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Abstract

The purpose of this thesis is to provide an exposition of the modular theory of von Neumann
algebras. The motivation of the theory is to classify and describe von Neumann algebras
which do not admit a trace, and in particular, type III factors. We replace traces with
weights, and for a von Neumann algebra M which admits a weight ¢, we show the existence
of an automorphic action 0¢ : R — Aut(M). After showing the existence of these actions we
can discuss the crossed product construction, which will then allow us to study the structure
of the algebra.
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1 Introduction

This thesis is an exposition of the modular theory of von Neumann algebras. The moti-
vation of the theory is to classify and describe von Neumann algebras which do not admit
a trace, and in particular, type III factors. We replace traces with weights, and for a von
Neumann algebra M which admits a weight ¢, we show the existence of an automorphic
action 0 : R — Aut(M). These automorphism groups will then allow us to study the
structure of the algebra.

In Section 2 we provide the necessary background on unbounded operators. Unbounded
operators are useful for their connection with one-parameter unitary groups given in Stone’s
Theorem. They allow us to define a broader functional calculus, providing a powerful tool
in the study of abelian von Neumann algebras.

In Section 3 we study the representation theory of weights, generalizing the theory of
traces. In particular, we are interested in the (generally unbounded) involution on the rep-
resentation space obtained from the adjoint operation. Section 4 provides an abstract char-
acterization of this representation space given by left Hilbert algebras. We prove Tomita’s
Theorem, which states that the involution yields one-parameter automorphism group on the
von Neumann algebra. Then in Section 5 we study in depth the connection between weights
and their associated automorphism groups. This is done by showing that a weight ¢ satisfies
a trace-like condition, called the modular condition, with respect to the action o®, the mod-
ular automorphism group. In turn, the modular condition completely determines the action.
Section 6 gives the reverse construction of a weight from a left Hilbert algebra.

We begin the study of von Neumann algebra crossed products in Section 7. After providing
some technical background on the construction, we show how to obtain a weight on the
crossed product algebra coming from the original von Neumann algebra. In the case of the
crossed product with the modular automorphism group, we obtain a weight which can be
perturbed by a (generally unbounded) positive operator to obtain a trace on the crossed
product. In Section 8 we shed more light on the structural implications of this trace. We
do this by generalizing the Pontryagin duality of locally compact abelian groups to duality
of crossed products by locally compact abelian groups, and construct an action of the dual
group on the crossed product for which this trace satisfies a semi-invariance property. Finally
in Section 9 we use this semi-invariance to give a structure theorem for type III von Neumann
algebras.



All Hilbert spaces are complex, and unless otherwise stated, infinite dimensional. For a
Hilbert space H, B(H) denotes the space of all bounded linear operators on H. On a von
Neumann algebra M we will use the abbreviations SOT, WOT, and o-WOT for the strong-
operator, weak-operator, and o-weak operator topologies respectively. For a von Neumann
algebra M we denote the center by Cy,. Unless otherwise indicated, all integration of
Banach space valued functions are to be understood with respect to the definition of the
Pettis integral.



2 Unbounded Operators

In this Section we summarize some of the basics of the theory of unbounded operators.
In particular, we attempt to recover as much of the workable theory of bounded operators
as possible, and we will extend the Spectral Theorem for normal operators to a nice class of
unbounded operators, which are also called normal. In the interest of keeping this Section
to within a reasonable size, most proofs will not be given. The material is taken from
Chapter 10 of [2], except for the Polar Decomposition Theorem from page 401 of [7], and
the Generalized Polar Decomposition Theorem and Lemma 2.30 which are respectively on
pages 43 and 22 of [13].

Definition 2.1. By an operator on a Hilbert space H we mean a linear function A : I — H

where K < H is a not-necessarily closed linear subspace. We write D(A) for the domain of
A.

We say that an operator A is densely defined if D(A) is dense in H. We say that A
is closed if its graph G(A) is closed in H @ H, and define €' () to be the set of all closed
densely defined operators on H. We note that if A is closed and D(A) = H then by the
closed graph theorem, A will be bounded. Hence the content of this Section is the study of
operators with proper domains. More generally we say that an operator is closeable if the
closure G(A) is the graph of an operator, and we call this operator the closure of A denoted
by A. Let A be a closed operator, and let X < D(A) be a linear manifold. We say K is a
core for A if A = A_|,C Lastly, if A is an operator, we define the graph norm of A to be
the norm on D(A) given by the inclusion £ € D(A) — (£, AS) € G(A).

Definition 2.2. Let A be a densely defined operator on H. If & € H is such that the function
n —< An,& > is bounded on D(A), then there exists a unique element A*¢ € H such that
for alln € D(A) we have < An,§ >=<n, A*¢ >. This defines the adjoint operator A* on
H.

Note that for the above definition it is important that A be densely defined since otherwise
the adjoint would not be uniquely definable.

Lemma 2.3. Let A be a densely defined operator. Then

1) A* is closed;

2) A* is densely defined if and only if A is closable;

3) if A is closeable, then A = A™ and A** = A*;

4) (ran A)* = ker A*, and if A is closed then (ran A*)* = ker A.
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It is therefore convenient for the development of the theory to assume that all operators
are densely defined and closeable.

We now define operations. Let A, B be operators on H. We define their sum by setting
D(A + B) = D(A) N D(B) and define (A + B)¢ = A + B¢ for £ € D(A + B). We define
the product AB by setting D(AB) = {¢£ € D(B) : B¢ € D(A)}, and define ABE = A(B¢)
for £ € D(AB). Of course, neither A + B nor AB need be densely defined or closable even
if A, B are, so care will be taken accordingly. We write A C B to mean D(A) C D(B) and
A& = B¢ for all £ € D(A). For A € C we write A to denote the operator A - I, where I is the
identity operator.

The usual notion of invertibility is too restrictive since we will not in general expect an
inverse to be surjective. Instead we consider the following.

Definition 2.4.

1) A closed operator A is mon-singular if there exists a closed operator B such that
D(B) = ran A,D(A) = ran B and AB C 1 and BA C 1.

2) An operator A is boundedly invertible if there exists an operator B € B(H) such
that AB =1 and BA C 1.

3) We define the spectrum of an operator A, denoted o(A), to be the set of X € C such
that A — X is not boundedly invertible.

We note that the inverse B of the operator A for A non-singular or boundedly invertible,
is unique and write B = A~!. The requirement in 1) that A is closed was made partly for
this reason.

Lemma 2.5.

1) A closed operator A is non-singular if and only if ker A =0 and ran A is dense.
2) An operator A is boundedly invertible if and only if it is non-singular, and ran A = H.

Lemma 2.6. The spectrum o(A) is a closed subset of C.

Note that if an operator A is closed if and only if A — X is closed for all A € C so that if
A is not closed, o(A) = C.

We now define the natural generalizations of normal and self-adjoint operators.

Definition 2.7. Let A be an operator on H. Then,
1) A is called normal if A is closed and A*A = AA*.
2) A is self-adjoint if A= A*.
3) A is symmetric if A C A*
4) A is positive, and we write A >0, if < AL, € >>0 for all £ € D(A).
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Note that if A is symmetric then since A C A*, it is closeable, and if A is self-adjoint, A
is closed since A* is. We also have the following.

Lemma 2.8. An operator A is symmetric if and only if < A, & >€ R for all £ € D(A)

Hence a positive operator is automatically symmetric. The following theorem summarizes
the spectral properties of symmetric and self-adjoint operators.

Theorem 2.9. Let A be a closed symmetric operator.
1) The following are equivalent:

a) A is self-adjoint;
b) o(A) CR;
c) ker (A* —i) = ker (A* +1) = {0}.

2) If 0(A) does not contain R, then A is self-adjoint.

3) If A is positive and self-adjoint, then o(A) C [0, 00).

If ‘H is a Hilbert space it is a well-known fact that the positive operators T € B(H) are
those of the form 7" = A*A for some operator A € B(H). We have a partial analogue of this
result for closed operators.

Theorem 2.10. If A is closed then A*A is positive self-adjoint, and D(A*A) is a core for
A.

We note one last result about normal operators, which separates self-adjoint operators
from general symmetric operators.

Lemma 2.11. If N is normal then D(N) = D(N*) and | N¢|| = || N*¢]| for every & € D(N).
Therefore a closed symmetric operator A is normal if and only if A is self-adjoint.

We now come to the spectral theory of unbounded operators.

Definition 2.12. Let X be a set, 2 be a o-algebra on X and let H be a Hilbert space.
A projection valued function E : Q — B(H) is called a spectral measure for the triple
(X, Q,H) if it satisfies the following:

1) E(@) =0 and E(X) =1;

2) for any Si,Ss € Q we have E(S; N Sy) = E(S1)E(S2);

3) for any countable collection of disjoint sets {S,} C Q we have E(U,S,) = >, E(Sy),
where this sum convergences in the SOT.



For £, € H and a spectral measure E, we define the measure E¢, € M (X) by
Eeq(S) =< E(S)¢,n > .

For short we write ¢ for E¢e. If ¢ is a bounded (2-measurable function we can define
[ ¢dE € B(H) to be the unique operator satisfying

< </¢dE> En>= /qﬁdEgm, for &,m e H.

The following result allows us to pass to the unbounded case.

Lemma 2.13. Let {#H,};°, be Hilbert spaces and let A, € B(H,). Define the operator
@ Ay, with domain D = {(&,) € & Hn : (Ann) € B2 Hn} by 521 AL (&) = (A).
Then @22 A, is a densely defined closed operator. Moreover, &5° | A, is normal if and only
if each A, is normal.

Now suppose we have a spectral measure FE on the measurable space (X,Q,H). If
¢ : X — Cis an Q-measurable function, set X,, = {x € X : n—1 < |¢(z)| < n} for
n > 1 so that X is the disjoint, measurable union of the X,,. Define H,, = E(X,)H so that
H = @2 H,, and set Q, = {SNX, : S € Q}. We define a spectral measure F, on the
measurable space (X,,, 2,,H,) by restriction of E. We define the operator

PdE = PndLn,
o=,

where ¢,, = ¢|x,. Then f + @dE is a normal operator and has domain

D¢ = {5 eH: Zio:1 H(fX ¢ndEn)E(Xn)fH2 < OO}

Theorem 2.14. Let E be a spectral measure on the measurable space (X,Q,H) and let
¢ : X — C be an Q2-measurable function. Then,

1) Dy ={{ € H: [y |o(x)]PdE; < oo}

2) if € € Dy,m € H, then

1/2
o [1olalEes) <ol  [1oPaze)
b dE = dE¢ .
)< ([ oar)en>= [ o,



From 1) we see that the domain Dy can be determined intrinsically in terms of the spectral
measure F without requiring us to look at a specific decomposition of X. Moreover, from
2)a) we see that for £ € Dy, n € H we have the inequality

1/2
[ i) <t ( [1opaze)

so that n — [ ¢dE;, is a well-defined, bounded linear functional on H. Moreover, by b),
(] ¢dE)E is the unique element of H which satisfies

< (/X ¢dE) & >—/X¢dE§m.

Hence we have the following more natural definition.

Definition 2.15. Let ¢ : X — C be Q-measurable, and E be a spectral measure on (X,Q, H).
Then for & € Dy = {n € H : [|9|*dE, < oo} we define ([ ¢dE)E € H to be the unique

vector satisfying
< (/gde) En>= /(;SdE&77

for all n € H. This defines a normal operator [ ¢dE with domain Dy.

Theorem 2.16 (The Spectral Theorem). Let N be a normal operator on a Hilbert space H.
Then there exists a unique spectral measure E on the Borel subsets of C supported on o(N)
such that N = [ zdE and such that if G # @ is open in o(N) then E(G) # 0. Moreover,

we have the following properties.

1) For A € B(H), we have AN C NA and AN* C N*A if and only if AE(S) = E(S)A
for every Borel set S.

2) If ¢ : C — C is Borel and if {X,} is an increasing sequence of Borel sets such that
o|x, is bounded for each n > 1, and if E(X,) converges to I in the SOT as n — oo,
then M = J>7, E(X,)H is a core for [ ¢dE.

3) If {¢i} is an increasing net of real-valued Borel functions such ¢ = sup; ¢; is finite
valued, then ([ pdE)E = lim;( [ ¢;dE)E for every & € D,

4) If ¢ is continuous, we have o( [ pdE) = ¢(o(N)).

The proof of the main statement of the Spectral Theorem can be found in [2]. We will
just verify properties 1), 2), 3), and 4). First we consider what sort of functional calculus
the spectral decomposition allows.



Theorem 2.17. Let E be a spectral measure on the measurable space (X, H), and let
O(X,Q) be the set of all Q-measurable functions ¢ : X — C. Define p : ®(X,Q) — € (H)
by p(¢) = [ ¢dE. Then we have the following properties:

1) p(¢) = p(6)*;

2) p(¢) 2 p(¢)p(¥) and D(p(¢)p()) = Dy N Dyy;
3) if ¥ is bounded then p(¢)p(y) = p(¢v);

4) p(8)*p(9) = p(|o]?).

Proof.

Let ¢,9 € ®(X, Q). First note that there exists a sequence of measurable sets {X,,} such
that X = U, X,,, and the functions ¢, 1) are bounded on each X,,. This follows after choosing
partitions {Y,,}, {Z,} such that ¢, are respectively bounded, and then letting { X, } be the
set of all non-empty intersections of the form Y, N Z,,, which is clearly countable, partitions
X, and for which both ¢, are bounded.

Let {p,} be the respective representations of ®(X,,,€,) on B(E(X,)H), where €, is the
restriction of Q to X,,, and where B(E(X,)H) is viewed as a subspace of B(H) and ¢, ¢,
the restrictions of ¢, to X,,. Let £ € D(p(¢)p(¢))). Then

00 > [[p(¢)p(¥)EI?
= Z lpn(6n) [E(X0)p(w)E]|I?

= ZHpn (Dn)[on (V) E(X0)§ ]“2
= Z pn(Pntbn) E(X0)E] |12,

which says that { € D(p(¢v)) and p(¢¥)§ = p(¢)p(¥)€. Hence p(¢h) 2 p(d)p(v), and

D(p(é)p(1)) € D(p(¥)) 1 D(p(6)). On the other hand, i € € D(p(¥)) N D(p(¢¥)) then the
last two sums above are finite, and hence § € D(p(¢)p(1))). Therefore 2) follows. Moreover,

by the functional calculus for bounded operators we have p,(¢)* = p,(¢) so that

()" = Brlipa(0)” = @ol1pu(9) =

);

so we have 1). If ¢ is bounded, then Dy, = H so that D(p(¢)p()) = Dgy = D(p(¢))) and so

P

)
3) follows. Lastly by 1) we have p(6)* = p(@) so that by 2), p(6)p(6) = p(@)p(6)  p(|6f?)
and D(p(¢)*p(¢)) = Dg N Djgj2 = D)g2, so the result follows.

]

By 2) we fail to have p(¢)p(10) = p(¢)) precisely when the domain of p(¢)) is not large
enough. In other words, there has to be some vector £ € H such that [[¢]*dE; = oo
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and [ |¢|*[¢)|*dEe < co. For instance, this will happen when ¢ is a characteristic function
of a bounded set and v is continuous and unbounded, so that ¢ is unbounded, but ¢ is
bounded.

proof of the Spectral Theorem. As mentioned earlier, we will only verify properties 1), 2), 3),
and 4) and assume the existence of a spectral decomposition N = [ zdE of N.

1) Let A € B(H). Choosing an integer n > 1, let X,, = {a € C:n—1 <|a| <n}. Then
N|g(x,yn is bounded, so that by the bounded version of the Spectral Theorem, we have

AN|gxn = N|ex)nA,

and
A(N|px,n)" = (N|px,n) A

if and only if
AE(SNX,)=E(SNX,)A

for every Borel set S C C. Since N = @22, N|g(x,)n and E(S) = &7, E(SN X,,), property
1) follows.

2) Let ¢ be a Borel function on C, let {X,,} be a sequence of Borel sets such that ¢|x,, is
bounded and such that E(X,,) converges to I in the SOT as n — oco. If £ € Dy, then

¢ = lim E(X,)¢,

n—oo

and by 2) and 3) of Theorem 2.17 we have

(/ qﬁdE) £ = lim F(X,) (/ ¢dE)g
—1g1(/kwE>foma
so that U2, F(X,,)H is a core for [ ¢dE.

3) Let {¢;} be a bounded, increasing net of real-valued Borel functions such ¢ = sup; ¢;
is finite valued. By the Monotone Convergence Theorem, for ¢ € H we have

0=lim [ (6 6,)dE
/ |
=nm<(/w—¢mw)f¢>

— lim | (/qde—/asidE) &%,



and the result follows.

4) Let ¢ be a continuous function, and for n > 1let X, = {a € C:n -1 < |a] < n}.
Then we have N = @92 | N|g(x,yu. For each n, by the Spectral Mapping Theorem we have

a(d(N|px,yn)) = ¢(Xy). Clearly o(é(N|px,)n)) € o(¢(N)) so that
a(p(N)) 2 [UnZi9(X,)]™ = [o(X)] ™.

On the other hand, suppose that for some A € C, there exists 6 > 0 such that |\ — | > ¢
whenever a € ¢(X). Then if £ € D, we have
2
= [16-aE

|(form=2)¢
> APl

Therefore, [ ¢dE — X is injective and has close range. Moreover, by part 1) of Lemma 2.17
and part 4) of Lemma 2.3 we have [ran ([ ¢dE — \)|* = ker ([ ¢dE — \)*. But [ ¢dE — A
is normal, so that by Lemma 2.11, we have ker ([ ¢dE — \)* = ker ([ ¢dE — \) = {0}. By
Lemma 2.5, [¢dE — X is boundedly invertible. Therefore A ¢ o( [ ¢dE), completing the
proof.

O
We state the following unbounded version of the Fuglede-Putnam Theorem.

Theorem 2.18. If A is a bounded operator, and N, M are normal operators such that
AN C MA, then AN* C M*A.

In particular, 1) of the Spectral Theorem can be replaced by the following:

1") for A € B(H), we have AN C NA if and only if AE(S) = E(S)A for every Borel set S.

We now begin the study of the relation between unbounded operators and von Neumann
algebras.

Definition 2.19. We say a closed, densely defined operator A is affiliated with a von
Neumann algebra M if for all T € M" we have AT = TA.

Of course if A is bounded this says precisely that A € M. The next lemma clarifies to
what extent A belongs to M in the case where A is normal and unbounded.

Lemma 2.20. Let N be a normal operator affiliated to a von Neumann algebra M with
spectral decomposition N = [zdE. If ¢ : C — C is Borel we have that [ ¢pdE is affiliated
with M.
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Proof.

Claim: If A is closed, M is a core for A, and T' € B(#H) is invertible such that TA{ = AT¢
and T1AE = AT1€ for every € € 9 then TA = AT and T1A = AT L.

Let £ € D(A) and let {&,} be a sequence in 9 converging to £ in the graph norm of A.
Then
lim AT¢, — lim T A€, = TAE,

so that T¢ € D(A) and AT¢ = TAE. Therefore TA C AT. On the other hand, if
£ € D(AT) = T7'D(A) so that £ = T~ for some n € D(A), then choosing a sequence {7, }
in 9 converging to 1 in the graph norm of A we have

lim A(T"'n,) =lim T *An, = T"'Anp = T 1 ATE.

Hence £ € D(A) and AE = T PATE so that TAE = ATE. Therefore, TA = AT and by
symmetry we also have T71A = AT,

Returning to the normal operator N, we define for eachn > 1, X, = {z € C: |¢(z)| < n}.
Then by 2) of the Spectral Theorem M = U2, E(X,,)H is a core for [ ¢pdE. Therefore, by
the claim, to show that [ ¢dE is affiliated with M it suffices to show that for any unitary
U e M’ and for every & € M we have U([ ¢dE)E = ([ ¢dE)UE. But UN = NU so that
by the unbounded Fuglede-Putnam Theorem UN* C N*U, and hence U commutes with
the spectral projections of N. Then writing £ = F(X,)¢, setting FE, to be the restricted
spectral projection on X,, and ¢,, = ¢|x,, it follows from the bounded Spectral Theorem that
U([ ¢ndEy) = ([ ¢pndE,)U, proving the lemma.

