
On Decoupling Concurrency Control from

Recovery in Database Repositories

by

Heng Yu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Heng Yu, 2005

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We report on initial research on the concurrency control issue of compiled database appli-

cations. Such applications have a repository style of architecture in which a collection of

software modules operate on a common database in terms of a set of predefined transac-

tion types, an architectural view that is useful for the deployment of database technology

to embedded control programs. We focus on decoupling concurrency control from any

functionality relating to recovery. Such decoupling facilitates the compile-time query opti-

mization.

Because it is the possibility of transaction aborts for deadlock resolution that makes the

recovery subsystem necessary, we choose the deadlock-free tree locking (TL) scheme for our

purpose. With the knowledge of transaction workload, efficacious lock trees for runtime

control can be determined at compile-time. We have designed compile-time algorithms to

generate the lock tree and other relevant data structures, and runtime locking/unlocking

algorithms based on such structures. We have further explored how to insert the lock steps

into the transaction types at compile time.

To conduct our simulation experiments to evaluate the performance of TL, we have

designed two workloads. The first one is from the OLTP benchmark TPC-C. The second is

from the open-source operating system MINIX. Our experimental results show TL produces

better throughput than the traditional two-phase locking (2PL) when the transactions are

write-only; and for main-memory data, TL performs comparably to 2PL even in workloads

with many reads.

iii

Acknowledgements

I would like to express my heartfelt gratitude to Professor Grant Weddell, my supervisor,

for his guidance and encouragement during my program. His careful supervision, insightful

suggestions, and exceptional patience prove invaluable to the completion of the thesis.

I am also grateful to Professor Ken Salem and Professor David Toman, my thesis read-

ers, for taking their precious time reviewing my thesis and for their constructive comments.

I give thanks to my fellow students in the database research group, Huizhu Liu, Lubmir

Stanchev, Lei Chen, and Khuzaima Daudjee, for the discussions with them which give

great benefit to my research. Special appreciation goes to Dr. Yijun Yu at the University

of Toronto, whose critical suggestions helped me to publish some of my thesis work in

CASCON 2004.

It is my luck to meet wonderful friends in the University of Waterloo, without whom

my life as a graduate student would have been far less interesting. I would like to thank

Ningyan Zhong and Yi Zheng for always treating me with delicious food and giving me a

feeling of family. Thanks also go to Saul Warhaft, Ramesh Sathiyaa, Mihaela Gheorghiu,

Claude-Guy Quimper, Kim Honeyford, and other friends in the Minota Hagey Residence

for sharing with me the marvellous years there. I would also like to thank Leo Jingyu Lee

and other brothers and sisters in the Chinese Christian Community, from whom I have

received strong spiritual support.

I give my deepest thanks to my parents, Yingchuan Yu and Enduo Wang, for their

forever love, support, and understanding.

The financial support from Nortel and NSERC for my research work is gratefully ac-

knowledged.

