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Abstract

Shannon’s classical separation result holds only in the limit of infinite source code
dimension and infinite channel code block length. In addition, Shannon theory does not
address the design of good source codes when the probability of channel error is nonzero,
which is inevitable for finite-length channel codes. Thus, for practical systems, a joint
source and channel code design could improve performance for finite dimension source
code and finite block length channel code, as well as complexity and delay.

Consider a multicast system over a broadcast channel, where different end users typ-
ically have different capacities. To support such user or capacity diversity, it is desirable
to encode the source to be broadcasted into a scalable bit stream along which multiple
resolutions of the source can be reconstructed progressively from left to right. Such source
coding technique is called multiresolution source coding. In wireless communications, joint
source channel coding (JSCC) has attracted wide attention due to its adaptivity to time-
varying channels. However, there are few works on joint source channel coding for network
multicast, especially for the optimal source coding over broadcast channels.

In this work, we aim at designing and analyzing the optimal multiresolution vector
quantization (MRVQ) in conjunction with the subsequent broadcast channel over which
the coded scalable bit stream would be transmitted. By adopting random index assign-
ment (RIA) to link MRVQ for the source with superposition coding for the broadcast
channel, we establish a closed-form formula of end-to-end distortion for a tandem system
of MRVQ and a broadcast channel. From this formula we analyze the intrinsic structure of
end-to-end distortion (EED) in a communication system and derive two necessary condi-
tions for optimal multiresolution vector quantization over broadcast channels with random
index assignment. According to the two necessary conditions, we propose a greedy itera-
tive algorithm for jointly designed MRVQ with channel conditions, which depends on the
channel only through several types of average channel error probabilities rather than the
complete knowledge of the channel. Experiments show that MRVQ designed by the pro-
posed algorithm significantly outperforms conventional MRVQ designed without channel
information.

By building an closed-form formula for the weighted EED with RIA, it also makes
the computational complexity incurred during the performance analysis feasible. In com-
parison with MRVQ design for a fixed index assignment, the computation complexity for
quantization design is significantly reduced by using random index assignment. In ad-
dition, simulations indicate that our proposed algorithm shows better robustness against
channel mismatch than MRVQ design with a fixed index assignment, simply due to the
nature of using only the average channel information. Therefore, we conclude that our
proposed algorithm is more appropriate in both wireless communications and applications
where the complete knowledge of the channel is hard to obtain.
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Furthermore, we propose two novel algorithms for MRVQ over broadcast channels.
One aims to optimize the two corresponding quantizers at two layers alternatively and
iteratively, and the other applies under the constraint that each encoding cell is convex
and contains the reconstruction point. Finally, we analyze the asymptotic performance of
weighted EED for the optimal joint MRVQ. The asymptotic result provides a theoretically
achievable quantizer performance level and sheds light on the design of the optimal MRVQ
over broadcast channel from a different aspect.
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Chapter 1

Introduction

1.1 Multiresolution Quantization

In a communication system, source coding for analog values is usually called quantiza-
tion. As shown in Figure 1.1, a quantizer, by definition, maps the incoming sequence
Z1, Z2, Z2, · · · , into a sequence of discrete random variables Ẑ1, Ẑ2, Ẑ3, · · · , where the ob-
jective is that Ẑi should represent Zi with as little distortion as possible for each i. Ac-
cording to the number of resolutions, the lossy source coding could be categorized into
single-resolution quantization and multiresolution quantization. Multiresolution quantiza-
tion is some sort of extension for single-resolution quantization and widely used in multiuser
systems, so first we will review the single-resolution case.

1.1.1 Single-resolution Vector Quantization

A source code designed to be used at a single rate and reproduction fidelity is a single-
resolution source code, and vector quantization are block single-resolution source codes.

Theoretically, for a stationary source Z, given source alphabet Z, reproduction alphabet
Ẑ and distortion measure d : Z × Ẑ −→ [0,∞), the rate distortion function R(D) of the

Figure 1.1: Diagram of lossy compression.
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source Z with respect to Z, Ẑ and d is defined as

R(D) = inf
Ẑ:d(Z;Ẑ)≤D

I(Z; Ẑ) (1.1)

where the infimum is taken over all possible random variables Ẑ taking values in Ẑ and
jointly distributed with Z such that d(Z; Ẑ) ≤ D

A n-dimensional vector quantizer Q of level L is a mapping from the n-dimensional
Euclidean space Rn on to a finite codebook B:

z = z1 · · · zn −→ ẑ = Q(z ) ∈ B = z 0, · · · , zL−1

where z i ∈ Rn, 0 ≤ i ≤ L− 1, are called codevectors or reproduction points.

Let Ai = {z ∈ Rn : Q(z ) = z i}, 0 ≤ i ≤ L − 1. The set Ai is called the cell
associated with zi. Given an n-dimensional random vector Zn = (Z1, · · · , Zn) with joint
pdf p(z ) = p(z1, ·, zn), the distortion resulting from quantization by Q is

DQ = EZn [d
(
Zn, Q(Zn)

)
],

where

d(z , ẑ ) =
1

n

n∑
i=1

(zi − ẑi)2, z = (z1, · · · , zn), ẑ = (ẑ1, · · · , ẑn)

Note that a vector quantizer is uniquely determined by {Ai, z i}L−1
i=0 . Given a fixed

coding dimension and distortion constraint D, an optimal vector quantizer is a vector
quantizer that achieves Rn(D), the lowest expected rate per symbol over all n-dimensional
vector quantizers that require an expected distortion of no more than D per sample. Since
Rn(D) converges to R(D) as n grows without bound, vector quantizers are asymptotically
optimal single-resolution source codes. Equivalently, given fixed Lagrangian parameter
λ > 0, an optimal vector quantizer minimizes the Lagrangian performance R+λD over n-
dimensional vector quantizers. These optimality criteria form the basis of single-resolution
vector quantizer design. Applying the alternating minimization procedure, we could design
a fixed-rate or a variable-rate vector quantization.

1.1.2 Multiresolution Vector Quantization

A multiresolution source code (also known as successive refinement code) is a single com-
pression system that describes data at a variety of rates and resolutions. A multiresolution
source code creates a binary source description such that low-resolution descriptions are
embedded in higher-resolution descriptions. Figure 1.2 demonstrates the action of a four-
resolution source code. Decoding only the first R1 bps yields a low-resolution reproduction
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Figure 1.2: A four-resolution image description.

of the image with per sample distortion equal to D1; decoding an additional R2 bps (for
a total description length of R1 + R2 bps) yields a higher resolution source reproduction
with per sample distortion D1 ≤ D2, and so on.

Multiresolution source coding is useful for applications where a single source must be
described to a variety of different users or using an available rate that varies from system
use to system use. For example, a single file on a particular web site may be examined by
thousands of web site visitors. Some may want to see the data at high reproduction fidelity,
others may favor fast transmission speed over reproduction quality, and still others may
wish to determine acceptable reproduction quality during the data transfer process. Since
single-resolution source codes fix a single rate and reproduction quality, no such code can
satisfy all of these needs simultaneously. In contrast, a multiresolution source code yields
a source description from which each user can decode to the rate or resolution most useful
to him. Multiresolution codes are also useful in mobile communication systems, where
the available communication rate may vary as a function of network traffic and physical
location.

Multiresolution vector quantization (MRVQ) is block multiresolution source coding. In
this case, the encoder blocks an incoming data stream into blocks of dimension n and
chooses for each n-block a collection of n-dimensional reproductions. In particular, in an
L-resolution code, the encoder chooses L reproductions for each data block. The encoder
describes the chosen collection of reproductions using a fixed- or variable-rate binary string
such that the first portion of the binary string describes the resolution-1 reproduction,
the second portion of the binary string describes the resolution-2 reproduction given the
resolution-1 reproduction already described, and so on. The decoder decodes the desired
portion of the binary string, updating its source reproduction as the binary descriptions

3



for higher and higher resolution reconstructions become available.

Multiresolution distortion-rate theory [2] addresses the question of multiresolution source
code optimality in the limit of high coding dimension n. Given a stationary source, Rfr,L

n

and Rvr,L
n are the closures of the set of rate-distortion pairs achievable on the source by

fixed- and variable-rate n-dimension multiresolution vector quantizers, respectively. LetRL
n

denotes the corresponding information theoretic bound on the L-resolution rate-distortion
region. SinceRfr,L

n andRvr,L
n converge toRL

n , multiresolution vector quantizers are asymp-
totically optimal multiresolution source codes [2].

Given a fixed coding dimension n, an optimal fixed- or variable-rate multiresolution
vector quantizer is an n-dimensional code that achieves rate-distortion performance on
the lower boundary of Rfr,L

n or Rvr,L
n . While Rfr,L

n and Rvr,L
n are not convex, Lagrangian

methods may be used to find the lower convex hull of Rfr,L
n and Rvr,L

n , given by

jfrn (aL, bL) = min
(RL,DL)∈Rfr,L

n

L∑
l=1

[alDl + blRl]

jvrn (aL, bL) = min
(RL,DL)∈Rvr,L

n

L∑
l=1

[alDl + blRl] (1.2)

Here, (aL, bL) is described as the direction of a hyper-plane supporting the convex
hull of the L-resolution operational rate-distortion region at a single point. It is general
to use minimization of

∑L
l=1[alDl + blRl] as our optimality criterion for multiresolution

vector quantizer design. Using this approach, a n-dimension fixed- or variable-rate vector
quantizer is optimal if it lies on the lower convex hull of Rfr,L

n or Rvr,L
n , respectively. This

optimality criterion, first introduced in [5], can also be applied in other multiresolution
codes.

In some related papers, and references therein, multiresolution source coding was mainly
studied as a source coding technique independent of channel coding. For example, Effros et
al. [2] developed some distortion-rate bounds for fixed- and variable-rate multiresolution
vector quantization. In [4], criteria and algorithms for designing optimal MRVQ alone
were investigated and developed. For discrete source with finite alphabet size, a globally
optimal algorithm with lower complexity is illustrated in [3]. All these developments were
made without reference to the subsequent channel over which the coded scalable bit stream
would be transmitted.
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1.2 Joint Source-Channel Coding

Shannon’s classical separation result states that we can optimize the end-to-end system
design by separately optimizing source coding and channel coding [6]. However, this re-
sult holds only in the limit of infinite source code dimension and infinite channel code
block length, and it does not provide a design algorithm for good channel codes with fi-
nite block length. In addition, Shannon theory does not address design of good source
codes when the probability of channel error is nonzero, which is inevitable for finite-length
channel codes. Thus, for practical systems, a joint source and channel code design could
improve performance for finite dimension source code or finite block length channel code,
as well as complexity and delay. Besides, joint source channel coding (JSCC) has attracted
wide attention in wireless communications due to its adaptivity to time-varying channels.
Previous work in the area of joint source and channel coding falls into three broad cate-
gories: source-optimized channel coding or modulation, channel-optimized source coding,
and iterative algorithms, which combine these two code designs.

In source-optimized channel coding, the source code is designed for a noiseless channel.
A channel code is then designed for this source code to minimize end-to-end distortion
over the given channel, which is typically a binary symmetric channel (BSC), an additive
white Gaussian noise (AWGN) channel with a given modulation, or a time-varying channel.
Modestino and Daut provided an early treatment of source-optimized channel coding using
differential pulse code modulation (DPCM) for image coding followed by convolutional
channel coding [7]. They concluded that near optimal performance can be achieved using
equal-error-protection channel codes. They also indicated that more flexible code rates
are needed for source and channel code design, leading to subsequent work using rate-
compatible punctured convolutional (RCPC) channel codes.

In source-optimized modulation, the source code is designed for a noiseless channel
and then the modulation is optimized to minimize end-to-end distortion. Two papers
address source-optimized modulation through an energy allocation strategy. In [8], a vector
quantizer (VQ) is followed by multicarrier modulation, where the modulation provides
unequal error protection to the different source bits by assigning different powers to each
subcarrier. That work indicated that using modulation to obtain unequal error protection
provides significant performance improvement.

