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Abstract

In this thesis, we consider the path-decomposition representation of prefix trees. We show
that given query probabilities for every word in the prefix tree, the heavy-path strategy
produces the optimal trie with respect to the number of node accesses. We show how to
implement the heavy-path strategy in O (N) time for a trie containing n words with total
length N. To prove this result, we show a complete characterization of the choices made
by the optimal decomposition strategy. Using this characterization, we describe how to
efficiently support dynamic operations on the path-decomposed trie while preserving the
optimality in O (¢ |w|) time for an alphabet size of ¢ and a word length of |w|. We also
give entropy-based bounds of the node accesses per query for their respective probabilities.
Finally, we show theoretical and experimental results on the performance of heavy-path
versus maz-score, another popular path-decomposition strategy.
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Nomenclature

w Set of words in the dictionary.

S The set of letters from the alphabet.

n, [W| The number of words.

o, | Sw| The size of the alphabet.

N The sum of the length of all words, i.e. 3, e |w].

W, Subset of words of W starting with the prefix p.

€ The empty prefix.

|w] Length of the word w with w € W.

f(w) Weight of the word w.

fOV,) Weight of all words in W, i.e. ¥ e, f(w).

depth(w, T) The depth of a word w in a path-decomposed trie 7.

P (w) The set of prefixes of the word w, including the empty prefix ¢.

P (V) The set of all prefixes of the words in W, i.e. Upen P (w).

arg max f(s) Function that returns the argument s € S having the highest valuation
= of f(s).

k—aurgE Smax f(s) Function that returns the set of the k arguments s € S having the highest

valuation of f(s).
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Chapter 1

Introduction

Auto-complete or word completion is a feature that has many applications on mobile
phones, in search engines and in text editors. The idea is that the software can predict the
word that the user wants to write from the first few letters typed. Data structures have
a preponderant influence on the efficiency of the completions and the fine tuning of those
structures can have important impacts on the performance. Our interest in this thesis is
in a specific representation of tries to allow fast word completion.

A trieis a digital tree that represents a classical data structure used for this problem, the
prefix tree. There is a wealth of research focusing on various trade-off of compactness [5, 12,
13, 20, 22] and time complexity [3, 13, 17] of tries in various representation. In particular,
we can name radix trees, Patricia trees, compressed prefix trees, ternary search trees or
even suffix trees which are all data structures to solve similar word completion problems.

One representation of tree and graph structures that has been successful for improving
compression and inferring meaningful structure from the representation is path decomposi-
tion [11, 13, 14] (or cycle decomposition in graphs [4, Chapter 2.8]). The idea is to convert
a path in the original tree into a single node and recurse in each subtree dangling from this
path. The structure becomes entirely different, but when a path has a meaningful represen-
tation, it helps reduce the number of nodes and regroup the relevant information together.
In the setting that we are interested in, a path in a prefix tree represents a complete word
and is thus providing a relevant structure to our path-decomposed representation.

A different approach in data structures is to optimize the layout of the internal structure
based on the usage pattern. Moreover, if we have some idea on the access probabilities of
the nodes in the tree, we can utilize this information to improve the structure for those
access probabilities. The access pattern can be known a priori, estimated from a probability



distribution or discovered upon requests for instances. In the context of text documents
for example, the word frequency is known to follow a power-law distribution [18, 19] and
we can use this information to optimize the layout of the data structure.

We apply these two ideas, path decomposition and optimizing the internal layout of
data structures, together to produce optimal path-decomposed tries, for some definition of
optimality based on the probability of accessing a word from the corpus.

1.1 Main Contribution

Our main contribution is to describe how to compute the optimal path-decomposed trie
structure for given words and probabilities of access. We show that the well-known heavy-
path decomposition strategy is the optimal layout and can be computed in O (N) time
for a word count of n and a sum of length of all words of N. Previous results only
guaranteed logarithmic depth of the trie when using the heavy-path strategy. We also
prove a characterization of this optimal layout that we use to allow dynamic operations
in O (o |w|) time for a word of length |w| in the path-decomposed trie while conserving
the optimality condition. Finally, we provide upper and lower bounds on the optimal
cost of the trie based on the entropy of the probability distribution and we compare both
theoretically and practically the performance of the optimal path-decomposed trie to those
created by the max-score heuristic.

1.2 Thesis Outline

In chapter 2, we present some background on trie and path-decomposition as well as
background on optimal layout of these data structures. We formally define the path-
decomposed tries and the notation that we use. We also present previously used strategies
for the path selection, namely heavy-path and maz-score and show the justification of their
usage in their respective contexts.

We then present the various criteria of optimality that we consider in this thesis in chap-
ter 3. We show a naive solution to compute the optimal path decomposed trie for a set
of words and their access probabilities. Next, we improve the construction of the optimal
trie by a factor of up to n in some cases through a theorem showing locality of change for
certain operations on path-decomposed tries.



In chapter 4, we give a complete characterization of the optimal choices to construct
the optimal trie for the expected number of node accesses. This characterization leads to
the optimality of the heavy-path strategy. We also show how to maintain the optimality of
the trie for dynamic operations in O (o logn) time. Moreover, we provide bounds of the
cost function based on the entropy of the distribution.

Finally, in chapter 5 we compare the theoretical performance of the optimal path-
decomposed trie with a suboptimal strategy to get an approximation ratio. Furthermore,
we give experimental results on the practical performance using an implementation of the
heuristic with respect to the optimal. We use corpuses such as the English dictionary and
protein sequences with various probability distributions.

In chapter 6 we present our conclusion and some ideas for future work.



Chapter 2

Background and Related Work

In this chapter, we review the problem of word completion, define it formally, and explain
the structure that we improve upon in this thesis. We also describe common techniques
to construct the path-decomposed trie data structure and how to execute queries on this
structure.

2.1 Problem Statement

The problem of word completion is to give a list of complete words that are completions of
a prefix given as an input. The list can contain one or many completions and the length of
the list is often given as a parameter of the query. The result is a deterministic outcome
of the highest probabilities of all the completions of the prefix. We consider the problem
without any context to the surrounding text. This is a simplification, but we argue that
the context-aware version is heavily based on the non-aware version and therefore, our
work could be extended to more general models. An example of completion query with
the empty word ¢ as a prefix input and a requested list length of one would be the most
common word in the dictionary—for English that would be the word ‘the’. The completion
of the prefix ‘0" with the English corpus would be the word ‘be’.

When the number of completions to return is specified, the problem is named top-k
completions, where k is the number of results to return. We usually refer to this general-
ization as completion queries as they cover most use cases of auto-completion queries with
various values of k. In order to simplify the relative probabilities of each word, we assign
them a numeric weight that we use to determine the most likely completion. The weights
can be converted to probabilities by a simple normalization.
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2.2 Path-Decomposed Tries

The path-decomposed trie is the data structure that is the primary concern of this thesis.
In particular, we improve the internal layout of its nodes. We first explain prefix trees and
then apply a path-decomposition strategy to obtain a corresponding path-decomposed trie.

Prefix trees, whose structure was invented by de la Briandais [1959] referring to each
level of the tree in terms of a table, are a hierarchical tree data structure in which the
root represents the empty word and each edge stores a character or sequence of characters
leading to a different node. Words are formed by the concatenation of those characters
along a path to a leaf node. Any such path represents a word in the corpus. There can
only be one edge per node with the same first character so that for any represented word,
there is only one path to its corresponding leaf. Prefix trees or tries are very useful to
represent dictionaries and various refinements to this data structure—whether more space
efficient or faster—have been explored over the years.

Definition A Path-Decomposed Trie (PDT) is a trie constructed by transforming a prefix
tree. We select a first complete path, from root to leaf, and transform this path into a
single node (containing the concatenation of the characters of the path in the prefix tree).
We repeat the same process for each subtrees branching off that path recursively and link
those with an edge to the parent node in the PDT.

Various ordering strategies can be used for the children of a node. If using the repre-
sentation of Grossi and Ottaviano [13], which encodes the trie topology using DEFUDS! on
a balanced parenthesis data structure, the children are listed from the top to the bottom
of the path using the lexicographic ordering as the tie-breaker. An example of the first
step of a path-decomposition is depicted in figure 2.1.

A path decomposition is completely defined by the strategy used to choose the path in
the prefix tree. We present two strategies for path decomposition in sections 2.2.1 and 2.2.2.
A third example of strategy could be to select the left-most node of the prefix tree which
leads to a lexicographic depth-first ordering of the words of the original prefix tree. We
use the following terminology to denote the edges of the path-decomposed trie.

! Depth-first unary degree sequence [2] is a representation of trees that enumerates the nodes by depth-
first traversal where at each node, it appends an opening parenthesis for each child followed by a single
closing parenthesis. The resulting sequence turns out to be balanced by prepending an extra opening
parenthesis.



Figure 2.1: On the left, a prefix tree with the decomposition path 7 highlighted. On the right, the corresponding root node
un of the path-decomposed trie after the first step. The node u, represents the word cjcacs, the concatenation of
characters along the path 7.2

Definition A branching position of a node (or word, Lt *r,®,°]
as there is a one-to-one mapping) is the smallest in- 1 N a i 1
. . 1 \
dex of the character of its word at which another word ' N
. . \ u e
branches out. The branching character is the character \ L— 1 - |
that causes the branching and is the first non-matching Ya i x

character of the branching word. A branch is the com- _ .

