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Abstract

Although globally used in option pricing, the Black-Scholes model has not been able

to re�ect the evolution of stocks in the real world. A regime-switching model which

allows jumps in the underlying asset prices and the parameters of the corresponding

stochastic process is more accurate. We evaluate the analytical solution for pricing of

European options under a two-state regime switching model. Both the convergence of

the analytical solution and the feature of implied volatility are investigated through

numerical examples.

We develop a number of techniques for pricing American options by solving the sys-

tem of partial di�erential equations in a general K-state regime-switching model. The

linear complementarity problem is replaced by either the penalty or the direct control

formulations. With an implicit discretization, we compare a number of iterative proce-

dures (full policy iteration, �xed point-policy iteration, and local American iteration)

for the associated nonlinear algebraic equations. Speci�cally, a linear system appears

in the full policy iteration which can be solved directly or iteratively. Numerical tests

indicate that the �xed point-policy iteration and the full-policy iteration (using a sim-

ple iteration for the linear system), both coupled with a penalty formulation, results

in an e�cient method. In addition, using a direct solution method to solve the linear

system appearing in the full policy iteration is usually computationally very expensive

depending on the jump parameters.

A Fourier transform is applied to the system of partial di�erential equations for

pricing American options to obtain a linear system of ordinary di�erential equations that

can be solved explicitly at each timestep. We develop the Fourier space timestepping

algorithm which incorporates a timestepping scheme in the frequency domain, in which

the frequency domain prices are obtained by applying the discrete Fourier transform to

the spatial domain. Close to quadratic convergence in time and space is observed for
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all regimes when using a second order Crank-Nicolson scheme for approximation of the

explicit solution of the ordinary di�erential equation.
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Chapter 1

Introduction

1.1 Overview

There has been a tremendous demand for �nancial derivatives during the past few

decades. These derivatives are frequently used by �nancial institutions to hedge risk,

and hence can be viewed as a form of �nancial insurance. Determination of the fair

market value of this insurance, and the hedging strategy used to reduce the risk in

selling this insurance, is of interest in option pricing.

Most �nancial institutions use fairly simplistic models of asset price evolution. For

instance, although the Black-Scholes model [3] has been a standard approach in option

pricing, the assumptions within the model do not re�ect the true behaviour of stock

movements in the real world [23]. Extreme behaviour or rare events such as jumps in

asset prices which may occur from time to time are not captured by the original Black-

Scholes model. In addition, the assumption of constant volatility in the stochastic

process is not realistic.

A stochastic process that incorporates jumps in �nancial parameters such as asset

prices and volatilities can be employed to accomplish a more realistic model in op-

tion valuation. This achievement can be obtained by either jump-di�usion or regime-

1



switching models. In a jump-di�usion model, jump amplitudes of the asset are drawn

from a continuum while the �nancial parameters remain �xed. However, the parame-

ters that describe the stochastic process will jump between discrete values in a regime-

switching model [23].

Regime-switching models are e�ective alternatives to traditional approaches. Com-

pared to the common solutions, there is clear evidence suggesting that a regime-

switching model is better able to capture the dynamics of long-term price evolution.

In a regime-switching market, shifts can occur in market parameters such as volatil-

ities, stock prices, or interest rates. Those shifts can occur in more than one parameter

at the same time. The unknown parameters such as volatilities that �t market data are

obtained through a calibration process. This process ensures that the resulting model

is consistent with the current market price information.

The rationale behind regime-switching models can be illustrated by a simpli�ed

model with only two regimes. In this model, stock prices would �uctuate between

two states: high and low volatility regimes. Economic uncertainty, reorganizations,

technological shifts, political issues, and other factors may cause changes in volatility

of stock prices leading to a period of high volatility [27, 18]. According to Naik [27],

another interpretation of regime-switching framework is that discontinuous information

arrival may have a signi�cant e�ect on a �rm's stock prices. The volatility of stock

prices would jump upwards before the arrival and revert back to its normal level after

the market �nds the true value of the information.

Regime-switching models can capture the aforementioned discrete shifts in mar-

ket variables. Much research has been done since Hamilton [17] introduced a regime-

switching model consisting of several regimes. Naik [27] proposed an analytical solution

for European call options in terms of the integral of the Black-Scholes formula and the

conditional density of the occupation time of the volatility process. Bollen [5] developed
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a quadrinomial lattice to price both European and American options in a two-regime

model. Hardy [18] incorporated the regime-switching model to price European op-

tions. Duan et al. [13] established a family of GARCH option pricing models in a

regime-switching framework. Boyle and Draviam [6] compared several methods in-

cluding Black-Scholes model with constant volatility, the closed-form solution proposed

in Naik [27], and a PDE approach for pricing European options under a two-regime

framework.

Due to the absence of a simple expression for the optimal exercise boundary, there

is no closed-form solution for pricing American options. Jang [22] proposed a numerical

method to approximate the value of an American put with regime-switching volatility.

Le and Wang [25] proposed a computational procedure for the solution of �nite time

horizontal optimal stopping problems under regime-switching models including pricing

of American put options. An approximate valuation was also carried out through

the regime-switching framework of Barone-Adesi and Whaley [1] and by Bu�ngton

and Elliott [7]. Of those numerical approaches, Surkov [30] solved the option pricing

PIDE for American options under regime-switching using Fourier time-stepping. More

recently, Khaliq and Liu [24] extended the penalty method to price American options

under the regime-switching framework. However, the penalty method in [24] has severe

time-step restrictions.

Regime-switching models have been used in other areas. Chen and Forsyth [10]

proposed a one-factor regime-switching model for the risk-adjusted natural gas spot

price as an alternative to two-factor models developed by di�erent authors (Schwartz

[29] and Xu[31]). In line with this work, Chen and Insley [9] introduced a regime-

switching model to improve the modeling of stochastic timber prices in optimal tree

harvesting problems.

Our goal is to develop e�cient methods for pricing options under a regime-switching
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model, particularly for American options.

1.2 Objectives

The main objectives of this thesis are as follows:

• The analytical solution for pricing European call options under a two-state regime-

switching model, derived in Naik [27], is computed using Gaussian quadrature.

• Various PDE approaches for pricing American options under a general K-state

regime-switching model are developed. We study various policy iteration meth-

ods for solution of the nonlinear discretized equations.

• The Fourier Space Time-stepping algorithm (FST), which involves Fourier-transformed

PDEs with a time-stepping scheme in the frequency domain, is also employed to

price American options under a general K-state regime-switching model. Both

explicit and penalty methods are developed.

• Numerical PDE results are compared with those of the analytical solution and

the FST method. Speci�cally, we demonstrate the rates of convergence, compu-

tational costs, boundary constraints, and jump e�ects in each case.
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Chapter 2

Analytical Solution for Option Pricing

Under Regime-Switching

Closed-forms solutions for the value of European options under regime-switching have

been known since the early work of Naik [27]. However, despite the profusion of re-

search to uncover the corresponding exact solution for the value of American puts, no

completely satisfactory analytic solution has been found. The problem is a�ected by the

early-exercise feature which makes it di�cult to �nd simple expression for the optimal

exercise boundary. Nevertheless, the American put can be represented by the sum of

a European put option and an early exercise premium which is expressed in terms of

the unknown early exercise boundary. Using this representation, Carr [8] developed a

randomization approach which yielded an analytic approximation expressing the Amer-

ican put value explicitly in terms of the exercise boundary. The randomization method

was augmented by Jang [22] to provide an algorithm to approximate the price of an

American put in the regime-switching case.

In this chapter, we validate the approach proposed in Naik [27] for pricing European

options in a 2-regime case with continuous sample paths of stock prices. This solution

is only applicable to the case where no jumps in the asset price occur when a regime
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switch is preserved. Some type of approximation is required to extend the model to

incorporate either discontinuous stock price changes or having more than 2 states in

the volatility process [27].

2.1 Analytical Valuation of Contingent Claims

We assume that the volatility process has two possible states in which the volatility

σ(t) takes either a high (σh) or a low (σl) value. The asset price process has continuous

sample paths which means any change in volatility is not accompanied by a jump in the

asset price. The switch between two regimes can be modeled by a continuous 2-state

Markov chain (m(t) = {h, l}). Let λh→ldt and λl→hdt denote the probability of shifting

from regime h to l and from regime l to h over the small time period dt, respectively.

Then the value of m(t), which indicates the regime in which the risk adjusted asset

price resides at time t, is in�uenced by two transition intensities (λh→l and λl→h)

dmh→l =


1 with probability λh→ldt

0 with probability 1− λh→ldt
, dml→h =


1 with probability λl→hdt

0 with probability 1− λl→hdt
(2.1)

where the term dmh→l and dml→h handle the transition of the Markov chain between

the two states (h and l).

After incorporating a 2-state Markov-chain in the original Black-Scholes model, the

regime-switching geometric Brownian motion is governed by the risk neutral process of

the underlying asset price St:

dSt
St

= rdt+ σm(t)dZt (2.2)

where the superscript m(t) denotes the regime at time t, and σm(t) is the corresponding
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instantaneous volatility. It can be shown that the system of option pricing PDEs for a

European call option [23] can be written as

for m1,m2 = h, l :


∂V m1

∂t
+ 1

2
(σm1)2S2 ∂2Vm1

∂S2 + rS ∂Vm1

∂S
− rV m1 + λm1→m2(V m2 − V m1) = 0,

V m1(S, T ) = max{S −K, 0}, m1 6= m2, m1 = m(t),

(2.3)

where λm1→m2 ,m1 6= m2 is the transition intensity between the two regimes under the

risk neutral probability measure Q.

The analytic solution of the system of option pricing PDEs (2.3) can be expressed in

closed form. For instance, to price a European call option on the stock with maturity

T and exercise price K in a two-regime market, we apply the following proposition as

proved in Naik [27].

Proposition 1. Assume that the stock price process is continuous. The price of the

European call option on the stock with exercise price K and maturity T, in time state

(S, σh, t) for any contingent payo�s is given by

C(S, σh, t) =

ˆ T−t

0

C∗

[
S,K, r, T − t,

√
s(x)

T − t

]
f(x|σh)dx, (2.4)

where C∗(·) is the Black-Scholes formula for call options, and

s(x) = (σh)2x+ (σl)2(T − t− x), for 0 ≤ x ≤ T − t, (2.5)

and f(x|σh) denotes the conditional density of the occupation time of the volatility

process in state σh, given that at the current moment it is in state σh. This density is

7



given by

f(x|σh) = e[−λh→lx−λl→h(T−t−x)][δ0(T − t− x) + gh(x)I1(2h(x)) + λh→lI0(2h(x))] (2.6)

where

h(x) ≡
√
λh→lλl→hx(T − t− x),

gh(x) ≡
√
λh→lλl→hx/(T − t− x),

δ0(x) is Dirac's delta function, and Ip(x) is the modi�ed Bessel function for order p.

The call price in time state (S, σl, t) is the same as above except that the conditional

density f(x|σl) is

f(x|σl) = e[−λh→lx−λl→h(T−t−x)][δ0(x) + gl(x)I1(2h(x)) + λl→hI0(2h(x))] (2.7)

where

gl(x) ≡
√

[λh→lλl→h(T − t− x)/x],

and the other terms are as de�ned before [27].

The call option price in the above expression is an expectation of the original Black-

Scholes formula in which the constant variance is replaced by the average of probabilistic

variance introduced in equation (2.5). As expected, the model recovers the Black-

Scholes formula in two cases; when there is no change in the variance (σh = σl) and

when the volatility process is completely persistent (λh→l = λl→h = 0). In the second

case, although the two level of volatilities are di�erent, taking any level of volatility

results in remaining in the same level in the future time intervals as the probability of

shift in variances is zero.

We consider the European option on the asset price St with strike price K and ma-

turity T in a two-regime market introduced in Proposition 1 . The closed-form pricing
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equation (2.4) holds for any contingent payo�s in our regime-switching model. How-

ever, the analytic solution of the system of option pricing PDEs (2.3) can be computed

for an arbitrary payo� g(ST ) at time T . The price in time state (S, σh, t) of a security

paying o� g(ST ) at the maturity date T is given by

Cg(S, σh, t) = e[−r(T−t)] ·
(ˆ T−t

0

ˆ ∞
−∞

g [ST (x, y)]n(y)f(x|σh)dydx
)
, (2.8)

ST (x, y) = exp

(
r(T − t)− 0.5s(x) +

√
s(x)

T − t
y

)
, (2.9)

where s(x) = (σh)2x+ (σl)2(T − t− x), for 0 ≤ x ≤ T − t, and n(y) = 1√
2π
exp(−0.5y2)

is the standard normal density and f(x|σh) as de�ned above. The price of claim g(·)

in state (S, σl, t) is obtained similarly using the density f(x|σl).

2.2 Numerical Integration

The closed form solution of the 2-regime European option consists of a double de�nite

integral which can be evaluated through a numerical integration process. Boyle and

Draviam [6] used 101-time nodes and applied Simpson's rule to calculate the integral.

The Simpson's rule provides an adequate approximation to the exact integral only if the

function is relatively smooth over the speci�c interval. However, the above integrand

represents an exponential shaped function which is better approximated by Gaussian

quadrature.

2.2.1 Gaussian Quadrature

In numerical integration, Gaussian quadrature is one of the approximation algorithms

to compute the numerical value of a de�nite integral. This rule usually obtains the

best numerical estimate of an integral by picking speci�ed points within the interval

9



and applying a weighted sum of function values at the points. An n-point Gaussian

quadrature rule is de�ned as follows

ˆ 1

−1

f(x)dx ≈
n∑
i=1

wif(xi), (2.10)

which provides an exact result for polynomials of degree equal or less than 2n − 1 if

the appropriate points (xi) and weights (wi) are chosen. However, this formula will

only yield accurate results if the integrand (f(x)) is well approximated by a polynomial

within the interval [−1, 1]. An integral over [a, b] can simply be restated as an integral

over [−1, 1] which is given by

ˆ b

a

f(x)dx =
b− a

2

ˆ 1

−1

f(
b− a

2
x+

a+ b

2
)dx ≈

b− a
2

n∑
i=1

wif(
b− a

2
xi +

a+ b

2
) (2.11)

For the integration problem stated in (2.10), Legendre polynomials, Pn(x), are associ-

ated. In this case, the i-th Gauss node, xi, is the i-th root of Pn and its weight is as

the following 
wi = 2

(1−xi)2[P ′n(xi)]2
,

Pn(x) = 1
2nn!

dn

dxn
[(x2 − 1)n] .

(2.12)

Other choices of [a, b] and the integrand lead to some extensions of the basic rule

of Gaussian quadrature. Consequently, introducing a positive weight function into the

integrand gives us the general form

ˆ b

a

ωf(x)dx ≈
n∑
i=1

wif(xi).

For some speci�c values of [a, b] and ω, extended integration rules can be applied. For

10



instance, Gauss�Laguerre quadrature is a special case with the following form

ˆ +∞

0

e−xf(x)dx ≈
n∑
i=1

wif(xi), (2.13)

where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by


wi = xi

(n+1)2[Ln+1(xi)]2
,

L(x) = ex

n!
dn

dxn
(e−xxn).

