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Abstract

Edmonds and Giles [4] conjectured that the maximum number of directed joins in a

packing is equal to the minimum weight of a directed cut, for any weighted directed

graph. This is dual to the Lucchesi-Younger Theorem [10], [9] which proves that the

maximum number of directed cuts in a packing is equal to the minimum weight of a

directed join, for any weighted directed graph. Schrijver [13], Feofiloff and Younger [5],

[6] proved that the conjecture does hold for directed graphs with directed paths from

every source to every sink. Schrijver [13] noted that this implies versions of Menger’s

Theorem, Gupta’s Theorem, and Edmonds’s Branching Theorem [13].

Figure 1: The counterexamples due to Schrijver, and Cornuéjols and Guenin.

Surprisingly, the unweighted version of the Edmonds-Giles Conjecture is open [16],

and the general conjecture is not true. The first counterexample is due to Schrijver

[12], and Younger [17] showed the author that it is the smallest member in an infinite

family. Cornuéjols and Guenin [7] discovered two additional counterexamples. Despite

its importance, there is very little known about counterexamples to the Edmonds-Giles

Conjecture. In this thesis, we provide a general framework which explains the known

counterexamples, describe new counterexamples that are variations of existing ones, show

that there is a common structure in all minimal counterexamples, extend the infinite

family of Younger to include one of the counterexamples of Cornuéjols and Guenin, and

show that the known counterexamples are the “smallest” possible.
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Chapter 1

Introduction

Strong connection is a concept of fundamental importance in the study of directed graphs.

Directed graph D = (N,A) is strongly connected if there exists a directed path from u to

w for all u,w ∈ N .

A cut induced by ∅ ( X ( N is the set of arcs δ(X) = δD(X) = {(u,w) ∈ A :

u ∈ X and w /∈ X}. A cut d is a directed cut if d = δ(X) and δ(N\X) = ∅ for some

∅ ( X ( N , and d is inclusion-wise minimal with this property. It is well known that a

directed graph is strongly connected if and only if it does not contain a directed cut.

A directed join is a minimal subset of A whose contraction makes the directed graph

strongly connected. Alternatively, a directed join is a minimal set of arcs that has a

non-empty intersection with every directed cut.

Many classical results in directed graph theory can be phrased as problems involving

directed cuts and directed joins. In particular, one central theme is the pursuit of largest

possible collections of disjoint directed cuts, or disjoint directed joins. The former pursuit,

discussed in the next section, is well understood, thanks to the Lucchesi-Younger Theorem

[10] (see also [9]). Progress on the latter has been slower; the goal of this thesis is to re-

energize this pursuit through new results and new understanding.

1.1 Disjoint Directed Cuts

A collection of directed cuts is pairwise disjoint if no two of the directed cuts have an arc

in common. The size of a directed join is the number of arcs contained in it.

Remark 1.1. The maximum number of pairwise disjoint directed cuts is less than or

1



2 CHAPTER 1. INTRODUCTION

equal to the size of the smallest directed join, for any directed graph.

This remark follows from the fact that, in any directed graph, every directed cut

has a non-empty intersection with every directed join. Hence, in a collection of pairwise

disjoint directed cuts, each directed cut uses at least one of the arcs in any directed join

of smallest size. The remarkable fact is that equality can always be reached.

Theorem 1.2 (Lucchesi-Younger). The maximum number of pairwise disjoint directed

cuts is equal to the size of the smallest directed join, for all directed graphs.

The question of equality can be extended to weighted directed graphs. A weighted

directed graph (D,ω) is a directed graph D with with arc set A and node set N , together

with non-negative integer arc weights ω ∈ ZA
+. A collection of directed cuts is a packing

if each arc a is present in at most ω(a) of the directed cuts. The weight of a directed join

is the sum of ω(a) over all arcs a in the directed join.

Remark 1.3. The maximum number of directed cuts in a packing is less than or equal

to the smallest weight of a directed join, for all weighted directed graphs.

The Lucchesi-Younger Theorem also proves that equality can always be reached for

weighted directed graphs.

Theorem 1.4 (Lucchesi-Younger). The maximum number of directed cuts in a packing

is equal to the smallest weight of a directed join, for all weighted directed graphs.

It is interesting to note that the unweighted and weighted versions of the Lucchesi-

Younger Theorem are equivalent. Proving the unweighted version from the weighted

version is trivial. For the other direction, if ω(a) = k for k > 0, then replace a by

a directed path of length k in the unweighted directed graph. This is also known as

replacing a by k arcs in series (Figure (1.1)).

Figure 1.1: Directed cuts ”spread out” while simulating weighted arcs with series arcs.

Furthermore, arcs with ω(a) = 0 can also be simulated in an unweighted directed

graph. Such simulation requires two properties. Firstly, directed cuts containing a must
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not be present in packings of largest size. Secondly, directed joins can effectively include a

without increasing their size. These properties are met exactly by contracting a (Remark

1.5).

Remark 1.5. The directed cuts in D/a are exactly those in D that do not include a.

That is, δD/a(X) is a directed cut if and only if δD(X) is a directed cut and a /∈ δD(X).

Figure 1.2: Contracting an arc removes all directed cuts containing it.

1.2 Disjoint Directed Joins

In this section, directed joins and directed cuts trade places. Although analogous inequal-

ities can be stated, the analogous theorems are either unproven or untrue.

A collection of directed joins is pairwise disjoint if no two of the directed joins have

an arc in common. The size of a directed cut is the number of arcs contained in it.

Remark 1.6. The maximum number of pairwise disjoint directed joins is less than or

equal to,the size of the smallest directed cut, for any directed graph.

Again, this remark follows from the fact that in any directed graph, every directed join

has a non-empty intersection with every directed cut. Hence, in a collection of pairwise

disjoint directed joins, each directed join uses at least one of the arcs in any directed cut

of smallest size.

Conjecture 1.7 (Woodall). The maximum number of pairwise disjoint directed joins

is equal to the size of the smallest directed cut, for all directed graphs.

Woodall’s Conjecture [16] has been open for over 20 years. Again, the question of

equality can be extended to weighted directed graphs. A collection of directed joins is a
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packing if each arc a is present in at most ω(a) of the directed joins. The weight of a

directed cut is the sum of ω(a) over all arcs a in the directed cut.

Remark 1.8. The maximum number of directed joins in a packing is less than or equal

to the smallest weight of a directed cut, for all weighted directed graphs.

Edmonds and Giles [4] conjectured the weighted version of Woodall’s Conjecture.

Conjecture 1.9 (Edmonds-Giles). The maximum number of directed joins in a pack-

ing is equal to the smallest weight of a directed cut, for all weighted directed graphs.

However, there is a fundamental difference between generalizing Woodall’s Conjecture

and generalizing the unweighted Lucchesi-Younger Theorem. In particular, there is no

known way of showing that the conjectures of Woodall and Edmonds-Giles are equivalent.

On one hand, if the Edmonds-Giles Conjecture was true, then it would trivially imply

Woodall’s Conjecture. For the other direction, if ω(a) = k for k > 0, then replace a by k

copies of the arc in the unweighted directed graph. This is also known as replacing a, by

k parallel arcs (Figure (1.3)).

Figure 1.3: Directed joins ”spread out” while simulating weighted arcs with parallel arcs.

However, simulating arcs with ω(a) = 0 in an unweighted directed graph cannot be

done in the same manner. Any potential simulation requires two properties. Firstly,

directed joins containing a must not be present in packings of largest size. Secondly,

directed cuts can effectively include a without increasing their size. Although these

properties are met by deleting a, an unwanted side-effect of introducing new directed

cuts invalidates this approach (Remark (1.10)).

Remark 1.10. The directed cuts in D\a are exactly those in D together with the cuts in

D that are prevented from being directed only by a. That is, δD\a(X) is a directed cut if

and only if δD(X) is a directed cut or δD(N\X) = {a}.

Therefore, when simulating an arc of weight 0 by deleting it, there is no guarantee

that this deletion will maintain the size of the smallest directed cut. Hence, there is

no guarantee that this approach will reveal a sufficiently large packing of directed joins.
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Figure 1.4: Deleting an arc can introduce new directed cuts.

Incidentally it is not difficult to describe when the directed cuts of D and D\a are in

one-to-one correspondence. A transitive arc in directed graph D is an arc a = (u,w)

where D contains a directed path from u to w that does not use arc a.

Remark 1.11. The directed cuts in D\a are exactly those in D if and only if a is a

transitive arc in D. That is, if a is a transitive arc in D then δD\a(X) is a directed cut

if and only if δD(X) is a directed cut.

1.2.1 Schrijver’s (D1, ω1) and Minimality

In fact, the Edmonds-Giles Conjecture is not true. Schrijver [12] first demonstrated this

by constructing the weighted directed graph (D1, ω1) (Figure (1.5)). In this weighted

directed graph, every arc is either weight 0 or weight 1. By convention, arcs with ω(a) = 0

are indicated by thin lines, and arcs with ω(a) = 1 are indicated by thick lines.

Figure 1.5: Schrijver’s (D1, ω1).
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In order to analyze this graph we need to introduce several ideas. A source is a node

that is not the destination of any arc. A sink is a node that is not the origin of any arc.

A trivial cut is a directed cut of the form δ({n}) or δ(N\{n}) for some node n ∈ N .

Relative to a path P , every arc in P is in one of two directions. We differentiate between

these two directions by arbitrarily calling one direction the forward direction and the

other the backward direction. A path P is alternating if every pair of adjacent arcs in P

has the property that one of the arcs is forward and one is backward. We will let arcs(P )

and nodes(P ) denote the arcs and nodes included in P , respectively.

Remark 1.12. If P is an alternating path and d is a directed cut, such that |arcs(P )∩d| ≥

2, then arcs(P ) ∩ d contains at least one forward arc of P and one backward arc of P .

Figure (1.5) shows that the arcs of weight 1 can be partitioned into three disjoint

alternating paths P1, P2, and P3. Furthermore, every node that is internal to one of the

paths is either a source or a sink inducing a trivial cut of weight 2.

We now show that (D1, ω1) fails the Edmonds-Giles Conjecture. Let τ = τ(D,ω1)

denote the smallest weight of a directed cut in (D,ω) and ν = ν(D,ω) denote the size

of the largest packing of directed joins in (D,ω). Notice that τ = 2 and this is obtained

by every trivial cut, and no other directed cut. Suppose that ν = 2. Therefore, the arcs

of weight 1 can be partitioned into two directed joins J1 and J2. Due to the trivial cuts

of weight 2, J1 and J2 neither include nor exclude adjacent arcs along P1, P2, or P2. In

particular, since each path is alternating, J1 and J2 must divide the forward and backward

arcs of each path between them. Up to exchanging J1 and J2 there are exactly four such

partitions. Therefore, by Remark (1.12), J1 and J2 both have a non-empty intersection

with each directed cut that intersects P1, P2, or P3 more than once. However, for each of

the four possible partitions, there exists a directed cut that intersects each path at most

once, and is disjoint from either J1 or J2. Since each of the four special cuts does not

intersect P1, P2, or P3 more than once, we call these cuts crossing cuts (Figure (1.6)).

The above discussion shows that it is essentially the trivial cuts and the crossing cuts

that make it impossible for J1 and J2 to both be directed joins. This reasoning can also

be used to understand the other known counterexamples. Interestingly, it is possible to

find J1 and J2 which intersect each of the trivial cuts and crossing cuts except any single

specified trivial cut or crossing cut.

Additional counterexamples to the Edmonds-Giles Conjecture can be made by mod-

ifying (D1, ω1). The simplest modification is to add transitive arcs of weight 0. From
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Figure 1.6: The four crossing cuts of (D1, ω1). Left to right d1, d2, d3, d4.

Remark (1.11) this addition does not change the sets of nodes which induce directed cuts,

nor does it change the weight of any directed cut. The transitive arcs on the left of Figure

(1.7) are the only arcs that can be added to (D1, ω1) without eliminating a trivial cut or

a crossing cut.

Although it is not possible to simply add non-transitive arcs to (D1, ω1), there are

other modifications that produce additional counterexamples. For example, if (D′, ω′) is

a modification of (D1, ω1) where τ(D′, ω′) = τ(D1, ω1) = 2, and the trivial and crossing

cuts of (D1, ω1) exist in (D′, ω′) with the same non-zero weight arcs, then one would

expect ν(D′, ω′) = ν(D1, ω1) = 1. Figure (1.7) shows one such counterexample.

Figure 1.7: Modifications of (D1, ω1) failing the Edmonds-Giles Conjecture.

Younger showed the author [17] that (D1, ω1) is the smallest member of an infinite

family of counterexamples, found by generalizing Schrijver’s example to any odd number

of paths (Figure (1.8)). Directed graphs in this D1 family can be reduced to D1 by arc

contractions.

Given the abundance of possible modifications, it becomes natural to ask for the essen-
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Figure 1.8: Schrijver’s three path counterexample and its five path generalization.

tial counterexamples. We say that a directed graph D fails the Edmonds-Giles Conjecture

if there exists an arc weight ω such that (D,ω) fails the Edmonds-Giles Conjecture. If

no such ω exists, then the directed graph satisfies the Edmonds-Giles Conjecture. The

task of finding the essential directed graphs that fail the Edmonds-Giles Conjecture is

simplified by the following well-known sequence of ideas.

Let O be a set of operations where each operation maps directed graphs to directed

graphs. Say that D is an O-minor of D′, or simply a minor of D′, if it is possible to

obtain D by applying operations in O to D′. Specifically, D is a strict minor of D′ if D

is a minor of D′ and D 6= D′.

Suppose that O produces minors that have the following properties:

• If a directed graph satisfies the Edmonds-Giles Conjecture then every one of its

minors also satisfies it. Satisfying the conjecture is said to be closed under O.

• No infinite sequence of directed graphs has the property that every directed graph

is a strict minor of the previous one. In other words, repeatedly taking strict minors

always results in a directed graph that has no strict minors.

• If a directed graph has no strict minors, then it satisfies the Edmonds-Giles Con-

jecture.

Thus, every directed graph D′ that fails the Edmonds-Giles Conjecture has a minor D

that fails the conjecture, and furthermore, every strict minor of D satisfies the conjecture.

We call such a minor O-minimal, or simplyminimal, with respect to failing the conjecture.
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An excluded minor characterization of the directed graphs that satisfy the Edmonds-

Giles Conjecture would be a set of operations together with a corresponding complete list

of the minimal directed graphs that fail the conjecture. One shortcoming of our current

understanding of the Edmonds-Giles Conjecture is that it is not known whether maximum

sized collections of disjoint directed joins can be found in polynomial time [15]. Another

shortcoming is the sizeable gap between the existing counterexamples and the handful

of directed graph classes for which the conjecture is known to hold [13], [5], [6], [11].

Discovering an excluded minor characterization would not only provide a beautiful new

result, but it could also contribute towards overcoming these important shortcomings.

1.2.2 Cornuéjols and Guenin’s (D2, ω2) and (D3, ω3)

Let D′ = (N ′, A′) and D = (N,A) be directed graphs. D′ is contractible to D if D′/C = D

for some C ⊆ A′. D′ is a transitive extension of D if N ′ = N and A′\A consists only of

transitive arcs of D.

Remark 1.13. Any directed graph that is contractible to a transitive extension of D1,

fails the Edmonds-Giles Conjecture.

Cornuéjols and Guenin [7] proved this remark with a simple argument. Suppose D =

(N,A) is contractible to a transitive extension of D1. In particular, suppose D/C\T = D1

for disjoint C, T ⊆ A with T consisting only of transitive arcs in D1. Then (D,ω) fails

the Edmonds-Giles Conjecture for ω ∈ ZA
+ defined as follows:

ω(a)











0 if a ∈ T

τ(D1, ω1) = 2 if a ∈ C

ω1(a) otherwise.

Together with this observation, Cornuéjols and Guenin presented two additional coun-

terexamples, (D2, ω2) and (D3, ω3), to the Edmonds-Giles Conjecture (Figure (1.9)). In

particular, D1, D2, and D3 are not contractible to transitive extensions of one another.

These new counterexamples share much in common with (D1, ω1). For example, the

trivial cuts together with the existence of exactly four crossing cuts prevent packings

of two directed joins (Figures (1.11), (1.12)). Also, only transitive arcs can be added

to D2 and D3 without making the result satisfy the Edmonds-Giles Conjecture. The

relationship between D1 and D3 is dramatically illustrated by a new embedding of D3 in
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Figure 1.9: On the left is (D2, ω2), on the right is (D3, ω3).