K R K . . Figure 2.2: The nodes of the words ‘train’ and
bination of a branching position and a branching char- <tue branches from the 3'4 branching position
acter and leads to a subtrie of the root with branching characters ‘@’ and

[P

w’. ‘air’ branches at the 15% position with the
character ‘a’.3

With the previous definition, we can impose an ordering on the branches of our PDT
which consists of the numerical ordering of the branching positions with tie-breaking on an
arbitrary, but fixed, ordering of the branching characters. For the remainder of this thesis,
we use the alphabetical order of the Latin alphabet as the tie-breaking rule. The same
character can only occur at most once per branching position, making it a total order.

Since PDTs are built upon prefix trees, they inherit one important structural property
that we formulate as the following invariant.

Property (Invariant) In a path-decomposed trie, a word belongs in a subtrie if and only
if it shares a common prefix up to the branching position of that subtrie, including the
branching character.

In other words, the invariant ensures that words sharing a common prefix also share
a common subtrie. The property is true independently of the strategy used for path-
decomposition.

2Figure and notation are inspired by Grossi and Ottaviano [13].
3Note that the branching character is usually stored in the edge leading to the next word.



Given a prefix query, we denote the first node matching the prefix from the root as the
locus mode. This notation is commonly used for discussing enumeration algorithms. For
instance, in the trie matching the configuration of the words pictured in figure 2.2, the
locus node of ‘t" or ‘tr’ is the root node but the locus node of ‘tra’ is the node matching
the word ‘train’.

We now explore two common path-decomposition strategies used in the literature.

2.2.1 Heavy-Path Decomposition

The heavy-path decomposition is a greedy strategy that picks the subtree in the prefix tree
with the highest total weight recursively until reaching a leaf node. The resulting path is
named the heavy path, and the corresponding word is used as the root of the PDT. The
same strategy is then used for each subtree branching from the selected path. Each of
those dangling subtrees corresponds to a subrange of words and the strategy selects a local
root from the heavy path of that subrange.

This strategy has been explored in [13] and results in a trie with height bounded by
O (logn). The strategy is also called the centroid path decomposition.

aa
aaa
aaab
ab
ba
baa
ca

ca ab aaa

== WD == N

Figure 2.3: In the table on the left, the list of words with their associated weights. In the centre, the corresponding prefix
tree with leaves filled in light gray. The concatenation of edge labels is written in the nodes. On the right, the
path-decomposed trie created using the heavy-path strategy. The first heavy path is highlighted in bold in the prefix tree.

The above figure is an example of a trie created with the heavy-path strategy. We
describe the selection process for the first heavy path. The heaviest branch from the root
of the prefix tree is the one labeled ‘a’ as its total weight is 2+ 1+ 142 = 6, we thus follow
its edge and re-evaluate the heaviest branch from there. The next heaviest branch is then
‘a’ again with a total weight of 2+ 1+ 1 = 4. The last choice is tied with a weight of 2 for
either branch (‘e’ or ‘a’) and we arbitrarily select the first one: ‘e’. The path (represented
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by thicker edges in the figure) thus represents the word ‘aa’ and is placed at the root. There
are then four subtrees branching from that initial path corresponding to the set of words:
{‘aad’, ‘aaab’}, {‘ab’}, {ba’, ‘bad’} and {‘ca’} and we execute the heavy-path strategy on
each of these subsets to get the final path-decomposed trie on the right.

2.2.2 Max-Score Decomposition

The maz-score decomposition is also a greedy strategy that

picks the word with the highest weight as the root for each e |
subrange. Ties can be broken arbitrarily. Figure 2.4 shows
the result of the max-score strategy applied to the same set "~ - oon

of words of figure 2.3. The first choice is thus obviously ‘ba’ as
its cost is the highest with a weight of 3 and is placed at the ENEEY
root. In the branch with words starting with ‘a’, we arbitrarily

select ‘aa’ as it is tied with ‘ab’ for the highest weight and we

continue processing the tree in the same fashion.
. . . . . Figure 2.4: The maz-score PDT
This strategy is analyzed in [14] as it has the appealing  using the word set of figure 2.3.

property that the locus node of a prefix is the most likely
completion of that prefix. The paper explores the compact representation of the trie and

its performance in both space and time in contrast to two other data structures: completion
tries and RMQ tries®.

2.3 Top-k Completions Enumeration

In this section, we show how we can implement completion enumeration queries. We first
comment on the requirements of the query operation and then present two different ways
to support such queries.

When searching for a prefix in a PDT, we find the locus node u whose subtries contain
all possible words starting with the queried prefix. The query then consists of reporting
the k& words with the highest weights in the subtries branching after the end of the queried
prefix in u. In general, the locus node does not have the highest weight of the subtrie, but

4RMQ tries use data structures designed to handle range minimum queries in constant time [9]. To
support completion queries, we let the ‘minimum’ be the highest score and we get the k highest using a
priority queue and exploring the left and right subranges of the highest score recursively. For full detail,
we refer to the paper which gives pseudo-code of the top-k completion operation on RMQ tries.



one can choose a path-decomposition strategy to have this property (such as maz-score
from section 2.2.2). A path-decomposed trie for which the locus node of any prefix is the
top-1 completion is said to have the heap property®. If the strategy does not enforce the
heap property, we can avoid an exhaustive search of the words in the subtries by storing
additional information in the nodes. We present two techniques: one to use in the general
case and one to use with the heap property.

1. Maximum weight in edges. We first need to store the maximum weight in each
subtrie in the edge leading to that subtrie. With this extra information, it becomes
easy to follow the path containing the heaviest element as we simply follow the edge
that has the biggest weight at each node. The algorithm to enumerate the k heaviest
completions of a prefix is thus the following:

a. Find the locus node of the queried prefix.

b. Create a priority queue with a capacity of k£ elements and insert every edge
branching from the locus node using the maximum weight as the ordering key.

c. Remove the heaviest element of the queue and shrink its capacity by one.

d. Follow that heavy edge of the element just removed and the following heavy
edge recursively to its corresponding word (or any word having this heaviest
weight). Along the way, keep adding to the priority queue every edge that isn’t
recursed into. Whenever the priority queue is full we replace its lowest value by
the new element if the new element is bigger®.

e. Return the word at the current node and re-execute step c. to e. until the k
heaviest words are returned.

The algorithm can be implemented in O (kfdlog k) time for a maximum fan-out of f
and a maximum depth of d. As k is likely to be small, f is bounded by the alphabet
size and the length of the words, and the depth d can be kept small either in average
case or worst case by a proper choice of decomposition strategy, we consider this time
bound to be reasonably good to answer queries. The main benefit of this approach
is the lack of explicit dependency on n—although the depth can still be bounded by
some function of n in the worst-case.

5All nodes are greater than or equal to (or less or equal for a min-heap) each of its children, according
to a comparison predicate defined for the heap [25].

6To find the lowest element in a priority queue implemented as a max-heap, we can store an additional
min-heap with mutual pointers from identical edges in each heap. The min-heap helps us find the lowest
edge quickly and we simply need to synchronize the heaps when executing operations.



2. Heap enumeration. Alternatively, if the strategy produces a trie with the heap
property, we can find the locus node, return its word, and add its children in a priority
queue ordered by weight. We then iteratively take the highest element of the priority
queue and add its children. This strategy is taken from a previous paper [14] and
has a running time of O ({klog(lk)) where [ is the average length of the completions
returned minus the prefix length |p|.”

In both cases, the sum of the depth of each accessed word is an upper bound to the number
of pointers accessed. In the first case, the bound is tight for top-1 completion, but any
additional completion restarts the search from the search path instead of the root. The
second case uses the heap property so that top-k completions only use pointers to find the
locus node and then use £ — 1 additional pointers to list the completions, assuming that
the weights are stored in the edges and do not require pointer accesses.

"Note that this technique assumes constant-time implementation of many succinct data structures.
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Chapter 3

Optimal Path-Decomposed Tries

With the previously described structure of PDTs, we are interested in selecting the path-
decomposition strategy that produces an optimal representation. We use the expected
number of node accesses in the trie as the objective function to minimize since it is closely
related to the expected cost of the queries. The number of node accesses is bounded
above by the depth of each completion and we also use this metric as an approximation.
Throughout our research, we see that this definition entails consequences that further
encourage this choice.

3.1 Cost Function

In order to provide a well-defined cost function, we give each word a weight such that
the normalized weights represents the probabilities of writing each word with no context
awareness. We assume the weights to be static, but we look into dynamic operations on
the trie in chapter 4. For a word set W, we denote by f: W — R* the function mapping
words to their associated weight. Let Ty, be the set of all possible path-decomposed tries
for the words in W; we use the function depth: W x T,5» — N to map the depth of a word
in a particular trie!. With these notations, we define various cost functions formally.

Definition The word-optimal strategy is to minimize the depth of each word weighted by
its frequency. The cost function of the word-optimal strategy is:

cW, )= > flw)- depth(w, ). (3.1)

wew

"'We assign a depth of 1 to the root instead of 0 as it simplifies the cost function.