(2.14)

2.2.2 Evaluation Process

We evaluated (2.8) numerically using the appropriate forms of Gaussian quadrature.

To make it easier to follow the calculation process, we de�ne

ĝ(x, y) = g(ST (x, y))n(y),

where ST (x, y) is given in equation (2.9), g(ST (x, y)) is the option payo� introduced

in (2.8), and n(y) is the standard normal density. Now, the double integral in the call

option pricing formula (2.8) can be expressed in a general form given by

DI =

ˆ T−t

0

f(x|σh)
[ˆ ∞
−∞

ĝ(x, y)dy

]
dx

=

ˆ T−t

0

f(x|σh)
[ˆ 0

−∞
ĝ(x, y)dy +

ˆ ∞
0

ĝ(x, y)dy

]
︸ ︷︷ ︸

G(x)

dx

=

ˆ T−t

0

f(x|σh)G(x)︸ ︷︷ ︸
h(x)

dx,

11



where, G(x) is the output of the inner integral for a speci�c value of x in the interval

[0, T − t]. Applying the main Gaussian quadrature rule to DI , as in (2.10) and (2.11),

gives

DI =

ˆ T−t

0

h(x)dx

=
T − t

2

n1∑
i=1

wxih(
T − t

2
xi +

T − t
2

),

=
T − t

2

n1∑
i=1

wxih(Xi), Xi =
T − t

2
xi +

T − t
2

,

where the Gauss node xi and its weight wxi has been given in (2.12), and n1 is the

number of points used to approximate the outer integral, h(x). To evaluate h(x), we

have to compute the inner integral, G(x), where the integrand is a function of both x

and y, and x is from the outer integral, i.e. xi. Therefore

G(Xi) =

ˆ 0

−∞
ĝ(Xi, y)dy +

ˆ ∞
0

ĝ(Xi, y)dy,

Xi =
T − t

2
xi +

T − t
2

,

xi is the Gauss node of the outer integral.

Multiplying G(Xi) by e
−yey = 1 gives

G(Xi) =

ˆ 0

−∞
e−y (eyĝ(Xi, y)) dy +

ˆ ∞
0

e−y (eyĝ(Xi, y)) dy,

and by a variable change from y to −y in the �rst interval [0,−∞], we have

G(Xi) =

G1(Xi)︷ ︸︸ ︷
−
ˆ ∞

0

e−y (eyĝ(Xi,−y))︸ ︷︷ ︸
gi1(y)

dy+

G2(Xi)︷ ︸︸ ︷ˆ ∞
0

e−y (eyĝ(Xi, y))︸ ︷︷ ︸
gi2(y)

dy . (2.15)
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These changes enables us to use the Gauss�Laguerre quadrature rule, as in (2.13), in

the following way

G(Xi) = −
n2∑
j=1

wyjg
i
1(yj) +

n2∑
j=1

wyjg
i
2(yj),

gi1(y) = eyĝ(Xi,−y), gi2(y) = eyĝ(Xi, y),

where the Gauss node yj and its weight wyi has been given in (2.14), and n1 is the

number of points used to approximate the two integrals, G1(Xi) and G2(Xi). Therefore,

the whole algorithm can be expressed in the following two steps:

1. Applying the general form of Gaussian quadrature to the outer integral to extract

the values of xi and their corresponding weights wxi , where i = 1, ..., n1.

2. Applying Gaussian-Laguerre quadrature to the inner integral for each value of xi

(i = 1, ..., n1) to extract the values of yj and their corresponding weights wyj ,

where j = 1, ..., n2.

DI =

ˆ T−t

0

h(x)dx

=
T − t

2

n1∑
i=1

{wxih(Xi)}

=
T − t

2

n1∑
i=1

{
wxi
[
f(Xi|σh)G(Xi)

]}
=
T − t

2

n1∑
i=1

{
wxif(Xi|σh)

[
−

n2∑
j=1

wyjg
i
1(yj) +

n2∑
j=1

wyjg
i
2(yj)

]}
(2.16)

The accuracy of the results when using Gaussian quadrature formula is usually im-

proved by increasing the number of points. Nevertheless, the rate of convergence of

the evaluation process depends substantially on the nature of the integrand [2]. For

instance, the non-smooth shape of the payo� function for European options in�uences
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the rate of convergence. However, we can remove the non-smooth part of the payo�

from the integrands in (2.15). It can be shown that


gi1(y) ≡ 0 ∃ỹi1, ∀y ≤ ỹi1

gi2(y) ≡ 0 ∃ỹi2, ∀y ≤ ỹi2

.

Since

gi1(y) = eyĝ(Xi,−y)

= eyg(ST (Xi,−y))n(−y)

= ey {max(ST (Xi,−y)−K, 0)}n(y),

where n(−y) = n(y), ∀y, as the standard normal density function n(y) is symmetric

around point y = 0. The payo� g(ST (Xi, y)), in which ST depends on both Xi and y

(2.9), is zero for all ST ≤ K. Recall that ST , at the �xed point Xi, depends only on

y so that the payo� function gives a point of non-smoothness at ỹi1 = 0. A similar

behaviour for gi2(y) is observed in the second integrand (2.15). As a result, we have

G(Xi) =

−
0︷ ︸︸ ︷ˆ ỹi1

0

e−ygi1(y)dy+

ˆ ∞
ỹi1

e−ygi1(y)dy

+


0︷ ︸︸ ︷ˆ ỹi2

0

e−ygi2(y)dy+

ˆ ∞
ỹi2

e−ygi2(y)dy

 .
=

ˆ ∞
ỹi1

e−ygi1(y)dy +

ˆ ∞
ỹi2

e−ygi2(y)dy
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With these variations, applying a general form of Gauss�Laguerre quadrature rule where

the lower bound of the interval is a non-zero value (i.e. ỹ1 or ỹ2) gives us

G(Xi) = −
n2∑
j=1

wyjg
i
1(yj + ỹi1) +

n2∑
j=1

wyjg
i
2(yj + ỹi2)

Consequently, by using this expression for G(xi), equation (2.16) can be rewritten as

DI =
T − t

2

n1∑
i=1

{
wxif(Xi|σh)

[
−

n2∑
j=1

wyjg
i
1(yj + ỹi1) +

n2∑
j=1

wyjg
i
2(yj + ỹi2)

]}
(2.17)

which, as we will see, results in smooth convergence.

2.2.3 Observations

Having introduced the two-step Gaussian quadrature approach for computing the dou-

ble integral in the previous section, this section conducts numerical observations based

on the proposed algorithm. To accomplish an accurate study, we present analytical

solution results for European call option prices with di�erent sets of parameters. As

stated earlier, the accuracy of the process depends on the number of points used to

solve the integral numerically. Having computed a double integral, we used di�erent

pairs of numbers to obtain the best combination leading to precise outcomes. Analyti-

cal results are given when there are two hidden Markov states (a high-volatility regime

and a low-volatility regime) with the values of regime parameters summarized in Table

2.1. In addition, the structure of implied volatility (i.e. the smile/skew) provides us a

tool to validate the analytical approach. Therefore, we examine the capability of our

model to produce the volatility smile/skew in the market.
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Parameter Value Parameter Value

r 0.05 S 100$
T 1 year K 100$
σh 0.25(1/

√
year) λh→l 0.5

σl 0.15(1/
√
year) λl→h 0.5

Table 2.1: Input parameters used to price European options under the two-state regime-
switching model of the analytical solution, where and are transition intensities for state
h to l (high to low), and state l to h (low to high), respectively.

2.2.3.1 Accuracy Analysis

We �rst carry out an accuracy analysis, assuming that the European call option pricing

model in (2.8) is evaluated by (2.17) using input �nancial parameters in Table 2.1. The

preciseness of the results is in�uenced by non-�nancial parameters such as the number

of points chosen for the numerical computation of the inner integral, n1, and the outer

integral, n2. More accuracy can be sought by increasing the number of points. This

fact can be seen in the top part of Table 2.2 where n1 and n2 are initiated by 2 in

the �rst step and are doubled in the next stage. However, we found that there is an

optimal measure for n1 which provides the same results compared with those obtained

by increasing n1 in each step. The bottom part of Table 2.2 gives the values when n1

is constant and �xed at 8. It can be observed that the two strategies are equivalent up

to 10-digit precision after the second step, i.e. the third row in the both parts of Table

2.2, where n1 remains at 8 (bottom) and continues to be doubled (top). In fact, �nding

the optimal number of points in the outer integral implies that the integrand can be

well approximated by a polynomial of degree 2n1−1 = 15 within the interval [0, T − t].
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(n1 = 2n, n = {1, .., 7})
Regime h (h igh volatility) Regime l ( low volatility)

n1 n2 Option Value Change Ratio Option Value Change Ratio

2 2 8.4023763060 6.4590712570

4 4 12.4709531800 4.06857687 10.0409693100 3.58189805

8 8 11.6598247800 0.81112840 5.02 9.3144369340 0.72653238 4.93

16 16 11.7063144100 0.04648963 17.45 9.3404781310 0.02604120 27.90

32 32 11.7050731600 0.00124125 37.45 9.3392516890 0.00122644 21.23

64 64 11.7050718400 0.00000132 940.34 9.3392501610 0.00000153 802.65

128 128 11.7050718400 0.00000000 NA 9.3392501610 0.00000000 NA

(n1 = 23)

Regime h (h igh volatility) Regime l ( low volatility)
n1 n2 Option Value Change Ratio Option Value Change Ratio

8 2 8.4024813390 6.4591999650

8 4 12.4709530600 4.06847172 10.0409687800 3.58176882

8 8 11.6598247800 0.81112828 5.02 9.3144369340 0.72653185 4.93

8 16 11.7063144100 0.04648963 17.45 9.3404781310 0.02604120 27.90

8 32 11.7050731600 0.00124125 37.45 9.3392516890 0.00122644 21.23

8 64 11.7050718400 0.00000132 940.34 9.3392501610 0.00000153 802.65

8 128 11.7050718400 0.00000000 NA 9.3392501610 0.00000000 NA

Table 2.2: The accuracy analysis of the two-step Gaussian quadrature approach used
for the two-state regime-switching model of the European call pricing in [27], where n1

and n2 are the number of points chosen for the numerical computation of the �rst and
second integral, respectively. The results are shown in two parts: top, where both n1 and
n2 are increasing, and bottom, where n1 is �xed at 8 and n2 is increasing.

2.2.3.2 Implied Volatility

According to the original Black-Scholes model, the volatility for both call and put

options is constant across all possible strike prices K and maturity times T . However,

the constant volatility assumption is not consistent with the real behaviour of the

options market where the volatility implied by the market price depends on both K

and T . Regime-switching models capture better this feature of implied volatility. This

smile/skew, results from plotting the strike price and implied volatility of options with

the same expiration date.
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Figure 2.1: Implied volatilities generated by using one-year European call option values
from a two-state regime-switching model as the market prices. In the left panel, the call
options are priced assuming the current regime is the high-volatility state; In the right
panel, the current regime is assumed the low-volatility state. The high- and low-state
parameters are volatilities σh = 0.25 and σl = 0.15 with intensities λh→l = 0.5 and
λl→h = 0.5, and interest rate r=0.05.

We treat the option values from a two-state regime-switching model as the market

prices. The next step is to �nd those volatilities in the Black-Scholes model yielding

option values equal to the market prices. Given �ve out of six parameters in the Black-

Scholes model, i.e. market option value V, stock price S, strike price K, interest rate

r, and expiry time T, implied volatilities are derived and plotted in Figure 2.1. In our

simpli�ed model, where jumps are not allowed, skews cannot be generated.
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Chapter 3

PDE Methods for Option Pricing

under Regime-switching Processes

3.1 Introduction

In this chapter, we develop di�erent approaches for numerically solving the system of

option pricing PDEs for pricing American options under regime switching. We begin

with existing techniques for pricing European options under regime-switching processes

as in [23]. Having employed both iterative and direct solution methods for solving

the discretized PDEs in pricing European-style options, we will investigate various

algorithms for American options.

We assume a market with discrete random shifts in the volatility process and{
σ1, . . . , σK

}
as the possible values of the volatility. A simple way to capture switching

between regimes is using continuous Markov chains. Let Mt be a continuous K-state

Markov chain taking values in the state space {1, 2, 3, ...,K}, where K is the total num-

ber of regimes. The continuous Markov chain Mt is speci�ed by its rate matrix Q.

According to the theory, the entries qkl in Q must satisfy the following equations:
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1. o�-diagonal entries: qkl ≥ 0 if k 6= l

2. diagonal entries: qkk ≤ 0 and qkk = −
∑K

l=1,l 6=k qkl

O�-diagonal entries are known as transitional intensities. After incorporating a K-

state Markov-chain in the original Black-Scholes model, the regime-switching model is

governed by the following process under the real world probability measure (P-measure):

dS = (αk − η̃k)Sdt+ σkSdZ +
K∑
l=1

S(ηkl − 1)dMkl (3.1)

where the superscripts denote regime numbers, and αk and σk are the corresponding

instantaneous expected return and volatility. In addition, ηkl is the size of jump in the

underlying S when the regime changes from state k to state l, i.e. S would jump from

S to Sηkl. The term dMkl handles the transition of the Markov chain between di�erent

states ( k and l ) so that

dMkl =


1 with probability λkldt+ δkl

0 with probability 1− λkldt− δkl
, (3.2)

where λkl ≥ 0 is the transition intensity (the same de�nition as qkl) for state k to l

when k 6= l , δkl is the time-independent term of the probability of shifting from regime

k to l, and

λkk = −
K∑

l=1,l 6=k

λkl. (3.3)

Besides that, η̃k is the instantaneous expected return due to all jumps out of state k so

that

η̃k =
K∑

l=1,l 6=k

λkl(ηkl − 1) =
K∑
l=1

λklηkl (3.4)

It is assumed that ηkk = 1 which means a jump in the asset price will occur only if

20



there is a transition between state k and state l. However, it is possible to allow a

jump without a change in regime. In that case, jump may happen any time and can

be modeled by introducing a compound Poisson process in (3.1) [23]. It can be shown

[23] that the system of option pricing PDEs for a European put option under the risk

neutral probability measure (Q) can be written as

for k = 1, 2, 3, ...,K :


∂V k

∂t
+ 1

2
(σk)2S2 ∂2V k

∂S2 + (r − ηQk )S ∂V k

∂S
− rV k +

∑K
l=1,l 6=k λ

Q
kl(V

l(Sηkl)− V k) = 0,

V k(S, T ) = max{K − S, 0}
(3.5)

where λQkl ≥ 0 and ηQk are the risk-adjusted values of the transition intensity (λkl) and

the instantaneous expected return (η̃k), respectively. Under the Q-measure, equations

(3.3 and 3.4) are replaced by

λQkk = −
N∑

l=1,l 6=k

λQkl; η̂k
Q =

N∑
l=1

λQklη
kl. (3.6)

Kennedy [23] developed a simple iterative method to �nd the European option prices

for (3.5).

Khaliq and Liu [24] solved the above coupled system of PDEs for an American put

option by extending the penalty method to the K-regime case and developing numerical

schemes via an implicit θ-method. The penalty function that they added to (3.5) was:

εC

V k
ε (S, t) + ε− q(S)

, i = 1, ...,K, and q(S) = K − S, (3.7)

where 0 < ε << 1 is a small regularization parameter and C > 0 is a �xed constant.