iv

Contents

1 Introduction 1

1.1 Applying database technology to embedded control programs 1

1.2 Concurrency control for compiled database applications 3

1.3 Thesis overview and organization . 5

2 Related work 6

2.1 Compiled database applications . 6

2.1.1 Query processing . 6

2.1.2 Physical design . 7

2.2 Tree- and DAG-based locking protocols . 8

2.2.1 Basic TL . 9

2.2.2 DAG locking . 9

2.2.3 Guarded locking . 10

2.2.4 Tree/DAG locking with shared locks 11

2.2.5 Hypergraph locking . 14

2.2.6 Edge locking . 17

2.2.7 Dynamic TL . 18

2.2.8 Dynamic directed graph locking for dynamic databases 19

2.2.9 Applications of TL in index searching 21

2.2.10 Application of TL in concurrency control in Java 23

2.3 Non-flat transaction models . 24

2.3.1 Nested transactions . 24

2.3.2 Multilevel transactions . 25

vi

2.3.3 Object transactions . 26

2.3.4 Saga model . 27

3 Applying TL to compiled database applications 29

3.1 Definitions . 29

3.2 Runtime locking and unlocking algorithms 31

3.2.1 Definitions of lock trees . 31

3.2.2 Locking and unlocking algorithms 32

3.2.3 Correctness of the runtime algorithms 39

3.3 Compile-time processing . 40

3.3.1 Generating unlockable data sets . 40

3.3.2 Generating lock trees . 44

3.3.3 Inserting lock steps into transaction types 47

4 Building workloads for compiled database applications 62

4.1 TPC-C workload . 62

4.1.1 Transforming TPC-C transactions to finite state machines 63

4.1.2 Partitioning the tables . 65

4.1.3 Obtaining time costs . 65

4.2 The MINIX workload . 67

4.2.1 Basic approach . 67

4.2.2 Building transaction types . 68

4.2.3 Getting the probabilities of the transaction types 73

4.2.4 Calculating the costs of locking . 73

5 Experiments 75

5.1 Experimental setting . 75

5.2 Simulated results on TPC-C . 77

5.3 Simulated results on the MINIX workload 80

6 Conclusions and future work 83

6.1 Conclusions . 83

6.2 Future work . 84

vii

86

A.1 Case study: abort handling in Linux system call fork 86

A.2 The TPC-C workload . 87

A.3 The MINIX workload . 88

A.3.1 C programs that handle the selected system calls 88

A.3.2 Table definitions for kernel data . 111

A.3.3 C/SQL programs for the system calls 113

A.3.4 MINIX transaction types . 143

A.3.5 Calculating the locking cost . 157

viii

List of Tables

3.1 Unreachable and transaction-type-unlockable sets at each state of the trans-

action type in Figure 3.1 . 36

3.2 Total transaction-unlockable set at each state of a transaction 36

3.3 Steps at each state of a transaction . 39

4.1 MINIX kernel data structures . 71

4.2 The probabilities of the transaction types 73

A.1 The probabilities of state transitions in fork 144

A.2 The probabilities of state transitions in exit 144

A.3 The probabilities of state transitions in waitpid 145

A.4 The probabilities of state transitions in exec 146

A.5 The probabilities of state transitions in brk 146

ix

List of Figures

1.1 Repository architecture . 2

1.2 Database repository architecture . 2

2.1 A Guarded Graph . 11

2.2 Undirected cycles in D′(P) (From [56]) . 17

3.1 An example of a transaction type . 31

3.2 A global lock tree (a) and a local lock tree (b) 32

3.3 The tree built by Algorithm 3.3.2 from the transaction type in Figure 3.1 . 45

3.4 Adding lock states to a transaction type: (a) original transaction type and

its local lock tree; (b) expanded transaction type. 48

3.5 A transaction type and its local lock tree 49

3.6 A naive expanding approach: (a) original transaction type, (b) expanded

transaction type . 50

3.7 Expanded transaction type . 55

3.8 Expanding the transaction type in Figure 3.5 to the one in Figure 3.7 . . . 60

3.9 Transaction type with locking/unlocking steps (the solid cycles) inserted. 61

4.1 Transformations of queries . 64

4.2 Transformations of control flows . 64

4.3 Adding indexes and partitions to transaction types and lock trees 66

5.1 The simulated throughput comparisons between 2PL-rw, TL and 2PL-w,

with logging factor=0.2, waiting factor=10 78

x

5.2 The simulated throughput comparisons between 2PL-rw with increasing log-

ging factor and TL, waiting factor=10 . 79

5.3 The simulated throughput comparisons between 2PL-rw with increasing log-

ging factor and TL, waiting factor=1 . 79

5.4 The simulated throughput comparisons between 2PL with logging factor 1

and 5 and TL, waiting factor=1 . 81

5.5 The simulated throughput comparisons between 2PL and TL, with wait-

ing factor=30 and logging factor=0.2 . 82

A.1 The control flow of fork . 87

A.2 The new order transaction type . 88

A.3 The payment transaction type . 89

A.4 The order status transaction type . 90

A.5 The delivery transaction type . 90

A.6 The stock level transaction type . 91

A.7 The finite state machine of fork . 144

A.8 The finite state machine of exit . 145

A.9 The finite state machine of waitpid . 146

A.10 The finite state machine of exec . 147

A.11 The finite state machine of brk . 148

A.12 Part of the finite state machine of exit . 153

A.13 The costs of fork . 157

A.14 The costs of exit . 158

A.15 The costs of waitpid . 159

A.16 The costs of exec . 160

A.17 The costs of brk . 161

xi

Chapter 1

Introduction

1.1 Applying database technology to embedded con-

trol programs

Repository is a widely used software architecture in which the software modules or sub-

