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Abstract

Although modern society is critically reliant on power grids, even modern power grids are
subject to unavoidable outages due to storms, lightning strikes, and equipment failures. The
situation in developing countries is even worse, with frequent load shedding lasting several hours
a day due to unreliable generation.

We study the use of battery storage to allow a set of homes in a single residential neighbour-
hood to avoid power outages. Due to the high cost of storage, our goal is to choose the smallest
battery size such that, with high target probability, there is no loss of power despite a grid out-
age. Recognizing that the most common approach today for mitigating outages is to use a diesel
generator (genset), we study the related problem of minimizing the carbon footprint of genset
operation.

Drawing on recent results, we model both problems as buffer sizing problems that can be ad-
dressed using stochastic network calculus. We show that this approach greatly improves battery
sizing in contrast to prior approaches. Specifically, a numerical study shows that, for a neigh-
bourhood of 100 homes, our approach computes a battery size, which is less than 10% more than
the minimum possible size necessary to satisfy a one day in ten years loss probability (2.7∗104).
Moreover, we are able to estimate the carbon footprint reduction, compared to an exact numerical
analysis, within a factor of 1.7.

We also study the genset scheduling problem when the rate of genset fuel consumption is
given by an affine function instead of a linear function of the current power. We give alternate
scheduling, an online scheduling strategy that has a competitive ratio of k1

G
C
+k2

k1+k2
, where G is

the genset capacity, C is the battery charging rate, and k1, k2 are the affine function constants.
Numerically, we show that for a real industrial load alternate scheduling is very close to the
offline optimal strategy.
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Chapter 1

Introduction

The power grid underlies most modern societies: power failures can affect critical institutions
such as hospitals, water treatment facilities, aircraft control towers, and Internet data centres.
Despite this great reliance on electrical power, as the aftermath of super-storm Sandy vividly
demonstrated, even modern power grids are subject to unavoidable outages due to storms, light-
ning strikes, and equipment failures. The situation in developing countries is worse, with daily
load shedding lasting two-to-four hours due to demand spikes and unreliable generation [31].
India recently suffered world’s largest blackout leaving more than 600 million people without
power [21]. In the face of this inherent unreliability, the standard solution is for critical facilities,
and even some individual homes, to augment grid power with local generation, typically from a
diesel generator. This, however, inherently increases the carbon footprint of the load [28].

Using a two-way inverter to convert between AC and DC power, batteries can store power
when the electricity from the grid is available and discharge to meet the load during a time of
power outage. Advances in electric vehicle energy storage technology have led to a sustained
decrease in the price of electrical storage [32]. This motivates us to study, in Chapter 3, the use
of battery storage to allow a set of homes in a single residential neighbourhood to avoid power
outages. In essence, the entire neighbourhood can be thought to be connected to a single large
uninterruptible power supply.

Storage is still expensive, however, so our goal is to choose the smallest battery size such
that, with high target probability, there is no loss of load despite a grid outage. Recognizing
that the most common approach today for mitigating outages is to use diesel generators, we also
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study the related problem of minimizing the carbon footprint of diesel generator operation by
minimizing generator operation .

The efficiency of a genset to consume fuel and produce energy is known to be maximum
when it operates close to its capacity. In Chapter 4, we go deeper into genset modeling and study
how storage can be used to improve genset efficiency of a remote industry not connected to the
power grid. A battery helps in reducing fuel consumption by meeting low demands itself and
turning OFF the genset. The battery is recharged whenever the genset is turned ON. Scheduling
of power between the battery and the genset is no longer trivial and we give an online scheduling
strategy with performance close to the offline optimal strategy. A battery-genset hybrid system
can meet demand simultaneously using the genset and the battery. A battery can therefore also
help in decreasing total fuel consumption by preventing over-sizing of the genset. Hence, we
use techniques from stochastic network calculus to address the problem of sizing genset and the
battery while ensuring that the loss of load probability is below a threshold.
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Chapter 2

Background and Preliminaries

The problem of battery sizing in power distribution systems can be mapped to the problem of
buffer sizing in the teletraffic network. This analogy has been used in some recent papers for
battery sizing, borrowing state-of-the-art analytical results on probabilistic buffer sizing from
teletraffic theory [2, 39, 41]. We briefly discuss the essence of this analogy in this section.

2.1 Deterministic loss of power vs. deterministic loss of packet

Suppose that an arrival process A enters a buffer (queue), which can serve traffic at rate C, and
let A′ be the corresponding departure process. We assume discrete time model, where the events
can only happen at discrete time instants, i.e., t = 0, 1, . . .. We denote the total arrival from
process A in time interval [0, t] by A(t) and we use A(s, t) to mean A(t) − A(s). The backlog
b(t) at any time t is defined to be the buffer content at that time. If the buffer size is infinite then
the backlog at any given time is simply the difference between A and A′, i.e.

b(t) = A(t)− A′(t) .

This formulation, however, will no longer hold if the buffer size B is finite. Instead, it can be
obtained from the following recursive equation:

b(t) = min(B, [b(t− 1) + A(t− 1, t)− C]+) , (2.1)
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where [x]+ = max(0, x) for any value of x. Cruz and Liu [13] transformed this recursion into
the following non-recursive expression:

b(t) = min
0≤u≤t

(
max
u≤s≤t

(
A(s, t)− C.(t− s),

A(u, t)− C.(t− u) +B
))

. (2.2)

The loss of traffic due to buffer overflow at time t is

l(t) = [A(t− 1, t)− C + b(t− 1)−B]+ . (2.3)

Eqs. (2.2-2.3) can be combined to extract the following loss characterization [13]:

l(t) = min
0≤u≤t−1

(
max

u≤s≤t−1

(
[A(s, t)− C.(t− s)− k(t)]+,

[A(u, t)− C.(t− u) + k(u)− k(t)]+
))

, (2.4)

where

k(t) =

{
B t > 0

0 t = 0
(2.5)

A buffer sizing scheme must ensure that the amount of loss is kept below a certain threshold.

An analogous problem in the power system arises for the following scenario. A source with
constant power C is feeding a battery and the battery output process is used to serve an inter-
mittent demand. The loss of power event is defined as the event that a demand finds the battery
empty. It can be easily seen that this problem is similar to the queuing problem in a finite buffer
system with fixed capacity link and varying arrival process except that the direction of the input
and output processes are the opposite in these two scenarios. The last piece of this mapping is
the concept of the deficit battery status bd(t), which indicates the amount of energy needed at
time t to fully charge the battery and can be computed recursively from the following:

bd(t) = min(B, [bd(t− 1) +D(t− 1, t)− C]+) , (2.6)

where D(t − 1, t) is the demand at time slot t. Comparing Eq. (2.1) and Eq. (2.6) suggests that
the mapping between the teletraffic queue analysis and power distribution battery analysis when
the deficit battery charge is mapped to the backlog status, the demand D is mapped to the arrival
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traffic A, and the power supply is mapped to the capacity (service rate) of the link [2, 40]. This
mapping can also be verified intuitively by seeing that the two problems are analogous if the
direction of the input and output are reversed. Similarly, the buffer content is mapped to the
compliment of the battery state of charge, which is the deficit state of charge.

To complete the picture, the loss of power at time t (the event that there is a demand and the
battery is depleted and cannot serve it) is equal to [bd(t− 1)−C +D(t− 1, t)−B]+, which can
be obtained from Eq. (2.3). Thus, the non-recursive equations for the backlog and loss in a finite
buffer system in Eqs. (2.2) and (2.4) can be employed with the previously mentioned mapping to
compute the loss of power probability in power distribution systems.

2.2 Probabilistic loss formulations

A buffer (battery) sizing approach requires an upper bound on the loss probability based on the
statistical properties of the arrival (demand) and the link capacity (power source). The proba-
bilistic loss formulation has been studied extensively in the asymptotic regime when the number
of independent arrivals is large (many sources asymptotic regime)[15]. Since the battery allo-
cation in the distribution systems does not have many allocated power sources and they are not
independent, the results corresponding to the many sources asymptotic regimes cannot be used
in this context. However, there are other alternatives that can be used in this context. We review
the alternatives next.

Special case of regulated traffic

Kesidis and Konstantopoulos [24] provide a non-asymptotic upper bound on the loss probability
for a so-called peak-rate constrained leaky-bucket process, which is a regulated arrival process
A satisfying:

∀s, t : A(s, t) ≤ min(π(t− s), σ + ρ(t− s)) (2.7)

for some π, σ and ρ such that ρ ≤ π. If a stationary peak-rate constrained leaky-bucket arrival
process is fed to a link with total capacity C, where ρ ≤ C ≤ π, then the stationary backlog
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status b satisfies the following overflow probability:

Pr{b > B} ≤
σ − π−ρ

π−CB
C
ρ
σ −B

. (2.8)

This formulation is used in [3] to compute transformer/storage sizing in the distribution networks.

General arrival using Network Calculus

Network Calculus allows probabilistic performance analysis including loss probability for a large
class of arrivals. This theory uses upper bounds on the arrivals and lower bounds on the available
service on different time scales to compute performance bounds. We only elaborate on a few
concepts of this theory, which we use in this paper. Interested readers can refer to [5, 10, 20] for
more complete discussions.

There are different probabilistic upper bounds in the literature, which can be used for perfor-
mance analysis. For a complete survey on the existing envelopes in the literature please refer to
[29]. Here we use a concept called the statistical sample path envelope [8]. A non-decreasing
function G is a statistical sample path envelope for an arrival process A with bounding function
ε if it satisfies the following for any time t ≥ 0 and any σ ≥ 0

Pr

{
sup
s≤t
{A(s, t)− G(t− s)} > σ

}
≤ ε(σ) , (2.9)

where ε(σ) is non-increasing in σ.

The exact loss description from Eq. (2.4) is too complicated to be used directly for loss
probability formulations. Hence, to extend the results to the probabilistic settings, the following
upper bound on Eq. (2.4) is used in [13]

l(t) ≤ max
0≤s≤t

([A(s, t)− C.(t− s)−B]+) . (2.10)

This upper bound on the loss at time t is used in the following theorem to derive an upper bound
on the loss of power probability.