Figure (1.10). From this embedding it is easy to find the four crossing cuts of (D3, ω3).

It is also interesting to note that this embedding shows that a transitive extension of D3

is contractible to D1.

Figure 1.10: (D1, ω1) and a new embedding of (D3, ω3).

Remark 1.14. Any directed graph that is contractible to a transitive extension of D1,

D2, or D3, fails the Edmonds-Giles Conjecture.

Remark (1.14) follows in the same way as Remark (1.13). Hoping that they had found

an excluded minor characterization of the directed graphs that satisfy the Edmonds-Giles

Conjecture, Cornuéjols and Guenin asked the following question, which is the converse

of Remark (1.14). In the next section, we show that the answer to this question is no.

Question 1.15 (Cornuéjols-Guenin). If D fails the Edmonds-Giles Conjecture then
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Figure 1.11: The four crossing cuts of (D2, ω2).

Figure 1.12: The four crossing cuts of (D3, ω3).

is it true that D is contractible to a transitive extension of D1, D2, or D3?

1.2.3 New Counterexamples

One key step towards an excluded minor characterization is to understand how existing

counterexamples can be modified into new counterexamples. Cornuéjols and Guenin have

already pointed out the importance of contraction and transitive arcs in this regard. In

this section, we present several new modifications that produce counterexamples that are

not contractible to transitive extensions of D1, D2, or D3. The goal is not just to expand

the list of minimal counterexamples with respect to contraction and transitive arcs, but

also to motivate the minimality operations that we will be using in subsequent chapters.

Modification One

The first modification involves the deletion of certain non-transitive arcs of weight 0 in

(D2, ω2) and (D3, ω3). The following remark is a consequence of Remark (1.10).

Remark 1.16. If (D,ω) fails the Edmonds-Giles Conjecture and ω(a) = 0 and τ(D,ω) =

τ(D\a, ω) then (D\a, ω) also fails the Edmonds-Giles Conjecture.
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Remark (1.16) states that new counterexamples can be found from old counterexam-

ples by deleting arcs of weight 0, so long as the deletion does not introduce directed cuts

of weight smaller than τ . Applying this idea to (D2, ω2) and (D3, ω3) uncovers arcs that

can be deleted (Figure (1.13)), while such deletions are not possible in (D1, ω1).

Figure 1.13: New counterexamples by deleting at most one dashed arc per node.

Notice that, in this figure, deleting any two dashed arcs adjacent to the same node

results in a directed cut of weight 1. However, independently deleting at most one dashed

arc adjacent to each node does not decrease the value of τ . Therefore, from Remark

(1.16) the resulting directed graphs fail the Edmonds-Giles Conjecture.

Further counterexamples can be uncovered by noticing that an arc b that would be

transitive in D may not be transitive in D\a. Therefore, (D\a) ∪ b will be another new

counterexample (Figure (1.14)).

Figure 1.14: Additional counterexamples by adding non-transitive weight 0 arcs.
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Deletion is not a closed operation for the property of satisfying the Edmonds-Giles

Conjecture, so we will let (D2, ω2)
+ and (D3, ω3)

+ denote the small families of counterex-

amples found by deleting arcs of weight 0 from (D2, ω2) and (D3, ω3).

Modification Two

The second modification involves the addition of a node and arcs of weight 0 incident

to this node. One must be careful to ensure that the result fails the Edmonds-Giles

Conjecture and is not contractible to the original. In order to illustrate the important

aspects of the construction, we show three failed attempts to modify (D1, ω1) in Figure

(1.15).

Figure 1.15: Modifications where τ = ν, or the directed graph contracts to D1.

The first attempt has introduced the directed cut of weight 0. The second attempt

has τ = 2, but it has eliminated one of the crossing cuts that ensured ν < 2. The third

attempt has ν = 1 < 2 = τ but it is contractible to D1.

These failures suggest the following approach. Suppose (D,ω) fails the Edmonds-Giles

Conjecture where

• r1, r2 are distinct sources in D

• s1, s2 are distinct sinks in D

• D contains a directed path from ri to sj for i, j ∈ {1, 2}

Form (D′, ω′) from (D,ω) by adding a node n and arcs of weight 0, (r1, n), (r2, n),

(n, s1), and (n, s2). This construction ensures that if δD(X) is a directed cut then δD′(X)

or δD′(X ∪ {n}) is a directed cut containing the same non-zero weight arcs as δD(X).
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Hence, (D′, ω′) also fails the Edmonds-Giles Conjecture. Furthermore, D′ is not con-

tractible to D since contracting an arc that is adjacent to a node such as n will re-

sult in an arc incident to two sources or to two sinks. When applying this idea to

(D2, ω2) and (D3, ω3) we find that each can support this construction in two different

ways (Figure(1.16)). No such addition is possible in (D1, ω1).

Figure 1.16: New counterexamples with added nodes and arcs.

Further counterexamples can be uncovered by repeated application of the idea, with

complex complex counterexamples being formed by using added nodes from one addition

during a subsequent addition (Figure (1.17)). In Chapter 4, a clique substitution will be

used to eliminate all of these modifications.

Figure 1.17: Additional counterexamples can be formed by repeatedly applying this idea.
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Modification Three

The third type of modification involves the manipulation of crossing cuts. Let us recall

the four crossing cuts of (D1, ω1) that are given in Figure (1.6). Notice that two of the

crossing cuts, d1 and d2, intersect in arc a, where ω1(a) = 1 and a is the middle arc on

one of the alternating paths. Our goal is to spread out d1 and d2 so that they no longer

share this arc of weight 1. Towards this goal, let us consider what happens to d1 and d2

when the modifications in Figure (1.18) are made.

Figure 1.18: Modifications where τ = ν or the directed graph contracts to D1.

In the first case, the arc a has been replaced by two arcs of weight 1 in series, a1,

a2. This modification has the effect of duplicating the crossing cuts, since d1\{a} ∪ {a1},

d1\{a} ∪ {a2}, d2\{a} ∪ {a1}, and d2\{a} ∪ {a2} are all crossing cuts. However, this

modification is not very useful since the weighted directed graph satisfies the Edmonds-

Giles Conjecture, and it can be contracted to D1.

In the second case, the arc a has been replaced by an alternating path of length three

where each arc is weight 1. Again, this duplicates the crossing cuts d1 and d2. Also, the

modified directed graph can be contracted to D1 in two different ways. The one difference

is that this weighted directed graph fails the Edmonds-Giles Conjecture.

The third case is similar to the second, except that an additional arc of weight 0

has been added. This important arc has the effect of eliminating the duplication of

d1. Although the directed graph can still be contracted to D1, the additional arc has

made it so that this can be done in only one way. The weighted directed graph fails the

Edmonds-Giles Conjecture.

These observations lead to the modifications of (D1, ω1) found in Figure (1.19). Effec-

tively these modifications have separated d1 and d2 by forcing d1 and d2 to use different

arcs of weight 1. The final result are weighted directed graphs that fail the Edmonds-
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Figure 1.19: New counterexamples by modifying (D1, ω1).

Giles Conjecture, are minimal with respect to contraction in this regard, and the directed

graphs are not contractible to transitive extensions of D1, D2, or D3. It is also interesting

to note that one of the new arcs of weight 1 is not included in any crossing cut. This is

a property that is not present in (D1, ω1), (D2, ω2), or (D3, ω3).

Figure (1.20) shows that additional counterexamples can be uncovered by manipu-

lating the arcs of weight 0, as was done with the first modification. Also, it should be

noted that this modification can be independently done on any of the alternating paths in

(D1, ω1) and on the alternating path of length three in (D3, ω3). In Chapter 4, a folding

operation will be used to eliminate all of these modifications.

Figure 1.20: Additional counterexamples made by altering the weight 0 arcs.

1.3 Subsequent Chapters

Chapter 2 introduces the concept of clutters. Several results show that clutters are of

particular interest to this topic, and that this topic is of particular interest to clutters.
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In fact, Cornuéjols and Guenin discovered (D2, ω2) and (D3, ω3), while writing a paper

with Margot [2], by running a computer search designed to find special types of clutters.

Chapter 3 describes source-sink connected graphs and outlines three existing proofs,

each showing that the Edmonds-Giles Conjecture holds for any weighted graph in this

class. The class is generalized to graphs containing a super-source and a super-sink, and

it is conjectured that the Edmonds-Giles Conjecture holds for weighted graphs in this

class.

Chapter 4 begins with a new definition for minimality. This definition leads to a

common tree structure for all arcs of non-zero weight in any weighted directed graph that

minimally fails the Edmonds-Giles Conjecture.

Chapter 5 further investigates the case when τ = 2. The results from the previous

chapter show that the path structure of (D1, ω1), (D2, ω2), and (D3, ω3) is not coinciden-

tal. In fact, we find that at least three paths are required for any minimal counterexample.

Accompanying this path structure is a new global argument, called the trace. The trace

leads to an expansion of the infinite D1 family [17] found in Figure (1.8) to the infinite

D1,3 family. The smallest, and second smallest, members of this new family are found in

Figures (1.10) and (1.21), respectively.

Figure 1.21: D1,3 family with five paths

Chapters 6 and 7 are the remuneration for the two previous chapters, raising hope

that new results can be found in this area. In particular, Chapter 6 shows that (D1, ω1),

(D2, ω2)
+, and (D3, ω3)

+, are the only minimal counterexamples with three paths. Hence,

the known counterexamples (D1, ω1), (D2, ω2)
+, and (D3, ω3)

+ can now be well under-

stood as the only minimal counterexamples with additional restrictions of having τ = 2

and three paths. Chapter 7 continues the investigation by showing that there are no

minimal counterexamples with four paths.





Chapter 2

Clutters

This chapter defines clutters, blockers of clutters, minors of clutters, as well as several

standard properties and results. It also introduces the term partitionable, and states

a related conjecture due to Cornuéjols, Guenin, and Margot. Finally, these terms are

applied to directed cuts and directed joins. For an excellent treatment of clutters, see

Cornuéjols [1].

2.1 Basic Definitions

A clutter H is a finite set of vertices, V (H), together with a finite set of edges, E(H),

such that each edge is a subset of the vertices, and no edge is a subset of another edge.

Let H be a clutter, ω a weight function mapping vertices to non-negative integers,

and k a positive integer. We consider the following parameters:

νk(H,ω) = 1
kmax{r : there exists a list of r edges in E(H) with repetition allowed,

such that no vertex v ∈ V (H) is contained in more than

kω(v) members of this list.}

τk(H,ω) = 1
kmin{r : there exists a list of vertices in V (H) with repetition allowed,

whose total element-wise ω sum is r, such that no edge in

E(H) contains fewer than k members of this list.}

19
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Let ν(H,ω) represent ν1(H,ω), and τ(H,ω) represent τ1(H,ω). Since any list giving

of vertices or edges can be replicated k times

ν(H,ω) ≤ νk(H,ω) (2.1)

τ(H,ω) ≥ τk(H,ω) (2.2)

for any positive integer k.

2.2 Linear Programming

In order to further understand ν and τ , consider the following linear program formulation.

Let M = M(H) be the (0, 1) incidence matrix for clutter H, where the columns index

V (H), and each row is the characteristic vector of vertices, for each edge in E(H).

ν∗(H,ω) = max{y1 : y ≥ 0, yM ≤ ω} (2.3)

τ∗(H,ω) = min{ωx : x ≥ 0,Mx ≥ 1} (2.4)

The linear programs form a primal-dual pair. From linear programming duality,

ν∗(H,ω) = τ∗(H,ω) (2.5)

Furthermore, the maximum value obtained by (2.3), where y/k is integer, is νk(H,ω).

Likewise, the minimum value obtained by (2.4), where x/k is integer, is τk(H,ω). Thus,

ν∗(H,ω) ≥ νk(H,ω) and τ ∗(H,ω) ≤ τk(H,ω), for any positive integer k. Also from weak

duality, for any positive integer k,

νk(H,ω) ≤ τk(H,ω). (2.6)

Therefore, from (2.1), (2.5), (2.6), we have the following chain of inequalities:

ν(H,ω) ≤ νk(H,ω) ≤ ν∗(H,ω) = τ∗(H,ω) ≤ τk(H,ω) ≤ τ(H,ω). (2.7)

2.3 Properties

The chain of inequalities in (2.7) can be used to define several well known properties of

clutters. Let H be a clutter, and k be a positive integer.
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• if τ∗(H,ω) = τ(H,ω), for all ω, then H is ideal.

• if νk(H,ω) = τk(H,ω), for all ω, then H is 1/k-Mengerian.

• if ν(H,ω) = τ(H,ω), for all ω, then H is Mengerian.

• if ν(H, 1) = τ(H, 1), then H packs.

Remark 2.1. If H is Mengerian, then H is ideal.

The converse of the Remark (2.1), is not true. Let Q6 be the following clutter:

M(Q6) =













1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1













Remark 2.2. Q6 is ideal, but does not pack, so Q6 is not Mengerian.

Classes of clutters, that arise from combinatorial objects, are often studied. For a

historical example, consider directed graph D = (N,A), and specified nodes s, t ∈ N .

Let H = (A,P ) be the clutter of st-paths, where P is the set of arc minimal directed

paths, from s to t.

In this case, ν(H,ω) is the size of the largest packing of st-paths, and τ(H,ω) is the

smallest weight of an st-cut, for any ω.

From Menger’s Theorem, ν(H,ω) = τ(H,ω), so for any directed graph, the clutter of

st-cuts, is Mengerian.

2.4 Blocker

The blocker of clutter H = (V,E), is denoted b(H), and is the unique clutter (V,E ′),

where E′ is the set of all minimal subsets A′ ⊆ V , such that A′ ∩A 6= ∅, for all A ∈ E.

Proposition 2.3. [1] H is ideal, if and only if, b(H) is ideal.

Edmonds and Giles showed that clutters come in pairs, because the blocker of the

blocker of a clutter, is the original clutter.

Proposition 2.4. [1] b(b(H)) = H.
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Example 2.5. For any graph, the clutter of st-cuts and the clutter of st-paths form a

blocking pair.

Example 2.6. For any graph, the clutter of T -joins and the clutter of T -cuts form a

blocking pair.

In particular, we will see that, for any graph the clutter of directed cuts and the

clutter of directed joins form a blocking pair.

2.5 Contraction, Deletion, Minors

For clutter H = (V,E), define H\v = (V −{v}, {A ∈ E : v /∈ A}), and H/v = b(b(H\v)).

Both H\v and H/v are clutters. These two operations are called deletion and contraction,

respectively. It is not hard to show that the two operations commute with each other.

With regards to the properties listed in section (2.3), contraction and deletion are

equivalent to ensuring an appropriate value of ω(v), for ω ∈ ZV
+.

Remark 2.7. Contracting v is equivalent to setting ω(v) =∞.

Remark 2.8. Deleting v is equivalent to setting ω(v) = 0.

If clutter G can be obtained from clutter H, by a sequence of contractions and dele-

tions, then G is called a minor of H. If G is a minor of H, and G 6= H, then G is a strict

minor, of H.

The properties of Mengerian, 1/k-Mengerian, and ideal, are closed under taking mi-

nors. The following property is also closed under taking minors.

2.6 Partitionable

For clutter H, we introduce the following terminology: H is partitionable, if τ(H,ω) ≥ 2

implies ν(H,ω) ≥ 2, for all weight functions ω.

Conjecture 2.9. [Cornuéjols-Guenin-Margot] [2] If H is ideal, and non-Mengerian, and

every minor of H is Mengerian, then for some weight function ω

2 = ν(H,ω) > τ(H,ω) = 1.
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Remark 2.10. Conjecture (2.9) would imply that an ideal clutter is Mengerian if and

only if it is partitionable.

Cornuéjols, Guenin, and Margot [2] further defined theQ6-property, and demonstrated

its importance, with Theorem (2.12).

Definition 2.11. Clutter H has the Q6-property, if H does not pack, and V (H) can be

partitioned into non-empty sets I1, . . . , I6, such that there are S1, . . . , S4 ∈ E(H), where

S1 = I1 ∪ I3 ∪ I5, S2 = I1 ∪ I4 ∪ I6,

S3 = I2 ∪ I4 ∪ I5, S4 = I2 ∪ I3 ∪ I6.

Theorem 2.12. If H is ideal, and does not pack, but every strict minor of H does pack,

and τ(H, 1) = 2, then H has the Q6-property.

2.7 Directed Cuts and Directed Joins

For directed graph, D = (N,A), let CD = (A,C) be the clutter of directed cuts, where

C is the set of all arc minimal directed cuts, in D. Let JD = (A, J) be the clutter of

directed joins, where J is the set of all arc minimal directed joins, in D.