O

As an application we now give the polar decomposition for unbounded, closed operators.
We start with two lemmas, the first of which recovers some of the usual anticommutation
of the adjoint operation, and the second gives the existence and uniqueness of n'* roots of
positive operators.

Lemma 2.21. Let A,C be closed operators on H, and B € B(H). If A = BC then
A* = C*B*.

Proof. Let £ € D(A*). Then for n € D(A) = D(C) we have
< An, & >=< BCn, & >=< Cn, B*¢ >,

so that B*¢ € D(C*) and C*(B*¢) = A*¢. Hence A* C C*B*. On the other hand, the exact
same calculation says that if £ € D(C*B*) and n € D(A) then £ € D(A*) and A*¢ = C*B*¢,
and we have the reverse inclusion.

]

11



Lemma 2.22. If A is a positive self-adjoint operator then for each integer n > 1 there exists
a unique positive self-adjoint operator B such that A = B™.

Proof. Let A = [ zdE be the spectral decomposition of A. Since o(A4) C [0, 00), the existence
follows by letting B = [2'/"dE. On the other hand, if C' is another positive self-adjoint
operator such that A = C™, then since AC = C"C = CC™ = CA, part 1) of the Spectral
Theorem implies that C' commutes with the spectral projections of A. In particular, for each
r > 0 we have CE([0,r]) = E([0,7])C and so

(Cleqmn)" = (C") e = Alpqomn-

By the uniqueness of positive n' root for bounded operators we have C| E(o.MH = Bleqomn-
By 3) of the Spectral Theorem, U, E([0,r])H is a core for B so that B C C. But then
C=C*C B*= B and hence B=C.

O

Theorem 2.23 (The Polar Decomposition Theorem). Let A be a closed operator on H and
write |A| = (A*A)Y2. Then there exists a unique partial isometry V such that A = V|A| =
|A*|V. If A = UB where B is positive, self-adjoint and U is a partial isometry with initial
space ran (B) then U =V and B = |A|. Moreover, if A is affiliated with some von Neumann
algebra M, then |A| is also affiliated with M and V € M.

Proof. Define an operator Vj : |[A|/D(A*A) — AD(A*A) by Vp|A|€ = AE. Since
IAIEI® =< |AJg, |A]¢ >=< A™AE, € >= | A¢[”,

it follows that 1} is a well-defined isometry, and so extends to a partial isometry V' with
initial space ran (]A|) and final space ran (A). It has already been shown that D(A*A) is a
core for A, and by 2) of the Spectral Theorem it is easy to see that it is also a core for |A|.
If £ € D(A) we can choose a sequence {,} in D(A*A) converging in the graph norm of A
to £&. Then

lim |Al¢, = lim V*AE, = VA,
n—oo

n—oo

and since |A] is closed, we have £ € D(A) and |A|{ = V*AE, so that V|A|§ = A¢. Therefore
A C V]A|. On the other hand, if £ € D(|A|), and we choose a sequence {&,} converging to
¢ in the graph norm of |A| so that

lim A¢, = li_>m VAl = V]A.

Since A is closed we have £ € D(A) and A{ = V]A| so that A D V|A|. Therefore
A = V]A| and by construction V' is unique. By Lemma 2.21 we have A* = |A|V* and so
AA* = V(A*A)V*. But since we also have (V|A|V*)? = V(A*A)V* the uniqueness of posi-
tive self-adjoint square roots we have |A*| = V|A|V* = V A* so that A* = V*|A*|. Applying
Lemma 2.21 again we have A = |A*|V.

12



If we also have A = UB where B is positive self-adjoint operator and U is a partial isome-
try with initial space ran (B), then by Lemma 2.21 we have A* = BU* and by assumption on
U we have A*A = BU*UB = B2. By uniqueness of positive self-adjoint square roots we have
B = |A|, and so we must also have U = V| giving uniqueness of the polar decomposition.

Now suppose that A is affilated with a von Neumann algebra M, and let U € M’
be a unitary. Then A = UAU* = (UVU*)(U|A|U*). But U|A|U* is a positive self-adjoint
operator and UV U™ is a partial isometry with initial projection (UVU*)*(UVU*) = UV*VU*
which has range Uran (| A|), so coincides with the range projection of U|A|U*. By uniqueness
of the polar decomposition. we have U|A|U* = |A| and UVU* =V, so that |A] is affiliated
with M and V € M.

O

We will mention briefly here the use of conjugate linear operators. If A is a conjugate
linear operator, we can linearize it by considering it as an operator from H to the dual
Hilbert space H*. To be more precise, we define D(A*) to be the set of £ € H such that the
conjugate-linear functional n —< An, £ > is bounded on D(A), and define A*¢ € H to be
the unique vector such that for all n € D(A)

<A E>=<n, A > =< A n>.

Then A* is a closed conjugate-linear operator, and we note furthermore that A*A is a self-
adjoint linear operator on H. We define a conjugate linear partial isometry to be a conjugate-
linear operator V' that linearizes to a partial isometry.

Theorem 2.24. If A is a closed conjugate-linear operator on H, then the conclusions of
the Polar Decomposition Theorem hold with the linear partial isometry V' replaced by a
conjugate-linear partial isometry.

We turn now to bounded operators to offer a more generalized polar decomposition for
operators in a von Neumann algebra.

Theorem 2.25 (The Generalized Polar Decomposition Theorem). Let M be a von Neumann
algebra acting on a Hilbert space H.

1) If x,y € M such that y*y < x*x then there ezists a unique s € M such that y = sz,
and ker s O (ran x)*+. Moreover, ||s|| < 1.

2) Let {x;}icr be a family in M such that ), xfx; converges to an operator a € M in the

SOT. If we let s; € M be as in 1) such that z; = sial/Q, then ). sis; converges in the
SOT to the range projection p of a.
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Proof.

1) Define a map sp : ran z — ran y by so(z€) = y€. The map is well-defined since if
x& = 0, then ||[yé||? =< y*y&, € ><< x*z€, & >= 0. Moreover, this calculation implies that
sp is bounded and that ||so|| < 1. We then extend this map by continuity onto the closure
of ran z and finally extend it to a bounded operator on H by setting s = 0 on (ran x)*.
The uniqueness is by construction, and it remains to prove that s € M. Now if v € M’ is
unitary, then y = uyu* = uszu* = (usu*)x. Since the range projection p of z lies in M, the
subspace (1 — p)H is invariant under u*, so usu*(1 — p)H = {0}. By uniqueness we have
usu* = s, so that s € M.

2) For each finite subset J C I set p; = >, .;sis;. Then {p;} is an increasing net in
M, and moreover, if £ € H,n = a'/?¢ we have

<psmn>=<a’?> sisia'’ ¢ >
e
ieJ
<< a& &>
=<pn,n>.

Since s;(ran a'/?)* = 0, it follows that p; < p. Hence {p;} converges to some py € M™* in
the SOT such that pg < p. But then if we let &, 7 be as above, then

<pom,n >=<d") sisia'¢ ¢ >
i€l
ieJ
=< a§,§ >
=<pn,n>.

Therefore py = p.
O

We end the exposition of unbounded operators by giving an application of unbounded
operators to one-parameter unitary groups.

Theorem 2.26. Let A be a self-adjoint operator, and set U(t) = exp(itA) fort € R. Then
we have the following:

1) the function U : R — U(H) is a group homomorphism and is continuous in the SOT;
2)if £ € D(A) then lim;_y %[U(t)g — & =iAE. Moreover, if £ € H and this limit exists,
then & € D(A). Consequently D(A) is invariant under each U(t).
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We have the following relation to von Neumann algebras.

Corollary 2.27. Let A be a self-adjoint operator and for each t € R let U(t) = exp(itA).
Let M be the von Neumann algebra generated by {U(t)}ier. Then A is affiliated with M.

Proof. Let ¢ € D(A), and let T € M’'. By 2) of Theorem 2.26 we have that
iAE = limy_,o $[U(t) — 1€ and since U(t), T commute,

li 1Ut 1T¢ =T 1Ut 1

fimy $10(1) ~ 17 = Tlim 1[U(9) - 1.
Hence by 2) of Theorem 2.26 we have that T¢ € D(A) and AT¢ = TAE. Hence AT C TA,
and the reverse inclusion follows automatically since D(T'A) = D(A). Therefore A is affiliated
with M.

[

It is a remarkable fact is that the converse of Theorem 2.26 also holds.

Theorem 2.28 (Stone’s Theorem). If{U(t) }er is a one-parameter group of unitaries which
is continuous in the SOT, then there exists a self-adjoint operator A such that
U(t) = exp(itA). Moreover, if M is a von Neumann algebra acting on H, then A is af-
filiated with M if and only it U(t) € M for all t.

The operator A given above is often called the infinitessimal generator of {U,} or just the
generator. We note the following result relating the continuity of the unitary group, and the
boundedness of the operator.

Theorem 2.29. If A is a self-adjoint operator, then A is bounded if and only if the family
of unitaries {exp(itA) hier is norm continuous.

We will be applying these results in the following way. If A is a self-adjoint, positive,
injective operator, then we can define the operator log(A), where log is the principal branch
of the logarithm, and we define log(0) = 0. This will yield a well-defined self-adjoint operator
since ker (A) = {0}. Then we have A" = exp(itlog(A)) by the composition rule and the
family {A"} is a one-parameter group of unitaries which is continuous in the SOT. Lastly,
we give a result about the analyticity of such automorphism groups.

Lemma 2.30. Let H be a positive, self-adjoint, injective operator on a Hilbert space H. For
a vector £ € H the following are equivalent:

1) ¢ € D(H); _
2) the function t — H™E can be extended from R to the closed strip D C C bounded by —i
and 0, yielding a bounded, continuous function which is holomorphic on the interior.
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Proof.

1)=2). The extension we are going to be considering is the function (o) = H™¢. 1If
H = [ AdE()) is the spectral decomposition then

/|)\ia|2dE5 < /|>\|2dE§ < o0

which says that ¢ € D(H™) and ||H* || < ||HE]| so that £(-) is well-defined and bounded.
Moreover, if 3 — [y then

|HP¢ — HiPog|? = / AP — NP 2dEe (N).

This converges to 0 by the Lebesgue dominated convergence theorem with dominating func-
tion A — |2

Set M = (Jo~, E[1/n,n|H. Then E[l/n,n] — I SOT so M is dense, and it is con-
tained in the domain of ¢(H) for every continuous function ¢ on C. In particular, if
n € E[l/n,n]H,( € H we have

< Hip, ¢ >= / NOAE, (M),

1/n

which says that the function n(B) = H%*7n is entire. Then if o belongs to the the interior of
D we have
<&(a),n>=<H"¢n>
=< & H >
=< 57 77(—@) >,

so £(+) is holomorphic on the interior.

2)=1). Suppose that the function ¢t € R — H"¢ has such an extension to a function F
on D. By the implication 2)==1) we have that for n € D(H), the function n(a) = H*n
is defined with domain D(H), is bounded, continuous and holomorphic in the interior of its
domain. Then the two function g1, g» defined on D by

gi(e) =< F(a),n>,  ga) =< n(-a) >,

are bounded, continuous, homorphic on the interior of their domain, and agree on the real
line R. By the Schwarz Reflection Principle we infer that they must agree everywhere. In
particular we have

< F(i),n>=< & Hnp> .

Therefore £ € D(H).
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3 Weights on a von Neumann Algebra

In this Section we consider a certain unbounded analogue of a positive linear functional on
a von Neumann algebra, which is called a weight. We will first apply the GNS construction
using weights. After mentioning some of the highlights of the theory of traces, we will study
the topological properties of the adjoint operation on the GNS representation space. The
material for this Section is from Chapter 7 of [13], except for the subsection on traces which
is from Chapter 5 of [12] and Theorem 3.5 which is from Chapter 1 of [8].

Definition 3.1. A weight on a von Neumann algebra M is a function ¢ : M — [0, 0]
satisfying, for v,y € M*T X >0,

o(z +y) = o(x) + o(y); P(Ar) = Ap(x).

If we have that for any x € M,
o(z*zr) = ¢(xx”),

then we say that ¢ is a trace. In addition we say that:

a) ¢ is faithful if p(x) =0 only if z = 0;
b) ¢ is normal if ¢(sup z;) = sup ¢(x;) whenever {z;} is an increasing bounded net;
)

(2

c) ¢ is finite if p(1) < oc.
d) ¢ is semifinite if the *-algebra generated by the set {x € M™T : ¢(x) < 0o} generates M.

Let ¢ be finite. Since for x € M™ we have x < |[|z||1, it follows from additivity that
¢(z) < oo. In this case, the normality condition is equivalent to saying that ¢ can be
uniquely extended to an element of the predual M,. If ¢, w are weights on M then we write
w < ¢ if for all z € MT we have w(z) < ¢(z). The next Theorem says that in general, a
normal weight is just the pointwise limit of an increasing net of positive elements from M.

Theorem 3.2. For a weight ¢ on a von Neumann algebra M the following are equivalent:

1) ¢ is normal;
2) Setting ® = {w € M} : w < ¢} we have for x € M+t

¢(z) = fjég“(x)'
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We now begin to study the GNS representation of M with respect to a weight ¢. For this
purpose we must first extend the weight ¢ to a positive linear functional, also denoted by ¢,
acting on a *-subalgebra of M. We consider the following spaces:

ng ={r € M: ¢(z"z) < co};

My = Ny = {foyz X, Y € n¢} :

i

Lemma 3.3. The set ny is a left ideal, and my is hereditary *-subalgebra linearly spanned
by m;; ={z e M*: ¢(x) < co}. Hence ¢ extends uniquely to a positive linear functional on
M.

Proof. If a € M,z € ng then the inequality (az)*az < ||a||*z*z shows that n, is a left ideal.
Suppose z = > 7| xiy; with x;,y; € [ng () M*]. Then by polarizing,

1

z = 5(2 + 2%)
=3 Z Z (5 + %) (2 + %) + (=0)" (25 + i*yy)* (25 + i*yy)]
= EZ[(%’ +y5) (@5 + ;) — (25 — ;)" (25 — yj)]

< - ZxJnLyJ (x; +yj),

50 ¢(2) < oo and it follows that mj C {z € M* : ¢(2*z) < co}. The reverse inclusion is
clear, so we have equality. For z € m,, the equality

3

1 < , P ‘
z= Zzzik(%‘ +ivy;)* (x5 + ityy)

=1 k=0

implies that my is spanned by its positive elements and the lemma follows.
m

Now set Ny = {z € M : ¢(z*z) = 0}, and let g4 : ny — ny/Ny be the canonical quotient
map. Define an inner product on g4(ng) by < ¢s(x),qs(y) >= ¢(y*z). The representation
space H, is the completion of ¢,(ns) and we obtain a representation m, : M — B(Hg) by

To(a)gs(7) = g(az).
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Definition 3.4. Let m be a representation of a von Neumann algebra M on a Hilbert space
H. Then we say that 7 is normal if it is o-weakly continuous. Equivalently, whenever {z;}
1 a bounded increasing net of self-adjoint elements in M we have

m(sup x;) = sup 7(x;).

Theorem 3.5. If m is a non-degenerate normal representation of a von Neumann algebra
M, then m(M) is a von Neumann algebra.

We now have the following result on the representation .

Proposition 3.6. If ¢ is a semifinite normal weight, then (mwg, Hy) is a non-degenerate,
normal representation. In particular, w,(M) is a von Neumann algebra. If ¢ is faithful,
then so is my.

Proof. Since we have m4(1) = 13,74 is non-degenerate. Let {z;} be an increasing net in
M with © = sup, z;, let y € n, and consider the functional wy(T) =< Tqys(y), gs(y) >
which belongs to ms(M)}. Then

limwg, ) © Tp(r — 2i) = lim < me(z — 25)45(y), 45 (y) >

1/2 1/2

y) >

= li%rn < gp((7 — )" 7y), qo((v — 5)

= lim o(y" (v — 2:)y)
= 0.

Hence wg,(y) 0 Ty is normal, and since the set {w, : y € ng} is total in 7, (M) it follows that
Tg is normal.

If ¢ is faithful and 0 # x € M, and if we choose a net {y;} in n, which converges to 1 in
the SOT, then (zy;)*(zy;) converges weakly to z*z. In particular, there exists some i such
that y'z*zy; # 0. Then

7o (2)q0(yi) I” = dyiz"ays) > 0,
so 7y is faithful.
O

Before continuing the general discussion we now summarize some of the key features of
the theory of traces. Since the purpose is mainly to motivate the development of the theory
of weights, full proofs will not be given.
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Let 7 be an faithful, normal, semifinite (fns) trace on M and let n, be as before. If
r € n,, we have
T(xx™) = 7(x"z) < o0,

so that x* € n,. Therefore n, is a self-adjoint left ideal, and consequently, also a right ideal.
It follows that we can consider an (anti-homomorphic) representation 7" of M on H, given
by

()¢ (x) = ¢-(wa).

As before, this defines a bounded operator since

lg-(za)||* = 7((za)"(xa)) = 7((za)(za)") < |al*r(z2") = [la]|*[lq- ()]

Moreover, since
lgr(z")|* = 7(z2") = 7(2"2) = [lg-(2)]|",

the involution on n, induced by the adjoint extends to a conjugate linear unitary on H.,,
denoted by J. For a € M, we have

(Jrz(a)J)gs(x) = ¢-((az")") = g-(za”) = 77(a")gy(x)

so that Jr.(a)J = 7/ (a*). Hence J induces an anti-isomorphism between 7. (M) and 7/ (M),
and in particular, 7/ (M) is a von Neumann algebra. Moreover, we note that if a,b € M,
T € n,, we have

7 (@) (0)g- () = g-(axb) = 7 (b)7-(a)qs(x),

so that the representations m,, 7/ commute. Therefore /(M) C 7, (M)’. In fact, we also
have the reverse inclusion. The above is summarized in the following theorem.

Theorem 3.7. The representations ., m. of M obtained by left and right multiplication
operators on the Hilbert space completion H. of n, are faithful, normal and satisfy the
following:

Jr (M)J =1, (M) =7 (M).

The condition that a weight be a trace is quite restrictive, and the existence of a trace
turns out to be dependent on the type of the algebra.

Theorem 3.8. Let M be a von Neumann algebra. Then there exists a unique decomposition
of M into a direct sum

M= M;d M, & M, ® Mipr,

where each M; is of type j.
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We say that a von Neumann algebra M is semifinite if the type III summand is trivial.
Suppose that M admits an fns trace 7. If we choose any projection e € M such that
T(e) < oo, it follows that 7 restricts to a faithful finite trace on the corner algebra eMe.
Then if we choose any isometry u € eMe, we have 0 = 7(e — u*u) = 7(e — uu*) so that
e = uu*. Therefore the algebra e Me is finite, so that e is a finite projection. On the other
hand, if e € M is an arbitrary projection, then the semifiniteness of 7 ensures that there
exists a non-zero element x € (eMe)*t such that 7(z) < co. If we let & = [ AdE()) be the
spectral decomposition of z, and if we choose a number € satisfying 0 < € < ||z|| we have
that € - Ele, ||z]]] < z, so that 7(Ele, ||z]]]) < e '7(z) < oco. Therefore Ee,||z||] < e and
Ele,||z]|] is a non-zero finite projection. Since e was arbitary, M is semifinite. In fact, the
converse is also true.

Theorem 3.9. A von Neumann algebra is semifinite if and only if it admits an fns trace.

For a von Neumann algebra that does not admit a trace we can still obtain a similar
picture to the one above, and which is in fact more useful. To begin, we state the following
result from [13].

Theorem 3.10. Every von Neumann algebra admits an fns weight.

Now let M be a von Neumann algebra with an fns weight ¢. We note that if ¢ is not a
trace, the difference between the GNS representation (74, H,, ¢s) and that of a trace is that
we no longer have a conjugate unitary J on H, coming from the adjoint operation. However,
we define Uy = gy(ng Nnj), and give it an involution * by

In the sequel we begin a more in depth study of this involution by showing that it has a
closed extension S. This allows us to take the polar decomposition S = JA'?, yielding as
before a conjugation J which relates the represented algebra to its commutant, and more
importantly a positive self-adjoint non-singular operator A, which will be used to define a
one-parameter automorphism group on the von Neumann algebra.

