE or REPLACE FUNCTION AccessRelR(offset INTEGER) returns integer AS $$

DECLARE

row_id INTEGER;

row_val relr%ROWTYPE;

BEGIN

row_id := 1;

FOR i IN 1 .. 2000142 LOOP

select * FROM relr INTO row_val WHERE row-id = row_id;

row_id := row_id + offset;

if(row_id > 2000142) THEN

RETURN 1;

END IF;

END LOOP;

RETURN 0;

END;

$$ LANGUAGE ’plpgsql’;

62

Appendix D

System Call Detail Data

Base Xen Rel
Number Time Number Time Slow

Query1 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 55.17
brk 5 0.05 4 0.06 29.68
close 6 0.10 6 0.34 234.10
fstat 3 0.02 3 0.04 93.87
gettimeofday 3 0.02 3 0.04 71.91
lseek 13 0.08 13 0.17 99.70
mmap 7 0.06 7 0.10 74.89
munmap 3 0.03 3 0.09 187.60
open 15 0.18 15 0.27 52.85
read 19 0.21 4 0.21 -3.18
recvfrom 3 0.51 3 0.06 -87.48
rt sigaction 13 0.09 13 0.17 91.33
rt sigprocmask 5 0.03 5 0.06 101.16
semctl 1 0.01 1 0.01 67.61
sendto 13 0.31 12 4.85 1457.04
setitimer 2 0.02 2 0.03 62.50
Total 112 1.74 95 6.53

Table D.1: System Call Details: Query 1.

63

Base Xen Rel
Number Time Number Time Slow

Query2 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 52.22
brk 7 0.08 6 0.12 47.93
close 6 0.10 6 0.08 -14.59
fstat 3 0.02 3 0.04 98.75
gettimeofday 3 0.02 3 0.04 58.46
lseek 68 0.48 68 0.97 103.99
mmap 9 0.08 9 0.14 68.85
munmap 5 0.07 5 0.21 212.34
open 18 0.21 18 0.33 59.38
read 19 0.21 4 0.19 -11.18
recvfrom 3 0.60 3 0.68 13.03
rt sigaction 13 0.09 13 0.17 91.88
rt sigprocmask 5 0.03 5 0.07 95.91
semctl 1 0.01 1 0.02 61.33
sendto 13 0.31 12 4.34 1299.92
setitimer 2 0.02 2 0.03 68.75
Total 176 2.34 159 7.44

Table D.2: System Call Details: Query 2.

Base Xen Rel
Number Time Number Time Slow

Query3 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 47.83
brk 17 0.26 16 0.63 144.2
close 6 0.08 6 0.35 328.22
fstat 3 0.02 3 0.04 71.12
gettimeofday 3 0.03 3 0.04 47.14
lseek 22 0.17 22 0.29 71.25
mmap 50 0.62 50 0.94 50.64
munmap 46 3.96 46 17.36 337.87
open 22 0.27 22 0.40 49.19
read 19 0.23 4 0.20 -12.02
recvfrom 3 0.39 3 0.07 -83.01
rt sigaction 13 0.10 13 0.17 68.27
rt sigprocmask 5 0.04 5 0.07 78.98
semctl 1 0.01 1 0.02 51.90
sendto 13 0.53 12 4.87 813.49
setitimer 2 0.02 2 0.03 52.26
Total 226 6.74 209 25.48

Table D.3: System Call Details: Query 3.

64

Base Xen Rel
Number Time Number Time Slow

Query4 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 56.98
brk 11 0.11 10 0.20 89.95
close 6 0.11 6 0.08 -21.02
fstat 3 0.02 3 0.04 101.27
gettimeofday 3 0.02 3 0.04 74.01
lseek 17 0.11 17 0.22 98.75
mmap 13 0.12 13 0.21 68.24
munmap 9 0.34 9 1.12 230.64
open 19 0.21 19 0.34 59.12
read 19 0.21 4 0.20 -4.91
recvfrom 3 0.39 3 0.60 53.28
rt sigaction 13 0.09 13 0.17 96.88
rt sigprocmask 5 0.03 5 0.07 101.93
semctl 1 0.01 1 0.01 69.12
sendto 13 0.30 12 4.20 1297.34
setitimer 2 0.02 2 0.03 65.22
Total 138 2.10 121 7.55

Table D.4: System Call Details: Query 4.