systems interact with one shared data source (Figure 1.1). The inception and maturation

of relational database technology since the 1970s have had a great influence on this style

of architecture. With a general purpose database engine installed, the component subsys-

tems communicate with the database engine in the SQL language. This evolved repository

architecture is called database repository, which is shown in Figure 1.2. The database

repository architecture along with database technology give software developers consider-

able benefits, referred to as DB payoff. The payoff happens for two reasons. First, SQL

provides the subsystems with a conceptual view of the database which in turn reduces their

development cost. Second, each software subsystem itself automatically inherits from the

database engine solutions to concurrency, reliability and security problems.

A new application area to apply the database repository architecture is embedded con-

trol programs. An embedded control program is a software system consisting of a collection

of subsystems that interact with common data in main memory through a set of prede-

fined transaction types [48]. Therefore, an embedded control program naturally has the

repository architecture. There are many examples of embedded control programs in the

1

2

...

Data

Subsystem 1

Subsystem i

...

Subsystem n

Figure 1.1: Repository architecture

...
...

Subsystem 1

Subsystem n

SQLSubsystem i
Database
Engine

Data

Figure 1.2: Database repository architecture

3

IT industry. Many legacy systems, e.g., control programs of private branch exchanges

(PBXs) and operating systems, belong to this category. The introduction of inexpensive

handheld computers in wireless networks and mobile computing environments initiates a

new field of embedded control programs. If we adopt database repository architecture

for embedded control programs and supply them with appropriate database management,

embedded control program software development and maintenance will also benefit from

the DB payoff. The application of database technology in embedded control programs has

double contributions. First, it realizes the information integration of legacy data with a

uniform SQL/OQL interface. Second, it supplies database facilities for the new lightweight

applications on wireless devices.

Such applications have strict resource limits and high throughput requirements. Tra-

ditional relational database engines are not suitable for this area. In particular, it is

intolerably costly to process queries in an interpretative way at run time. Because all

transaction types are predefined, query plans and the code that implements the plans

can be compiled at system generation time [48]. Because compile-time processing plays

an important role in the database management of embedded control programs, we call

the embedded control programs that are equipped with such database techniques com-

piled database applications [44]. In the thesis, the terms “embedded control program” and

“compiled database application” are used interchangeably.

1.2 Concurrency control for compiled database appli-

cations

The thesis addresses the issue of concurrency control of compiled database applications.

As in traditional database systems, we use the classical transaction model [8] [23] [53].

The transaction pattern is “Begin Transaction/Commit/Abort Transaction”, which allows

users to commit or abort transactions explicitly. The well established standards of cor-

rectness include serializability, deadlock-freedom, and recoverability. In general-purposed

database systems, such standards are ensured by the following approaches. The two-phase-

locking (2PL) [18] is applied to guarantee serializability. Deadlocks are detected by timeout

or looking for cycles in a waits-for-graph, and resolved by aborting selected victim trans-

4

actions. Moreover, the system keeps an on-disk log for all updates for potential recovery

from aborts.

We use the transaction model for compiled database applications as well. Specific

to such applications, we find recovery from arbitrary transaction aborts will introduce

very complicated logic, which makes the generation of query processing code difficult. In

addition, we conjecture that logging all updates to the common database to support very

general abort capabilities may result in performance degradation. Therefore, it critical to

decouple concurrency control from recovery in compiled database applications.

In traditional DBMSs, there are two reasons why general recovery mechanisms are

required.

(a) They may be needed to support the transaction model itself if it is possible for clients

to explicitly issue an abort.

(b) Since deadlock is possible under 2PL, there is an internal need to abort transactions.

To avoid the above two situations, naturally two things are necessary. First, we shall

adopt a much simpler “Begin Transaction/Commit” transaction model for the compiled

database application domain. Second, we need to replace 2PL with a locking protocol that

guarantees both serializability and deadlock-freedom.