Theorem 1 (Loss of power probability [39]). Suppose that G is the statistical sample path enve-
lope for a demand process D in the sense of Eq. (2.9) with bounding functions εg. Then, the loss
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of power probability satisfies the following:

Pr{l(t) > 0} ≤ εg

(
B − sup

0≤τ≤t
(G(τ)− Cτ)

))
. (2.11)

If there is a measurement trace of demands over time, the statistical sample path envelope
G can be computed by (1) constructing sample values for the event {A(s, t) − G(t − s)} for
each trajectory and any time t, and (2) use the complementary cumulative distribution function
(CCDF) of the sample set as a bounding function for Eq. (2.9) [12].

Markovian arrival using Network Calculus

Sometimes an arrival model is given instead of a measurement set. One of the most general and
widely-used models is the multi-state Markovian (MSM) fluid flow process, which is a Markov
chain with finite states, with states representing the rate at which traffic is generated at a certain
time. Theorem 1 can be used to obtain a loss probability for MSM processes since there is a
statistical sample path envelope for this type of processes, which can be computed as follows:

An M -state fluid flow Markov chain with transition matrix Q and traffic rate at state i being
ri satisfies the following: [22]

∀t : E
[
eβA(t)

]
≤ eρ(β)t , (2.12)

where ρ(β) is the largest eigenvalue of the matrix 1
β
Q + R and R = diag(ri). Combining

Chernoff bound and Eq. (2.12) yields the following for any time t and s (≤ t) and any σ (≥ 0)

Pr{A(s, t) > ρ(t− s) + σ} ≤ e−βσ (2.13)

which shows that a multi-state Markovian process is a special case of the large class of exponen-
tially bounded burstiness traffic sources (EBB) [42]. For such a traffic, G from the following is a
statistical sample path envelope in the sense of Eq. (2.9) with bounding function ε for any γ > 0

and any σ (≥ 0) [11]

G(t) = (ρ(β) + γ)t; ε(σ) =
e−βσ

1− e−βγ
(2.14)
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This can be verified as follows

Pr

{
sup
s≤t
{A(s, t)− G(t− s)} > σ

}
≤
∑
s≤t

Pr{A(s, t) > (ρ+ γ)(t− s) + σ}

≤
∑
0≤τ≤t

e−β(γτ+σ)

=
e−βσ

1− e−βγ
(2.15)

where union bound is used in the second line. A new variable is defined in the third line τ = t−s
and the last line uses Eq. (2.13).

One can insert the statistical sample path envelope for a multi-state Markovian model from
Eq. (2.14) to Theorem 1 to obtain a loss of power probability for such a demand.
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Chapter 3

Storage sizing for unreliable Grid

Given that household loads are stochastic [17], the battery sizing problem is non-trivial. Indeed,
it has been shown to be isomorphic to the complex–but well-known–problem of choosing a
buffer large enough to smooth the data being generated by a variable-bit-rate traffic source [2,
39]. Therefore, drawing on recent results, we approach the solutions to both problems using the
powerful techniques of stochastic network calculus. Specifically, we use a statistical sample path
envelope (discussed in Section 2.2) to stochastically bound the load from a set of homes. This
allows us to compute battery size and expected carbon footprint of diesel generator operation.

We have numerically evaluated the accuracy of our algorithms using real traces of electrical
loads collected over 12 months from 4500 homes in Ireland1 [9]. Analysis shows that, given
a target requirement of a power outage being upper bounded by one day in ten years (a loss
probability (2.7 ∗ 10−4)), our approach computes a battery sizing that is only about 10% more
than the minimum battery required had the future load been exactly known. Moreover, we are
able to estimate the carbon footprint reduction, compared to an exact numerical analysis, within
a factor of 1.7.

The key contributions of our work are:

1. We use a stochastic network calculus approach to analytically compute the battery size nec-
essary to meet a target loss of power probability for a stochastic electrical load connected
to a highly unreliable power grid.

1Although loads in Ireland are not the same as loads in developing countries, our methodology can be applied to
traces collected from any country
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2. Given the availability of a diesel generator (genset), and for a given load characterization,
we find the genset carbon emission as a function of the battery size, thus allowing us to
compute the battery size needed to limit carbon emissions below a target threshold.

3. We use measured electricity consumption data from 4500 Irish homes to compare our bat-
tery size and carbon emission bounds to those computed (a) empirically, (b) from bounds
obtained using teletraffic theory, and (c) using a multi-state fluid Markov model. We find
that our bounds are very close to the empirical optimal and far better than the two other
approaches.

The rest of the chapter is laid out as follows. Section 3.1 starts with a motivation for the prob-
lem along with the prior work. The model used to analyze battery sizing problem along with our
assumptions is explained in Section 3.2. The bounds on minimum battery size, both in presence
and absence of genset, are computed in Section 3.3. These bounds are heavily dependent on
the accuracy of statistical sample path envelope on effective demand. Hence, in Section 3.4, we
explain how to obtain a tight envelope for any given load dataset. We show the tightness of our
bounds numerically on the Irish dataset in Section 3.5 by comparing them to the bound obtained
had the future load been exactly known and the bounds from prior work. Finally, Section 3.6
concludes the paper with the limitations and future work.

3.1 Motivation and Related Work

The difficulty of choosing a battery size sufficient to meet a stochastic load when confronted
with stochastic power outages is illustrated in Figure 3.1. In this figure, the X axis shows the
duration of a power outage, that is, a time during which the grid does not supply power, and the
Y axis shows the state of charge of a battery of size 1 MWh that charges itself when the grid
is available and discharges during an outage. Each line (trajectory) in the figure represents a
particular power outage incident; the Y intercept of the line is the initial state of charge when
the outage started and the line ends when the power outage ends. Each trajectory was computed
using real measured loads from the Irish dataset (details in Section 3.5).

Most trajectories in Figure 3.1 start with the battery nearly full. This indicates that the inter-
outage interval (in this particular numerical evaluation) is long enough to allow the battery to
nearly fully charge before the next outage begins. However, some outages start with the battery

10



0 2 4 6 8 10 12

2

4

6

8

10
x 10

5

Power outage duration in hours

B
a
tt
e
ry

 l
e
v
e
l 
in

 W
h

Figure 3.1: Trajectories of a battery of size B = 106Wh and charging rate C = 105W during
power outage periods

state of charge as low as 250 kWh. This arises due to the combination of a long outage period
followed immediately by a short inter-outage period.

We have a loss of power when the battery level drops to 0, a situation that we would very
much like to avoid. In this numerical evaluation, the loss of power state happens only once. Note
that had the battery size been somewhat smaller, say 400 KWh, we would have had a much larger
number of loss of power events.

It is clear that the probability of a loss of power depends on many factors, including the
battery size, its charging rate, a characterization of the load during a loss of power event, the
distribution of the inter-outage intervals, and the distribution of outage durations. Moreover,
what we seek to compute is the tail probability of the state-of-charge distribution of the battery.
This is an inherently complex problem. However, it has recently been shown that this storage
sizing problem is very similar to the buffer-sizing problem in a telecommunications network. We
are inspired by new theoretical results in [39, 3], which adopt a queuing-theoretic buffer-sizing
analysis to size batteries, to use a similar approach, based on stochastic network calculus, to
study the problem of diesel and battery sizing for unreliable grids.

Specifically, we consider two scenarios. In the first scenario, we study a system that has only
battery storage. Here, our goal is to find the minimum required battery size that meets a given
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target loss of power probability, such as one day loss of power in every ten years. In the second
(hybrid) system, we augment a battery with a genset. In this system, a loss of power will not occur
because the diesel generator steps in when the battery is fully discharged. However, we still seek
to size the battery so that the carbon discharge from the diesel generator is upper-bounded.

Prior work in this area relies primarily on empirical numerical analysis rather than analytical
modeling [4, 34, 14]. Carbon emission due to a diesel-battery hybrid system has been studied
mainly through the notion of genset efficiency, which is the diesel consumption per unit en-
ergy production [4, 30]. We note that some of the prior analytical works (e.g. [3]) assume load
stationarity . In contrast, our approach does not need to explicitly assume stationarity.

A probabilistic loss of power formulation is presented in [39] for an intermittent power re-
source serving a stochastic demand with the aid of batteries. For a target loss of power prob-
ability, that formulation can be used for battery sizing. We point out that although there are
similarities with our work, there are major differences between the system model in our problem
and the one in [39]:

1. In the system model used in [39], the energy from the grid is fed to the battery and is not
used to serve the energy demand directly. On the contrary, in our model, once available,
the utility grid is used to serve the energy demand directly.

2. We assume a utility grid with infinite power supply with random off periods, while a finite
power renewable energy is assumed in [39].

In essence, [39] considers battery sizing for intermittent resources (e.g., wind and power)
to serve an intermittent demand. In the problem studied there, it is possible for the grid to be
available yet not be sufficient to serve the instantaneous demand of both charging the battery and
serving the demand. In our system, however, if the energy supply from the grid is available then
it is assumed to be large enough to serve both the instantaneous demand and charge the battery
at its maximum charging rate C.

3.2 System Model

The system model considered in this paper is illustrated in Figure 4.2. The grid and a battery
are used to serve the demand. The grid is available irregularly. If the grid is available, then it is
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used to serve the demand and charge the battery. When the grid is not available, the charge of
the battery is used to serve the demand. Denote by d(t) the energy demand at time slot t, and
by D(t) the cumulative energy demand in time interval [0, t]2. To simplify notation, we define
D(s, t) = D(t) − D(s). The charging rate of the battery is represented by C and the battery
size by B. We assume a discrete time model, where t = 0, 1, . . .. Let x(t) be a binary random
variable representing the availability of the utility grid at time slot t, i.e.,

x(t) =

{
0 If the grid is unavailable (outage) at time slot t

1 If the grid is available at time slot t
(3.1)

We define xc(t) = 1− x(t) as the complement of x(t). If the grid is available in time slot t (i.e.,
x(t) = 1), the energy demand is served by the grid and the battery will be charged by as much
as C energy unit in that time slot. On the other hand, if the grid is not available (i.e., x(t) = 0),
the energy demand must be served by the energy stored in the battery.