Base Xen Rel
Number Time Number Time Slow

Query5 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 52.27
brk 13 0.13 11 0.18 37.28
close 6 0.07 6 0.35 370.58
fstat 3 0.02 3 0.04 84.30
gettimeofday 3 0.02 3 0.04 63.30
lseek 33 0.23 33 0.43 89.21
mmap 31 0.37 32 0.59 58.20
munmap 27 1.54 28 6.83 344.81
open 30 0.34 30 0.57 67.69
read 19 0.22 4 0.20 -6.21
recvfrom 3 0.40 3 0.07 -83.41
rt sigaction 13 0.09 13 0.17 84.42
rt sigprocmask 5 0.04 5 0.06 84.64
semctl 1 0.01 1 0.01 59.46
sendto 14 0.45 13 4.93 990.28
setitimer 2 0.02 2 0.03 59.46
Total 204 3.96 188 14.53

Table D.5: System Call Details: Query 5.

65

Base Xen Rel
Number Time Number Time Slow

Query6 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 60.00
brk 10 0.09 9 0.16 72.59
close 6 0.09 6 0.08 -3.18
fstat 3 0.02 3 0.04 96.88
gettimeofday 3 0.02 3 0.04 63.68
lseek 13 0.08 13 0.17 96.45
mmap 16 0.17 16 0.30 75.73
munmap 12 1.14 12 4.45 290.17
open 15 0.18 15 0.27 53.00
read 19 0.21 4 0.20 -5.69
recvfrom 3 0.37 3 0.56 49.68
rt sigaction 13 0.09 13 0.17 90.79
rt sigprocmask 5 0.03 5 0.06 98.85
semctl 1 0.01 1 0.01 68.12
sendto 13 0.30 12 4.19 1287.10
setitimer 2 0.02 2 0.03 58.90
Total 135 2.84 118 10.75

Table D.6: System Call Details: Query 6.

Base Xen Rel
Number Time Number Time Slow

Query7 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 61.18
brk 15 0.19 13 0.40 115.56
close 6 0.09 6 0.35 305.70
fstat 3 0.02 3 0.04 100.63
gettimeofday 3 0.02 3 0.04 67.21
lseek 34 0.21 34 0.44 108.58
mmap 39 0.50 40 0.78 56.42
munmap 35 3.96 36 17.50 342.23
open 28 0.31 28 0.50 62.70
read 19 0.21 4 0.20 -4.24
recvfrom 3 0.52 3 0.06 -87.82
rt sigaction 13 0.09 13 0.17 97.40
rt sigprocmask 5 0.03 5 0.06 103.15
semctl 1 0.01 1 0.02 101.47
sendto 14 0.33 13 4.94 1410.94
setitimer 2 0.02 2 0.03 72.14
Total 221 6.50 205 25.55

Table D.7: System Call Details: Query 7.

66

Base Xen Rel
Number Time Number Time Slow

Query8 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 22.52
brk 13 0.24 12 0.53 122.57
close 6 0.10 6 0.08 -13.26
fstat 3 0.03 3 0.04 28.86
gettimeofday 3 0.03 3 0.04 13.33
lseek 1491 15.62 1491 19.47 24.63
mmap 30 0.41 30 0.56 36.89
munmap 26 1.44 26 5.96 314.17
open 32 0.45 32 0.56 25.50
read 19 0.27 4 0.19 -32.21
recvfrom 3 0.45 3 0.66 45.87
rt sigaction 13 0.13 13 0.17 33.63
rt sigprocmask 5 0.05 5 0.06 29.22
semctl 1 0.01 1 0.02 23.71
sendto 14 0.46 13 4.40 856.56
setitimer 2 0.02 2 0.03 21.24
Total 1662 19.73 1645 32.78

Table D.8: System Call Details: Query 8.