We can now state the main theorem of this Section.

Theorem 3.11. The pre-Hilbert space Uy = qy(ng N ny) is dense in Hy. We define an
inwvolution and product by

qs(x)F = qo(a”), 06(7)as(y) = qo(zy).

For ¢ € Uy, denote by m(&) the operator on the closure Hy extending left multiplication by
. Then the set of left multiplication operators generate ws(M). Moreover, the involution *
is a densely defined, closeable, conjugate linear operator on Hg.

21



First we want to show that U, is dense in Hy. Since ¢ is semifinite the subalgebra
ms(ng N ny) generates mg(M) so that in particular it acts non-degenerately on Hy. But if
qs(x) € Uy N qy(ny), then for any y, z € ng we have

< my(Y)q6(7), qp(2) >=< qg(), T(y) qs(2) >=< q4(2), qs(y"2) >= 0,

and 5o gs(z) = 0. Therefore Uy = {0}, and so the left multiplication operators m(gs())
coincide with the operators m4(x). It now suffices to show that the involution is closeable.
Recall that an operator is closeable if and only if it has a densely defined adjoint. We will
use the characterization of normality given in Theorem 3.2 to show that the domain of the
adjoint is large enough.

Theorem 3.12. Set By = {w € M : w < Ao for some X\ > 0}. Then for w € Ey there ex-
ists a vectorn, € Hy and a positive operator hy, € my(M)" such that hulj/Qqqﬁ(x) = m4(x)n, and
W() =< 7o () s o >

Proof. Let w € Ey. Since w < A for some A > 0, this gives that for z,y € ny,
w(yz)| < wlaz)w(yy)"?
< Mg(a"x) 2oy y)'

so that there exists an operator h,, € B(H,) such that < h,qs(x), gs(y) >= w(y*z). More-
over, for any a € M we have

< homg(a)ge (@), as(y) = w(y ax) >
= w((a’y) x)
=< huqy(r), 4s(a”y) >
=< mg(a)hwgs (), 44(y) >,
so that hy, € my(M)". Now let (7, H,, &) denote the cyclic representation associated to w.

Then the same inequality w < A¢ implies that the function g4(x) — m,(x)E, is well-defined
and extends to a bounded operator t,, : H, — H,. That is, we have

17 (2)€u]* = w(a"z) < Ap(z"x) = Algs (@)

Note that for any a € M we have

tumg(a)ge(r) = twgs(az)
= Mw (ax)fw

= To(@)tugs(2),
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so that t,m(a) = m,(a)t,. Also note that for x € n,

< tw‘]tﬁ(x)a Tu(y)&w > =< Ww(x)fwvﬂw(y)fw >
= w(y'z)
=< huwqs(), 44(y) >
=< q4(2), hwis(y) >,

s0 t1 (mu(y)€w) = hwas(y) and tit, = h,. Now let ¢, = u,hi)? be the polar decomposition of
t,. For a € M, the above commutation relation for ¢, gives

To(a)ushl/? = u,h*my(a)
= UW7T¢(CL)hi,/2,

so that m,(a)u,, u,ms(a) agree on [h}u/ *H]. But u, vanishes on [h}u/ *H]* and this space is
invariant under m4(a) so that u,m,(a) also vanishes on [he/*H)*. Hence, m,(a)u, = Uy Ty (a).

Set 1, = u &, € He. Then for x € ng, we have
To(2)N0 = () ugée
= (uumy(27))"E
= (Mo (") uw) &
= U, ()&
= ugtugs()
= hi/?q(x).

Moreover, if x = z*y for y, 2 € ny, we have

< T (T) s Mo > =< T (Y) oy T (2) M0 >
=< h2qs(y), hqs(z) >
= w(x),

which completes the proof.

proof of Theorem 3.11. Retaining the notation from Lemma 3.12 we have that for
T €ngNnj,b e mg(M),wi,wy € By,
< gy()?, h}u{anw > =< b*h}u{Qqqﬁ(m*),mQ >
=< 0" (T) Ny s My >
=< b*ﬁwnmﬁ(ﬂf)%z >
=< D1y, i (2) >
=< hi;/QQb*an(M)(x) >
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Therefore letting F denote the adjoint of * we have that h}/lzbm,2 € D(F) and

F (h}u/fbnw?) = hi,/fb*nwl. Hence to show that ? is closeable it suffices to show that the
set
{hi}/1277'¢,(./\/l),77w2 fwp, W € CI)}

is total in H.

Claim: The net {h, : w € ®} converges to 1 in the SOT. Hence for fixed wy € ®, the set
{hi/127r¢(/\/l)'nm wy € O} is total in m,(M)ne.

Since the map w — h,, is additive, the net {h, : w € ®} is increasing. Then by Theo-
rem 3.2,

lge(2)1* = (o)

= supw(z*T)
wed

= sug < hwqe(), qp(z) >,
we

proving the claim.
Claim: The set {my(M)n, : w € O} is total in H.

Let e be the projection onto the closed span of {m,(M)n, : w € ®}. Then e € 7,(M) and
(1 —e)n, =0 for every w € ®. Now let f € M be the projection such that m,(f) =1 —e.
Then

¢(f) = supw(f)

wed

=sup < (1 — e)n, Ny >
wed

= 0.

Since ¢ is faithful, f =0 so 1 — e = 0, which completes the proof of the theorem.
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4 Left Hilbert Algebras and Tomita’s Theorem

In Section 3 we studied the GNS construction corresponding to an fns weight, and obtained
the important result that the adjoint acting on the representation space is closeable. In
this Section we continue the study of this representation space by considering the following
abstract characterization. The material for this Section is from Chapter 6 of [13].

Definition 4.1. Let U be a an associative algebra with a scalar-valued inner product < -, - >
and an involution denoted *. Let H be its Hilbert space completion. We say that U is a
left (right) Hilbert algebra if it satisfies the following.

1) For each & € U the mapn € U — &n € U (respectively, n € U — n& € U) is continuous.
2) For £,n,( €U, < £n,( >=<n, &8 > (respectively, < né,( >=<n, (& >).

3) The involution * is closable.

4) The set {&n: &,m € U} is total in H.

For each ¢ € U denote by m(§) the extension of the left multiplication operator to
H. By property 2) we have < (&), >=< n,m(£)¢ > so that 7 (&)* = m(€%). Con-
sequently m,(U) = {m(§) : £ € U} is a *-subalgebra of B(H). Moreover, since the set
{&n : &n € U} is total in H, the left-multiplication operators act non-degenerately on H,
and so m(U)" = m,(U)T. We call 7,(U)" the left von Neumann algebra associated
to the left Hilbert algebra U, and denote it by R,(U). Analogously, if U is a right Hilbert
algebra, we write 7,.(§) for right multiplication operator, m,.(U) for the set of all right mul-
tiplication operators, and write R, (U) = m,(U)"” the right von Neumann algebra associated

to U.

It was shown in Theorem 3.11 that if ¢ is an fns weight on a von Neumann algebra M,
then the the space Uy = qy(ny N n;‘)) is dense in the representation space Hg, the set of left
multiplication operators generate m4(M), and the adjoint is closeable. Therefore, Uy is a
left Hilbert algebra.

Let U be a left Hilbert algebra, and let S be the closure of the involution. In the following
lemma we introduce two important operators arising from S. First we make a remark on
the use of the word involution. If a conjugate linear closed operator T satisfies T% = 1|p(r),
and 9 < D(T) is a core for T" such that M admits an algebra structure for which T'|gy is
an involution on 9 in the usual sense, then we will also say that 7" is an involution. The
context will make it clear what definition we are using.
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Lemma 4.2. The operator S is an involution and admits polar decomposition
S = JAY? = A=V2 ] where J is an isometric involution and A is non-singular.

Proof. Let D' be the domain of S. If £ € D, then by definition there exists a sequence
{&.} C U such that ||§ — &,]| — 0 and ||SE — SE&,|| — 0. But this immediately implies that
the sequence {(S¢&,,&,) = (S&,,S%¢,)} is Cauchy in the graph norm of S, so S¢ € D* and
S%¢ = €.

Since S is non-singular, it follows immediately from the polar decomposition S = JAY?
that A is non-singular and J is unitary. Moreover, since

JAY? =3
=61
_ (A_1/2J)_1
— JIAL2

by the uniqueness of the polar decomposition we infer that J = J1.
O

We call J; A respectively the modular conjugation and modular operator associated
with U. Asnoted at the end of Section 2, the fact that A is injective means that we can unam-
biguously define the operator log(A), and so obtain a one-parameter unitary group {A%}cr
in 4. This implements an automorphism group {o;}i«cr, on B(H) by oy(z) = AzA~"
and we will show that this restricts to an action on R,(U). Moreover, the conjugation J
implements a *-anti-ismorphism between R(U) and its commutant by a — Ja*J. As a first
step towards proving this we will come up with a description of the commutant of R,(U).

Definition 4.3. A vector n € H is called right bounded if there exists x € B(H) such that
x& =mp(&)n for all § € U. We write x = w,.(n) and denote the subspace of all right bounded
vectors by B'.

The use the prime symbol in B’ is made in direct analogy to the commutant of a von
Neumann algebra. As to be expected, we will at some point define a set B of left bounded
vectors. Note that the operators m,(§), w.(n7) where & € U,n € B’ commute, and since
me(U) acts non-degenerately we conclude that m,.(B') C R,(U)". For convenience, we extend
multiplication by defining

&n = m(&)n, for £ e U,n € H;
&n = m(n)€, for ¢ e H,ne B

26



While the set m,.(B') might not be self-adjoint we can fix this dificiency if we consider the
operator F' = S*. Note that if n € B ND(F),&,( € U then

< 7)€, ¢ > =< m(&n, ¢ >
=<n,&(¢ >
=<1, 5(¢%¢) >
=< (%, Fn >
=< & m(C)F'n >,
so that m,.(n)*¢ = m({)Fn. Hence F'n is right bounded and m,.(Fn) = m.(n)*. By analogy
with the involution S we write D(F) = D°, and set U’ = B'ND".

Lemma 4.4. The operator F = S* satisfies F* = 1|p.

Proof. If n € D, ¢ € D then
<S¢ Fn>=<n,5% >=<n,£ >,

so that Fip € D” and F?n = 1.
O

Theorem 4.5. The setU' is a right Hilbert algebra with involution given by F|yr. Moreover,
U is dense in H and R, (U') = R,(U)'.

This theorem will follow from a series of lemmas. To simplify notation we will often write
£ 1” in place of S¢, Fn for € € Dt n e D°.

Lemma 4.6.

1) For a € RyU),n € B, we have that an € B' and m.(an) = am,(n). Hence B’ is
invariant under Re(U) and 7, (B') is a left ideal in Re(U)'.

2) For ni,my € B we have m,(n)n2 € D° and (m.(m)*n)’ = m-(n2)*m. Hence,
(BB CU'.

Proof.

1) Let a € Ry(U)',n € B'. Then for any £ € U we have

m(§)an = am(§)n = am.(n)€.

It follows that an is right bounded and =,.(an) = am,.(n).
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2) If my,mo € B’ then for £ € U we have

< ()2, £ > =<, o (m)EF >
=< 12, T (E)m >
=< ()2, m >
=< ()€, m >
=< & m(n2)"'m > .

Since U is a core for S the result follows.

Since 7,.(U') is self-adjoint, part2) from Lemma 4.6 implies that
U U C (BB CU,

and that for 1, ¢ € U’ we have (n¢)” = ("7’ so that U’ is an involutive algebra with involution
given by °. Property 2) of Definition 4.1 also follows easily. We now want to show that 4’
is dense in H. The strategy is to obtain a larger class of not necessarily bounded operators
affiliated to Ry(U)" by extending the definition of m,.(n) to vectors n € D°. We then apply
the functional calculus developed in Section 2.

Lemma 4.7. Let n € D°. Define the operators ag, by on U by
ao§ = (&), bo& = me(€)n’.

Then ag, by are preclosed and ay C bj,by C ai. We denote their closures respectively by
7.(n), 7. (1°) and note that they are affiliated with Ry(U)'. Moreover, n € m.(n)H.

Proof. 1t £, € U, then we have
< aOCag > =< Wﬁ(()n:& >
=<1, m()*€ >
=<, (71-5(5)*(>ﬁ >
—<m(§)°¢n >
=< ¢, m(&)n’ >,
which is clearly bounded on U as a function in ¢. Hence & € D(a}) and ajé = mo(€)n” = boé.

Hence, by C aj; so that ag is closable. Similarly, we have that b, is closeable.

Note that if a is affiliated with R,(U)’, then since 7.(n) = (a3)* and m,.(n°) = (b3)*, for
any self-adjoint z € Ry(U), we will have

o, (n) = 2(ah)” = (age)" = (2a})” = (a3)"x = m,(n)a,
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and so m,(n) is also affiliated with R,(U)’. Then if ¢ € D(a}), v € Ri(U), &1, & € U we have

< apé1, m(§2)¢ > =< m(§)n, me(&2)C >
=< m(&2) me(€1)n, ¢ >
=< aolfér, ¢ >
=< &1, me(&2)ag >

Hence, m,(£2)¢ € D(af) and afmi(§2)¢ = me(&2)aiC. Now let x € Ry(U) and let {&;} C U be
chosen such that m,(&;) — x in the SOT. Then for ( € D(ag) we have

lim agm(§)¢ = limme(&)agC = zagC

Since af is closed, x¢ € D(af) and ajx( = zai¢. On the other hand, if ¢ € H is chosen such
that ¢ € D(aj) and x is unitary, then £ € 2*D(ag) C D(af), so that the above calculation
yields zajé = ajx€.

The last claim follows by choosing a net {m(&;)} in m,(U) converging to 1 in the SOT, so
[l

Lemma 4.8. Letn € D°, and let 7,.(n) = uh = ku be the left and right polar decompositions
of m.(n). If f € C.(0,00) then f(R)n, f(k)n are right-bounded and

o (f(h)ir') = hf(h)u,
m(f(k)n) = kf(k)u.

Proof. Let £ € U. Since m,(n) is affiliated with Ry(U)’, by the Polar Decomposition Theorem
so are h,k and u € Ry(U’). By Lemma 2.20, f(h), f(k) belong to Re(U)’. Then

But hf(h) is bounded, and it follows that f(h)n’ is right-bounded and 7,.(f(h)n’) = hf(h)u*.
The other part follows similarly.
[

Lemma 4.9. Both U',U"? are cores for F.
Proof.
Claim: Let f € C.(0,00). With n, h, k be as before, we have f(h)n’, f(k)n € U".
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If p is any polynomial, it is clear that hp(h) = u*kp(k)u. Then if K = supp f, we can
choose a sequence of polynomials p,, such that f = lim xgp,. By the functional calculus it
follows that hf(h) = u*kf(k)u. Then

hf(h) =ukf(k)u
= u'm.(f(k)n)
= m(u" f(k)n),

(

and similarly, kf (k) = 7, (uf(h)n’) so that hf(h),kf(k) € m.(B).

Choose a function g € C.(0,00) such that for any A in the support of f we have
f(A) = Ag(N) f(A). Then f(h) = g(h)hf(h) and f(k) = g(k)kf(k), both of which lie in
m-(B') since it is a left ideal in Ry(U)'.

Now choose fi, f» € C.(0,00) such that f = fif,. Then
f(h) = fi(h)" fa(h) € m(B')*m,(B') € w0 (U).
Hence, we also have that fi(h), f2(h) € m,.(U’) so that f(h) € m,(U"?). Moreover,
e (f()n") = o (F1(R) fo(R)0)
1 () (fa(R)7)

(B/ *WT(B/)
o),

I
3

I
|

3

s
T

N m
)

50 f(R)y> € U'. Repeating the last argument (noting that we now have that
f1(R), T (fo(h)n’) € m.(U")) we see that f(h)n’ € U, and similarly f(k)n € U

Let {f.} be a sequence of non-negative functions in C.(0, co) which increases pointwise to
X(0,00)- By the Spectral Theorem, f,(h), fn(k) converge in the SOT to the range projections
p,q of h, k respectively. Then p and ¢ are respectively the range projections for m,.(n)* and
7,.(n), and as shown in Lemma 4.7 we have n° € m,.(n)*H and n € 7,.(n)H so that ¢qn = 7
and p’ = 1°. Hence = qn = lim,, f,(k)n and n° = pn’ = lim,, f,(h)n’, and by the claim we
have f,,(k)n € U™, f.(h)n” = (f.(k)n)°, which completes the proof.

]

proof of Theorem 4.5. First note that since U’ is dense in H the operators 7,.(n) for n € U’
are precisely the operators obtained by right multiplication on #’. We have 7. (U") C R,(U)’,
so that R, (U') = m.(U")" C R,(U)’". But by Lemma 4.9, m,.(U’) acts non-degenerately on H,
so it contains a bounded net {a;} which converges to 1 in the SOT. Then if x € R, (U)"*,
we have that x'/2a; converges to #'/? in the SOT, so that (x'/2a;)*(x'/%a;) converges to x
in the WOT. But (2'2a;)*(2"%a;) € 7.(B)*7,.(B) C 7.(U'), so that z € R,(U'). Hence
R.(U) € R, (U"), completing the proof.

[
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The following lemma shows that our choice of U’ is in fact as large as possible.

Lemma 4.10. We have that ©.(U') = m.(B') N 7. (B')*. That is, 7. (U’) is the set of right-
multiplication operators whose adjoint is also a right multiplication operator.

Proof.
Claim: The subspace U? is a core for S.

Since U is a core for S it suffices to approximate & € U in the graph norm of S. Assume
WLOG that ||7,(§)|| < 1. Then setting p,(t) =1 — (1 — )™ we have that

Pa(me(E)me(€)*) = pn(£E)

converges to the range projection of m,(§) in the SOT. Then
¢ = lim p,(E€°)¢,
n— o0
and
& = lim p, ()¢ = lim (pa(£6°)8),

which proves the claim.
Now suppose 1,12 € B’ such that m,.(n)* = 7.(n2). Then for &;,& € U, we have

< 77175252 > =< m(&)m, & >
=< ()&, &2 >
=< &, ()62 >
=< & m >
=< (&) m > .

But since U? is a core for S, it follows that 17, € D’ and 1} = 1. Hence,
. (B)Nm.(B') C m.(U").

But by part 2) of Lemma 4.6, the reverse inclusion holds, so that m.(U") = m.(B") N, (B)*.
[

We now have the dual version of Definition 4.3.

Definition 4.11. A vector £ € H is called left bounded if there exists x € B(H) such that
xn = m,-(n)€ for allm € U'. We write x = m,(§) and denote the space of all left bounded
vectors by B.
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Setting U” = BN D! the above arguments can easily be adapted to show that 2" is a left
Hilbert algebra containing i/, and that

RoU") = R (U') = Re(U).

Moreover, U” = U"". We say that a left Hilbert algebra is full if & = U".

Let ¢ be an fns weight on a von Neumann algebra M. We have already seen that
Uy = qy(ny Nny) is a left Hilbert algebra such that M = R,(Uy). Retaining the notation of

Lemma 3.12 we note that each vector 7,,,w € ® is right-bounded with 7,.(n,) = h}/g. Then
if £ € Hy is left-bounded, x = m,(&) we have

¢(z*r) = supw(xz*x)
wed

= sup ||y ()7n. ||
wed

= sup H7Tr(77w)5H2
wed

= sup [|hY/%¢])?
wed

= [i€1I”

< o0,

so x € ng. It follows that Z/{é,’ C ng Nng = Uy, so Uy is full.

It will be convenient for the rest of this Section to assume all left Hilbert algebras are full.
We now come to the main theorem of this Section.

Theorem 4.12 (Tomita’s Theorem). Let U be a full left Hilbert algebra with associated left
von Neumann algebra Ry(U), modular operator A, and modular conjugation J. Then we
have the following:

1) for all t € R, AR (U)A™ = RyU), and AU = U, AU =U';
2) JR(U)J = Re(Ud) and JU =UL'.