In this section, CD and JD are shown to form a blocking pair, the effect of contracting

an arc in D is translated to CD and JD, and JD is shown to be ideal.

Proposition 2.13. b(CD) = JD

Proof. Suppose b ∈ b(CD). Therefore b is a minimal set of arcs that intersects every

directed cut. Since the contraction of a ∈ A, eliminates every directed cut containing

a, and creates no new directed cuts, then D/b contains no directed cuts. Hence, D/b is

strongly connected. Since b is a minimal such set of arcs, b ∈ JD.

Suppose that j ∈ JD. Therefore, j is a minimal set of arcs, such that D/j is strongly

connected. Therefore, D/j contains no directed cuts. Since the contraction of a ∈ A,

eliminates every directed cut containing a, and creates no new directed cuts, then j must

only intersect each directed cut. Since j is a minimal such set of arcs, j ∈ b(CD).

Proposition 2.14. CD/a = CD\a and JD/a = CD/a.



24 CHAPTER 2. CLUTTERS

Proof. The first statement follows from Remark (1.5). The second statement follows from

the first statement, Remark (2.13), and from the definition of contraction and deletion:

JD/a = b(CD/a)

= b(CD\a)

= b(CD)/a

= JD/a.

Proposition 2.15. JD is ideal for all directed graphs D.

Proof. From the Lucchesi-Younger Theorem, CD is Mengerian for all directed graphs.

Therefore, by Remark 2.1, CD is ideal. By Proposition 2.15, b(CD) = JD. Therefore, by

Proposition 2.3, JD is ideal.

Remark 2.16. τ∗(JD, ω) is the smallest weight of a directed cut, for all directed graphs

D, and all weight functions ω.

If the Cornuéjols-Guenin-Margot Conjecture was true, then Remark (2.16) would

imply that if directed graph D failed the Edmonds-Giles Conjecture, then there would

exist an ω such that

1 = ν(D,ω) < τ(D,ω) = 2.

Therefore, there is special significance to studying weighted directed graphs with τ = 2.



Chapter 3

Source-Sink Connected

A directed graph is, source-sink connected, if it contains directed paths, connecting every

source, to every sink (Figure (3.1)).

Figure 3.1: A source-sink connected directed graph.

Schrijver [13], Feofiloff and Younger [6], and Feofiloff [5] have shown that every source-

sink connected directed graph satisfies the Edmonds-Giles Conjecture, for all possible

weightings.

Theorem 3.1. The maximum number of directed joins in a packing is equal to the small-

est weight of a directed cut, for all weighted source-sink connected graphs.

This chapter outlines three known proofs to this result, each of which varies consid-

erably, from the others. The chapter concludes by generalizing the class of source-sink

connected graphs to super-source super-sink graphs and offers the conjecture that the

Edmonds-Giles Conjecture holds for this new class.

25
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3.1 Proof by Schrijver

This section outlines the proof of Theorem (3.1), presented in Schrijver [15], and first

given by Schrijver [13].

The proof has its foundations in a rooted arborescences theorem proven by Edmonds

[3]. An r-arborescence is a set of arcs forming a directed spanning tree, rooted at node

r, where every arc in the tree is directed away from r. An r-cut is the set of arcs with

origin in R, and destination in R, for any node set R with r ∈ R.

Theorem 3.2 (Disjoint Arborescences). The maximum number of pairwise disjoint

r-arborescences, is equal to, the size of the smallest r-cut, for any directed graph, and any

specified node r.

This theorem is used to prove a theorem by Schrijver [13] (see also [14]) on bibranch-

ings. For node partition R, S, an R-S bibranching is a set of arcs that includes a directed

path from r to S for all r ∈ R, and a directed path from R to s for all s ∈ S. An R-S

bicut is the set of arcs with origin in U and destination in U if U ⊆ R, and is the set of

arcs with origin in U and destination in U if U ⊆ S.

Theorem 3.3 (Disjoint Bibranchings). The maximum number of pairwise disjoint

R−S bibranchings is equal to the size of the smallest R−S bicut, for any directed graph,

and any node partition R,S.

Schrijver’s proof of Theorem (3.1) also uses two elementary facts about directed cuts.

Let W be a path, or a cycle, and δ(X) be a directed cut. If W is not directed, then it

has arcs in two distinct directions called forwards and backwards. Say that arcs a and b

are consecutive in W ∩ δ(X) if it is possible to travel along W so that there is no other

arc in W ∩ δ(X) occurring between the a and b.

Remark 3.4. In the intersection of a directed cut and a path, consecutive arcs are in

opposite directions.

Remark 3.5. The intersection of a directed cut and a cycle, contains an equal number

of forwards and backwards arcs.

Remark (3.5) conveniently shows why directed cuts and directed cycles do not inter-

sect.



3.1. PROOF BY SCHRIJVER 27

Figure 3.2: A directed cut intersecting a path, and a cycle.

Consider a potential counterexample to Theorem (3.1), (D = (N,A), ω), which mini-

mizes the value

|N |+
∑

a∈A

ω(a). (3.1)

Since |A| is independent of (3.1), transitive arcs of weight 0 may be added to (D,ω),

without consequence. This is because such arcs do not change the directed cuts, the

weight of any directed cut, or the value of (3.1). Hence, we may assume the following:

Remark 3.6. If there is a directed path from u to v, then (u, v) ∈ A.

Furthermore, by minimizing over (3.1), it is possible to show the following:

Remark 3.7. If ω(a) > 0, then a is in a directed cut of weight τ(D,ω).

Remark 3.8. If ω(δ(X)) = τ(D,ω), then δ(X) is a trivial directed cut.

Remark 3.9. If ω(a) > 0, then a is adjacent to a source, or a sink.

Remarks (3.7), (3.8), are also valid for the definition of minimality, discussed in Chap-

ter 4, and appear as Proposition (4.20), and Proposition (4.13), respectively. The next

step is to prove the following lemma.

Lemma 3.10. If (u, v) and (u′, v′) are arcs, with non-zero ω weight, and there is a

directed path from u′ to v, then either u′ is a source or v is a sink.

Proof. Otherwise, from Remark (3.9), it must be that u is a source and v ′ is a sink. Since

D is source-sink connected, there is a directed path from u to v′. From Remark (3.6),

(u, v′) ∈ A (Figure (3.3)).
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U V

U’ V’

U V

U’ V’

Figure 3.3: If u′ non-source and v non-sink, then arc (u, v′) exists.

Consider a new weight, ω′, where

ω′(a) =











ω(a) + 1 if a = (u, v′)

ω(a)− 1 if a ∈ {(u, v), (u′, v′)}

ω(a) otherwise.

First of all, we show that replacing ω with ω′ does not change the weight of the

smallest directed cut. Notice that the weight of every trivial cut is equal in (D,ω) and

(D,ω′). Furthermore, from Remark 3.4 and the path containing arcs

(u, v), (u, v′), (u′, v′),

if a directed cut intersects both (u, v) and (u′, v′), then it also intersects (u, v′). Hence,

the weight of every non-trivial directed cut in (D,ω′) is at most one less than in (D,ω).

Therefore, from Remark (3.8), τ(D,ω) = τ(D,ω′) = τ .

Since (D,ω′) also lowers the value of (3.1) set by (D,ω), there exists a packing

J1, . . . , Jτ of directed joins in (D,ω′). Suppose that J1 includes (u, v′). Consider J ′1,

where

J ′1 = J1 − {(u, v
′)} ∪ {(u, v), (u′, v′)}).

We show that J ′1 is also a directed join. From the hypothesis there is a directed path

from u′ to v. Therefore, there is a cycle containing nodes u, v, u′, v′ and the arcs

(u, v), (u, v′), (u′, v′).
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From this cycle, and Remark (3.5), if a directed cut intersects (u, v′) then it must also

intersect (u, v), or (u′, v′). Therefore, J ′1 is a directed join and J ′1, J2, . . . , Jτ contradicts

the choice of (D,ω).

From this lemma, it is possible to partition N into R and S where every source is in

R, every sink is in S, δ(R) is a directed cut, and every arc a ∈ δ(R) with ω(a) > 0 has a

source as its origin and a sink as its destination.

To prove this, consider the set of arcs A′, where

A′ = {(v, u) : (u, v) ∈ A, ω((u, v)) > 0, and u is not a source, or v is not a sink.}

Let R be a set of nodes where n ∈ R if and only if there is a directed path from n to

a source in (N,A ∪A′).

From this definition of R every source is included in R, δ(R) is a directed cut, and

every a ∈ δ(R) with ω(a) > 0 has a source as its origin and a sink as its destination.

Furthermore, R does not contain a sink, otherwise there would be a directed path from a

sink to a source in (N,A∪A′). Choosing the shortest such path can be used to contradict

Lemma (3.10).

The next step is to construct the graph

D′ = (N,Aω ∪A−1
0 )

where Aω contains ω(a) copies of every arc a ∈ A, and A−1
0 contains τ copies of (v, u) for

every arc (u, v), where the combined weight of arcs from u to v is 0.

Now, for any U ⊆ N , if δ(U) is a directed cut in D, then Aω has at least τ arcs with

origin in U and destination in U . Furthermore, if δ(U) is not a directed cut in D, then

A−1
0 has at least τ arcs with origin in U and destination in U .

Hence, for any U ⊆ N , D′ has at least τ arcs exiting U . Therefore, by Theorem (3.3),

there are τ disjoint R-S bibranchings in D′. Schrijver finishes the proof by showing that

each of these bibranchings, when intersected with Aω, results in a directed join.

3.2 Proof by Feofiloff-Younger

A source-side cut is a directed cut, δ(X), where X contains no sinks. A sink-side cut is

a directed cut, where X contains every source. A side cut is either a source-side cut or a
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sink-side cut. On the other hand, a cross cut is a directed cut, δ(X), where X contains

a sink and does not contain every source (Figure (3.4)).

Figure 3.4: From left to right: a source-side cut, a sink-side cut, and a cross cut.

A side join is a set of arc, that intersects every side cut. Feofiloff-Younger reformulated

the source-sink connected theorem as a statement on side joins.

Theorem 3.11 (Feofiloff-Younger). The maximum number of side joins in a packing

is equal to the smallest weight of a side cut, for all weighted directed graphs.

Here we show that Theorem (3.1) and Theorem (3.11) are equivalent. In a source-

sink connected graph suppose δ(X) is a directed cut. If X contains a sink, then X must

contain every source; otherwise, there is a directed path from a source outside of X to

a sink inside of X contradicting that δ(X) is a directed cut. Therefore, in a source-sink

connected graph every directed cut is a side cut, and Theorem (3.11) implies Theorem

(3.1).

On the other hand, if (D,ω) is a weighted directed graph then let (D′, ω′) be the

weighted directed graph obtained by adding a weight 0 arc from every source to every

sink. The smallest weight of any directed cut in (D′, ω′), denoted τ(D′, ω′), is the smallest

weight of any side cut in (D,ω). From Theorem (3.1), it is possible to find a packing of

τ(D′, ω′) directed joins in (D′, ω′). In particular, this packing is a packing of side joins in

(D,ω), and is equal in size, to the smallest weight of any side cut in (D,ω). Therefore,

Theorem (3.1) implies Theorem (3.11).

The first step of the Feofiloff-Younger proof is to reduce the problem, to one of bi-side

joins. A bi-side join j is a set of arcs where the arcs in j that are adjacent to a source

intersect every source-side cut, and the arcs in j that are adjacent to a sink intersect

every sink-side cut. Every bi-side join is a side join, but the converse is not true.

In order to complement the definition of a bi-side join, the notion of bi-weight needs

to be introduced. The bi-weight of a source-side cut (respectively, sink-side cut) is the
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total weight of every arc in the directed cut that is adjacent to a source (respectively,

sink).

Theorem 3.12 (Feofiloff-Younger). The maximum number of bi-side joins in a pack-

ing is equal to the smallest bi-weight of a side cut, for all weighted directed graphs.

Feofiloff and Younger show that Theorem (3.12) implies Theorem (3.11). The bi-side

join theorem is proved algorithmically. In particular, bi-side joins are built one arc at a

time, always ensuring that enough room is left over for the remaining bi-side joins to be

built.

3.3 Proof by Feofiloff

Feofiloff [5] shows that any node n in (D,ω) that is neither a source nor a sink can

be split into two nodes: one source n+, and one sink n− (Figure (3.5)). As long as a

total weight of at least τ(D,ω) is placed on arcs from n+ to n−, the resulting weighted

directed graph will satisfy the Edmonds-Giles Conjecture if and only if (D,ω) satisfies

the Edmonds-Giles Conjecture.

Figure 3.5: Splitting a node into a source and a sink.

By splitting every node that is neither a source nor a sink, the result is a directed

bipartite graph with sources forming one side of the node partition, and sinks forming

the other side of the node partition. The idea for this transformation was provided by

Lucchesi.

In this form, one may find a packing of τ source-side joins. A source-side join is a set

of arcs that intersects every source-side cut. This packing may or may not be a packing

of side joins. The key to the proof is that any source-side join can be modified to intersect

strictly more sink-side cuts. Moreover, the method used to improve the source-side join
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ensures that each element of the initial packing continues to be a source-side join. By

repeated application of the method, each source-side join is converted into a side join.

Therefore, the procedure can be used to prove the desired theorem, and furthermore,

the procedure is completed in polynomial time.

3.4 Super-Source Super-Sink

A node is a super-source if it is a source, and there exist directed paths from the node

to every sink. A node is a super-sink if it is a sink, and there exist directed paths from

every source to the node. A directed graph is super-source super-sink if it contains both

a super-source and a super-sink.

Figure 3.6: A super-source super-sink directed graph.

Conjecture 3.13. The maximum number of directed joins in a packing is equal to the

smallest weight of a directed cut, for all weighted super-source super-sink graphs.

Notice that in a source-sink connected graph every source is a super-source, and every

sink is a super-sink. Therefore, Conjecture (3.13) would generalize Theorem (3.1) from a

condition on all sources and sinks to a condition on a single source and a single sink.

For example, in (D1, ω1) there are directed paths joining each of the three sources to

two of the sinks, and directed paths joining two of the sources to each of the three sinks.

Figure (3.7) shows that attempting to create a super-source or a super-sink in (D1, ω1)

by adding the necessary directed path will violate one of its special directed cuts.

It is also worth noting that Conjecture (3.13) is the weakest condition that could be

placed on the sources and sinks, since D2 contains a super-source (Figure (3.8)).

In order to further support the conjecture, let us show that the property of having

a super-source and a super-sink is closed under several operations that are used in the

upcoming chapters. Hence, if there is a weighted super-source super-sink graph that
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Figure 3.7: Modifying D1 to have a super-source or super-sink violates one special cut.

Figure 3.8: The center node in this embedding of D2 is a super-source.

fails the Edmonds-Giles Conjecture then there is also such a graph that is minimal with

respect to these operations.

Chapter 4 gives a formal definition of the following operations: loop deletion, parallel

arc deletion, arc contraction (Figure (3.9)), and bi-clique substitution (Figure (3.10)).

Closure for loop deletion and parallel arc deletion follow easily. For the case of arc

contraction, difficulty only arises if a super-source or a super-sink is the origin or des-

tination of the contracted arc. Let D be a directed graph with super-sink n and arc

a = (u, n). Let n′ be the node in D/a that results from contracting arc a. Since n is a

super-sink in D there exists a directed path from every source in D to n. Since every

source in D, except possibly u, is also a source in D′, then these directed paths show

that in D/a there exists a directed path from every source in D/a to n. If n′ is not a

super-sink in D/a, then it must be that n′ is not a sink. Therefore, there exists a directed

path in D/a from n′ to some sink n′′. By composing directed paths it is easy to see that

n′′ is a super-sink in D/a. The analogous result holds for super-sources, and therefore,

super-source super-sink graphs are closed under arc contraction.
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Figure 3.9: Example of arc contraction.

Next, we show closure for bi-clique substitutions. Let n be a node where there are

at least two arcs with n as the origin, and at least two arcs with n as the destination.

A bi-clique substitution on n is an operation that deletes n, and adds the arc (u,w) for

every pair of nodes u,w where (u, n) and (n,w) are arcs.

Suppose that D′ is the result of performing a bi-clique substitution on node n in

directed graph D. Consider any directed path from a source to a sink in D. If the path

does not intersect n then it exists in D′. If the path does intersect n then a replacement

path, using one of the newly introduced arcs can be found in D′.