Channel-optimized source coding is another approach for joint source channel coding.
In this scenario, the source code maps the set of source symbols to binary strings for
transmission over the channel. In fixed-rate source coding, the effect of a channel error
is the receipt of an erroneous fixed-length binary string at the source decoder, which may
cause the string to be decoded as an incorrect codeword. One way to achieve some degree
of robustness to channel errors is to redesign the source codebook to take into account the
index crossover probabilities imposed by a noisy channel. Examples of work taking this
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approach include the channel-optimized vector quantizer (COVQ) and its scalar variation
[13], [14], [15]. COVQ is a vector quantizer that has been optimized for a given set of
crossover probabilities of the source codeword indices [13], [14]. These codeword indices
are generally mapped to binary strings, and the crossover probabilities are then functions
of the channels bit error probability. The COVQ design involves iteratively optimizing
source encoder and source decoder for the given set of index crossover probabilities. The
result of this process is a locally optimal encoding rule for mapping source vectors to
fixed-length binary indices and a corresponding decoding rule for mapping binary indices
to their associated codewords, which may or may not be unique. Thus, inherent in the
COVQ design algorithm is a block channel code design with hard-decision decoding.

Source-optimized channel coding and modulation can be combined with channel-optimized
source coding using an iterative design. In [17], a variation of the generalized Lloyd algo-
rithm is used to iteratively design a COVQ encoder, a modulation signal set, and a linear
decoder. A similar approach for the joint design of a COVQ and multicarrier modula-
tion appeared in [18]. Neither of these approaches uses channel coding. In contrast, [12]
used an iterative technique to jointly design a multistage VQ and trellis-coded modula-
tion. In this work, the VQ is designed for a noiseless channel and then combined with
index optimization. The effect of channel errors is not assumed negligible, so the bit allo-
cation between the source and channel codes is implicitly chosen to force a small channel
bit-error-probability.

A joint design of a source-optimized channel code, and a channel-optimized source code
was proposed in [9]. The iterative joint code design uses COVQ for the source code and
RCPC coding for the channel code. Ideally, the COVQ and the RCPC should be designed
simultaneously. However, this simultaneous design is difficult to do in practice, leading to
an iterative algorithm combining the design strategies of these two. The iterative design
algorithm goes a step beyond, achieving a joint optimization of the source and channel
codes using an iterative descent technique reminiscent of the generalized Lloyd algorithm
[19] and guaranteeing convergence to a locally optimal code.

Source-optimized channel coding, channel-optimized source coding, and joint design of
these two exhibit roughly the same distortion performance by choosing the optimal bit
allocation between source coding and channel coding, shown in [9]. Obviously, the joint
iterative design is much more complicated than the other two, so generally people would
rather work on the other two. Most of the above works are written for the analysis of
single-resolution source and channel code, and there are few works on joint source channel
coding for broadcast networks.

In a related work, Kozintsev and Ramchandran [36] provided an algorithm for jointly
designing multiresolution source quantization, multiresolution constellation, and the de-
coding strategy over time-varying channels, assuming a fixed index assignment and the
complete knowledge of the channel. In practice, the complete channel information is dif-
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ficult to obtain and computation complexity is too high, so it is impractical to be imple-
mented. However, as far as the author knows, it is the only work on channel optimized
multiresolution quantization.

1.3 Index Assignment

One approach to improve the performance of a quantizer that transmits across a noisy
channel is to design the quantizers encoder or decoder to specifically take into account the
statistics of the transmission channel. Necessary optimality conditions for such channel-
optimized encoders and decoders were given, for example, in [20], [14]. Alternatively, an
explicit error control code can be cascaded with the quantizer, at the expense of added
transmission rate. Additionally, the choice of index assignment in mapping source code-
words to channel codewords can increase the performance of a quantization system with
a noisy channel. Examples of index assignments include the natural binary code (NBC),
the folded binary code, and the Gray code.

Ideally, one seeks a complete theoretical understanding of the structure and performance
of a quantizer that transmits across a noisy channel, and whose encoder and decoder are
channel optimized. Unfortunately, other than the optimality conditions given in [14],
no other analytical results are known regarding such quantizers. Quantizer design and
performance with index assignments for general encoders and decoders (i.e., not necessarily
channel optimized) was considered in [21].

For uniform scalar quantizers with neither channel-optimized encoders nor decoders and
with no explicit error control coding, formulas for the mean-squared error with uniform
sources were given in [24] for the NBC, the Gray code, and for randomly chosen index
assignments on a binary symmetric channel. They also asserted the optimality of the NBC
for the binary symmetric channel. Crimmins et al. [25] proved the optimality of the NBC
as asserted in [24], and McLaughlin, Neuhoff, and Ashley [28] generalized this result to
uniform vector quantizers. Various other analytical results on index assignments without
channel-optimized encoders or decoders have been given in [26], [27].

Quantizers with uniform encoders and channel-optimized decoders on binary symmetric
channels were studied in [22]. For such quantizers, exact descriptions of the decoders were
computed, and the asymptotic distributions of codevectors were determined for various
index assignments. Distortions were calculated and compared to those of quantizers with-
out channel optimization. The proof in [28] of the optimality of the NBC for quantizers
with no channel optimization was extended in [22] to show that the NBC is also optimal
for quantizers with uniform encoders and channel-optimized decoders. Quantizers with
uniform decoders and channel-optimized encoders on over binary symmetric channels were
studied in [23]. In that paper, the authors introduced a new affine index assignment called
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Figure 1.3: A simple multicast system.

the complemented natural code(CNC), which turns out to have a number of interesting
properties. It was shown that the NBC optimality does not extend to quantizers with
uniform decoders and channel-optimized encoders. In fact, the CNC is shown to perform
better than the NBC.

For more general cases, such as quantizers with channel-optimized encoders and de-
coders, no index assignment has been shown to be optimal. Though index assignment
algorithms, such as binary switching, can choose a relatively good index assignment for
the given vector quantization. However, the algorithms are guaranteed to converge to
a locally optimal index assignment rather than the globally optimal one. Meanwhile an
exhaustive approach to find the best index assignment is companied with too much com-
plexity. Additionally, for a undesigned quantization system, how to choose a good index
assignment is far from known. Especially for multiresolution quantization design, there is
no such work on index assignments as far as the author knows.

Zeger and Manzella [32] defined a random index assignment to be mapping from code-
vectors to channel symbols chosen randomly and uniformly, and independent of the source,
from the set of all possible permutations. It may be argued that this accurately models an
arbitrary ordering of the codevectors in a codebook. In practice some implementations do
in fact neglect to choose good index assignments and settle for whatever codebook ordering
resulting from a quantizer design algorithm instead.

1.4 Motivation and Contribution

Consider a multicast system over a broadcast channel in Figure 1.3, where different end
users typically have different capacities. To support such user or capacity diversity, it is
desirable to encode the source to be broadcasted into a scalable bit stream along which
multiple resolutions of the source can be reconstructed progressively from left to right.

Traditionally, source coding and channel coding are treated separately in such system,
and the coding schemes are also optimized respectively. Since joint source channel coding
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has attracted wide attention in wireless communications due to its adaptivity to time-
varying channels, it is a promising approach to improve the performance in a multiuser
system. Therefore, in this thesis we focus on design of multiresolution quantization over
broadcast channels by adopting joint source channel coding techniques and analyze the
end-to-end performance of an entire system, which is really concerned by most people
rather than the performance of pure source coding or channel coding.

1.4.1 Theoretical side

By using random index assignment (RIA) to link MRVQ for the source with superposition
coding for the broadcast channel, we establish a closed-form formula of end-to-end distor-
tion for a tandem system of MRVQ and a broadcast channel. Before this work there is
no concise formula for predicting or closely bounding noisy broadcast channel quantizer
distortion as far as author knows.

From the formula we analyze theoretically the intrinsic structure of EED in a commu-
nication system and derive two necessary conditions of an optimal multiresolution vector
quantization over broadcast channels with random index assignment. The closed-form for-
mula for weighed EED could be interpreted as the average of all possible index assignments
given a set of transitional probabilities directly. On the other hand, it also refers to the
average of all possible sets of transitional probabilities which subject to the same average
error probabilities for any fixed index assignment. Thus, interestingly, this could also rep-
resent the performance for a class of channel conditions given a specific index assignment.

Moreover, the average distortion using a random index assignment gives us an analytic
upper bound on the performance of the best possible index assignment. The performance
of random index assignment in EED is usually close to that of the best index assignment,
even when the best index assignment is significantly better than the average index as-
signment, their performances tend to follow the same trend as a function of the channel
error probability. Another aspect of building a closed-form formula for the weighted EED
is to make the computational complexity incurred during the performance analysis and
quantization design feasible. In practice, naturally one would like to deal with the actual
end-to-end distortion with the best index assignment. However, apart from the choose of
index assignment, the computation complexity is a big issue. For example, we assume a
2-resolution quantization with N1 × N2 levels, which means there are N1 levels for low-
resolution quantization and each low-resolution description could be refined by another
N2-level quantization. To design such quantization for a specific index assignment requires
O(N1

2N2
2) arithmetic operations, as well as to calculate the actual end-to-end distortion,

while our design or analysis consumes O(N1N2) with a random index assignment.

Our further efforts in this paper then reveal the asymptotic performance of the weighted
EED for the optimal joint MRVQ. Though arbitrarily large number of quantization levels
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is not feasible for practical codes, the asymptotic result provides a theoretically achievable
quantizer performance level and sheds light on the design of the optimal MRVQ.

1.4.2 Practical side

Based on two necessary conditions derived for minimizing the weighted EED, we propose
an greedy iterative algorithm for jointly designing MRVQ with channel conditions. Ex-
periment results show that the MRVQ designed by the proposed algorithm significantly
outperforms conventional MRVQ designed without channel information.

To compare with the multiresolution vector quantization design for a fixed index as-
signment in [36] (hereafter referred to as the KR algorithm), we randomly generate several
sets of channel transitional probabilities. What makes the comparison interesting is that
the performance gain is marginal compared to the gain of the quantizers by our proposed
algorithm over the quantizer designed by the separate quantization design. In addition,
this marginal performance gain is achieved with much higher design complexity and with
complete knowledge of all transitional probabilities. In practice, the complete channel in-
formation is difficult to obtain. Even if transitional probabilities are available, they are
always fluctuating in wireless communications. In contrast, in our proposed algorithm, only
certain types of symbol error probabilities of the broadcast channel are required. Simu-
lations indicate that our proposed algorithm shows better robustness against the channel
mismatch than the method with a fixed index assignment, simply by the nature of using
the average channel information.

Additionally, we explore two novel algorithms for MRVQ design over broadcast chan-
nels. One aims to optimize high-resolution and low-resolution quantization alternatively
and iteratively, and the other applies under the constraint that each encoding cell is con-
vex and contains the reconstruction point. Experiments are conducted to compare our
proposed algorithms from different aspects.

1.5 Organization of the thesis

The paper organization is as follows. First, we derive in Chapter II the closed-form formula
for computing the EED of a tandem system with MRVQ, RIA, and a coded broadcast
channel. Then, the algorithm design for optimal noisy channel quantization with random
index assignment is discussed in Chapter III. Experimental and simulation results are also
provided in Chapter III to illustrate the performance of our proposed iterative algorithms.
The asymptotic analysis is included in Chapter IV, and finally Chapter V concludes the
work.
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Chapter 2

Weighted End-To-End Distortion For
A Tandem Source-Channel Coding
System

In a quantization system that allows delay, the output binary data from a quantized se-
quence of input vectors can be blocked together and sent over the channel in the form of
arbitrarily long channel codewords. Shannons channel coding theorem guarantees that up
to kC bits per source vector can be reliably conveyed in this way, hence achieving distor-
tion down to D(C), where D(·) is the distortion-rate function of the source and C is the
channel capacity. However, the same conclusion does not follow for source coding systems
that do not allow delay; that is, systems that require that the kR bits corresponding to an
input vector be transmitted before the next input vector is encoded. Without arbitrarily
long blocking of input symbols there exists a nonzero probability of incorrectly decoding
a channel codeword. This in turn induces an extra component of distortion between the
source vector and the final reproduction vector. Thus, in a communication system, it is
meaningful to analyze the end-to-end distortion which consists of quantization distortion
and that resulted from channel errors.

2.1 System And Notation

Let z be a k-dimensional real-valued vector source with a probability density function f(z )
over the k-dimensional Euclidean space Λ. Without loss of generality, we always assume
that z has a zero mean. The variance of z is σ2 = 1

k

∫
Λ
‖z‖2f(z )dz .