However, the method has severe time-step restrictions. The idea of penalty method was

originally proposed by Zvan et al. [34] for the original Black-Scholes model.
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3.2 Numerical Solution for the Option-Pricing PDEs

3.3 System of Option-Pricing PDEs

Given that τ = T − t, the system of option-pricing PDEs introduced in Section 3.1 can

be rewritten as

∂V k

∂τ
=

1

2
(σk)2S2∂

2V k

∂S2
+ (r − η̃kQ)S

∂V k

∂S
−
(
r − λQkk

)
V k +

K∑
l=1,l 6=k

λQklV
l(Sηkl). (3.8)

The initial condition for the system of equations (3.8) is given by the option payo�

when τ = 0

V k(S, 0) = V∗(S), k = 1, . . . ,K. (3.9)

The system of equations (3.8) is placed on the localized domain

(S, τ) ∈ [0, Smax]× [0, T ]. (3.10)

No boundary condition is required at S = 0 where the system of PDEs simply reduces

to

∂V k

∂τ
= −

(
r − λQkk

)
V k +

K∑
l=1,l 6=k

λQklV
l(Sηkl). (3.11)

At S = Smax, the payo� (3.9) is imposed as a Dirichlet condition. However, the system

may require option values for S > Smax when the relative jump size is greater than

one. To solve this numerical problem, we replace the jump term ηkl with an augmented

jump amplitude near Smax as in [23],

η̄kl(S) =


ηkl 0 ≤ S ≤ Smax

ηkl

Smax

S
Smax

ηkl
≤ S ≤ Smax,

(3.12)
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where Sη̄kl is always within [0, Smax]. Furthermore, the risk-adjusted instantaneous

expected return (η̂k
Q) introduced in (3.6) is no longer constant and can be rewritten as

η̂k
Q =

K∑
l=1

λQklη̄
kl(S). (3.13)

3.4 Discretization of the PDEs

We follow the same procedure for discretization as discussed in [23]. The localized

system of PDEs in (3.8) to [0, Smax]× [0, T ] can be discretized using an implicit method.

With the following notations

k regime number (1, . . . ,K)

m timestep index (1, . . . ,M)

n asset node index (1, . . . ,N ),

the option value at timestep m for regime k and asset price Sn is represented by V k
m,n.

We de�ne the vector of option values at timestep m for regime k as

V k
m =

[
V k
m,1, V

k
m,2, . . . , V

k
m,N
]T
. (3.14)

and the matrix of option values at timestep m

Vm =
[
V 1
m, V

2
m, . . . , V

K
m

]
. (3.15)
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The discrete equations for regime k are given by

[
I + θ∆τ(αkn + βkn + r − λQkk)

]
V k
m+1,n − θ∆ταknV k

m+1,n−1 − θ∆τβknV k
m+1,n+1

=
[
I − (1− θ)∆τ(αkn + βkn + r − λQkk)

]
V k
m,n

+(1− θ)∆ταknV k
m,n−1 + (1− θ)∆τβknV k

m,n+1

+(1− θ)∆τ
K∑

l=1,l 6=k

λQklIn,k,l
(
V l(Snη̄

kl, τm)
)

+θ∆τ
K∑

l=1,l 6=k

λQklIn,k,l
(
V l(Snη̄

kl, τm+1)
)
. (3.16)

Since Snη̄
kl is not necessarily coincident with the asset nodes, we approximate V l(Snη̄

kl, τm)

by linear interpolation. We choose n∗ so that

Sn∗l < Snη̄
kl < Sn∗l +1. (3.17)

The interpolation is represented by

In,k,l
(
V l
m

)
= wV l

m,n∗l
+ (1− w)V l

m,n∗l +1, w ∈ [0, 1] . (3.18)

We use central di�erencing as much as possible at each time step, since it is more

accurate. However, if αkn and βkn are negative, oscillations may occur in the solution

and either forward or backward di�erencing can be used as the alternatives. Therefore,
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αkn and βkn for n = 2, . . . ,N − 1 can be chosen from

αkn,central = (σk)2S2
n

(Sn−Sn−1)(Sn+1−Sn−1)
− (r−η̂kQ(Sn))Sn

Sn+1−Sn−1

βkn,central = (σk)2S2
n

(Sn+1−Sn)(Sn+1−Sn−1)
+ (r−η̂kQ(Sn))Sn

Sn+1−Sn−1

αkn,forward = (σk)2S2
n

(Sn−Sn−1)(Sn+1−Sn−1)

βkn,forward = (σk)2S2
n

(Sn+1−Sn)(Sn+1−Sn−1)
+ (r−η̂kQ(Sn))Sn

Sn+1−Sn

αkn,backward = (σk)2S2
n

(Sn−Sn−1)(Sn+1−Sn−1)
− (r−η̂kQ(Sn))Sn

Sn−Sn−1

βkn,backward = (σk)2S2
n

(Sn+1−Sn)(Sn+1−Sn−1)

(3.19)

The discrete equations (3.16) has been given for the asset nodes within[S2, . . . , SN−1].

However, the reduced system (3.11) for the boundary condition S = S1 = 0 can still

be handled by (3.16), if we choose αk1 = βk1 = 0. The upper limit of the boundary

condition, S = SN = Smax, is imposed through the payo� as a Dirichlet condition

V k
m+1,N = V k

∗ , k = 1, . . . ,K (3.20)

3.5 Solving Discrete Equations

Given the vector of option values in regime k at time τm (3.14), the discrete equations

(3.16) for regime k can be written in matrix form as

[
I − θMk

]
V k
m+1 =

[
I + (1− θ)Mk

]
V k
m+(1−θ)∆τΞ(V k

m)+θ∆τΞ(V k
m+1), k = 1, . . . ,K,

(3.21)

where

[
MkV k

m

]
row n

= ∆τ
[
αknV

k
m,n−1 − (αkn + βkn + r − λQkk)V

k
m,n + βkmV

k
m,n+1

]
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and

Ξ(V k
m) = Ṽmλ

Q
k =

[Ṽ 1
m

]
· · ·

[
Ṽ k
m

]
︸ ︷︷ ︸

kth vector

· · ·
[
Ṽ Km

]
N×K

λQk1, . . . , 0︸︷︷︸
kth element

, . . . λQkK

T

K×1

,

(3.22)

so that the nth element of Ṽ l
m (for l = 1, . . . ,K) is given by the linear interpolation

de�ned in (3.17) and (3.18)

[
Ṽ l
m

]
nth element

= In,k,l
(
V l
m

)
.

When a Dirichlet condition is imposed at S = Smax, the last row of (3.21) is modi�ed

to 
[
I − θMk

]
N th row

= [0 0 . . . 0 1] ,

~uRHS = [u1 . . . uN−1 V
k
∗,N ]T,

(3.23)

where u1 . . . uN are the elements of the right hand side vector in (3.21) and V k
∗,N is the

imposed value as the last element (uN ).

The option values for each regime can be found by employing the �xed point-policy

iteration of Algorithm 3.1 at each time step. Kennedy [23] and D'Halluin et al. [12]

proved that the �xed point iteration scheme is globally convergent.

3.6 American Options

In this section, we extend our numerical scheme to various policy iteration methods

in pricing American options under regime switching. While having the same structure

as European options, American options di�er in their giving the holder the right to

exercise the option at anytime before the expiry to receive the payo�. The amount of
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Algorithm 3.1 Fixed Point-Policy Iteration Method for European options (applied in
each time step)
for k = 1, . . . ,K
.
[
I − θMk

]
V k
m+1 =

[
I + (1− θ)Mk

]
V k
m + (1− θ)∆τΞ(V k

m) + θ∆τΞ(V k
m+1)

for k = 1 to K do(
V k
m+1

)(0)
= V k

m

/* Initial guesses used in the first iteration (0)
are the options values from the previous time step (m),

except for Dirichlet nodes */

end for

j = 0 /* initialize counter for iteration */

while ERROR > tolerance /* iteration loop */

for k = 1 to K do /* regime loop */

SOLVE

[
I − θMk

] (
V k
m+1

)(j+1)
=
[
I + (1− θ)Mk

]
V k
m + (1− θ)∆τΞ(V k

m)

+ θ∆τΞ(
(
V k
m+1

)(j)
)

end for /* regime loop */

ERROR = max
k

{
max
n

(
|V k,j+1

m+1,n−V
k,j
m+1.n|

max(1,|V k,j
m+1,n|,|V k

m,n|)

)}
j = j + 1

end while /* iteration loop */

TERMINAL ITERATE GIVES V k
m+1 FOR k = 1, . . . ,K

payo� depends on the current value of the underlying asset and a �xed strike price. The

American option pricing problem is commonly expressed as a linear complementarity

problem (LCP) which can be extended to the regime-switching model:


(∂τ − L− J )V k(τ, S) ≥ 0

V k − V k
∗ ≥ 0

(V k − V k
∗ )(∂τV

k − L
[
V k
]
− J

[
V k
]
) = 0, k = 1, . . . ,K.

(3.24)
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where V k
∗ denotes the payo� received upon exercise in regime k. From (3.8), L and J

operators are given by

L
[
V k
]

=
1

2
(σk)2S2V k

SS + (r − η̃k)SV k
S −

(
r − λkk

)
V k, (3.25)

J
[
V k
]

=
K∑

l=1,l 6=k

λklV l(Sη̄kl), k = 1, . . . ,K, (3.26)

where V k
S and V k

SS are the �rst and second partial derivatives of the option value in

regime k, with respect to S.

3.6.1 Penalty Method

The LCP problem (4.18) can be replaced by the penalty method so that

(∂τ − L− J )V k(τ, S) + P (V k)(τ, S) = 0, (3.27)

where P (vk)(τ, S) = max
ϕ∈{0,1}

[
ϕ (V k

∗ −V k)
ε

]
is the penalty function and ε → 0 is a penalty

parameter.

The penalty method has been widely used since it was originally introduced in [16]

for pricing American options. We assume the diagonal matrix P̄ k for regime k is given

by

P̄ k(V k
m+1)nn =

ϕk
m+1,n

ε
,

P̄ k(V k
m+1)nq = 0 ; if n 6= q,

(3.28)

where

ϕkm+1,n ∈ arg max
ϕ∈{0,1}

{ϕ
ε

(V k
m+1,n − V k

∗,n)
}
. (3.29)

The matrix-form discrete equations (3.21) for American options can be rewritten as
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[
I − θMk + P̄ k(V k

m+1)
]
V k
m+1 =

[
I + (1− θ)Mk

]
V k
m + (1− θ)∆τΞ(V k

m) (3.30)

+ θ∆τΞ(V k
m+1) + [P̄ k(V k

m+1)]V k
∗ ,

V k
m+1,N =

[
V k
∗
]
N ; imposed at S = Smax (3.31)

where the Dirichlet condition (the payo�) is imposed at S = Smax using similar modi-

�cations as (3.23).

3.6.2 Direct Control Method

Equation (4.18) can be rewritten in control form [4]

max
ϕ∈{0,1}

[
Ωϕ(V k

∗ − V k)− (1− ϕ)
(
∂τV

k − L
[
V k
]
− J

[
V k
])]

= 0, (3.32)

where a scaling factor (Ω) is introduced into equation (3.32) since the two terms in the

max(·) expression have di�erent units [20].
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Discretizing equation (3.32), using an implicit method similar to (3.16), gives

[
(1− ϕkm+1,n)

(
1 + θ∆τ(αkn + βkn + r − λQkk)

)
+ Ω∆τϕkm+1,n

]
V k
m+1,n (3.33)

−(1− ϕkm+1,n)θ∆τ
[
αknV

k
m+1,n−1 − βknV k

m+1,n+1

]
= (1− ϕkm+1,n)

[
1− (1− θ)∆τ(αkn + βkn + r − λQkk)

]
V k
m,n

+(1− ϕkm+1,n)(1− θ)∆τ
[
αknV

k
m,n−1 + βknV

k
m,n+1

]
+(1− ϕkm+1,n)(1− θ)∆τ

K∑
l=1,l 6=k

λQklIn,k,l
(
V l
m

)
+(1− ϕkm+1,n)θ∆τ

K∑
l=1,l 6=k

λQklIn,k,l
(
V l
m+1

)
+Ω∆τϕkm+1,nV

k
∗,n

where

ϕkm+1,n ∈ arg max{Ωϕ(V k
∗,n − V k

m+1,n)− (1− ϕ)(
V k
m+1,n − V k

m,n

∆τ
(3.34)

− θ(LV k
m+1,n + J V k

m,n−1)− (1− θ)(LV k
m,n + J V k

m,n))}

with the discretized form of L and J operators de�ned as

LV k
m,n = αknV

k
m,n−1 + βknV

k
m,n+1 − (αkn + βkn + r − λQkk)V

k
m,n (3.35)

J V k
m,n =

K∑
l=1,l 6=k

λQklIn,k,l
(
V l
m

)
(3.36)

The matrix-form discrete equations(3.33) can be rewritten as
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[(
I − φkm+1

) (
I − θMk

)
+ Ω∆τφkm+1

]
V k
m+1 =

(
I − φkm+1

) [
I + (1− θ)Mk

]
V k
m (3.37)

+
(
I − φkm+1

) [
(1− θ)∆τΞ(V k

m) + θ∆τΞ(V k
m+1)

]
+ φkm+1Ω∆τV k

∗ ,

V k
m+1,N =

[
V k
∗
]
N ; imposed at S = Smax (3.38)

where φkm+1 =
[
ϕkm+1,1, . . . , ϕ

k
m+1,N

]T
and the Dirichlet condition (the payo�) is imposed

at S = Smax using similar modi�cations as (3.23).

3.6.3 General Form of the Discretized Equations

For both the penalty and direct control methods, each timestep requires the solution

of nonlinear equations. In these cases, the general form of the nonlinear equations is

given by

A∗(Q)U = C(Q) (3.39)

with Qq = arg max
Q∈Z

[−A∗(Q)U + C(Q)]q

whereA∗(Q) = A(Q) − B(Q) is of size KN × KN and U, C are vectors of size KN in

which A∗ and C denote the coe�cients of the associated linear systems with Qq is the

control for the qth node. Speci�cally, A(Q) provides coupled nodes within the same

regime while B(Q) contains coupled nodes which belong to di�erent regimes. Now, let

U , the vector of option values in the (m+ 1)th timestep for all regimes (1 . . .K), and C,
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the vector of controls, be represented by

U = [V 1
m+1,1, . . . V

1
m+1,N , . . . , V

K
m+1,1, . . . , V

K
m+1,N ]T (3.40)

Q = [ϕ1
m+1,1, . . . ϕ

1
m+1,N , . . . , ϕ

K
m+1,1, . . . , ϕ

K
m+1,N ]T.

Furthermore, we de�ne matrices Γ(Vm), φm+1, M as

Γ(Vm) =
[
Ξ(V 1

m)T, . . . ,Ξ(V Km )T
]T

φm+1 = diag(Q)

M = diag(M1, . . . ,MK),

where Vm, as de�ned in (3.15), is the vector of known option values from the mth

timestep for all regimes (1 . . .K), Γ(Vm) is the vector of regime-interpolated coupling

terms for all regimes,φm+1 is a diagonal matrix with elements of Q on the main diagonal,

andM is a block-diagonal matrix with the k-th block on its diagonal containing matrix

Mk.