The first goal is not difficult to obtain for compiled database applications. Because the

transaction types are predefined, and the conditions and behaviors of transaction abort are

predictable, we can implement a high-level “abort” by “committing” compensations [20]1.

So it is feasible to remove the “Abort Transaction” termination from our transaction model.

For the second goal, a locking protocol that guarantees both serializability and deadlock-

freedom is tree locking (TL) [42]. We give a broad survey of the research that has been

done on TL and its variants in Section 2.2. An approach to apply such a protocol efficiently

in the compile database application context is the key part of the thesis work.

1To illustrate this, we give a case study of the Linux system call fork processing in Appendix A.1.

5

1.3 Thesis overview and organization

In the thesis, we model predefined transaction types as finite state machines, and charac-

terize the workload with probabilities of transaction types. Based on the model, we have

designed runtime algorithms to lock and unlock data items following the TL protocol. For

compile-time processing, we have given a heuristic method to build lock trees and other re-

lating data structures from the knowledge of transaction types and workload, and explored

inserting locking operations into the transaction types to save the runtime overhead.

Two workloads have been built up for our experiment. The first is derived from the

OLTP benchmark TPC-C [2], which contains a set of predefined transactions that access

shared data tables concurrently and thus resembles the workload of a compiled database

application. The second is from the source code of selected system calls in the open source

operating system MINIX [46], in which we try to reflect more features for memory-main

data processing. We conducted our experiments on the two workloads to evaluate the

performance of TL in comparison to the traditional 2PL.

The organization of the remainder of the thesis is as follows. Chapter 2 surveys the

related work, including other work on compiled database applications (Section 2.1), TL

and its variants (Section 2.2), and non-flat transaction models (Section 2.3). Chapter 3

fully covers our application of TL to compiled database applications in order to ensure

both serializability and deadlock-freedom. Section 3.1 defines the transaction model, then

Section 3.2 introduces our runtime locking and unlocking algorithms following the TL

protocol, and Section 3.3 presents the compile-time processing that generates the lock tree

and inserts the lock steps into the transaction type. Chapter 4 presents how we built two

workloads from TPC-C (Section 4.1) and MINIX system calls (Section 4.2) respectively.

Chapter 5 shows our experimental results under the two workloads. Chapter 6 concludes

the thesis and proposes future work.

Most of the research work in Chapter 3 and the corresponding experiments in Chapter 5

have been published as a conference paper [58]. With slight differences in the experimental

part, they are also available as an earlier technical report [57]. The workload part in

Chapter 4 is available as another technical report [59].

Chapter 2

Related work

2.1 Compiled database applications

In collaboration with Nortel Ltd., the DEMO (Design Environment for Memory-resident

Object-oriented database) project [3] [4] [48] investigates how to employ database technol-

ogy to aid the software design and maintenance of embedded control programs. Besides the

concurrency control issue addressed to in the thesis, the other two directions of research in

the field are compile-time query processing and physical design.

2.1.1 Query processing

[48] introduces the topic on accessing embedded control data via a database query interface

at the conceptual level. The legacy data structures must be retained at the physical level,

and the queries should be complied into C or Java programs that manipulate physical data

with performance comparable to the code handwritten by programmers. The relationships

between the conceptual schema and the physical level layout are captured by integrity

constraints and binding patterns. The compile-time query processing includes query ex-

pansion, plan generation, and code generation. The paper gives a practical algorithm for

the resource-bound plan generation. An overview of the query processor architecture is

also presented.

[13] uses a existential graph reasoner [39] to generate query plans from the OQL queries.

6

7

The goal is designing a compile-time query optimizer which generates efficient low-level

code under the main memory limitation. The schema information, including class defin-

ition, constraints, indexes, and encoding, is defined in the Universal Data Representation

(UDR), and encoded by an existential graph. Moreover, both queries and access plans

are also represented in existential graphs. [13] also defines the plan algebra for the output

plan, which can be easily transformed to code in programming languages. First, a query

is transformed to a query graph using the existential graph reasoning service expand over

the encoded database schema. Then a plan graph is built based on the query graph and

schema graph. The plan graph represents a cheap plan that can answer the query. Fi-

nally, from the plan graph, a plan in the form of the plan algebra is generated. The query

processing in [13] corresponds to the query expansion and plan generation phases in [48].