We follow two objective functions for battery sizing in this paper. First, in the absence of
genset, we size the battery B such that given some statistical properties of the energy demand
process, the probability of loss of power is kept below a target threshold ε∗. Second, in the
presence of genset, we size the battery such that the total carbon footprint is kept below a certain
threshold.

We have the following assumptions in our formulations

1. Battery charging rate is upper bounded by C but there is no constraint on the discharge
rate. 3

2. Genset is large enough to meet the maximum aggregate loads.

The above assumptions typically hold in practice since battery charge rate depends on the
technology of the battery, and for technologies such as lead-acid battery, the discharge rate is
around five times higher than the charging rate [6]. Moreover, the marginal cost of increasing
genset size is negligible compared to the marginal cost of a battery [35, 38].

2The energy demand varies widely over the course of a year showing marked seasonality. Our analysis is agnostic
to the time interval over which the demand is modeled. In practice, however, similar to the concept of busy-hour
sizing in a telecommunication network, we advocate the sizing of a battery keeping in mind the underlying non-
stationarity of the demand process [3].

3Note that a constant battery charge-discharge energy loss factor can be incorporated in C as it would just reduce
the original battery charging rate by this factor.
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Name Description
Outage Electricity from the grid is unavailable

Loss of power An outage period with battery being empty
B Battery storage capacity
C Battery charging rate
ε∗ Target loss of power probability
x(t) Grid availability at time t
xc(t) Grid unavailability at time t
d(t) Power load at time t
de(t) Effective power load to battery at time t
b(t) Battery energy level at time t
bd(t) Battery deficit energy level at time t
l(t) Loss of power at time t
G Statistical sample path envelope
εg Bounding function for sample path envelope

Table 3.1: Notation

3.3 Battery Sizing Formulation

The unreliable grid described in our problem statement can be converted to a reliable compound
power source i.e., one that is augmented by batteries. In this section we compute the required
battery size such that a target loss probability can be guaranteed for the combination of the
unreliable grid and the battery size. The size of the battery is a function of how frequent and for
how long the grid is unavailable.

3.3.1 Loss of power Formulation

As discussed in Section 3.1, there are major differences between our problem system model and
the one assumed in [39] that do not allow using the loss of power formulation for our problem
directly. However, we use a clever substitution to let us use the results in [39] in our work.
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Figure 3.2: Battery storage model before and after transformation

Consider the input and output processes to the battery separately for the cases where the grid
is available (x(t) = 1) and unavailable (x(t) = 0). If x(t) = 1, the arrival energy process to
the battery at any time instant t is a constant, C, and the departure energy process is zero. If
x(t) = 0, the arrival energy process is zero and the departure energy process is d(t). The battery
state-of-charge does not change if we assume that the real arrivals and departures to the battery
are both shifted by the same constant at any time. Therefore, we can assume C and d(t) + C,
respectively, as the arrival and departure processes when x(t) = 0 (instead of 0 and d(t)) and
have the same battery state of charge (see Figure 4.2). Combining the two cases x(t) = 0 and
x(t) = 1 with the above substitution, we can assume that the battery is always charged with rate
C and discharged by the effective demand de defined as:

de(t) = [d(t) + C](1− x(t))
= [d(t) + C]xc(t) (3.2)

which is the portion of the demand that the battery must serve. Using the above transformation
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and from Eq. (2.6), we have:

bd(t) = min(B, [bd(t− 1) + de(t)− C]+) . (3.3)

With the above mapping, the loss formulation in the previously mentioned finite buffer system
is given by l(t) = [bd(t − 1) + de(t) − C − B]+. Hence, we can use Eq. (2.4) to describe the
following loss process as follows:

l(t) = min
0≤u≤t−1

(
max

u≤s≤t−1
([De(s, t)− C.(t− s)− k(t)]+,

[De(u, t)− C.(t− u) + k(u)− k(t))]+

)
, (3.4)

where De is the cumulative version of the effective demand (Eq. (3.2)) and k is as expressed in
Eq. (2.5).

3.3.2 Battery Sizing in the absence of genset

The exact loss description from Eq. (3.4) is difficult to use in practice. Instead, we use the
following upper bound (from [18]) to derive an upper bound on the loss probability:

l(t) ≤ min

(
[de(t)− C]+, max

0≤s≤t−1
([De(s, t)− C(t− s)−B]+)

)
(3.5)

= min

(
d(t)xc(t), max

0≤s≤t−1
([De(s, t)− C(t− s)−B]+)

)
, (3.6)

where in Eq. (3.5) we pick two specific values for u in the minimization of Eq. (3.4): u = t− 1

and u = 0. Eq. (3.6) uses the definition of de(t) and that d(t) > 0. The above inequality can be
used to compute a probabilistic upper bound on the loss probability for our problem.

Theorem 2. Suppose that an unreliable grid uses a battery of size B with charging rate C
to serve a demand. Suppose also that xc(t) represents the grid unavailability at time slot t
(xc(t) = 1 if the grid is unavailable and xc(t) = 0, otherwise) and G is a statistical sample
envelope for process De with bounding functions εg in the sense of Eq. (2.9). Then, the loss of
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power probability satisfies the following

Pr{l(t) > 0} ≤ min

(
Pr{xc(t) > 0},

εg

(
B − sup

τ≥0
(G(τ)− Cτ)

))
. (3.7)

Proof. The loss probability at any time t satisfies the following

Pr{l(t) > 0}

≤ Pr

{
min

(
d(t)xc(t),

max
u≤s≤t−1

(
[De(s, t)− C(t− s)−B]+

))
> 0

}
(3.8)

≤ min

(
Pr {d(t)xc(t) > 0} ,

Pr

{
max

0≤s≤t−1
(De(s, t)− C(t− s)−B) > 0

})
(3.9)

≤ min

(
Pr{xc(t) > 0}, εg

(
B − sup

τ≥0
(G(τ)− Cτ)

))
(3.10)

where we use Eq. (3.6) to derive Eq. (3.8). Eq. (3.9) is an upper bound on Eq. (3.8) using the fact
that P (X ∩ Y ) ≤ min(P (X), P (Y )) for any events X and Y . Eq. (3.10) uses the assumption
that G is a statistical sample path envelope for the process De.

Remark: This is an amendment to Theorem 1 [39].

We can use Theorem 2 to compute the minimum battery size B∗ satisfying a target loss
of power probability ε∗ by bounding Pr{l(t) > 0} with ε∗. We observe that the first term,
Pr{xc(t) > 0}, in the minimum expression of Eq. (3.7) is independent of the battery size. We
can therefore set battery size B∗ to be zero whenever the first term forms the minima. Intuitively
this means that there is no need of a battery if the probability of power outage is less than ε∗.
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We use the envelope fitting approach described in Sec. 2.2 to compute the battery sizes using
Theorem 2. If G is a statistical sample path envelope on the effective demand in the sense of
Eq. (2.9) with bounding function εg, then using Eq. (3.7), we get

min

(
Pr{xc(t) > 0}, εg

(
B − sup

τ≥0
(G(τ)− Cτ)

))
= ε∗

=⇒ B∗ ≤
(
sup
τ≥0

(G(τ)− Cτ) + εg
−1 (ε∗)

)
I(Pr{xc(t)=1}>ε∗) (3.11)

where Iexpr is the indicator function, which is 1 if expr is true and is 0, otherwise.

3.3.3 Battery Sizing in the presence of genset

Sometimes a genset is used in addition to a battery to guarantee that there will be no loss of
power. For such a hybrid system, at any instant that the grid is unavailable, the demand can be
either served by the remaining battery charge or by the genset. If the genset is large enough, there
will be no loss of power as genset can be always used to meet the load. However, it is desirable
to reduce carbon emission from a genset by using a battery to store ‘greener’ energy produced
by the grid and using it when an outage occurs.

The allocation of demand between genset and the battery must first minimize the total loss
of power, and then attempt to reduce the carbon emission from genset. Scheduling is trivial
if the genset size is larger than the maximum (worst-case) demand load (i.e., maxt d(t)). This
is because we will have zero loss of power (as genset can always meet the load) and carbon
emission is minimized by always scheduling energy from the battery whenever it is not empty.
The scheduling, however, is non-trivial if the genset size is smaller than the maximum demand
load. This is illustrated by the following example.

Suppose the aggregate load is fixed to 100kW for 5 successive hours when power from the
grid is unavailable. Assume the battery is fully charged to its capacity of 100kWh at the beginning
of the first hour and genset serves demand up to the rate of 80kW. If the battery is used merely
to meet the load in the first hour, there will be a loss of power in the remaining 4 hours as
genset cannot meet load > 80kW (see Figure 3.3a) and the battery is already exhausted. On the
other hand, if genset is being used to its capacity for all the 5 hours with battery supporting the
remaining 20kW every hour, there will be no loss of power (see Figure 3.3b)! Consequently,
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Figure 3.3: An example showing non-triviality of power scheduling when genset maximum
power rate is less than the maximum hourly demand. The battery size is 100kWh and genset
capacity 80kW is less than the load 100kW.

as this example shows, if genset size is less than the maximum load (maxt d(t)) exhausting the
battery before using the genset is not the optimal strategy since that may lead to a larger loss of
power.

For simplicity, therefore, we can assume that the genset capacity is large enough to meet
the maximum aggregate load (Assumption 2). This is reasonable because the marginal cost of
increasing genset capacity is small compared to the battery storages.

The objective in battery sizing in the presence of genset is to keep the carbon emission below
a certain threshold. The carbon emission is proportional to the cumulative demand that cannot
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be served by the battery when the grid is unavailable or

carbon emission ∼
∑
t

l(t) . (3.12)

Using the analogy between queueing theory and the distribution power system, this quantity
corresponds to the total loss in a finite-buffer queue. In spite of extensive efforts, the problem is
still open for non-Poisson arrivals. The complexity of the problem arises from the fact that the
total loss is a function of the number and length of the busy periods, which occurs in a total time
interval. Liu and Cruz [27] show that a probabilistic upper bound on the total loss must account
for the numbers and lengths of the busy periods leads to cumbersome formulations, which cannot
be used in practice.