The proof will follow from a series of Lemmas. We begin by showing how the operator A
acts as a map from U’ into U.

Lemma 4.13. Let w € C — [RT U{0}] and set y(w) = \/ﬁ. Then (A —w) U CU
and forn € U we have [|m((A —w)™ )| < y(w)llm ()]l

Proof. First note that ¢ = (A —w)™ ' € D(A —w) C D*. Now let m(¢) = uh = ku be the
left, right polar decompositions of m(§) respectively, and let h = [ AdE(X) be the spectral
decomposition of h. As shown in the proof of Lemma 4.9, for any f € C.(0,00) we have

f(k)E € U and (f(K)E) = f(R)E".
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Claim: We have the estimate ||hf(h)&*|? < v(w)?||m-(M)II?|I|| f(R)€*]|?, and therefore the
measure Ey; is supported on the interval [0, ¢|, where ¢ = y(w)||7(n)||. In particular,

& e E([0,c))H.

To see this we note that

[Rf(R)E]? =< hf(h)E, hf(h)EF >
=< & hf(h)hf(R)EF >
=< & (kf(k)kf (k)" >
=< kf(k)kf(k)E, A >
—< kf (k)& kf(R)AE > .

Since the last term must be a real number, we have

2(Ju] —Re(w))llhf( )
< 2|k f(R)well[[Ef ()AL = 2Re(< kf (K)wE, kf (k)AE >)
e f (k) (w — A)EN = (Ikf (R)well + [k f (k)Ag])?
< |lkf(R)(A —w)]?
I f (k) *
= || f(k)kn]®
= ||f (k)ume(€)nl?
= |lf (B)um, ()&
= [lme ()" f()&F|?
< [lm () P1Lf (R)EF1,

and so we have the inequality. But this means precisely that for any f € C.(0, c0),

/0 N2 F(N)2dEer (A / FON2dE (A

and hence, the measure E; must be supported on the interval [0, ¢]. In particular, we have

I€¥]1* =< E[0, c0)éF, & >= /OO ldEg = / ldEg =< E0,d¢", & >= || E[0, €|
0 0

so that B0, ¢J¢f = ¢&F.
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But £([0,c]) € R(U) and since ||h|g(o,qyull < ¢, for ¢ € U we have

I ()& = I () E([0, c])€F|
= [1E([0, ))m ()€
= [1E([0, c)me(&*)Cl|
= [IE([0, huC]|

= [[RE([0, )u’(]]

< d|[]I

Thus £ is left-bounded. Hence & € U.
O

The above lemma shows that for fixed n € U’ we have a function s € R — (A+e®)n € U.
We now show how the operators m,.(n) € R,(U)" and 7,((A + €*)n) € Ry(U) are related.

Lemma 4.14. Let n € U',s € R. Setting & = (A + e)7'y € U, we have that for any
C17<2 € Dﬁ N Db7

< ()1, G >=< (Jm(&)N)AT20, AV G > et < (Jm(ED)T) A2, ATV >
Proof. First suppose (1,( € U ND°. Then

<1 (n)C1, G > =< T ((A +e%)€) ¢, G2 >
=< m(C)AE G > +e <m(G)E, G > .

Working with the first term, we have

<m(G)AE G > =< & (G >
=< (3¢, ¢ >
=< Cl;CQfﬁ >
=< G, (6G5)F >
=< (1, ATV I (6) AY2¢, >
=< Jmp(ENTATY2¢, AV, >,

and similarly, we have
< m(C)€, G >=< (Jme(§)T)AY2G AT G >

Therefore, in order to complete the proof we need to be able to approximate an arbitrary
vector ¢ € D¥ N D" with a sequence {(,} in & N D’ converging to ¢ simultaneously in the
graph norms of A2 and A~Y/2. First, note that

JU' = JFU' = J(JAV U = A=YV,
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so that A~Y2{" is dense in H. Hence, we can choose a sequence {n,} in U’ such that
n

(AY2 4+ A7Y2)¢ = lim A7V,

n—o0

Then ¢, = (1 + A)~'n, € U N D", and simple calculations show that we have
¢=lim¢, AV =lmAY%,, ATV =lm AT,
n— s i

]

To avoid issues of domain, for the moment we will suppose that A is bounded and invert-
ible. Then the above relation implies

T (n) = AYV2(Jmp(€)* )ATY2 + e ATYE(Tmy(€)* T) AV,
For a € C consider the operator o, € B(B(H)) given by
oo (T) = A AT
The above calculation says that

T () = [o_ija + €*0ipa] (Jme(§)"J.)

In other words, we have the equation
mo(S(e” + A) ') = J[(o-ij2 + € 0iga) T (m ()] .

The following proposition sheds some light on the nature of this equation.

Proposition 4.15. Let A be a unital Banach algebra, and let v : C — GL(.A) be a holo-
morphic group homomorphism such that sup,cg ||u(t)|| = M < co. Then for any s € R, the
element e=?u(—i/2) + e*/?u(i/2) is invertible and

o) e—zst

Tt —mt
o €™ te

le=2u(—i/2) + e u(i/2)] "} = / u(t)dt.

isQ

Proof. Set f(a) = ==——=zu(a). Then f is holomorphic on its domain D = C — iZ and if

= e _p—Ta

a =t + ir we have the following estimate:

eistefsr .
(@) = e —rult)utir) |
< Me™*" L ir

el
lemte e~ e~
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For t # 0, this gives
—sr 1 .
()]l < Me —‘HU(W)IP

|lem] — e=™|
Now let R > 0 and consider the boundary of the rectangular region
cr ={a € C:|Re(a)| < R,|Im(a)| < 1/2}
given a counterclockwise orientation. From the above estimate, we have

1

1/2
H/ f(R+ir)dr| < MKe™® —————,
172 [lem®| — 1]

and
1

[le™ = 1]|"

where K = sup_; o<, <12 |lu(ir)||. Letting R — oo, the integral of f on the left/right sides
of the rectangle converges to 0. Moreover, from the above estimate it is easy to see that the
integrals [*° f(t+i/2)dt, [T f(t —i/2)dt exist and are finite, and that

/ft—z/th / Ft+i/2)dt hm/f

yiye’

—-1/2
H/ f(=R+ir)dr|| < MKe™®
1/2

Now, since

et —e ™ -
lim —————— = me™ — (—7e™ ™) = 2,
a—0 [0

we have .
i 2-10%

. . e
ili%()éf(oz) = Cl[li% amu(a) = 1/27T

Hence f has a simple pole at 0, with residue 1/27. By the residue theorem, for any R > 0,
we have [ f(a)=1i, and so

/Zf(t—i/2)dt—/zf(t+i/2)dt:

But writing this out, we have

' 00 e (t—i/2) . S is(t+1i/2) .
i = /_ (12— /_ i/

S cistps/2 eisto—s/2
[ e et -

= i[e*?u(—i/2) + e=?u(i/2)] /Oo _eult) g,

Tt —mt
w €™ +e

u(tyu(i/2))dt

Replacing s with —s gives the desired result.
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Corollary 4.16. If v,y € B(H),s € R are chosen such that for all (;,(; € D*ND’ we have
< SL’Cl, CQ >=< yA71/2C1, A1/2<2 > +€S < yA1/2C1, Ail/QCQ >,

then ,
—s/2 e it A —it
y=e —A"zAT"dt.

o eﬂ't + 6—7rt
In particular, if n € U', we have

o] e—zst

t —7t
o €™+ e

(A +e¥)In)* = 6_5/2/ JA" 7, (n) A" Jdt.

Proof. Let A = [AdE(X) be the spectral resolution of A, and for each r > 0 set
E(r) = E[1/r,r]. Consider the one-parameter holomorphic subgroup {o, : a@ € C} of
B(B(E(r)H)) given by 04(a) = A™aA™", Then since E(r)(y, E(r)(; € D*ND’, we have

< E(r)zE(r)(1, G > =< xzE(r)(, E(r)( >
=< yATV2E(R)G, AYVPE(r)G > +e* < yAY2E(r)G, ATYV2E(r)G >
—< AV2E(r)yyE(R)ATY2(, G > +e < ATV2E(r)yE(r)AY?¢, G >
=< [o1/2(E(r)yE(r)) + e*o_1/2(E(r)yE(r))]¢1, G >

Hence,

E(r)xE(r) = o12(E(r)yE(r)) + eo_12(E(r)yE(r))
= 65/2(6_8/201/2 + 65/20_1/2)(E(7")yE(r)),

or equivalently,
eS/QE(r)yE(r) = (6_8/20'1/2 + 65/20_1/2)_1(E(7‘):EE(7‘)).

By Proposition 4.15,

e8] e—zst

(675/201/2 + 63/20_1/2)71 = / Utdt,

t —7t
o €™+ e

so that .
o] e—zst

t —7t
o €Tt e

e ?E(ryyE(r) = / A"E(r)zE(r)A™"dt.

Taking the limit in the SOT as r — oo gives the desired result.
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We can now prove part of Tomita’s Theorem. Corollary 4.16 says that for any n € U’,
(1,( € D ND’, we have

o] e—zst

Tt —mt
o €™ +e

< Jm((A+e*)In) I, G >=e%/? / < A'm(n) AT, ¢ > dt.

Since D* N D’ is dense in H, the linear functionals of the form we, ¢, for (i, ¢, € D ND’ are
total in B(H).. Hence, if w € B(H)., the above calculation implies that

oo efzst

Tt —mt
o €™t e

(T (A + ) Ip)T) = e/ / (At () A=) dt.

In particular, if w € B(#). vanishes on JRy(U)'J, then

oo —1st
/ (At (A=)t = 0.

t -7t
o €™ +e

By the uniqueness of the Fourier transform, and since the function t Wle,ﬂ is non-
vanishing, it follows that w(A%m,.(n)A~") = 0. Since 7,.(U’) is o-weakly dense in R,(U)" we
also have w(A%zA~") = ( for all x € Ry(U)'. Therefore,

ARy UY AT C IR(U)J.
For t = 0, this gives Ry(U)" C JR,(U)J. By symmetry, we also have that
A"R,U)A™™ C JR(U)' J.

Again, using ¢t = 0, this gives that R,(U) C JRy(U)'J, and therefore R,(U) = JR(U)'J,
and AR, (U)A™" C Ry(U). Since this holds for all ¢, we have in fact have

AR U)A™™ = Ry(U).

To finish the proof, we need to look at what is happening at the level of the Hilbert space,
and for that we consider the following result.

Corollary 4.17. Let s € R. Then

0 —ist
ePAY2(A 4 e%)7L = / _  Atar.
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Proof. Letting u be as in Proposition 4.15, we first note that

e Pu(—i/2) + e?u(i/2) = e *u(—i/2)(u(—i) + e).

Let E(r) be as in the proof of Corollary 4.16. Then A|g, is a positive, bounded, injective
operator on B(E(r)H), so that {(AE(r))* : a € C} is a one-parameter, holomorphic
subgroup of GL(B(E(r)H)) satisfying the conditions of Proposition 4.15. Hence,

[e’e) —1st
s S\ — € 7
(Al pe) (Al g + %)t = / ——— (Al .

Tt —mt
o €™ +e

Since F(r)H is reducing for A, we in fact have

e8] e—zst

t —t
o €™+ e T

E(r)e’? AV (A + )t = E(T’)/ Adt.

Since F(r) converges to 1 in the SOT as r — oo, the result follows.
O

We now finish the proof of Tomita’s Theorem. Recall that for fixed n € U’, we have a
function s € R + S(A+e*)~!n € U. We can rewrite this as S(A+e®)~tn = JAY2(A+e®) 1y,
so that by Corollary 4.17, for ( € U’ we have

m(JAYVHA + ) )¢ = m () JAYVH (A + )y
. e—ist :
=e /Q/WTFT(C)JA tT].

On the other hand, from before we had

o] e—zst

t —7t
o €™ t+e T

mo(JAYVA(A + )7 In)¢ = 6_5/2/ JA 7, (n) A" J(dt.

1

We conclude by the uniqueness of the Fourier transform, and from the fact that ¢ — = —

is non-vanishing, that

7 (C) JA"py = JA"T, (n)A‘“JC.

Therefore, JA"n is left-bounded and m(JA"n) = JA"r.(n)A~"J. Moreover, since
To(JA*)* = JA . () A™T = 7(JAP), it follows that

m(JA" ) € 7, (B) N 7. (B)* = m.(U),
so that JA“Y' C U. By replacing the roles of & and U’, we have JA®UY C U'. Setting

t = 0, and combining these containments, gives JU’ = U which in turn gives A% = U and
AU =U'.

We summarize below some useful computational formulas that arose in the proof.
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Corollary 4.18. For ¢ e U,n e U’,t € R we have:

1) m(A™E) = Afmy(§) A

2) m(A'n) = Altmy(n) AT,

3) m(JE) = Jm(§)J;

4) me(Jn) = Jmp(n)J.

These equations will be useful in Section 5 when we look at analytic functions coming

from this one-parameter automorphism group. More specifically, we can derive a relation
between holomorphic functions of the form o +— A*¢ for € € U, and those of the form

a = oy(x) for € Ry(U).
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5 Modular Condition of a Weight

Let M be a von Neumann algebra with an fns weight ¢. Then we can identify M
isomorphically with the left von Neumann algebra R,(U,) of the full left Hilbert algebra
Uy = qy(ng Nnj). If we let A be the modular operator associated with Uy, then by Tomita’s
Theorem, for all t € R,z € M we have A%zA~% € M so that we can define an action on
MbyteR— Uf = Ad(A%). We call 0% the modular automorphism group associated
to the weight ¢. In this Section we explore the relationship between ¢ and ¢?. The material
follows Chapter 8 of [13]. Lemma 5.20 follows the proof given in Section 3.6 of [9].

Let D ={a € C:0 <Im(a) <1}, and define A(D) to be the set of functions which are
bounded, continuous on D and holomorphic on the interior of ID.

Definition 5.1. Let ¢ be an fns weight on M, and let {coy : t € R} be a one-parameter
automorphism group of M. Then ¢ satisfies the modular condition with respect to o if
the following conditions hold.

1) The weight ¢ is invariant under o. That is, ¢ = ¢ o oy for every t € R.
2) For each x,y € ng N nj there exists I, € A(D) satisfying the boundary condition for
teR,

Fuy(t) = dplon(z)y), Fyy(t +1) = ¢p(you(z))
Condition 2) says that ¢ satisfies a trace-like condition with respect to the action in the
sense that the function F, , relates ¢(ay(x)y) with ¢(you(z)).
The importance of the modular condition in applications lies in the following theorem.

Theorem 5.2. Let M be a von Neumann algebra and let ¢ be an fns weight on M. Then
the modular automorphism group {Of5 } is the unique one-parameter automorphism group on
M satisfying the modular condition with respect to ¢.

Proof. By Tomita’s theorem we know that o (14 N ny) = ng Nnj, and since
* *\2
mg = ngng = (ng Nng)~,
we also have that of (my) = mg. If 2,y € ng N ny, we have

o(of (y'z)) =< Agy(z), Agy(y) >
=< qg(7),q4(y) >
= o(y'z),
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and so ¢ is o®-invariant.

Let £,m € Uy and set = m(§),y = m¢(n). Then by Corollary 4.18,

(o] (2)y) = P(me(A"E)me(n))

=<, A" >

< A >

=< A%(fﬂri)g’ A%(*tfz)nﬁ >
Ayor(x)) = ¢(me(n)m(A™S))

=< Aitfanﬁ >

=< AT A3t

Y

Therefore the function F(a) =< A_Ti(_o‘“)f, A%(_a_i)nﬁ > satisfies the necessary bound-
ary conditions. The fact that F° € A(D) follows from Lemma 2.30 and the fact that
§,n € D(AY?).

Now suppose that {a;}er is another one-parameter automorphism group satisfying the
modular condition with respect to ¢. For t € R,z € ng, define uiqy(z) = gy(cu(x)). Then
since ¢ is oy-invariant it follows that oy (ng) = ny, and

lge (@) [I* = d(en(z"2)) = d(z"x) = [lgs(2)]*,

so u; is well-defined and extends to a unitary on Hg, also denoted by u;. Let x € ng N nj,
and let F,«, € A(D) be the function satisfying the modular condition for * and x. Then

. . 2 _ g . _ . . . (D] =
15% |ugs () — qo(2)| }E}%[Fx 2(0) = Fyr o (t) — For 2 (t +4) + Fie 2(3)] = 0.

Hence u;qy(7) — gy(x) for any x € ny N njj, and since the {u;} are uniformly bounded and
q¢(ng N'nj) is dense in Hy, we conclude that the family {u;}cr is SOT continuous. By
Stone’s Theorem, there exists a self-adjoint operator K on H,4 such that u; = ¢*. To finish
the proof, we need to show that A = X, for then we will have that for z € ng N ng,

ar(w) = melas(as(@))) = me(urgy(2)) = of (2).
The result then follows since af and «; are continuous in the o-WOQOT.

Claim: Each u; commutes with S, J and A. Therefore A commutes with the spectral
projections of K.

For x € ny Nny, we have
Surgy((2)) = Sgp(au(w))

= qs(cu(z7))
= w1 Sqp(T).
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Since U, is a core for S, Su; = 1S as shown in the proof of Lemma 2.20. By polarizing we
have

< APy (), A Purgo(y) > =< Sugs(y), Surge(w) >
=< wSqp(y), urSqe(z) >
=< Squ(y), Sqp() >
=< AVPqy(x), AVq4(y) >,

so again we have A2y, = u,AY?. By Corollary 2.27, A'/? is affiliated with the von Neumann
algebra generated by the spectral projections of K, so that by Lemma 2.20, A is as well.
Lastly,

Juqy(z) = JSQth¢(ZL‘) = Al/zutS% = utAl/zS% = utJSQ%(x) = Jgy(x),
completing the proof of the claim.

For z,y € ngNnj let F,, € A(D) be the function satisfying the modular condition for a.
By definition we have

Fpy(t) = ¢a(n)y)
=< q4(y), Swigy(z) >
=< q4(y), wSqs(z) >
=< u;qs(y), Squ(z) >,
Fry(t +1) = ¢(you(x))
=< wqy(x), Sqs(y) >
=< JS8qy(y), Jurgy(x) >

=< AY2qu(y), w Jqy(z) >
=< u;‘Al/Q%(y), A1/25q¢(a:) >
=< AV2uigy(y), A2 Sqq(x) > .

Then for elements &, 1 € D?, we choose sequences {&,}, {n,} C U, which converge to &, in
the graph norm of S and functions F,, € A(D) satisfying the boundary conditions

F.(t) =< u:nn,fg >, F.(t+1) =< Al/gu:nn, Alﬂfi > .

The sequence {F},} is uniformly Cauchy on the boundary and these functions are bounded
on the strip, so by the Phragmen-Lindelof Theorem they converge uniformly everywhere to
some function F¢, € A(D) satisfying the boundary conditions

Fen(t) =< uin, & >, Fep(t +1) =< AY2uin, AV2¢8 >
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Now let K = [ AdE()) be the spectral decomposition of K, and set E,, = E[—n,n]. Let
Dy =2, E, D Then for £ € D* n € E,D*, we have

Fé,n(t) :/ e_it/\dEn,éﬁ

Hence F¢, has a unique entire extension satisfying

Fep(t+1) = / e NE, ¢
=< efuin, & >

With ¢t = 0, this gives < A2y, AV2¢8 =< Ky &8 > so that Dy C D(A) and for any
n € Dy, we have An = eXn. If we can show that Dy is a common core for both operators,
it will follow that A = eX. From the claim we have that A commutes with each F,,. Then
since £, — 1 in the SOT, for any £ € D(A), we have

lim E,¢ = &, lim AE,¢ = lim E,A¢ = A,
n— o0 n—00 n—00

so &, — & in the graph norm of A. Therefore Dy is a core for A. From the Spectral Theorem
we know that U, E,H is a core for e/, Since 1 + e/ is self-adjoint and injective, it follows
that (1 + eX)E,D* is dense in E,H. Then given ¢ € E,H we can choose a sequence {,,} in
E,D* such that (1 + eX)E, ¢, — & Moreover, (1 + eX)|g,3 is bounded, invertible, so that
&m — &, and consequently we also have eX¢,, — e¢. Hence Dy is also a core for e.