Base Xen Rel
Number Time Number Time Slow

Query9 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 18.92
brk 10 0.13 9 0.17 36.82
close 6 0.10 6 0.17 69.63
fstat 3 0.03 3 0.04 30.08
gettimeofday 3 0.03 3 0.04 13.64
lseek 348784 3463.84 348784 4366.39 26.06
mmap 23 0.34 23 0.39 14.73
mremap 5 0.30 5 1.62 445.65
munmap 19 4.29 19 19.62 357.67
open 31 0.43 31 0.53 23.51
read 19 0.27 4 0.20 -26.91
recvfrom 3 0.57 3 0.06 -90.04
rt sigaction 13 0.13 13 0.17 31.7
rt sigprocmask 5 0.05 5 0.06 29.95
semctl 1 0.01 1 0.01 16.49
sendto 15 1.02 14 5.44 431.02
setitimer 2 0.02 2 0.029 21.69
Total 348943 3471.57 348926 4394.95

Table D.9: System Call Details: Query 9.

67

Base Xen Rel
Number Time Number Time Slow

Query10 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 55.68
brk 15 0.22 15 0.60 169.78
close 6 0.08 6 0.34 303.4
fstat 3 0.02 3 0.04 94.80
gettimeofday 3 0.03 3 0.04 54.00
lseek 25 0.17 25 0.33 90.69
mmap 45 0.58 44 0.97 67.90
mremap 3 0.12 3 0.41 249.20
munmap 41 5.62 40 26.33 368.38
open 25 0.30 25 0.45 53.35
read 19 0.22 4 0.19 -12.60
recvfrom 3 0.66 3 0.08 -88.61
rt sigaction 13 0.09 13 0.17 80.71
rt sigprocmask 5 0.04 5 0.06 84.29
semctl 1 0.01 1 0.02 64.86
sendto 14 0.32 13 5.25 1524.43
setitimer 2 0.02 2 0.03 64.38
Total 224 8.50 206 35.32

Table D.10: System Call Details: Query 10.

Base Xen Rel
Number Time Number Time Slow

Query11 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 62.79
brk 11 0.11 10 0.21 98.59
close 6 0.08 6 0.08 4.47
fstat 3 0.02 3 0.05 129.19
gettimeofday 3 0.02 3 0.04 64.4
lseek 29 0.19 29 0.38 105.52
mmap 19 0.23 19 0.41 74.03
munmap 15 0.71 15 3.54 397.58
open 14 0.16 14 0.26 58.66
read 19 0.21 4 0.19 -11.96
recvfrom 3 1.76 3 0.62 -64.60
rt sigaction 13 0.09 13 0.17 95.87
rt sigprocmask 5 0.03 5 0.07 101.92
semctl 1 0.01 1 0.02 79.71
sendto 17 0.36 16 6.18 1620.08
setitimer 2 0.02 2 0.03 69.29
Total 161 4.01 144 12.26

Table D.11: System Call Details: Query 11.

68

Base Xen Rel
Number Time Number Time Slow

Query12 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 56.32
brk 11 0.11 10 0.24 124.20
close 6 0.08 6 0.08 7.82
fstat 3 0.02 3 0.04 95.09
gettimeofday 3 0.02 3 0.04 63.64
lseek 17 0.11 17 0.22 97.51
mmap 16 0.17 16 0.31 78.71
munmap 12 0.93 12 4.26 359.30
open 19 0.22 19 0.34 55.09
read 19 0.21 4 0.20 -7.49
recvfrom 3 0.45 3 0.63 40.50
rt sigaction 13 0.09 13 0.17 88.54
rt sigprocmask 5 0.03 5 0.06 98.08
semctl 1 0.01 1 0.01 63.38
sendto 13 0.30 12 4.23 1311.64
setitimer 2 0.02 2 0.03 65.00
Total 144 2.77 127 10.87

Table D.12: System Call Details: Query 12.