11



We choose to measure the optimality in terms of the depth of a node in the PDT even
though more than a constant number of operations can occur in a single node. We ob-
serve that the operations in a single node are done in consecutive memory (i.e. in a string
corresponding to a word), whereas following an edge to a different node is likely to incur
a cache miss. Minimizing the depth is thus going to minimize the number of cache miss
(assuming no previous state of the memory) and give fast access time in practice. Addi-
tionally, minimizing the depth also increases the number of matching characters in early
levels of the trie, which also makes better use of common prefixes in the dictionary.

With the previous argument, we can see that the word-optimal strategy makes sense
when the inputs are complete words, but when the inputs are prefixes of words from the
dictionary, the likelihood of word completions is distorted and, as such, the weights should
be adapted. We give an alternative cost function to consider the cost per prefix completion,
but first we give notation from formal languages to define prefixes. Let X,y be the alphabet

of the word set VW and X, be the set of words made from any sequence of characters of
Zw.

As we now deal with prefixes, we need two notations: one to describe the prefixes of a
word, and one to denote the words starting with a given prefix. We use P (w) to denote
the first (set of prefixes of the word w) and W, to denote the latter (subset of words of W
having the prefix p). We describe formally these definition and give some small extension:

Prefixes of words (P (w)):

We denote the concatenation of two characters ¢; and ¢y by ¢1¢e. The decomposition of
a word in its characters is w = wywy - - - w),,| and we define the prefix function as follows:

=1

|w|
fP('LU) = {67 Wi, WW2, WWo2W3, ..., w1w2"'w‘w‘} == {€}U (U {wl /I,UZ}) .

We denote by e the empty word which is a prefix of every word. An example of the
prefix function with the word ‘cat’ is P (‘cat’) = {g,‘¢’,‘ca’,‘cat’}. We also generalize
this function P (w) for set of words by simply taking the union of each prefixes: P (W) =

Uwew P (w), such that P ({‘cat’, ‘cow’}) = {e,‘c’, ‘ca’, ‘cat’, ‘co’, ‘cow’}.

Words starting with a prefix (W,):

This simply represents a subset of VW that starts with p. We formally define it as such:

Wy ={wew |jul 2 lpl and wi=pi Vi {1,.... o1}

12



Finally, we also define arg max, .y f(x) as the argument = maximizing f(x) over the do-
main X. Intuitively, the maz function returns the maximal f(x) values and arg maz returns
the associated argument x.

We now get back to defining a weight function based on the prefixes of every word of W
(i.e. prefixes in the set P (W)). We thus consider fyrefic: P (W) — R, the weight function
of prefixes and we distribute the cost of every word w € W uniformly between their |w|+1
prefixes, including the empty prefix noted e.

fpreﬁx(p) = Z

weWp

f(w)
lw| + 1

Consequently, the value fenx(p) represents the probability that p is the queried prefix.

Definition The top-1 prefix-optimal strategy is to minimize the depth of the most likely
completion of each prefix weighted by the probability of querying that prefix. The objective
function of the prefix-optimal strategy is:

Copt W, 7) = 3 Foretin(p) - depth (arg max f(w), ). (3.2)
pEfP(W) weEW)p

For convenience, we extend the definition of f to sets of words as such: f(W) =3 ,cw f(w).
We now make two observations regarding prefix-optimality.

First, a completion query consists of returning the most probable words to occur know-
ing the prefix given. This means that we are considering the conditional probability of
writing a word knowing its prefix p, P [w € W,| = f(w) - f((TWP)) which simplifies to f{%j)
for normalized weights because f(W) = 1. When we compare the probability of the words
in W, to take the highest, each one is scaled by the same factor 1/row,) from the above
formula. Thus it is sufficient to simply take the highest probability of the words f(w) with
no regards to the conditional clause as it applies uniformly to each candidate of W,. This
observation shows that we can simply compare the likelihood of the completion of a word

by the direct weight given by the function f.

Next, we also observe that the cost function is actually shifting the probability of a
prefix to its top-1 completion. In Lemma 1, we refine the second observation to describe
how each prefix contributes to its most likely completion which allows us to generalize the
cost function of top-1 prefix-optimality.

Lemma 1 Given a set of words W with probabilities given by f: W — RT, the top-1
prefiz-optimal cost function is equivalent to the word-optimal cost function with adjusted
weights for each top-1 completion of prefizes.

13



Proof The top-1 prefix-optimal cost function distributes the weight of every prefix to
its best completion. An alternative formulation of the cost is to regroup the prefixes
having the same top-1 completion by using an indicator function. We use the notation
Ls(z) for the indicator function which has value 1 if x € S and 0 otherwise. Thus, the
alternative formulation is:

Ctop- 1(W T Z ( Z fpreﬁx l{arg max,s ey, f(w’)}(w>) . depth(w, T).

weW \peP(w)

The equality holds because a given prefix can contribute to one and only one word in
a top-1 completion (for any arbitrary tie-breaker). This form makes it obvious that a
simple perturbation of the weights allows us to achieve top-1 prefix-optimality by solving
the word-optimal cost function on the weights given by fmp_l:

ftop— Z fpreﬁx ]l{al”g maX., ewp f(w’)} (w)

peP(w)

We can thus use the word-optimal cost function (3.1) with the perturbed weights given
by fiop-1(w) to achieve the same optimization objective. O

We can also extend the prefix-optimal strategy to contribute to top-k completions for fixed
k or even to all completions. However, since the exact number of nodes accessed to make
a top-k enumeration does not only depend on the absolute depth of each completion, but
rather on their relative position to each other as mentioned in Section 2.3, we simply give
upper and lower bounds on that value. For top-oco, the cost function contributing to all
completions of a prefix, we need to explore the whole subtrie, so the cost can be computed
exactly.

To generalize equation (3.2) to compute the top-k prefix optimal, we use k-max and
k-arg max: the generalized max function (resp. arg max) that returns a set of the k
maximum values (resp. arguments). The function a(S,, 7) is used to denote the number
of node accesses per completion which is dependent on the set of top-k completions S, for
the prefix p and the trie structure 7.

Clopk WV, T) = D foretix(p) a( k-arg max f(w), 7')

peP(W) weW,

Computing a(S,,7) can be done exactly by simulating a query and would lead to an
inefficient optimization algorithm. Precisely, we can count the pointer accesses for the
completion of each prefixes and multiply by the weight of that prefix. This would still lead
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to a polynomial time algorithm with, for instance, the enumeration algorithm described
in Section 2.3. Unfortunately, the optimization process is harder to solve as we cannot
simply use the depth of the nodes in order to compute the cost. For that reason, we
bound the exact number of node accesses by the depth of the completions to give a more
manageable cost function. A lower bound on the number of node accesses is to simply
access the locus node and get each completion in one additional access each. We have to
subtract one if the locus node is one of the top-k£ completions. An upper bound on the
number of node accesses is the full path from the root to each of the top-k completions.
This specific upper bound is selected because it matches the word-optimal cost function.

l%]i/ep depth(w, ) + 1S,] =1 < a(S,,7) < S; depth (s, T)

Using this upper bound on a (S,, 7) allows us to write an explicit alternative weight function
per prefix for a top-k completion.

ftop-kz(w) = Z fpreﬁx(p) : ]lk-arg max,,/cyy, fw”) ('LU)
pEP(w)
For tied values in the last x ranks of the top-k selection, we can uniformly distribute
the weight among all [ tied values. This gives a fractional contribution of #/i to those [
completions. The actual values returned by the top-k enumeration is still limited to k and
can proceed by random selection among the [ tied values.

Finally, this last cost function attributes the weight of each word to all possible com-
pletions of the prefixes, not just a fixed value k. We call it top-oco prefiz-optimal.

Ctop-oo W, T) = D foretix(D) - (mg}l depth(w, ) + W, | — 1) (3.3)
pePOY) e

From that last equation, the expanded term Y- ,cpoy) foreix(P) (|W,| — 1) is not relevant for
the optimization problem as it is not dependent on the trie layout. For that reason, we con-
sider the optimization problem on ¢, (W, T) = X ,coon) forefix(P) - Minyew, depth(w, 7).
Although, we cannot derive an exact alternate cost function because of the min operand
on the depth, we provide an alternative optimization function in the next section to solve
the optimal layout for the top-oo cost function.

Corollary 1 An upper bound of the top-k prefiz-optimal cost functions is equivalent to the
word-optimal cost function with the adjusted weights given by fiop--

Lemma 1 and its corollary show that it is sufficient to have an algorithm to compute
the word-optimal path-decomposed trie and other optimality metrics are simply obtained
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by first perturbing the weights of the words appropriately and running the algorithm.
In Section 3.2.2, we consider the performance of this upper bound in terms of the average
case. We now consider the various models for which we can consider an alternative number
of node accesses.

3.1.1 Alternative Models

When searching for the locus node of a prefix in the trie, we can either read some characters
from the current node or follow an edge to another node. A few properties of the path-
decomposed structure are relevant to our optimality function and have an impact on the
choice of the model. We list them here and investigate their various interpretations.

Property a. The number of character comparisons necessary in order to find the locus
node is at most the length of the prefix.

Property b. The number of edges that need to be followed to find the locus node is at
most the length of the prefix.