And the final code generation phase [48] from plan to programs is trivial.

In [34], description logic (DL) reasoning [10] is applied for query optimization. The

paper defines an object query language. The control data structures are encoded in a

DL language DLFDE that supports path functional dependencies [51] and equalities [50].

The reasoning of concept subsumption for stratified DLFDE terminologies is decidable in

exponential time, which is acceptable for compile-time query processing. A set of query

transformation rules based on the DL reasoner are provided. With such rules, the original

query can be expanded to an equivalent query over the low-level physical structures. The

generated query can be easily transformed to a plan that scans indexes in nested loops.

2.1.2 Physical design

[31] provides an extension to the Universal Data Representation Interchange Language

(UDRIL) to capture the data structures at physical level. The extension allows declaration

of a store model in terms of object identities, stored structures, arrays with their sizes, and

inlined data structures with their offsets. It enables an incremental physical design that

adds assertions to the conceptual database schema to represent the concrete data encoding.

[31] shows that the obtained UDRIL sublanguage has the power to express the types in C

language. The algorithms that transform between UDRIL and C structures are given.

[44] and [45] address the physical design of compiled database applications. [44] con-

siders exogenous indexes (the indexes that the searching structures and the actual data are

8

separated, e.g., B+-tree) while [45] considers endogenous indexes (those that the actual

data are included in the searching structures, like B-tree). The data model used is the ob-

ject model with functional dependencies [51], and in particular represented in the DLFD
language (a DL language that has a order dependency [22] construct) in [45]. The work-

load consists of critical queries, updates, and non-critical queries. It is required the physical

design should consume small storage and support efficient processing of critical queries and

updates. The approach in [44] and [45] is transforming queries into parameterized access

requirement type (PART), then merging the PARTs to reduce storage, and finally building

physical design from the merged PARTs. Moreover, [45] proves that selecting the smallest

number of indexes that can be queried and updated efficiently is intractable. Therefore,

it is probably difficult to further improve the exponential-time index selection algorithm

given in [45].

2.2 Tree- and DAG-based locking protocols

In retrospect, the widely used 2PL is proposed in [18]. The paper shows that 2PL is both

necessary and sufficient for serializability if the transaction accesses an arbitrary data set, or

even if the data set is unknown beforehand. In practice, strict 2PL protocol, which releases

all of a transaction’s locks at the time it commits or aborts, is typically used. However, 2PL

has two disadvantages. First, 2PL forces a transaction to hold locks on data items which

it no longer accesses until no further locks are requested by it. This reduces concurrency.

Second, 2PL is not deadlock-free. To alleviate the first problem, variants of 2PL are

proposed. For example, altruistic locking (AL) [40] allows a transaction to donate data

items it locks but no longer uses so that other transactions can access them. The second

problem can not be solved inside the 2PL protocol itself, but can be handled by additional

deadlock detection techniques, e.g., timeout or waits-for-graph [8]. As we mentioned in

Section 1.2, the subsequent aborts for deadlock resolution are very unsuitable for compiled

database applications. We are more interested in deadlock-free locking protocols. The

remainder of the section surveys TL and its variants.

9

2.2.1 Basic TL

The basic TL protocol is originally proposed in [26] and [42]. It takes advantage of the

information of data and transactions to allow early releasing of locks while still guaranteeing

the correctness of transactions. Assuming there is a lock tree structure whose nodes are

the data items accessed by the transactions, and all operations are writes, the basic TL

rules are:

TL Rule 1 A transaction can operate on a data item only after it obtains a lock on it.

TL Rule 2 Except for the first data item that a transaction locks, a data item can be

locked by a transaction only if the transaction is currently holding a lock on

its parent in the tree.

TL Rule 3 After a transaction release the lock on a data item, it can never get the lock

on it again.

It is proved in [42] that tree-locked schedules are both serializable and deadlock-free.