Consider a tandem source-channel coding system as a concatenation of MRVQ and
a coded broadcast channel, as shown in Figure 2.1. Without the loss of generality, we
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Figure 2.1: Diagram of a tandem source and channel coding system with MRVQ and a
broadcast channel.

start with a two-resolution case, where the source is coded in two layers and two channels
are used. In the low-resolution layer, the quantizer partitions the whole space Λ into N1

disjoint regions denoted as {A1, · · · , AN1}, and represents them with a set of code vectors
{z 1, · · · , zN1} correspondingly. In the high-resolution layer, the quantizer further divides
each Ai into N2 disjoint subregions denoted as {Ai1, · · · , AiN2}, and represents them with
a set of code vectors {z i1, · · · , z iN2} for N1 ≥ i ≥ 1.

The two channels employ two different decoding strategies, i.e., the first channel as-
sumes an output message set of me = {(r, s), r = 1, · · · , N1, s = 1, · · · , N2}, while the
second channel assumes an output message set of mb = {1, · · · , N1}. Then, the coded
broadcast channel is characterized by a matrix of transitional probabilities,

P = {p
(
m̂e, m̂b|(r, s)

)
, (r, s) ∈me, m̂b ∈mb, m̂e ∈me},

where p(m̂e, m̂b|(r, s)) means the probability that when message (r, s) is transmitted, the
first channel outputs m̂e and the second channel outputs m̂b. From the matrix above, we
could obtain another two matrixes of transitional probabilities

Pe = { pe(m̂e|(r, s)), (r, s) ∈me, m̂e ∈me }

and
Pb = { pb(m̂b|(r, s)), (r, s) ∈me, m̂b ∈mb }.

for the first channel and the second channel respectively.

In the tandem system, we assume a one-to-one mapping πtb from {1, · · · , N1} to
{1, · · · , N1}, and a one-to-one mapping πte(·|i) from {1, · · · , N2} to {1, · · · , N2} for each
i = 1, · · · , N1. Denote a specific index assignment mapping as πt = (πtb, πte), with(
πtb(i), πte(j|i)

)
= (r, s),

(
πtb(̂i), πte(ĵ |̂i)

)
= (r̂, ŝ) and πtb (̂̂i) = ˆ̂r. The crossover error prob-

abilities for source code vectors are related to channel transitional error probabilities as
pπt
e (ẑ e = z îĵ

∣∣z ∈ Aij) = pe
(
(r̂, ŝ)

∣∣(r, s)) which means the probability that the first receiver

outputs z îĵ given z in Aij is transmitted, and pπt
b (ẑ b = z ˆ̂i

∣∣z ∈ Aij) = pb
(
ˆ̂r
∣∣(r, s)) which

means the probability that the second receiver outputs z ˆ̂i
given z in Aij is transmitted.
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For simplicity, we denote pπt
e (ẑ e = z îĵ

∣∣z ∈ Aij) and pπt
b (ẑ b = z ˆ̂i

∣∣z ∈ Aij) as pπt
e (z îĵ|z ij)

and pπt
b (z ˆ̂i

∣∣z ij) respectively. Given index assignment πt, for the first receiver the EED is
defined as

Dπt
e

4
=

1

k

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[

N1∑
î=1

N2∑
ĵ=1

‖z − z îĵ‖
2pπt
e (z îĵ|z ij)]f(z )dz . (2.1)

Similarly, for the second receiver, the EED is defined as

Dπt
b

4
=

1

k

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[

N1∑
ˆ̂i=1

‖z − z ˆ̂i
‖2pπt

b (z ˆ̂i
|z ij)]f(z )dz . (2.2)

2.2 Multiresolution Modulation

Broadcast systems involve the transmission of information from a transmitter to many
receivers. The information communicated to each user may be the same (e.g. TV broad-
cast) or it may be separate for each user (e.g. base station transmitting user-specific
information). In current broadcast systems, the separation of user data is achieved by
using orthogonal schemes in which the time and/or frequency is split between the users.
Another transmission scheme for broadcast systems is to superimpose the user signals and
use interference cancelation at the receiver. In this work we consider the case in which
transmitter is sending common information to users, while each user could decode the data
or resolution most useful to him according to the corresponding channel condition. As we
know, superposition coding is an optimal choice when the broadcast channels are degraded,
so we assume a superposition coding scheme instead of orthogonal schemes in this work.

In this case where a simple carrier broadcasting scheme over an AWGN channel is
considered, a single transmitter attempts to send successive information to two or more
receivers at the same time, where the information one user received is a part for the others.
The capacity region for a two-receiver broadcast channel refers to the set of rate-pairs
(R1, R2) that can be achieved simultaneously with arbitrarily small probability of error
[31].

Here we consider a simple broadcasting scheme, where the result transmitted signal S is
a linear superposition of the signals relative to the two users. Denoting Sb the signal which
corresponds to base information for low resolution reproduction and Se which corresponds
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Figure 2.2: Superposition encoding scheme, where the constellations used by the two users
are 16QAM and QPSK (a) enhanced signal Se (b) base signal Sb (c) transmitted signal
S = Sb + 1

A
Se.

to the enhancement information for high resolution reproduction, the transmitted signal S
is defined as follows:

S = Sb +
1

A
Se (2.3)

where A is an attenuation factor which adjusts the power ratio between potential signals
for base and enhancement information. In Figure 2.2, a superposition coding scheme is
depicted, where Sb is 16QAM and Se is QPSK signals and A = 8.

One transmit antenna and one receive antenna are used. We denote Y1 is the received
signal at the first user side and Y2 the received signal at the second user side in Figure 2.1.
Y1 and Y2 can be expressed as follows:

Y1 = h1S + Z1

Y2 = h2S + Z2

where h1 and h2 are respectively the channel gain of the first and second users. Z1 and
Z2 are two additive white gaussian noises (AWGN) on the two channels having the same
variance N0 respectively. The second user treats the signal for enhancement information as
a noise and decodes its data from Y2, and the first user who has better channel condition
performs a successive interference cancelation (SIC). That is, for the first user, after Sb is
decoded, it is stripped away from Ye to decode Se [30].

The capacity region of Gaussian broadcast channel with a single antenna at the trans-
mitter and a single antenna at the receiver is known [31]. Splitting the total transmitted
power P in two parts: the power assigned to the base information denoted Pb and the
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power assigned to the enhancement information denoted Pe (Pb + Pe = P ), the achievable
rate pairs is given by [31]:

R1 = log2(1 +
‖h1‖2Pb

‖h1‖2Pe +N0

) + log2(1 +
‖h1‖2Pe
N0

)

R2 = log2(1 +
‖h2‖2Pb

‖h2‖2Pe +N0

) (2.4)

The choice of the ratio between Pb and Pe, can control the two rates. Adaptive modu-
lation can be used to adjust the constellation of the transmitted signal, in order to make
second user decode Sb with a very low probability of error. As known, Gaussian broadcast
channel is degraded, and by using the superposition coding scheme, we could achieve the
capacity when coding block length goes infinity [31] and transmit data most efficiently.

2.3 End-To-End Distortion With Random Index As-

signment

Based on a superposition coding scheme, there exist (N1!)(N2!)N1 possible mappings from
MRVQ codevectors to broadcast channel symbols. Assume a random selection of the index
assignment with equal probability and define the average distortions for the first receiver
and second receiver over all possible index assignments as D̄Π

e and D̄Π
b respectively. Thus,

the closed-form formulas of these two average distortions are derived by the following
theorem.

Theorem 1. For any k-dimensional multiresolution quantizer and coded broadcast channel
as shown in Figure 2.1,

DΠ
b = (1− N1pb

N1 − 1
)DQb

+
N1pb
N1 − 1

(σ2 + SQb
) (2.5)

and

DΠ
e = (1− pe1 −

N2pe2
N2 − 1

)DQe +
N1pe1
N1 − 1

(σ2 + SQe) + (
N2pe2
N2 − 1

− pe1
N1 − 1

)[σ̄2
Qe

+ S̄Qe ],

(2.6)

where

pb =
1

N1

N1∑
r=1

1

N2

N2∑
s=1

N1∑
k=1
k 6=r

pb
(
k
∣∣(r, s))
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SQb

4
= (kN1)−1

N1∑
i=1

‖zi‖2

DQb

4
= k−1

N1∑
i=1

∫
z∈Ai

‖z − zi‖2f(z)dz

pe1 =
1

N1

N1∑
r=1

1

N2

N2∑
s=1

N1∑
k=1
k 6=r

N2∑
l=1

pe
(
(k, l)

∣∣(r, s))

pe2 =
1

N1

N1∑
r=1

1

N2

N2∑
s=1

N2∑
l=1
l 6=s

pe
(
(r, l)

∣∣(r, s))

DQe

4
= k−1

N1∑
i=1

N2∑
j=1

∫
z∈Aij

‖z − zij‖2f(z)dz

SQe

4
= (kN1N2)−1

N1∑
i=1

N2∑
j=1

‖zij‖2

S̄Qe

4
=

N1∑
i=1

p(Ai)
(
(kN2)−1

N2∑
ĵ=1

‖ziĵ − yi‖
2
)

with yi being the conditional mean of z given Ai

σ̄2
Qe

4
=

N1∑
i=1

p(Ai)σ
2
i with σ2

i being the conditional variance per dimension of z given Ai.

Remark 1. In (2.5) and (2.6), DQb
and DQe are the conventional quantization distortions

at the lower and higher resolution layers, respectively; SQb
and SQe are the scatter factors of

the MRVQ at the lower and higher resolution layers, respectively, and represent respectively
how far the codeword vectors at these two resolution layers are from the mean vector of the
source. Similarly, S̄Qe can be interpreted as the average conditional scatter factor of the
refinement coding given the partition {Ai} at the lower resolution layer.

Remark 2. It is instructive to compare (2.6) with (2.5) in terms of the impact of channel
error probabilities on the EED. In view of the definitions of pe1 and pe2, it follows that
pe1 + pe2 can be regarded as the average symbol error probability of the channel for the
first receiver which tries to recover the higher resolution representation of the source. In
comparison of (2.6) with (2.5), it is interesting and even surprising to see that it is pe1,
not pe1 + pe2, that appears before (σ2 + SQe) in (2.6). To certain degree, this implies that
transmission errors occurring at the lower layer are more detrimental to the EED, a fact
known more or less intuitively, but never quantified before.
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Proof. The proof of 2.6 is sketched as follows.

Dπt
e = DQe +

1

k

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[

N1∑
î=1
î 6=i

N2∑
ĵ=1

(2(z − z ij)(z ij − z îĵ)
′
+ ‖z ij − z îĵ‖

2)pπt
e (z îĵ|z ij)]f(z )dz

+
1

k

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[

N2∑
ĵ=1

ĵ 6=j

(2(z − z ij)(z ij − z iĵ)
′
+ ‖z ij − z iĵ‖

2)pπt
e (z iĵ|z ij)]f(z )dz ,

(2.7)

where all vectors are row vectors and the transpose is indicated with a prime symbol. Then,
take the average of the crossover error probabilities over all possible index assignment
mappings. As to the first channel, we derive the crossover error probabilities,

a. For the first channel and for any two code vectors z ij and zîĵ with different low-
resolution layer indices, the crossover error probability is,

Eπtp
πt
e (z îĵ|z ij) = Eπtb,πtepe

((
πtb(̂i), πte(ĵ |̂i)

)∣∣(πtb(i), πte(j|i)))
=

1

(N1!)(N2!)N1
(N1 − 2)![(N2)!](N1−2)[(N2 − 1)!]2

N1∑
r=1

N1∑
k=1
k 6=r

N2∑
s=1

N2∑
l=1

pe

(
(k, l)

∣∣(r, s))

=
1

N2(N1 − 1)
[

1

N1N2

N1∑
r=1

N1∑
k=1
k 6=r

N2∑
s=1

N2∑
l=1

pe
(
(k, l)

∣∣(r, s))]
=

1

N2(N1 − 1)
pe1. (2.8)

b. For the first channel and for any two code vectors z ij and ziĵ with the same low-
resolution layer index and different high-resolution layer indices, the crossover error
probability is,

Eπtp
πt
e (z iĵ|z ij) = Eπtb,πtepe

((
πtb(i), πte(ĵ|i)

)∣∣(πtb(i), πte(j|i)))
=

1

(N1!)(N2!)N1
(N1 − 1)![(N2)!](N1−1)(N2 − 2)!