Base Xen Rel
Number Time Number Time Slow

Query13 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 27.10
brk 14 0.20 13 0.35 73.79
close 7 0.11 7 0.37 229.46
fstat 3 0.03 3 0.04 33.47
gettimeofday 3 0.03 3 0.04 15.67
lseek 98 0.90 98 1.29 42.36
mmap 25 0.35 25 0.49 39.99
mremap 5 0.49 5 2.96 505.14
munmap 21 8.13 21 34.77 327.76
open 12 0.31 12 0.29 -7.68
read 17383 252.98 17368 328.26 29.76
recvfrom 3 0.42 3 0.06 -85.04
rt sigaction 13 0.13 13 0.17 36.72
rt sigprocmask 5 0.05 5 0.07 34.53
semctl 1 0.01 1 0.02 30.43
sendto 13 0.64 12 4.81 657.20
setitimer 2 0.02 2 0.03 33.52
unlink 1 67.82 1 16.78 -75.26
write 17364 625.73 17364 611.72 -2.24
Total 34974 958.37 34957 1002.54

Table D.13: System Call Details: Query 13.

69

Base Xen Rel
Number Time Number Time Slow

Query14 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 49.45
brk 14 0.19 6 0.10 -48.72
close 6 0.07 6 0.08 15.77
fstat 3 0.02 3 0.04 77.09
gettimeofday 3 0.03 6 0.08 201.46
lseek 15 0.10 15 0.19 82.60
mmap 21 0.26 7 0.10 -60.75
mremap 2 0.09 0 0.00 0.00
munmap 17 1.64 3 0.09 -94.69
open 17 0.21 17 0.31 49.42
read 19 0.22 4 0.22 -1.77
recvfrom 3 0.37 3 0.80 112.99
rt sigaction 13 0.10 13 0.17 79.95
rt sigprocmask 5 0.04 5 0.06 79.58
semctl 1 0.01 1 0.01 50.65
sendto 13 0.30 12 0.62 107.13
setitimer 2 0.02 2 0.03 52.67
Total 155 3.67 104 2.92

Table D.14: System Call Details: Query 14.

Base Xen Rel
Number Time Number Time Slow

Query15 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 61.63
brk 17 0.26 16 0.72 179.99
close 6 0.07 6 0.08 16.52
fdatasync 2 19.31 2 0.24 -98.76
fstat 3 0.02 3 0.04 113.58
gettimeofday 5 0.04 5 0.06 57.14
lseek 37 0.26 34 0.46 75.17
mmap 36 0.41 36 0.70 69.98
munmap 32 2.03 32 9.02 344.82
open 27 0.34 25 0.48 40.89
read 20 1.29 4 2.71 110.58
recvfrom 5 0.46 5 0.83 81.64
rt sigaction 13 0.09 13 0.17 89.76
rt sigprocmask 5 0.03 5 0.07 98.10
semctl 1 0.01 1 0.02 71.43
sendto 27 0.84 26 5.10 505.71
setitimer 2 0.02 2 0.03 65.03
time 2 0.03 2 0.03 2.93
write 3 10.04 2 0.13 -98.71
Total 244 35.55 220 20.90

Table D.15: System Call Details: Query 15.