Penalty Method

The discretized equations (3.30) can be written in terms of matrices A, B and vector C

given by

A(Q)U = AU = [(I − θM)]U +
[
P̄ (Vm+1)

]
U (3.41)

B(Q)U = BU = θ∆τΓ(U)

C(Q) = C = [I + (1− θ)M ]Vm +
[
P̄ (Vm+1)

]
V∗

+ [(1− θ)∆τΓ(Vm)] .
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We impose a Dirichlet condition at S = Smax for each regime (k). In terms of A, B and

vector C, equation (3.42) is modi�ed to

[AU ]q = V k
m+1,N ; [BU ]q = 0; [C]q =

[
V k
∗
]
N (3.42)

where q = (k − 1)N + N = kN ; ∀k ∈ {1, . . . ,K} are all nodes corresponding to the

imposed Dirichlet condition.

Direct Control

The discretized equations (3.30) can be written in terms of matrices A, B and vector C

given by

A(Q)U = AU = [(I − φm+1) (I − θM)]U + [Ω∆τφm+1]U (3.43)

B(Q)U = BU = (I − φm+1) θ∆τΓ(U)

C(Q) = C = (I − φm+1) [I + (1− θ)M ]Vm + φkm+1Ω∆τV∗

+ (I − φm+1) [(1− θ)∆τΓ(Vm)]

The same de�nitions as (3.42) can be used for the Dirichlet condition imposed at S =

Smax.

3.6.4 Solution of the Discretized Equations

We investigate three approaches to solve equation (3.39) at each timestep, policy itera-

tion, �xed point-policy iteration, and local policy iteration methods. Several techniques

will be considered for solving the linear system at each iteration.
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Algorithm 3.2 Policy Iteration Method for American Options

U0 =Initial solution vector of size KN
for j = 0, 1, 2, . . . until converge do

/* policy improvement: */

Determine Qj
q = arg max

Qq∈Z
{−A∗(Q)U j + C(Q)}q

Qj =
[
Qj

1, . . . , Q
j
KN
]

/* policy evaluation: */

Solve A∗(Qj)U j+1 = C(Qj)

if j > 0 and max
q

Uj+1
q −Uj

q

max[scale,|Uj+1
q |]

< tolerance then

exit from the iteration

end if

end for

3.6.4.1 Policy Iteration Method

The policy iteration algorithm, or Howard's algorithm, is a standard method for solving

dynamic programming problems. Given in Algorithm 3.2, the solution U is computed

through a sequence of trial values (U j) and policies (Qj) under an alternating sequence

of policy improvement and policy evaluation steps. The alternating process is recognized

by separating the maximum operator from the linear system. Various techniques are

introduced for solving the linear system

[
A(Qj)− B(Qj)

]
U j+1 = C(Qj). (3.44)

A direct solution method, while incorporating a minimum degree ordering for the sparse

matrix A∗(Qk), can be used. An iterative sparse solver and a simple iteration method

are the other alternatives for solving the linear system.

It can be proved that policy iteration converges unconditionally for both the penalty

(3.30) and direct control (3.37) discretizations [20].
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Algorithm 3.3 Simple Iteration Method

/* policy evaluation step: */

(U j+1)
0

= U j /* Initial solution vector for U j+1 */
for m = 0, 1, 2, . . . until converge do

Solve [A(Qj)] (U j+1)
m+1

= B(Qj) (U j+1)
m

+ C(Qj)

if m > 0 and max
q

(Uj+1
q )

m+1
−(Uj+1

q )
m

max
[
scale,|(Uj+1

q )
m+1
|
] < tolerance then

exit from the simple iteration

end if

end for

Simple Iteration Method

The linear system [A(Qj)− B(Qj)]U j+1 = C(Qj) can be solved by employing a simple

iteration. If (U j+1)m is the mth estimate for U j+1, then

[
A(Qj)

] (
U j+1

)m+1
= B(Qj)

(
U j+1

)m
+ C(Qj) (3.45)

where the initial guess for U j+1 is (U j+1)0 = U j. Algorithm 3.3 provides a simple

iteration approach for the policy evaluation step in Algorithm 3.2 with a tolerance of

10−8. The simple iteration will converge if ‖A(Qj)−1B(Qj)‖∞ < 1.

Direct Solution Method (Minimum degree reordering)

We assemble the linear system (3.44) into a large sparse matrix and carry out a direct

solution, using approximate minimum degree ordering [11], for the regime coupling

terms. Each iteration requires the solution of the non-symmetric sparse matrix (A−B).

The regime coupling terms in matrix B add nonzero entries into the incidence matrix

with a block tridiagonal structure. We use an approximate minimum degree ordering

based on the structure of the symmetrized matrix ((A−B) + (A−B)T). However, the

actual symbolic factorization is carried out using the structure of the original matrix
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(A− B).

GMRES-ILU Solver

We use a preconditioned GMRES technique [28, 15] for solving the linear system (3.44).

An incomplete factorization based on zero level of �ll (ILU(0)), which allows no �ll-

in, is incorporated. The convergence criteria is based on l2 residual reduction1 with a

tolerance of 10−8.

Algorithm 3.4 Fixed Point-Policy Iteration for American Options

U0 =Initial solution vector of size KM
for j = 0, 1, 2, . . . until converge do

1. Determine

Qj
q = arg max

Qq∈Z
{− [A(Q)− B(Q)]U j + C(Q)}q ; q = 1 . . .KM

Qj =
[
Qj

1, . . . , Q
j
KM
]

Solve A(Qj)U j+1 = B(Qj)U j + C(Qj)

if j > 0 and max
Uj+1
q −Uj+1

q

max[scale,|Uj+1
q |]

< tolerance then quit

end for

3.6.4.2 Fixed Point-Policy Iteration Method

Using simple iteration for solving the linear system in the policy evaluation step leads

to a double nested iteration algorithm. This, however, can be performed with only a

single iteration at each nonlinear iterate. In this case, the policy iteration is replaced

with a �xed point-policy iteration as suggested in [19]. It can be proved [20] that the

�xed point-policy iteration, as described in Algorithm 3.4, is unconditionally conver-

gent for the penalty (3.30) discretization, and converges for the direct control (3.37)

1The current rms residual is reduced to less than a user-speci�ed fraction of the initial residual

( ‖r
j‖2

‖r0‖2
< tol )
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discretization if Ω > θ · λ̂ where λ̂ = max
k

(−λkk).

3.6.4.3 Local Policy Iteration Method

The nonlinear equations (3.39) can be solved by lagging the regime coupling terms and

solving the American Linear Complementarity Problem (LCP) at each iteration [20].

With the regime coupling terms (BU j) lagged one iteration, a local policy iteration is

formulated in Algorithm 3.5. The solution of the nonlinear local control problem for the

discrete equations appearing in the local policy step of Algorithm 3.5 can be obtained

by either the penalty or direct control method. For both (3.30) and (3.37) equations,

the local policy iteration converges at the rate [20]

‖Ej+1‖∞
‖Ej‖∞

≤ θλ̂4τ
1 + θ(r + λ̂)

, (3.46)

where λ̂ = max
k

(−λkk), Ej = U j − U , and U is the solution to (3.39).

Algorithm 3.5 Local Policy Iteration for American Options

U0 =Initial solution vector of size KM
for j = 0, 1, 2, . . . until converge do

/* local policy */

Solve max
Q∈Z
{−A(Q)U j+1 + B(Q)U j + C(Q)} = 0

if j > 0 and max Uj+1−Uj+1

max[scale,|Uj+1|] < tolerance then

exit from the iteration

end if

end for

3.7 Numerical Experiments

We price an American put option in a three-state regime-switching model where the

underlying jumps in each regime shift. The market is from [23], where the stock follows
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a Geometric Brownian Motion model within each state. The interest rate is r = 0.02,

with regime-dependent volatilities ~σ = [0.0955, 0.0644, 0.0241]. The rate matrix of risk

adjusted intensities is

ΛQ =


−3.5613 0.2405 3.3208

1.1279 −1.2008 0.0729

2.9882 0.2025 −3.1907

 , (3.47)

with jump amplitudes

η =


1 0.9095 1.0279

1.2502 1 1.6512

0.9693 0.7732 1

 , (3.48)

where the entry placed in (k, l) corresponds to the transition from regime k to l.

We consider an American put option with T = 0.5 and a strike of K = 100$ which

is priced at S = 100$. The American option pricing problem in (4.18) is solved numer-

ically using Policy Iteration, Fixed Point-Policy Iteration, and Local Policy Iteration

combined with both the penalty and direct control [4] methods. The penalty parame-

ter, scaling factor, and convergence tolerances for inner and outer iterations are set to

ε = 10−6∆τ , Ω = 1/ε, tol = 10−8, respectively.

3.7.1 Convergence and Computations

Policy Iteration Method

Policy iteration method, as described in Algorithm 3.2, is combined with the penalty or

direct control discretizations for solving the American LCP problem. The solution of

the linear system (3.44), however, is obtained using a simple iteration, direct solution or
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a PCG-like iterative solver (GMRES-ILU(0)). Examples of incorporating these various

techniques are shown in Tables 3.1 and 3.2 combined with the penalty approach, and

Tables 3.3 and 3.4 combined with the direct control approach. Various timestepping

for consecutive re�nements of the grid is considered for all cases.

It can be observed that in terms of the convergence of the discretization of the LCP

problem, quadratic convergence is not guaranteed even with a variable timestepping

method, and the results for di�erent regimes are not consistent. While the rate of

convergence is oscillatory within each regime, di�erent regimes are inconsistent in terms

of the convergence rates. The oscillation and inconsistency observed in the convergence

rates can be due to the interpolated option values after a jump occurs. For those spot

prices near the strike, or even far from that when the jump amplitude is large, a jump

may have a signi�cant e�ect on the option values. In the absence of jump terms (section

3.7.3), both the oscillation and inconsistency are expected to disappear.

Both the penalty and direct control formulations have similar convergence behaviors.

Among various techniques, the simple iteration is more e�cient than both the direct

and GMRES-ILU(0) solution methods. For instance, according to Tables 3.1 and 3.2,

while computing the option values takes 126 seconds for a grid of size N = 3200 in the

simple iteration method, 12142 and 231 seconds are the costs associated with the direct

and GMRES-ILU(0) solution, respectively. Furthermore, as can be seen in Tables 3.2

and 3.4, there is a signi�cant di�erence between the amount of work needed for the

direct solution and other methods. Similar to the convergence ratio de�nition, we

de�ne a relative change in the amount of work (computations) for the i-th re�nement

represented in the last column of the aforementioned tables so that

Rate =
ti − ti−1

ti−1 − ti−2

, (3.49)

where ti is the amount of CPU time spent for the i-th re�nement. While this rate is
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stable and around 4 for other methods, an increasing relative change in the amount of

work is observed for the direct method. Speci�cally, the last re�nement in Table 3.2

implies that the extra amount of computation is 12.41 times more than the previous

re�nement which makes the direct method very expensive.

Policy Iteration Method (Penalty / Simple Iteration)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate∗∗

100 3.163237697 7.87620801 3.038006453 0.2

200 3.140096408 0.02314129 7.871012198 0.00519581 2.991042676 0.04696378 0.6

400 3.139543876 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786522 0.00125615 37.39 2.2 3.23

800 3.139542917 0.00000096 576.2 7.869812031 0.00026213 3.58 2.989811831 0.00002531 49.63 7.7 3.66

1600 3.139542811 0.00000011 9.1 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4 30.9 4.16

3200 3.139542838 0.00000003 3.98 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 126.7 4.14

** Rate ≡ Relative Change in Computations

Table 3.1: Pricing of a half-year American put option in the three-state market from [23]
with jumps and variable timestepping for consecutive re�nements of the grid. Penalty
American and Simple Iteration are used for the outer and inner loops, respectively. The
order of convergence is sometimes oscillatory (regime 1 and 2)

Policy Iteration Method (Penalty / Direct Solution - GMRES-ILU(0))

Regime 1 Regime 2 Regime 3 Time
Direct Solution GMRES-ILU(0)

N Value Ratio∗ Value Ratio Value Ratio
Time

(s)
Rate∗∗

Time

(s)
Rate

100 3.163237699 7.876208011 3.038006455 0.2 0.2

200 3.140096408 7.871012198 2.991042676 1.3 0.8

400 3.139543877 41.88 7.870074165 5.54 2.989786523 37.39 6.8 5.25 3.4 4.08

800 3.139542918 576.2 7.869812031 3.58 2.989811832 49.63 71.4 11.72 14 4.21

1600 3.139542812 9.02 7.869726457 3.06 2.989818156 4 971 13.93 57.5 4.07

3200 3.139542838 4.04 7.869715397 7.74 2.989819796 3.86 12142 12.41 231 4.01

* Ratio ≡ Convergence Ratio

** Rate ≡ Relative Change in Computations

Table 3.2: Pricing of a half-year American put option in the three-state market from
[23] with jumps and variable timestepping for consecutive re�nements of the grid. The
outer loop is the penalty American iteration and the inner layer is either the GMRES-
ILU(0) or direct-solved regime layer. The order of convergence is sometimes oscillatory
(regime 1 and 2)
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Policy Iteration Method (Direct Control / Simple Iteration)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 3.163237699 7.87620801 3.038006454 0.2

200 3.140096409 0.02314129 7.871012198 0.00519581 2.991042677 0.04696378 0.7

400 3.139543876 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786523 0.00125615 37.39 2.4 3.36

800 3.139542917 0.00000096 576 7.869812031 0.00026213 3.58 2.989811832 0.00002531 49.63 8.5 3.66

1600 3.139542812 0.00000011 9.09 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4 34.8 4.28

3200 3.139542838 0.00000003 4.01 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 143.8 4.14

Table 3.3: Pricing of a half-year American put option in the three-state market from
[23] with jumps and variable timestepping for consecutive re�nements of the grid. Direct
Control and Simple Iteration are used for the outer and inner loops, respectively. The
order of convergence is sometimes oscillatory (regime 1 and 2)

Policy Iteration Method (Direct Control / Direct Solution - GMRES-ILU(0))

Regime 1 Regime 2 Regime 3 Time
Direct Solution GMRES-ILU(0)

N Value Ratio∗ Value Ratio Value Ratio
Time

(s)
Rate∗∗

Time

(s)
Rate

100 3.163237701 7.876208011 3.038006456 0.3 0.3

200 3.140096409 7.871012198 2.991042677 1.4 1.1

400 3.139543876 41.88 7.870074165 5.54 2.989786524 37.39 7.6 5.30 3.9 3.59

800 3.139542918 576.7 7.869812031 3.58 2.989811833 49.63 74.4 10.76 16.1 4.28

1600 3.139542812 9 7.869726457 3.06 2.989818156 4 936 12.92 72.8 4.66

3200 3.139542838 4.06 7.869715397 7.74 2.989819796 3.86 13377 14.43 334 4.62

* Ratio ≡ Convergence Ratio

** Rate ≡ Relative Change in Computations

Table 3.4: Pricing of a half-year American put option in the three-state market from [23]
with jumps and variable timestepping for consecutive re�nements of the grid. The outer
loop is the direct control iteration and the inner layer is either the GMRES-ILU(0) or
direct-solved regime layer. The order of convergence is sometimes oscillatory (regime 1
and 2)

Fixed Point-Policy Iteration Method

Fixed point policy iteration uses a single iteration to solve the nonlinear problem.