Figure 3.10: Example of bi-clique substitution.

A final note on Conjecture (3.13) is given in Section (6.4). If the conjecture turns out

to be false, it will be of interest to investigate how far along the spectrum from source-sink

connected to super-source super-sink the Edmonds-Giles Conjecture holds.



Chapter 4

Minimally non-Knitted

knitted: [adj] made by intertwining threads in a series of connected loops.

In this chapter, the term knitted is introduced to represent weighted directed graphs

that satisfy the Edmonds-Giles Conjecture. The name is chosen because contracting a

directed join results in a strongly connected graph. Since every arc in a strongly connected

graph is in a directed cycle, it is as if the graph is a “series of connected loops”.

The ultimate goal of this chapter is to study the properties of minimally non-knitted

weighted directed graphs. Towards this goal, the concept of an augmented directed graph

is introduced. Minimally non-knitted augmented directed graphs are studied, and then

extended to minimally non-knitted weighted directed graphs by adding the smallest pos-

sible set of weights that maintain the property of being non-knitted.

The main result is that the non-zero weight arcs in any minimally non-knitted weighted

directed graph, can be uniquely partitioned into s-trees. This structure is interesting in

itself, and is also the starting point for the next chapter.

4.1 Augmented Directed Graphs

An augmented directed graph [D,Z], is a directed graph D = (N,A), and a specified arc

subset, Z ⊆ A, where every arc in Z is forced to have weight 0 or ∞. Hence, arcs in Z

are forced to be contracted or deleted in the clutter of directed joins (Remark 2.7 and

2.8). If an arc weight vector for D satisfies the restrictions imposed by Z then we say the

weight is valid for [D,Z], or simply valid. Effectively, the weight ∞ represents any value

35
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as large as, τ , the smallest weight of a directed cut.

Definition 4.1. An augmented directed graph [D,Z] is knitted if the maximum number

of directed joins in a packing is equal to the smallest weight of a directed cut, for all valid

weights Z.

Augmented directed graphs are studied here because they give stronger minimality

results than directed graphs. For example, a special type of biclique substitution allows

us to avoid one of the problems with the Cornuéjols and Guenin question (Figures (1.16)

and (4.1)).

Figure 4.1: Minimality using augmented directed graphs avoids the above problem.

A minor of an augmented directed graph, is any augmented directed graph that can

be obtained from it by a sequence of the following operations: loop deletion, parallel arc

deletion, arc contraction, Z-transfer, transitive-Z deletion, Z-biclique substitution, and

folding.

Next we describe each operation, and show that the property of being knitted is closed

under the operation. In each case, let [D,Z] be a knitted augmented directed graph, for

D = (N,A), and [D′, Z ′] be the result of applying the particular operation.

Loop or parallel arc deletion

[D′, Z ′] = [D\a′, Z\a′], for loop or parallel arc a′. Closure can easily be seen by con-

sidering the clutter. Alternatively, a packing of directed joins for [D′, Z ′] with arbitrary

weight ω′ can be found from a packing of directed joins for [D,Z] with weight ω such

that

ω(a) =

{

ω′(a) if a 6= a′

0 if a = a′.
.
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Arc contraction

[D′, Z ′] = [D/a′, Z\a′], for arc a′. From the definition of Z, any arc in Z may have its

weight changed to ∞. Thus, any arc in D may have its weight changed to ∞. By using

Remark (2.14), a packing of directed joins for [D′, Z ′] with arbitrary valid weight ω′, can

be found from a packing of directed joins for [D,Z] with weight ω such that

ω(a) =

{

ω′(a) if a 6= a′

∞ if a = a′.

Z-transfer

[D′, Z ′] = [D,Z∪{a′}]. If a′ ∈ A\Z, then we can perform a Z-transfer on a′. Notice that

every weight that is valid for [D′, Z ′] is also valid for [D,Z]. Therefore, directed joins for

[D′, Z ′] with arbitrary valid weight ω′, can be found from a packing of directed joins for

[D,Z] with weight ω′.

Transitive-Z deletion

[D′, Z ′] = [D\a′, Z\a′]. If a′ ∈ Z, and a′ is a transitive arc, then a transitive-Z deletion

can be performed on a′. This operation does not change the directed cuts (Remark

(1.10)), nor does it change the weight of any directed cut. Therefore, directed joins for

[D′, Z ′] with arbitrary valid weight ω′, can be found from a packing of directed joins for

[D,Z] with weight ω

ω(a) =

{

ω′(a) if a 6= a′

0 if a = a′.

Z-biclique substitution

[D′, Z ′] = [D\Ar ∪ Auw, Z\Ar ∪ Auw]. Let r be a node in D = (N,A), and let Ar ⊆ A

be the arcs that have r as the origin or destination. Furthermore, let Auw contain the

arc (u,w) for every pair of nodes u,w where (u, r) ∈ A and (r, w) ∈ A. Suppose that

Ar ⊆ Z, there are at least two arcs in Ar where r is the origin, and there are at least two

arcs in Ar where r is the destination. Given this situation, a Z-biclique substitution can

be performed on r (Figure (4.2)).

Now we show that the property of being knitted is closed under this operation. In

particular, we must show how the arcs in Auw can be simulated by the arcs in Ar, given
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r

Figure 4.2: The biclique operation on node r. Every arc in the figure is in Z.

that both sets of arcs are limited to weights of 0 and ∞. At first it may seem that there

will be an information problem, since there can be many more arcs in Auw than in Dr.

However, suppose that any pair of arcs (u1, w1) and (u2, w2) in Auw are given a weight of

∞. This is equivalent to contracting both (u1, w1) and (u2, w2) in D′. However, from the

definition of Auw, the arcs (u1, w2) and (u2, w1) are also present in D′. Therefore, from

Remark (3.4), if (u1, w1) and (u2, w2) are contracted, then the directed cycle formed in D′

by (u1, w2) and (u2, w1) can also be contracted. In particular, the nodes u1, u2, w1, w2 can

be identified in D′. In general, every node in D′ that is either the origin or destination

of an arc in Auw with weight ∞, can be contracted to a single node. This simplified

behaviour can be simulated in Ar.

Specifically, a packing of directed joins for [D′, Z ′] with arbitrary valid weight ω′, can

be found from a packing of directed joins for [D,Z] with weight ω

ω(a) =











ω′(a) if a /∈ Auw

∞ if a = (u′, r) or a = (r, w′), and ∃(u′, w′) ∈ Auw with ω(u′, w′) =∞

0 otherwise.

Folding

[D′, Z ′] = [D◦(w1, w2)◦(u1, u2), Z ◦(w1, w2)◦(u1, u2)]. The notation D◦(x, y) represents

the directed graph D with the nodes x and y identified. Likewise, Z ◦ (x, y) is the set

of arcs Z with x and y identified. If D = (N,A) contains an alternating path of length

three,

P = (w2, (w2, u2), u2, (w1, u2), w1, (w1, u1), u1) = (w2, f2, u2, b, w1, f1, u1)
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with the following properties:

• (F1) f1, b, f2 ∈ A\Z

• (F2) w1 is a source, u2 is a sink

• (F3) δ({w1}) ∩ (A\Z) = {f1, b} and δ({N\u2}) ∩ (A\Z) = {b, f2}

• (F4) there is a directed path from w2 to u1 (and not vice versa)

• (F5) if (x, u2) ∈ Z and (w1, y) ∈ Z where x 6= w1, w2 and y 6= u1, u2 then x = y or

there is a directed path from x to y.

Then a fold can be performed on [D,Z] resulting in [D′, Z ′] where D′ and Z ′ result

from D and Z respectively by identifying w1 and w2 into w and identifying u1 and u2

into u. In particular, let D = (N,A) and D′ = (N ′, A′) where

N = {n1, n2, . . . , ng, u1, w1, u2, w2}

N ′ = {n1, n2, . . . , ng, u, w}

A = {a1, a2, . . . , ah, f1, b, f2}

A′ = {a′1, a
′
2, . . . , a

′
h, f = (u,w)}

and a′i = ai for i ∈ {1, . . . , h} except that if ai is incident to u1 or u2 then a′i
is incident to u, and if ai is incident to w1 or w2 then a′i is incident to w. Finally,

Z ′ = {a′i|ai ∈ Z, i ∈ {1, 2, . . . , h}}.

u1 w1 u2 w2

f1 b f2

xy2 y1

u wf

x y2 y1

[D, Z] [D’, Z’]

Figure 4.3: The folding operation on [D,Z] resulting in [D′, Z ′].
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In order to understand why knitted is closed under folding, it is necessary to under-

stand how the directed cuts of [D,Z] relate to the directed cuts of [D′, Z ′].

Let d′ = δD′(X
′), where u /∈ X ′ and w ∈ X ′, be a cut that is not necessarily directed.

Given the following definitions for dN , dL and dR, the next three remarks follow from

(F2) and (F3). The fourth remark follows from (F5). See Figure (4.4).

• dN = δD(XN ) where XN = X ′\{w} ∪ {w1, w2}

• dL = δD(XL) where XL = X ′\{w} ∪ {w1, u2, w2}

• dR = δD(XR) where XR = X ′\{w} ∪ {w2}

Remark 4.2. dN is a directed cut in D ⇐⇒ d′ is a directed cut in D′. Moreover, ∀i

a′i ∈ d′∩(A′\Z ′) ⇐⇒ ai ∈ dN ∩(A\Z). Also, f ∈ d′∩(A′\Z ′) and f1, b, f2 ∈ dN ∩(A\Z).

Remark 4.3. If dL is a directed cut in D then d′ is a directed cut in D′. Moreover, ∀i

a′i ∈ d′ ∩ (A′\Z ′) ⇐⇒ ai ∈ dL ∩ (A\Z). Also, f ∈ d′ ∩ (A′\Z ′) and f1 ∈ dL ∩ (A\Z).

Remark 4.4. If dR is a directed cut in D then d′ is a directed cut in D′. Moreover, ∀i

a′i ∈ d′ ∩ (A′\Z ′) ⇐⇒ ai ∈ dR ∩ (A\Z). Also, f ∈ d′ ∩ (A′\Z ′) and f2 ∈ dR ∩ (A\Z).

Remark 4.5. If d′ is a directed cut in D′ then dL is a directed cut in D or dR is a

directed cut in D.

u1 w1 u2 w2

f1 b f2

xy2 y1

u wf

x y2 y1

[D, Z] [D’, Z’]

d’
dL dRdN

Figure 4.4: The relationships between d′, dN , dL, and dR.

Let d′all = δD′(X
′) where u,w ∈ X ′ and d′none = δD′(X

′) where u,w /∈ X ′ be cuts that

are not necessarily directed. Given the following definitions for dall and dnone, the next

two remarks follow from (F3):
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• dall = δD(X) where X = X ′\{u,w} ∪ {u1, w1, u2, w2}

• dnone = δD(X) where X = X ′.

Remark 4.6. d′all is a directed cut in D′ ⇐⇒ dall is a directed cut in D. Moreover, ∀i

a′i ∈ d′all ∩ (A′\Z ′) ⇐⇒ ai ∈ dall ∩ (A\Z). Also, f /∈ d′∩ (A′\′) and f1, b, f2 /∈ d∩ (A\Z).

Remark 4.7. d′none is a directed cut in D′ ⇐⇒ dnone is a directed cut in D. Moreover,

∀i a′i ∈ d′none ∩ (A′\Z ′) ⇐⇒ ai ∈ dnone ∩ (A\Z). Also, f /∈ d′ ∩ (A′\′) and f1, b, f2 /∈

d ∩ (A\Z).

Now we are ready to show that knitted is closed under folding. Suppose that [D,Z]

is knitted. Let D′ = (N ′, A′) and consider an arbitrary ω′ ∈ ZA′
+ that is valid for [D′, Z ′].

We will show that ν(D′, ω′) = τ(D′, ω′). Let τ = τ(D′, ω′) and k = ω(f). Define ω ∈ ZA
+

as follows

ω(a) =











k if a = f1 or a = f2

τ − k if a = b

ω′(a′i) if a = ai.

Notice that ω is valid for [D,Z] since f1, b, f2 ∈ (A\Z) by (F1). Now we show that

τ = τ(D,ω) = τ(D′, ω′). From (F2) and (F3) we know that τ(D,ω) ≤ τ since

ω(δ({w1})) = ω(f1) + ω(b) = k + (τ − k) = τ.

In order to prove that τ(D,ω) ≥ τ consider a directed cut d = δD(X) chosen ar-

bitrarily in D. In each of the following cases we use the fact ω is defined so that ∀i

ω(ai) = ω′(a′i).

Case One: f1, b, f2 /∈ d. Thus u1, w1, u2, w2 ∈ X or u1, w1, u2, w2 /∈ X. Therefore,

by Remark (4.6) or (4.7) there is a directed cut d′ in D′ where ω(d) = ω′(d′) ≥ τ .

Case Two: b ∈ d. From (F4) there is a cycle with f1, b, f2 and the directed path

from w2 to u1. Since f1 and f2 are the only arcs in one direction in this cycle, then by

Proposition (3.5) if b ∈ d then f1 ∈ d or f2 ∈ d. Therefore, since ω(f1) = ω(f2)

ω(d) ≥ ω(f1) + ω(b) = k + (τ − k) = τ.

Case Three: f1 ∈ d and b /∈ d. From Remark (3.4) this implies f2 /∈ d. From

Remark (4.3) there is a directed cut d in D where ω(d)− ω(f1) = ω′(d′)− ω(f). Hence,
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ω(d) = ω′(d′) ≥ τ .

Case Four: f2 ∈ d and b /∈ d. From Remark (3.4) this implies f1 /∈ d. From

Remark (4.4) there is a directed cut d in D where ω(d)− ω(f2) = ω′(d′)− ω(f). Hence,

ω(d) = ω′(d′) ≥ τ .

Therefore, we have shown that τ = τ(D,ω) = τ(D′, ω′). Since [D,Z] is knitted then

(D,ω) has a packing of τ directed joins, J = J1, J2, . . . , Jτ . The next remark is true since

w1 and u2 are sources/sinks that induce directed cuts of weight τ in (D,ω).

Remark 4.8. For each Ji ∈ J either f1, f2 ∈ Ji and b /∈ Ji, or f1, f2 /∈ Ji and b ∈ Ji.

Our goal is to show that we can translate J into a packing of τ directed joins for

(D′, ω′). For i = 1, 2, . . . , τ define

J ′i =

{

Ji\{f1, f2} ∪ {f} if f1, f2 ∈ Ji

Ji\{b} if f1, f2 /∈ Ji

First let us show that J′ = J ′1, J
′
2, . . . , J

′
τ is a packing in (D′, ω′). This follows from

the fact that J is a packing for (D,ω) and

• a′j ∈ J ′i ⇐⇒ aj ∈ Ji and ω′(a′j) = ω(aj)

• f ∈ J ′i ⇐⇒ f1, f2 ∈ Ji and ω′(f) = ω(f1) = ω(f2)

Next let us show that J ′i is a directed join of D′ for i = 1, 2, . . . , τ . Let d′ = δD′(X
′)

be any directed cut in D′, and J ′i be any of the directed joins in J′. We will show that

d′ ∩ J ′i 6= ∅. In each of the following cases we use that Ji ⊆ (A\Z) and J ′i ⊆ (A′\′Z).

This assumption is justified since J and J′ are packings, and each directed join need only

contain a single copy of each arc.

Case One: f /∈ d′. Therefore, u,w ∈ X ′ or u,w /∈ X ′. Therefore, by Remark (4.6)

or (4.7) there is a directed cut d in D where

(d′ ∩ J ′i 6= ∅) ⇐⇒ (d ∩ Ji 6= ∅)

Since Ji is a directed join of D we have that d ∩ Ji 6= ∅. Hence d′ ∩ J ′i 6= ∅.

Case Two: f ∈ d′. We may assume that f /∈ J ′i or else f ∈ d′ ∩ J ′i . Since f /∈ J ′i
then f1, f2 /∈ Ji. By Remark (4.5) there is a directed cut d in D where

(d′ ∩ J ′i 6= ∅) ⇐⇒ (d ∩ Ji 6= ∅)
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Since Ji is a directed join of D we have that d ∩ Ji 6= ∅. Hence d′ ∩ J ′i 6= ∅.

Therefore, a packing of size τ has been found in (D′, ω′). Hence, if [D,Z] is knitted

then [D′, Z ′] is knitted. Thus, knitted is closed under folding.