N1∑
r=1

N2∑
s=1

N2∑
l=1
s 6=s

pe

(
(r, l)

∣∣(r, s))

=
1

N1

N1∑
r=1

1

N2

N2∑
s=1

1

N2 − 1

N2∑
l=1
l 6=s

pe

(
(r, l)

∣∣(r, s))

=
1

N2 − 1
pe2 (2.9)
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Taking expectation over Dπt
e with respect to πt in (2.7) and substituting (2.8) and (2.9) in

it leads to,

DΠ
e = Eπt(D

πt
e ) = Eπtb,πte(Dπt

e )

= DQe +
pe1

k(N1 − 1)N2

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N1∑
î=1
î 6=i

N2∑
ĵ=1

(2(z − z ij)(z ij − zîĵ)
′
+ ‖zij − zîĵ‖

2)]f(z)dz

+
pe2

k(N2 − 1)

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N2∑
ĵ=1

ĵ 6=j

(2(z − z ij)(z ij − z iĵ)
′
+ ‖zij − ziĵ‖

2)]f(z)dz

= DQe +
pe1

k(N1 − 1)N2

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N1∑
î=1

N2∑
ĵ=1

(2(z − z ij)(z ij − zîĵ)
′
+ ‖zij − zîĵ‖

2)]f(z)dz

+ (
pe2

k(N2 − 1)
− pe1
k(N1 − 1)N2

)
N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N2∑
ĵ=1

(2(z − z ij)(zij − ziĵ)
′
+ ‖zij − ziĵ‖

2)]f(z)dz

= DQe +
pe1

k(N1 − 1)N2

N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N1∑
î=1

N2∑
ĵ=1

‖z − z îĵ‖
2 −N1N2‖z − zij‖2]f(z)dz

+ (
pe2

k(N2 − 1)
− pe1
k(N1 − 1)N2

)
N1∑
i=1

N2∑
j=1

∫
z∈Aij

[
N2∑
ĵ=1

‖z − z iĵ‖
2 −N2‖z − zij‖2]f(z)dz

= (1− N1pe1
N1 − 1

)DQe +
pe1

k(N1 − 1)N2

N1∑
î=1

N2∑
ĵ=1

∫
z∈Λ
‖z − zîĵ‖

2f(z)dz − (
pe2

N2 − 1
− pe1

(N1 − 1)N2
)N2DQe

+ (
pe2

k(N2 − 1)
− pe1
k(N1 − 1)N2

)
N1∑
i=1

N2∑
j=1

∫
z∈Aij

N2∑
ĵ=1

‖z − z iĵ‖
2f(z )dz

= (1− N2pe2
N2 − 1

− pe1)DQe +
pe1

(N1 − 1)N2
(N1N2σ

2 +
1
k

N1∑
î=1

N2∑
ĵ=1

‖z îĵ‖
2)

+ (
pe2

k(N2 − 1)
− pe1
k(N1 − 1)N2

)
N1∑
i=1

N2∑
ĵ=1

N2∑
j=1

∫
z∈Aij

‖z − z iĵ‖
2f(z )dz

= (1− N2pe2
N2 − 1

− pe1)DQe +
pe1

(N1 − 1)N2
(N1N2σ

2 + SQeN1N2)

+ (
pe2

k(N2 − 1)
− pe1
k(N1 − 1)N2

)
N1∑
i=1

N2∑
ĵ=1

∫
z∈Ai

‖z − z iĵ‖
2f(z )dz
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= (1− N2pe2
N2 − 1

− pe1)DQe +
pe1

(N1 − 1)N2
(N1N2σ

2 + SQeN1N2)

+ (
pe2

N2 − 1
− pe1

(N1 − 1)N2
)
N1∑
i=1

N2∑
ĵ=1

p(Ai)(σ2
i +

1
k
‖z iĵ − yi‖

2)

= (1− N2pe2
N2 − 1

− pe1)DQe +
N1pe1
N1 − 1

σ2 +
N1pe1
N1 − 1

SQe

+ (
pe2

N2 − 1
− pe1

(N1 − 1)N2
)[N2σ̄

2
Qe

+N2

N1∑
i=1

p(Ai)SQi ]

= (1− N2pe2
N2 − 1

− pe1)DQe +
N1pe1
N1 − 1

σ2 +
N1pe1
N1 − 1

SQe + (
N2pe2
N2 − 1

− pe1
N1 − 1

)[σ̄2
Qe

+ S̄Qe ].

The equality of 2.5 can be proved quite easily. According to coding scheme while z ij is
transmitted, the second receiver decodes it to zˆ̂i. Thus, DΠ

b is a special case of DΠ
e in terms

of computation, where zij = zi for any 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. By using the conclusion
in Theorem 1, it is not hard to derive this formula.

Remark 3. From Theorem 1, it follows that the EED for high-quality reproduction is gen-
erated from five terms: quantization distortion, the joint impact of channel noise and the
source variance, the joint term of channel noise and the scatter factor of the code vectors,
the joint effect of channel noise and the average scatter factor of the code vectors and
the joint effect of channel noise and the average conditional variance in the low-resolution
layer. Intuitively, the more the code vectors scatter away from the source mean and away
from the conditional mean of the corresponding partition of the low-resolution layer, the
more contribution comes from the channel noise to the EED. Note that Theorem 1 pro-
vides a closed-form formula of average EED with high-quality reproduction for MRVQ on a
broadcast channel with a random index assignment. Furthermore, it is valid for any MRVQ
quantizer with either a high rate or a low rate.

Remark 4. From (2.5), it shows that EED for low-quality reproduction comes from three
terms: quantization distortion, the joint impact of channel noise and the source variance,
the joint term of channel noise and the scatter factor of the code vectors. Similar to
high-quality case, the more the code vectors scatter away from the source mean, the more
contribution comes from the channel noise to the EED.

Interestingly, the formula of the average EED for low-quality reproduction is the same
as the result in the single resolution case [34]. If top-down approach is applied to design a
tree-structured vector quantization, we could use the algorithm design in [34], and then the
related analysis is still applicable. Note that top-down approaches sacrifice high-resolution
performance for low-resolution performance and are thus most appropriate when focusing
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on the low-end user, who values the quality of the low-rate reproduction over the long
term coding performance[4]. In this thesis, we will propose a different algorithm design by
optimality later.

Corollary 1. Given a k-dimensional L-resolution quantizer with {Ai1···il , 1 ≤ ij ≤ Nj,∀1 ≤
j ≤ l}, {zi1···il , 1 ≤ ij ≤ Nj,∀1 ≤ j ≤ l} for the lth-resolution layer (1 ≤ l ≤ L) and the cor-
responding noisy channel with transitional probability matrix {pl

(
(r̂1, · · · , r̂l)|(r1, · · · , rL)

)
},

the average EED for the lth-resolution reproduction while transmitting a source z with p.d.f
f(z) over a concatenation system with a random index assignment is

DΠ
l = (1−

l−1∑
i=1

pl,i −
Nlpl,l
Nl − 1

)DQl
+

l∑
i=1

(
Nipl,i
Ni − 1

− pl,i−1

Ni−1 − 1
)((σ̄

(i−1)
Ql

)2 + S̄i−1
Ql

), (2.10)

where,

pl,i =
1∏L
j Nj

∑
r1···rL

∑
r̂i,··· ,r̂l
r̂i 6=ri

pl
(
(r1, · · · , ri−1, r̂i, · · · , r̂l)|(r1, · · · , rL)

)
, 1 ≤ i ≤ l

DQl
=

1

k

∑
i1,··· ,il

∫
z∈Ai1···il

‖z − zi1···il‖2f(z)dz,

yi1···im: conditional mean of z given Ai1···im , 1 ≤ m ≤ l − 1

σ2
i1···im: conditional variance of z given Ai1···im , 1 ≤ m ≤ l − 1

S
(l)

Qi1···im =
1

k
∏l

j=m+1 Nj

∑
îm+1,··· ,̂il

‖zi1···im îm+1···̂il − yi1···im‖
2, 1 ≤ m ≤ l − 1

(σ̄
(m)
Ql

)2 =
∑

i1,··· ,im

p(Ai1···im)σ2
i1···im , 1 ≤ m ≤ l − 1 the average conditional variance

S̄mQl
=
∑

i1,··· ,im

p(Ai1···im)S
(l)

Qi1···im , 1 ≤ m ≤ l − 1 average scatter factor

S̄0
Ql

=
1

k
∏l

j=1Nj

∑
i1,··· ,il

‖zi1···il‖2, (σ̄
(0)
Ql

)2 = σ2, pl,0 = 0.

This result could be derived by using similar process in Theorem 1. Details are omitted
here.

Remark 5. Corollary 1 gives a closed-from formula of the average EED for the lth-
resolution reproduction among L resolutions in total. Note that all the coefficients involving
channel noise must sum to 1. If combining all the terms involving pl,i, the summation rep-
resents the distortion generated by wrong channel transmissions where error occurs at the
ith layer and all the first i− 1 layers are completely correct when using l-resolution repro-
duction.
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For some sources, the flexibility afforded by multiresolution source coding comes at a
price. In particular, there exist some sources for which it is not possible to achieve the
minimum distortion at each resolution simultaneously [1]. Thus, a optimality criterion,∑L

l=1[alDl + blRl], is proposed in [4]. For a fixed-rate code, the optimality criterion is

equivalent to the weighted criterion
∑L

l=1 plDl [37], with respect to distribution {pl} over
the resolutions in a fixed-rate code. This same criterion, when extended to the vector
(k > 1) case, allows the design of codes achieving any point on the convex hull of the closure
of the set of rate-distortion vectors achievable by fixed-rate multiresolution quantizers [2].
Therefore, the optimality criterion in our scenario is defined as

D̄ = pDΠ
e + (1− p)DΠ

b , (2.11)

where p should be the distribution of the user with high-quality reproduction. This criterion
represents the weighted EED in a two-user system.

From Theorem 1, it is now clear that minimizing [pDQb + (1 − p)DQe] alone does not
necessarily reduce the weighted EED. To minimize the weighted EED, we should design
a MRVQ so that for both two layers, their codevectors are spread widely enough to make
DQe, DQb and σ̄2

Qe
small, and meanwhile are closely distributed around the source mean

to make SQb and SQe also small. Besides, for the high-resolution layer, all the code vectors
which are mapped to the same code vector in the low-resolution layer are concentrated
around the conditional mean of the corresponding region in the low-resolution layer to
reduce S̄Qe .
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Chapter 3

Joint Multiresolution Vector
Quantization Design On Broadcast
Channels

In this section, we propose several algorithms for designing a generally optimal multireso-
lution vector quantizer on a broadcast channel with a random index assignment.

3.1 Optimal Design for Noisy Channel Multiresolu-

tion Quantization

Similar to the development of algorithm for multiresolution vector quantization design
without channel information, the optimal design for MRVQ on a broadcast channel is
formulated as a minimization problem, i.e.,

min
Z1,Z2

min
A

pDΠ
e + (1− p)DΠ

b , (3.1)

where,
A = {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} with

⋃
i,j Aij = Λ,

⋃
j Aij = Ai and

∫
Aij

⋂
Ai′j′

f(z )dz =

0, ∀(i, j) 6= (i′, j′),
Z1 = {z i, i = 1, · · · , N1} is associated with a given partition {Ai, 1 ≤ i ≤ N1, },
Z2 = {z ij, i = 1, · · · , N1, j = 1, · · · , N2} is associated with a given partition {Aij, 1 ≤ i ≤
N1, 1 ≤ j ≤ N2}.

Based on Theorem 1, the following two necessary conditions can be derived for the
optimal solution to 3.1.
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Theorem 2. Given a coded broadcast channel with the transmission probability p
(
m̂e, m̂b|(r, s)

)
,

the optimal multiresolution vector quantizer with a random index assignment satisfies the
following two conditions.