Tables 3.5 and 3.6 provides convergence and computational cost results for the local
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policy iteration method combined with the penalty and direct control approach. It can

be observed that the computational costs compete with the outputs from the policy

iteration method while a simple iteration technique (Tables 3.1, 3.3) is applied to the

linear system.

Fixed Point Policy Iteration Method (Penalty)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 3.163237697 7.876208010 3.038006453 0.2

200 3.140096408 0.02314129 7.871012198 0.00519581 2.991042676 0.04696378 0.6

400 3.139543876 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786522 0.00125615 37.39 2.2 3.57

800 3.139542917 0.00000096 576 7.869812031 0.00026213 3.58 2.989811831 0.00002531 49.63 7.7 3.57

1600 3.139542811 0.00000011 9.12 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4 31.3 4.35

3200 3.139542838 0.00000003 3.97 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 126.2 4.00

Table 3.5: Pricing of a half-year American put option in the three-state market from [23]
with jumps and variable timestepping for consecutive re�nements of the grid. Penalty
American is used for the outer iteration. The order of convergence is sometimes oscil-
latory (regime 1 and 2)

Fixed Point Policy Iteration Method (Direct Control)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 3.163237699 7.87620801 3.038006454 0.2

200 3.140096409 0.02314129 7.871012198 0.00519581 2.991042676 0.04696378 0.7

400 3.139543876 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786523 0.00125615 37.39 2.4 3.45

800 3.139542917 0.00000096 576 7.869812031 0.00026213 3.58 2.989811831 0.00002531 49.63 8.9 3.85

1600 3.139542812 0.00000011 9.1 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4 35.1 4.00

3200 3.139542838 0.00000003 3.99 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 141 4.00

Table 3.6: Pricing of a half-year American put option in the three-state market from
[23] with jumps and variable timestepping for consecutive re�nements of the grid. Direct
Control is used for the outer iteration. The order of convergence is sometimes oscillatory
(regime 1 and 2)
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Local Policy Iteration Method

Local policy iteration method, as described in Algorithm 3.5, is combined with the

penalty and direct control approaches for solving the local American problem. The

convergence and computational cost results are provided in Tables 3.7 and 3.8. Com-

pared to the �xed point policy iteration, the local policy iteration is not more e�cient.

While the last re�nement of the experiment takes 126 seconds for the former in the

penalty case, 152 seconds is required for the latter in the same case.

Local Policy Iteration Method (Penalty)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 3.163237699 7.876208011 3.038006455 0.2

200 3.140096408 0.02314129 7.871012198 0.00519581 2.991042676 0.04696378 0.7

400 3.139543877 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786523 0.00125615 37.39 2.3 3.23

800 3.139542918 0.00000096 576.2 7.869812031 0.00026213 3.58 2.989811832 0.00002531 49.63 8.6 3.85

1600 3.139542811 0.00000011 9.01 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4.00 37.6 4.55

3200 3.139542838 0.00000003 4.03 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 152.6 4.00

Table 3.7: Pricing of a half-year American put option in the three-state market from [23]
with jumps and variable timestepping for consecutive re�nements of the grid. Penalty
American is used for the inner iteration. The order of convergence is sometimes oscil-
latory (regime 1 and 2)
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Local Policy Iteration Method (Direct Control)

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 3.163237701 7.876208011 3.038006456 0.2

200 3.140096409 0.02314129 7.871012198 0.00519581 2.991042677 0.04696378 0.7

400 3.139543877 0.00055253 41.88 7.870074165 0.00093803 5.54 2.989786524 0.00125615 37.39 2.5 3.57

800 3.139542918 0.00000096 576 7.869812031 0.00026213 3.58 2.989811833 0.00002531 49.63 10.0 4.17

1600 3.139542812 0.00000011 9.02 7.869726457 0.00008557 3.06 2.989818156 0.00000632 4.00 40.9 4.17

3200 3.139542838 0.00000003 4.06 7.869715397 0.00001106 7.74 2.989819796 0.00000164 3.86 184.7 4.55

Table 3.8: Pricing of a half-year American put option in the three-state market from
[23] with jumps and variable timestepping for consecutive re�nements of the grid. Di-
rect Control is used for the inner iteration. The order of convergence is sometimes
oscillatory (regime 1 and 2)

3.7.2 Iteration Comparisons

We compare the performance of iterative algorithms 3.2, 3.4, and 3.5 combined with the

penalty method for solving the LCP problem. For both the full and local policy iteration

methods, the number of inner per outer iterations, inner iterations per timestep, and

outer iterations per timestep are given in Table 3.9 for reasonable timesteps. We analyze

these ratios with the number of outer iterations per timestep in the �xed point policy

iteration.

When a simple iteration is used, 2.2 outer (penalty American) iterations with each

two inner (regime coupling) iterations are observed. In the absence of inner iterations,

a small increase (2.2 to 3) in the number of outer (penalty American) is required for

the convergence of the �xed point method. The local policy iteration converges after

three outer (regime coupling) iterations per timestep and 1.7 inner (penalty American)

per outer iteration.

From a computational perspective, the �rst two methods (full policy and �xed point)

require less work compared to the local policy method.
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Ratios of Inner and Outer iterations

Method Inner/Outer Inner/Tstep Outer/Tstep Time (s)

Full Policy Iteration
(Simple Iteration)

2 4.4 2.2 126.7

Fixed Point N/A N/A 3 126.2

Local Policy Iteration 1.7 5.1 3 152.6

Table 3.9: The average inner per outer iterations, inner per time-step, and outer per
time-step when pricing of a half-year American put option in the three-state market
from [23] with jumps and variable timestepping for consecutive re�nements of the grid.
The Penalty formulation is used.

3.7.3 The No-jump Model

The 3-state market from [23] is assumed to have jumps, with jump amplitudes given in

(3.48), due to each shift in regime. Having considered all other parameters unchanged,

we recompute the numerical experiments for the model with no jump ([η]ij = 1, ∀i, j).

Table 3.10 gives results for the model with no jump when the outer penalty American

iteration is accompanied by a direct-solve approach for the regime iteration. Unlike

the original model from [23], we observe similar behaviour for the rate of convergence

among all regimes. Signi�cantly, contrary to the model with jumps allowed in each

regime shift, quadratic convergence is achieved due to variable timestepping.
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Direct Solution Method - No Jump

Regime 1 Regime 2 Regime 3 Time

N Value Change Ratio Value Change Ratio Value Change Ratio
Time

(s)
Rate

100 1.753928067 1.531024769 1.138502925 0.1

200 1.756205946 0.00227788 1.533292054 0.00226729 1.142211095 0.00370817 0.2

400 1.756794218 0.00058827 3.87 1.533870738 0.00057868 3.92 1.143165712 0.00095462 3.88 0.7 4.17

800 1.756944802 0.00015058 3.91 1.534017316 0.00014658 3.95 1.143409895 0.00024418 3.91 2.6 4.00

1600 1.756982758 0.00003796 3.97 1.534054239 0.00003692 3.97 1.143471664 0.00006177 3.95 10.9 4.17

3200 1.756992323 0.00000957 3.97 1.534063563 0.00000932 3.96 1.143487247 0.00001558 3.96 43.9 4.00

Table 3.10: Pricing of a half-year American put option in the three-state market from
[23](except that there is no jump between regimes) and variable timestepping for con-
secutive re�nements of frequency-time grid. The outer loop is the penalty American
iteration and the inner layer is the direct-solved regime layer. Quadratic convergence is
observed due to variable timestepping and no jump between regimes.

3.7.4 Direct Solution Sparsity Patterns

It is interesting to examine the sparsity pattern of the factors when using a direct

method to solve the full policy iteration matrix. We assembled the linear system (3.21)

for each regime into a large sparse matrix and carried out a direct solution, using

minimum degree ordering. The coe�cient matrix (A∗ = A − B) in (3.44) is a sparse

matrix with the sparsity patterns shown in Figure 3.1 for the 3-state model from [23]

with the grid of size N = 101. The left graph is the sparse matrix (A∗) with 2100 non-

zero elements. The corresponding symmetrized and reordered matrices of the matrix

(A∗) are given in the middle and right graphs, respectively, with 2887 non-zero elements.

Figure 3.2 shows sparsity patterns of the lower and upper triangular matrices from the

LU decomposition of the linear system (3.21).There is still signi�cant number of �ll-in

(2219 + 2389 = 4608) in the lower and upper triangular matrices.

Similarly, Figure 3.3 shows the sparsity patterns when there is no jump between

regimes in the 3-state model from [23]. The left graph is the sparse matrix (A∗) with

1503 non-zero elements. The corresponding symmetrized and reordered matrices of the
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Figure 3.1: Sparsity patterns of the coe�cient matrix in the linear system (3.21) when
assembled into a large sparse matrix (3N ∗ 3N , where N = 101 ) in the three-state
market from [23]. The left graph is the sparse coe�cient matrix with 2100 non-zero
elements. Middle and right are symmetrized and reordered matrices, respectively, with
2887 non-zero elements.

Figure 3.2: Sparsity patterns of the lower and upper triangular matrices coming from
the LU decomposition of the linear system (3.21) when assembled into a large sparse
matrix (3N ∗ 3N , whereM = 101 ) in the three-state market from [23] .
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matrix (A∗) are given in the middle and right graphs, respectively, with 1509 non-zero

elements. Figure 3.4 shows sparsity patterns of the lower and upper triangular matrices

from the LU decomposition of the linear system (3.21). Compared to the original model,

the model with no jump has better results in terms of the number of �ll-in (902+892 =

1794 non-zero elements in the lower and upper triangular matrix). Furthermore, it can

be observed from Table 3.10 that the no-jump model has a signi�cant improvement

in terms of the computational time cost (74.6s vs 4871s for the original model when

N = 3200). This can be explained by the fact that matrix (A∗ + (A∗)T) is a tridiagonal

block matrix in the no-jump model which makes the reordering algorithm much faster.

Figure 3.3: Sparsity patterns of the coe�cient matrix in the linear system (3.21) when
assembled into a large sparse matrix (3N ∗ 3N , where N = 101 ) in the three-state
market from [23] (except that there is no jump between regimes). The left graph is the
sparse coe�cient matrix with 1503 non-zero elements. Middle and right are symmetrized
and reordered matrices, respectively, with 1509 non-zero elements.

In fact, it is easy to see how the reordered matrix for the no-jump case has a small

amount of �ll. Consider ordering the row and columns so that all variables associated

with a single node (all regimes) are ordered consecutively. This results in a sparsity
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Figure 3.4: Sparsity patterns of the lower and upper triangular matrices coming from
the LU decomposition of the linear system (3.21) when assembled into a large sparse
matrix (3N ∗ 3N , where N = 101 ) in the three-state market from [23] (except that
there is no jump between regimes).

pattern 

D1 U1 · · · 0

L2 D2 U2

. . .
...

Ln Dn Un
...

. . .

LN−1 DN−1 UN−1

0 · · · LN DN



(3.50)

where Ln, Dn, and Un are square sub-matrices of the low, main and upper diagonal,

respectively. The general form of these sub-matrices is given by

Ln =


l11 0 0

0 l22 0

0 0 l33

 ; Dn =


d11 d12 d13

d21 d22 d23

d31 d32 d33

 ; Un =


u11 0 0

0 u22 0

0 0 u33

 , n = 1 . . .N ,

where lij, dij, and uij 6= 0; i, j = 1, 2, 3. Therefore, the sparsity pattern in (3.50) has

15 × N − 6 nonzero elements which equals 1509 for N = 101 . Moreover, A rough
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estimate of the total number of nonzeros in the LU factors is 7 × 3 ×N which equals

2100 for N = 101. These results conform to the sparsity patterns shown in the right

graphs of Figures 3.3 and 3.4.
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Chapter 4

Fourier Space Time-stepping Method

4.1 Introduction

A Fourier transform can be applied to a system of option pricing PDEs to obtain a lin-

ear system of ordinary di�erential equations (ODEs). The Fourier Space Time-stepping

algorithm (FST) considers the transformed PDEs with a time-stepping scheme in the

frequency domain, in which the frequency domain prices are obtained by applying the

discrete Fourier transform (DFT) to the spatial domain. In this chapter, the FST

method for pricing path-dependent options is developed. The availability of an analyt-

ical Fourier method depends on the form of the option payo� and the linearity of the

corresponding PDEs. For instance, the appearance of a nonlinear term in the American

option pricing PDEs can not be resolved using an analytical Fourier method. There-

fore, we approximate the sampled continuous frequency domain prices with the discrete

Fourier transform of the option values and proceed with the time-stepping scheme by

using an iterative FST algorithm in the frequency domain. The algorithm uses a sin-

gle time step for pricing European-style options while multiple steps are required for

American options.
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4.2 Continuous Fourier Transformation of the PDEs

In Chapter 3, we derived the system of option pricing PDEs for a European option

under a general K-state regime-switching model [23] as

for k = 1, . . . ,K :


∂V k

∂t
+ 1

2
(σk)2S2 ∂2V k

∂S2 + (r − η̃k)S ∂V k

∂S
− rV k +

∑K
l=1,l 6=k λ

kl(V l(Sηkl)− V k) = 0,

V k(S, T ) = V k
∗ .

(4.1)

A logarithmic transformation converts the system of PDEs in (4.1) to a system of

constant-coe�cient PDEs. Therefore, if x = log( S
S0

) and kl = log(ηkl), and v(k)(t, x)

denotes the discounted-adjusted and log-transformed price at time t, state k, and spot

level x, the system of PDEs in (4.1) for pricing European options can be re-expressed

as 

∂vk

∂t
+ 1

2
(σi)2∂

2vk

∂x2
+ (r − η̃k − 1

2
(σk)2)

∂vk

∂x
− rvk

+
∑K

l=1,l 6=k λ
kl
(
vl(x+ kl)− vk

)
= 0,

vk(x, T ) = vk∗ .

(4.2)

Applying a Fourier transform to the system of constant coe�cient PDEs leads to a

system of ODEs. Surkov [30] incorporated a K-state continuous Markov chain into the

joint stock price process model S(t) which follows a d -dimensional exponential Lévy

process, and applied a Fourier transform to convert the PIDE into a system of ODEs.