Both properties come from the fact that whenever a non-matching character is found, we
branch out at the current branching position at the branching character (i.e. by a hashtable
lookup for instance) directly. This branching out matches at least one additional charac-
ter: the branching character used from the edge taken. Therefore, whether a character
comparison succeed or not always end up matching at least one character from the prefix;
and the two properties follow immediately.

Now in terms of cost, we consider that reading a character is ‘inexpensive’ and that
following an edge is ‘expensive’ in terms of computational time. We come to this conclusion
because the characters of a word are likely to be stored in contiguous memory and accessing
memory with high spatial locality is much faster due to cache access and prefetching in
modern CPUs [10]. On the other hand, pointers are likely to cause a cache miss which
requires to load the page where the word is located into a higher level of cache. As such,
the cost functions we defined are based on the number of node accesses in the trie, thus
counting the pointer accesses. We now describe the various models for which we can
specialize the cost function.

e Standard branch: The standard branch model is the one described in the previous

section. In that model, we pay one pointer access for each branch, independent of
the type of branch.
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e Free empty branches: In this model, we pay one pointer access to access any
branch, except empty branches: those whose edge are labeled with . We consider
these empty branches free as there is no need to follow a pointer to a node that is
essentially empty.

o Free terminal branches: This last model charges only for accessing non-terminal
branches. We consider branches to be terminal when they consist of a subtrie con-
taining only one word.

Under the last two models, for two words wy,ws € W such that w; € P (ws), we can
always construct the optimal trie such that ws is parent of w;. This scheme is optimal
because the cost of accessing w; from the parent wy is free in either model, and since w;
has more opportunity to branch to other words, we prefer this configuration. However, it
is true that, for the last model only, if there are no other words sharing the prefix w; and
f(wy) = f(ws), then the choice of wy or wq as the parent produces the same cost, but for
consistency, we can apply the above rule in all cases.

3.2 Properties of Optimal PDTs

In this section we explore properties necessary for the creation of the algorithm that we
present in section 3.3. These properties help restrict what constitutes an optimal trie so
that the algorithm can be described without considering such ineligible cases.

3.2.1 Dummy Words

Suppose we could add dummy words to the word set, each with probability of access zero
(because they are not real words), in the hope to improve the layout of the PDT. We show
that building a trie that contains any of these words cannot have a lower cost than the
optimal trie. As such they are better off simply removed from the trie as they are not part
of the word set?.

Lemma 2 The word-optimal PDT contains only nodes consisting of words that are part
of the word set YW with non-zero weight. Any other words should be left out or placed as
leaves.

20f course, if these words have probability of being returned null, but are still meaningful for testing
existence in the trie, we can leave them as leaves of the trie which doesn’t contradict the optimality.
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Proof If a dummy word is added as a leaf, then it doesn’t change the cost of the trie
and we can remove or leave it.

Let z be a dummy word at an internal node such that some words are branching from
it. We replace that dummy word with any words branching at the furthest branching
position, which reduces the cost of the trie by one level per words from that subtrie.
It also leaves the dummy word branching from the replaced word as a leaf node. Since
whenever a dummy word exists, we can either remove it or change the structure of the
trie and then remove it to make it more optimal, we conclude that the optimal trie does
not contains any dummy words. 0

3.2.2 Optimality for Average Case

As we noted in section 3.1, the cost of the top-k prefix-optimal does not exactly represent
the number of pointer accesses as we have no way of having this exact value other than to
simulate a query on a trie to count the node accesses. In contrast, the other cost functions
depend only on the weights of the words and have no dependency on the structure of the
trie. In that section, we argue that using the sum of depths of each word (being an upper
bound) is a good approximation, one that we consider sufficient. Now we show that this
approximation produces the optimal number of pointer accesses per completion on average.

The idea is that for a single top-k completion query with results S, = k-arg max,,cyy, f (w),
the average depth of the completions is
1 1
— Z depth(w, ) = depth(p,7) + —
|5y ] |55

wESy

Z depth(w, y,)

weS)

where 7y, is the subtrie of 7 containing the subset of words W,. This expression gives the
average cost per completion in a single top-k£ query. When taking the weighted average per
completion we get an alternative cost function that we refer to by cayg-top-r (W, 7). Mini-
mizing this objective function gives the minimal number of pointer accesses per completion
(as opposed to per query) in the average case.

We can achieve a similar weight adjustment as the worst-case top-k cost function in
order to solve the problem using the word-optimal cost function. To do so, we simply divide
the probability of each top-k completion by the actual number of completion returned from
the word set. Using the set .S, as before gets us the following alternate cost function:

forefix(P) - L, (w)
|5yl '

favg-top-k(w) == Z

pEP(w)
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3.3 Dynamic Programming Algorithm

Up to this point, we have examined optimality metrics and shown a convergence of these
to a single one: word-optimal. In this section, we first give a naive algorithm to compute
the optimal path-decomposed trie. It uses a dynamic programming approach to solve
for increasing instances of Wj; ;), the subset of W which contains the ith to ™ words in
sorted order. We use the set of sorted words W as it facilitates finding ranges of words
sharing a common prefix. Our dynamic approach is similar to Knuth’s optimal binary tree
recurrence [15].

In order to process the cost of each branch, we use a function B(WW, w) on a word set W
and a specific word w € WW. We can either let B return a prefix p for each corresponding
range of words branching from each position, i.e. a range defined by W, C W, or return a
pair of integers representing the range (beginning and end of the range in the sorted word
set). We use the variant with indices to define the dynamic programming algorithm as it
is easier to index words into array while working with the dynamic table, but we use the
variant with prefixes to explain the idea as it is conceptually simpler.

B(+,-) returns a set of prefixes.

Let B(W,, w) for w € W, for some prefix p be the set of prefixes matching the branches
of the word w over the set W,. For example, if W = {‘car’, ‘cart’, ‘cat’, ‘cow’, ‘dog’},
then BOW., ‘cat’) = {‘car’,‘co’,‘d’} because both ‘car’ and ‘cart’ diverge from ‘cat’ at
the third letter with the prefix ‘car’, ‘cow’ at the second letter with prefix ‘co’, and
‘dog’ at the first letter with prefix ‘d’.

B(+,-) returns a set of pairs of indices.

In this case, we let B(W);;, w) for w € Wy ;) be the set of ranges of the words in all
the branches of w. For the above ordered set W, we have the corresponding example:
B(Wo,4, ‘cat’) = {[0,1], [3, 3], [4, 4] }.

Using the definition of B(-,-), we transform the cost function ¢(W,7) into a dynamic
recurrence’ for any subset of words W, (or W ;). To simplify the notation, we consider
the function ¢(-) on the (sub)set of words only and let the trie structure be defined by each
selection of word by the minimization operation.

cW,) = f(W,) + min ( Z C(Wp/)) (3.4)

pIEB(WP7w)

3We use dynamic recurrence to specifically refer to the recurrence of a dynamic programming algorithm.
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¢(Wig) = fWiy) + min ((7 ) > c(w[i,,j,])) (3.5)

weW; ) €BWi 5,w)

Lemma 3 FEquations (3.4) and (3.5) are equivalent to the word-optimal cost function.

Proof First note that (3.4) and (3.5) are equivalent because they only differ by the
alternative definition of B(-,-). We now prove that (3.5) is equivalent to (3.1).

The case when ¢ = j is trivial.

For the general case, the first summation counts the total contribution of every word
for the first level. The second term, minimizes the cost of every subtrie for any possible
selected word. Thus, a word’s weight stops contributing to the total cost exactly when
it is selected as the minimum by the second term because the partition of B(W; ;, w)
never includes w. Therefore, the weight of any word is added one time for each level
where it isn’t selected as the subroot, making the recurrence equivalent to the previous
definition of ¢(W, 7) based on the depth (3.1). O

By the correctness of the dynamic recurrence, we know that the optimization process
consists of choosing an optimal root and then optimizing each subtrie individually. This is
what is expressed by the minimization term of equation (3.4)"

We now develop a dynamic programming algorithm from the above dynamic recur-
rence (3.4). We do so by filling a table of size n x n, where the cell at coordinate (3, 7)
contains the result of ¢(W}; ;). We start filling the cells from the main diagonal of the
table, those of coordinate (i,%), and process each diagonal with the precomputed results
of the previous rows until we finish with the top-right corner which contains the solution
for the complete word set VW. We know the dynamic programming algorithm gives the
optimal solution because each step minimizes the cost of the subset of words it covers. The
following lemma explore the time complexity of the algorithm.

Lemma 4 There is a dynamic programming algorithm that can compute the word-optimal
path-decomposed trie in O (n3 - bypae) time where byq, is the mazimal number of branches
for any node using O (n*) space.

Proof We first compute a partial sum data structure of the weights of the lexicograph-
ically sorted words WW. The idea is to execute the above recurrence and complete a two-
dimensional array for all subranges i < j of W. Each cell takes O (Zwewﬁ p ’B(W[@ i, w) D

4For the remainder of this section, we use equation (3.4) and equation (3.5) interchangeably to denote
the dynamic recurrence, as the same results holds by lemma 3.
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CO((j —1) - bmax) time to compute as each of the evaluations of the min operation re-
quires one lookup in the dynamic table per branch of B(W ;;,w). We can also write
down the selected root or tied-roots (the arg min value of the dynamic recurrence (3.5))
as R, ;j at each step to reconstruct the trie.