2.2.2 DAG locking

The basic TL can be generalized from tree structures to directed acyclic graph (DAG)

structures. [26] considers two types of locking conditions for DAGs, corresponding to TL

Rule 2 for trees. They are weak condition and strong condition. The former allows a trans-

action to lock a node if it is holding lock on any parent in the graph, and the latter allows

one to lock a node only if it is holding locks on the majority (more than half) of its parents

in the same biconnected component1. [26] concludes that tree structures (either “point

from the root” or “point to the root”) with the weak condition guarantee serializability

and deadlock-freedom, and that DAG structures with the strong condition guarantee seri-

alizability and deadlock-freedom. Therefore, we have a serializable and deadlock-free DAG

locking protocol, named as the strong DAG locking protocol, which is similar to TL except

it replaces Rule 2 by:

1According to [43], a biconnected component of a graph consists of a maximal collection of nodes u1, u2,
· · · , up such that either p ≥ 3 and for each pair (ui, uj) there exists two or more disjoint chains between
ui and uj , or p = 2 and u1 and u2 share an arc.

10

• Except for the first data item that a transaction locks, a data item can be locked

by a transaction only if the transaction currently holds locks on the majority of its

parents in the same biconnected component of the graph.

Another version of DAG locking, the rooted DAG protocol, is proposed in [54]. It

requires that the DAG has a single source, and the corresponding locking condition of a

node is:

• Except for the first data item that a transaction locks, a data item can be locked by

a transaction only if the transaction is currently holding locks on some of its parents

and has locked all its parents (some may be already unlocked) in the graph.

The rooted DAG protocol also guarantees serializability and deadlock-freedom.

2.2.3 Guarded locking

In [43], the TL protocol, the strong DAG protocol, and the rooted DAG protocol, are

generalized to a guarded protocol that is also based on DAGs. The generalized protocol

takes connectivity of DAGs into account. A DAG G = 〈V, E〉 is a guarded graph if and

only if with each node v ∈ V there is a set of pairs:

guard(v) = {〈Av
1, B

v
1〉, · · · , 〈Av

nv
, Bv

nv
〉}

that satisfies the conditions:

1. ∅ 6= Bv
i ⊆ Av

i ⊆ V ;

2. the nodes of
⋃

Av
i are parents of v;

3. if Av
i ∩ Bv

j = ∅, then there is no biconnected component of G including nodes from

both Ai and Bj.

Example 2.2.1. For the DAG in Figure 2.1 (from [27] with some modifications), the

guards of its nodes are:

guard(v1) = guard(v2) = guard(v3) = guard(v4) = ∅
guard(v5) = {〈{v1, v2}, {v1, v2}〉, 〈{v1, v3}, {v1, v3}〉, 〈{v2, v3}, {v2, v3}〉, 〈{v4}, {v4}〉}
guard(v6) = {〈{v4}, {v4}〉}
guard(v7) = {〈{v5, v6}, {v5}〉, 〈{v5, v6}, {v6}〉}

11

V V2 V3

V5

V4

V7

V6

1

Figure 2.1: A Guarded Graph

The rules of the guarded protocol are:

1. A transaction can lock any node first, but to lock any subsequent node v, it must be

holding a lock on the nodes in some Bv
i and must have locked the nodes in Av

i −Bv
i .

2. A transaction may unlock a data item at any time, but it can lock it only once.

The generalized guarded locking protocol guarantees both serializability and freedom

from deadlock. As a special case, the TL protocol has guard(v) = {〈{v’s parent}, {v’s parent}〉}.

2.2.4 Tree/DAG locking with shared locks

The non-2PL locking protocols surveyed so far allow only exclusive locks. [27] extends

TL and the generalized guarded locking to allow shared locks. Simply adding shared

locks into the original protocols may violate serializability. There are two approaches

with additional restrictions. The first one allows only transactions that contain either all

writes or all reads, and requires write-only transactions to lock the root at first. This

protocol, called heterogeneous protocol2, ensures both serializability and deadlock-freedom.

2Although the two protocols are proposed in [27], the name “heterogeneous protocol” and “homogeneous
protocol” are given in [36].