Properties from Minimality

Every augmented directed graph, has a finite number of minors. This is due to the

following chain of observations. No operation increases the number of nodes. Every

operation that does not decrease the number of nodes, does not increase the number of

arcs. Every operation that does not decrease the number of arcs, does transfer an arc

into Z.

Furthermore, the empty augmented graph, containing no arcs, is knitted, and is always

eventually obtained by repeated applications of the minor operations. Therefore, we are

justified in the following definition:

Definition 4.9. An augmented directed graph is minimally non-knitted if it is not knitted

and every one of its minors is knitted.

There are four properties of minimally non-knitted augmented directed graphs that

will be presented. In the first, contraction is used to show that in minimally non-knitted

augmented directed graphs, the directed cuts of minimum weight, τ , are always trivial

directed cuts. The first step is to prove a lemma about directed joins. This proof considers

the union and intersection of two directed cuts.

Remark 4.10. If δ(X1) and δ(X2) are directed cuts where X1∪X2 6= N , then δ(X1∪X2)

is a directed cut.

Remark 4.11. If δ(X1) and δ(X2) are directed cuts where X1∩X2 6= ∅, then δ(X1∩X2)

is a directed cut.

For notational purposes, if D = (N,A) and K ⊆ N , where D[K] is connected, then

D/K represents the sequence of arc contractions that results in K being contracted to a

single node. For K1,K2 ⊆ N , δ(K1,K2) represents the set of arcs from any node in K1

to any node in K2. Also, for a ∈ A and ω ∈ ZA
+ we will let ω/a and ω\a represent weight

vectors for D/a and D\a, and extend this to allow ω/K for K ⊆ N as above.

The next lemma establishes that, under the right condition, directed joins can be

glued together across directed cuts.
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Lemma 4.12. If δ(K) is a directed cut, J1 is a directed join of D/K, J2 is a directed

join of D/K, (J1 ∪ J2) ∩ δ(K) = {a}, then J1 ∪ J2 is a directed join of D.

Proof. Consider any directed cut δ(I) in D. The nodes of D can be partitioned into,

K ∩ I, K ∩ I, K ∩ I, and K ∩ I (Figure (4.5)).

K I K I

K I K I

Figure 4.5: Arc a must be in δ(KI,KI), δ(KI,KI) or δ(KI,KI).

If the destination of a is not in K ∩ I, then (J1 ∪ J2) ∩ δ(K ∪ I) = ∅, contradicting

that J1 is a directed join of D/K.

Likewise, if the origin of a is not in K ∩ I, then (J1∪J2)∩ δ(K ∩ I) = ∅, contradicting

that J2 is a directed join of D/K.

Therefore, a ∈ (J1 ∪ J2) ∩ δ(K ∩ I,K ∩ I). Therefore, a ∈ (J1 ∪ J2) ∩ δ(I), and so

J1 ∪ J2 is a directed join of D.

Proposition 4.13. If augmented directed graph [D,Z] is minimally non-knitted, and ω

is a valid weight preventing [D,Z] from being knitted, then every directed cut of weight

τ(D,ω) is trivial.

Proof. For sake of contradiction, assume the hypothesis and the existence of a directed

cut δ(K), where ω(δ(K)) = τ(D,ω), and δ(K) is not trivial.

Since δ(K) is a minimum weight cut, both D/K and D/K are connected. Since δ(K)

is not trivial, [D/K,Z/K] and [D/K,Z/K] are minors of [D,Z]. Since [D,Z] is minimally

non-knitted, both (D/K,ω/K) and (D/K,ω/K) have directed join packings of size at

least τ(D,ω). Since δ(K) is a directed cut in both D/K and D/K, these directed join

packings are of size exactly τ(D,ω).

For each a ∈ δ(K), a directed join J1 of (D/K,ω/K), and a directed join J2 of

(D/K,ω/K) exist, where

J1 ∩ δ(K) = J2 ∩ δ(K) = {a}
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Therefore, from Lemma (4.12), J1 ∪ J2 is a directed join of D. Since ω(δ(K)) =

τ(D,ω), then τ(D,ω) such directed joins exist. This collection of directed joins is a

packing in D with ω, contradicting the fact that [D,Z] is non-knitted. Therefore, no

such δ(K) exists.

The three additional properties of minimally non-knitted augmented directed graphs

are, more or less, direct consequences of the minor operations.

Remark 4.14. If augmented directed graph [D,Z] is minimally non-knitted, and ω is a

valid weight preventing [D,Z] from being knitted, then an arc has ω weight 0, if and only

if, the arc is in Z.

Proof. For the first direction, if a ∈ Z then ω(a) = 0 or ω(a) = ∞. If ω(a) = ∞, then

the minor corresponding to contracting a is also non-knitted. For the other direction, if

a /∈ Z and ω(a) = 0, then the minor corresponding to Z-transfer on a is also non-knitted.

Both directions contradict the fact that [D,Z] is minimally non-knitted.

Remark 4.15. If augmented directed graph [D,Z] is minimally non-knitted, then every

node r is the origin or destination of at least one arc outside of Z.

Proof. Proof by contradiction. Consider an ω that is a valid weight preventing [D,Z]

from being knitted. Apply Remark (4.14) so every arc in Z has ω weight 0. If r is a

source or a sink, then it induces a directed cut of weight 0.

Now suppose r is the origin and destination of at least two arcs. In this case, a

packing of τ(D,ω) directed joins exists from the minor obtained by applying the Z-

biclique substitution to r. This packing is also a packing in [D,Z] with ω.

In the remaining case, without loss of generality, r is the destination of exactly one

arc, say a (Figure (4.6)). In this case, a packing of τ(D,ω) directed joins exists from the

minor obtained by contracting a. This packing is also a packing in [D,Z] with ω.

Proposition 4.16. If augmented directed graph [D,Z] is minimally non-knitted, and ω

is a valid weight preventing [D,Z] from being knitted, then every transitive arc of D is

not in Z.

Proof. This is a direct consequence of the transitive-Z deletion operation.
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r r

a a

Figure 4.6: If a ∈ δ(X) then δ(X ∪ {r}) is also a directed cut.

4.2 Minimum Weight

In this section, the notion of knitted is extended from augmented directed graphs to

weighted directed graphs (Definition (4.17)). This is done by adding non-zero weights to

every arc that does not have its weight fixed by the augmented directed graph’s set Z. Ev-

ery minimally non-knitted augmented directed graph has at least one weight assignment

that results in a non-knitted weighted directed graph. The resulting weighted directed

graph is minimally non-knitted if such a weight assignment is chosen to be minimum.

This section also discusses two important properties of minimally non-knitted weighted

directed graphs.

Definition 4.17. A weighted directed graph is knitted if the maximum number of directed

joins in a packing is equal to the smallest weight of a directed cut.

The process of extending augmented directed graphs to weighted directed graphs

involves setting weight values in two steps. Therefore, it is useful to be able to“separate”

the resulting weights vectors ω ∈ ZA
+ into their zero and non-zero values. From Remark

(4.14) the zero values can be represented by the set Z ⊆ A. The non-zero values can be

represented by a vector in NA\Z , where N is the set of positive integers. Formally, for

ω ∈ ZA
+, ωN ∈ NA\Z , Z ⊆ A, we say that ω = ωN ∪ Z if

ω(a) =

{

ωN(a) if a ∈ A\Z

0 if a ∈ Z.

The next step in defining minimality for weighted directed graphs is to define a partial

order for vectors in NA\Z . This is done in general, where ω1, ω2 ∈ SE for any totally-

ordered set S and arbitrary set E. Informally, ω1 < ω2, if ω1 has more small elements of S
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than ω2. Often this is referred to as a lexicographical ordering. Formally, for ω1, ω2 ∈ SE ,

say that ω1 < ω2, if ∃k ∈ S such that the following two conditions hold:

|{e ∈ E : ω1(e) = i}| = |{e ∈ E : ω2(e) = i}|, for all i ∈ S where i < k (4.1)

|{e ∈ E : ω1(e) = k}| > |{e ∈ E : ω2(e) = k}| (4.2)

Definition 4.18. A weighted directed graph (D,ωN ∪Z) is minimally non-knitted if the

augmented directed graph [D,Z] is minimally non-knitted, and (D,ω ′N ∪Z) is knitted, for

every ω′N < ωN.

The task of working with the two different notions of minimal weights, is simplified

by the following lemma. The lemma allows us to work with ω, instead of its components

ωN ∪ Z.

Lemma 4.19. If (D,ω) is minimally non-knitted, and ω′ < ω and Z ⊆ Z ′, then (D,ω′)

is knitted.

Proof. In the first case, suppose that ∃a ∈ Z ′\Z. Therefore, since [D,Z] is a minimally

non-knitted augmented directed graph, [D,Z ∪{a}] is knitted. In particular, it is knitted

for ω′. Hence (D,ω′) is knitted.

In the second case, Z = Z ′. Since ω′ < ω, it follows that ω′N < ωN. Therefore, since

(D,ω) is a minimally non-knitted weighted directed graph, (D,ω′) is knitted.

Notice that this lemma, together with Remark (4.15), essentially allows us to ignore

the special set Z. Instead, we can think of minimality on ω as consisting of two tiers; one

for weight 0 and the second for the remaining weights. Such an approach will be taken in

subsequent chapters when τ is restricted to two. An immediate consequence of Definition

(4.18) is the following:

Proposition 4.20. If (D,ω) is minimally non-knitted, then every arc a with ω(a) > 0,

is in a directed cut of weight τ(D,ω).

Proof. For contradiction, suppose there is such an arc a′. Consider a new weight, ω′ ∈ ZA
+

where

ω′(a) =

{

ω(a) if a 6= a′

ω(a)− 1 if a = a′.
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Notice that τ(D,ω) = τ(D,ω′) since a′ is not in a directed cut of minimum weight.

Furthermore, Z ⊆ Z ′. Therefore, by Lemma (4.19), (D,ω′) is knitted. Therefore, there

is a packing of τ directed joins in (D,ω′). This packing is also a packing in (D,ω),

contradicting that (D,ω) is non-knitted.

A second consequence of Definition (4.18), the main result of this section, requires

more machinery to be built up before it can be proven. This machinery includes a prop-

erty, accommodating, common to many packing and covering problems, and an operation,

pushing, that will be used to reveal directed joins with this property.

A directed join J is accommodating in (D,ω) if ω(a) > 0 for all a ∈ J , and

ω(δ(X))− |J ∩ δ(X)| ≥ τ(D,ω)− 1

for all directed cuts δ(X) in D. In other words, a directed join is accommodating if its

removal leaves enough room for a potential packing of τ(D,ω)− 1 directed joins.

Remark 4.21. If (D,ω) is minimally non-knitted, then it does not contain an accom-

modating directed join.

Proof. Suppose that (D,ω) does contain an accommodating directed join J . Consider

(D,ω′), where

ω′(a) =

{

ω(a) if a /∈ J

ω(a)− 1 if a ∈ J

Since ω′ < ω, and Z ⊆ Z ′, then by Lemma (4.19), (D,ω′) is knitted. Furthermore,

since J is accommodating

τ(D,ω′) = τ(D,ω)− 1.

Therefore, there is a packing of τ(D,ω) − 1 directed joins in (D,ω′). However, this

packing together with J , is a packing of τ(D,ω) directed joins in (D,ω). This contradicts

the fact that (D,ω) is non-knitted.

Next, we introduce an operation that acts on the non-zero weights ω
A\Z
N .

As discussed in the Chapter 1, every path that is not directed, has arcs in two distinct

directions. More formally, if

P = (n1, a1, n2, a2, . . . , nk)
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is a path, then ai is a forward arc in P if ai = (ni, ni+1), otherwise ai = (ni+1, ni) is a

backward arc in P .

Given weight vector ω, and arc-simple walk P , define ω′ to be the result of pushing

P , where

ω′(a) =











ω(a) + 1 if a is a forward arc in P

ω(a)− 1 if a is a backward arc in P

ω(a) otherwise.

The pushing operation may also be applied to cycles, and doing so forms the basis of

the next proposition.

Proposition 4.22. If (D,ω) is minimally non-knitted, then every cycle has an arc a

with ω(a) = 0.

Proof. Otherwise, suppose C is a cycle in (D,ω), where every arc of C has non-zero

weight. Without loss of generality, suppose that C contains a backward arc b of weight

k, where

k = min{ω(a) : a is an arc of C}

Let ω′ be the result of pushing cycle C. First of all, ω′ ∈ ZA
+ because C had no arc a

with ω(a) = 0. For the same reasoning, Z ⊆ Z ′.

From Remark (3.5), every directed cut intersects the same number of forward arcs

and backward arcs of C. Therefore,

ω(δ(X)) = ω′(δ(X)), (4.3)

for every directed cut δ(X) in D. Therefore, τ(D,ω′) = τ(D,ω).

Furthermore, since C has a backward arc b with ω(b) = k, then ω′(b) = k − 1.

Therefore, ω′ < ω.

Therefore, all of the conditions for Lemma (4.19) are satisfied. Therefore, (D,ω ′) is

knitted. Therefore, there is a packing of τ directed joins in (D,ω′). Let J be one of the

directed joins in such a packing.

Since J is part of a packing of τ directed joins in (D,ω′), then for all directed cuts

δ(X) in D,

ω′(δ(X))− |J ∩ δ(X)| ≥ τ − 1. (4.4)
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However, (4.3) and (4.4), together give

ω(δ(X))− |J ∩ δ(X)| ≥ τ − 1.

for all directed cuts δ(X) in D. Therefore, J is accommodating in (D,ω). This contradicts

that (D,ω) is minimally non-knitted by Remark (4.21).

The proof presented for Proposition (4.22) gives a slightly stronger result than stated.

4.3 S-Tree Structure

A subgraph T of (D,ω) is a source-sink-tree, or simply an s-tree, with weight k cuts, if T

is a tree of non-zero ω weight arcs, where every internal (non-leaf) node of T is a source

or sink that induces a directed cut of weight k in (D,ω). An s-tree is maximal in (D,ω) if

no other s-tree in (D,ω) contains it. All of the results in this chapter lead to the following

Proposition.

Proposition 4.23. If (D,ω) is minimally non-knitted then its non-zero weight arcs can be

uniquely partitioned into maximal s-trees of (D,ω) with weight τ(D,ω) cuts. Furthermore,

each s-tree has at least two arcs, and every node of D is included in at least one of these

s-trees.

Proof. Let (D,ω) be a minimally non-knitted weighted directed graph. First verify that

the relation of being in a common s-tree, forms an equivalence relation on the non-zero

weight arcs.

The relation is easily reflexive and symmetric. Next we show that the relation is

transitive. Suppose arcs a and b are in an s-tree T1, and arcs b and c are in an s-tree T2.

Let T = T1 ∪ T2. Certainly T contains both a and c. It remains to show that T is an

s-tree. We begin by showing that T is a tree. Since b is in both T1 and T2, T is connected.

From Proposition (4.22), T is acyclic. Hence, T is a tree. Next, we show that T is in fact

an s-tree. As a preliminary step, let us examine arc b closely. From Proposition (4.20),

arc b is in a directed cut of minimum weight. From Proposition (4.13), this minimum

weight directed cut is a trivial cut. Let s be a source or sink that induces a minimum

weight directed cut and is the origin or destination of b. Now we prove that every node in

T that is not a source or sink that induces a minimum weight directed cut, must in fact

be a leaf of T . This would complete the proof that T is an s-tree. Consider any node n in
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T that is not a source or sink that induces a minimum weight directed cut. Since T1 and

T2 are s-trees, node n has degree at most one in both T1 and T2. Therefore, if n is not

a leaf in T then it has degree one in T1, degree one in T2, and degree two in T . Let m1

be the node adjacent to n in T1, and let m2 be the node adjacent to n in T2. Since s is a

source or sink that does induce a minimum weight directed cut, s 6= n. Furthermore, s is

a node in both T1 and T2 because b is an arc in both T1 and T2. Therefore, there is a path

from s to n in T1, and a path from s to n in T1 (Figure (4.7)). From Proposition (4.22),

the union of these two paths must not contain any cycles. Therefore, it must be that,

m1 = m2. Therefore, n has degree one in T so n is a leaf of T . Hence, only sources and

sinks that induce minimum weight directed cuts are internal nodes of T . This completes

the proof that T is an s-tree. Therefore, the relation of two non-zero weight arcs being in

a common s-tree is reflexive, symmetric, and transitive, so the relation is an equivalence

relation.

n

m
1

b

s

s

b

n

m
2

T
1 T

2

Figure 4.7: Deducing that n is a leaf of T = T1 ∪ T2.