Here we compute an upper bound on the expected value of the total loss (carbon emission)
in a time interval of size T using Eq. (3.6) as follows:

E

[
T∑
t=1

l(t)

]
=

T∑
t=1

E[l(t)]

≤
T∑
t=1

E

[
min

(
d(t)xc(t), max

0≤s<t
([De(s, t)− C(t− s)−B]+)

)]
(3.13)

≤
T∑
t=1

min

(
E [d(t)xc(t)] ,

E
[
d(t)xc(t)Imax([De(s,t)−C(t−s)−B]+)>0

])
(3.14)

≤
T∑
t=1

min
(
E [d(t)xc(t)] , E

[
d(t)Imax([De(s,t)−C(t−s)−B]+)>0

])
(3.15)

≈ min
( T∑
t=1

E [d(t)xc(t)] ,

T.E[d(t)].Pr{max ([De(s, t)− C(t− s)−B]+) > 0}
)
, (3.16)

where we use Eq. (3.6) to obtain Eq. (3.13). The first term in Eq. (3.14) is trivial as it is the
first term in the minima of the previous line. To obtain the second we use the definition of
indicator function I , and the fact that 0 ≤ xc(t) ≤ 1. Finally, we assume that the two processes
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Figure 3.4: Modeling the grid availability process

in the second term in Eq. (3.15) are independent to derive Eq. (3.16). This assumption holds for
statistically independent increments processes, which is widely assumed in the literature (e.g.,
Kelly [22]). In addition, we numerically find that the inaccuracy due to this approximation step
is small.

We numerically find that the upper bound used to derive Eq. (3.14) from Eq. (3.13) is also
quite tight. More precisely, we observe that Eq. (3.6) evaluates to its first term if the second term
is positive.

Eq. (3.16) can be used for battery provisioning in the presence of genset and when the objec-
tive function is to minimize carbon emission.

3.4 Constructing an envelope for the effective demand

To evaluate our derivations, we use half hourly electricity consumption data from more than 4500

Irish homes produced as part of CER Smart Metering Project [9]. We assume that all the homes
are from the same region. The effective demand from Eq. (3.2) is derived from randomly selected
100 homes in this dataset. Since we could not find an available trace for grid availability, we use
a simple model to represent that process. We discuss that in the following section.

3.4.1 Modeling grid availability process

We model the grid availability process by an ON-OFF Markov model, where the grid is available
in the ‘ON’ state and is unavailable in the ‘OFF’ state (see Figure 3.4). The transition rates
between ON → OFF and OFF → ON are, respectively, λ and µ. With these parameters, on
average, the grid spends λ

λ+µ
and µ

λ+µ
fraction of time, respectively, in the OFF and ON states.
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The stability condition in our problem enforces the long-term average rate of the demand during
an average-length OFF state to be less than the average charging that the battery receives from
the grid during an average-length ON state. That is, if L represents the long-term average rate of
the demand (i.e., L =

∑T
t=1 d(t)

T
), then

λ

λ+ µ
L ≤ µ

λ+ µ
C =⇒ ρ′L ≤ C , (3.17)

where ρ′ = λ
µ

.

In our numerical studies we consider one of two cases: (1) We assume that we have a mea-
surement trace of the effective demand (2) We assume that we have a multi-state Markov model
for the demand.

Recall that the effective demand is the product of the demand (for which we have a mea-
surement trace) added to the battery charging rate and the grid unavailability process. For the
former case, where we need a measurement trace for the effective demand, we construct sample
trajectories using the ON-OFF grid availability process. We construct a separate grid availability
trajectory for each trajectory of the demand. To have a large enough dataset, we simulate 100

different sample paths of effective demand of a housing complex of 100 homes.

For the second case, where we assume a multi-state Markovian (MSM) process for the ef-
fective demand, we use the approach from [1]. As effective demand is zero whenever the grid is
available (xc(t) = 0), we first classify only the demands at all time slots with power outages into
M Markovian states using the k-means clustering algorithm (we choose M = 5). Then, we add
a new state representing availability of the grid. The emission rate of this state is 0 and we are at
this state whenever the grid is available. We add C to the old values of the emission rates of the
other states. The transition rate, qij , from state i to state j for such an M + 1 multi-state Markov
chain can be calculated from the dataset using

qij =
Number of transitions from state i to state j

Total time spent in state i

3.4.2 Choosing parameters for G and εg

We use a leaky-bucket envelope G(t) = σ + ρt with design parameters ρ, σ (≥ 0) as a statistical
sample path envelope for the effective demand in the sense of Eq. (2.9) with bounding function

22



εg. The design parameters in this modeling are the value of σ and ρ and the choice of distribution
for εg. Empirically, we try different values of the leaky bucket parameters to find the minimum
upper bound on the optimal battery size B∗ using Eq. (3.11), i.e.

B∗ ≤ min
ρ≤C;σ

(
σ + εg

−1 (ε∗)
)
I(Pr{xc(t)=1}>ε∗) (3.18)

For the bounding function εg, we recall that this is the CCDF on the event sup0≤s≤t([D
e(s, t)−

G(t − s)]+). We observe that there is a large fraction of the elements evaluated as zero in that
event. This happens with probability p0 and consists of the cases where the arrival process De

does not exceed the leaky bucket envelope. Let δ0(x) be the delta function, which is 1 when
x = 0, and is 0, otherwise. We can now write εg using the delta function as:

εg(x) = p0δ0(x) + (1− p0)εδ(x)

or

∀x > 0 : εg(x) = (1− p0)εδ(x) (3.19)

where εδ is a CCDF function with εδ(0) = 1 4. Eq. (3.18) can now be rewritten as:

B∗ ≤ min
ρ≤C;σ

(
σ + εδ

−1
(

ε∗

1− p0

))
I(Pr{xc(t)=1}>ε∗) (3.20)

We first tried fitting an exponential distribution to the function εδ, but the distribution failed to
pass the Kolmogorov-Smirnov (KS) fitting test (we always use the default MATLAB parameters,
i.e. hypothesis rejected at 0.05 significance level). The quantile-quantile (Q-Q) plots show heavy
under-estimation around the tail (see Figure 3.5). Therefore, we use either of the following more
complicated distributions:

1. Weilbull distribution: For parameters a and b (> 0), Weibull distribution is given as

εδ(x) = abxb−1e−ax
b

We use the default MATLAB function wblfit to find the parameters a, b, and find that the
distribution passes the KS fitting test (see Figure 3.5).

4For convenience, we overload the term bounding function to also refer to εδ
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Figure 3.5: Q-Q plots for evaluating exponential and Weibull distribution as tail bound candidates

2. Hyper-exponential distribution: Although Weibull distribution is a good fit for the tail
bound distribution, because of its heavy-tailed property, it is less preferable than hyper-
exponential distribution. We therefore try fitting a two-phase hyper-exponential distribu-
tion with three parameters, p, β1, β2, i.e.

εδ(x) = pe−β1x + (1− p)e−β2x

To fit hyper-exponential distribution to dataset X , we use the standard approach [26] of
empirically trying different values of parameter p and finding the corresponding values of
parameters β1 and β2 by matching the first and the second order moments, i.e.

E[X] =
p

β1
+

1− p
β2

(3.21)

E[X2] =
2p

β1
2 +

2(1− p)
β2

2 (3.22)

We perform KS fitting test to check the validity of the obtained parameters.

The approach used to model De in this section can also be employed to model the demand
thus facilitating a generic performance analysis for intermittent demand energies.
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3.5 Numerical results

In the following section we compare our battery sizing approach with the optimal benchmark for
the same dataset as in Section 3.4. We use the Markov-modulated ON-OFF process as described
in Section 3.4.1 to generate grid unavailability trace. Unless otherwise stated, we use the param-
eters µ = 1 hr−1 and λ = 1

11
hr−1, which correspond to an average of two power outages in a

day with average duration of a power outage being one hour, which is common for developing
countries such as India. Moreover, unless otherwise stated, the target violation probability in
examples is assumed to be one day loss of power in ten years, i.e. ε∗ = 2.7 ∗ 10−4 and battery
charging rate C = 100 kW.

3.5.1 Battery sizing in the absence of genset

In this section we tend to evaluate our upper bound formulation on the battery sizing in the
absence of genset from Section 3.3.2 and our effective demand modeling from Section 3.4. The
evaluation is carried out by comparing the battery sizing from our modeling and formulations
with the benchmark and existing methods as described below

• Dataset quantile: This is the battery sizing obtained by using the effective demand mea-
surement trace as the input to the exact recursive loss of power description in Eq. (2.3).
The battery size obtained by this method is the least value that satisfies the target loss of
power probability given the knowledge of entire demand trace.

• Our bound: Here, we use the parameter fitting techniques as explained in Section 3.4.2. We
use leaky-bucket as the statistical sample path envelope on De and fit a hyper-exponential
(or Weibull) distribution on εδ. Using Theorem 2 for loss of power formulation, we find the
least battery size that satisfies the target loss of power probability (as given in Eq. (3.11)).

• Ideal De model: Here, we apply the effective demand measurement trace to Eq. (3.9) for
loss of power formulation and find the least battery size that satisfies the target loss of
power probability. By avoiding to use Theorem 2 in this approach, we remove the inaccu-
racy imposed byDe modeling (i.e. from Eq. (3.9) to Eq. (3.10)). This allows to distinguish
between the inaccuracy that is induced by De modeling and that from Theorem 2.
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Figure 3.6: Accuracy of loss of power formulation: Dataset quantile and Ideal De model
battery sizes as a function of target violation probability in three seasons for Irish demand dataset
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• Kesidis bound: Here, we first compute a deterministic peak-rate constrained leaky-bucket
description for the effective demand process in the sense of Eq. (2.7). We then use the
Kesidis battery overflow probability from Eq. (2.8) for loss of power formulation and find
the least battery size that satisfies the target loss of power probability.