1) For {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, the optimal code vectors by minimizing D̄ in each
layer are computed respectively by

zi =

∫
Ai
zf(z)dz

pb

N1−1−N1pb
+ p(Ai)

, i = 1, · · · , N1 (3.2)

zij =
k1

∫
Aij
zf(z)dz + k2

∫
Ai
zf(z)dz

k1p(Aij) + pe1

N2(N1−1)
+ k2p(Ai)

, i = 1, · · · , N1, j = 1, · · · , N2 (3.3)

2) For {zi, i = 1, · · · , N1}, {zij, i = 1, · · · , N1, j = 1, · · · , N2}, the optimal finest parti-
tion is achieved by

Aij = {z : 2αij · (z)′ − βij ≥ 2αi′j′ · (z)′ − βi′j′ , ∀(i′, j′) 6= (i, j)},
i = 1, · · · , N1, j = 1, · · · , N2 (3.4)

where,

k1
4
= 1− pe1 −

N2pe2
N2 − 1

k2
4
=

pe2
N2 − 1

− pe1
N2(N1 − 1)

k3
4
= 1− N1pb

N1 − 1

αij = pk1zij + pk2

N2∑
j=1

zij + (1− p)k3zi

βij = pk1z
2
ij + pk2

N2∑
j=1

z2
ij + (1− p)k3z

2
i .

Proof. For 1), given {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} the proof is a standard procedure to
take the derivative of the objective function (7) over z i and z ij respectively. Specifically,

∂D̄

∂z i
= (1− N1pb

N1− 1
)
∂DQb

∂z i
+

N1pb
N1− 1

∂SQb

∂z i

= (1− N1pb
N1− 1

)
∂

∂z i

(
σ2 − 2

k

N1∑
j=1

∫
z∈Aj

zf(z )dz · z ′j +
1

k

N1∑
j=1

‖z j‖2p(z ∈ Aj)
)

+ 2z i
1

k

pb
N1 − 1

= (1− N1pb
N1− 1

)
1

k

(
− 2

∫
z∈Ai

zf(z )dz + 2z i · p(z ∈ Ai)
)

+
2

k
z i

pb
N1 − 1

. (3.5)
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Letting ∂D̄
∂z i

= 0 in the above leads to (3.2).

∂D̄

∂z ij
= (1− pe1 −

N2pe2
N2 − 1

)
∂DQe

∂z ij
+

pe1
N2(N1− 1)

1

k
2z ij + (

pe2
N2 − 1

− pe1
N2(N1 − 1)

)

∫
Ai

2(z ij − z )f(z )dz

= (1− pe1 −
N2pe2
N2 − 1

)
∂

∂z ij

(
σ2 − 2

k

N1∑
î=1

N2∑
ĵ=1

∫
z∈Aîĵ

zf(z )dz · z ′
îĵ

+
1

k

N1∑
î=1

N2∑
ĵ=1

‖z îĵ‖
2p(z ∈ Aîĵ)

)
+

pe1
N2(N1− 1)

1

k
2z ij + (

pe2
N2 − 1

− pe1
N2(N1 − 1)

)

∫
Ai

2(z ij − z )f(z )dz

= (1− pe1 −
N2pe2
N2 − 1

)
(
− 2

∫
z∈Aij

zf(z )dz + 2z ij · p(z ∈ Aij)
)

+
pe1

N2(N1− 1)

1

k
2z ij

+ (
pe2

N2 − 1
− pe1
N2(N1 − 1)

)

∫
Ai

2(z ij − z )f(z )dz

Letting ∂D̄
∂z ij

= 0 in the above leads to (3.3).

For 2), applying the similar idea to the approaches in [37], [4] which is for multi-
resolution quantization design without reference to the channel noise, then yields the con-
dition (3.4).

Given Z1 and Z2, the objective function can be written in integral form as

D̄ =

∫
Λ

G(z )f(z )dz + const,

where,

if z ∈ Aij G(z ) = F (z , z i, z ij).

where,

F (z , z i, z ij)
4
=
p

k
(k1‖z − z ij‖2 + k2

N2∑
ĵ=1

‖z − z iĵ‖
2) +

(1− p)k3

k
‖z − z i‖2 (3.6)

For each value of z , G(z ) can assume one of N1 · N2 values, one for each index pair to
which z could be mapped. To minimize the integral it suffices to map each value of z to
the index pair (i, j) for which G(z ) is minimized. In other words,

Aij = {z :
p

k
(k1‖z − z ij‖2 + k2

N2∑
ĵ=1

‖z − z iĵ‖
2) +

(1− p)k3

k
‖z − z i‖2

≤p
k

(k1‖z − z i′j′‖2 + k2

N2∑
ĵ=1

‖z − z i′ĵ‖
2) +

(1− p)k3

k
‖z − z i′‖2, ∀(i′, j′) 6= (i, j)}.
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Note that knowing Aij allows construction of all other partitions of the encoder using the
tree structure of the MRVQ. Expanding the above equation and letting αij = pk1z ij +

pk2

∑N2

j=1 z ij + (1 − p)k3z i, βij = pk1z
2
ij + pk2

∑N2

j=1 z
2
ij + (1 − p)k3z

2
i . Through further

simplification, we have:

Aij = {z : 2αij · (z )′ − βij ≥ 2αi′j′ · (z )′ − βi′j′ ,∀(i′, j′) 6= (i, j)}, i = 1, · · · , N1, j = 1, · · · , N2

This completes the proof of Theorem 2.

Remark 6. The three equations (3.2), (3.3), and (3.4) in Theorem 2 reflect the complexity
of designing optimal MRVQ for broadcast channels. From (3.2), (3.3), and (3.4), it follows
that channel noise through different types of channel error probabilities now impacts on the
update of both the quantization partition and codeword vectors at both resolution layers.
On one hand, because of the impact of multiple layers in quantization, the conventional
nearest neighbor encoder in single-resolution case is also not valid any more. This is in
contrast with the design of optimal single resolution quantizers for noisy channels with RIA
considered in [33], [34], where the update of the quantization partition is still the nearest
neighbor decision rule independent of the channel. On the other hand, in comparison
with the design of optimal MRVQ without reference to the channel [4], [37], the update of
codeword vectors no longer follows the traditional centroid rule, in addition to the impact of
channel noise on the update of the quantization partition. Note that all of these conditions
target a generally good quantizer with a random index assignment rather than a given index
assignment.

Remark 7. An efficient algorithm for finding the cell boundaries of such a partition in
scalar case is given by Vaishampayan [37]. (3.4) gives the optimal partition for codebook
which implies a tree structure. It can be shown [37] that cells of this partition consist of
intervals and that if x ∈ Aij, y ∈ Ast and N2 ∗ (i − 1) + j < N2 ∗ (s − 1) + t then x < y.
Thus for the scalar case, the interval for each Aij should be continuous instead of separate
located.

Let hij(x) = 2αijx − βij. Let µ(x) = maxijhij(x). Note that µ(x) is convex, piecewise
affine a function of x. Hence, if hij(x) coincides with µ(x) , it does so over an interval of x
values. Note that it is possible that for some (i, j), hij(x) never coincides with µ(x) for any
x. Such index pairs are never assigned any source sample and hence are never transmitted.
we conclude that Aij is either empty or is an interval and thus the nonempty Aij’s can be
characterized by their endpoints.

A typical set of hij
′
s is illustrated in Figure 3.1, where lines correspond to, in increasing

order of slope, (i, j) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2). It is not hard to see that index
pair (1,2) and (3,1) are not transmitted.

In order to determine the endpoints of the Aij’s(thresholds of the central partition) we
begin by identifying some of the untransmitted index pairs in the given set of index pairs
C. Let B be the remaining set of index pairs and let (i, j) ∈ B if
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Figure 3.1: A typical set of hij, i = 1, 2, 3, j = 1, 2

1) for all (i′, j′) ∈ C− (i, j), αij 6= αi′j′;

2) for all (i′, j′) ∈ C− (i, j), αij = αi′j′ , βij < βi′j′;

3) for all (i′, j′) ∈ C− (i, j), αij = αi′j′ , βij = βi′j′ , N2(i− 1) + j < N2(i′ − 1) + j′;

Define

ILij = {(i′, j′) ∈ B : αi′j′ < αij}, (3.7)

IUij = {(i′, j′) ∈ B : αi′j′ > αij}. (3.8)

Let tLij and tUij be lower and upper endpoints of Aij. Then,

tLij =

{
−∞, if ILij = ∅,
max(i′,j′)∈IL

ij

βij−βi′j′

2(αij−αi′j′ )
, otherwise.

(3.9)

and

tUij =

{
∞, if IUij = ∅,
min(i′,j′)∈IU

ij

βij−βi′j′

2(αij−αi′j′ )
, otherwise.

(3.10)

26



From (3.4), it follows that

Aij =


∅, if tLij ≥ tUij,
(tLij, t

U
ij), if ILij = ∅,

[tLij, t
U
ij), otherwise.

(3.11)

3.2 Greedy Iterative Design Algorithm

Theorem 2 suggests a gradient descent iterative algorithm for jointly designing MRVQ with
channel conditions. We begin with the description of the greedy iterative algorithm for
MRVQ on a broadcast channel.

The greedy iterative algorithm: In this algorithm, we update the partition A = {Aij, 1 ≤
i ≤ N1, 1 ≤ j ≤ N2} and the codebook Z1 = {zi, i = 1, · · · , N1},Z2 = {zij, i =
1, · · · , N1, j = 1, · · · , N2} of a MRVQ alternatively and iteratively according to the two
necessary conditions in Theorem 2 as follows:

Step 1 Initialization: Set t=1 and select initial partition {A(1)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} and

code vectors {z(1)
i , i = 1, · · · , N1, }, {z(1)

ij , i = 1, · · · , N1, j = 1, · · · , N2}. Compute

D̄(1) accordingly.

Step 2 Given {A(t)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, update the codeword vectors at both resolution

layers as follows

z
(t+1)
i =

∫
A

(t)
i
zf(z)dz

pb

N1−1−N1pb
+ p(A

(t)
i )

, i = 1, · · · , N1 (3.12)

z
(t+1)
ij =

k1

∫
A

(t)
ij
zf(z)dz + k2

∫
A

(t)
i
zf(z)dz

k1p(A
(t)
ij ) + pe1

N2(N1−1)
+ k2p(A

(t)
i )

, i = 1, · · · , N1, j = 1, · · · , N2 (3.13)

Step 3 Given {z(t+1)
i , i = 1, · · · , N1}, {z(t+1)

ij , i = 1, · · · , N1, j = 1, · · · , N2}, update the
quantization partition {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} as follows

A
(t+1)
ij = {z : 2α

(t+1)
ij · (z)′ − β(t+1)

ij ≥ 2α
(t+1)
i′j′ · (z)′ − β(t+1)

i′j′ ,∀(i′, j′) 6= (i, j)},
i = 1, · · · , N1, j = 1, · · · , N2 (3.14)

A
(t+1)
i = ∪jA(t+1)

ij , i = 1, · · · , N1. (3.15)
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Figure 3.2: Illustration of zij /∈ Aij and empty cells, which causes divergence for MRVQ
design by alternating (3.12), (3.13), (3.14).

where,

α
(t+1)
ij = pk1z

(t+1)
ij + pk2

N2∑
j=1

z
(t+1)
ij + (1− p)k3z

(t+1)
i

β
(t+1)
ij = pk1‖z(t+1)

ij ‖2 + pk2

N2∑
j=1

‖z(t+1)
ij ‖2 + (1− p)k3‖z(t+1)

i ‖2.

Step 4 If |D̄(t+1) − D̄(t)| is less than some predefined threshold then t=t+1, go to Step 2; if
not stop.

Start with an initial multiresolution quantizer. Repeating the step 2 and step 3, one
then gets an iterative algorithm for designing optimal MRVQ for a broadcast channel
through channel error probabilities. At each step in each iteration, the objective function
cannot increase. Since the function is bounded below by 0 and each step produces a global
minimum of D̄ relative to the fixed components, the sequence of D̄(t) is guaranteed to
converge to a local optimum. Note that the proposed algorithm converges in the sense
that the sequences of D̄(t) are non-increasing as t → ∞. In the next section, we will
demonstrate the effectiveness of the proposed algorithm by presenting some experiment
results.