Given the same procedure for a regime-switching model with GBM process, we take

Fourier transform of the system in (4.2). In this chapter, i represents
√
−1, and F [·]

denotes the continuous Fourier transform of the term in the brackets. Now, the following

rules

F [∂nxg] (ω) = iωF
[
∂n−1
x g

]
(ω) = · · · = (iω)nF [g] (ω) ,
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and

F [g(x− a)] (ω) = e−iaωF [g(x)] (ω)

give us



∂F k

∂t
+ 1

2
(iω)2(σk)2F k + (iω)(r − η̃k − 1

2
(σk)2)F k − rF k

+
∑K

l=1,l 6=k λ
kl(ei

klωF l − F k) = 0,

F k(T, ω) = F k
∗ ,

(4.3)

where F k(t, ω) = F
[
vk
]

(t, ω) and F k
∗ = F

[
vk∗
]

(T, ω) in continuous time. From λkk =

−
∑K

l=1,l 6=k λ
kl , we have



∂F k

∂t
+
(
λkk + (iω)2 1

2
(σk)2 + (iω)(r − η̃k − 1

2
(σk)2)− r

)
F k

+
∑K

l=1,l 6=k λ
klei

klωF l = 0,

F k(T, ω) = F k
∗ .

(4.4)

We can also de�ne a matrix form of equation (4.4). Let Ψ denote the matrix charac-

teristic function with the following elements

〈Ψ(ω)〉kl =


λkk − 1

2
(σk)2ω2 + i[(r − η̃k − 1

2
(σk)2)]ω − r, k = l

λklei
klω, k 6= l

(4.5)

For each speci�c ω, (4.4) can be displayed in a matrix form



∂F (t, ω)

∂t
+ Ψ(ω)F (t, ω) = 0

F (T, ω) = F∗

F =
[
F 1, F 2, . . . , F k, . . . , FK

]T
, k=regime number.

(4.6)
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The coupled system of ODEs (4.6), expressed by the homogeneous matrix form, can be

easily solved for the vector of transformed prices by

F (t, ω) = exp{(T − t)Ψ(ω)}F∗(ω), (4.7)

where exp{(T − t)Ψ(ω)} represents the complex matrix exponential. Option prices are

then obtained by taking a reverse Fourier transform, in which a single step for European

options and multiple steps for American option are required. For European options

v = F−1
[
e(T−t)Ψ(ω)F∗(ω)

]
, (4.8)

where v =
[
v1, . . . , vK

]T
is the vector of regime-dependent option values in the real

space.

4.3 Numerical Solution

Since an explicit expression for the Fourier transform of the option payo� is not guar-

anteed, the system of ODEs obtained analytically in (4.6) cannot, necessarily, be solved

analytically. Furthermore, path-dependent features such as early exercise of American

options leads to a non-linear term in the corresponding PDE that cannot be treated

using an analytical Fourier method. Therefore, we attempt to sample the continuous

frequency domain prices using a �nite number of points in the frequency domain and

approximate it with a discrete Fourier transform (DFT) of the option value in the spa-

tial domain. The DFT is computed e�ciently using the fast Fourier transform (FFT)

algorithm.
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4.3.1 Grid Selection and Discretization of the Fourier Space

The numerical algorithm for the Fourier transform-based solution (4.8) requires one step

for European and multiple steps for American options. We use the following notations

k regime number (1, . . . ,K)

m timestep index (1, . . . ,M)

n asset node index (1, . . . ,N ),

to construct the spatial grid. Similar to Surkov [30], we consider a time period and

truncated stock price domain Ω = [0, T ] × [xmin, xmax] into a �nite mesh of points

{tm|m = 0, . . . ,M} × {xn|n = 0, . . . ,N − 1}, where tm = m∆T , ∆T = T/M, xn =

xmin + n∆x, ∆x = (xmax−xmin)/(N−1). In addition, we keep our simplifying assumption

that x = log( S
S0

) or, alternatively, x = log( S
K

) when pricing near the strike price is

required. Correspondingly, for the frequency grid, we consider a time period and the

frequency domain Ω̂ = [0, T ]×[0, ωmax] into a �nite mesh of points {tm|m = 0, . . . ,M}×

{ωn|n = 0, . . . ,N /2}, where ωn = n∆ω, ∆ω = 2ωmax/N , and ωmax = 1
2∆x

according to

the Nyquist critical frequency. Since the Fourier transform for negative frequencies is

not required1, the size of the frequency grid is half the size of the spatial grid.

Since discretization on a �nite grid involves truncation of the real spatial domain,

a localization error is introduced into the numerical algorithm. We truncate the real in�-

nite spatial domain [0, ∞] to the �nite domain [Smin, Smax], where Smin > 0 and Smax <

∞. Therefore, asset price values S on the true spatial domain which are outside of the

�nite domain [Smin, Smax], i.e. S < Smin and S > Smax, cannot be represented on the

truncated discrete spatial domain. Since the real domain of asset prices is not periodic,

the solution outside of the domain cannot be replaced by the periodic extension of the

solution inside the domain. However, we can obtain an approximate option value at

1v(t, x) is a real-valued function and, therefore, F
[
vi
]
(t,−ω) = F

[
vi
]
(t, ω)

55



S = 0 by pricing at arbitrarily small values of Smin on the expanded grid. Similarly, ap-

proximations to the price at S > Smax can be obtained by pricing at large values of Smax

on the expanded grid. Furthermore, since the discrete spatial domain is transformed

using the change of variable x = log( S
S0

), the intervals [Smin, Smax] and [xmin xmax] are

related so that Smin = S0e
xmin and Smax = S0e

xmax .

4.3.2 Fourier Space Time-stepping Algorithm

Let vkm,n ≡ v(tm, xn) represent the option value vk(t, x) in regime k at the nodes on

the partition of Ω at time tm in the real log-transformed spatial domain and F k
m,n ≡

F k(tm, ωn) represent F
[
vk
]

(t, ω) at the nodes on the partition of Ω̂ at time tm in the fre-

quency domain. vkm is the vector of option values at time tm,
[
vkm,0, . . . , v

k
m,N−1

]
, and F k

m

is the vector of sampled Fourier-transformed option values at time tm,
[
F k
m,0, . . . , F

k
m,N−1

]T
.

The sampled frequency domain prices can be approximated by applying the discrete

Fourier transform (DFT) to the spatial domain as suggested in Surkov [30]:

F k
m,n = F

[
vk
]

(tm, ωn) ≈
N−1∑
j=0

vkm,je
−iωnxj∆x (4.9)

= e−iωnxmin∆x
N−1∑
j=0

vkm,je
−inj/N

= αn

N−1∑
j=0

vkm,je
−inj/N

= αn
[
FFT

[
vkm
]]
n
,

where F
[
vk
]

(tm, ωn) is a sampled point from the continuous Fourier transform of the

option value in the frequency domain, αn = e−iωnxmin∆x, and
[
FFT

[
vkm
]]
n
represents

the n-th component of the DFT of the vector vkm. The second line of equation (4.9) is

obtained by using the Nyquist critical frequency and xj = xmin+ j∆x, j = 0, . . .N −1.
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Having provided the values F k
m,n for all regimes (k = 1, . . . ,K), we have

Fm,n = αn
[[
FFT

[
v1
m

]]
n
, . . . ,

[
FFT

[
vKm
]]
n

]T
, αn [FFT [vm]]n , (4.10)

where [FFT [vm]]n represents the vector of n-th components of the DFTs of the vectors

vkm (for k = 1, . . . ,K). Furthermore, spatial domain prices are computed from frequency

domain prices using a discrete inverse transform denoted by FFT −1:

vkm,n =
[
FFT −1

[
α−1 · F k

m

]]
n
, where α = [α0, α1, . . . , αN−1]T . (4.11)

Assuming T = t+∆t, the solution to the transformed PDEs in (4.7) can be re-expressed

as

F (t, ω) = eΨ(ω)∆tF∗, (4.12)

where the exponential matrix (eΨ(ω)∆t) is computed for each speci�c ω separately.

Speci�cally, for any arbitrary values ωn, tm as T, and tm−1 as t where tm = tm−1 + ∆t,

we have

Fm−1,n = eΨ(ωn)∆tFm,n (4.13)

where Fm−1,n = F (tm−1, ωn) is the vector of regime-dependent option values with the

k-th element (for regime k) represented by

F k
m−1,n =

(
eΨ(ωn)∆tFm,n

)k
, (4.14)

The transformation between spatial and frequency domain in equations (4.9) and (4.11)

can be combined with solution to the transformed PDEs in (4.12). A one step backward
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in time t can be computed by

vkm−1 = FFT −1
[
α−1 · F k

m−1

]
(4.15)

= FFT −1
[
α−1 ·

[
F k
m−1,0, . . . , F

k
m−1,N−1

]T]
= FFT −1

[
α−1 ·

[(
eΨ(ω0)∆tFm,0

)k
, . . . ,

(
eΨ(ωN−1)∆tFm,N−1

)k]T]
= FFT −1

[
α−1 ·

[
α0

(
eΨ(ω0)∆t [FFT [vm]]0

)k
, . . . , αN−1

(
eΨ(ωN−1)∆t [FFT [vm]]N−1

)k]T]
= FFT −1

[
α−1 · α ·

[(
eΨ(ω0)∆t [FFT [vm]]0

)k
, . . . ,

(
eΨ(ωN−1)∆t [FFT [vm]]N−1

)k]T]
= FFT −1

[[(
eΨ(ω0)∆t [FFT [vm]]0

)k
, . . . ,

(
eΨ(ωN−1)∆t [FFT [vm]]N−1

)k]T]
,

where, in the third row, F k
m−1,n is replaced by

(
eΨ(ωn)∆t · Fm,n

)k
according to (4.14), and

then is replaced by its discrete approximation
(
eΨ(ωn)∆tFm,n

)k
= αn·

(
eΨ(ωn)∆t [FFT [vm]]n

)k
according to (4.10), in the fourth row. The coe�cient α cancels in the above equation,

and can be omitted from the numerical computation.

4.3.3 Wrap-around Error

A truncation error appears when an in�nite and continuous asset price domain is rep-

resented by a �nite and discrete grid. Furthermore, the use of the DFT e�ectively

replaces the original problem by a periodic problem with a period equal to the �nite

domain size. This may introduce a wrap-around error in the values at the far right end

of the domain, S � Smax and produce spurious option prices at S ' Smax . Similarly,

wrap-around pollution in the far left side, S � Smin, leads to spurious option prices at

S ' Smin.
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4.3.4 Spatial Grid Extension

The spurious option prices near the boundaries can be resolved by extending the real

space boundaries. We use the simple expedition of extensions [xmin, xmax] to [x∗min, x
∗
max].

If x∗max � xmax, a smaller wrap-around pollution, compared to the original non-

expanded grid, is expected at xmax. Similarly, if x
∗
min � xmin, the wrap-around e�ect

at xmin will be small. However, the downside of the simple extension is that if we use

the same number of nodes, the accuracy of the option value generated near the strike

price of interest may be reduced.

4.4 American Options

While having the same structure as European options, American options can, however,

be exercised at any time prior to expiry. When being exercised, the option gives the

holder a payo� depending on the current value of the underlying asset and a �xed

strike price. However, it is not rational to exercise when the current payo� is lower

than the terminal payo�. American options can be priced either by explicit or penalty

methods. The idea of an explicit method, which can be extended to the FST, is to

enforce the optimal exercise condition vk(τ, x) ≥ vk(0, x), where k = 1, . . . ,K is the

regime number. We apply this condition in the real space and the time step is performed

in the Fourier space. Combining the FST algorithm in (4.15) with the optimized early

exercise condition yields

νkm−1 = FFT −1

[[(
eΨ(ω0)∆tFFT [vm]0

)k
, . . . ,

(
eΨ(ωN−1)∆tFFT [vm]N−1

)k]T]
, (4.16)

vkm−1 = max{νkm−1, v
k
M}, (4.17)
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where FFT [vm]n = [FFT [v1
m]]n , . . . ,

[
FFT

[
vKm
]]
n
and νkm−1 denotes the vector of

holding values of the option at tm−1 before the optimality condition is enforced. The

switch between real and Fourier space is inevitable since there is no representation of

the max operator in Fourier space.

4.4.1 American Options with Penalty Method

The American option pricing problem is commonly expressed as a linear complemen-

tarity problem (LCP) which can be extended to the regime-switching model:


(∂t + L)vk(t, x) ≥ 0

vk − vk∗ ≥ 0

(vk − vk∗)(∂tvk + L
[
vk
]
) = 0.

(4.18)

From (4.2), L
[
vk
]
is given by

L
[
vk
]

=
1

2
(σk)2vkxx + (r− η̃k − 1

2
(σk)2)vkx − rvk +

K∑
l=1,l 6=k

λkl
(
vl(x+ kl))− vk

)
, (4.19)

where vkx and v
k
xx are the �rst and second partial derivatives of the option value in

regime k, with respect to the log-transformed spatial variable x. The LCP problem

(4.18) can be replaced by the penalty method so that

(∂t + L)vk(t, x) + ρP (vk)(t, x) = 0, (4.20)

where P (vk)(t, x) = max(vk∗−v, 0) is the penalty function and ρ is a penalty parameter.

A Fourier transform can be applied to equation (4.20) in order to resolve the spatial

derivative and obtain an ODE:
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(∂t + Ψ(ω))F [v] (t, ω) + ρF [P (v)] (t, ω) = 0, (4.21)

where Ψ is the matrix characteristic function as described in (4.5) and

F [v] =
[
F
[
v1
]
,F
[
v2
]
, . . . ,F

[
vK
]]T

,

F [P (v)] =
[
F
[
P (v1)

]
,F
[
P (v2)

]
, . . . ,F

[
P (vK)

]]T
are the regime-dependent vectors in the Fourier space for the option values and penalty

functions, respectively. However, due to the nonlinear penalty term in (4.21), an analyt-

ical Fourier solution cannot be found. Therefore, we sample the continuous frequency

domain prices using a �nite number of points in the frequency domain so that

(∂t + Ψ(ωn))F [v] (t, ωn) + ρF [P (v)] (t, ωn) = 0. (4.22)

As in (4.9), the continuous frequency domain prices (F [v] (t, ωn)) and penalty value

(F [P (v)] (t, ωn)) can be approximated by applying the discrete Fourier transform (DFT)

to the spatial domain. Assuming v̂ =
[
v̂1, . . . , v̂K

]T
is the discretized vector of the

option values, we obtain F [v] (t, ωn) = αn [FFT [v̂]] (t, ωn) and F [P (v)] (t, ωn) =

αn [FFT [P (v̂)]] (t, ωn), where

[FFT [v̂]] (t, ωn) =
[[
FFT

[
v̂1
]]
n
, . . . ,

[
FFT

[
v̂K
]]
n

]T
,

[FFT [P (v̂)]] (t, ωn) =
[[
FFT

[
P (v̂1)

]]
n
, . . . ,

[
FFT

[
P (v̂K)

]]
n

]T
.

This yields

(∂t + Ψ(ωn)) [FFT [v̂]] (t, ωn) + ρ [FFT [P (v̂)]] (t, ωn) = 0. (4.23)
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Let

F̂ (t, ωn) = [FFT [(v̂)]] (t, ωn),

and

Ĝ(ωn) = [FFT [P (v̂)]] (ωn)

be the K× 1 Fourier-transformed vectors of time-dependent option values and penalty

functions, respectively. Then equation (4.23) is replaced by

(∂t + Ψ(ωn))F̂ (t, ωn) + ρĜ(ωn) = 0, (4.24)

where Ĝ is a function of Forurier-transformed vector of option values (Ĝ(ωn) =
[
Ĝ
[
F̂
]]

(ωn)).