Therefore, the arcs of non-zero weight may be partitioned into equivalence classes.

For each equivalence class, consider the union U of every s-tree that contains an arc of

that class. In particular, from Proposition (4.22), U must be acyclic. Furthermore, if

an internal node n of U is not a source or sink that induces a directed cut of minimum

weight, then there are two arcs a1, a2 adjacent to n. In particular, since a1, a2 are in the

same equivalence class, they must be in an s-tree together. However, this is not possible

since the s-tree would have n as an internal node. Therefore, the union U is also an s-tree.

Furthermore, since the union contains all of the possible arcs in the any of the s-trees

in the equivalence class, the union is a maximal s-tree. Therefore, the non-zero weight

arcs in a minimally non-knitted weighted directed graph, can be partitioned uniquely into
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maximal s-trees.

It remains to show that each maximal s-tree has at least two arcs. Every s-tree

contains a source or sink that induces a minimum weight directed cut. From Proposition

(2.7), every trivial directed cut of minimum weight must contain at least two non-zero

weight arcs. Since these two arcs form an s-tree, every maximal s-tree contains at least

two arcs.

Finally it remains to show that every node is contained in a maximal s-tree. This

reduces to showing that every node is the origin or destination of a non-zero weight arc,

and this has been shown in Remark (4.15).



Chapter 5

Minimally non-2-Knitted

In this chapter, we specialize the previous chapter by studying minimally non-knitted

weighted directed graphs with τ = 2. These minimally non-2-knitted weighted directed

graphs have special significance due to Remark (2.10). The arguments found here provide

a framework for the remaining chapters, and begin by translating results from previous

chapters. The following remark is a consequence of Propositions (2.7) and (4.13).

Remark 5.1. Minimally non-2-knitted weighted directed graphs only have arcs of weight

0 and 1, and every directed cut of weight 2 is a trivial cut.

An s-path of (D,ω) is an s-tree of (D,ω) with cuts of weight 2, that is a path. A

weighted directed graph is an s-path graph with p paths, if its non-zero weight arcs are

weight 1, these arcs uniquely partition into p maximal s-paths with cuts of weight 2, each

of these s-paths has length at least two, and every node in the graph is in an s-path.

Proposition 5.2. Minimally non-2-knitted weighted directed graph are s-path graphs.

Proof. By Proposition (4.23) we can partition the non-zero weight arcs into s-trees with

weight τ = 2 cuts. Let T be one of these s-trees. By Remark (5.1), T contains only arcs

of weight 1. Let n be an internal node of T . Since n is not a leaf in T , it must have

degree at least two in T . However, n cannot have degree greater than two in T , otherwise

it could not be a source or sink inducing a directed cut of weight 2. Hence, every internal

node of T has degree two in T , so T is an s-path.

For the remainder of the thesis we will be assuming that (D,ω) is an s-path graph

53
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with s-paths P1, . . . Pp, where D = (N,A) and A = A0 ∪A1 with

A0 = {a ∈ A|ω(a) = 0}

A1 = {a ∈ A|ω(a) = 1}

5.1 Crossing Sets

A crossing set J is a subset of non-zero arcs such that, for each s-path P , J exclusively

contains the forward arcs or the backward arcs of P . For every crossing set, there is

exactly one crossing set that is disjoint from it. Such pairs have special significance.

Remark 5.3. If J1, J2 is a packing of two directed joins in an s-path graph then J1 and

J2 are disjoint crossing sets.

Remark (5.3) follows from the fact that J1 and J2 must intersect every trivial directed

cut on every s-path. Therefore, neither J1 nor J2 can include or exclude adjacent arcs

on any s-path. Therefore, J1 and J2 must either contain the forward or backward arcs of

each s-path, matching the definition of crossing sets.

Since crossing sets contain either the forward or backward arcs of each s-path, it is

possible to represent each crossing set as a binary number. Define function b, for binary,

to map crossing sets to p-digit binary numbers, where p is equal to the number of s-paths

in the given s-path graph. For crossing set J ⊆ A1, let b(J) ∈ {0, 1}p be the following:

b(J)[i] =

{

0 if J contains the backward arcs of Pi

1 if J contains the forward arcs of Pi.

Notice that if J1 and J2 are disjoint crossing sets then b(J1) = b(J2) where x is the

bit-wise complement of x.

5.2 Crossing Cuts

A crossing cut is a directed cut that intersects each s-path at most once. Crossing cuts

should not be confused with the concept of cross cuts (Chapter 3).

Let δ(X) be a crossing cut and P be an s-path. Either δ(X) intersects a forward

or backward arc of P , or δ(X) skips P by having X include or exclude every node in
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P . Define a function q mapping crossing cuts to quaternary numbers (Figure (5.1)). If

d = δ(X) is a crossing cut, then let q(d) ∈ {0, 1,+,−}p be defined as follows:

q(d)[i] =























0 if δ(X) ∩ arcs(Pi) is a backward arc of Pi

1 if δ(X) ∩ arcs(Pi) is a forward arc of Pi

+ if nodes(Pi) ⊆ X

− if nodes(Pi) ∩X = ∅.

Relation to Crossing Sets

From Remark (3.4) every directed cut that is not a crossing cut must intersect an s-path

in both a forward arc and a backward arc. Therefore, every crossing set intersects every

non-crossing cut, and we have justified the next two remarks.

Remark 5.4. Crossing set J is a directed join if and only if there does not exist a crossing

cut d where d ∩ J = ∅.

Remark 5.5. An s-path graph with τ = 2 has ν = 1 if and only if for every pair of

disjoint crossing sets, J1 and J2, there is a crossing cut d where d∩ J1 = ∅ (equivalently,

d ∩A1 ⊆ J2), or d ∩ J2 = ∅ (equivalently, d ∩A1 ⊆ J1).

The above remark quickly gives us a nice result.

Proposition 5.6. There do not exist minimally non-2-knitted s-path graphs with one or

two paths.

Proof. Let (D,ω) be an s-path graph with one or two paths. Notice that (D,ω) has at

least one pair of disjoint crossing sets J1, J2. If τ(D,ω) = 0 or τ(D,ω) = 1 then (D,ω)

is knitted. Otherwise, if τ(D,ω) = 2 and ν(D,ω) = 1 then by Remark (5.5), there must

be a crossing cut d where d ∩ J1 = ∅ or d ∩ J2 = ∅ or else ν(D,ω) = 2. However, since a

crossing cut d is not trivial, then by Remark (5.1) ω(d) ≥ 3, and so d must intersect at

least three s-paths. This is not possible; so (D,ω) is knitted.

In order to compare crossing cuts and crossing sets, we introduce the function s, for

set, mapping the symbolic representation of a crossing cut to a set of binary numbers

representing the crossing sets that contain the non-zero weight arcs of the crossing cut.

For the sake of future arguments, the domain of the map is generalized from {0, 1,+,−}p
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to {0, 1,+,−,±}p so that ± can indicate when the distinction between + and − is not

made. If u ∈ {0, 1,+,−,±}p let s(u) be defined to contain every w ∈ {0, 1}p where

w[i] =

{

0 if u[i] = 0

1 if u[i] = 1

For example, s(0+−) = s(0−±) = {000, 001, 010, 011}. Crossing cut d is minimal if

there does not exist crossing cut d′ with s(q(d)) ( s(q(d)).

Remark 5.7. Let J be a crossing set and d a crossing cut. The following are true

• b(J) ∈ s(q(d)) ⇐⇒ d ∩A1 ⊆ J

• b(J) ∈ s(q(d)) ⇐⇒ d ∩ J = ∅.

Figure 5.1: From top to bottom, s-paths P1, P2, P3, and P4, where the forward arcs of
each s-path are directed from left to right. Disjoint crossing sets J1, J2 are represented
by the grey and black arcs, where b(J1) = 0001 and b(J2) = 1110. Crossing cut d skips
P4 with q(d) = 000− and s(q(d)) = {0000, 0001}. Notice b(J1) = 0001 ∈ s(q(d)) so the
non-zero weight arcs of d are a subset of J1.

Pushing S-Paths

By pushing weight along s-paths, the existence of small collections of crossing cuts can

be determined. In the next chapter we will see that this idea relates the known coun-

terexamples of the Edmonds-Giles Conjecture to the Q6-property.

Recall that if W is an arc-simple walk, then pushing on W changes the weight vector
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ω into ω′ where

ω′(a) =











ω(a) + 1 if a is forwards in W

ω(a)− 1 if a is backwards in W

ω(a) otherwise.

In particular, if W traverses s-path P , from its beginning to its end, then the weight

of every forward arc in P is increased by one, and the weight of every backward arc in P

is decreased by one. This will be referred to as pushing the s-path in its forward direction.

Pushing P in its backward direction increases the weight of every backward arc in P by

one, and decreases the weight of every forward arc in P by one.

Lemma 5.8. If (D,ω) is minimally non-2-knitted then τ(D,ω) = τ(D,ω′) where ω′ is

the result of pushing weight (in either direction) along any single s-path.

Proof. Without loss of generality, suppose that ω′ is the result of pushing s-path P in

the forward direction. The only directed cuts that could have ω′(d) < ω(d) are those

that contain a backward arc of P . If d is a directed cut of weight τ(D,ω) in (D,ω) that

contains a backward arc of P then by Proposition (5.2), d must be a trivial cut containing

exactly one forward and one backward arc of P . Hence,

ω′(d) = ω(d) + 1− 1 = ω(d) ≥ τ(D,ω).

Otherwise, if d is any other directed cut containing a backward arc of P then ω(d) ≥

τ(D,ω) + 1. Let f be the number of times d intersects a forward arc of P and b be the

number of times d intersects a backward arc of P . By Remark (3.4), f ≥ b− 1. Hence,

ω′(d) = ω(d) + f − b ≥ ω(d) + b− 1− b = ω(d)− 1 ≥ τ(D,ω).

Therefore, pushing an s-path does not change the smallest weight of a directed cut.

Furthermore, in terms of minimum weight vectors, ω′ < ω, because pushing lowers the

weight of at least one arc to zero. Hence, pushing any s-path on a minimally non-2-

knitted, results in a knitted weighted directed graph with a packing of two directed joins.

Examining this packing gives information on the crossing cuts of the original.

Proposition 5.9. For any s-path P , there are two crossing cuts that intersect the forward

arcs of P , and do not intersect any other s-path in the same direction. Furthermore, there
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are two crossing cuts that intersect the backward arcs of P , and do not intersect any other

s-path in the same direction.

Proof. In (D,ω) push s-path P in its forward direction, resulting in knitted (D,ω ′) with

a packing J1, J2 of directed joins. By Remark (4.21) both J1 and J2 are directed joins

in (D,ω) that are not accommodating. If J1 is not accommodating in (D,ω), then there

is a crossing cut d1 where d1 ∩ A1 ⊆ J1. However, J1 is accommodating in (D,ω′), and

the only arcs that have greater weight in ω′ than ω are the forward arcs in P . Thus, it

must be that d1 intersects P in its forward direction. The same argument for J2 can be

made, resulting in crossing cut d2. In particular, d1 and d2 must not share an arc of the

same direction on any s-path other than P , otherwise J1 and J2 would share an arc on

an s-path other than P . The same argument can be applied to the backward direction

of P , giving the two crossing cuts that intersect backward arcs of P and do not intersect

any other s-path in the same direction.

Union and Intersection

By taking unions and intersections, the existence of certain crossing cuts imply the ex-

istence of additional crossing cuts. Let δ(X) and δ(X ′) be two crossing cuts that in-

tersect s-path P in opposite directions. Say that δ(X) and δ(X ′) are together on P if

nodes(P ) ∩ (X ∩X ′) = ∅. Otherwise, it must be that nodes(P ) ⊆ (X ∪X ′), and we say

that δ(X) and δ(X ′) are apart on P (Figure (5.2)).

Figure 5.2: Crossing cuts that are together and apart.

Remark 5.10. If d = δ(X) and d′ = δ(X ′) are crossing cuts, then d ∩ d′ is a crossing

cut ⇐⇒ d and d′ are not apart on any s-path and X ∩X ′ 6= ∅. On the other hand, d∪d′

is a crossing cut ⇐⇒ d and d′ are not together on any s-path and X ∪X ′ 6= N .

A set of crossing cuts is closed if the result of any union and/or intersection of crossing

cuts from the set is either not a crossing cut, or is already in the set. For example, {d1, d2}

would not be a closed set of crossing cuts if q(d1) = 000 and q(d2) = 001.
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5.3 Trace

Remark (5.5) shows the importance of understanding what types of crossing cuts are

present in an s-path graph. For this reason we introduce a global view of the crossing

cuts, called the trace. The trace eliminates much of the information on individual crossing

cuts, but as we will see, there are several ways to infer this lost information from the trace.

Before illustrating the utility of the trace, we first provide a handful of definitions.

Hypercubes, Terms, Maxterms, and Reversibility

A trace, T, is any T ∈ 2{0,1}
p
. Visually, a trace can be represented on a p-dimensional

hypercube, by colouring the nodes whose co-ordinates are included in the trace. The

trace of an s-path graph (D,ω) is T = T(D,ω), where the following union is done over

every crossing cut d of (D,ω)

T =
⋃

d

s(q(d)).

To make the distinction between traces that arise from s-path graphs, and those that

are just subsets of p-digits binary numbers, we say that a trace T is valid for (D,ω),

or simply valid, if there exists an s-path graph (D,ω) such that T = T(D,ω), otherwise

the trace is invalid. Invalid traces do exist, and they result from the fact that crossing

cuts of any weighted directed graph have the restriction that they are intersection and

union closed. Figure (5.3) shows an invalid trace, where the x denotes nodes that are not

included in the trace.

000 001

011

111110

100 101

010
X

X

X

Figure 5.3: This invalid trace is not the trace of any s-path graph with three paths.

Define t ⊆ T to be a term of T if there exists q ∈ {0, 1,+,−,±}p such that t = s(q).

If T is valid for (D,ω) then every crossing cut of (D,ω) corresponds to a term in T.

However, the correspondence does not necessarily reverse. If T is a valid trace, then a
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term t is reversible in T if every s-path graph (D,ω) with T = T(D,ω) has a crossing cut

d where t = s(q(d)).

A term t is a maxterm if there does not exist any other term t′ such that t ( t′. In

the visual representation, a term is any subcube whose nodes are entirely coloured, while

a maxterm is any maximal subcube with this property. Those familiar with boolean

function simplification and Karnaugh Maps may recognize these concepts [8]. An entire

trace is reversible if every maxterm in the trace is reversible. Figure (5.4) shows a valid

trace that is not reversible.

000 001

011010

100

110 111

101
P1

P2

P3

AC

BC

D

D

D

q(A) = 0++

q(B) = +0+

q(C) = 0++

q(D) = 110

Figure 5.4: This trace is not reversible since the maxterm t = s(± ± 0) is not reversible
in the above closed set of crossing cuts.

Opposite Pairs and Half-Traces

An alternative representation of the trace is possible by Remark (5.7). In the following

expression, the outer union is done over the crossing cuts d of (D,ω), and the inner union

is done over the crossing sets J which satisfy d ∩A1 ⊆ J

T =
⋃

d

⋃

d∩A1⊆J

b(J).

From Remark (5.5) this alternate representation leads to the following proposition,

which we will refer to as the result on opposite pairs

Proposition 5.11. If T is the trace of an s-path graph with p paths and τ = 2 then

ν = 1, if and only if, for every x ∈ {0, 1}p either x ∈ T or x ∈ T.

When studying traces, this proposition allows us to limit our scope to those traces

satisfying x ∈ T or x ∈ T. A second notion of opposite pairs is possible to obtain from
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Proposition (5.9). Define function

rb : x ∈ {0, 1}
p → {0, 1}p−1

for b ∈ {1, . . . , p} as follows. Let rb(x) = x′ where for j = 1, 2, . . . , p− 1

x′[j] =

{

x[j] if j < b

x[j + 1] if j > b

Intuitively, rb has the effect of removing the bth bit. Define S ∈ 2{0,1}
p−1

to be a

half-trace of T ∈ 2{0,1}
p
, on the ath side of b for a ∈ {0, 1} and b ∈ {1, . . . , p} if

S = {rb(x)|x ∈ T and x[b] = a}

Intuitively, a half-trace is any hypercube of one smaller dimension, with “normalized”

co-ordinates. By Proposition (5.9), it is now possible to limit our scope even further

Proposition 5.12. If S is a half-trace of T(D,ω) for minimally non-2-knitted (D,ω)

then there exists x ∈ S where x ∈ S as well.