Remark 8. Although the above iterative procedure looks similar to the Lloyd-Max algorithm
[38] [39], two major differences lie in this algorithm. Firstly, it forces zi to move towards the
origin, i.e., the mean of the source and forces zij to move towards the weighed centroid of Ai.
(Here we omit the superscripts t and t + 1 for convenience.) As a result, during the iterative
procedure, the updated zi or zij at each step given Ai and Aij may not fall into Ai or Aij,
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especially when the error probabilities are large. Secondly, the partitions are not midpoints
of two representative points. Moreover it is possible that some intervals do not exist. Thus
if only applying these steps (3.12) (3.13) (3.14), an unexpected case occurs that some cells
of the partition may be empty. Actually this phenomenon is reasonable as discussed later.
However if one wants to eliminate empty cells, it necessitates some modifications in the
algorithm. For the design of successively refinable scalar quantizers[37], if an empty cell
occurs in some steps, the parent’s cell of an empty cell will be uniformly partitioned. While
in order to make sequences of {Aij} and {zij} also converge, now we oblige an empty cell
to be a non-empty cell of length δ that is arbitrarily small, by compressing its neighbor.
The above discussions are further illustrated in Figure 3.2 for partitions and quantization
codebook obtained at some step of the above iterative procedure when it is applied to a
2-resolution quantizer with 4 × 4 levels for a Gaussian source with zero mean and unit
variance over a broadcast channel. In Figure 3.2, the horizontal line with numbers shows
the partition(longer segments for base layer, shorter ones for enhancement layer), while the
dots represent the updated reproduction points at enhancement layer given the partitions.
As shown by the arrows, there are three partition sets, for which the respective updated
quantization outputs are outside each respective set, i.e., the first, second, and the last.
Therefore, the subsequent alternating steps will make {Aij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} and
{zij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} appear in random order along the horizontal line. This
in turn will make it difficult to analyze the convergence of the corresponding sequence of
quantizers.

3.3 Simulations

Simulations have been conducted to compare the performance of quantizers designed by the
proposed algorithms with that of quantizers designed by the conventional MRVQ algorithm.
Given a quantizer and the error probabilities pe1, pe2 and pb, the weighted EED for random
index assignment is computed using (2.11). All experiments have been carried out for
one-dimensional case, and we will demonstrate the relationships between the weighted
distortion and each error probability above when fixing the other variables.

Consider a one-dimensional Gaussian source with zero mean and unit variance. Figure
3.3, Figure 3.4 and Figure 3.5 show the gain by PSNR, which is defined as PSNR =
10 log10(σ2/D̄), where σ2 is the signal variance and D̄ is the weighted distortion. For
a given quantizer, D̄ is computed using (2.11). As shown in the simulation results, the
weighted distortion increases as either pe1 or pb grows up, however it indicates that the
weighed distortion keeps constant while pe2 goes up. It seems that the effect of pe2 on
the weighted distortion is much less then pe1 and pb. It sounds reasonable, since if the
transmission error just occurs at the enhancement layer, the reproduction point must lie
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not far from the transmitted point, in the same region as the transmitted data on the base
layer. Thus, such error induces only a little distortion, relatively less than that with an error
at base layer. Besides, from these figures it is shown that the gain of the proposed MRVQ
design over the algorithm designed separately without reference to the channel conditions
is significant. Table 3.1 indicates that the gain (in dB) of the proposed MRVQ design over
the algorithm designed separately goes more and more as either N1 or N2 increases. As
shown in the table, the number of quantization levels at base layer plays a more important
role than that at enhancement layer in the distortion performance. For example, even if
the total quantization levels are the same for the quantizer with N1 = 16 and N2 = 8
and the quantizer with N1 = 32 and N2 = 4, however, the latter one generates smaller
distortion for both the Greedy iterative algorithm and the algorithm designed separately
without reference to the channel conditions obviously and larger gain between these two
algorithms.

Table 3.1: PSNR gain of our proposed MRVQ design over the separate MRVQ design
for Gaussian source with zero mean and unit variance given pe1 = 0.01, pe2 = 0.005 and
pb = 0.02.

N1 = 4
N2 = 2

N1 = 8
N2 = 2

N1 = 16
N2 = 2

N1 = 16
N2 = 8

N1 = 32
N2 = 4

N1 = 32
N2 = 8

Proposed MRVQ design 9.1937 11.7653 13.3724 13.8934 14.8413 14.9894
Separate MRVQ design 9.1009 11.4691 12.3582 12.4109 12.5104 12.5181
Our PSNR gain 0.0928 0.2962 1.0142 1.4825 2.3309 2.4713

3.4 “Empty Cells” Phenomenon

It is shown in my simulation results that there may exist several empty cells in the quantizer
encoder, that is, some partitions are empty in that some codevectors emerge. As a similar
phenomenon occurred in single resolution case, it was observed experimentally in [32]
that for channel optimized quantizers, as the transmission rate increased, the number of
quantization levels would at some point not increase any more. Instead the additional rate
available was better used in channel coding. Adding more quantization levels would in fact
have a detrimental effect in such cases. This observation is supported by Corollary 3 in
[32], which shows that the mean square error (MSE) of quantization can actually increase
in the presence of channel noise as the number of levels is increased. The average distortion
D(N) is strictly increasing as a function N for N > Nopt, that is, increasing N beyond the
optimal number of levels only reduces the performance.
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Figure 3.3: PSNR gain of channel optimized quantization over quantization designed sepa-
rately from channels corresponding to various pb for a Gaussian source while fixing p = 0.5,
pe1 = 0.01 and pe2 = 0.005
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Figure 3.4: PSNR gain of channel optimized quantization over quantization designed sepa-
rately from channels corresponding to various pe1 for a Gaussian source while fixing p = 0.5,
pb = 0.02 and pe2 = 0.005
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Figure 3.5: PSNR gain of channel optimized quantization over quantization designed sepa-
rately from channels corresponding to various pe2 for a Gaussian source while fixing p = 0.5,
pb = 0.02 and pe1 = 0.01
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Consider a vector quantizer source coding system with a channel coder that transmits
data across channel. Let Rs denote the source rate, i.e., the number of bits per input
vector component used for vector quantization. Let R denote the channel usage rate,
i.e., the number of binary channel uses per input vector component. Let Rc = Rs/R be
the channel code rate, i.e., the fraction of transmitted bits that are used as information
bits for source coding. The vector quantizer has a codebook of size 2kRs and the overall
transmission rate of the system is R, where in general Rs ≤ R. The difference R − Rs, is
the number of redundancy bits per vector component used for error correction coding. If a
redundancy free channel code is used then Rs = R, such as when the channel is noiseless.

If the overall transmission rate R of the system is fixed and we wish to minimize D̄, the
choice of source rate Rs or equivalently channel code rate Rc trades off between source and
channel coding. If one transmits at a rate Rc very close to capacity C, then the number
of information bits Rs, will be large, and thus the quantization error E‖X − Y ‖2 will be
small; however, for large Rc, the probability of an uncorrected channel error cannot be as
tightly upper bounded (smaller error exponent), so that average error probabilities, will
contribute more to the overall distortion D̄. Thus, there is an important trade-off in this
case between: i) designating more of the transmitted bits as information bits to reduce
quantization error, and ii) devoting more of the transmitted bits toward error control
coding to drive the probability of an uncorrected channel error to zero.

As it is demonstrated in my simulation results, we assume a set of average error prob-
abilities pe1, pe2, pb based on a specific coding scheme with Rs and Rc. For the channel
optimized quantization design, there may exist several empty cells in the quantizer en-
coder. It means that we would not make use of these empty cells to encode a sequence of
source variables, that is, these cells are actually invalid for compression. Besides, as the
number of multiresolution quantization levels grows up, the quantity of the empty cells
increases as well. An intuitive explanation for this is that as the rate increases, the result-
ing longer codevector indices are more exposed to damaging channel errors. Thus, over
channels with smaller average probabilities, one can transmit longer indices to achieve the
minimum MSE; on channels with larger probabilities, a part of source rate might act as
error protection against the channel noise.

The optimal codewords {zij} associated with a channel optimized vector quantization
will change as a function of three average index crossover probabilities pe1, pe2, pb. In
particular, the codewords will tend to be closer when the probability of an average index
error is high than when that same probability is low. For sufficiently high average error
probabilities, the codewords will actually merge, meaning that two or more codeword
indices (e.g. (i, j) and (i, j+1)) will map to the same reproduction vector (e.g. zij = zi,j+1).
A source code with two or more identical codewords effectively uses some of the source
coding bits for redundancy or channel error protection. In this case we say that the effective
source coding rate Re is lower than the source coding rate Rs, since the source code applies
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some of its rate Rs −Re to the job of error protection. Therefore the total number of bits
applied to channel error protection is R − Re: we call this the effective channel coding
rate. Given a quantization with distinct codewords, we will calculate the effective source
coding rate as Re = logN/k. For the jointly designed quantization, as Rs increases the
channel coding rate Rc increases, and thus, the average error probabilities increase. This
will eventually cause some of the source bits to be used for error protection so that, above
some critical Rs value, Re will drop below Rs, as we observe in the experiments. Therefore,
as discussed above, the empty cell phenomenon is a natural property of channel-optimized
source coding.

3.5 Comparison With The KR Algorithm

It may be of some interests to compare the proposed method with the multi-resolution
source codebook design in [36], which assumes a fixed index assignment. Apparently,
the KR algorithm requires the complete knowledge of the channel, i.e., all transitional
probabilities, which is usually unavailable in practice. On the other hand, the average
channel information, on which the proposed method is based, is relatively easy to obtain.

Since the KR algorithm needs all transitional probabilities pπt(zîĵ|zij), the first step
in this experiment is to assume these transitional probabilities. For example, to design
a 2-resolution scalar quantization with 4 × 4 levels, we generate randomly three pairs of
transitional probability matrices, (Pie,Pib), i = 1, 2, 3. These pairs (Pie,Pib)’s correspond
to three channel conditions with slight noise, mediate noise and severe noise respectively,
where each Pie is a 16 × 16 matrix and each Pib is a 4 × 4 matrix. Due to the limit of
space and also for brevity, I do not list these three pairs of matrices.

Given these transitional probabilities, we then apply the KR algorithm to a Gaussian
source to get the respective quantizer by using the natural index assignment mapping,
and the actual EED of which is finally calculated according to pDπt

e + (1 − p)Dπt
b . To

apply our proposed algorithm to the Gaussian source, we just need the average symbol
error probabilities, which correspond to these transitional probabilities. The actual EED
of the quantizers designed is calculated according to (2.1) and (2.2). In Table 3.2 shown
are the actual EEDs of the quantizers designed by our proposed algorithm, the KR algo-
rithm, and separate quantization design without reference to the channel conditions. As
expected, the quantizers designed by the KR algorithm outperform sightly the quantizers
designed by our proposed algorithm. However, what makes this comparison interesting is
that the performance gain is marginal compared to the gain of the quantizers by our pro-
posed algorithm over the quantizer designed by separate quantization design. In addition,
this marginal performance gain is achieved with much higher design complexity and with
complete knowledge of all transitional probabilities. For example, to design a 2-resolution
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quantization with N1×N2 levels, the KR algorithm requires O(N1
2N2

2) arithmetic opera-
tions, while the proposed one consumes O(N1N2), so the computational complexity of the
proposed method is much less than the KR algorithm.

Table 3.2: Performance comparison in terms of PSNR (dB) for MRVQ designed by our
proposed algorithm, the KR algorithm, and separate MRVQ design.

(P1e,P1b)
s.t. pb = 0.002,
pe1 = 0.001,
pe2 = 0.0015

(P2e,P2b)
s.t. pb = 0.02,
pe1 = 0.01,
pe2 = 0.015

(P3e,P3b)
s.t. pb = 0.2,
pe1 = 0.1,
pe2 = 0.15

KR algorithm 11.656 9.736 4.160
Proposed algorithm 11.656 9.706 4.057
Separate quantization design 11.650 9.530 2.662

In practice, the complete knowledge of all transitional probabilities may be hard to get.
Even if transitional probabilities are available, they will fluctuate in wireless communica-
tions. As such, it is also interesting to look at how sensitive our proposed algorithm, KR
algorithm and separate quantization design are with respect to channel noise fluctuation.
Table 3.3 shows the actual EEDs by PSNR in dB when a quantizer designed for a set of
transitional probabilities by either the KR algorithm or our proposed algorithm is applied
to a less noisy channel environment with (P4e,P4b) or a more noisy channel environment
with (P5e,P5b). For a clearer comparison, we also repeat here the results as shown in
the second column of Table 3.3. It is interesting to see that the quantizer designed by our
proposed algorithm actually outperforms that by the KR algorithm for both more noisy
channel environment and less noisy channel environment. In other words, the quantizer
designed by the KR algorithm for a specific channel deteriorated its performance to a larger
extend when channel noise fluctuates, which makes it vulnerable in wireless communica-
tions, while the proposed method shows better robustness against the channel fluctuation
than the KR algorithm simply by the nature of using the average channel information.