Multiplying both sides of the equation by the integrating factor eΨ(ωn)t yields

∂
[
eΨ(ωn)tF̂ (t, ωn)

]
∂t

= −ρeΨ(ωn)tĜ(ωn). (4.25)

Let tm = ∆t, tm−1 = 0, and F̂m,n = F̂ (tm, ωn) for the sake of simplicity. Integrating

equation (4.25) backwards in time from t = ∆t to t = 0 gives

F̂m−1,n − eΨ(ωn)∆tF̂m,n = −ρ
ˆ tm−1=0

tm=∆t

eΨ(ωn)tĜ(ωn)dt (4.26)

Regarding Ĝ(ωn) as constant, we have

F̂m−1,n = eΨ(ωn)∆tF̂m,n − ρΨ−1(ωn)
[
I − eΨ(ωn)∆t

]
Ĝ(ωn). (4.27)

The non-linear equation in (4.27) cannot be solved easily through analytical meth-

ods. Therefore, we solve the equation by a �xed-point iteration scheme. The iterative
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equation is given by

(
F̂m−1,n

)(j)

= eΨ(ωn)∆tF̂m,n + ρΨ−1(ωn)
[
eΨ(ωn)∆t − I

] (
Ĝ(ωn)

)(j−1)

(4.28)

where eΨ(ωn)∆tF̂m,n is the current N × 1 regime-dependent vector of option values com-

puted from the previous time step in the Fourier space in which the penalty term is

not incorporated. It is interesting to know that we can solve the above equation even

if matrix Ψ(ωn) is not invertible. After expansion of eΨ(ωn)∆t,

ρΨ−1(ωn)
[
eΨ(ωn)∆t − I

]
' ρΨ−1(ωn)

[(
I + Ψ(ωn)∆t+

(Ψ(ωn))2 (∆t)2

2!
+ · · ·

)
− I

]

= ρ(I∆t+
Ψ(ωn) (∆t)2

2
+ · · · ),

so that Ψ−1(ωn) does not appear. As in [30], ρ is chosen so that ρΨ−1(ωn)
[
eΨ(ωn)∆t − I

]
→

I as ∆t → 0. This avoids introducing bias into the explicit iteration. From the �rst-

order Taylor expansion of the exponential function (eΨ(ωn)∆t ' I + Ψ(ωn)∆t), we have

ρΨ−1(ωn)
[
eΨ(ωn)∆t − I

]
' ρΨ−1(ωn) [Ψ(ωn)∆t]

= ρI∆t

≡ I; if ρ∆t = 1

which results in ρ = 1
∆t
. Let


(
F̂m−1,n

)(0)

= eΨ(ωn)∆tF̂m,n,(
F̂ k
m−1

)(0)

=

[(
F̂ k
m−1,0

)(0)

, . . . ,
(
F̂ k
m−1,N−1

)(0)
]T
,
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where k is the regime number, and


(
P̂m−1,n

)j−1

= Ψ−1(ωn)
[
eΨ(ωn)∆t − I

] (
Ĝm−1,n

)(j−1)

,(
P̂ k
m−1

)j−1

=

[(
P̂ k
m−1,0

)j−1

, . . . ,
(
P̂ k
m−1,N−1

)j−1
]T
.

Equation (4.28) is replaced by

(
F̂ k
m−1

)(j)

=
(
F̂ k
m−1

)(0)

+ ρ
(
P̂ k
m−1

)(j−1)

. (4.29)

After taking the inverse discrete Fourier transform, the option price in the real space

will be

(
v̂km−1

)(j)
= FFT −1

[(
F̂ k
m−1

)(0)
]

+ ρFFT −1

[(
P̂ k
m−1

)(j−1)
]
.

The iterative FST method, therefore, can be expressed as

(
v̂km−1

)(j)
=
(
v̂km−1

)(0)
+ ρFFT −1

[(
P̂ k
m−1

)(j−1)
]
, (4.30)

where the initial value
(
v̂km−1

)(0)
is computed using the usual time step of the standard

FST method given in equation (4.15)

(
v̂km−1

)(0)
= FFT −1

[(
F̂ k
m−1

)(0)
]
. (4.31)

The iterative scheme of the FST method for the American penalty iteration (4.30) is

given in Algorithm 4.1.
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Algorithm 4.1 Penalty American Iteration using the FST method (each time step)

/* should be assigned out of time-step loop */

∆t = 1
M

ρ = 1
∆t

TOL = 10−6

/* usual time step of the standard FST method */

For each ω in the frequency domain(
F̂m−1

)(0)

= eΨ∆tF̂m

(vm−1)(0) = FFT −1
[
eΨ∆tF̂m

]
End For

/* penalty iteration loop */

For j = 1 until convergence

For each regime (k)

/* old option value */(
vkm−1

)(j−1)
= FFT −1

[(
F̂ k
m−1

)(j−1)
]

/* constructs penalty term from the old option value */(
Gk
m−1

)(j−1)
= FFT

[
max(vk∗ − (vkm−1)(j−1), 0)

]
End for

/* Fourier space: new option value */

For each ω in the frequency domain(
F̂m−1

)(j)

=
(
F̂m−1

)(0)

+ ρΨ−1(eΨ∆τ − I)
(
Ĝm−1

)(j−1)

End For

For each regime (k)

/* real space: new option value */(
vkm−1

)(j)
=(

vkm−1

)(0)
+ ρFFT −1

[(
Ψ−1(eΨ∆τ − I)

(
Ĝm−1

)(j−1)
)k]

End for

if max
k

{
max
n

(
|vk,jm−1,n−v

k,j−1
m−1,n|

max(1,|vk,j−1
m−1,n|,|vkm,n|)

)}
< TOL quit

end For /* penalty iteration loop

TERMINAL ITERATE GIVES vkm−1 FOR k = 1, . . . ,K
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4.5 Expansion of the Matrix Exponential

The matrix exponential (eΨ∆t) appearing in the iterative FST method for the European

(4.15) and American (4.30) options can be computed in many ways. Moler and Van

Loan [26] proposed di�erent methods to compute the exponential of a matrix. We

use the expm function in Matlab to compute the matrix exponential (eΨ∆t). The expm

function is built-in and implemented using a scaling and squaring algorithm with a

Padé approximation as discussed in [26]. Furthermore, we compare our results with the

Taylor series expansion of the matrix exponential.

4.5.1 Taylor Series Expansion

The matrix exponential (eΨ∆t) can be formally de�ned by Taylor series

eΨ∆t = I + Ψ∆t+
Ψ2 (∆t)2

2!
+ · · · , (4.32)

where I is the identity matrix. With a small time step (∆t→ 0), the equation can be

approximated by the �rst two terms so that

eΨ∆t ≈ I + Ψ∆t. (4.33)

The same result can be obtained from solving the ODEs in (4.6) by �nite di�erence

schemes approximations, such as the forward Euler method


Fm−1 = (I + Ψ(·)∆t)Fm

FM = F ∗.

(4.34)

However, these approximations are only �rst-order accurate with time-step stability

restrictions [30]. We will provide numerical experiments using the �rst-order Taylor
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series in conjunction with the FST method.

4.5.2 Crank-Nicolson Method

The (1, 1) Padé approximation2 to (eΨ∆t) [26] gives the second-order Crank-Nicolson

scheme

eΨ∆t ≈
(
I − Ψ∆t

2

)
−1

(
I +

Ψ∆t

2

)
. (4.35)

Taylor expansions gives

(
I − Ψ∆t

2

)
−1

(
I +

Ψ∆t

2

)
≈ I + Ψ∆t+

Ψ2 (∆t)2

2!
+O

(
(∆t)3 Ψ3

)
, (4.36)

which shows that the Taylor expansion of equation (4.35) agrees with that of the matrix

exponential (4.32) through the �rst three terms. Therefore, the Crank-Nicolson method

which corresponds to the (1, 1) Padé approximation has second-order global accuracy.

Compared to Euler's scheme, this method is both more accurate and unconditionally

stable. We will provide numerical experiments using the second-order Crank-Nicolson

method in conjunction with the FST method.

4.6 Numerical Experiments

4.6.1 Convergence Results

We price an American put option in a three-state regime-switching model where the

underlying jumps in each regime shift. The market is from [23], where the stock follows

a Geometric Brownian Motion model within each state. The interest rate and all

regime parameters such as volatilities, rate matrix of risk-adjusted intensities, and jump

amplitudes are the same as the experiment for the PDE approach in section 3.7.

2The (1, 1) Padé approximation corresponds to the (p, q) Padé approximation where p = q = 1.
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We consider an American put option with T = 0.5 and a strike of K = 100$ which is

priced at S = 100$. The results in Tables 4.1, 4.2, and 4.3 suggest that the FST method

for pricing American options using an explicit method (equation 4.17) is close to second

order in space for each regime. It is, however, possible to obtain an almost-quadratic

convergence in time (Table 4.4 and 4.5), if we price American options with the FST

method based on the penalty iteration of Forsyth and Vetzal [16]. Furthermore, the

matrix exponential function (eΨ∆t) in the explicit solution of American options (4.17)

has been computed in three ways, the �rst-order Taylor series approximation method

(equation 4.34) in Table 4.1, the second-order Crank-Nicolson method in Table 4.2,

and the scaling and squaring algorithm with a Padé approximation method (the expm

Matlab function) in Table 4.3. It can be seen that the numerical results corroborate

the advantage of both the Crank-Nicolson method and the expm function in accuracy

over the �rst-order Taylor expansion. The Crank-Nicolson method and the expm-based

approach provide similar results regarding option values and convergence behaviour.

While having a small inconsistency within regimes, the order of convergence is close to

2 in space and time with the penalty formulation as shown in Tables 4.4 and 4.5. There

is no signi�cant di�erence between the computational time costs observed for the Euler,

Crank-Nicolson, and expm-based approaches. The characteristic matrix (Ψ) is an K×K

matrix, with K = 3 in our experiment, and the advantage of the Crank-Nicolson over

the expm function is not obvious for small amounts of N which is dominated by other

time-consuming tasks in the algorithm.
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Explicit American - using �rst-order Taylor series approximation

Regime 1 Regime 2 Regime 3
N M Value Change Ratio Value Change Ratio Value Change Ratio Time

512 32 3.166310803 0 0 7.96353986 0 0 3.022856693 0 0 0.06

1024 128 3.146209645 0.02010116 0 7.893017717 0.07052214 0 2.997474292 0.02538240 0 0.35

2048 512 3.141177745 0.00503190 3.99 7.875494595 0.01752312 4.02 2.991616938 0.00585735 4.33 2.20

4096 2048 3.139961239 0.00121651 4.14 7.871151027 0.00434357 4.03 2.990281483 0.00133546 4.39 16.00

8192 8192 3.139650762 0.00031048 3.92 7.870070546 0.00108048 4.02 2.989938508 0.00034298 3.89 153.0

16384 32768 3.139570551 0.00008021 3.87 7.869801379 0.00026917 4.01 2.989850548 0.00008796 3.9 1330

Table 4.1: Explicit-based pricing of a half-year American put option in the three-state
market from [23] for consecutive re�nements of frequency-time grid. The exponential
matrix is computed using a �rst-order Taylor series expansion. With a small inconsis-
tency within regimes, the order of convergence is very close to 2 in space.

Explicit American - using Crank-Nicolson approximation

Regime 1 Regime 2 Regime 3
N M Value Change Ratio Value Change Ratio Value Change Ratio Time

512 32 3.148794578 0 0 7.871543005 0 0 3.0031878 0 0 0.08

1024 128 3.141482182 0.00731240 0 7.870268807 0.00127420 0 2.992330036 0.01085776 0 0.37

2048 512 3.139976982 0.00150520 4.86 7.869848164 0.00042064 3.03 2.99033117 0.00199887 5.43 2.33

4096 2048 3.139654672 0.00032231 4.67 7.869742668 0.00010550 3.99 2.989954899 0.00037627 5.31 19.00

8192 8192 3.139573357 0.00008132 3.96 7.869718709 0.00002396 4.4 2.989856162 0.00009874 3.81 158.0

16384 32768 3.139551059 0.00002230 3.65 7.869713451 0.00005258 4.56 2.989829822 0.00002634 3.75 1480

Table 4.2: Explicit-based pricing of a half-year American put option in the three-state
market from [23] for consecutive re�nements of frequency-time grid. The exponential
matrix is computed using a second-order Crank-Nicolson method (i.e. (1, 1) Padé ap-
proximation). While not consistent within regimes, the order of convergence is close to
2 in space.
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Explicit American - using the expm built-in function in Matlab

Regime 1 Regime 2 Regime 3
N M Value Change Ratio Value Change Ratio Value Change Ratio Time

512 32 3.148502949 0 0 7.870607481 0 0 3.002692149 0 0 0.13

1024 128 3.14145055 0.00705240 0 7.870205119 0.00040236 0 2.992288683 0.01040347 0 0.48

2048 512 3.139971932 0.00147862 4.77 7.869843325 0.00036179 1.11 2.990325832 0.00196285 5.3 2.53

4096 2048 3.139653794 0.00031814 4.65 7.869742303 0.00010102 3.58 2.989953985 0.00037185 5.28 16.80

8192 8192 3.139573029 0.00008077 3.94 7.869718658 0.00002365 4.27 2.989855813 0.00009817 3.79 173.0

16384 32768 3.139550971 0.00002206 3.66 7.869713441 0.00000522 4.53 2.989829728 0.00002609 3.76 1400

Table 4.3: Explicit-based pricing of a half-year American put option in the three-state
market from [23] for consecutive re�nements of frequency-time grid. The exponential
matrix is computed using the expm built-in function in Matlab, at each point of space
for every time step. While not consistent within regimes, the order of convergence is
close to 2 in space.

Penalty American - using Crank-Nicolson approximation

Regime 1 Regime 2 Regime 3
N M Value Change Ratio Value Change Ratio Value Change Ratio Time

512 32 3.151069537 0 0 7.873519757 0 0 3.004542206 0 0 0.222

1024 64 3.142099459 0.00897008 0 7.870774691 0.00274507 0 2.992838725 0.0117035 0 0.783

2048 128 3.140178324 0.00192113 4.67 7.869972197 0.00080249 3.42 2.990488293 0.00235043 4.98 3.05

4096 256 3.139732602 0.00044572 4.31 7.869774865 0.00019733 4.07 2.990015103 0.00047319 4.97 13.5

8192 512 3.139605794 0.00012681 3.51 7.869726514 4.84E-05 4.08 2.989881142 0.00013396 3.53 56.9

16384 1024 3.139565957 3.98E-05 3.18 7.869715152 1.14E-05 4.26 2.989841402 3.97E-05 3.37 285

Table 4.4: Penalty-based pricing of a half-year American put option in the three-state
market from [23] for consecutive re�nements of frequency-time grid. The exponential
matrix is computed using the Crank-Nicolson method, at each point of space for every
time step. While not consistent within regimes, the order of convergence is close to 2 in
space and 2 in time. The time-step, penalty parameter, and convergence tolerance values
are ∆T = T

M , ρ = 1
∆T
, and TOL = 10−6, respectively. The penalty parameter (ρ = 1

∆T
)

gives a smooth rate of convergence. The penalty loop converges in 1-3 iterations.
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Penalty American - using the expm built-in function in Matlab

Regime 1 Regime 2 Regime 3
N M Value Change Ratio Value Change Ratio Value Change Ratio Time

512 32 3.150926911 0 0 7.872529927 0 0 3.004346253 0 0 0.28

1024 64 3.142034767 0.00889214 0 7.870523601 0.00200633 0 2.992762317 0.0115839 0 0.925

2048 128 3.140169995 0.00186477 4.77 7.869907678 0.00061592 3.26 2.990478353 0.00228396 5.07 3.49

4096 256 3.139731212 0.00043878 4.25 7.869758151 0.00014953 4.12 2.990013128 0.00046523 4.91 13.5

8192 512 3.139605673 0.00012554 3.50 7.869722127 3.60E-05 4.15 2.989880768 0.00013236 3.51 64

16384 1024 3.139566084 3.96E-05 3.17 7.869713917 8.21E-06 4.39 2.989841426 3.93E-05 3.36 281

Table 4.5: Penalty-based pricing of a half-year American put option in the three-state
market from [23] for consecutive re�nements of frequency-time grid. The exponential
matrix is computed using the expm built-in function in Matlab, at each point of space
for every time step. While not consistent within regimes, the order of convergence is
close to 2 in space and 2 in time. The time-step, penalty parameter, and convergence
tolerance values are ∆T = T

M , ρ = 1
∆T
, and TOL = 10−6, respectively. The penalty

parameter (ρ = 1
∆T

) gives a smooth rate of convergence. The penalty loop converges in
1-3 iterations.