In other words, Proposition (5.12) ensures that in every half-trace there is an opposite

pair of nodes included in that half-trace. Figure (5.5) shows a trace that satisfies the

criterion of Proposition (5.11) but not the criterion of Proposition (5.12).

000 001

011010

100

110 111

101

00

01

10

11

00 01

10 11

Figure 5.5: The “front” half-trace does, but the “right” does not, include opposite nodes.

Crossing Cuts and Non-Zero Weight Arcs

Proposition (5.11) allows us to prove two precise lemmas regarding crossing cuts and the

role of individual non-zero weight arcs. Essentially, these lemmas show that certain non-
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zero weight arcs must be included in every crossing cut of a particular type. The desire

to extend these lemmas to make more general statements is discussed after the lemmas

are proven.

Lemma 5.13. If (D,ω) is minimally non-2-knitted and a is an arc that is at one end of

a maximal s-path in (D,ω), then there exists x ∈ T(D,ω) such that if d is a crossing cut

where x ∈ s(q(d)) then a ∈ d.

Proof. If T(D,ω) ⊆ T(D/a, ω/a) then by Proposition (5.11) we have that, (D/a, ω/a)

would be non-2-knitted and this would contradict the minimality of (D,ω). From Propo-

sition (5.2) a must be at the end of an s-path of length at least two. Therefore, (D/a, ω/a)

has the same number of s-paths as (D,ω) (notice that the trace is still well-defined even

if an s-path has length one). Therefore, since T(D,ω) * T(D/a, ω/a) then there must

exist x ∈ T(D,ω) where every crossing cut d with x ∈ s(q(d)) also has a ∈ d.

Lemma 5.14. If (D,ω) is minimally non-2-knitted and a1, a2 are adjacent arcs in a

maximal s-path in (D,ω) then there exists x ∈ T such that if d is a crossing cut where

x ∈ s(q(d)) then either a1 ∈ d or a2 ∈ d.

Proof. If T(D,ω) ⊆ T(D/{a1, a2}, ω/{a1, a2}) then by Proposition (5.11) we have that,

(D/{a1, a2}, ω/{a1, a2}) would be non-2-knitted and this would contradict the minimality

of (D,ω). If a1 or a2 is at the end of a maximal s-path then by Lemma (5.13) there will

be a crossing cut of (D,ω) containing a1 or a2. Otherwise, the maximal s-path containing

a1 and a2 has length at least four, and so (D/{a1, a2}, ω/{a1, a2}) has the same number

of s-paths as (D,ω). Therefore, since T(D,ω) * T(D/{a1, a2}, ω/{a1, a2}) then there

must exist x ∈ T(D,ω) where every crossing cut d with x ∈ s(q(d)) also has a1 ∈ d or

a2 ∈ d.

One may hope that the technique used in the previous lemmas could be used to show

that every arc of non-zero weight is contained in each crossing cut of a particular type.

However, a simple extension of these arguments is not possible. For example, consider

the leftmost graph in Figure (5.6). Notice that arc a has weight 1 and is not in any

crossing cut. Furthermore, contracting a results in a knitted weighted directed graph,

found in the center of Figure (5.6). The contraction has had the effect of increasing the

number of s-paths from three to four. (The trace changed from {000, 011, 101, 110} to

{0000, 1000, 0011, 0111, 0101, 1101, 1010, 1110} which allows the packing 1001, 0110.)
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In general, contracting an arc at the end of an s-path, or contracting two consecutive

arcs on an s-path, shortens an s-path but does not split it into two s-paths. On the other

hand, contracting a single arc in the middle of an s-path does split the s-path into two

s-paths, and this is essentially what prevents the discussed extension of Lemma (5.13)

and (5.14). This is illustrated in the rightmost graphic in Figure (5.6), where the results

of contracting b1, contracting f1 and b2, and contracting f1 are shown.

a b1 f1 b2 f2

Figure 5.6: Contracting a gives the four s-path weighted directed graph in the middle.

5.3.1 D1,3 Family

In the next two chapters, we will see several techniques for how to uncover every non-

2-knitted s-path graph with a particular trace. Before advancing to these chapters, it is

interesting to point out a bit of the back story for this thesis.

For p ≥ 3, let Tp ∈ 2{0,1}
p
be the following trace

Tp = 0p
p−1
⋃

i=0

q(Cyci(011±
p−3))

where 0p represents the binary vector with 0 repeated p times, and Cyci(110±
p−3)

represents the string 1110±p−3 with a right cyclic shift of i positions.

Remark 5.15. For any odd p, Tp is the trace of (D1, ω1) generalized to p s-paths.

Remark 5.16. For any even p, (01)
p
2 /∈ Tp and (10)

p
2 /∈ Tp.

Something surprising occurred to the author while trying to uncover all of the min-

imally non-2-knitted weighted directed graphs that have Tp for a trace. At one point
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0000 0001

00110010

0100

0110 0111

0101

1000 1001

10111010

1100

1110 1111

1101

Figure 5.7: The trace T4. Notice an opposite pair of nodes is uncovered.

during the excavation, it become apparent that every potential candidate had to look

very similar to one of the generalizations of (D1, ω1). In fact, each of the candidates

could be formed from a generalization of (D1, ω1) by a simple twist of two s-paths. It

was this observation that led the author to the new embedding of (D3, ω3) and the new

infinite D1,3 family. Incidentally, no other minimally non-2-knitted weighted directed

graphs were found.
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10000 10001

1001110010

10100

10110 10111

10101

00000 00001

0001100010

00100

00110 00111

00101

01000 01001

0101101010

01100

01110 01111

01101

11000 11001

1101111010

11100

11110 11111

11101

000 001

011010

100

110 111

101

Figure 5.8: The D1,3 family members of size three and five together with T3 and T5.





Chapter 6

Three S-Paths

In this chapter we restrict our attention to minimally non-2-knitted s-path graphs with

three paths. We find that any such s-path graph must have special crossing cuts, and

in fact, they must have the same trace. This trace leads us to a proof that (D1, ω1),

(D2, ω2)
+, and (D3, ω3)

+ are the only s-path graphs with three paths that are minimally

non-2-knitted.

The next remark follows from the first remark of the previous chapter, which told us

that every crossing cut must have weight at least 3, and every arc in an s-path has weight

1.

Remark 6.1. Every crossing cut intersects all three s-paths.

Lemma 6.2. If (D,ω) is an s-path graph with three paths that is minimally non-2-knitted

then T(D,ω) is reversible.

Proof. If x ∈ T then there exists a crossing cut d where x ∈ s(q(d)). From Remark (6.1),

it must be that d intersects each s-path, so we have equality, x = s(q(d)). Therefore,

every term of size one is reversible. Suppose that x ⊆ T is a term of size at least

two. Therefore, x contains two terms x0 and x1 of size one that differ in only one

bit. Therefore, there exist two crossing cuts d0 and d1 that intersect only one s-path in

opposite directions. Therefore, the union or intersection of d0 and d1 will intersect only

two s-paths. This contradicts Remark (6.1). Hence, the only terms in T have size one,

and T is reversible.

Proposition 6.3. If (D,ω) is an s-path graph with three paths that is minimally non-2-

knitted then, without loss of generality, T(D,ω) = {000, 011, 101, 110}.

67
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Proof. Without loss of generality, suppose that 000 ∈ T. From Remark (6.1) and Lemma

(6.2), there cannot be any terms of size two in T. Therefore, 100, 010, 001 /∈ T. By

Proposition (5.11), this implies that 011, 101, 110 ∈ T. In particular, since 110 ∈ T and

the size two term, s(11±) /∈ T then 111 /∈ T.

It is interesting to briefly return to clutters and the Q6 property. By pushing forward

on an s-path P , two directed joins J1, J2 are found that intersect P in the forward

direction, and intersect the other two s-paths in opposite directions. Likewise, by pushing

backward on P , two directed joins J3, J4 are found that intersect P in the backward

direction and intersect the other two s-paths in opposite directions. Furthermore, suppose

that Ja and Jb intersected two s-paths in the same direction, for a ∈ {1, 2} and b ∈ {3, 4}.

Since Ja and Jb are not accommodating, there must exist crossing cuts da and db where

da ⊆ Ja, and db ⊆ Jb. However, this implies that da and db intersect only one s-path

in opposite directions, and thus, their union or intersection contradicts Remark (6.1).

Therefore, for a ∈ {1, 2} and b ∈ {3, 4}, the pair Ja and Jb share directions on exactly

one s-path. By considering the six columns of Q6 as the six s-path directions, the four

directed joins J1, J2, J3, J4, can be seen as the four rows of Q6. In other words, the trace

found in Proposition (5.9) can be seen as a direct consequence of the Q6 property.

We will denote this special trace by T3. Figure (6.1) represents trace T3 by colouring

the appropriate nodes of a three dimensional hyper-cube.

000 001

011

111110

100 101

010

Figure 6.1: The trace T3.

Now let us consider the crossing cuts implied by T3. Let d0, d1, d2, and d3 be crossing

cuts of a minimally non-2-knitted s-tree graph (D,ω) with three paths, P1, P2, and P3,

where q(d0) = 000, q(d1) = 011, q(d2) = 101, and q(d3) = 110. Notice that each pair

of the crossing cuts d0, d1, d2, d3 intersect one of the s-paths P1, P2, P3 in the same

direction, and the other two s-paths in the opposite direction. Therefore, if the union
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or intersection of any two of these crossing cuts is also a crossing cut, then the resulting

crossing cut would intersect one s-path, and skip the other two. This cannot happen, so

we have the following remark.

Remark 6.4. In T each pair of the crossing cut d0, d1, d2, d3 must be together on one

s-path and apart on another s-path.

Individually, each of the four cuts is involved in three together and three apart pairs,

and collectively the six distinct pairs of these crossing cuts produce s-paths that have six

together pairs and six apart pairs. Therefore, we need only to consider sets of s-paths

and crossing cuts where the six together, six apart criterion can be matched.

Notice that T ensures that each s-path in P1, P2, P3 has two of d0, d1, d2, d3 inter-

secting it in the forwards direction and the other two intersecting it in the backwards

direction. Therefore, each s-path the crossing cuts contribute a total of 2 · 2 = 4 together

or apart pairs. Hence, for any set of s-paths and crossing cuts, we can classify each s-path

based on how many together pairs it contributes. We will call an s-path Type i if it

contributes i together pairs and 4− i apart pairs. Recall that Remark (5.13) and Remark

(5.14) ensure that no arc at the end of an s-path, and no two adjacent arcs in an s-path

are absent from all of d0, d1, d2, d3. Figure (6.2) shows every possible s-path and crossing

configuration given these restrictions.

Up to taking a directional dual, by reversing the direction of every arc, there are only

four possible combinations of Types that will result in six together and six apart pairs.

Since the Type numbers in each of these combinations must sum to six, the possibilities

are: [Type 2, Type 2, Type 2], [Type 3, Type 3, Type 0] (dual to [Type 1, Type 1, Type

4]), [Type 3, Type 2, Type 1], and [Type 4, Type 2, Type 0].

We will see that the first three combinations lead to (D1, ω1), (D2, ω2)
+, and (D3, ω3)

+

respectively, while the fourth combination does not yield any minimally non-2-knitted

examples.

Before proceeding to this analysis, an additional remark needs to be made. For

contradiction, suppose that some node n was included in two of the s-paths, say P1 and

P2. Since internal nodes of s-paths induce directed cuts of weight 2, this node cannot be

internal to P1 or P2. Therefore, the node is at the end of both of the s-paths, and the

P1 plus P2 form a single path P . Without loss of generality, label forward and backward

on the two s-paths so that the forward arcs of P are the forward arcs of P1 and P2.

By Remark (3.4) this implies that every crossing cut either intersects P1 in the forward
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0 together

4 apart}
1 together

3 apart

2 together

2 apart}
3 together

1 apart

4 together
0 apart}

Figure 6.2: Trace T3, Remark (5.13), and Remark (5.14) limit each s-path and crossing
cut intersections to the above possibilities.
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direction and P2 in the backward direction, or P1 in the backward direction and P2 in the

forward direction. However, this contradicts the trace T3 because the four crossing cuts

d0, d1, d2, d3 intersect P1 and P2 in the four possible forward/backward combinations.

Therefore, no node in (D,ω) is present in both P1 and P2. The same argument works

for any pair of P1, P2, P3. Combined with Proposition (5.2), this implies the following

remark.

Remark 6.5. Every node of (D,ω) is present in exactly one of P1, P2, P3.

6.1 Minimally non-Knitted D1

The first combination uses three s-paths of Type 2. Assume for the moment that every

arc in an s-path is included in one of d0, d1, d2, d3. This assumption, which will be

justified, implies that we have the three s-paths of length three found in Figure (6.3).

2 together

2 apart

2 together

2 apart

2 together

2 apart

Figure 6.3: The s-paths of (D1, ω1).

During this discussion, for any s-path, the side arcs refer to the arcs for which there

are two in the same direction, and the middle arc refers to the arc that is the only one

in its direction. S-paths of odd length have less symmetry than s-paths of even length,

since the two directions are not equivalent. For this reason T3, could actually represent

two different groups of crossing cuts. The first option is that there is a crossing cut using

all middle arcs, and three different crossing cuts using one middle arc and two side arcs.

The second option is that there is a crossing cut using all side arcs, and three different

crossing cuts using one side arc and two middle arcs.

However, this second option is not possible. As discussed, in general, there is a

global restriction, over all pairs of crossing cuts, of six together, and six apart pairs. In

particular, each crossing cut is both together and apart with the other three crossing
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cuts, so it must have a total of three together, and three apart pairs. However, each side

arc either contributes two together, or two apart pairs. Therefore, it is not possible to

have a directed cut that uses three side arcs.

Once the 000 crossing cut is placed along the middle arcs, the remaining crossing cuts

have a unique placement, since each must use two different sides in order to be together

and apart with 000.

A B

A C

A D

C D

CB

BD

A

B

A

C

A

D

A

C

D

A

B

D

D

B

B

D

B

C

C

D

A

B

C
C

A : 000

B : 011

C : 101

D : 110

Figure 6.4: The crossing cuts of (D1, ω1).

The final step is to add arcs of weight zero. In particular, any arc of weight zero that

does not enter the four crossing cuts, or the six trivial directed cuts, can be added without

changing the fact that there will be no two packing of directed joins. In particular, it must

be that these zero weight arcs remove every directed cut of weight 0 and 1. Remarkably,

this is exactly what happens.
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D
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D
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C

D

A

B

C
C

Figure 6.5: An embedding of (D1, ω1).

In Figure (6.5) each letter represents a crossing cut, and every node lists the crossing

cuts that it is inside. A zero weight arc can be directed from u to v, if and only if, u is

not a sink v is not a source and the list of crossing cuts in u contains the list of crossing

cuts in v.
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Notice that transitive weight zero arcs are implied between three pairs of sources and

sinks. For example, the arc ACD to C, is implied by ACD to CD and CD to C. Adding

such arcs are not necessary, since they do not change any of the directed cuts.

Now let us justify our previous assumption that each arc of weight 1 is in a crossing

cut. From Figure (6.2) we must also consider that any of the s-paths could have length

five. The upcoming arguments are valid regardless of the number of s-paths of length

five. Let us then concentrate on the first s-path, P1. Notice that crossing cuts A and

B intersect the middle arc of P1. Therefore, when using an s-path of length five we can

either take A to be inside of B (Figure (6.6)), or B to be inside of A (Figure (6.7)).

In both cases, it is possible to add arcs of weight 0 to create non-2-knitted weighted

directed graphs. However, we will show that, by contraction or folding, the results are

not minimal.
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A : 000
B : 011
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D : 110
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Cf2
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w2 u2
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Figure 6.6: Extensions of these s-paths and crossing cuts can be folded.

Let us attempt to extend the s-paths and crossing cuts in Figure (6.6) to minimally

non-2-knitted (D,ω). To ensure τ(D,ω) > 1, the node z must have arcs of weight 0

entering and leaving it. The only possible weight 0 arc entering z is (w2, z), and the only

possible weight 0 arc leaving z is (z, u1). Therefore, there is a directed path from w2 to

u1 in (D,ω). This is condition (F4) for folding.

Next, the only arc that can enter u2 (and does not originate from w1 or w2) is (x, u2).

The only two arcs that can leave w1 (and do not terminate at u1 or u2) are (w1, x) and

(w1, y). Since (x, y) is an arc, we have also satisfied condition (F5) for folding. Since (F1),

(F2), (F3) are also satisfied, we can fold on the first s-path. Therefore, (D,ω) cannot be

minimal.