Once the whole table is complete, we construct the optimal trie by setting the root
to any optimal root r € Ry, and let its children be any of the optimal roots of R, ; for
each (i,7) € BWo,n,7) and so on recursively, each on the subsets W ji. d

We can thus compute any of the prefix-optimal tries in O (n? - byax) time using the same
dynamic programming algorithm given that we compute the perturbed weights beforehand.
We examine the cost of this preprocessing in the next subsection.

3.3.1 Complexity of the Preprocessing

The dynamic programming algorithm of Section 3.3 finds the optimal trie using the word-
optimal strategy. As we proved earlier in Lemma 1 and corollary 1, we can transform the
original weights of words to obtain alternative weights (denoted by the f notation) and
apply to the word-optimal cost function. We explain how to compute those alternative
weights and prove the time complexity of this preprocessing.

The idea is to use a hash table with prefixes as keys and store the weight fex along
with the number of completions encountered so far. We then execute the algorithm in
three steps:

f(w)
|w|+1

1. For each word w, add the value
of w in the hash table.

to each of the entry associated with the prefixes

2. Sort the words by weight in descending order.
3. Take the sorted words one by one and for each of its prefixes do the following:

(a) If the count of the number of completions encountered so far doesn’t exceed k,
add the prefix’s weight to the word’s alternative weight and increase the number
of completions encountered of the prefix by one.

The first step fills the hash table with the values of f,efx. The second step allows us to
limit the contribution of a prefix to its k& best completions as we iterate over the words in
the third step. The threshold k can be arbitrary (i.e. 1 for top-1 or none for top-co). A
pseudo-code sample is given in algorithm 1.
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Assuming O (1) behavior of hash table in Algorithm 1 Preprocessing(WV, 1, &)
the average case, we calculate the computa-
tion time of the algorithm. Steps 1 and 3 take [ ¢~ hashtable
O (N) time where N = Y,y 0| and sort- ~ for we W do
ing in step 2 can be done in O (N) time by | for p € P (w) do
building a prefix-tree of the words and then || hlpl.weight « hip|.weight+ |{U(|i)1
enumerating the words in depth-first, left-to- sort W by weight
right order of the branches of the prefix tree. f <« hashtable

. o for w € W do
Claim 1 The running time of the preprocess- for p € P (w) do

ing step to compute the alternative weights
of top-1, the upper bound of top-k or top-oo Flp] < flp] + hpl.weight
prefiz-optimality is bounded by O (N) time in h[p].count < hlp].count + 1
average case. return f

if hlp|.count < k then

3.3.2 Dynamic Recurrence for top-oo

The top-oco cost function is based on the depth of the locus node, the rest is a straightfor-
ward enumeration of every nodes matching the prefix. We can refer to the depth of the
locus node as min,,eyy, depth (w, 7) for a prefix p which we simplify by extending the depth
function on prefixes: depth (p, 7). Ultimately, the main difference from the previous cost
function is that the further contributions of the prefixes of a word already selected should
not be considered in the next levels of the trie.

Although it is possible to define a cost function in terms of the ranges of words in W,
it is easier to work with range of words having a certain prefix as with equation (3.4).

cOVp) =1 2 foerws(P)| +min > c(W,). (3.6)
p'EP(Wp) pP'EB(WpﬂU)
[p'|>|p|

Clearly, in this equation, a prefix stops contributing to additional degree of depths whenever
it is selected since the first terms only considers the prefixes longer than the current range.
This equation thus computes the depth of the locus node of each prefix, resulting in the
optimization function cf,, . (7) of equation (3.3).
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3.3.3 Alternative Models

To support the free empty branches model, when we list the branching position B(Wj jj, w),
we simply ignores branches with one element where the next character is the empty word «.
For the free terminal branches model, we do the same process as with free empty branches
but ignore the cost whenever a branch contains only one element.

This change in the dynamic programming algorithm does not affect the asymptotic run-
ning time as it only requires one additional condition to evaluate for each word evaluation
by the min operation.

3.4 Tightening the Dynamic Recurrence

We can tighten the results of the dynamic recurrence (3.5) by showing that a local weight
increase in a subtrie can only provoke a change of the ancestor nodes to an optimal choice
in that local subtrie. In this section, we formalize the property and prove that it applies
to PDTs.

3.4.1 Characterization of Candidates to Update

In this section we verify that PDTs have a specific property on certain operations. The
operations that we consider on PDTs are insertion of words, increase the weight of words,
decrease the weight of words, and finally, deletion of words. It is important to note that we
consider increases in weight and decreases in weight differently as they can have different
algorithm assigned to them.

First, it is useful to recognize the following corollary that follows from the dynamic
recurrence used in the dynamic programming algorithm from the previous section.

Corollary 2 The optimal trie for a word set VW given a fized word w € VW at the root is
composed of the optimal tries of each subset of words in each branch imposed by the choice
of the root.

We now define the concept of tied-optimal roots to generalize over the (possibly) multiple
choices of roots that are optimal.

Definition We define the set of tied-optimal roots as the set of nodes having a minimum
word-optimal cost in a trie when placed at its root.
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The property of interest can now be defined as follows using the previous definition.

Property (Locality of change) An operation on an tree structure has locality of change
for a specific optimality metric if applying this operation to any optimal (sub)tree 7 can
only change its root to one of its tied-optimal roots or to one of the tied-optimal roots of
the subtree where the operation has been applied.

An operation having this property is likely to be more efficient to execute as it reduces
the number of candidates needed to be checked in order to maintain the optimality of the
tree after the operation. It also suggests independence between different branches of the
tree with respect to the concerned operation. This independence strengthens the implicit
structure of the stored values induced by the representation.

Theorem 1 Insertions and updates increasing the weight of a word in a path-decomposed
trie have the locality of change property for the word-optimal cost function.

Proof From lemma 2, we observe that the insert operation can be executed as an
insertion of the word as a leaf node with weight zero, followed by an update of the
weight. We also note that the initial insertion with weight zero does not break the
optimal representation of the trie since the total contribution of that new word is null.
We can thus only consider the update operations to prove the property.

First, we define some notation. Let 7, be the word-
optimal trie with an optimal root . We consider the
candidates for the new root of the optimal trie after
updating the weight of an arbitrary word x by d,, the
positive weight increase. We denote the direct subtrie
of r in 7, where x falls into by S, ;. Furthermore,
S~ . and ST are the sets of subtries branching from
previous and subsequent branches of » — using the Figure 3.1: Notation of the subtries of 7.
ordering defined in 2.2 — and S, is the set of all the

immediate subtries of r as pictured in figure 3.1. We let W(7), for any (sub)trie 7, be
the set of words included in 7. We use the cost function from the word-optimal definition
as follows:

fWE) = X fw) o) = fW(E) + X elm).

’LUEW(’Tr) T’LGSTT

TIT2 .. Ti—1T5 ... 1]

Finally, we denote the word-optimal trie obtained after the update of x’s weight with
a prime notation: 7, for the fixed root z. Note that in the optimal trie 7, with fixed root
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z, we do not consider z to be the optimal root choice, but rather a specific choice with
all of its subtries optimized. Considering this exact situation allows us to compare the
cost of the trie having a specific root z with the cost of the trie keeping the previously
optimal root r at its root after the update of the weight of x.

We now prove by induction that the optimal root after the update cannot be any
other choice than a tied-optimal root of 7, or a tied-optimal root of S;; ,. The induction
hypothesis is that the locality of change property holds for S. , on update operations
increasing the weight over the word-optimal metric.

Base case:
In the base case, x is the only node in S, ;. Its total contribution to the cost of the
trie 7, is f(x)-depth(z, 7,) = 2f(x), which can only be reduced by placing = at the root
by the invariant of the structure of the trie. Hence, the locality of change is verified
in the base case.

Induction step:

For the induction step, we prove by contradiction that any other choice of root z has
a strictly bigger cost than the tied-optimal roots described by the property.

Case 1: Any fixed z in a subtrie preceding S, , (i.e. S, . €S ).
The intuition for this case is that by taking a word branching before S, , as the

root, the updated node x may only occur deeper in 7/ than in 7/, thus contributing
more to the total cost.

rirz...ri-iri--- 7 The situation from the first case can be represented by
—% the figures 3.2a and 3.2b. The strategy is to show that
c(1!) < ¢(7l) and we know that ¢(7,.) < ¢(7,) by the
optimality of 7,.

(a) Trie 7, with z € S5, ,. We characterize the cost of the trie after the modi-
fication by the previous optimal cost added with the
minimal increase cost A, (7) in the (sub)trie 7 contain-
ing x. We use the minimal increase cost as we consider
the optimal trie after the modification, we thus execute
the modication having the lowest added cost.

rir2...ri—124 ... 2y

C(T;) = c(r) + Ay (7)

c(m)) = () + Au(T). (37)

(b) Trie 7. where Sr. . € S;, 4.
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Now, consider the prefix p leading to the subtrie S, ,. The same set of words, albeit
with maybe additional words, can be found by searching for that prefix in 7,. We
rename the set of words W(S,, .) as W as we refer to it for both tries. From corol-
lary 2, we know that the optimization process for the words of W is exactly the
same in both tries. This result comes directly from the dynamic programming solu-
tion. As such, the cost of the subtrie containing W, relative to its local root, in 7,
and in 7, is the same. However, the total absolute cost of those words are not the
same, since the depth of the subtrie containing W in 7, is at least the same depth
as the subtrie containing the same words in 7. This last affirmation comes from
the fact that the subtrie containing W in 7, is at depth exactly 2 by definition of
W but the subtrie containing the same words in 7, is at least at depth 2 since it
cannot be at the root, as the root z € W. Therefore, we bound the minimal cost
of increase in both trie: A,(7,) < Ay(72).