4.6.2 Wrap-around Error Observations

The pricing of American put options under the three-regime model in the previous

section is investigated when the asset is near the boundaries. We expect an almost-zero

value for the price of American put options at large values of asset price S. However,

running the FST algorithm with the real space boundaries xmin = −7.5 and xmax = 7.5

produces signi�cant wrap-around error at the right boundary of the domain near S =

Smax = 1.808 ∗ 105. The spurious option prices at the extreme right side of the domain

when S is approximately greater than 1.6∗105 (S ' 1.6∗105) can be observed in Table

4.6. On the contrary, there is no considerable di�erence between the price of American

put options at small values of asset price S in the original grid (S = 0.0553 in Table 4.6)

and the correspondent price coming from the expanded grid (S = 0.05 in Table 4.7).

Therefore, no wrap-around error was observed at the left boundary of the domain near

S = Smin = 0.0553. The absence of the wrap-around error at the left side of the domain

might be due to the application of the American constraint. However, although early
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exercise is allowed everywhere, the algorithm is not e�ected by the American constraint

for large values of S near Smax since the payo� (max(K − S, 0)) is likely to be zero.

Wrap-around e�ects near the boundaries when {xmin, xmax} = {−7.5, 7.5} has

been resolved by expanding the real space boundaries. The new expanded bound-

aries ({−15, 15}) allowed us to evaluate option prices over a greater domain. As shown

in Table 4.7, running the FST algorithm with the new expanded boundaries resolves

the wrap-around error near the original boundaries (S = 0.05, S = 2 ∗ 105). However,

the accuracy of the option value generated near the strike price of interest has been

reduced. For instance, when S = 100 and (N ,M) = (512, 32) points in the space-time

grid, the option price with the original boundaries (V = 3.150743) is closer to its con-

verged value (V = 3.139596). Evaluated with the expanded boundaries, however, the

option price (V = 3.207299) and its converged value (V = 3.139697) are more distant.

An insightful comparison between the rows of Tables 4.6 and 4.7 shows that the reduc-

tion in accuracy has been treated by choosing a condensed grid. It can be observed that

the option values in the �rst row (i-th row) of Table 4.6 are correspondent, in terms of

accuracy, to the values in the second row ((i+ 1)-th row) of Table 4.7.

The wrap-around e�ects, however, can be still observed in the divergent option

prices near the new extended right boundaries (S ' 3∗108). Similarly, no wrap-around

error was observed at the left boundary of the domain near S = Smin = 3.059 ∗ 10−5.
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Wrap-around E�ects (x = [−7.5, 7.5])

Smin =

0.0553
S = 0.1 S = 100 S = 105

S =

1.6 ∗ 105

S =

1.7 ∗ 105

Smax =

1.808 ∗ 105

N M Value Value Value Value Value Value Value

512 32 99.538479 99.897984 3.150743 0.189475 4.34 28.52 76.76

1024 64 99.337753 99.899795 3.141975 0.073808 5.30 35.70 86.87

2048 128 99.258271 99.900068 3.140141 0.024847 6.08 39.62 92.88

4096 256 99.603551 99.899998 3.139712 0.007857 6.63 41.72 96.08

8192 512 99.529701 99.900001 3.139596 0.002383 6.97 42.85 97.71

16384 1024 99.549449 99.900000 3.139562 0.000646 7.17 43.45 98.62

Table 4.6: Wrap-around e�ects on the penalty-based pricing of a half-year American
put option with the usual real space boundaries {xmin, xmax} = {−7.5, 7.5}, in the �rst
regime of the three-state market from [23], for consecutive re�nements of frequency-time
grid. The wrap-around e�ects can be observed in the divergent option prices near the
right boundaries (S ' 1.6 ∗ 105).

Resolving Wrap-around E�ects after Extension (x = [−15, 15])

Smin =

3.059 ∗ 10−5

S =

4 ∗ 10−5
S = 0.05 S = 100

S =

2 ∗ 105
S = 2 ∗ 108

S =

3 ∗ 108

Smax =

3.269 ∗ 108

N M Value Value Value Value Value Value Value Value

512 32 99.916945 100.610538 99.949964 3.207299 0.017621 0.406915 9.05 57.27

1024 64 99.888505 100.323618 99.949969 3.150712 0.012866 0.239252 14.52 76.97

2048 128 99.821430 100.007707 99.950022 3.141984 0.004972 0.092323 19.43 87.21

4096 256 99.713993 100.000028 99.949995 3.140111 0.001593 0.033326 22.33 93.09

8192 512 99.887777 100.000002 99.950000 3.139697 0.000489 0.012792 23.96 96.40

16384 1024 99.82917064 99.99996078 99.944699993.139588 0.000140 0.006138 24.85 98.03

Table 4.7: Wrap-around e�ects on the penalty-based pricing of a half-year American put
option with the extended real space boundaries {xmin, xmax} = {−15, 15}, in the �rst
regime of the three-state market from [23], for consecutive re�nements of frequency-time
extended grid. There is no wrap-around error near the old boundaries (S = 0.05, S =
2 ∗ 105) after extension. The wrap-around e�ects, however, can be still observed in the
divergent option prices near the new extended right boundaries (S ' 3 ∗ 108).
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Chapter 5

Comparisons

We compare the analytical, PDE, and FST approaches developed for pricing options in

a regime-switching market. Since there is no analytical solution for pricing American

options in a regime market, the comparison is undertaken with the PDE solution of

European options.

Model Speci�cations

Option type European call regime volatilities σ = {0.25, 0.15}
T 1 year intensities λh→l = λl→h = 0.5

Model 2-state PDE Method �xed point
interest rate r = 0.05 PDE timestep variable

Table 5.1: Input model speci�cations and parameters for comparison of Analytical and
PDE approaches.

Parameters are given in Table 5.1. Table 5.2 compares the analytical and PDE

solutions for pricing a 1-year European call option, priced at S = 100$ with a strike of

K = 100$, under a two-state regime-switching model. A signi�cant improvement, as we

expect, can be observed for the analytical approach in terms of the rate of convergence

and computations.
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Comparison of Analytical and PDE approaches

Analytical Approach PDE Approach
(Regime 1) (Regime 2) (Regime 1) (Regime 2)

n1 n2

Option

Value
Ratio

Option

Value
Ratio

Time

(s)
N M

Option

Value
Ratio

Option

Value
Ratio

Time

(s)

8 2 8.402481339 6.459199965 0.03 100 138 11.69943264 9.336093165 0.1

8 4 12.47095306 10.04096878 0.6 200 277 11.70364712 9.338455707 0.3

8 8 11.65982478 5.02 9.314436934 4.93 0.11 400 555 11.70471460 3.95 9.339051175 3.97 1.0

8 16 11.70631441 17.45 9.340478131 27.9 0.19 800 1110 11.70498246 3.99 9.339200391 3.99 4.0

8 32 11.70507316 37.45 9.339251689 21.2 0.31 1600 2218 11.70504949 4.00 9.339237717 4.00 16.1

8 64 11.70507184 940.3 9.339250161 803 0.58 3200 4434 11.70506625 4.00 9.339247050 4.00 63.5

8 128 11.70507184 NA 9.339250161 NA 1.25 6400 8866 11.70507044 4.00 9.339249383 4.00 241.1

Table 5.2: Comparison of the analytical and PDE approaches in a 2-state regime-
switching model for pricing European call options. Data is given in Table 5.1. The
analytical and PDE solutions are given in Proposition 1 (Chapter 2) and Algorithm
3.1, respectively. n1 and n2 are used for the Gaussian approximation of the analytical
solution. N and M are the size of grid and number of timesteps in the numerical
PDEs.

5.1 American Pricing Problem

Parameters are given in Table 5.3. Table 5.4 gives the comparison of the FST and

PDE solutions for pricing a half-year American put option under a three-state regime-

switching model. Since we have developed several methods in each case, only the most

e�cient methods among both the FST and PDE approaches are chosen for the sake

of comparison. As given in Table 5.3, the Crank-Nicolson method with the penalty

formulation and the �xed point-policy with the penalty formulation and a variable

timestepping are the e�cient FST and PDE choices, respectively.

Model Speci�cations PDE values FST values

Option type American put Method �xed point Crank-Nicolson
T 0.5 year Formulation penalty penalty

Parameters 3-state from [23] Timestep variable ∆T = T
M

Penalty parameter ε = 10−6∆τ ρ = 1
∆T

Tolerance tol = 10−8 tol = 10−6

Table 5.3: Input model speci�cations and parameters for comparison of FST and PDE
approaches.
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PDE approach

Jump No Jump
N M Value Ratio Time N M Value Ratio Time

(Reg. 2)∗ (1)∗∗ (2) (3) (s) (Reg. 2) (1) (2) (3) (s)

100 146 7.876208010 0.2 100 43 1.531024768 0.1

200 294 7.871012198 0.6 200 81 1.533292053 0.2

400 589 7.870074165 41.88 5.54 37.39 2.2 400 157 1.533870737 3.87 3.92 3.88 0.6

800 1178 7.869812031 576 3.58 49.63 7.7 800 307 1.534017315 3.91 3.95 3.91 2.4

1600 2356 7.869726457 9.12 3.06 4.00 31.3 1600 607 1.534054238 3.97 3.97 3.95 9.0

3200 4712 7.869715397 3.97 7.74 3.86 126.2 3200 1206 1.534063562 3.97 3.96 3.96 33.1

* Reg. = Regime

** 1 = Regime 1

Table 5.4: Comparison of the PDE approach in a 3-state regime-switching market (with
jumps and no jumps) for pricing American options. Input data is referred or given in
Table 5.3.

FST approach

Jump No Jump
N M Value Ratio Time N M Value Ratio Time

(Reg. 2) (1) (2) (3) (s) (Reg. 2) (1)∗∗ (2) (3) (s)

512 128 7.872785648 0.459 512 128 1.557821340 0.485

1024 256 7.870604623 1.63 1024 256 1.539593671 1.65

2048 512 7.869921796 4.47 3.19 4.71 6.39 2048 512 1.535333697 5.79 4.28 5.58 6.14

4096 1024 7.869760631 4.47 4.24 5.05 25.5 4096 1024 1.534392840 4.02 4.53 4.33 24.4

8192 2048 7.869723039 4.17 4.29 4.14 114 8192 2048 1.534148985 4.00 3.86 4.11 124

16384 4096 7.869714247 3.70 4.28 3.81 655 16384 4096 1.534087606 4.19 3.97 4.27 649

Table 5.5: Comparison of the FST approach in a 3-state regime-switching market (with
jumps and no jumps) for pricing American options. Input data is referred or given in
Table 5.3.

Although su�ering from a small inconsistency within regimes, the ratio of conver-

gence is close to second order for each consecutive re�nement in the FST approach.

However, the quadratic-expected rate of convergence is not consistent within regimes

and sometimes oscillatory for each consecutive re�nement in the PDE approach. The

right parts of Tables 5.4 and 5.5 represent these two approaches with a no-jump as-

sumption in the asset price. It can be seen that the FST method is more stable than the

PDE method upon changes in the model parameters. While the assumption of no jump
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has no signi�cant impact on the former in terms of the rate of convergence, the latter

bene�ts from a signi�cant improvement regarding the convergence consistency within

regimes. A quadratic rate of convergence in each re�nement with a consistency within

all regimes can be observed with the no-jump case in the PDE solution of Table 5.4.

The decrease in the amount of work for the PDE approach is explained by the di�erence

in the number of timesteps for the jump and no-jump cases. Speci�cally, a grid of size

3200 with 1206 timesteps requires 33.1 seconds to compute the no-jump option values

while the same grid with 4712 timesteps (3.9 times the no-jump timesteps) takes 126.2

seconds (3.8 times the no-jump cost) for the PDE solution when jumps are allowed.
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Chapter 6

Conclusions

We have computed the analytical solution for pricing European options under a two-

state regime-switching model. As expected, the rate of convergence is exponential and

the feature of implied volatility, volatility smile, can be captured through this model.

No analytical solution has been found for pricing American options or even European

options with more than two states in the model. Therefore, numerical techniques are

used as alternative pricing tools for both American and k-state (k > 2) European

options.

In this thesis, several PDE and FST algorithms have been developed. A brief

comparison between numerical PDE solutions demonstrates that:

• The full policy combined with a simple iteration, and �xed point-policy iteration

methods have better performance than other techniques in terms of computational

costs.

• A direct solution for solving the linear system appearing in the full policy iteration

is the most expensive approach.

• Oscillatory convergence rates for the consecutive re�nements within regimes are

observed for all PDE solutions.
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• The assumption of no jump in the model eliminates both the oscillation and

inconsistency in the convergence rates.

• Having been compared with the no-jump case, sparsity patterns show that the

amount of �ll-in in the LU factorization is signi�cantly less than that of the model

with jumps. This explains the reduction in operation count for the no-jump model.

Having been formulated using the penalty method, the �xed point-policy iteration and

the FST method in conjunction with the Crank-Nicolson approximation are chosen for

the sake of comparison. In particular:

• In terms of the convergence behaviour, although not consistently second order in

the ratio of convergence, the FST method performs better than the PDE method

even if jumps are allowed to occur.

• The FST method is more stable than the PDE method upon changes in the model

parameters. The assumption of no-jump leads to a consistent and non-oscillatory

convergence rates in the PDE approach.

• While option values are always accurate in the PDE approach, the wrap-around

e�ect in the FST method leads to inaccurate results near the boundaries.

6.1 Future Work

Some directions in which further research are as follow:

• The wrap-around e�ect caused by the periodic extension of the FST solution inside

the domain is solved by a domain extension. The domain extension involves with

more computations which is not necessarily the most e�cient work around.

• Model parameters are extracted from a calibration process. Calibrating a regime-

switching model is a challenging work.
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