Therefore, with the above experiment and simulation results, we can reasonably con-
clude that the proposed algorithm is more appropriate in both wireless communications
and applications where the complete knowledge of the channel is hard to obtain.

3.6 Novel Iterative Algorithms

As discussed above, the algorithm generalized from Lloyd-Max algorithm converges to a
local optimal solution, and at this point it is hardly possible to prove the uniqueness of the
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Table 3.3: Sensitivity comparison in term of PSNR (dB) for MRVQ designed by our
proposed algorithm and the KR algorithm.

(P4e,P4b)
s.t. pb = 0.002,
pe1 = 0.001,
pe2 = 0.0015

(P2e,P2b)
s.t. pb = 0.02,
pe1 = 0.01,
pe2 = 0.015

(P5e,P5b)
s.t. pb = 0.03,
pe1 = 0.015,
pe2 = 0.0225

KR algorithm 10.101 9.736 9.274
Proposed algorithm 10.186 9.706 9.292

local minimal points, so we cannot guarantee whether this is the best algorithm for Multi-
resolution quantization on noisy channels or not. That implies that maybe there exist
some other algorithms which generate different encoders and decoders to achieve better
distortion performance. After lots of discussions, inspired by the idea of the scalable video
coding in H.264, two novel iterative algorithms come up. One of them aims to optimize
the quantizers at two layers alternatively and iteratively, that is, update the representative
points and partitions at one layer given those at the other layer and vice verse; and the other
satisfies the constraint that each encoding cell is convex and contains the reconstruction
point. We describe these two new iterative algorithms first, then experiments are conducted
to compare our proposed algorithms in different aspects.

3.6.1 New iterative algorithm

In this algorithm, we optimize low-resolution quantization given the high-resolution quanti-
zation and vice versa. The quantizers on each layer are updated alternatively and iteratively
as follows.

The new iterative algorithm:

Step 1 Initialization: Set t=1 and select initial partition {A(1)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}

and code vectors {z(1)
i , i = 1, · · · , N1}, {z(1)

ij , i = 1, · · · , N1, j = 1, · · · , N2}. Compute

D̄(1) accordingly.

Step 2 Given {z(t)
ij , i = 1, · · · , N1, j = 1, · · · , N2}, update the {z(t+1)

i , i = 1, · · · , N1}, {A(t+1)
i , i =

1, · · · , N1} by performing the following steps iteratively.

1) Given {A(t̂)
i , i = 1, · · · , N1}, the optimal codeword vectors for minimizing D̄ at
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base layer are computed respectively by

z
(t̂+1)
i =

∫
A

(t̂)
i

zf(z)dz

pb

N1−1−N1pb
+ p(A

(t̂)
i )

, i = 1, · · · , N1, (3.16)

2) Given {z(t̂+1)
i , i = 1, · · · , N1}, the optimal partition is achieved by

A
(t̂+1)
ij = {z : 2α

(t̂+1)
ij · (z)′ − β(t̂+1)

ij ≥ 2α
(t̂+1)
i′j′ · (z)′ − β(t̂+1)

i′j′ ,∀(i′, j′) 6= (i, j)},
i = 1, · · · , N1, j = 1, · · · , N2

A
(t̂+1)
i = ∪jA(t̂+1)

ij , i = 1, · · · , N1.

Step 3 Given {z(t+1)
i , i = 1, · · · , N1}, {A(t+1)

i , i = 1, · · · , N1}, update the {z(t+1)
ij , i = 1, · · · , N1, j =

1, · · · , N2}, {A(t+1)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} by performing the following steps itera-

tively. For simplicity, write Ai, zi short for A
(t+1)
i , z

(t+1)
i respectively in the following

sub-steps.

1) Given {A(t̂)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, the optimal codeword vectors for mini-

mizing D̄ at enhancement layer are computed respectively by

z
(t̂+1)
ij =

k1

∫
A

(t̂)
ij

zf(z)dz + k2

∫
Ai
zf(z)dz

k1p(A
(t̂)
ij ) + pe1

N2(N1−1)
+ k2p(Ai)

i = 1, · · · , N1, j = 1, · · · , N2. (3.17)

2) Given {z(t̂+1)
ij , i = 1, · · · , N1, j = 1, · · · , N2}, the optimal finest partition is

achieved by

A
(t̂+1)
ij = {z : |z − z(t̂+1)

ij |2 ≤ |z − z(t̂+1)
ij′ |

2,∀j′ 6= j},
i = 1, · · · , N1, j = 1, · · · , N2, (3.18)

Step 4 If |D̄(t+1) − D̄(t)| is less than some predefined threshold then t=t+1, go to Step 2; if
not stop.

Remark 9. According to the idea that update the regions and codebook at each layer it-
eratively and alternatively, it is natural to optimize the objective function by choosing the
regions and codebook at one layer by fixing the quantizer at the other layer. When fixing
the quantizer at base layer and updating the quantizer at enhancement layer, this process
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is sensible. We only need to proceed the one dimensional quantization algorithm to update
{zij, i = 1, · · · , N1, j = 1, · · · , N2}, and {Aij, i = 1, · · · , N1, j = 1, · · · , N2} alternatively
for a large number of iterations. Note that in this process the update of the Aij’s follows
the traditional nearest neighborhood rule, so the update function is simplified to (3.18).

However, given {zij, i = 1, · · · , N1, j = 1, · · · , N2}, {Aij, i = 1, · · · , N1, j = 1, · · · , N2},
to update {zi, i = 1, · · · , N1}, {Ai, i = 1, · · · , N1} induces some problems. Because of the
constraint that Ai = ∪jAij, i = 1, · · · , N1, if {Aij, i = 1, · · · , N1, j = 1, · · · , N2} is fixed,
then {Ai, i = 1, · · · , N1} cannot be recalculated. Therefore, in this algorithm, a small
modification is made, that is, at Step 2 we only fix {zij, i = 1, · · · , N1, j = 1, · · · , N2}, and
relax {Aij, i = 1, · · · , N1, j = 1, · · · , N2}. Actually, we update the partitions at base layer,
at the same time the partitions at enhancement layer are also modified.

Simulations have been conducted to compare the performance of quantizers designed
by new iterative algorithms with that of quantizers designed by new iterative algorithm.
Given a quantizer and average error probabilities pe1, pe2 and pb, the weighted EED for
random index assignment is computed using (2.11). All experiments have been carried out
for one-dimensional case, and we will demonstrate the relationships between the weighted
distortion and each error probability above when fixing the other variables.

Consider a one-dimensional Gaussian source with zero mean and unit variance. Figure
3.6 and Figure 3.7 show the performance of greedy iterative algorithm and new iterative
algorithm by PSNR. As shown in the simulation results, the weighted distortion of new
iterative algorithm increases as either pe1 or pb grows up.

It is shown that these two iterative algorithms obtain almost the same performance.
After examining the data, new iterative algorithm is actually better than the greedy one so
slightly that the difference in the weighted distortion can hardly be distinguished. More-
over, by checking the quantization partitions and reconstruction points carefully, we find
that these results are completely different from those of greedy iterative algorithm. In
addition, the phenomenon of empty cells still exists in the final results generated by new
iterative algorithm, but the number of empty cells drops down sharply in comparison with
greedy iterative algorithm. It is interesting to observe that each algorithm converges to a
local optimum but different from each other. This indicated that there are several local
minimal points for the objective function in terms of Aij and zij, so it is not correct to
assert either algorithm converges to a global optimum without any proof.

As discussed previously, the rate for empty cells are used to fight against noises in the
transmission. However, though it is a reasonable explanation, in some scenarios a regular
vector quantizer is indeed required [a quantizer is regular if each encoding cell is convex
and contains the reconstruction point]. Thus, the empty cells seem to cause problems in
the cases where regular quantizers are preferred. To overcome the above problem, we shall
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Figure 3.6: Comparison between greedy iterative algorithm and new iterative algorithm
corresponding to various pb for a Gaussian source while fixing p = 0.5, pe1 = 0.01 and
pe2 = 0.005
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Figure 3.7: Comparison between greedy iterative algorithm and new iterative algorithm
corresponding to various pe1 for a Gaussian source while fixing p = 0.5, pb = 0.02 and
pe2 = 0.005
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force each updated zij to be within the given Aij and each updated zi to be within the
given Ai, yielding our controlled iterative algorithm to design a regular quantizer.

3.6.2 Controlled iterative algorithm

This algorithm applies under the constraint that each encoding cell is convex and contains
the reconstruction point. In this algorithm, we force each updated zij to be within the
given Aij and each updated zi to be within the given Ai, and update the quantizers on
each layer alternatively and iteratively as follows.

The Controlled Iterative Algorithm:

Step 1 Initialization: Set t=1 and select initial partition {A(1)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}

and code vectors {z(1)
i , i = 1, · · · , N1}, {z(1)

ij , i = 1, · · · , N1, j = 1, · · · , N2}. Compute

D̄(1) accordingly.

Step 2 Given {z(t)
ij , i = 1, · · · , N1, j = 1, · · · , N2}, update the {z(t+1)

i , i = 1, · · · , N1}, {A(t+1)
i , i =

1, · · · , N1} by performing the following steps iteratively.

1) Given {A(t̂)
i , i = 1, · · · , N1}, the optimal codeword vectors for minimizing D̄ at

base layer are computed respectively by

z
(t̂+1)
i = arg min

ẑ∈A(t̂)
i

(1− N1pb
N1 − 1

)

∫
z∈A(t̂)

i

‖z − ẑ‖2f(z)dz +
pb

N1 − 1
‖ẑ‖2, i = 1, · · · , N1,

(3.19)

2) Given {z(t̂+1)
i , i = 1, · · · , N1}, the optimal partition is achieved by

A
(t̂+1)
ij = {z : 2α

(t̂+1)
ij · (z)′ − β(t̂+1)

ij ≥ 2α
(t̂+1)
i′j′ · (z)′ − β(t̂+1)

i′j′ ,∀(i′, j′) 6= (i, j)},
i = 1, · · · , N1, j = 1, · · · , N2

A
(t̂+1)
i = ∪jA(t̂+1)

ij , i = 1, · · · , N1.

Step 3 Given {z(t+1)
i , i = 1, · · · , N1}, {A(t+1)

i , i = 1, · · · , N1}, update the {z(t+1)
ij , i = 1, · · · , N1, j =

1, · · · , N2}, {A(t+1)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} by performing the following steps iter-

atively. For simplicity, write Ai and zi short for A
(t+1)
i and z

(t+1)
i respectively in the

following sub-steps.
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1) Given {A(t̂)
ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, the optimal codeword vectors for mini-

mizing D̄ at enhancement layer are computed respectively by

z
(t̂+1)
ij =arg min

ẑ∈A(t̂)
ij

k1

∫
z∈A(t̂)

ij

‖z − ẑ‖2f(z)dz +
pe1

N2(N1 − 1)
‖ẑ‖2 + k2

∫
z∈Ai

‖z − ẑ‖2f(z)dz,

i = 1, · · · , N1, j = 1, · · · , N2. (3.20)

2) Given {z(t̂+1)
ij , i = 1, · · · , N1, j = 1, · · · , N2}, the optimal finest partition is

achieved by

A
(t̂+1)
ij = {z : |z − z(t̂+1)

ij |2 ≤ |z − z(t̂+1)
ij′ |

2,∀j′ 6= j},
i = 1, · · · , N1, j = 1, · · · , N2,

Step 4 If |D̄(t+1) − D̄(t)| is less than some predefined threshold then t=t+1, go to Step 2; if
not stop.

Remark 10. It is easy to see that the quantization output formulas (3.19) and (3.20) are
obtained from the following constrained optimization problems

min
zi,i=1,··· ,N1

D̄ subject to zi ∈ Ai, i = 1, · · · , N1.

min
zij ,i=1,··· ,N1,j=1,··· ,N2

D̄ subject to zij ∈ Aij, i = 1, · · · , N1, j = 1, · · · , N2.