• MSM bound: We obtain the statistical sample path envelope for the arrival process De by
first modeling it as a multi-state Markovian process as discussed in Section 3.4.1. Then we
insert the statistical sample path envelope for Markovian processes from Section 2.2 in the
loss of power formulation in Theorem 2 to obtain bounds on the battery size.

To study the accuracy of our analysis and possible sources of inaccuracy we must consider
two major issues (1) how accurately we could model the effective demand using envelopes, (2)
how accurately our formulation can compute the loss of power or carbon emission values given
that there is no inaccuracy in modeling the effective demand. We study each issue in turn next.
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Accuracy of our loss of power formulation

The accuracy of our loss of power formulation can be examined by the comparison of ‘dataset
quantile’ that uses the dataset trace and exact recursive loss equation with ‘Ideal De model’,
which also uses the dataset trace but applies the dataset to our upper bound loss formulation in
Eq. (3.9). Figure 3.6 illustrates this comparison as a function of the target violation probability
ε∗. To model accurately the fluctuations of the demand we consider battery sizing for different
weather seasons by dividing the demand dataset into three seasons: Winter (December-March),
Summer (April-July), and Autumn (August-November). We compute the battery size for each
season separately. Note that a battery size that satisfies the loss of power requirements throughout
the year would be the maximum of the battery sizes among all seasons.

We first observe from Figure 3.6 that for one day in ten years target loss of power probability
(i.e., 2.7 ∗ 10−4), ‘Ideal De model’ is within 10% of ‘dataset quantile’ implying that our loss of
power formulation is reasonably tight. We also notice that different seasons can have significantly
different battery size requirements probably due to power-hungry heating appliances used in cold
weather. A significant difference (around 35%) in the battery sizes can be seen between Summer
and Winter seasons.

Our loss of power formulation in Eq. (3.7) consists of the minimum of two terms. The first
term Pr{xc(t)} > 0 states that the loss of power formulation at any time instant cannot be larger
than the power outage probability. This is a trivial bound, which becomes the dominant term in
the minimization when the battery size is not large (to see the effect of this term one can consider
the extreme case of battery-less scenario). The second term in Eq. (3.7) is quite accurate in
identifying loss of power events, i.e. Pr{l(t) > 0} as can be seen in Figure 3.6 .

Finally, we note that while hyper-exponential distribution is sufficient to characterize seasonal
demand as it passes KS-test, it seems to be an invalid distribution to describe the annual demand.
This is due to seasonal changes of home-load, such as average demand, especially due to heating
and cooling elements, which exhibit non-exponential, possibly heavy-tailed, behaviour.

Accuracy of De modeling

We evaluate the performance of the fitting technique in modeling De by comparing the battery
sizes obtained by this model and those from ‘dataset quantile’ and ‘Ideal De model’. In fact, the
difference between the battery sizing by envelope fitting with that of ‘Ideal De model’ indicates
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Figure 3.7: Accuracy of De modeling: Minimum battery size B∗ as a function of violation
probability ε∗ for Irish demand dataset and with ON-OFF grid unavailability with parameters
µ = 1 hr−1 and λ = 1

11
hr−1

the accuracy of fitting since the ‘Ideal De model’ shows the battery sizing scheme when the De

modeling inaccuracy is eliminated. We study both Weibull and hyper-exponential as tail bounds
in the examples in this section. We study the effect of different key parameters on the accuracy
of fitting by conducting a thorough sensitivity analysis of the above methods.

Figure 3.7 compares the battery size computed using the methods as a function of the vi-
olation probability. The similar slopes observed from this figure for different methods implies
that the ratio of the battery sizes from each pair of methods is almost fixed even as the violation
probability is varying.

Figure 3.8 illustrates the battery sizing as a function of battery charging rate C with a target
violation probability ε∗ = 2.7 ∗ 10−4. As the battery charging rate increases, all curves converge
to the battery size required by an ideal battery, which can be charged instantaneously. The battery
required for this ideal case must be large enough to serve the demand during the time when the
grid is unavailable.

Finally, Figure 3.9 shows the battery sizing from different methods as a function of the ratio of
grid ON-OFF parameters. We set average power outage duration to be one hour, i.e. µ = 1 hr−1,
and only vary λ. Due to limited space, we don’t show error bars for ‘Ideal De model’ and
‘Weibull distribution’. We observe that even for very high power outage periods, like ρ′ = 0.33
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Figure 3.8: Accuracy of De modeling: Minimum battery size B∗ as a function of battery charg-
ing rate C for a fixed target loss of power probability ε∗ = 2.7 ∗ 10−4 for Irish demand dataset
and with ON-OFF grid unavailability with parameters µ = 1 hr−1 and λ = 1
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(25% power outage), the bounds are within 15% of the ‘Dataset quantile’.

This sensitivity analysis indicates that our De modeling and loss of power formulations are
quite tight.

Comparison to Kesidis and MSM

In this section, we evaluate the loss of power formulation from Theorem 2 with those obtained
from other existing techniques: ‘Kesidis bound’, and multi-state Markov chain ‘MSM’. We have
also included ‘Dataset quantile’, and ‘our bound using hyper-exponential distribution’ as bench-
marks. Figure 3.10 compares the battery sizes computed by the above methods as a function of
the violation probability. We find that our approach out performs the competing approaches. It
can also be observed that the Kesidis bounds are almost insensitive to the violation probability
for the range of study. This is due to loss of power formulation in Eq. (2.8), which suggests the
battery size as a function of ε∗ to be:

B =
σ(1− ε∗C

ρ
)

π−ρ
π−C − ε∗

.
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Figure 3.9: Accuracy of De modeling: Minimum battery size B∗ as a function of ρ′ for a fixed
target loss of power probability ε∗ = 2.7 ∗ 10−4 for Irish demand dataset and with ON-OFF grid
unavailability with parameter µ = 1 hr−1

The impact of varying ε∗ on the resulting B from the above equation is only noticeable when
ε∗ is comparable to ρ

C
or π−C

π−ρ , which is not the case for the range of values in Figure 3.10.
The Kesidis bound is comparably loose since it is based on the assumption that the effective
demand is regulated, which requires a deterministic peak-rate constrained leaky-bucket envelope
on the effective demand. The tightness of Kesidis bound is highly affected by how tight the
deterministic envelope is in describing the regulated traffic. The more bursty the traffic is, the
looser the bound would be. Moreover, the MSM bound is also not as tight as the envelope fitting
and this is due to the inaccuracy induced by employing the union bound to compute a statistical
sample path envelope (Eq. (2.15)) for the exponentially bounded burstiness processes (including
MSM processes) as also observed in [7].

3.5.2 Battery sizing in the presence of genset

For battery sizing in the presence of a genset, we study the accuracy of our carbon emission
bounds as a function of the battery size. We use Eq. (3.12) as the metric of carbon emission. The
plots of this section show the following curves:
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Figure 3.10: Comparison with other bounds: Minimum battery sizeB∗ as a function of battery
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• Dataset quantile: Similar to the ‘Dataset quantile’ in the absence of genset, we apply the
dataset trace to Eq. (3.12) and compute the exact carbon emission for our dataset.

• Our bound: This is the upper bound on carbon emission from Eq. (3.16) and using enve-
lope fitting as explained in Section 3.4.2 to model De with hyper-exponential distribution
on εδ.

• Ideal De model: We remove the inaccuracy induced by De modeling by applying the
dataset trace directly to Eq. (3.15) to compute upper bounds on carbon emission.

We compute the carbon emission as a function of the battery size for charging rate ofC = 100

kW in Figure 3.11. For any given carbon emission threshold, one can use this plot to compute the
required battery size. The plot is divided into three regions I, II, and III. Region I corresponds to
the case where Eq. (3.16) is evaluated to

∑T
t=1E[d(t)x

c(t)], which is the battery-less scenario.
If the carbon emission target threshold is as large as any value in this region we can remove the
battery. Region II corresponds to the case when C > B. If the target carbon emission threshold
falls into this region, one might choose the battery size to be equal to the energy generated in
one time slot with the charging rate, i.e., B = C. Finally, Region III corresponds to the case of
C < B for which the curves in that region must be used to size the battery.
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From Figure 3.12 we can see that our bound becomes more accurate for larger charging
rates. Even for a relatively small charging rate like 100 kW, we find that our bound is within
a factor of 1.7 from the ‘dataset quantile’. We can observe from Figures 3.11-3.12 that the
carbon emission using Eq. (3.16) are slightly below the ‘Ideal De model’. This is because of
the independence assumption made for ‘our bound’ in Eq. (3.16) and ‘Ideal De model’ does not
have that assumption.

3.6 Conclusions

Motivated by the need to mitigate against the loss of grid power, we present an analytical tech-
nique based on the stochastic network calculus to compute the battery size needed for a housing
complex connected to an unreliable grid to ensure a given target loss of power probability. Nu-
merical evaluations show that the sizing using our methodology is within 10% of the minimum
battery size required had the future load been exactly known. In contrast, the battery size com-
puted using classical methods is far larger than necessary.

Recognizing that the conventional approach to generate backup power is using diesel gener-
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Figure 3.12: Battery sizing in the presence of genset: Carbon emission from genset as a func-
tion of battery charging rate C for Irish demand dataset with ON-OFF grid unavailability with
parameters µ = 1 hr−1 and λ = 1

11
hr−1, and constant battery size B = 3 ∗ 105Wh

ators, we also study the trade-off between the size of a battery and the carbon emission due to
genset operation. For a given battery size, our computation of the carbon emission is within a
small factor (1.7) of the value obtained through numerical evaluation. This allows us to find the
minimum battery size needed to bound the carbon footprint of a diesel generator. This is not only
a useful result in its own right, but given that prior work in the area of teletraffic analysis has had
limited success in computing upper bound on the total loss of buffer for non-Poisson arrivals, we
believe that our work is of general interest even in the area of teletraffic analysis.

Our results are necessarily limited by the lack of demand and outage data from developing
coun- tries. We model the demand from a neighbourhood of homes in a developed country by
the demand of 100 randomly selected Irish homes and we assume that outages are modeled by
a two-state Markov model. These limit the strength of our numerical results. Nevertheless, our
general approach can be used to study real datasets when they are available.