12

The second one is a homogeneous protocol, which extends guarded locking protocol and

allows a transaction to have mixed read and write operations. It singles out pitfalls in

a DAG w.r.t. a transaction. Each pitfall is a subgraph spanned by the nodes read by

the transaction plus their neighboring nodes written by it. The homogeneous protocol

additionally requires transactions to lock its pitfalls in the DAG following 2PL. However,

the homogeneous protocol is no longer deadlock-free.

[36] furthers the protocols by allowing lock conversion from a shared lock to an exclusive

lock (upgrade) and vice versa (downgrade). It is easy to add lock conversion into 2PL

protocol by treating upgrading similar to locking and downgrading as unlocking, and by

restricting upgrading in the growing phase and downgrading in the shrinking phase. In

the same way, the two approaches that allows shared locks in [27] can be also extended

to allow lock conversion. Both the new heterogeneous protocol and the new homogeneous

protocol (named as MGLP’ protocol and M-pitfall protocol in [36] respectively) guarantee

serializability but neither is deadlock-free. It is shown that in MGLP’ deadlock detection

and elimination are cheap and incur no rollback. And it is also possible to modify MGLP’

protocol to obtain deadlock-freedom by adding a new lock mode update. An update lock

conflicts with exclusive locks and update locks but is compatible with shared locks, and

only update lock (not shared lock) can be upgraded to exclusive lock. Deadlock handling

in M-pitfall protocol is more difficult.

The homogeneous protocol in [27] cannot avoid deadlock, and may introduce costly

cascading rollback at the time of deadlock resolution. For this problem, [25] proposes

the superpitfall protocol, which is a restriction of the original homogeneous protocol. For

each pitfall, the locking phase in which its root nodes are locked is defined as the initial

phase (IP), while the locking phase in which other nodes are locked is defined as the final

phase (FP). The superpitfall protocol restricts the homogeneous protocol by disallowing

any unlocking in the IP and FP stages of each pitfall. Although it is not deadlock-free, it

guarantees that no cascading rollback is necessary.

[28] proposes the queue protocol (QP), which is based on the M-pitfall protocol. The

paper lists several problems in TL and M-pitfall:

1. In TL, locking a node has dual functionality: accessing the current node and accessing

its successors. This causes low concurrency.

13

2. M-pitfall is not deadlock-free.

3. M-pitfall reduces the concurrency because of the two-phase locking requirement on

each pitfall. This is called pitfall paradox.

To break the duality in the first problem, [28] redefines the operations as:

• LS, LX, and LU lock a node in shared, exclusive, and update mode, respectively.

Meanwhile, they also acquire the right to lock the successors of the node.

• SKIP does not lock the current node, but acquires the right to lock its successors.

• UP upgrades the lock on a node from shared mode to exclusive mode, DN down-

grades it, and UN releases the lock. Different from the basic TL protocol, a trans-

action which executes DN on a node does not lose the right to access its successors.

• QUIT gives up the right to lock successors.

Each node is associated with two FIFO queues [28]:

access queue the waiting list of transactions requesting lock to the node;

proceed queue the waiting list of transactions requesting to lock the successors of the

node.

Therefore, the operations are the above operations are implemented as:

• LS, LX, and LU put the transaction at the tail of both queues. When the operation

comes to the header of the access queue, the object is locked in the corresponding

mode.

• SKIP puts the transaction at the tail of the proceed queue. UP, DN, UN do to

the lock upgrade, downgrade, and release on the node respectively.

• QUIT deletes the transaction from the proceed queue.

Based on the above concepts and implementation, [28] defines the rules of QP as:

1. The first node locked by a transaction T can be arbitrary.

14

2. Subsequently, T can lock or upgrade a node n by LS, LX, and LU only if there

is a guard 〈Ai, Bi of n (See Section 2.2.3) such that T is currently at the header of

the proceed queues of all the nodes in Bi and has been at the header of the proceed

queues of all the nodes in Ai −Bi.

3. T must two-phase locking each node.

[28] proves that QP is both serializable and deadlock-free. Moreover, the second rule

reduces the scope of two-phase locking from pitfalls to individual nodes. Therefore, the

pitfall paradox is disposed of.