O

The uniqueness coming from the modular condition immediately gives the following corol-
lary.

Corollary 5.3. Let ¢ be an fns weight on M, 0 € Aut(M). Then of’og =01 ool 00.
Proof. By the o®-invariance of ¢, for z € M™, we have

6006~ 0 0f 0 6(a)) = b0 (o 0 6(a))
— $ob(a)

S0 ¢ 00 is 01 o of o f-invariant. If 2,y € Ny = 07 g, and if Fy) g € A(D) satisfies the
boundary conditions for (x), 8(y) with respect to o®, then for t € R,

(000 (t) = 3(07 (0(2))8(y)) = ¢ 0 6(6 5 ()y).
oo (L +17) = 6(0(y)of (0(2))) = ¢ 0 6(y8~ o7 8()),

80 Fy(x 0(y) satisfies the boundary conditions for z, y with respect to §~*o?6. By Theorem 5.2,
$ob -1
o, =40

oo?ob.

]
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We will now explore various applications of the uniqueness of the modular condition. We
continue by considering the problem of relating the modular automorphism groups of two
fns weight ¢, on M, which results in the Connes Cocycle Derivative Theorem. Roughly
speaking, it is a uniqueness result for modular automorphism groups which will become
crucial when we study von Neumann algebra crossed products in Section 7.

Consider the von Neumann algebra N' = M ® M,(C) and define the function p on Nt
by

T21 T22

p (9&,1 w1’2> = ¢(71,1) + Y(122).

Lemma 5.4. The function p defines an fns weight on N such that

Ny, = {(xl’l 317172> eN: T11,%21 € Ny, T1,2,T22 € nw}.
To1 T22

Proof. Let x € N be as above and note that the (1, 1)-entry of z*x is 7 ;21,1 + 2522, and

the (2, 2)-entry is o] ,o1 2 + 25 522 5, which immediately give the identification of n, as above.

Moreover we infer that p(z*z) = 0 if and only if 2*z = 0 by the faithfulness of ¢, 1), so that

p is faithful.

To see that p is normal, note that by Theorem 3.2,

p(z) = d(x11) + Y(z22)

=supw(z1,1) + sup w'(z22)
w<e w' <y

= sup w(x11)+ w(z22)
w<p,w' <tp

< sup W’ (z).
w"<p

Since the reverse inequality is clear, we have that p is normal.

To see that p is semifinite, let {z;} C my,{y;} C m, be monotone increasing nets which
converge to 1, in the SOT. Then for each ¢ and j, we have z; ® €11 + y; ® ez2 € m, and
the net {z; ® €11 + y; ® e22} converges to 1y in the SOT.

]

We will now identify the operators S, F,A,J associated to the left Hilbert algebra
U, = q,(n, N n:), with the goal of finding an intertwining operator for the representations
Tg, Ty. Using the previous lemma,

x x
ng, ﬂn; — {(x; m;z) eEN x5 €ngN ng,xg,l € ng ﬂn*w,xl,g € n; NNy, Ta2 € My N n;z)}
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Note that if 2,y € n,, then

<z,y>=pyz)
= oy 171,1) + O(Yz1721) + V(Y1 2T12) + V(Yz.272,2),

so that we have an orthogonal direct sum

H, = [neN ny @ e11]” @ [neN Ny @ e21]” @ [ny N ny @ e12]” @ [ny N ny ® ez9)”
=H1 D Hs ® Hs P Ha.

Hence we can represent operators on H, using 4 x 4 matrices preserving the above decom-
position. Now the involution S is the closure of the operator on n, N n} given by

* *

T1,1 T1.2 T11 Toq
'—> >l<7 >l<7 )

Ta1 T2p2 T2 Lap2

so that the involutions have matrices of the form

Se 0 0 0 S50 0 0
S = 0 0 Sep 0 F = 0 0 54 0

0 Syp 0 0 0 S5, 0

0 0 0 S 0 0 0 S

The modular operator and modular conjugation associated to p are then given by

SiSs 0 0 0 Ay 000
Al | 0 SieSwe 0 0 | [0 A 0 0
0 0 S5, O 0 0 Ay 0]
0 0 0 SiSy 0 0 0 A,
J, 0 0 0
o 0 g 0
1o Jus 0 0
0 0 0 J
For x € N, we can write
Te(z11) Te(T12) 0 0
| me(zen) me(w22) 0 0
7Tp<£li'> B 0 0 Ww(l'l,l) 7T¢(ZE12 ’
0 0 Ty(w2,1) Ty(T2,2)
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so that in particular,

Js 0 0 0\ /0100\/J O 0 0
J(Ol)_OOJWO 1000 0 0 Jgy O
™ 1 0)7= o J 0o oflooo1]lo J 0 0

¥,é ¥,é

o o o J/J\oo10o/\o 0o 0o J

Js 0 0 0 0 Jsy O

o o Ju O]fJs 0 0 0

o g 0 0 0 0 0 Jy
0 0 0 JyJ\0 Ju 0 0
0 0 Jydyy O

B 0 0 0 Jyudy
0  JyJye O 0

But this operator belongs to m,(N)’, so that for x € NV we have

Jodssmoton) = (07, (1 0) Dmlia =m0, (5 o) Dha = w1 oo

Therefore Uy, = JyJs 1s an isomorphism of H, onto Hy such that for x € M we have
mo() = Upymy(2)UG
Identifying these representations, we write

11 T12 0 0
T (IL‘) o Ta1 T22 0 0
P 0 0 11 T12

0 0 T21 T22

In particular we have a diagonal representation of N of multiplicity 2, and since the op-

erator A is diagonal, we only need to consider the first two diagonal entries to define the

automorphisms ¢f. That is, if we write 0% (z) = Afzfo;i; and o (x) = A$7¢xA;it, we

have
of T11 1.2 _ Uf(xl,l) Utdw(xlz)
t To1 T22 Uzb’gb(l’z;) Uzb(xz,z) '
Set uy = ¥ (1). Since

(60) =@ o)) (o)

it follows that of () = woy (x)uf. Since

(W)= 0)63)
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we have that
ol (zy) = o (z)0} (y),

and hence,
Usre = 00 (107(1)) = o2* (1)l (07" (1)) = usol (u).

S

We now have 1) and 2) of the following Theorem.

Theorem 5.5 (Connes Cocycle Derivative Theorem). If ¢, are weights on M then there
exists a unique family of unitaries {u; }ier in M which is continuous in the SOT and satisfies
the following:

1) for each t € R we have 0¥ (x) = w0y (x)u};

2) for each s,t € R we have usiy = usazp(ut);

8) for each x € ngNnj, and y € njNny there exists an F € A(D) satisfying the boundary
conditions

F(t) = ¢(woy (y)z), F(t+1) = ¥(zuoy (y)).
Proof.

3) Let © € ng Nny,y € njNny. Then by the modular condition for ol , there exists an
F € A(D) such that

F(t) = p(of (y)x), F(t+1) = plzoi (y)).

y) = woy (y). Therefore, p(of(z)y) = ¥ (w0} (y)z)

and p(zo?(y)) = d(zusoy (y)). The proof of uniqueness can be found in [13].

Then o (y) € n}, N ny, so of (y) = o (

]

Definition 5.6. If ¢,v are fns weights and {u;} a family of unitaries satisfying 1), 2),
3) of the theorem, we call {u;} the Connes cocycle derivative of Uf with respect to J;p
and write uy = (Dy : Dy);. Condition 3) in the theorem is called the relative modular
condition.

The Connes cocycle derivative satisfies the following chain-rule property.

Lemma 5.7. Let ¢,1, x be fns weights on a von Neumann algebra M. Then fort € R we
have
(Dg = Dy)e = (Dg = Dy)e(Dy : Dy)e.

The following elaborates on Corollary 5.3.

Corollary 5.8. For any automorphism 0 € Aut(M) we have

(Dyop : Dyop) = 07 [(Dy : Dy)].
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Proof. Let (Dy : Dy) = w. By Corollary 5.3, for x € M, we have

o’(z) =60 o0¥ 0 O(x)
= 0 (wo? o O(x)ul)
=07 ()0 00} 0 0(2)07" (1)
= 0~ (u)of™ ()0 (uy)".
Hence, to prove the claim it suffices to check the relative modular condition. Now if we

let & € Nyop N MY, Y € Ngop N 1e and let Fyey ¢y € A(D) be the function satisfying the
relative modular condition for §(z), 6(y) with respect to u;, we have

Fya,)(t) = 9 (us0?(0(y))0(2))
=1pof ol (uo®0(y)d(x))
=1 o B0 (u)f ' oo?ol(y))
= 0007 (u)o?™’(
Foy o) (t +1) = ¢(0(x)u0” (0(y)))
=¢o0o07 (0(x )Utawe( )
= ¢of(x0 (u)0 " 0¥ 00(y))
= ¢of(xd" (u)o woe( ))

Yy)x),

proving the claim.

We state here a converse of the Connes Cocycle Derivative Theorem.

Theorem 5.9. If ¢ is an fns weight on M, and if {u;}ier is a family of unitaries in M
which is continuous in the SOT and satisfies us s = uso®(us) for all s and t, then there exists
an fns weight 1 on M such that (Dy : Dy) = w; for allt € R.

For the remainder of the Section we will work towards a characterization of semifinite von
Neumann algebras in terms of modular automorphism groups. Note that if 7 is a trace on a
von Neumann algebra M, then the modular operator A, is just the identity, so that modular
automorphism group o7 is trivial. In general, we will see that the modular automorphism
groups of semifinite algebras are inner, with implementation given by the Connes cocycle
derivative with respect to the trivial action.

We continue the study of weights by fixing an fns weight ¢ and characterizing those
weights ¢ which are invariant under the action 0. Let h € M™, and consider a new weight
bn : MT = [0,00] given by ¢ (x) = ¢(h'/?xh'/?). This weight is clearly normal because ¢
is, and if we require furthermore that A be invertible, then ¢, will be faithful and semifinite.
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We may initially be tempted to consider the automorphism x € M hitaf (x)h™" however,
there is no guarantee that ¢ is invariant under such an automorphism. We define

My ={z e M:0cl(z) ==z for all t € R}.

Note that the weights of the form ¢, for h € My are automatically invariant under the
automorphisms z — h“af’ (x)h~", and moreover, are Jf’ -invariant. In order to make sure we
consider a large enough class of weights, we also want to define weights of the form ¢, where
h is positive self-adjoint injective and affiliated with M. Ideally, these weights will be of
the form

on = S}Llp Ohy s

where {h;} C M; is an increasing net converging pointwise to i on its domain. It is not yet
clear that this makes sense, so to this end we will take a diversion into analytic subalgebras,
which leads to the following characterization of elements of My in terms of the weight ¢.

Theorem 5.10. An element a € M belongs to My if and only if the following conditions
hold:

1) amy C mg, mya C my;
2) ¢(az) = ¢(za) for all z € my.

The proof of the Theorem will follow after Lemma 5.16 below.

Definition 5.11. An element © € M is said to be analytic if the funtion t — of(z)

extends to an entire function o € C — o,(x). Equivalently, for all w € M, the function

t > w(o?(x)) has an entire extension. We denote by M? the set of all analytic elements.

It is immediate that My C MY, with the obvious extension o, (z) = z. Now let U be

the full left Hilbert algebra associated with ¢, and define
Uy = {€ € NuecD(A®) : A% € U for all a}.
We have the following result on analyticity of left multiplication operators.

Lemma 5.12. For a full left Hilbert algebra U, the subspace M N m(U) coincides with
’/Tg(]/{()).

Proof. The claim is that for £ € U, the function ¢ € R — 7,(A¥¢) has an entire extension if
and only if the function ¢ € R — A has an entire extension. For £, € H we have

wy o (Te(A"E)) =< m(A™E)n, ¢ >=< 7, (n)A™E, ¢ >=< A™E (>,

so the function ¢ — wy¢(m(A™E)) has an entire extension if and only if the function
t =< A" ¢’ > has an entire extension. Since the sets {w,¢ : 7, € U'},U? are re-
spectively total in M., H*, the claim follows. By Lemma 2.30, t — A%¢ has an entire
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extension if and only if £ € NuecD(A%), in which case the extension is a € C — A,
Consequently, if m,(£) € M?® N m(U), for n,¢ € U,

< o2 (m(&))n, ¢ >=< AE, (n’ >=< m,(n) A", ( >,

so that A™¢ is left-bounded and 7, (A™¢) = o2(m,(€)). Since A¢ € D(AY?) = D it follows
that § € Z/{().
0

Theorem 5.13. Let U be a full left Hilbert algebra and let Uy be as defined above. Then Uy
is a left Hilbert algebra satisfying Uy = U' and JUy = Uy. Moreover, {A"},cc acts on Uy as
a one-parameter group of automorphisms.

Combining Lemma 5.12 and Theorem 5.13 gives the following corollary.
Corollary 5.14. The analytic subspace M¢ N wy(U) is SOT-dense in M.
proof of Theorem 5.135.
Claim: We have Uy CU NU" and JUy = U,.

By definition, we have that Uy € D(A™Y/2) and A~Y2Uy = U, so that

JUy = SAVUy = SUy = Up.

Moreover, if £ € Uy, then (1+ A™1)¢ € U, so that by the dual form of Lemma 4.13, we have
E=(1+AH) 1+ AN eld, proving the claim.

By definition, each A gives an automorphism on U,. Moreover, if £, € Uy, then the
function a — (A™€)(A™n) is entire and extends the function t € R — A%&n, so that &n € U
and A is multiplicative.

Claim: The subalgebra UZ is a core for S.

Let £ € U. Then for r > 0 set

£ = \/Z / e AL,
™ Jr

We note that & € D(A) for all a € C by considering the entire function

o) =1 [ et atea,
T JRr

which, by uniqueness of the extension, defines A&, If n € U/, then

ma =L [ mae
R

;
- \/g [/R e o (m(€))dt | n,

o1



so that A%, is left-bounded, and hence, belongs to /. Therefore &, € U,. Lastly, note that
asr — 0,& — € and AV2¢, = (AY26), — AV2€, 50 €. — € in the graph norm of S. Since
U is a core for S, it follows that U, is also a core for S. Lastly, note that if £, € U then
Uy CUNU" implies that we have that &.¢. — £ in the graph norm of S, so that U is also
a core for S. Therefore U is a left Hilbert algebra.

Since JUy = Uy, we also have that UZ is a core for F. Moreover, note that for all
T ||me(&0)]] < ||me(€)||. Hence m(&,) — me(€) in the SOT. Let n € H be right-bounded with
respect to Uy, so that for some ¢ > 0, ( € Uy, implies that ||7,(¢)n|| < ¢||¢||. Then for £ € U,

Ime(©nll = lim |lme(& )

< lim cf|& |
r—0
=[],

so that 7 is right-bounded with respect to . Since the closure of the involution * coincides

for U" and Uy, it follows that U) =U'.
U

We now turn to prove the characterization of the subalgebra M, given in Theorem 5.10.
The strategy is to use analytic elements to define functions which satisfy a modular conditon
and apply this to the special case that a € M.

Lemma 5.15. The analytic subset M? is a *-subalgebra of M and for x,y € M?, «a,3 € C
we have the following:

oi(xy) = 05 (x)oL(y);
oi5(@) = 0805 (@));
of(2*) = o2(x)".

(67

Moreover, the subalegbras mo(Uy), my are M®-bimodules, and m(Uy) is two-sided ideal in

M?.

Proof. Let x,y € M?. Note that by the usual argument for the product of analytic functions,
the function a — ¢?(z)o?(y) is entire. Since this extends the function t — of(xy) on R,

this implies that zy € M, and that o¢(zy) = o?(x)0?(y) by the uniqueness of an entire
extension from R. To see that M? is self-adjoint, we note that the function a — o2(x)* is

entire by considering the series representation of the function a — o%(z). Since this is an

entire extension of the function ¢ — o (z*), it follows that z* € M¢ and ¢%(z*) = o2(x)*.

Claim: Ifa € M? s € R, and £ € BND(A?®), then we also have a € BN D(A®).
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To see this consider the function ¢ € R — £(t) = A"af. Then my(£(t)) = of (a)m (A )
so that £(t) = of(a)A"¢. By Lemma 2.30, this extends to the function o — ¢(a) A€,
with domain {a : —s < Im(«) < 0}, and which is bounded, continuous on its domain, and
analytic on the interior. Therefore a& € BN D(A®) and Aaé = o%(a) A€,

From the claim we easily derive the bimodule properties. Moreover, we note that for

z € M% a € C we have m4(08(2))|pa-ioy = A™my(x) A, The composition rule easily
follows.

m

Lemma 5.16.

1) If a € M such that amy, mga C my, then for any x,y € m(U3) there exists an entire
function F' € A(D) such that

F(t) = ¢(of (a)zy"), F(t +1i) = ¢(xy o} ().
2) If a € M? and z € my, then the function F.(a) = ¢(c2(a)z) is entire and satisfies
F(t+1) = ¢(z00(a)).
Proof.

1) Consider the function F(a) =< aA™"qy(x), A~ g,(y) >. By choice of z and y, it
is entire and belongs to A(D), and by the assumption on a, we have

F(t) =< aA™"qy(z), A" gy (y) >

=< 07(a)gs(), Ags(y) >
=< A207 (a)gy(x), A q4(y) >
=< Sqy(y), Sof (a)gs(x) >
= ¢(o7 (a)y"),

F(t+1i) =< aA™"gy(x), A"qy(y) >
=< AV?qy(x), AP0 (a%)gs(y) >
=< Sof(a")gs(y), Sqs(x) >
= ¢(zy*of (a)).

2) Assume z = xy* where v = m,(§),y = m(n) € U. Then from the proof of Lemma 5.15,
F.(a) = p(ad(a)me(&)me(n?))



Hence,

F,(t+1) =< J?H/Q(a)AI/Qg, AV >
NI me( VAV >
<A1/2§ AL/2 ¢( )y >
=< Soy(a*)n, SE >
= ¢(me(&)me(nf)of ()
= ¢(zy" Ut( )-

proof of Theorem 5.10. Suppose a € M,. Then a is analytic so part 1) of Theorem 5.10
holds by Lemma 5.15. If z € m, and we let F, be the function as in part 2) of Lemma 5.16,
then F, is constant and satisfies F,(0) = ¢(az) and F,(i) = ¢(za). Therefore, part 2) of
Theorem 5.10 follows.

Now suppose the conditions hold. Let &, € U2, x = m,(§),y = m(n) and let F be as in
2) of Lemma 5.16. Since zy* € my and m,, is of-invariant, by condition 2) we have

Since F' is entire and the holomorphic extension is unique it follows that F' satisfies
F(a) = F(a +1) for « € C. Since F' € A(D), tF' must be bounded, and so it is con-
stant by Liouville’s Theorem. Therefore for all ¢, ¢(o? (a)zy*) = ¢(axy*). Equivalently

0=<aA " ATy > — < af, An >
—< (o¥(a) — @), Ay > .
The result will then follow if we can show that AUZ is dense in H. We already know
that AUy = Uy = A~'U,. Moreover, since A% is multiplicative for every « it follows that

AU = UZ and the claim follows since Ug is dense in H.
[

We can now begin to characterize the weights invariant under a fixed modular automor-
phism group action o?. Let h be a positive, self-adjoint operator affiliated with M,. For
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¢ > 0 the operator h, = h(1 + e¢h)~! belongs to /\/l(';r and moreover if § < € we have hs > h,.
The following lemma says that the set of normal weights {¢s, }e~o with the reverse ordering
on R, is increasing, so that we can define ¢, as the pointwise limit as ¢ — 0. If h is bounded
then h. — h in the SOT so that by normality of each ¢y, , these definitions will be consistent.

Lemma 5.17. The map h € ./\/l;f — ¢p 1s additive, and its range consists of normal semifi-
nite weights.

Proof. If x € mj then h'2xh'/? is also in m since mg is a My-bimodule, so ¢y, is semifinite.
The normality of ¢; follows from the normality of ¢.