33



Chapter 4

Using battery to decrease genset fuel
consumption

There are many remote villages in developing countries, such as India, that are not electrified and
where extending the grid is difficult [33]. The problem of a lack of power grid is also common
for mobile base stations located in remote areas [36]. Even when there is a grid connectivity,
the grid is prone to failures due to various reasons such as storms and equipment failures. In
developing countries, load shedding lasting two-to-four hours is common because of a large gap
between energy supply and demand [31]. Thus a small community or industry may decide to go
off-grid for higher power reliability. These places that are off-grid often install a diesel genset to
meet their demands. In this work, we study how to use a hybrid genset-battery system to improve
the fuel consumption efficiency of the genset.

4.1 Motivation and Related Work

The efficiency of a genset is known to be the greatest when it operates close to its capacity (also
called rated or nominal power) G. In complete absence of a grid, a genset is usually sized to
meet the occasional peaks of a stochastic demand. This causes the genset to mostly operate
at low efficiency to meet demands only around 30% − 60% of its rated capacity. Continued
operation of genset to meet small demands can also lead to engine damage [19]. However,
a battery can be used to increase the average fuel consumption efficiency of the genset. As
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explained in Section 4.2.1, the hybrid system operates in one of the following three modes: (a)
demand met by battery only, (b) demand met by genset only, and (c) demand simultaneously met
by battery and genset [16].

Figure 4.1: Use of battery to decrease genset fuel consumption [36]

An accurate expression describing the rate of genset fuel consumption for a demand d(t) is
given by the following affine function

k1G+ k2d(t) (4.1)

where k1 and k2 are some constants [37][4]. This motivates us to improve efficiency of the genset
using a battery in the following two ways. Firstly, mode (c) tells that we can simultaneously run
genset and discharge battery to meet loads. As a typical battery’s discharge rate is high, this
avoids over-sizing the genset to meet occasional peak loads, and hence increases genset effi-
ciency. Secondly, at times of low demand, the genset can be turned off by meeting the demand
entirely from the battery. When the demand is high (but less than the genset capacity G), a run-
ning genset is used to meet both the demand and recharge the battery. This increases efficiency
as the genset operates closer to its capacity (see Figure 4.1).

These methods of using a battery to improve genset efficiency motivates us to study the
following two problems:
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(i) Battery-usage problem: For a small industry (community) that is off-grid and uses a
genset to meet its demand, we study how to size the battery and schedule power from the
battery-genset hybrid system to minimize the total fuel consumption .

(ii) Going off-grid problem: For an industry (community) that is currently on-grid but decides
to go off-grid, we address the problem of using a battery to prevent over-sizing of the genset.
We use tools from stochastic network calculus to size the battery and the genset such that
the loss of load probability due to the demand exceeding the genset capacity and the battery
being empty is less than a threshold ε∗ .

4.2 System Model

We assume a discrete time model, where time-slot t represents the time interval [t− 1, t). Prac-
tically, the length of the time slot should neither be very small, as it increases the size of the
numerical computation, and nor very large because then the discrete system is not an accurate
description of the continuous system. We are also constrained by the time taken to turn a genset
on after it has been turned off. For applications in smart grid, we suggest a time slot duration
around 5− 15 mins.

Name Description
G Maximum genset power production rate
B Battery storage capacity
C Maximum battery charging rate
d(t) Demand in time slot t
b(t) Battery level of charge at time t
ε∗ Target loss of power probability
x(t) Indicator variable for genset at time t

Table 4.1: Notation

Let x(t) be an indicator variable, which is 1 if the genset is operating in time-slot t and is 0
otherwise. Let d(t) represent the demand in time-slot t, and let b(t) represent the battery level
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at the end of time-slot t. We assume a simple battery model where the charging rate is at most
a constant C (≤ G) and is independent of the battery size B and also of its state of charge.
To ensure that there is no external source of energy, we always assume that the battery state of
charge at the beginning of slot 1 and at the end of slot T is zero, i.e. b(0) = b(T ) = 0.

4.2.1 Three modes of hybrid system operation

The genset-battery hybrid system that we consider can operate in three modes to meet the demand
with the following changes to the battery state of charge (see Figure 4.2).

a) Demand met by battery only: The battery is discharged to meet the demand while the genset
remains turned off.

b(t) = [b(t− 1)− d(t)]+

b) Demand met by genset only: The genset is turned on and it simultaneously meets the de-
mand and charges the battery. Any demand greater than the capacity of genset G cannot be
met in this state.

b(t) = min{B, [b(t− 1) + min{G− d(t), C}]+}

c) Demand simultaneously met by battery and genset: The genset is turned on and the battery
is discharged simultaneously to meet the demand.

b(t) = [b(t− 1)− (d(t)−G)]+

4.2.2 Definitions

• Demand profile D:
We define demand profile D = {d(1), d(2), . . . , d(T )} to be the set of demands for T
consecutive time slots.

• Genset scheduling strategy:
Given demand profile D, battery size B, and charging rate C, a genset scheduling strategy
is an algorithm that computes a unique set S ⊆ {1, 2 . . . , T}, called genset scheduling,
which denotes the set of time slots when the genset is turned on to meet the demand
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and/ or charge the battery. We sometimes also refer to the strategy by set S to simplify
notation. The strategy is called online (offline) if the decision about time t is independent
(dependent) of demands after time t.

• Feasible scheduling S:
For any demand profileD, battery sizeB, and charging rate C, we define a genset schedul-
ing strategy S to be feasible if the following holds:

1. The genset-hybrid system is always in one of the three modes defined in Section 4.2.1
and follows the battery state of charge equations.

2. Loss of load is at most ε∗ fraction of the time and the battery state of charge at the
beginning of time slot 1 and at the end of time slot T is zero.

• Genset-only scheduling:
A scheduling strategy where the genset is always on, i.e. S = {1, 2, . . . , T}.

• Alternate scheduling:
A scheduling where the system alternates between running the genset until the battery is
completely charged to its capacity B and using only the battery to meet the demand until
it empties.

• Competitive ratio α:
Given a battery size B and a charging rate C, for any genset scheduling strategy S we
define the competitive ratio α (≥ 1) as

sup
D

Fuel consumption by feasible scheduling S
Fuel consumption by feasible offline optimal scheduling

4.3 Battery-usage

As discussed in Section 4.1, the motivation behind this problem is to find a strategy for an in-
dustry, that already has a genset, to use a battery to reduce its fuel consumption. We therefore
make the assumption that the size of the genset, G, is given and it is large enough to meet the
peak demands. We also assume that the genset can simultaneously charge the battery at its peak
charging rate C. For this problem we will have no loss of load, i.e. ε∗ = 0, as the genset can
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Figure 4.2: Model for the genset-battery hybrid system
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be always turned ON to meet the demand. The goal is to size the battery and schedule power
between the genset and the battery (battery-genset power scheduling problem) to minimize total
fuel consumption.

4.3.1 Characterizing the offline optimal scheduling

For genset fuel consumption given by Eq. 4.1, we have the following theorem on battery-genset
power scheduling.

Theorem 3. Consider T consecutive time slots such that b(0) = b(T ). For a given genset and
battery size, the problem of minimizing genset fuel consumption is equivalent to the problem of
minimizing the number of time slots for which the genset is turned on.

Proof. Let the genset be on inm out of T time slots and let g(1), g(2), g(3), . . . , g(m) denote the
energy produced by the genset in those time slots. Since the state of energy in the battery at the
beginning and the end is the same, conservation of energy gives

∑
1≤i≤T d(i) =

∑
g(j)1≤j≤m.

Total fuel consumption by the genset is therefore given as∑
1≤j≤m

(k1G+ k2g(j)) = mk1G+ k2
∑

1≤i≤T

d(i).

Since for a given problem instance k1G and
∑

1≤i≤n d(i) are already known, the problem of
minimizing genset fuel consumption is equivalent to minimizing m, i.e. the number of slots for
which the genset is on.

Using Theorem 3, the objective of the scheduling problem can be changed from minimizing
total fuel consumption to minimizing the number of genset operation time slots. The offline
optimal battery-genset power scheduling when loss of load probability ε∗ = 0 is therefore given
by the following mixed-integer program.
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Objective:

min
x

T∑
t=1

x(t) (4.2)

Subject To:
b(t) ≤ b(t− 1)− d(t) +Gx(t) (4.3)

b(t) ≤ b(t− 1) + C (4.4)

0 ≤ b(t) ≤ B (4.5)

x(t) ∈ {0, 1} (4.6)

When the battery is being charged, i.e. x(t) = 1, Constraint 4.3 ensures that the battery is
charged by at most G−d(t). Otherwise, i.e. x(t) = 0, it ensures that the battery is discharged by
at least d(t)− G. Constraint 4.4 ensures that the battery charging rate is at most C. Constraints
4.5 are the capacity constraints on the battery. Constraint 4.6 imposes integrality on variables
x(t).

Although practical loads, battery sizes, and charging rates have values in a small range, for
the sake of completeness we prove that the general battery-genset power scheduling problem is
NP-hard. We reduce a general instance of 0− 1 Knapsack problem, a NP-hard problem, into our
problem instance.

Knapsack problem: Given n objects of weights w1, w2, . . . , wn, a bag that can carry at most
weight W , and a target value P ≤ n, does there exist a subset of objects S such that P ≤ |S|
and

∑
i∈S wi ≤ W .

Battery-genset scheduling problem: Given a battery of size B ≥ 0, a battery charging rate
C ≥ 0, initial battery charge B0 ≥ 0, and demands d(1), d(2), . . . , d(T ). Given a target value
P , does there exist a genset schedule that turns on genset for at most T − P time slots while
ensuring that there is no loss of load.

Theorem 4. Battery-genset scheduling problem is NP- hard.

Proof. Let the battery size be B = W and assume that it is fully charged at the beginning, i.e.
B0 = W . Let the battery charging rate be C = 0 and let the demands d(t) for 1 ≤ t ≤ n be
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d(t) = wt. For the same target value P , the genset scheduling problem returns yes iff the original
Knapsack problem returns yes. Thus, we have reduced the Knapsack problem to a Battery-genset
scheduling problem, showing that the later problem is at least as hard as the former problem.