We then use the equations (3.7) to conclude that the only possible words of S |
that can be selected are exactly the tied-optimal roots of 7, because they would
then share the exact same cost before the update, ¢(7,.) = ¢(7,), and the increase
in cost could still be equal in certain cases. If z is not a tied-optimal root, then the
above argument proves that z cannot be the optimal root after the modification on
x’s weight. As such, the result holds in this case.

Case 2: Any fixed z in a subtrie succeeding S, , (i.e. S, , € S;i’x .

By taking a new root z branching after «’s branch, S, , is the same as S, , by the
optimality of that subtrie (i.e. they contains the same set of words under the same
structure). Therefore, the cost increase of adding x to both tries is the same, but
the previous cost of 7, is optimal. We get that 7, costs at least as much as 7, and
can share the same optimal cost only if z is a tied-optimal root in 7,.. The result
holds in this case too.

Case 3: Any fixed z in S, ,, but not one of its tied-optimal roots.

The subtries of S are part of S . in the same configuration as they were already
optimal and the same branches occur in z as in r. Two cases occur for the subtries

+ .
of ST .

Case a: A subtrie branches at the same branching position, but on a subsequent
lexicographic letter as x from r in 7,.. In this case, the subtrie stays at the same
position in 7., causing no change in the cost of the trie.

Case b: A subtrie branches from a subsequent branching position. Then, the words
of that subtrie need to be placed in S;, ,. Their new position is thus at least at
depth 2, whereas before they were place exactly at depth 2.
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Combining these two cases, the change in the optimal cost considering only the
subsequent subtries can only be greater. This, in addition to the strictly suboptimal
choice of the root in S;, ,, shows that z cannot be the root of the optimal trie.

Therefore, since we show that every choice other than the tied-optimal roots of 7, and
the tied-optimal roots of S, , are suboptimal, the only candidates to improve the cost
are one of these two. It thus proves the induction step and confirms the property. [

We do not have the same result for deletions and updates reducing the weights since
the words sharing a prefix with the decreased word can be replaced as root of a subtrie by
the root of competing subtries at the same branching position. °

Since the dynamic programming construction of the path-decomposed trie is adding
words one by one, we can exploit the property of locality of change and only consider the
tied-optimal roots stored for each cell. This improvement reduces the number of values to
check in the second term of the dynamic recurrence (3.5).

Claim 2 The improved version of the dynamic recurrence reduces the best-case time to
compute the word-optimal path-decomposed trie to O (n? - byaz) where bya, is the mazimal
number of branches for any node.

The worst-case is still O (n3 - bmax) because the algorithm needs to check every tied-optimal
root, which could include all candidates in some instances.

5Actually, a dual property apply to those operations: a word deletion or an update decreasing the
weight of a node in an optimal (sub)trie 7 can only change its root to one of its tied-optimal roots or to
one of the tied-optimal roots of the subtries of 7 where the operation is not applied to. We do not give
a proof of this dual property because it isn’t of much use to our dynamic optimality, but the proof would
follow the same ideas as the previous.
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Chapter 4

Better Characterization &
Heavy-Path

The previous section explains which candidate can replace an optimal root when adding
words to the dictionary. This idea leads to an improvement on the efficiency of the dynamic
programming algorithm. In section 4.1, we investigate an even stronger characterization by
considering exactly when one of those candidates needs to replace the root. Knowing both
the candidate nodes and a condition on their weights allows us to even further improve
the construction of the optimal PDT and leads us to other known construction techniques.
We also use the complete characterization in section 4.2 to maintain the optimal trie over
dynamic operations.

4.1 Update Condition

Theorem 1 shows which candidates can replace the root. We now show exactly when a
candidate can replace the root, and therefore, completely characterize the optimal root
selection. For the following theorem, we use the notation wy; ; to represent the substring
w; - -~ wj for a word w = wywy -+ - Wy

We associate a subtrie with a prefix based on the invariant of PDTs defined in sec-
tion 2.2. As such the associated subtrie of a prefix p in 7 is the subtrie where the root is
the locus node of a search of p in 7 restricted with only the branches following the last
branching position of characters of p in the locus node. Therefore, all the words having
prefix p are located in that subtrie.
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Theorem 2 For any prefix p = p1 ... p in a word-optimal trie T, the root of its associated
subtrie in T has the prefix po with the highest value f(W,py) for all o € Lyy.

Proof Since the theorem applies to any prefix and each selection of root is dependent on
the selection of its subtrie, we prove the result by induction on the size of the associated
subtrie of W,. We can consider every complete word to be a non-prefix of other words
by appending the empty character $ at the end of every word. The complete prefix of a
word, including the last $, is uniquely completing the queried word such that |W,| = 1.

Base case:
A subtrie of size one contains only one word, thus the theorem holds trivially.

Induction step:

We prove this by contradiction, i.e. we show that not taking the highest valued subtrie
invariably leads to a suboptimal cost for the whole trie. Suppose that S is the asso-
ciated subtrie of prefix p and that the subtries branching after the last letter of p are
Seors--- ’S(’IEwl (some of which can be empty). Let Sy, be the highest valued subtrie
for the common prefix p, i.e. f(Wys,) > f(W,o,) for all j € {1,...,[Xw[}. Each of
these subtries are assumed optimal by the induction step, which means that they have
a root that minimizes their cost ¢(S,,). Including the empty character in the alphabet
Yy, we compute the total cost. The total cost consists of the contribution of every
character that doesn’t match the one selected as the root plus the cost of each subtries:

[Zwl
o8)= 3 e(Sh) + _ min > W)
j=1 e Bwll s s
[Zw|
= Sy, W,) — Woe,)-
J; c(So,) + fWo) = max  f(Wr,)

From the minimized term, we find that choosing the highest valued subtrie gives the
lowest cost, which proves the result. 0

Suppose we have an optimal path-decomposed trie and we want to update the weight of
a word. We can use the update condition defined by Theorem 2 to know when a node
need to replace it’s parent based on the cost of the two alternatives. To do so, we check
if fWpopna) (for the branching character to the current node Gprancn) is heavier than
JWooparens) (for the non-matching character of the parent oparent) and replace the parent
if this is true. We support dynamic insertion of words in a similar way by adding the new
word as a leaf in the trie and move it up according to the update condition of Theorem 2.
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On the other hand, if we know the list of all words beforehand and we want to compute
the optimal trie, we can simply find the heaviest subtrie starting with a first letter and
recursively continue the process until a single word is selected. This node becomes the
root of the trie and we can repeat the complete construction of the trie recursively for each
subrange of words from the branches imposed by the selected root. This strategy is known
as the heavy-path decomposition (as explained in section 2.2.1) and the following corollary
follows from this argument obtained by applying Theorems 1 and 2.

Corollary 3 Heavy-path creates a word-optimal path-decomposed trie.
We now consider the running time to construct a PDT using the greedy heavy-path strategy:

Preprocessing:

Insert every word of W into a prefix tree while keeping track of the total weight at every
prefix (node). We achieve this accounting by adding the weight of the inserted word to
cach node encountered in the insertion. The total construction can be done in O (N)
time.

Heavy-Path Selection:

(a) Define an empty list [ that will contain the branches to recurse into.

(b) Starting with the root, compute the heavy path by following the heavy letter (i.e.
the one with the highest total weight stored in the node) among the (up to o)
choices at each level of the prefix tree. We also place the node of each non-selected
letter along the heavy path into the list [. This process eventually selects a word
w and we place w in the path-decomposed trie 7.

(¢) Recurse from step b but with each node in [ instead of the root. Fill out a new list
[ for each of these different execution.

(d) When the whole prefix tree is processed, return the path-decomposed trie 7.

Creating a prefix tree is known to take O (IV). The exploration steps obtaining the heavy-
path observe each node only once and the number of nodes is exactly NV + 1 in the prefix
tree (one more for the root). Accounting for all of these costs, we get the following claim.

Theorem 3 Construction of the word-optimal path-decomposed trie takes O (N) time,
where N =3, |w| using the heavy-path strategy.

Comparing this result with the improved dynamic programming algorithm of Claim 2,
there could be bad examples of dictionaries (particularly with very long words, e.g. O (n?)
length of words) where the dynamic programming algorithm would be favorable. However,
the preprocessing step presented in Section 3.3.1 also shares the same bound on O (N).
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4.2 Dynamic Optimal PDTs

Using the greedy heavy-path strategy, we can describe dynamic operations on the trie while
still maintaining the optimality condition. Again, we regroup the operations as updates
that increment the weight of a word, and as updates that decrement the weight of a word.
These two types of operation include insertions and deletions by adding the word as a leaf
nodes or removing a leaf node respectively.