Let h,k € MJ Since h,k < h + k, by the Generalized Polar Decomposition Theorem
there exists u,v € My such that h'/? = u(h + k)Y/2 k¥/? = v(h + k)% and u*u + v*v is the
range projection for h + k. If x € mg, ., then by Lemma 5.15, the elements

u(h+ k)" Po(h+ k) o(h + k) Pa(h+ k)2

belong to mg, and by Theorem 5.10,
Qbh(x) + Qbk( ) ¢(h1/2$h1/2) + ¢(k1/2$]€1/2)
(w(h + k) a(h + k)2u™) + o(o(h+ k)2 (h + k) 207)

((u*u +v*v) (h 4 k)22 (h + k)2
((h+ k)22 (h + k)%

= P(n+i) (2).
Now suppose ¢p(x), ¢r(z) < co. Then

=¢
=¢
=¢

(h+ k)"z(h + k)2

= lim(h+ k + ) VA4 k)x(h+ k) (h+k +e)~'/?

< 2h+k+ ) V2 (hah + kxk)(h + k + €)7Y/?

=2(h + k+ ) V2 (h + k)2 (w RV Pah 2u + vt kY 2ak Y 20) (h 4 B) Y2 (h 4 k4 e)7?
= w*hY2eh Py + 0 kY Pk 2.

Since the element in the last line belongs to my, it follows that ¢pix(x) < oco. By the

previous argument, ¢p4(7) = ¢n(z) + dx(x). Therefore, dy + dp = Ppis-
]

Lemma 5.18. Let h be a positive self-adjoint operator affiliated with M. If for x € M™ we
define
on(x) = lim ¢y, (2),
e—0

then the function ¢y is a semifinite normal weight. It is faithful if and only if h is injective.
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Proof. If h = [AdE()) is the spectral decomposition of h, note that since h is affili-
ated to My, the spectral projections E, = E[0,n] for n > 0 belong to My. Then
U, (EnmgE,) € my is dense in M in the SOT, and for any = € m/, E,h is bounded, so
on(EnzEy) = ¢p,n(r) < co. Hence, ¢, is semifinite.

The operator h is injective if and only if its range projection p is equal to 1. Since p is
also the range projection for he’? we have ¢n. (1 —p) = 0 so that ¢,(1 — p) = 0. Thus ¢y, is
faithful only if h is injective. On the other hand, for x € M™ we have ¢p,(x) = 0 if and only

if qﬁ(himxhi/z) = 0 for all € > 0. Suppose that A is injective, so that each h, is also injective

with dense range. Then for any e, he2anl? =0 only if x = 0, so that ¢y, is faithful.
O

By Lemmas 5.17 and 5.18, whenever we choose a positive self-adjoint injective operator
affiliated with M, we obtain an fns weight ¢;. We can now identify its modular automor-
phism group.

Theorem 5.19. If h is a positive self-adjoint injective operator affiliated with Mgy, then
ol (x) = hi'o?(x)h ™.
Moreover, we have (Dgy, : Dy); = h™.

Proof. First we assume that h is bounded and invertible. It suffices to check the modular
condition for the automorphism group {7, = Ad(h"")o?},cr. First note that by the invert-
ibility of h'/2, we have mg, = Mg. The invariance of ¢, under « follows easily from the fact
that h € M. Now suppose that £ € Uy, n € U. Using Lemma 4.6, and the fact that A” h
commute we have

on (b o} (m(€))h ™" me(n)) = G(me( ARHE) o (h ™))
—< hf'itn’ SAithit+1£ > .

But from the proof of Lemma 5.15, we have that h*™1¢ € Uy. In particular, A1 € D(A).
Hence, ‘ . . . .
gbh(hzto_?(ﬂe(f))h—ztﬂ_e(n)) —< Azt—i—lhzt—l-lg7 Sh—ztn > .

By Theorem 5.10, we have

on(me(m)h"of (me(€))h™") = p(me(h™" )me(ATRE))
=< Aithitf,Sh_iH—ln > .

Setting G(a) =< hleTLATIe Sh= @y > the above calculations give

G(t) = on(ve(me(E))me(n)), G(t + 1) = on(me(n)n(me(£)))-
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Moreover, by choice of £ and 7, G is entire and bounded on D). Then applying a similar
argument as in the proof of Theorem 5.2, we can remove the condition that ¢ € U,. Hence,
the theorem holds in this special case.

Now let h be an injective, positive, self-adjoint operator affiliated with M,. Let h =
J AdE(X) be the spectral decomposition of k, and let e, = E[1/n,n]. Then ¢, = ¢|r,, is an
fns weight and by checking the modular condition, we see that the modular automorphism
group for ¢, is just o?| M., - Since h|g,y is bounded, invertible, by the special case above we
have for x € M.,
oM (x) = (hen) x(he,) ™ = hitzh ™.

The result follows since af o Jf) are continuous the o-WOT. The last assertion can be easily

verified using the construction of the Connes cocycle derivative.

[]

Now that we have identified a large class of weights which come from perturbing a fixed
weight ¢, we use the Connes Cocycle Derivative Theorem to characterize the o®-invariant
weights. We begin with the following uniqueness result for cocycle derivatives.

Lemma 5.20. If ¢,v, x are fns weights on M, and if for allt € R we have
(Dy : Dg)e = (Dy : Dy,
then ¢ = .

Proof. First note that by Lemma 5.7, and the fact that (Dy, : Dy); ' = (Dg : Dy)y, it suffices
to prove that if for all t € R we have (Dy : Dy); = 1, then ¢ = 1. But if we let p be
the weight on N/ = M ® M,(C) as before, this condition implies that the element ((1] (1))
belongs to the fixed point algebra A,. By Theorem 5.10, we have for z € M*,

o3 =0 (0 D) -t

completing the proof.
m

Theorem 5.21. For two fns weights ¢, on a von Neumann algebra M, the following are
equivalent:

1) 1 is o®-invariant;
2) ¢ = ¢y, for some non-singular, positive, self-adjoint operator affiliated with M.

Proof.
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1)=-2): Combining Corollary 5.8 with the invariance assumption on v, we have
(Dy : Dy)—s(Dy : Dg)sre = 02[(Dy : Dy),]
= (quoafs : D(j)oadjs)t
= (Dy : Dy);.
Therefore, {(Dy : Dy):} is a one-parameter group of unitaries belonging to M, which is
continuous in the SOT. By Stone’s Theorem there exists a positive, injective, self-adjoint

operator h affiliated with M, such that for all ¢t € R, (D, : D), = h*. By Lemma 5.20 and
Theorem 5.19 we have that ¥ = ¢y,.

2)=1): By Theorem 5.10, we have for z € my,,
Y(z) =y o h'a}(x)h ™"
= ¢ oo} ().

Finally, we can apply the above results to semifinite von Neumann algebras.

Theorem 5.22. For a von Neumann algebra M the following are equivalent:

1) the algebra M is semifinite;
2) every modular automorphism group {0,(5’j ter 1s inner;
3) there exists a weight ¢ such that {o? }ier is inner.

Proof.

1)==2): Let 7 be an fns trace on M, ¢ an fns weight. Then the automorphism group o7 is
trivial so that ¢ is o7-invariant. By Theorem 5.21, it is the form 7, for some positive self-
adjoint operator h affiliated with M, = M. Hence h* € M and of =Ad(h**) o] =Ad(h™).

2)==-3) is trivial.

3)=-1): Let ¢ be an fns weight such that ol = Ad(uy), where {u;} is a unitary group in
M continuous in the SOT. Since {u;} C My, by Stone’s theorem there exists a positive
injective self-adjoint operator h affiliated with M, such that u; = h*. Then

ol = Ad(h™") Ad(h™) = id,

so that ¢;-1 is a trace.
]

To give an idea of the significance of this theorem, in Section 7 we are going to look at the
crossed product von Neumann algebra M x_,s R with respect to modular automorphisms.
As it turns out, the relationship between the algebras M and M x4 R is interesting only
when ¢? is not inner.
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6 Equivalence of Hilbert Algebras and Weights

In Sections 3 and 4, it was shown that if ¢ is an fns weight on a von Neumann algebra
M, then M can be realized as the von Neumann algebra generated by left multiplication
operators on the full Left Hilbert algebra Uy = g¢4(ng N nj). We summarize this in the
following Theorem.

Theorem 6.1. Let M be a von Neumann algebra, let ¢ be an fns weight on M, and set

Z/{¢ = q¢(n¢ N TL:;)

Define an involution and product on Uy by

qs(x)F = qo(a”), 05(7) 46 (y) = qs(xy).

Then Uy, is a full left Hilbert algebra. If we let (my, Hy) be the GNS representation of M
coming from ¢, then wg(M) is unitarily equivalent to Ry(U).

In this Section we complete the picture by showing that full left Hilbert algebras char-
acterize the GNS representation spaces corresponding to fns weights. Let U/ be a full left
Hilbert algebra with Hilbert space completion H, and let M = R,(U). Let B C H to be
the set of left bounded elements and let n, = m,(B) so that m,(U) = n, N nj. Finally, let
my =nyng = {> ., xiy; : T;,y; € ne}. Define a function ¢y : My — [0, 00] by

€N if 22 = m(€) for £ € U,

00 otherwise.

Ge(x) = {

In this Section we prove the following Theorem. The proof follows that given in Chapter 7
of [13].

Theorem 6.2. The function ¢y is an fns weight on M with domain of definition my and for
which ny corresponds to the left ideal ny,. Moreover the GNS representation (my,, He,, Vo,)
is unitarily equivalent to M = Ry(U) via the unitary U satisfying U = qq,(70(§)) for € € B.

We will prove the Theorem by a series of Lemmas.
Lemma 6.3. The function ¢ is a semifinite weight, and m; = {x € M™ : ¢y(z) < oo}.

Proof.
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Claim: If 2 € m] then 2'/? € ny. Hence m/} = {x € M* : ¢y(z) < oo} and m] is
hereditary.

First, assume that z is of the form ! az; for x; € ny. Then by the Generalized Polar
Decomposition Theorem there exists s; € M such that z; = s;z/2 and Y1 s; is the range
n *

projection of x. For each 4, let {; € B be chosen such that z; = m,(§;) and set £ = > 7", s7¢;.
Then ¢ € B and

m(§) = isfw(f) = isfxl = is;‘sixlﬂ = /2,
i=1 i=1 i=1

Now suppose that € m/ is of the form >!"  yrz; for y;,2; € ny and that y € M™ such
that y < x. Then

n

1 1
y<ax= §(x+:n*) = §Z(yfzz+zfyz) <

n

S iy + 25 2).

=1 =1

DN | —

As shown above, the right hand side is of the form m,(§) for some ¢ € B, and by the
Generalized Polar Decomposition Theorem there exists s € M such that

y'/? = smy(€) = mi(s€),

1/2

so y'/? € ny. Hence y € m;, and the claim follows.

It is clear that ¢, is homogeneous for positive scalars. Suppose that =,y € m/ so that
z=x+yem]. Let 222 = m(€) for z € B and let s, € M be such that

p1/? = g2 = Wg(sﬁ),ylm =t212 = (L),
and s*s 4 t*t is the range projection of z. We then have
$e(x) + Pe(y) = [IsE|I* + [[t&]1* =< (s + "), & >= [|€]|* = ¢u(2),

where the second last equality follows from the fact that & € [m,(§)H]. On the other hand,
let z,y € M™, let 2 = x +y, and suppose that ¢,(z) < oo so that z € m,. Since m; is
hereditary we also have z,y € m; so that ¢,(z), d(y) < co. By the above work, we have
¢0(2) = ¢do(x) + ¢o(y). Therefore, ¢, is a semifinite weight.

]

Let U be the unitary as defined in Theorem 6.2. For £ € B, we have

IUEI* = llga, (me(EDI* = de(me(€) m(€)) = lI€]I%,
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so that U extends to a unitary U : H — Hy,. It {,n € U, we have

(Ume(§)U")qg, (me(n)) = Ume(§)n
=Uén
= qg,(me(€n))
= qg,(me(§) (1))
= o, (me(&)) g, (me()).

Since gy, (mo(U)) is dense in Hy, we have Umi(§)U* = w4, (mi(§)). Since m(U) is SOT-dense,
we can conclude that this will hold for all @ € M if we can show that m,, is a normal
representation. This will then follow by Proposition 3.6 once we show that ¢, is normal,
which is what we now turn to prove.

For n € B’ define w, € M} by w,(x) =< zn,n >. Define
Cpo = {wy:n € B |Im(n)ll < 1}.
We analogously define set n,., m, for the right hilbert algebra U/’

Lemma 6.4. There exists a positive map 0 : m, — M, such that

O(me(Q) me(n)) = wye,  form,¢€B

and 0 maps the open unit ball of m} onto ®y.

Proof. By the dual form of Lemma 6.3, every element of m; is of the form z*x for some
x € n,, so consider the map 6 given by x*z +— w, where x = m,(n),n € B’. We check that this
map is well-defined. If z,y € n, are such that x*x = y*y, and if we let s € M’ be such that
x = sy and ker s C (ran y)*, then by construction s will be a partial isometry such that s*s is
the range projection of y, and ss* is the range projection of x. If x = my(n),y = m((), & € U,
then

<m(§)n,n > =<m(n)&n >
=< sm(Q)§m >
=< . (¢)§, 8" >
=< m(§)¢, ¢ >,

which proves the claim.
We now show that 6 can be extended to a linear map on m,. Since m, is spanned by

its positive elements, is suffices to show that 6 is additive and positive scalar homogeneous
on m;. We just prove additivity. Let x,y € n, and let z = z*z + y*y. Then there exists
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s,t € M’ such that z = s27/? and y = tz'/? and p = s*s + t*t is the range projection of z.
Let 22 = 7,(n) for n € B, so that x = 7,.(sn),y = 7.(tn). Then for £ € U,

<m(§),0(z"x) > + < m(§)0(y y) > =< m(§)sn, sn > + < m(&)tn, tn >
=< m.(sn)&, sn > + < m(tn)§, tn >
=< (s"s +t")m(n)&n >
=< m(n)&n >
=< m(§),0(2) >,

so taking limits in the WOT, we have (z) = 6(z*x)+60(y*y), and the claim follows. Moreover,
by polarizing we find that for n,{ € B,

O(me(¢) me(n)) = Wn,¢s

and the last claim follows immediately by construction of 6.

Lemma 6.5. For x € M™, ¢y(x) = sup,cq, ,w(v). Hence ¢¢ is normal.

Proof. Define ¢ : M™ — [0, 00] by ¢(z) = SUP,ca, w(z). If a € m;, then by Lemma 6.3,
a'’? = m,(€) for some & € U, so that ¢,(a) = ||€||*>. By definition, we have
¥(a) = sup w(a)
w6<I>g,0

= sup  wr(a)
neB’,|[mr(n)ll<1

= sup [m (el
N |np (n) <1

< gl

But 7, (B") N 7. (B')* acts non-degenerately so that there exists a net {m,,} in the unit ball
of m,.(B') which converges to 1 in the SOT, so that ||¢]|* =lim |7, (n,)€||* < ¥(a). Hence,

¢e(a) = ¢(a).

Now suppose that t(a) < oo and define a linear functional w, on m, by
wa(x) =< a,0(x) >. Since 0 is positive we have that w, is positive, and since §(z) € Dy,
if ||z|| < 1 we have w,(z) < ¥(a) < co. Let & € m, be self-adjoint, and let A, be the von
Neumann algebra generated by x. Then m, N A, sits as an ideal in A, so that in particu-
lar, if we write z = x, — z_, the positive and negative parts of x, with range projections
pi,p- € Ag, then x, = xp,,z_ = xp_ both belong to m,.. If x € m, is arbitrary we can
write = h + ik, where h = (z + z*), k = (iz — iz*) € m, are self-adjoint. Then

wa ()] < walhy) + wa(ho) + walky) + walky)
< (@) (il + 1Pl + [ ]| + (1K1
< 4¢(a)llz|.
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Hence w, is bounded, so extends to a bounded positive linear functional, also denoted w,,
on the norm closure A, of m, such that ||w,|| < 4¢(a). For z € A,, using an approximate
identity and the Cauchy-Schwartz inequality, we see that |w,(z)|? < ||wa||wa(2*z). Then for
any n € U', we have

[wa(mr(m)] < 20(@)" 2w (m)) " (m) /2
= 2¢(a)"? < an,n >/
= 2¢/(a)*[|a" ]

Therefore the linear functional a'/?n — w,(m,(n)) is bounded, so there exists ¢ € [a'/?H]
such that for all n € U', w,(m.(n)) =< a'/?n, & >. I (,n €U,

<Py, m ()€ > =< m({)a Py, & >
=<a"Pr,(C)n, & >
=< a'Pn¢’, ¢ >

= Wq (7Tr (UCb))
= Wa(m,(¢) (1))

=<an,¢>
=< a'?n,a'?¢ > .

If we know that 7,.(¢)¢ € [a'/?H], then the above calculation shows that 7,(¢)¢ = a'/2(, so
that ¢ is left bounded and 7,(¢) = a'/2. But € € [a'/?H] and a'/? commutes with 7, (¢) so that
by continuity ()¢ € [m,(¢)a'/?H] = [a*/?,({)H] C [a*/?*H] and the claim follows. Hence
a'’? € ny which implies that a € m,. Then as shown above, this implies that ¢;(a) = 1(a).
Therefore, ¢ = 1.

With the above identification, suppose {z;} is an increasing net in M* with z = sup, ;,
and let € > 0. Let w € &y such that w(x) > ¢(z) — €. Since w is normal, there exists i such
that j > 4 implies w(z;) > w(x) —e. Then ¢(z;) > w(z;) > w(r) — € > ¢(z) — 2¢, and so
sup; ¢(z;) > ¢(x). Since the reverse inequality is trivial, ¢ is normal.

[
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7 Crossed Products and Dual Weights

In this Section we introduce the von Neumann crossed product as a tool to construct
new von Neumann algebras. Given an action a : G — Aut(M) where G is a locally
compact group GG, M is a von Neumann algebra, we would like to generalize the notion of
the semidirect product of groups to construct a von Neumann algebra which is an extension
of M by the subgroup a(G) < Aut(M). The material of this Section is from Chapter 10 of
[13].

We require that all G-actions are continuous in the sense that if x € M, then the function
t € G — a(x) is SOT-continuous, and we say (M, G, «) is a covariant system. Recall
that if ¢ is an fns weight on a von Neumann algebra M then the modular automorphism
group is of the form Jf = Ad(A") where A is a positive self-adjoint operator. In particular,
the one-parameter unitary group t — A% is SOT-continuous, and hence for fixed x € M,

the map t — of () is also SOT-continuous. Hence (M, R, 0?) is a covariant system.

Definition 7.1. Let (M,G,«) be a covariant system. Then a normal representation
p: M — B(K) of M together with a SOT-continuous unitary representation U : G — B(K)
are said to be covariant if po oy = Ad(Uy) o p.

Let (p, U) be a covariant representation of a covariant system (M, G, a) and define M ,[G]
to be the set of all operators of the form

Z p(xs)Us, xs € M, x, =0 for all but finitely many s.
seG

Then M, [G] is a *-subalgebra of B(K) since we have

(Z p(l‘s)Us> (Z p(ys)Us> = > pla)Usp(yo)Us

seG seG s,teG

= Z p(@s)plas(ye)) Ust

s,teG

= Z P(Z xs@s(ys—lr))Uﬂ

reG seG
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and

(zpmm) S e

seG s€G

= Z Usp(ws-1)

seG

=3 plas(as ) UL

seG

Therefore it is natural to think of the von Neumann algebra generated by M,[G] as an
extension of M by «(G). We will now show that this can always be done in a canonical
fashion.

Let 7 : M — B(H) be a normal representation, and let C.(G,H) be the space of all
compactly supported continuous function £ : G — H. For ,n € C.(G,H) define the inner-
product

<&n >:/<§(t),n(t)>dt.