4.3.2 Online Alternate scheduling

In Section 4.3.1 we assumed that future load is exactly known. In practice, however, prediction
of stochastic demand is very difficult. Here we study alternate scheduling, an online scheduling
strategy, where no assumption is made on the future demand. Later, in Section 4.5, we numeri-
cally show that for practical industrial loads alternate scheduling is close to the offline optimal.

Theorem 5. If battery charging rate is sufficient to charge the battery in a single time slot, i.e.
C ≥ B, alternate-scheduling is optimal.

Proof. We prove by contradiction and suppose that there exists an optimal offline scheduling
different from alternate scheduling. We note that C → ∞ implies that there exists an optimal
offline scheduling that charges the battery fully to its capacity B in any time slot when the genset
is on. Consider the first time slot t where the battery has sufficient charge to meet demand d(t)
but the optimal scheduling turns on the genset to meet the demand and charge the battery to B.
Also, consider the earliest time slot s > t when alternate scheduling turns on the genset because
the battery is not sufficiently charged. Such a slot s exists as otherwise alternate scheduling will
perform better than the optimal. After activation of genset in this slot s, the battery will be fully
charged. Hence, at the end of slot s, alternate scheduling can be in a better state than the optimal
to meet the future demand as the optimal will have a battery state of charge less than B. Also,
both optimal and alternate have turned the genset on for the same number of time slots. This
proves that alternate is an optimal scheduling.

We next show that for our problem, where the genset size is large, the competitive ratio of
alternate scheduling can be exactly computed. For better exposition, we avoid ceiling and floor
functions by assuming G and B are divisble by C. This assumption can be easily removed.

Theorem 6. If the genset is large enough to simultaneously meet the peak demand and charge
the battery at its maximum rate C, competitive ratio for alternate scheduling is k1

G
C
+k2

k1+k2
.
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Proof. Consider the worst case demand profile D = {d(1), d(2), . . . , d(n)} such that the battery
is empty at the beginning of slot 1 and at the end of slot n for alternate scheduling. Our modeling
assumptions give C ≤ G ≤ B and d(i) ≤ G − C for all i ∈ {1, 2, . . . , n}. Let m denote the
number of cycles that the battery goes through in the n time slots.

Correctness: For alternate scheduling, the battery is always charged by the genset at its peak
rate C. Hence the total number of charging time slots are exactly mB

C
. Note that the alternate

scheduling discharges the battery to meet mB demand. This means
∑n

i=1 d(i) is at least mB.
As there is no source of energy other than the genset, the optimal scheduling will turn the genset
on for at least

∑n
i=1 d(i)

G
≥ mB

G
time slots. Thus, using the definition of competitive ratio α (see

Eq. 4.2), we get

α ≤
k1G

mB
C

+ k2
∑n

i=1 d(i)

k1G
mB
G

+ k2
∑n

i=1 d(i)

Observe that this ratio is maximum when the same additive term in the numerator and the de-
nominator, k2

∑n
i=1 d(i), achieves its minimum value (since α ≥ 1). Using

∑n
i=1 d(i) ≥ mB

again, we get

α ≤
k1G

mB
C

+ k2mB

k1G
mB
G

+ k2mB
=
k1

G
C
+ k2

k1 + k2

Tightness: The worst case is achieved for a periodic demand profile, where the demand
alternates between tending to zero for the first B

C
time slots and being G − C for the next B

G−C
time slots. Let m be the number of periods in n time slots. In any period of the demand, alternate
scheduling will turn on the genset for the first B

C
time slots and discharge the battery for the

remaining B
G−C time slots. The optimal scheduling will, however, always discharge the battery

when the demand tends to zero. In each period of the demand being G − C for B
G−C time slots,

the optimal turns the genset on to meet the demand and charge the battery for the first B
G

time
slots, followed by discharging the battery to meet the demand for the remaining BC

G(G−C)
time

slots. The ratio between fuel consumption by alternate and optimal is now given by

k1Gm
B
C
+ k2mB

k1Gm
B
G
+ k2mB

=
k1

G
C
+ k2

k1 + k2
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4.3.3 Savings

There are two conflicting objectives of installing a battery– minimizing carbon foot print (total
fuel consumption) and minimizing the cost of the system. We compare both these objectives
before and after the installation of a battery of size B. In absence of battery, the cost of the
system is given exactly by the cost of fuel consumption (since the genset cost is a sunk cost, we
ignore it). Here, total fuel consumption in time [0, T ] is the same as genset-only scheduling, i.e.

k1GT + k2

T∑
t=1

d(t)

We now estimate the number of time slots for which the genset is on after installation of a
battery of size B and charging rate C due to alternate scheduling. As the genset is large enough
to charge the battery at its peak rate C, the genset is on for exactly B

C
time slots in any battery

charge-discharge cycle of alternate scheduling. Thus, to estimate the fraction of time the genset
is turned off, we only need to calculate the expected number of slots, τ , for which the fully
charged battery is discharged. The fuel consumption for the battery-genset hybrid system is then
given by

k1GT
B
C

B
C
+ τ

+ k2

T∑
t=1

d(t) (4.7)

The life of a storage battery is reasonably well captured by the number of charge-discharge
cycles. Suppose w.r.t. fuel cost, one battery charge-discharge cycle costs γ per kWh. We can
estimate the monetary expenditure as

k1GT
B
C

B
C
+ τ

+ k2

T∑
t=1

d(t) + γ
T

B
C
+ τ

(4.8)

Above Eq. 4.7 and Eq. 4.8 allow us to compute the fuel consumption and investment cost of
the battery-genset hybrid system for alternate scheduling as a function of the average duration of
battery discharge τ . We can get a better intuition of the system’s performance by estimating τ
using the following assumption.

Assumption: Expected time to discharge a fully charged battery is given by

τ =
B

E[d(t)]
(4.9)
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Using the above assumption, we can further simplify Eq. 4.7 to obtain a counter-intuitive result
that the fuel consumption is independent of the battery size B.

k1GT
B
C

B
C
+ B

E[d(t)]

+ k2

T∑
t=1

d(t) = k1GT
1
C

1
C
+ 1

E[d(t)]

+ k2

T∑
t=1

d(t) (4.10)

Note that this does not mean that the system improves genset efficiency even when the battery
size is zero. There is an inherent lower bound of C ≤ B on the battery size in our discrete time
model. If the duration of time slot tends to zero then theoretically both C and B can also tend
to zero. However, this would mean that the genset is being turned on and off at an infinite rate,
which is practically impossible. Later, in Section 4.5, we numerically verify this intuition.

4.4 Going off-grid

As discussed in Section 4.1, the motivation for this problem is that an industry/ community
currently connected to the central grid wants to go off-grid. Thus, historical demand traces are
available. The problem is to size both the genset and the battery and schedule power between
them such that the total fuel consumption is minimized while ensuring that the loss of load
probability is at most ε∗. The battery can help in reducing fuel consumption by both preventing
over-sizing of the genset and reducing the running time of the genset. Going off-grid problem is
a therefore more general than the Battery-usage problem in Section 4.3.

To avoid over-sizing of the genset, we size the genset smaller than the peak demand and meet
rare high demands (a demand greater than G) by using the battery and the genset simultaneously.
We note that the loss of load probability can be non-zero as the battery might be empty at a
time of high demand. Moreover, loss of load probability is also sensitive to the scheduling as
this affects the battery state of charge at the beginning of a high demand. Analyzing battery
size, genset size, loss of load probability, and the scheduling simultaneously is difficult. For this
section we therefore work with the genset-only scheduling strategy as it gives the minimum loss
of load probability. We size the genset and the battery such that the loss of load probability is
at most a threshold, ε∗. Any other scheduling strategy, such as the alternate scheduling, might
have a higher loss of load probability than ε∗. In Section 4.4.2 we analyze the savings of using a
battery to prevent genset over-sizing.
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4.4.1 Sizing

For a genset size G, we find a bound on the minimum battery size needed to ensure that the loss
of power probability is ε∗. We size the battery for a scheduling that keeps the genset always ON
as this gives the minimum loss of power probability, and hence the least battery size. We also
assume that the battery charging rate C is ‘sufficiently large’ and does not affect the least battery
size. As we are always in scenario (b) or (c) mentioned in Section 4.2.1, combining the two
recurrences we obtain:

b(t) = min{B, [b(t− 1) + min{G− d(t), C}]+}

We define deficit battery energy bd(t) := B − b(t), which indicates the amount of energy
needed at time t to fully charge the battery. We can compute it using the following recurrence:

bd(t) = min{B, [bd(t− 1) + max{d(t)−G,−C}]+} (4.11)

= min{B, [bd(t− 1) + d(t)−G]+} (4.12)

where in the last step we use that C is sufficiently large, i.e. C > maxt{G− d(t)}.

Using the formulation from Cruz and Liu [13], we solve the recurrence to obtain

bd(t) = min
0≤u≤t−1

(
max

u≤s≤t−1
(D(s, t)−G.(t− s), D(u, t)−G.(t− u) +B)

)
(4.13)

As before, we use a concept called statistical sample path envelope. A non-decreasing func-
tion G is a statistical sample path envelope for an arrival process D with bounding function ε if
it satisfies the following for any t ≥ 0 and any σ ≥ 0

Pr{ sup
0≤s≤t

{D(s, t)− G(t− s)} > σ} ≤ ε(σ)

Using Theorem 1 from [39], we size battery B such that

ε∗ =Pr{b(t) ≤ 0} = Pr{bd(t) ≥ B} (4.14)

≤ ε

(
B − sup

0≤τ≤t
(G(τ)−Gτ)

)
(4.15)

Thus, taking G(τ) = G.τ , we get
B ≤ ε−1(ε∗)

46



0 4 8 12 16 20 24
0

3

6

9

12

15

18

Time in hours

L
o
a
d
 i
n
 k

W

 

 

Load1 Load2 Load3 Load4

Figure 4.3: Average typical daily load profile for the four loads

4.4.2 Savings

In this section we estimate the savings in fuel consumption in time [0, T ] because of not over-
sizing the genset. As loss of load probability is at most ε∗, in absence of battery the genset is
sized, Ĝ, to meet at least 1− ε∗ fraction of the total demands, i.e.