4.2.1 Incrementing a Weight

Using the previously described properties, we can imple-
ment the increment operation while still maintaining op-
timality efficiently. The idea is to ‘flip’ the nodes on the
path to the locus node with their parents whenever the-
orem 2 applies. We give the following description of the
algorithm.

1. Find the node matching the word to update and
increase its weight.

2. Apply the following flip operation in a bottom-up
iterative approach on the nodes of the path to the
updated word. We denote the node of the processed
subtrie by u; and its parent by u;_;. We also de-
note their respective prefixes by px and pg_1.

Figure 4.1: Flip of ug and ug_;. Black
(a) Let [ be the 1ength of the 10ngueSt COIN-  gybtries have branching position preceding

mon preﬁx of Dk and Ph—1- If f(W ) > U, gray subtries have the same, and blue
. Prlo,1+1]/ and red have subsequent branching

f(ka,1[0 1+1] )7 ﬂlp Uk—1 and Uk by replacmg position of uy and ug_1 respectively.

their subtries subsequent to the branching po-

sition of wuy from u;_q. Place up_; in lexicographic order among the subtries at

the same branching position. The flip operation is illustrated in figure 4.1.

The algorithm is correct because theorem 1 assures us that only the new root of the bottom-
most change can move higher, and theorem 2 shows the cost threshold to make the flip.
The latter theorem also proves that the choice of tied-optimal root is arbitrary since they
all reduce the cost by the same amount.
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Claim 3 Incrementing the weight of a word w in a PDT containing the words YV takes
O (|Zw] - |w|) time.

Proof To increment the weight of a word, we first find the node in O (|w|) time. We
then take the branching character leading to w, o, and the one of its parent oparent,
and compare the value of f(W,,,) against f(Wpe ) for their common prefix p. If
the former is heavier, we flip the parent with w, adjust the labels on their parent edges,
and move all corresponding branches (those that branched before w) to the flipped node
w as in figure 4.1. We then re-execute the same process for w with its new parent or
stop if w is at the root. Otherwise, we leave the parent as-is and continue checking the
condition on the path to the root.

The time complexity is thus bounded by the number of branches to switch during each
flip operation. This number is upper bounded by the total number of branches branching
before or at the branch to w. This is also again upper bounded by the maximal number
of branches possible: |2y - (Jw| +1). Computing f(W,,) requires a partial sum data
structure to be done in O (1) time and either O (logn) search time to find the range of
We,, in the sorted array containing WW; or O (1) time if we store those ranges in the
edges directly (doing so is a simple modification of the preprocessing step of the algorithm
related to theorem 3). Using the latter, we get a total running time of O (|Xyy| - |w]).O

4.2.2 Decrementing a Weight

We can do decrements of weight in a similar way. Of course, since Theorem 1 does not
apply, we cannot simply consider the decremented node as the only candidate, but we need
to consider the up to |Xyy| — 1 other candidates. As we see with the following proof, we
get the same time complexity, albeit with a slightly higher constant hidden by the big-O
notation.

Claim 4 Decrementing the weight of a word w in a PDT containing the words VW takes
O (|Zw] - |w|) time.

Proof To decrement a word, we use the same process as the increment operation, but
we also compare the up to |X)y| — 1 other branches at the same branching position from
the parent. We take the heaviest branch f(W,,) for ¢ € %,y and replace the parent
with it, continuing upward up to the root.

The running time of this operation is also O (|Xy] - |w|) because the additional O (|%yy])
comparisons can be done in O (|X)y|) time using the same precomputation of ranges in
the edges and the change of root is executed only to the heaviest of those. 0
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4.3 Entropy Bound

With the comprehensive construction of the optimal trie explained in section 4.1, we further
describe the optimal cost using other values. The goal is to better characterize the cost
function chosen and give a better incentive to our definition of optimality. In this section,
we give bounds on the depth of a node based on its weight and prove bounds based on the
entropy of the path-decomposed trie.

4.3.1 Bounding the Depth

The goal is to bound the cost function with some measure of entropy. We use the definition
of entropy on the probability of words such that for normalized weights given by f, the
entropy of the probability distribution of f is H;(W) = > ,ep f(w)1logy Y/ fw).

As the cost function is defined by the depth of the words, giving an upper bound of
the depth based on the weight of the word would lead to the concept of entropy. Some
related results are known on the height of the trie using heavy-path decomposition, namely,
the height is bounded by [log, |[W|] and the average depth is O (log, [W]) [11]. We get an
explicit upper bound on the depth of a word based on its weight with the following lemma.

Lemma 5 Let w be a word in the path-decomposed trie T constructed using the optimal
heavy-path strateqy. The depth of w in T is bounded by the minimum of the logarithm of
its inverse probability and its length, i.e.

depth(w, T) < min {]w[ , logy 1/ f(w) } :

Proof First we prove a general result on the depth of any path-decomposed trie and
then we investigate the specialized bound of the heavy-path strategy. It is by combining
both that we prove the main lemma.

Lemma 6 The worst-case depth of a word w in any path-decomposed trie is |w|.

Proof When searching for a word w, each time w branches from a node in a trie 7, we
reach a level one deeper than the previous, but we also select one branching character
as the branch contains a character matching w. Therefore, a word with length |w| can
only branch from |w| nodes. O
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The specialized bound for the heavy-path strategy comes
from the fact that a word is at depth d in 7 if and only if d
heavier subtrees branch from the path of the root to w in
the prefix tree. We define a notation for the subtrees along
this path to give the desired bound. Let P be a heavy path,
a path selected by the heavy-path strategy, in a subtree of
the prefix tree; at some level along the path, w branches
in a different subtree. We denote the subtree of the prefix
tree where this occurs as Sp, the heavy subtree where the
path continues as S p.p, and the subtree containing w as
Figure 4.2: Notation of the subtrees of Spw. BEquation (4.1) gives a bound when w is not in the
the heavy path P in the prefix tree ~ heavy subtree.

containing the words W. "
. W(S
f (W(Srw)) < W

If equation (4.1) wasn’t true, the heavy path would go toward w, so that subtree must
contains less than half of the weight of the parent.

Let Pi, P, ..., Py be the d heavy paths before reaching w. The above bound holds
for each of them and we can link them together using f (W(Spi)) <f (W(Spi_hw)>

simply because W(Sp,) € W(Sp,_, ). We get the following bound of the weight of w:

(4.1)

< f(W(§Pd>) < f(W<‘§Pd_17w)) <

& W(Sp,
Fw) < f (W(Spw)) < L VG) <1

9 = 9 = = 9d 9d’

By solving for d, we get that the depth is at most log, /f(w). To further improve the
bound, we can take the minimum between the upper bound of the heuristic and the
maximum height of the word in general, to get the result. ([l

4.3.2 Entropy Results

As a consequence of the depth relation, we can give an upper bound on the cost function
with the entropy of the trie as follows.

Theorem 4

Hy (W)

log, (0 - maxyew |wl)

<o) <H;W)
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Proof The lower bound follows from an information theoretic result due to Shannon [24].
Our path-decomposed trie has maximum fan-out of ¢ - max,ew |w|, thus the source
coding theorem for symbol codes gives the lower bound.

The upper bound comes directly from the our cost function using the upper bound on
the depth from lemma 5:

= > f(w)depth(w, T) < > f(w)log, (Ysw) = Hs(W). O

weWw wew

Tightness of upper bound

[

Consider a set of words where every word is a prefix of the subsequents words such as: ‘a’,
‘aa’, ‘aaa’ and so on. The prefix tree of these words forms a path for which a leaf sticks
out at each level. We set the weight of each of these words to be /2! where [ is the level.
The heavy-path strategy will then pick the heaviest subtree arbitrarily choosing the leaf
sticking out first. The total cost is thus ¢(7) = >, 21 < 2. We can see that the upper
bound based on the entropy is tight: H;(W) = Y7 5-log, 28 = X1, & = ¢(7). We can
also see that this result is not only specific for trie of arity 2; we can simply add leaves
sticking out of the trie at any position with very small weight, say €, and this will not

perturb the result by very much as li_r}(l) elog, /e = 0.
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Chapter 5

Heuristics & Experimental Results

In this chapter, we compare the performance of the max-score strategy against the optimal
trie created by the heavy-path strategy. We look in particular at the ratio of their cost
functions. In the first section, we examine the theoretical worst-case performance and in
the second section, we examine the total cost of the trie composed with both approaches
under various corpuses and weights.

5.1 Approximation Ratio of the Max-Score Strategy

The maz-score path-decomposition strategy can be viewed as a heuristic for computing
the word-optimal trie. In this section, we bound the weighted average cost of the heuristic
in comparison with the optimal cost.

Theorem 5 There exists a word set W of arbitrary size n with frequencies from f: W —
R* such that the approximation ratio of max-score to the word-optimal cost is at least

. min,ew f(w) y _
Q (n FPT—" f(w)) in the worst-case.

[P 4

Proof The example that we use is W = {‘a’, ‘ad’, . .., ‘a(”)’} with priorities in decreasing
order such that f(‘a’) > f(‘aa’) > --- > f(‘a™’) and f(‘a'’) < X0, f(‘a¥)) for
ie{l,...,n—2}.