Let L?*(G,H) be the Hilbert space completion of C.(G,H) with respect to this inner product.
For £ € C.(G,H),x € M consider the function s € G — m(a;'(x))¢(s). This will again
belong to C.(G,H) by the continuity assumption on «, and moreover,

/\IW(O&J(CIJ))&(S)II% < lzlI*I&1F*,

so that we obtain an operator 7, (z) € B(L*(G,H)). Suppose that 7 is a faithful represen-
tation. For non-zero z € M, we choose £ € H such that m(ay(2))€ # 0. If we let f € C.(G)
be chosen such that f(1) # 0, we can define the function f; € C.(G,H) by fe(s) = f(s)¢.
Then we have (7, () fe)(1) = (o (x)) f(1)§ # 0, so that m,(x)fe # 0. Therefore 7, is also
a faithful represenentation. We now show that 7, is normal. Let {z;} be an increasing net
in M* with = sup, z;. Let £ € H, f € C.(G). Then

<l fe 2= [P < ava(m)é e > ds.

The functions s —< a,-1(z;)&, £ > are continuous and monotone increasing, so by Dini’s the-
orem converge uniformly on the support of f. Hence < m,(x;) fe, fe >—=< ma(2) fe, fe >, and
since the elements f¢ span a dense subspace of L*(G, H), it follows that 7, (z) = sup; 74 (2;),
and therefore, 7, is normal.

Now for £ € C.(G,H), t € G, define
Mu()€)(s) = £(t71s).
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Then it is easy to check that Ay extends to an SOT-continuous unitary representation of G
in L?(G,H). Moreover, for z € M, we have

(Me(O)7a(@) A ())E)(5) = (ma (@) A () E)(Es)
= a1y (2) (A (t) ) (t's)
= (Ta(au(2))€)(s),

o (7a, Ay) is a covariant representation. We have the following uniqueness result.

Lemma 7.2. Let (m,H), (p,K) be faithful representations of M. If we let (Ta, M), (Pas Ac)
be covariant representations as above, then there exists a unique isomorphism

D : (1o (M) UA(G))" = (pa(M) U A (G))"
such that ® o, = po and ® o Ay = M.

Proof. By Theorem 5.5 on page 222 of [12], there exists a Hilbert space Ho and a unitary
U:Hy® K — Hy® H such that for x € M,

Ul @ p(x))U" = 1y, @ (),
Then U = U & 12(¢) : L*(G, Ho ® K) — L*(G,Ho ® H) is a unitary such that

U(l”Ho ® pa(ﬂj))ﬁ* = 17'10 ® Wa(aj)v
0(17{0 & )\K<S))U* = 17.[0 &® )\H(5>7

and the proof easily follows.
O

Now let ¢ and v be fns weights defined on M. This yields covariant systems (M, R, o?)
and (M,R,0%). The Connes Cocycle Derivative Theorem says that there exists an SOT-
continuous family of unitaries {u;} such that u,.; = u,0? (1) and 0¥ = Ad(u,)o). We now
consider the implications of this result to the study of covariant representations.

Definition 7.3. A SOT-continuous family {u;}cc of unitaries is called an a-cocycle if
g = usas(ug). We denote by Z' (M, a) the set of all a-cocycles.

If u € Z'(M, ), we define a new action 3 : G — Aut(M) by Bi(x) = wpa(z)u;. We say
that § is cocycle conjugate to o and write 8 =, a. This defines an equivalence relation
of G-actions on M, called cocycle classes, for if 5 =, « the family u* = {u}icq is a
B-cocycle and a =,« . In particular, the Connes Cocycle Derivative Theorem together,
with its converse, says that the cocycle class of the modular action o of an fns weight ¢ is
precisely the actions of the form o% where 1 is an fns weight.
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Lemma 7.4. For u € Z'(M,a)m, define a unitary U on L*(G,H) by (UE)(s) = us—1£(s).
Then
U(moa(M)U Xy (G)'U* = (7,0(M) Uy (G))".

The proof is a simple computation. With Lemmas 7.2 and 7.4 the following definition
makes sense.

Definition 7.5. Let (M, G, «) be a covariant system and assume that M is standard in the
sense that it acts on the Hilbert space H = Hy via the normal representation w4 for some
fns weight ¢. Let (74, \) be the associated covariant representation on L*(G,Hy). Then the
von Neumann algebra crossed product M x, G, defined up to unitary equivalence, is the
von Neumann algebra generated by mo(M) U XG).

We now shall fix an fns weight ¢ on M and normal representation (7, Hy), with left
Hilbert algebra U, and modular automorphism group {Uf her. For convenience we will
supress the representation 74 and write H for H,. We now want to find a weight on M x, G
in terms of the weight ¢ and for that we need another way to construct the crossed product.
As a motivating example, note that we have two ways to view the left group von Neumann
algebra R,(G). The first way is as the crossed product C x;q G, where id denotes the trivial
action of GG. The other way is as the algebra generated by the left multiplication operators
(&) for & € C.(G). But this is really just the restriction to C.(G) of the representation
A : LY(G) — B(L*(G)) obtained from the left regular representation A : G — B(L*(G)).
The advantage is that we can introduce the theory of left Hilbert algebras to obtain a weight
on Ry(G) by

b€ malE)) =[] = / () Pt

Moreover, in this case, the weight ¢ is just ¢(x) = |z|, so we have
ol m€) = [ oteyeea

In fact, the above can be generalized.

Define C(G, M) to be the space of all bounded, compactly supported, strong*-continuous,
functions x : G — M. We write ||z]|c = sup,cql/z(s)||. Let p be a left Haar measure on
G and write ds in place of du(s) for integration with respect to p. Let dg be the modular
function of u. For z € C.(G, M) consider the function s — ag(z(s)). If £ € H, then

(s (2(s)) = as (2(50))EN < flevs(z(s) = 2(s0))El + [[(as = cvse ) (@ (s0) )&
< [I(z(s) = z(s0))Ell + ll (s — sy ) (@ (50))E]l;

SO as § — Sg, both terms on the right converge to 0 by the continuity assumptions on x
and «. Since each a; is *-preserving, we also have lim, g, ||(as(z(s)) — as, (2(s0)))*¢]| = 0,
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so that s — a,(z(s)) is strong*-continuous, and hence belongs to C.(G, M). Moreover, if
z,y € C.(G, M), then z,y are bounded so it follows that s — x(s)y(s) also belongs to
C.(G, M). Then for t € G, the integral

xxy(t) = / o (z(ts))y(s™1)ds
G
belongs to M, and for £,n € H,

QL<OAMBDMKU&n>dSSHﬂummmMMmm@umy*%

| <zxyt)§,n>|=

where y~! is the compactly supported function s — y(s7!). It follows that that x * y is

bounded. We note the following inequality for ¢,t, € G,

|+ y(t —to)&|| = | (/G as(z(ts) — x(toS))y(S_l)dS> |
/ < ag(x(ts) — x(tys))y(s~ )€, n > ds

= sup
neM,|nl|<1

/W% (x(ts) — x(tos))y(s )€ ds.

Since for each s € G we have lim; 4, ||as(z(ts) — z(tos))y(s™1)€]| = 0, and since

levs ((ts) — 2(tos))y(s™EN < 2]z lloollyllso IS

and vanishes off supp y~!, by the Lebesgue Dominated Convergence Theorem, it follows
that the above integrals converge to 0, so that x * y is continuous in the SOT. A similar
argument show that x x y is Strong*-continuous. We can therefore give C.(G, M) a product
and involution as follows.

rent) = [ autalsNy(s™)as, a0 = da(t) e (a(t7'))
We make C.(G, M) into an M-bimodule by defining for a € M,z € C.(G, M),
(x-a)(t) = z(t)a, (a-x)(t) = ap-1(a)x(t).

We note the following properties.

a-(xxy)=(a-z)xy, (z*xy)-a=xx(y-a);

*

(a-2)" =2* a*, (z-a)*=a" 2%

Lemma 7.6. We obtain a *-representation 7 of C.(G, M) b

7(x) = /)\(S)Wa($(8))d8

and we have that M x, G = 7(C.(G, M))". Moreover, for a € M,z € C.(G, M), we have
7(a-x) =7y(a)7(x) and 7(x - a) = ( )To(a).
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Proof. The proof that 7 is a *-representation and satisfies the module properties is routine,
so we will just show that the von Neumann algebra generated by the image is M x, G. We
can view C.(G) as a subalgebra of C.(G, M) by identifying the function f € C.(G) with
the function s — f(s)1. Then by definition, 7(f) is just A(f) where X is the representation
of L*(G) obtained from the representation A of G so that A\(G)” = 7(C.(G))”. Therefore
AG) C7(C.(G, M))". Now let {f;} be a bounded approximate identity in C.(G). Then for
a € C.(G, M) we have 7(fi)ma(a) = 7(fi - a), the left side of which converges in the SOT
to my(a) so that m,(M) C 7(C.(G, M))”. Hence, M x, G C 7(C.(G, M))”. On the other
hand, if y € (7,(M)UA(G)) and = € C.(G, M), then for {,n € C.(G,H), we have

<A@ > = [ < Nomalals))uén > ds
= / < YN $)ma(2(8))E,n > ds
N / < A(s)ma((5))E, y'n > ds

=< 7(x)€,y"n >
=< yr(x)§,n >,

so that 7(z) € M x, G, completing the proof.
]

We can now begin to construct a left Hilbert algebra for M x, G. We define b, to be the
(non self-adjoint) algebra generated by the set

L={z-a:2eC.(G,M),a €ngy}.

Note that for each t, (z - a)(t) = z(t)a € ng, and since ngy is a left ideal, it follows that by
consists of functions G — n,. Then for x € by, we define the function g,(z) : G — H, by
(Gs(2))(s) = qp(z(s)). In fact, we have that g5 € C.(G,H). To see this, we note that if
x € C.(G,H) and a € ng, then for s € G, we have g4(x - a)(s) = gs(z(s)a) = x(s)gs(a), so
that §s(x - a) € C.(G,H) by the continuity assumption on z. Moreover, if we have x,y € by
such that ¢,(y) € C.(G, M), then by the following lemma we have g4(x * y) = 7(x)qy(y),
which also belongs to C.(G,H), proving the assertion.

Lemma 7.7. With the notation above, set Z/Zb = gy(by N bi), and define multiplication in Z/Nl¢
by

Gs(1)qp(y) = ol * y).
Then Z;{(z, is dense in L*(G, Hg), and for x,y € by we have 7(x)qy(y) = Gy(x *y). Therefore,
left multiplication is bounded in Uy and the left multiplication operator for x coincides with
7(x). Moreover, (bs N bi) generates M X, G.
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Proof. Let z,z € C.(G,M),a € ng,y = z-a. Then for s € G, we have

dp(z *y)(s) = qg(x * y(s))
— gul % 2(5)0)
=z * 2(s)gs(a)

)

= /at(:)s(st )2(t 1) gy (a)dt.

But if we set £(s) = 2(s)qp(a), then

so that 7(2)dy(y) = gy(x * y).

To see that by N b generates M we note that for a,b € ng,z € C.(G, M) we have
Ta(a*zb) = mo(a)*T(x)ma(b) € 7(by N bgb), and that ng, C.(G, M) respectively generate
M M %, G. Lastly, for a,b € ng, f € C.(G) consider the element a* - f - b € by N b},
We have for s € G,

Go(a” - [ - b)(s) = qs(f(s)as1(a)"b) = f(s)as-1(a)"qs(a) = [rala®)(ge(a) @ f)](s)-

Since ny generates M and since g4(ng) @ C.(G) is dense in H, ® L*(G) = L*(G, Hy), it
follows that Gy (by N0} is dense in L*(G, Hy).
[l

Now let Z/~{¢, be as in Lemma 7.7, and define an involution * by

!

Go ()" = Go(a*).

Then by Lemmas 7.6 and 7.7, L~[¢ with the involution # and product as in Lemma 7.7 satisfies
1), 2), and 4) of Definition 4.1, and the left multiplication operators generate M x, G. To
show that Z/~{¢ is a left Hilbert algebra we just have to show that the involution is closable.
First we define potential candidates for a modular operator and modular conjugation. Using
the notation of Section 5, for t € R, we define a unitary u; on L*(G,H) by

ut£(8> = 6G(S)itAZoas,¢£<S)v

70



where AY | o = (Dgoass : Dy)iA”. By Lemma 2.10 on page 245 of [13], the map
(s,t) € G X R +— (Dgon, : Dy) is continuous in the SOT, so it follows that the family
{u;} is a one-parameter group of unitaries continuous in the SOT. By Stone’s Theorem,
there exists a positive self-adjoint operator A such that u; = A for all t € R.

Lemma 7.8. For z € C.(G, M) define

(07 (2)](5) = b ()" o7 (a(s))-

Then {pf} defines a one-parameter group of automorphisms for C.(G, M) which leaves beMb}
invariant. Moreover, for x € by N}, we have

Aqy(x) = G o] ().
Proof. Writing 07°*® = (Dyea. : Dg)e0?, we see that pf(z) € Co(G, M) for x € Co(G, M),

and moreover, that {p¢} is a one-parameter group of tranformations. Let z,y € Co(G, M).
By Lemma 5.7, we have

(07 () * o (9)](s)

= [ arlot @) et
- /Gar<5c<sr>itaf°w<x<sr>>>6a<r-1>%Z’°ar1’¢<y<r-1>>dr
= 66(5)" [ ar((Daca, : D (1)) (Do, . + Dadeof(ule )

G
= 66(5)" [ (Duoa s Do, )it 007 a(57))(Dise, -, Dot (s ))dr

G
= 36(5)" (Do, Dol [ (Do Do, o™ @(sr) (Do Do, )i ™
= G6()" (Dase, : Do | ofanla(sr))of ()i

G

= 66(5)(Dyen, : Dol ( / ar<x<sr>>y<r1>dr)

= 86(5)" (Dgoa. : Do)iot (x * y(t))
= [} (x *)](s),
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Also,

so that p is a *-automorphism of C,(G, M).
Let x € C.(G, M), a € ng. Then

(07 (x - @)](s) = 06(5)" (Dgea, : Do) (x(s)a)
0c:(5)" (Dgoa, = Dy)iof (2(5))o} (a)
= [,Of (@)](s)07 (a),

¢

so that pf(z - a) = pl(x) - of(a). Since ny is of-invariant, it follows that pf(z - a) € by.

Moreover, if we choose x,y € b, such that pf’(x), pf(y) € by, then

pi(xxy) = pf(x) * pf (y),

which is also in bs. Since the set {z-a: 2z € C.(G, M),a € ny} generates by, it follows that

p?(bs) C by. The reverse inclusion holds replacing t with —t, so that p{ (b,) = b,. Since p
is a *-automorphism, this also shows that pf(b¢ N bfb) =b, N bgﬁ. Lastly, if x € by N bi,

0o (07 ())(5) = g
= 5G(S)it(D¢oas : D¢)tQ¢(Uf<x(S>>>
= 06(8)"(Dgon, : Do) A"qy(2(s))

[~ )

b

]

To find the modular conjugation we need some background on automorphisms. Let 6 €

Aut(M), and for = € ng, define

Voqe(x) = qgop—1(0(2)).
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This is well-defined since ngop-1 = 6(ng), and so extends to a unitary Vy : Hy — Hpop—1-
Identifying the representations my, Tyop, Tyop-1, for a € M, x € ng, we have

VoaVy () = Voagges (6" (2))
= Viqgon(ad™" (1))
= ¢(0(a)z)
= 0(a)gs(z),

so that 6 = Ad(Vj). Moreover, for z € ng N n} we have

VoSegqs(x) = Voge(z™)
= Gyop—1(0()")
= Spop-1qpop-1(0(2))
= Syo0-1Vaqs()),
so VpSy = Spop-1Vy. Then

Spea-1 = VoSeVy = (Vadu Vi) (VeA S 2Vy),

so by uniqueness of the polar decomposition, we have Jyop-1 = VyJu V) and Ayog-1 = ViAgVy'.
Identifying the conjugations Jy, Jsop-1 with the operator J under the unitary equivalence of
the representations 7y, Tsop-1 (see Chapter 9, Section 1, of [13]), we can write JVy = VpJ.
Setting V,,, = U(s) we define a conjugate linear operator .JJ on L*(G,H) by

(JE)(s) = da(s)2U(s™") JE(s™).

Lemma 7.9. The operator J satisfies J = J" = J, and the involution * has closure §¢,

which admits polar decomposition S¢, = JAl/2

Proof. For s € G, we have
TPE(s) = 0a(s) " PU(s7H) I (JE)(sT)
=U(s7")JU(s)JE(s)
=&(s),

so that J2 = 1. For x € by NbY, we have

J5¢oas,¢%($(8))
= 0a(s)'2AY2 qe(x(s))
= A2, (2)(s),
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so g(x) = in/zq},(a:). Hence, ! has closure S, such that Sy& = jA1/2§ for
¢ € D(Sy) € D(AY?). But by Lemma 7.8, Gs(bs N bj) is invariant under each A™ so
that by Appendix 4 of [13], G4(by N b}) is a core for A2 completing the proof.

O

Theorem 7.10. The algebra Z;{¢ is a left Hilbert algebra such that Rg(z:{¢) = M x,G. There
exists a unique fns weight ¢ on M X, G satisfying the following:

O(7 () 7(x)) —/qu(x(t) z(t))dt

2) for © € Mo} (7a(x)) = Talou(x));
3) o7 (M(s)) = 0a(s)*A(8)Ta((Dgoa, : Do)e).

We say that ¢ is the weight on M x4, G dual to .

1) for x € by,

Verification of 1), 2), and 3) are routine, and the proof of uniqueness can be found in [13].
We finish this Section with an application to the case that « is the modular automorphism
group of ¢.

Corollary 7.11. Let ¢ be an fns weight on a von Neumann algebra M, and let o be the
weight on M x,6 R dual to ¢. Then of = Ad(\(2)).

We conclude by Theorem 5.22 that M x,¢ R is semifinite. In Section 8 we expand upon
this by constructing a new action on the crossed product algebra.
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8 Duality of Crossed Products

Let (M, G, a) be a covariant system where M acts on a Hilbert space H. We assume
throughout that G is a locally compact abelian group, with group operation written addi-
tively, and with dual group G. In this Section we generalize the notion of Pontryagin duality
to von Neumann algebras. The material follows the exposition given in Part 1, Section 4 of
[4].

Let A and p respectively denote the left and right regular representations of G on L*(@G).
Define a unitary representation v : G — B(L*(G)) by (v,€)(s) = 7(s)&(s).

Lemma 8.1. The von Neumann algebra generated by A\(G) U v(G) on L*(G) is all of
B(L*(G)).

Proof.

A

Claim: The von Neumann algebra generated by v(G) is L*(G).
Let v : L'(G) — B(L*(G)) be the representation given by

v(f) = /éf(v)%d%

Then the von Neumann algebra generated by v(G) coincides with that generated by v(L'(G)).
But for f € L'(G),¢ € L*(G), we have

v(f)§ = /f('Y)wad”V

~ [ seean

= f¢.
That is, v(f) is just multiplication by f. Since the set {f : L'(G)} is dense in Co(G) and
Co(G) is WOT-dense in L>(G), the claim follows.

The algebra L>°(G), and the group von Neumann algebra R,(G) are maximal abelian, so
that
[L>®(GQ) UR(G)] C L=(G) NR(G) = L=®(G) N R(G).
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But if f € L>(G) acts by the multiplication operator v(f) € B(L*(G)), then for £ € L*(G),
xeGqG,
Ao(NXE(E) = W(NHXE(s7't) = f(s N t) = f(sHER).
Hence if v(f)A\s = Aw(f), then we have f(t) = f(s7't) almost everywhere. If
v(f) € MG)', f must be constant almost everywhere. Therefore L*(G) N Ry(G) = C
so that [L™°(G) UR(G)]" = B(L*(G)).
0

It was shown in the proof of Lemma 8.1 that for s € G,y € G we have the relation
AsUy Ay = (8) 1.

We say that the pair (A, v) satisfy the Heisenberg-Weyl commutation relation. We have
the following uniqueness result, which will be useful in a later Section, from page 257 of [13].