Ĝ = {x : Pr{d(t) < x} = 1− ε∗}

Thus, in presence of a battery of size B and genset size G, ratio of new and old fuel consumption
is given by

k1GT + k2
∑T

t=1 d(t)

k1ĜT + k2
∑T

t=1 d(t)
(4.16)

4.5 Evaluation

In this section we numerically evaluate our results for both the battery-usage and the going off-
grid problem on an industrial demand data from a local distribution company in Ontario, Canada.
The dataset, collected from a local distribution company in Ontario, Canada, contains hourly
electricity consumption for four commercial loads for 18 months. We set time slot duration to be
5 minutes and linearly interpolate the demand for the 12 time slots in an hour. Unless otherwise
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stated, the results are for Load 1 and we set k1 = 0.08415 litre/kW and k2 = 0.246 litre/kWh (i.e.
k2/k1 = 2.92 1/h) as given in [4]. To compute the offline optimal, we solve the mixed integer
program described in Section 4.3.1 using Gurobi Optimizer.

Fig. 4.3 shows the average daily load profile for the four commercial loads. Their mean de-
mands were 8.53kW, 8.59kW, 12.85kW, and 4.70kW respectively. The typical peaking patterns
in the graphs is due to variations in activities throughout the day.

4.5.1 Battery-usage

Figure 4.4 and Figure 4.5 helps in making several observations about the savings in fuel con-
sumption using a battery. Firstly, we note that for practical values of parameters k1 and k2
carbon footprint is very sensitive to the charging rate. Even for a small charging rate of 2 kW,
which is 4 times less than the average load, total fuel consumption reduces by more than 10%.
The gains can be more than 20% as the charging rate increases. Secondly, we note that alternate
scheduling performs close to the offline optimal. Intuitively, this is true because real demands are
stochastic and the worst cases rarely arise. Our worst case example in the proof of Theorem 6 has
minimum demands tending to zero followed immediately by maximum demands G − C. Such
abrupt demand changes that are completely out of synch with the period of alternate scheduling
are not common in practice. Thirdly, we see that savings decrease significantly as the value of
genset affine function parameter k2 increases. This is true because a large k2 in Eq. 4.10 in-
creases the weightage of the term

∑T
t=1 d(t), which remains unchanged in presence or absence

of the battery.

Figure 4.6 helps in evaluating the accuracy of our assumption in Eq. 4.9. We observe that
τ is almost a linear function of B and the slope is close to 1

E[d(t)]
. In Figure 4.7, we evaluate

our conclusion from Section 4.3.3 that the total fuel consumption for alternate scheduling is not
very sensitive to the size of battery. We see that for 5 minute time slots, a battery that can be
fully charged in around 30 minutes is sufficient to get the benefits of a battery-genset hybrid
system. When we repeated the experiment in Figure 4.7 for smaller values of time slots (figures
note shown here), the minimum battery size required to get the benefits decreased further, thus
verifying our intuition.

To ensure that this is not the artifact of some specific statistical properties of Load 1, we
repeat the example for the other three loads in Figure 4.8. We observe the same behaviour for all
the loads.
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Figure 4.4: Battery-usage: Fuel Consumption vs battery charging rate for genset size G =

25kW, battery size B = 3kWh, k1 = 0.08415 litre/kW, and k2 = 0.246 litre/kWh

Figure 4.5: Battery-usage: Percentage of fuel savings vs ratio k2/k1 for B = 3kWh
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Figure 4.6: Battery-usage: τ vs battery capacity

Figure 4.7: Battery-usage: Fuel consumption vs battery capacity for k1 = 0.08415 litre/kW and
k2 = 0.246 litre/kWh
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Figure 4.8: Battery provisioning: Fuel consumption vs battery capacity. C = 4kW, k1 =

0.08415 litre/kW, and k2 = 0.246 litre/kWh

4.5.2 Going off-grid

In this section we evaluate our sizing formulation from Section 4.4. Figure 4.9 studies the rela-
tionship between the genset and battery size while ensuring that the loss of load probability is
below a threshold ε∗. We note that the analytical result using statistical sample path envelope
is close to the offline optimal. In absence of a battery, the minimum genset size required is less
than the maximum demand as the loss of load probability is greater than zero. The dotted vertical
lines in the figure show this minimum genset size for ε∗ = 2.7× 10−3 and ε∗ = 2.7× 10−4.

Figure 4.10 and Figure 4.11 gives a surprising result that avoiding genset oversizing is not
very helpful in reducing fuel consumption. We observe that for the values of parameters k1 and
k2 given in Reference [4], even a very large battery size of 8kW gives savings of less than 5%
in total fuel consumption. This can be attributed to the fact that k1 is around 3 times less as
compared to k2, which means a large portion of the total fuel consumption,

∑T
t=1 d(t), remains

unaffected (see Eq. 4.16). The savings can be at most 10% if no weightage is given to
∑T

t=1 d(t).

4.6 Conclusions

Gensets are commonly used today to meet demands at places not connected to the central grid.
A battery-genset hybrid system can improve the genset fuel consumption efficiency by meeting
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Figure 4.9: Going off-grid: Battery vs genset size curve. Solid line shows the offline optimal
and the dashed line shows the analytical result

Figure 4.10: Going off-grid: Percentage of fuel savings vs ratio k2/k1
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Figure 4.11: Going off-grid: Fuel consumption vs logarithm of loss of load probability for
battery size of 8kWh, k1 = 0.08415 litre/kW, and k2 = 0.246 litre/kWh

low demands entirely from the battery and by preventing genset over-sizing to meet occasional
peak demands. We address the problem of scheduling power between genset and the battery to
minimize total fuel consumption, and present an online scheduling strategy, alternate scheduling.
Using analytical and numerical results we show that alternate scheduling is close to the offline
optimal. We give a counter-intuitive result that the total fuel consumption is not very sensitive
to the battery size, but is very sensitive to the battery charging rate. Numerically we find that a
charging rate of 5kW can reduce fuel consumption by around 20%.

For the general problem of sizing both the genset and the battery, we use analytical technique
based on stochastic network calculus to find a bound on the battery size needed to ensure that
the loss of load probability is below a threshold ε∗. Numerically, we find that our analytical
technique is close to the offline minimum battery size. We also show that using a battery to avoid
genset over-sizing can reduce total fuel consumption, however, for practical values of genset fuel
consumption parameters this saving is less than 5%.
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Chapter 5

Conclusions

Modern society is heavily reliant on electric power. The current power grid is prone to failure,
especially in developing countries, either because of unavoidable outages, such as storms, or
because of a large gap between demand and supply. In Chapter 3, we investigated the use of
storage to allow a set of homes in a single residential neighbourhood to avoid power outages.
A storage battery can store power from the grid when it is available and discharge it to meet
demand at times of outage. Storage is expensive today and we therefore study the problem of
finding the minimum battery size required to ensure that the loss of load probability is at most a
threshold ε∗. We use recent results from stochastic network calculus to size storage. Numerical
evaluations show that our methodology is within 10% of the minimum battery size required had
the future demand been exactly known. Given that diesel gensets are commonly used today to
meet demands during a power outage, we also study the problem of using a battery to reduce
genset usage, thereby reducing the carbon footprint. Our computation of the carbon emission is
within a small factor (1.7) of the value obtained through numerical evaluation.

Many remote locations do not have power grid connectivity and rely completely on diesel
gensets to meet their demands. Gensets have greatest energy production to fuel consumption
efficiency when they operate close to their capacity. In Chapter 4, we therefore work with a
general model of genset where the rate of fuel consumption is an affine, instead of a linear, func-
tion of genset power production. We study the two ways of using a storage battery to improve
the genset efficiency. Firstly, reducing genset running time by meeting small demands entirely
from the battery. Secondly, avoiding genset oversizing by meeting peak demands by simulta-
neously running the genset and discharging the battery. We give an online scheduling strategy,
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alternate scheduling, that has a competitive ratio of k1
G
C
+k2

k1+k2
, where G is the genset capacity, C is

the battery charging rate, and k1, k2 are the affine function constants. We give a counter-intuitive
result, both analytically and numerically, that savings in fuel consumption by using a battery is
independent of the battery size as long as the battery is sufficient to meet demand for a very few
time slots. Numerically we show that alternate scheduling is effective in significantly reducing
fuel consumption (> 10%). We also observe that compared to battery-usage, avoiding genset
oversizing is not very useful in reducing fuel consumption. Even for large battery sizes, savings
in fuel consumption are smaller than 5%.

We realize that the results in this work are limited because of various assumptions. Most of
our results have implicitly assumed that the past can give an accurate description of the future.
This is not necessarily true as electricity consumption for a particular year might significantly
change due to extreme weather conditions. Economic boom or slowdown can also affect indus-
trial demands. One major limitation of our analysis is the battery model. We assume a perfect
battery where the battery charging rate C and capacity B are independent. Depending on the
technology of the battery, this assumption may or may not be reasonable. An interesting open
problem is to extend our results to more complex models of battery where C is a function of B.
Moreover, including Peukert’s law– the capacity of the battery is a function of rate of discharge–
in the battery model would be fascinating.

Our sizing results in Chapter 3 are limited because of lack of demand and outage data from a
developing country. Numerical results in Chapter 4, especially that alternate scheduling is close
to offline optimal, are for a particular industrial load. Extending them to other industrial loads
or finding an analytical argument showing the closeness of alternate and optimal scheduling
strategies is an important extension.

Another limitation of our work is that while using the results from stochastic network cal-
culus, we employ a brute force method of finding the leaky bucket and the bounding function
parameters to model the stochastic demand. In future work, we hope to find better ways of
finding the statistical sample path envelope and the bounding function that do not require this ex-
pensive pre-processing step. We also hope to get rid of the statistically independent increments
assumption when studying the total loss of power in Chapter 3 and the assumption to estimate
expected time, τ , to discharge a fully charged battery in Chapter 4.
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