The max-score strategy returns a path containing all words since they are all prefixes
of the following words. On the other side, the word-optimal trie build with heavy-path
for a specific set of weights following the above constraints selects the second to last
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word (a(”_l)) as a root and places every other word on the second level as a direct child
of the root. The cost of each is:

Coax W, f) = Zz
0pt W f sz wz wn—l)-

We compute a lower bound of the cost of the maz-score strategy and a upper bound on
the cost of the optimal trie.

n(n+1)

Cmax<W7 f) Z f(wn) ’ 2

COPt<W7 f) < 2nf(w1)

Therefore, this counter-example provides the following lower bound to the worst case.

Cone W ) GOV, ) " f(w0,) (04 1) f(w,)
W VL) = eV D) 2nfwr) | Af(w)

The approximation ratio is thus at least in €2 ( ) for the worst case. 0J

(wl)

Now, we consider a distribution of the frequency of words following Zipf’s law where the
word at rank £ has frequency f(k;s;n) = m7— for a parameter of the distribution s > 1,
a total number of word n, and the generahzed harmonlc number of order n of s: H, ;. We
use the Zipf’s law as the frequency of word in English is known behave similarly [18]. We
can recompute the ratio above with the specific f to obtain the corollary that follows.

Cone W, f) iwas "k n+n
: : 2 ‘

Com WV, f)

max e W', 1)
W' f! Copt<W/7f,)

>

ksH

Corollary 4 For Zipf distributed frequencies with parameter s > 1 and with n so that
& <P b the approzimation ratio of max-score can be as bad as Q (n?).

Note that any value of s above a certain threshold (in the range (1.728,1.729)) cannot respect this
property. The results still holds for smaller values of s.
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5.2 Experimental Results

In this section, we compare the performance of the maz-score strategy and the heavy-path
strategy on real-world examples in terms of the cost function, i.e. the average number
of pointer accesses per query. We do so as we do not consider (nor improve) the actual
representation of the nodes in the trie in this thesis, but rather the layout of those nodes.
As such, we do no provide any results based on time per query or bits per string. We
expect the time performance to improve proportionally to the improvement in the number
of pointers accessed. For experimental results on the time complexity, we refer to Grossi
and Ottaviano [13] which uses the heavy-path decomposition to give results based on a
practical representation.

Based on our optimality result, we know that the ratio is always superior or equal
to one. These experimental results illustrate the actual improvement we can expect on
real-world corpuses. We apply the techniques on the following datasets:

« english: We use the dictionary from WinEdt [26] and apply weights as follows:

— english-books: We use a sanitized subset of books from the Project Guten-
berg [16, 1]. This collection contains 3036 English books written by 142 authors.
The weights are the normalized frequency of words of the whole collection?.

— english-twitter: We use the tweets from a dataset used for sentiment anal-
ysis [23]; we only use the content of the tweets to generate frequencies. The
corpus contains 1.6 million tweets and since it includes many misspelled words
and acronyms, we add those only after a threshold of 20 occurrences.

— english-uniform: We assign uniforms weights to every word in the dictionary.

— english-exp: We use the dictionary and assign weights based on an exponential
distribution with rate of 1. We average the result of the cost function over 10
random samplings of the distribution.

o proteins: We use protein sequences to experiment on a different set of words. We
take our data set from the RCSB Protein Data Bank [21] which contains the proteins
represented in their [UB/IUPAC codes. The dataset contains over 345 000 sequences
on an alphabet of 25 symbols with 3 additional special characters and the average

2As the collection contains older books, some words are archaic and are not present in our dictionary.
In those cases, we add the word to the dictionary if its usage is somewhat common, using a threshold of
20 occurrences in the whole corpus. We find that this produces a good balance between accepting real
words, although potentially archaic, and accepting gibberish from parsing errors.
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length of sequences is 230. We only use uniform and exponential distributions to
assign weights with the same parameters as with the English corpus.

We compute the two strategies on all of those datasets with respect to both the number of
pointer accesses per query (table 5.1) and per completion (table 5.2). For the cost function
of top-k completion queries, we use the upper bound based on the depth as mentioned
in Section 3.1.

Ctop-1 Ctop-5 Ctop-10 Ctop-20 Ctop-oo
dataset °P op °P °P P
opt max b opt max ¢ opt max b opt max b opt max )
english-books 2.373 2.378 +0.23%  15.117 15.180 +0.42%  31.138 31.363 +0.72%  62.916 63.531 +0.98%  137803.591 149470.693 +8.47}

english—twitter 2.341 2.342 +0.03% 14.406 14.452 +0.32), 29.894 30.196 +1.01% 59.397 59.945 +0.92% 67216.976  73483.290 +9.32Y,
english—uniform 3.905 4.015 +2.83% 17.087 17.772 +4.017 30.560 31.308 +2.45% 53.511 59.015 +10.29% 91645.962 92614.343 +1.06%

english—exp 2.159 2.201 +1.94% 8.165 8.244 +0.97Y 14.042 14.230 +1.34Y 24.574 24.940 +1.49% 18266.653 18646.656 +2.08%
proteins-uniform 4.526 4.919 +8.68Y 8.133 8.630 +6.12 10.536 11.023 +4.62% 14.287 14.779 +3.45), 7388.779 7782.138 +5.32%
proteins—exp 1.113 1.199 +7.707% 1.702 1.809 +6.287 2.1156  2.216 +4.76% 2.815 2.985 +6.04% 668.101 715.175 +7.05%

Table 5.1: Cost per query for the maz-score and heavy-path strategy.

We notice that the ratio seems to be better when considering the completions instead
of the queries. The difference can be explained by the fact that taking the average of a
top-k that contains less than k completions gives a higher proportion of the weight to those
completions compared to the non-weighted total sum. Also note that since the weights
used for the optimization process are different, the tries can be different too.

dataset Cavg-top-1 Cavg-top-5 Cavg-top-10 Cavg-top-20 Cavg-top-oco
opt  max b opt  max b opt  max b opt  max ¢ opt  max ¢
english-books 2.373 2.378 +0.23Y% 3.213 3.235 +0.70% 3.444 3.494 +1.43) 3.673 3.748 +2.05% 4.989 5.578 +11.79Y%

english-twitter 2.341 2.342 +0.03% 3.070 3.084 +0.467 3.333 3.390 +1.71% 3.508 3.559 +1.46% 4.710 5.169 +9.75%
english-uniform 3.905 4.015 +2.83% 4.495 4.680 +4.10% 4.660 4.842 +3.92) 4.760 5.154 +8.28% 5.329 5.847 +9.72
english-exp 2.159 2.201 +1.94% 2.441 2.492 +2.06% 2.511 2.587 +3.03% 2.569 2.664 +3.73%  2.871 3.187 +11.00%

proteins—uniform 4.526 4.919 +8.68Y 4.694 5.152 +9.75), 4.716 5.220 +10.69% 4.729 5.283 +11.72% 4.760 5.845 +22.80%
proteins—exp 1.113 1.199 +7.70% 1.139 1.243 +9.14J 1.142 1.254 +9.77Y, 1.145 1.266 +10.62 1.158 1.316 +13.607%

Table 5.2: Average cost per completion for the maxz-score and heavy-path strategy.

These results show that the improvements can go from very modest to significant de-
pending on the corpus. The experiment also suggests that the improvement is better with
weights following uniform or exponential distribution that those found from empirical fre-
quencies. The data also shows that the improvement is significantly better for the protein
corpus than English’s. To conclude, we note that although the practical improvement
can go from very low to modest, there is no additional cost from the standpoint of the
asymptotic running time complexity to execute the heavy-path strategy.
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Chapter 6

Conclusion and Future Work

To conclude this thesis, we reiterate that we have provided a proof showing the optimality
of the heavy-path decomposition on the average number of node accesses to answer top-k
completion queries. This main result allows to construct the optimal path-decomposed trie
with the greedy heavy-path technique which significantly reduces the running time from the
naive dynamic programming approach. We also show dynamic operations on the optimal
PDT with complexity based on the length of the modified word.

6.1 Future Work

We use the number of pointer accesses or the depth of a node in the path-decomposed trie
as the cost to access that node. Although this assumption makes sense for a simplified
model, it ignores some parts of the actual computations necessary to execute queries. By
refining the model, we could examine a more accurate model of computing and achieve a
PDT that is optimal in regards to this advanced model. Examples of refinements to the
cost function include:

o Considering the number of character comparisons made by a search. We already
have an upper bound of |p| character comparisons for a prefix p, but we don’t take
this cost into account in the cost function.

o Counting the exact number of node accesses for top-k enumeration.

o Taking into account the exact cost for a specific representation of the trie.
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Another approach to consider is the optimality of the trie in regards to the memory
hierarchy. The actual packing of the trie in memory can be made such that accessing part
of the structure contains others parts that are relevant for the rest of the query. This would
allow the system to reduce the number of copies of pages to higher levels of memory as the
relevant information can be packed in the same pages. In our approach, we disregarded the
actual representation of the path-decomposed trie as some previous research [13] already
considered this problem, although with no explicit attention to the optimality of the layout
or to memory hierarchy considerations.

Lastly, we could look into further refinements of the algorithms used to maintain the
optimal trie over dynamic operations. They contain a factor on the alphabet size (|Xyy])
that we believe could be improved.
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