By appropriately relabeling the nodes x, y, z a similar argument shows that the s-paths

and crossing cuts in Figure (6.7) do not extend to a minimally non-2-knitted (D,ω). The

difference in this case is there are two possible arcs entering u2 and one leaving w1.
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Finally, notice that these arguments
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Figure 6.7: Extensions of these s-paths and crossing cuts can be folded.

6.2 Minimally non-Knitted D2

The second combination uses two s-paths of Type 3, and one of Type 0. Again, we assume

for the moment that every arc in each s-path is included in one of d0, d1, d2, d3. This

implies that we have the two s-paths of length four and the one s-path of length two

found in Figure (6.8).

0 together

4 apart

3 together

1 apart

3 together

1 apart

Figure 6.8: The s-paths of (D2, ω2).

Up to symmetry, there is a unique way to place the crossing cuts on the s-paths. In

particular, two crossing cuts share the 0 direction on the s-path of length two, and two

crossing cuts share the 1 direction on the s-path of length two. Each of these pairs must

have an apart pair on one of the remaining s-paths. Since there is only one apart pair

on each of the s-paths of length four, their positioning is determined, and this, in turn

determines the positioning of the other crossing cuts.

Of particular note in this example is that the middle node in the path of length two
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Figure 6.9: The crossing cuts of (D2, ω2).

is forced to be a super-source, connected by a directed path to every sink via an arc to

the ends of each s-path.

Also of note, the list of crossing cuts on the end nodes of the path of length two are

supersets of the list of crossing cuts contained on two sink nodes apiece. For example,

the path end AD, is a superset of both sinks A and D on the second s-path.

Therefore, for both path ends, an arc of weight zero can be directed from the path end,

to either of the sinks, or both. In fact, in both cases, all such choices are independently

sufficient for ensuring that there are no directed cuts of weight one. Therefore, before

isomorphism, there are nine possible variations of D2, and these constitute the members

of (D2, ω2)
+.

Now let us justify our previous assumption that each arc of weight 1 is in a crossing cut.

Figure (6.2) shows that such an arc cannot be present in an s-path of Type 3. However,

there are several choices for the s-path of Type 0. Although there are a large number

of possible configurations, we can quickly argue that none can extend to minimally non-

2-knitted weighted directed graphs. For illustrative purposes, consider the configuration

given in Figure (6.10).

A
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B

B
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A
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A
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A
D

B
D

C
DB

A
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D

A
B
C
D

A
D

B
C

A D

B
C

C

A
B
D

A
B
D

f b2b1 yx

Figure 6.10: Extensions of these s-paths and crossing cuts can be contracted.
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Notice that altering the third s-path, P3, has resulted in a sink node y that is inside

three out of the four crossing cuts. There is no arc of weight 0 that can be added that

enters this sink. Therefore, if δ(X) is a crossing cut with b2 ∈ δ(X) then δ(X ′) for

X = X ∪ {x, y}) is also a crossing cut. In particular,

δ(X ′) ∩A1 = δ(X) ∩A1\b1 ∪ b2.

This contradicts Remark (5.14) since contracting f and b2 will not eliminate any crossing

cuts. This argument illustrates why the combination of two Type 3 s-paths, and one

Type 0 s-path, only results in the minimally non-2-knitted (D2, ω2)
+.

6.3 Minimally non-Knitted D3

The third combination uses s-paths of Type 3, 2, and 1. Again, we assume for the moment

that every arc in each s-path is included in one of d0, d1, d2, d3. This implies that we

have the two s-paths of length four and the one s-path of length three found in Figure

(6.11).

3 together

1 apart

1 together

3 apart

2 together

2 apart

Figure 6.11: The s-paths of (D3, ω3).

Again there is a unique way, up to symmetry, to place the crossing cuts on the s-paths.

In particular, without loss of generality, suppose that the third s-path is as presented.

D = 011 and B = 110 are together on the third s-path, so they must be apart on the

first s-path. Therefore, D and B use the two center arcs in the first s-path. D = 011 and

C = 101 are apart on the third s-path, so they must be together on the second s-path.

Therefore, D and C use the two center arcs in the second s-path. The remaining choices

are then fixed.

As in the previous combination, there is some choice for placing arcs of weight zero.
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Figure 6.12: The crossing cuts of (D3, ω3).

In particular, path end BD of the second s-path, can have arcs directed out to sink B or

sink D in the first s-path. Additionally, path end AB of the first s-path, can have arcs

directed in from source ABC or source ABD on the second s-path.

Again, the condition that needs to be satisfied, reduces to the fact that every path

end requires one arc of weight zero entering it, and one arc of weight zero exiting it. This

is sufficient for removing the potential directed cuts of weight one involving the path end.

Now let us justify our previous assumption that each arc of weight 1 is in a crossing

cut. Figure (6.2) shows that such an arc cannot be present in an s-path of Type 3 or

Type 1. However, there is a choice for the s-path of Type 2.
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C
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C
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b

w2 u2 u1

y x

z

Figure 6.13: Extensions of these s-paths and crossing cuts can be folded.

It is not difficult to verify that any extension of Figure (6.13) or Figure (6.14) can be

folded. The proof is the same as for the modifications of (D1, ω1).
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Figure 6.14: Extensions of these s-paths and crossing cuts can be folded.

6.4 Invalid

The final combination uses s-paths of Type 4, 2, and 0. However, there is an immediate

problem with this combination, and this problem is irrespective of the length of each

s-path. In order to visualize the situation, refer to Figure (6.15) which uses one s-path of

length three, and two s-paths of length two.

2 together

2 apart

0 together

4 apart

4 together

0 apart

Figure 6.15: This configuration does not extend to a non-knitted weighted directed graph.

The problem is the restriction that, individually, each crossing cut must be involved

in three together pairs and three apart pairs. However, each crossing cut accumulates

two together pairs from one of the s-paths of Type 4, and two apart pairs from the s-path

of Type 0. Therefore, each crossing cut must accumulate one together pair and one apart

pair from the s-path of Type 2. However, this is not possible on an s-path.

Of particular note, if this combination did yield a non-knitted weighted directed graph,

then the directed graph would contain a super-source, and a super-sink.
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A D B C

A CB D

A B

Figure 6.16: Individually the crossing cuts cannot have three together and apart pairs.





Chapter 7

Four S-Paths

In this chapter we turn our attention to s-path graphs with four s-paths. When extending

from three to four s-paths we introduce the possibility that crossing cuts can skip one

of the s-paths. For this reason, we use the notation P [d] ∈ {0, 1,+,−} to represent how

crossing cut d intersects with s-path P . Also, we use P [d1, d2] = + if δ(X) = d1 ∪ d2

where X contains all of the nodes of P . Likewise, we use P [d1, d2] = − if δ(X) = d1 ∩ d2

where X contains none of the nodes of P .

The main result of this chapter is that there are no minimally non-knitted s-path

graphs with four s-paths. The proof works by showing that there are no appropriate

traces. We begin by showing that any potential trace is reversible.

Lemma 7.1. If (D,ω) is minimally non-2-knitted and has four s-paths, then T(D,ω) is

reversible. Furthermore, every term in T(D,ω) has size one or two.

Proof. From Proposition (5.2) each crossing cut must intersect at least three out of the

four s-paths. Let us show that if t is a term of size two in T then there exists a crossing

cut d where s(q(d)) = t. Without loss of generality, assume t = s(±000) = {0000, 1000}

is a term in T. Since every crossing cut intersects at least three s-paths, there cannot

exist a crossing cut d where t ( s(q(d)). Therefore, if there does not exist a crossing cut

d where t = s(q(d)) then there exist two crossing cuts, d0 and d1, where 0000 ⊆ s(q(d0))

and 1000 ⊆ s(q(d1)). Suppose that P1[d0, d1] = +. Since d0 and d1 can skip at most one

s-path each, at least one of P2, P3, P4 has the property that both d0 and d1 intersect that

s-path in the 0 direction. Without loss of generality, suppose that P4[d0] = P4[d1] = 0.

Furthermore, since P2[d0, d1] 6= − and P3[d0, d1] 6= −, then d = d0 ∪ d1 must be a

81
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crossing cut. In particular, since P1[d] = P1[d0, d1] = + then it must be that P2[d0, d1] =

P3[d0, d1] = P4[d0, d1] = 0. Hence, we have found a crossing cut d where t = s(q(d)).

Therefore, every term of size two is reversible. Now we argue, via an argument similar

to one found above, that T cannot contain a term of size four. Without loss of generality,

suppose T contained the term t = s(± ± 00). Therefore, we have adjacent terms of size

two, t0 = s(0 ± 00) and t1 = s(1 ± 00). Since t0 and t1 are reversible then there exist

crossing cuts d0 and d1 where t0 = s(q(d0)) and t1 = s(q(d1)). However, either d = d0∪d1

or d = d0 ∩ d1 gives us a contradiction because d skips the s-paths P1 and P2. Therefore,

T contains no terms of size larger than two.

In conclusion, we have that T has no maxterms of size larger than two, every maxterm

of size two is reversible, and every maxterm of size one is always reversible. Therefore, T

is reversible.

Since the remaining arguments are visual in nature, it is useful to borrow graph

theoretic terminology for the traces. A term of size one in T is a vertex and a term of

size two in T is an edge. Define G(T) = (V,E) as follows:

V = {x|x ∈ {0, 1}4 and x ∈ T}

E = {(x, y)|x, y ∈ {0, 1}4 and x 6= y and (x ∪ y) ⊆ T}

Remark 7.2. If (D,ω) is minimally non-2-knitted with four s-paths then the degree of

every vertex in G(T(D,ω)) = (V,E) is at most two.

1111

0000 0001

00110010

0100

0110 0111

0101

1110

1101

1001

10111010

1000

1100

Figure 7.1: A vertex in G(T) cannot be incident to more than two edges.

Proof. For contradiction, suppose that there is some vertex v ∈ V incident to three

edges in E. Without loss of generality, suppose that x = 0000 and the edges are
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e1 = (0000, 1000), e2 = (0000, 0100), e3 = (0000, 0010) ∈ E. Therefore, s(±000), s(0 ±

00), s(00±0) ∈ T and by Lemma (7.1) there exist crossing cuts d1, d2, d3 where s(q(d1)) =

s(±000), s(q(d2)) = s(0 ± 00), s(q(d3)) = s(00 ± 0). Now of the values P1[d1], P2[d2],

P3[d3], at least two are +, or at least two are −. Without loss of generality, suppose that

P1[d1] = P2[d2] = +. However, this is a contradiction since then d = d1 ∪ d2 is a crossing

cut skipping two of the s-paths.

Remark 7.3. If (D,ω) is minimally non-2-knitted with four s-paths then G(T(D,ω)) =

(V,E) is acyclic.

Proof. Suppose otherwise. Without loss of generality, suppose (0000, 0001) and (0001, 0011)

are edges in a cycle. Hence, 0000, 0001, 0011 ∈ T (Figure (7.2)).

1111

0000 0001

00110010

0100

0110 0111

0101

1110

1101

1001

10111010

1000

1100

Figure 7.2:

By Lemma (7.1) s(00 ± ±) * T so 0010 /∈ T. Also, since vertex 0001 already has

degree two, by Remark (7.2) we have 1001, 0101 /∈ T. Therefore, by Remark (5.11) on

opposite pairs, these observations imply 1101, 0110, 1010 ∈ T. At this point we have

0000, 0001, 0011, 1101, 0110, 1010 ∈ T and 00001, 1001, 0101 /∈ T (Figure (7.3)).
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00110010
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0110 0111
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10111010

1000

1100
X

X

X

Figure 7.3:
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The cycle now must extend with either (0011, 1011) or (0011, 0111). However, notice

that T is currently symmetric on P1 and P2. Therefore, without loss of generality, the

cycle also contains edge (0011, 0111). Hence, 0111 ∈ T. Since vertex 0011 and now has

degree two, by Remark (7.2) 1011 /∈ T. Therefore, by Remark (5.11) on opposite pairs,

0100 ∈ T (Figure (7.4)).
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10111010

1000

1100
X

X

X X

Figure 7.4:

Therefore, we have a cycle of length six. For completion, we will finish the argument

to show that this trace candidate is unique. Since the vertices 0111, 0110, 0100, 0000 have

degree two, then by Remark (7.2) we have 1111, 1110, 1100, 1000 /∈ T (Figure (7.5)).
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X X

Figure 7.5:

Now we show that T is not valid. Since s(0± 00), s(01± 0), s(011±), s(0± 11), s(00±

1), s(000±) ∈ T then by Lemma (7.1) there exist crossing cuts d1, d2, d3, d4, d5, d6 such
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that

s(q(d1)) = s(0±00)

s(q(d2)) = s(01±0)

s(q(d3)) = s(011±)

s(q(d4)) = s(0±11)

s(q(d5)) = s(00±1)

s(q(d6)) = s(000±)

Let us represent the skip value of di by xi ∈ {+,−}. That is, let x1 = P2[d1],

x2 = P3[d2], x3 = P4[d3], x4 = P2[d4], x5 = P3[d5], and x6 = P4[d6]. We will index

the crossing cuts d and the values of x cyclically, so that d7 = d1 and x7 = x1. If

xi = xi+1 then either d = di ∪ di+1 or d = di ∩ di+1 gives a contradiction since d would

be a crossing cut skipping two s-paths. Therefore, without loss of generality assume that

x1 = x3 = x5 = + and x2 = x4 = x6 = −. Now consider d = d1 ∪ d3 ∪ d5. Since

P2[d1] = P3[d5] = P4[d3] = + and P1[d1] = P1[d3] = P1[d5] = 0 then d is a crossing cut

skipping three s-paths. Hence, T is not valid.

Therefore, G(T) is acyclic and from Remark (7.2) each vertex has degree at most two.

Hence, G(T) is a collection of paths and isolated vertices. We will conclude our proof by

showing that G(T) is not a collection of isolated vertex, and cannot contain a path.

Remark 7.4. If (D,ω) is minimally non-2-knitted with four s-paths then G(T(D,ω)) =

(V,E) is not a collection of isolated vertices.

Proof. For contradiction assume otherwise. That is, assume that E = ∅ so every max-

term of T is size one. Without loss of generality suppose that 0000 ∈ T. Therefore,

1000, 0100, 0010, 0001 /∈ T. By Remark (5.11) for opposite pairs, we must have that

0111, 1011, 1101, 1110 ∈ T (Figure (7.6)).

From Remark (7.2), 0111 has degree at most two in G(T) so at least one of 0011,

0101, 0110 is not in T. Since T is completely symmetric at this point, without loss of

generality, suppose that 0101 /∈ T. Therefore, by Remark (5.11) on opposite pairs, we

have that 1010 ∈ T (Figure (7.7)).

However, this contradicts our assumption on G(T) since {1010, 1110} ⊆ T so E 6= ∅.
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1111

0000 0001

00110010

0100

0110 0111

0101

1110

1101

1001

10111010

1000

1100

X

X

X

X

X

Figure 7.7:

Remark 7.5. If (D,ω) is minimally non-2-knitted with four s-paths then G(T(D,ω)) =

(V,E) does not contain a path.

Proof. If G(T) contains a path then it must have a node at the end of the path. Without

loss of generality, suppose that 0000 ∈ V is the end of a path, and that (0000, 0001) ∈ E

is an edge in the path. Hence, 0000, 0001 ∈ T and since 0000 is the end of a path then

1000, 0100, 0010 /∈ T. Therefore, by Remark (5.11) on opposite pairs, 0111, 1011, 1101 ∈ T

(Figure (7.8)).

From Remark (7.2), 0101, 0011, 1001, and 1111 have degree at most two in G(T) so

0101, 0011, 1001, 1111 /∈ T. Therefore, by opposite pairs, 1010, 1100, 0110 ∈ T. Finally,

1110 has degree at most two and we see that 1110 /∈ T (Figure (7.9)).

However, our result is a trace in which P1 plays no significant role. By contracting the

entire s-path we are left with the trace T3. Hence, the trace cannot produce minimally

non-2-knitted weighted directed graphs.

From the above line of reasoning, we have proven the following result. The natural

question is if this result can be extended to higher numbers of s-paths.
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Figure 7.8: 0000 is the end of a path with edge (0000, 0001).
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Figure 7.9: The trace is fully determined since degree three nodes are forbidden.

Proposition 7.6. No minimally non-knitted weighted directed graph has four s-paths.
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