70

Base Xen Rel
Number Time Number Time Slow

Query16 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 39.39
brk 13 0.18 12 0.36 93.43
close 6 0.09 6 0.08 -5.06
fstat 3 0.03 3 0.04 55.39
gettimeofday 3 0.03 3 0.04 34.91
lseek 12 0.10 12 0.16 66.50
mmap 18 0.25 18 0.40 57.06
mremap 3 0.10 3 0.40 288.89
munmap 14 2.17 14 10.26 373.56
open 13 0.18 13 0.24 38.16
read 19 0.27 4 0.19 -28.77
recvfrom 3 45.48 3 0.64 -98.58
rt sigaction 13 0.11 13 0.17 55.90
rt sigprocmask 5 0.04 5 0.07 56.16
semctl 1 0.01 1 0.02 46.43
sendto 139 2.33 138 61.80 2556.51
setitimer 2 0.02 2 0.03 44.05
Total 268 51.40 251 74.92

Table D.16: System Call Details: Query 16.

Base Xen Rel
Number Time Number Time Slow

Query17 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 62.79
brk 10 0.12 9 0.18 56.96
close 6 0.08 6 0.08 3.36
fstat 3 0.02 3 0.05 127.33
gettimeofday 3 0.03 3 0.04 49.76
lseek 6329 40.80 6329 82.94 103.29
mmap 7 0.06 7 0.10 77.20
munmap 3 0.03 3 0.09 185.94
open 17 0.20 17 0.31 55.14
read 19 0.21 4 0.19 -6.22
recvfrom 3 0.37 3 0.80 116.51
rt sigaction 13 0.09 13 0.17 97.86
rt sigprocmask 5 0.03 5 0.07 98.86
semctl 1 0.01 1 0.02 70.42
sendto 13 0.30 12 0.62 103.93
setitimer 2 0.02 2 0.03 71.74
Total 6435 42.37 6418 85.70

Table D.17: System Call Details: Query 17.

71

Base Xen Rel
Number Time Number Time Slow

Query18 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 59.30
brk 17 0.21 16 0.47 128.90
close 6 0.08 6 0.34 358.67
fstat 3 0.02 3 0.04 122.88
gettimeofday 3 0.02 3 0.04 72.78
lseek 32 0.20 32 0.42 111.31
mmap 86 1.15 86 1.77 54.43
munmap 82 41.31 82 179.56 334.68
open 22 0.25 22 0.40 61.68
read 19 0.21 4 0.19 -9.17
recvfrom 3 0.75 3 0.06 -91.58
rt sigaction 13 0.09 13 0.17 99.28
rt sigprocmask 5 0.03 5 0.07 103.45
semctl 1 0.01 1 0.01 70.00
sendto 13 0.32 12 5.08 1482.66
setitimer 2 0.02 2 0.03 67.61
Total 308 44.66 291 188.68

Table D.18: System Call Details: Query 18.

Base Xen Rel
Number Time Number Time Slow

Query19 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 23.21
brk 12 0.18 11 0.25 39.56
close 6 0.11 6 0.35 224.53
fstat 3 0.03 3 0.04 27.60
gettimeofday 3 0.04 3 0.04 -6.65
lseek 15 0.15 15 0.19 30.21
mmap 19 0.28 19 0.36 29.60
mremap 2 0.10 2 0.37 290.21
munmap 15 2.07 15 8.36 303.60
open 17 0.25 17 0.31 22.17
read 19 0.28 4 0.23 -18.81
recvfrom 3 0.49 3 0.06 -87.23
rt sigaction 13 0.13 13 0.17 34.75
rt sigprocmask 5 0.05 5 0.07 29.03
semctl 1 0.01 1 0.01 22.92
sendto 13 0.33 12 4.86 1379.08
setitimer 2 0.02 2 0.03 22.51
Total 149 4.53 132 15.72

Table D.19: System Call Details: Query 19.