Lemma 8.2. Let U,V respectively be unitary representation of G,G’ on a Hilbert space H
which satisfies the Heisenberg-Weyl commutation relation. Then there exists a Hilbert space
Ho and an isomorphorphism Q : L*(G) @ Ho — H such that

U=\®id, V=v®id

Returning to the covariant system (M, G, ), we define unitary representations Ay, vy of
G,G on L*(G,H) as follows:

(A (r)§)(s) = &(s — 1), (rr(7)E)(s) = v(s)€(s)

so that Ay (r) = 1® ), and v(y) = 1 ® 1, We then define an action & of G on L*(G,H)
by &, = Ad(vy(7v)). In fact, & restricts to an action on M x, G, which we will call the
action dual to a. Unless the context requires clarification, we will just refer to it as the
dual action.

We now check that & defines an action on M x,G. If x € M,~ € G, ¢e L*(G,H), then
we have
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so & fixes mo(M). Now if t € G,

(rn(NAn () 128) (5) = 7 (8) A (B) 5 6) ()

50 Gy (A (t)) = 7(t) Ay (t), which belongs to M x, G. Hence G, maps the generators of
M x, G into M %, G, so the claim follows. We now state the main Theorem of this Section.

Theorem 8.3. There exists an isomorphism 7 : (M X, G) X4 G — M®B(L*(G)) which
transforms the bidual action &; to {as @ Ad(ps)}seg.- Moreover, the fixed point algebra
(M x4 G)¥ s precisely wo(M).

We prove the Theorem with a series of Lemmas. First we consider the following definition.

Definition 8.4. We say that the covariant systems (M, G, ), (N, G, 3) are conjugate if
there exists an isomorphism 7 : M — N such that for x € M,t € G, we have

m(ow(x)) = Be(m(2)),
and we say that 7 is a congugating isomorphism.
The following is proven in [4].

Lemma 8.5. Let (M, G, a),(N,G, ) be conjugate covariant systems with conjugating iso-
morphism m : M — N. Then 7w = ® 1 1s a conjugating isomorphism for the covariant
systems (M %, G, G, &) and (N x5 G, G, B).

Returning to the covariant system (M, G, a), let (74, Ay) be the covariant representation
on L*(G,H) constructed in Section 7. Then we obtain a new covariant system (7(M), G, /)
where o} = 7, o oy o m;!. Note that by the covariance condition, for x € M we have
ay(m(x)) = mo 0 () = Ma(x)A so that o is unitarily implemented. Moreover, these
systems are conjugate. To prove Theorem 8.3 it suffices to work with the covariant system
(mr(M),G, ') in place of (M,G,«). Hence, for the remainder we will assume that « is

implemented by a one-parameter unitary group {us}seg which is SOT-continuous.

Define a unitary W on L*(G,H) by (W¢)(s) = u&(s). We have
(Wma(2)W7E)(s) = us(ma()W*E)(s)
= us(uzru,)(W*E)(s)
- xusuzg(s)

= a£(s),
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and
(WAWZE)(s) = us(Mu(H)W7E)(s)
= us(W*¢)(s — 1)
= usuy_,&(s —t)
= utf(s - t)v
so that W, (z)W* = 2 ® 1 and WAW™* = u, ® A, In particular,

W(M xa G)W* ={z® 1, us ® \Ye p e

Lemma 8.6. The algebra (M N%G) 314G is spatially isomorphic to the von Neumann algebra
M acting on H @ L*(G) @ L*(G) with generating set

{r01@Lu,®A 01,1801, ® /\’Y}xEM,SGG,'y€G7

where Ay comes from the left reqular representation of G. Moreover, this isomorphism leaves
the bidual action & unchanged.

Proof. We define the unitary W on LZ(G,LQ(G, H)) by (Wf)('y) = vy(7)&(y) so that for
e Mx,G, . 5
W (@)W =2®1

and for v € @,

®

WAz (aa(NW* = vi(7) © Ay,
We then define the unitary W on L?(G,H) by (WE)(s) = usé(s) so that for x € M,

Wrg(e)W*=2z®1,

and for s € G,
WAy ()W = ug ® As.

Then,

(W 1)(WW&(7TQ($)))W)<W* 1) =W 1l(ry(z) @ HIW* @1
=r®1®1,

and

(W D)(WraDu(s W)W @ 1) =W @ 1(Ay(s) @ HNIW* @ 1
=uUs ® A\ ® 1.
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Moreove, since

we have that

(W@ D)WALeuW) W @ 1) =W e Ly(y) @ \)W* @1
= VH(’Y) ®)W
=1®v,®\,.

Lastly, we note that the unitary (W ® 1)W commutes with the unitaries {vz2(q 0 (5)}seq
implementing the bidual action, which completes the proof.
[

Lemma 8.7. The algebra My of Lemma 8.6 is spatially isomorphic to the von Neumann
algebra My acting on H @ L*(G) ® L*(G) with generating set

{2@10Lus @A @1, 1@ vy ® Uy} scaned

The isomorphism transforms the bidual action & to the action B implemented by the one-
parameter unitary group {1 @ 1 ® ps}seq-

Proof. Let § : L*(@) — L*(G) be the isomorphism extending the Fourier transform on
LYG)NL*(G). Ity € G, f € C.(G), we have

(NS )(E) = VI(t)(AWS*f)('Vl)d'Y/

G

S

Y (E)(F )y )dy

0 /G TOE D)

HFE ()
V()

so that the desired isomorphism is given by the unitary 1®1®F. A simple calculation yields
for s € G, v, = ps, completing the proof.

I
S

~—

| I
N Q‘ =2

]
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Lemma 8.8. The algebra My of Lemma 8.7 is isomorphic to the von Neumann algebra M3
acting on H ® L*(G) with generating set

{IL‘ X 17 Us & >\s> 1® V’Y}:EEM,SEG,’YEG'

The wsomorphism transforms the action 5 of Lemma 8.7 to the action p implemented by the
one parameter unitary group {1 ® ps}sea-

Proof. Identify L*(G x G) with L*(G) ® L*(G) by extending the map which identifies the
element f ® g with the function (s,t) — f(s)g(t), and define a unitary U on L?(G x G) by
Uf(s,t) = f(st,t). Then,

U(vy @ v,)U f(s,1) = (v, @ 1)U f(st™, 1)
= (st )y (U F(st™",1)
v(s)f(s.1)
= (1 @1)f(s,1),

and
U\ @ DU f(s,1) = (N @ DU f(st™,1)
=Uf(rtst™t)
= f(rilsat)
= (A ®1)f(s,1).
Hence,

1IeUY)Nze1le)(lelU)=211,
1RUN (us @A @11 RU) =us @A\ ® 1,
l1eU)(1ov,ov)(1eolU)=101r,® 1.

Therefore, 1 ® U* gives the desired isomorphism. Lastly, we note that for s € G,
1UH11®p)(1U)=1R ps® ps,

completing the proof.

Lemma 8.9. The algebra M3 of Lemma 8.8 is spatially isomorphic to M@B(L*(G)), and
transforms the action p into o ® p.
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Proof. Let W be the unitary on H ® L*(G) as before satisfying
WM, GYW* ={z®1,us ® /\S}ZGM,SGG'
We will show that
W(MQQL>®(G))W* = MRL™(G).
For x € M, ¢ € H® L*G),t € G, we have
(W(x @ HWE)(t) = (Wma(a)W2E)(t)
= (o (2)W2E)(t)
= w1 () (W2E)(t)
= ufat 1(x)ut2§(t)
= ay ()& (1)

If ye M,y € G, then

ay(2)yy(£)E(t)
= (y © 1) (x)€](1)
= [y @ vy)(W(z @ HW)E(),
so W(zr ® )W* € MRL®(G)] = MKRL®(G). On the other hand, we have that
W*(z ® 1)W = 7m,(z), and if y € M,y € G, € € H® L2(G), then

[ma(2)(y @ 1)E](t) = a1 [(y @ v,)E](F)
= at—lymé(t)

(y® V’y)atflg(t)

= [(y @ vy)ma(z)€](1),

so W*(z @ 1)WW € M®L>®(G). Lastly, since W*(1 ® v, )W =1® v, the claim follows.

Now W*(us @ A)W = 1® A, so that W*{u, @ A\ }ieeW = CRR(G). Therefore, by
Lemma 8.1,

W* MW = [MRL>*(G)UC @ R(G)]" = MRB(L*(Q)).
Lastly, we note that for s € G,

W*(l ® ,05>W =Us @ >\57

completing the proof.
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Combining Lemmas 8.6, 8.7, 8.8, 8.9 and the discussion preceding Lemma 8.6 we have that
(M x4 G) x4 G is isomorphic to M&B(L2(G)), and that the bidual action & is transformed
into {as ® Ad(ps)}sec. To finish the proof of Theorem 8.3 we need to show that the fixed
point algebra (M x, G)% is m,(M).

We already know that mo (M) € (M xq G)%. Note that m,(M x, G) is a subalgebra of
{us ® ps}ice. Hence if T € (M %, G)*, we have that
7 € M@B(L*(G)) N{us ® pstiee N{1 @1} 6
Let W be the unitary on H ® L*(G) as before such that
WMo )W = {2 ® 1, us @ As}rem e
Since W (us @ As)W* =1® A and W (1 ® vg)W* =1 ® vy, we have that by Lemma 8.1,
T € MRB(L*(G)) N W*(B(H)®C)W.
Therefore, £ = W*(x @ 1)W for some x € B(H). If we can show that x € M, then
T=W*(x®1)W = 7m,(x) and we are done. But if y € M/,
y®1e MRC = (MRB(L*G))),
so that x ® 1, W*(x ® 1)WW commute. Thus, for £ € C.(G,H), we have
(ugrusy — yugrus)§(s) =0,
and if we choose & such that £(e) # 0, this gives zy = yx, finishing the proof.

We have the following application to modular automorphism groups.

Corollary 8.10. Let ¢ be an fns weight on a von Neumann algebra M, let ¢ be the weight
on M X6 R dual to ¢, and let 6° be the action on M X, R dual to o®. If we let h be the
positive self-adjoint injective operator affiliated with M %, R such that \(t) = h™", then
T = ¢ is a trace such that T o 69 =e 7.

Proof. By Corollary 7.11, we have that af; = Ad(My(t)). Let h be a positive self-adjoint
operator affiliated with M x,s R such that A(t) = h~®  Then the modular automor-

phism group for 7 = ¢, is trivial so that 7 is a trace. Since 6 is dual to 0% we have that
0,(h) = e7"'h". Hence, for r € M x,6 R,
T 00,(z) = %&(m +eh)10,(z))
=lime™*(1+ce7*) G0 0,(h(1 + ch) ')
=e °7(z).

O

In Section 9 we will apply the results of Sections 7 and 8 to properly infinite von Neumann
algebras.
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9 Structure of Properly Infinite von Neumann
Algebras

We now derive some structural implications for a von Neumann algebra M which comes
from the existence of an fns weight ¢ and associated modular automorphism group o?. To
this end we will apply the crossed product construction as developed in earlier Sections. We
begin by proving that there is a relatively simple relation between M and M x s R in the
case that M is semifinite. The material for this section is from Chapter 12 of [13], except
for Lemmas 9.1 and 9.4 which are from part 2, Section 4 and Appendix C of [4].

Lemma 9.1. Let M be semifinite, and let ¢ be an fns weight on M. Then there exists an
isomorphism of M x,6 R onto ML (R) which transforms the dual action 6 onto id ® p,
where p is the action of R on L*(R) by translation.

Proof. Retaining the notation in Sections 7 and 8, let W be the unitary on H ® L?(G) such
that W (2)W* = 2 ® 1 and WAy (t)W* = A" @ ;. Since M is semifinite, A" € M, so
that '

AZt ® )\t € {l‘ ® 17 1® )‘S}/rleM,seRv

and A
1oN €{r®@ 1, A" @ A} e ser-

Consequently,
W(M X6 R)W* = {2 ® 1,1 @ \}reptser:

The dual action on M X,s R is implemented by the unitaries {vg(s)}seq, which commute
with W so that the dual action remains unchanged. Lastly, if we let § : L?(R) — L*(R) be
the isomorphism coming from the Fourier transform, then by Lemma 8.7, we have

(1@ F)Mu(s)(1 @ F)x = vul(s).
By Lemma 8.1, {v#(s)}ser generates CRL>*(R), so that
(1@ F)W (M x50 R)WH(1®F) = MISIL™(R).
Also, by Lemma 8.7, we have

(1@F) () (1 @F)* =1® ps,

which is clearly conjugate to the desired system.
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Recall that a von Neumann algebra M has a canonical decomposition of the form
M = M & My,

where M is semifinite and My is type II1. Using this fact we will obtain a characterization
of Type III algebras given in Theorem 9.3. First we start with a definition.

Definition 9.2. Let (N,R,0) be a covariant system and let T be an fns trace on N'. Then
we say 0 scales T if for s € R, we have

Toly=e °T.
Recall that if M is a von Neumann algebra then C)y, denotes the center of M.

Theorem 9.3. Let M be a properly infinite von Neumann algebra. Then there exists a
covariant system (N, R, 0) such that N admits a trace T scaled by 6 and M is isomorphic to
N xgR. Furthermore, M is type III if and only if the central covariant system (Cyr,R,0)
does not admit an invariant subsystem conjugate to (L (R), R, u), where as before p is the
translation action.

To prove the Theorem we need the following Lemma. First we recall that by Corollary
8.10, if ¢ is an fns weight on M, and  is the action on M x,+ R dual to o0?, then there
exists an fns trace 7 on M x4 R which is scaled by 6. The following Lemma allows us to
say a bit more.

Lemma 9.4. If M is a properly infinite von Neumann algebra and K is a separable Hilbert
space then M = M®B(K).

Proof.

Claim:  There exists a sequence of pairwise othogonal projections {e,}2; such that
e, ~ 1 for all n, where ~ denotes Murray-von Neumann equivalence of projections. If we let

e=Y ¢, then M is isomorphic to eMe = M..
Since M is properly infinite there exists a projection f € M such that f ~ (1 — f) ~ 1.
Let u,v € M such that
u'u=1,uu* = f,

and
vt = fiovt =1— f.

Then for n > 1 if we set ¢, = v™u, we have that tt, = f, and {¢,t5}>°, is a family of
non-zero, pairwise orthogonal projections such that t,t; < f for all n. Set e, = f, and
e = e, thene < 1 and 1 < e so that e ~ 1. Finally, if we let w € M such that
w*w = 1, ww* = e, then x € M — wzw* € M, is the desired isomorphism.
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By the claim, we can assume that Y ", e, = 1. Let {f;;}$5_, be matrix units for B(K),
and let {v;}7°; be elements in M such that vjv; = 1 and v;v} = e;. Then, if we set

k

up = Zvi ® fi1,

i=1

we have that ug converges in the SOT to an element u € M®B(K), that u} converges in the
SOT to u*, and that u*u = 1® f1 1, uu* = 1®1. Then z € MRB(K) — u*zu € M®(C- f1,)
is an isomorphism, and the result follows.

]

proof of Theorem 9.3. The existence of such a system follows immediately from Lemma 9.4
and the discussion preceding it.

Let (N,R,0) be a covariant sytem with trace 7 on N scaled by 6 and such that
M =2 N xyR. Let ¢ be the weight on M dual to 7. Let (mg, A\) be the covariant sys-
tem generating the crossed product as in Section 7. By Theorem 7.10 we have that for
reN R

of (my(x)) = m(07 (x)) = mo(x),
and for s € R, .
o/ (A(5)) = A(5)(Drog, = D) = €7 A(s).
Therefore o? is precisely the dual action 6, and it follows by Theorem 8.3 that my(N) = M.

Claim: Identifying N with m3(N') € M and the action § with the action 706 o, ", the
center Cyq coincides with the fixed point algebra C%;.

We have that Cyy € M,NCl, and since A\(s) € M we have that Cys commutes with each
A(s) so that Cyy C C%.. On the other hand, if z € C%;, this says precisely that z commutes
with N and each \(s), so that x commutes with the generators of M. Therefore x € C\y,.

Now suppose that there exists an injective *-homomorphism 7 : L>(R) — C)r such that
fort € R, f € L>(R), we have

(e f) = 0 (f).

Let e = m(1) so that e is a non-zero projection in C%,. We will show that the subalgebra
M. = N, xg R is semifinite, which shows that M is not type IIIL.

Define a one-parameter unitary group {w;}er in L=(R) by

and set v; = m(w;). By assumption we have 0,(v;) = e*'v,. If x € N, then since v; € Cy,
we have
v =z = of (),
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and for s € R, we have

v A(s)vf = e ().

Therefore, Ad(v;) and 0, = of agree on M., and since e € Cyy, we have that o, 18
semifinite and that o?Me = o?| . It follows by Theorem 5.22 that M, is semifinite.

On the other hand, write M = M & M as in the paragraph following Lemma 9.1, and
let e be the projection corresponding to the identity in M. Then e is central, so belongs to
Cﬁ[‘ Therefore M, = N, xg R, so without loss of generality we will assume e = 1. Since M
is semifinite, by Theorem 5.22 there exists a one-parameter SOT-continuous unitary group
{v:}1er in My = N such that ¢f = Ad(v;). Then we have for s € R,

uA(s)v) = U¢(us) = e*iSt)\(s),

so that (A, v) satisfies the Heisenberg-Weyl condition. By Lemma 8.2 the von Neumann
subalgebra generated in N by {uv; }+er is isomorphic to L>°(R) and the isomorphism translates
the action Ad()), which we have identified with 6, to the translation action p.

O

We finish this Section with the remark that in the case of a type III algebra, the covariant
system (N, R,0) is actually canonical. We state the following Theorem [13] (See Chapter
12, Section 1 of [13]).

Theorem 9.5. Let M be a type III von Neumann algebra. Then there exists a covariant
system (N, R, 0), unique up to conjugacy, such that N admits an fns trace T scaled by 0,
and such that M is isomorphic to N xg R. Moreover, N is type II..

It is at this point that the theory becomes interesting. For it turns out that in the case
that M is a type III factor, the covariant system (Cy,R,#) is an isomorphism invariant,
called the flow of weights associated with M. For this system, we let T' > 0 be the period
of the action (where T' = 0 if the action is trivial, and 7" = oo if the action has no period),
and we say that M is a factor of type III, where A = =7 (where A = 0 if T' = oo0). Lastly,
we state the following particularly nice decomposition of type III, factors for 0 < A < 1 (see
Chapter 12, Section 2 of [13]).

Theorem 9.6. Let M be a type III factor. Then M is of type III\ for 0 < A < 1 if and
only if there exists a type Il factor N, an automorphism 0 € Aut(N'), and an fns trace T
on N such that 7 o 8 = A\t and such that M is isomorphic to N x4 Z.

This theorem is particularly interesting because in order to construct non-isomorphic type
I1I factors, we just need to find automorphisms which scale a fixed trace by different degrees.
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10 Concluding Remarks

In Section 9 it was noted that a type I1I factor can be classified by the kernel of the action
of the flow of weights. We mention here another method to obtain this same classification. In
[1], Arveson discusses a notion of spectrum for an action of a locally compact abelian group
G on von Neumann algebra M. This is achieved by taking the associated representation of
L'(G), and defining the spectrum to be the closed subset in G (the hull) associated with
the kernel. In the case of the modular automorphism group o? of an fns weight ¢, the
spectrum coincides with the set o(A,) NRT (see Section 3.4 of [11]). In [3], Connes noted
that the spectrum decreases when we restrict the action to the corner algebras M., where
e is a non-zero projection fixed by the action. The intersection of the spectra of the corner
algebras, called the Connes spectrum, is invariant under cocycle conjugacy (see Section 3.3
of [11]). Therefore, by the Connes Cocycle Derivative Theorem, we can define the spectrum
of a von Neumann algebra M, denoted I'(M), to be the Connes spectrum of the action o?,
where ¢ is any fns weight on M. It turns out that I'(M) coincides with the kernel of the
dual action 69 restricted to C M 4k (see Chapter 11, Section 2 of [13]). In particular, if M
is a type III factor, then the spectrum of M is the kernel of the action of the flow of weights
(see Chapter 12, Section 1 of [13]). The advantage of this viewpoint is that by Theorem 5.9
we obtain the same classification of type III factors in terms of the spectra of the modular
operators. In Section 3.4 of [11], factors of type III, are constructed by measure theoretic
methods and using the the above picture of the invariant. As an area for further study, it
would be interesting to explore in detail the connection between this picture and that given
in Section 9 of the invariant for type III factors.
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