Then we take the formula (3.20) as an example, and the formula (3.19) could be handled
in a similar way. The solution to this problem will be (3.3) only if there exists a point
within Aij so that ∂D̄

∂zij
= 0. Note that the objective function in (3.20) is actually a convex

function with respect to ẑ. Therefore, one can apply a standard method such as in [40] to
solve this constrained convex optimization problem. In practise, however, one can further

use the following simplified method to update z
(t̂+1)
ij in the corresponding step of controlled

iterative algorithm: if

k1

∫
A

(t̂)
ij

zf(z)dz + k2

∫
Ai
zf(z)dz

k1p(A
(t̂)
ij ) + pe1

N2(N1−1)
+ k2p(Ai)

lies in A
(t̂)
ij , then update z

(t̂+1)
ij according to (3.17); otherwise, compute the point at the

intersection between the boundary of A
(t̂)
ij and the line segment connecting z

(t̂)
ij and

k1

∫
A

(t̂)
ij

zf(z)dz + k2

∫
Ai
zf(z)dz

k1p(A
(t̂)
ij ) + pe1

N2(N1−1)
+ k2p(Ai)
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and then take the point as z
(t̂+1)
ij . Because we create an additional constrain for the opti-

mization problem, the set of the available solutions of this new formula is a subset of that
without regular constraint. Based on that, it is not hard to obtain that the optimal solu-
tion with regular constrain should be no better than that of original optimization problem.
Thus, controlled iterative algorithm should not outperform greedy iterative algorithm and
new iterative algorithm in theoretical analysis.

Note that both greedy iterative algorithm and controlled iterative algorithm converge in
the sense that the sequences of D̄(t) are nonincreasing as t → ∞. At this point, however,
it is not clear whether the sequences of the corresponding quantizers given by {A(t)

ij , 1 ≤
i ≤ N1, 1 ≤ j ≤ N2}, {z(t)

i , i = 1, · · · , N1}, {z(t)
ij , i = 1, · · · , N1, j = 1, · · · , N2} will also

converge in general. Although Wu proved the convergence of Lloyd-Max algorithm in [41]
by using finite state machine, it is really a much harder problem to analyze the convergence
of multi-resolution quantization algorithm. As authors known, there is no reference which
solves this convergence problem, so it is interesting to deal with this problem in the future.

Simulations have been conducted to compare the performance of quantizers designed
by greedy iterative algorithm with that of quantizers designed by controlled iterative al-
gorithm. Given a quantizer and average error probabilities pe1, pe2 and pb, the weighted
EED for random index assignment is computed using (2.11). All experiments have been
carried out for one-dimensional case, and we will demonstrate the relationships between
the weighted distortion and each error probability above when fixing the other variables.

Consider a one-dimensional Gaussian source with zero mean and unit variance. Figure
3.8 and Figure 3.9 show the performance of these two algorihtms. As shown in the simu-
lation results, the weighted distortion of controlled iterative algorithm increases as either
pe1 or pb grows up.

It is also shown that greedy iterative algorithm outperforms the controlled iterative
algorithm slightly, which coincides with our theoretic analysis in fact. The gain of greedy
iterative algorithm over controlled iterative algorithm goes up as pe1 increases and it is
basically non-related with the number of MRVQ levels, i.e. N1 and N2 as demonstrated in
simulations.
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Figure 3.8: Comparison between greedy iterative algorithm and controlled iterative algo-
rithm corresponding to various pb for a Gaussian source while fixing p = 0.5, pe1 = 0.01
and pe2 = 0.005
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Figure 3.9: Comparison between greedy iterative algorithm and controlled iterative algo-
rithm corresponding to various pe1 for a Gaussian source while fixing p = 0.5, pb = 0.02
and pe2 = 0.005
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Chapter 4

The Asymptotic Minimum Weighted
EED

In this section, we study the asymptotic high rate behavior of the optimality criterion
(2.11) and we will derive the infimum of the weighted EED over all possible quantizers.

For any k-dimensional 2-resolution quantizer Q with N1 × N2 levels, denote the av-
erage EEDs in Theorem 1 and the weighed EED in (2.11) by DΠ

b (Q), DΠ
e (Q) and D̄(Q)

respectively, i.e.,

D̄(Q) = pDΠ
e (Q) + (1− p)DΠ

b (Q)

Define D̄(N1, N2)
∆
= infQ D̄(Q) where the infimum is taken over all k-dimensional N1×

N2-level quantizers Q. Then the following is asymptotic result:

Theorem 3. Given the average error probability pe1, pb for the first channel and the second
channel respectively and the proportion p,

lim
N1→∞

D̄(N1, N2) = p · pe1σ2 + (1− p)pbσ2. (4.1)

Proof. In view of (2.6), (2.5) and (2.11), it is not hard to get,

lim
N1→∞

inf D̄(N1, N2) ≥ p · pe1σ2 + (1− p)pbσ2.

Thus, it suffices to prove

lim
N1→∞

sup D̄(N1, N2) ≤ p · pe1σ2 + (1− p)pbσ2.

47



To this end, we consider random quantization. Let λi(z), i ∈ {1, 2} be a positive density
function over the k-dimensional Euclidean space Λ satisfying∫

Λ

λi(z)dz = 1 (4.2)

∫
Λ

|z|2λi(z)dz <∞. (4.3)

Randomly pick code vectors zi with the common density function λ1(z) and zij with the
common density function λ2(z), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, where all of them are independent.
For convenience, we write {z1, · · · , zN1} as ZN1 and {zij, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} as ZN1N2 .
ZN1andZN1N2 decide a random quantizer which maps z to zi and zij for each resolution if
F (z, zi, zij) is minimum with respect to (i,j), where F (z, zi, zij) is defined in (3.6),

F (z, zi, zij) =
p

k
(k1‖z − zij‖2 + k2

N2∑
ĵ=1

‖z − ziĵ‖
2) +

(1− p)k3

k
‖z − zi‖2.

From the definition of D̄(N1, N2) it follows that, for any ZN1 , ZN1N2

D̄(N1, N2) ≤1

k

∫
Λ

min
i,j

F (z, zi, zij)f(z)dz +
pN1pe1
N1 − 1

(σ2 +
1

kN1N2

N1∑
i=1

N2∑
j=1

‖zij‖2)

+
(1− p)N1pb
N1 − 1

(σ2 +
1

kN1

N1∑
i=1

‖zi‖2) (4.4)

that implies that

D̄(N1, N2) ≤1

k

∫
Λ

E[min
i,j

F (z, zi, zij)]f(z)dz +
pN1pe1
N1 − 1

(σ2 +
1

k
E[‖z11‖2])

+
(1− p)N1pb
N1 − 1

(σ2 +
1

k
E[‖z1‖2]) (4.5)

where E denotes the expectation with respect to ZN1 and ZN1N2 . We next show that for
any fixed z ∈ Λ,

lim
N1→∞

E[min
ij
F (z, zi, zij)] = 0 (4.6)
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To this end, define for any ε > 0,

p(z, ε)
∆
= Pr{min

j
F (z, z1, z1j) < ε2}.

Then we have,

Pr{min
ij
F (z, zi, zij) > ε2} = (1− p(z, ε))N1

which goes to 0 exponentially fast as infinity. Since

min
ij
F (z, zi, zij) ≤ min

j
F (z, z1, z1j),

and also as N1 is large enough, minij F (z, zi, zij) ≥ 0, it is not hard to verify that,

E[min
ij
F (z, zi, zij)] ≤ ε2 + (1− p(z, ε))N1E[min

ij
F (z, zi, zij)|min

ij
F (z, zi, zij) > ε2]

where E[·|·] denotes the conditional expectation. Letting N1 →∞ and then ε→ 0 yields
(4.6).

Go back to (4.5). In view of (4.6) and the dominated convergence theorem, letting
N1 →∞ in (4.5) implies that

lim
N1→∞

supD̄(N1, N2) ≤ p · pe1σ2 + (1− p)pbσ2 +
p · pe1
k

E[|Z11|2] +
p · pb
k

E[|Z1|2]

= p · pe1σ2 + (1− p)pbσ2 +
p · pe1
k

∫
Λ

|z|2λ2(z)dz +
p · pb
k

∫
Λ

|z|2λ1(z)dz

Letting λ1(z) and λ2(z) approach the delta function yields (4.1).

Remark 11. The proof of Theorem 3 illustrates the optimal quantizer design for a given
broadcast channel. When the quantization rate at the base layer is high, there will be
a sufficiently large number of code vectors in each layer scattering over the whole space
so that the integral of F (z, zi, zij) approaches zero, on the other hand most code vectors
for each resolution will be in a small region around the source mean to make the energy
of each set of code vectors arbitrary small in order to achieve D̄(N1, N2). Consequently,
from the asymptotic analysis we suppose that for any noise channels the code vectors for
each resolution quantization will approach the delta-like pattern when N1 is large enough.
Note that the asymptotic performance is not dependent on pe2, which coincides the results
in Figure 3.5 to some degree. Besides, only if N1 is sufficiently large, for any N2 this
conclusion always maintains true.

Now we will compare the asymptotic performance given in Theorem 3 with that of
separate MRVQ design without reference to the channel noise. In the separate design,
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the quantization code vectors and partitions are designed independently from the channel
conditions so as to minimize the quantization distortion. Let Qsep

MR denote the optimal
MRVQ without channel noise.

As N1 →∞, pD̄Qe(Q
sep
MR)+(1−p)D̄Qb

(Qsep
MR) goes to 0. Therefore, for sufficiently large

N1,

D̄(Qsep
MR) ≥ p · pe1σ2 + (1− p)pbσ2 + p · pe1SQe + (1− p)pbSQb

. (4.7)

In comparison with Theorem 3, we have another two terms in (4.7). For the optimal
MRVQ without channel noise, the last two terms cannot be ignored when minimizing the
distortion of quantization only. So the gain of joint MRVQ design with channel conditions
over separate MRVQ without reference to the channel noise is quite significant.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In a communication system that doesn’t allow delay, Shannon’s classical separation result
is on longer valid. In such cases where source code dimension or channel code block length
is not arbitrarily long, a joint source and channel code design could be used to improve
communication performance. Especially in a multiuser system, joint source channel coding
attracts more and more interests due to its adaptivity and consistency. Multiresolution
source codes are useful in a multicast system, where the available communication rate may
vary as a function of network traffic and physical location. As far as the author knows, there
is seldom work on multiresolution source coding over multiuser networks. In this thesis,
we present the design and analysis of the optimal multiresolution vector quantization in
conjunction with a broadcast channel over which the coded scalable bit stream would be
transmitted. The main results of this thesis are elaborated as follows.

Given a broadcast system with a multiresolution vector quantizer, a random index
assignment, and a coded broadcast channel, we have established closed formulas for the
average end-to-end distortion at each receiver of the system. Based on these formulas,
we analyze the intrinsic structure of end-to-end distortion in a communication system.
Two necessary conditions for minimizing a weighted end-to-end distortion are derived,
and further we propose an greedy iterative algorithm for jointly designing MRVQ with
channel conditions. Experiments are conducted to show that the MRVQ designed by
the proposed algorithm significantly outperforms conventional MRVQ designed without
channel information. In addition, we explore another two novel algorithms for MRVQ
design over broadcast channels companied with interesting simulation results. Finally, the
asymptotic performance of the weighted EED for the optimal joint MRVQ is analyzed.

Compared with the noisy MRVQ design in [36], the greedy iterative algorithm does
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not need the complete knowledge of the channel (i.e., all transitional probabilities from
the inputs of the channel to the outputs of the channel)—it depends on the channel only
through several types of average channel error probabilities. Our proposed method is more
efficient computationally for multiresolution quantization design and more robust against
channel mismatch. As such, our proposed algorithm is more attractive both in wireless
multicast communications where the transitional probabilities of the channel fluctuate and
in applications where the complete knowledge of the channel is unknown.

5.2 Future work

The results of this thesis are just starting point towards practical scheme of multiresolution
quantization design over broadcast channels. Several critical problems have to be answered
before an efficient implementation is found.

1 As the proposed design is just one of approaches to design practical MRVQ over
broadcast channels, are there any other ways which are more efficient and easier to
design and converge to the globally optimum?

2 If utilizing cyclic redundancy check in our joint source channel coding design, would
it reduce distortion resulting from channel noise and improve the performance?

3 How to extend the theoretic joint MRVQ design in this thesis to the design for
audio and video signals? In particular, it will be more interesting if the design are
compatible with industrial standards like MP3 and H.264 to achieve efficient tradeoffs
among complexity, distortion and robustness.

4 Could we optimize both source coding and channel coding simultaneously in a multi-
cast system, and find the best rate allocation between source rate and channel coding
rate?
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