72

Base Xen Rel
Number Time Number Time Slow

Query20 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 21.43
brk 13 0.21 11 0.29 38.32
close 6 0.10 6 0.08 -15.32
fstat 3 0.03 3 0.04 28.63
gettimeofday 3 0.04 3 0.04 5.10
lseek 4782 47.49 4782 61.75 30.04
mmap 9 0.12 11 0.21 77.00
munmap 5 0.14 7 0.63 357.89
open 27 0.38 27 0.49 26.11
read 19 0.28 4 0.19 -32.09
recvfrom 3 0.75 3 0.65 -13.22
rt sigaction 13 0.13 13 0.17 33.33
rt sigprocmask 5 0.05 5 0.07 31.27
semctl 1 0.01 1 0.02 23.23
sendto 15 0.36 14 4.87 1238.82
setitimer 2 0.02 2 0.03 27.13
Total 4907 50.12 4893 69.54

Table D.20: System Call Details: Query 20.

Base Xen Rel
Number Time Number Time Slow

Query21 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 59.3
brk 13 0.15 12 0.31 101.7
close 6 0.08 6 0.08 4.49
fstat 3 0.02 3 0.04 96.91
gettimeofday 3 0.02 3 0.04 60.62
lseek 457 4.36 457 7.84 79.63
mmap 9 0.08 9 0.13 75.57
munmap 5 0.08 5 0.21 150.67
open 25 0.28 25 0.45 59.89
read 19 0.21 4 0.21 -1.91
recvfrom 3 0.59 3 0.67 13.00
rt sigaction 13 0.09 13 0.17 94.89
rt sigprocmask 5 0.03 5 0.07 106.27
semctl 1 0.01 1 0.01 72.06
sendto 14 0.33 13 4.38 1243.65
setitimer 2 0.02 2 0.03 65.73
Total 579 6.37 562 14.65

Table D.21: System Call Details: Query 21.

73

Base Xen Rel
Number Time Number Time Slow

Query22 of (ms) of (ms) down
Calls Calls (%)

access 1 0.01 1 0.02 51.72
brk 12 0.15 11 0.27 82.69
close 6 0.07 6 0.08 13.36
fstat 3 0.02 3 0.04 100.63
gettimeofday 3 0.02 3 0.04 65.24
lseek 13 0.08 13 0.17 105.18
mmap 11 0.12 11 0.19 60.84
munmap 7 0.15 7 0.54 272.08
open 11 0.13 11 0.21 52.70
read 19 0.20 4 0.20 -1.60
recvfrom 3 0.45 3 0.66 45.07
rt sigaction 13 0.09 13 0.17 94.22
rt sigprocmask 5 0.03 5 0.06 101.16
semctl 1 0.01 1 0.01 67.61
sendto 13 0.31 12 4.21 1279.75
setitimer 2 0.02 2 0.03 62.50
Total 123 1.86 106 6.90

Table D.22: System Call Details: Query 22.

74

	Introduction
	Virtualization -- Past, Present and the Future
	Challenges and Opportunities
	Database Systems and Virtualization
	About this Thesis
	Organization

	Background
	System Virtualization Techniques
	Full Virtualization
	Para-virtualization
	Hardware Support for Virtualization
	VMMs: State of the Art

	Problem Statement
	Motivation
	Problem Definition

	Experimental Testbed
	Machine Configuration
	Base System
	Xen System

	PostreSQL Configuration
	Benchmark
	Tools
	mpstat
	iostat
	strace
	sar
	top
	xentop

	Experimental Results
	Warm Experiments
	Xen Overhead
	Run-time Breakdown
	System Call Time
	Page Fault Handling Time
	Reducing Page Fault Overhead
	Explaining User Time Slowdown

	Cold Experiments
	Xen Overhead
	Disk Activity in Dom0 and DomU
	DomU and Dom0 Caching

	Overhead Under Different Base and Xen Versions

	Related Work
	Virtualization
	Xen
	Xen Performance Monitoring

	Virtualization for Server Consolidation

	Conclusion and Future Work
	DomU Configuration File
	Sort Program Source Code
	PL/PGSQL Function AccessRelR
	System Call Detail Data