2.2.5 Hypergraph locking

Serializability

In [55] the serializability (safety) is studied for generalized transaction locking policies

(protocols), including 2PL, TL, and the DAG locking. It assumes only write operations

and exclusive locks. The model of transaction, locking, and safety are defined formally.

The paper shows that 2PL is the only serializable policy that satisfies both:

1. it does not lock any data that the transaction does not operate on, and

2. it works for transactions with all possible sequences of data operations.

[55] also studies the conditions of serializability for a set of locked transactions and shows

that decision of whether a set of locked transactions is non-serializable is an NP-complete

problem. So serializability of a locking policy cannot be tested efficiently in general. To

address this problem, the paper studies a subset of locking policies, L-policy. A locking

policy P is an L-policy if P can be described by a set of conditions that state whether a

given entity can be locked at a certain moment in a transaction, depending on the prefix

of the transaction up to this moment. L-policy is a natural restriction of locking policies,

and almost all well-known protocols, e.g., 2PL, TL, and the DAG locking, belong to this

category. The paper proves that the serializability of transactions locked by an L-policy

can be tested in polynomial time. To model L-policy, [55] proposes the hypergraph policy

(HP).

15

As defined in the paper, directed hypergraph DH = 〈V, E〉 is a hypergraph, in which

each hyperedge e ∈ E is a set of nodes in V . One node in e is specified as its head, and

the remaining nodes in e are its tail. The underlying graph of DH is H = 〈V,E〉 without

the head-tail specification on the hyperedges. A path in H from node x0 to xn+1 if there is

a sequence x0e0x1 · · · xnenxn+1 where ei ∈ E and xi ∈ V and xi, xi+1 ∈ ei for i = 0, · · · , n.

A set of nodes S separates node x and y if deleting all hyperedges that contain nodes in S

removes all paths from x to y. HP assumes that the data items are organized in a directed

hypergraph DH, and the rules of HP are:

1. The first locked node can be arbitrary.

2. A subsequent node x can be locked if and only if

(a) there is a hyperedge e of DH with head x, whose tail is currently locked or have

been locked up to this moment;

(b) for each y previously unlocked, the set of nodes currently locked separates x

from y;

(c) each node can be locked by a transaction only once.

[55] shows that an L-policy is serializable if and only if it is covered by the hypergraph

policy for some directed hypergraph DH. 2PL is a special case of HP with DH as a clique,

while TL is one with DH as a tree.

Freedom from deadlock

Based on [55], [56] further investigates freedom from deadlock of serializable locking poli-

cies. The paper first studies the case of two transactions and shows a locking policy with

two transactions is serializable and deadlock-free if and only if it is contained in the mul-

tiple source DAG policy3 for some DAG, which can be tested efficiently. However, testing

3Multiple source DAG policy (MSDP) [56] relaxes the restriction of a single source in the rooted DAG
protocol [54]. It allows arbitrary first lock, but changes the condition to lock a subsequent node n to

• the transaction has previously locked all parents of n that are not separated by n from the first
node of the transaction, and

16

whether a transaction set (with more than two transactions) under a locking protocol is

deadlock-free is intractable, and even testing whether a serializable L-policy is deadlock-

free is NP-complete, which is harder than testing serializability in [55]. An interesting

feature that the paper [56] finds is that whether a serializable L-policy is deadlock-free de-

pends only on the order in which data items are locked, and has nothing to do with when

they are unlocked. Therefore, if one serializable L-policy always lock the same items in the

same order as another serializable L-policy, either both or none of them are deadlock-free.

[56] also explores the sufficient conditions for freedom from deadlock. The paper gives

the following definitions. A graph D(P) is defined with regard to a locking protocol P .

The nodes of D(P) are data items, and there is an arc 〈y, x〉 if there is a legal transaction

under P that starts by locking y and accesses x. Let RT (Lx) be the set of data items

referenced by transaction T before it locks x. And let F1(x) be the set of parents y of

x, for which there is a transaction T that starts with y, accesses x, and in D(P) there

is no ancestor z of x in RT (Lx) − y. Define D′(P) as a subgraph of D(P) such that an

arc 〈y, x〉 is in D′(P) if there is a transaction T under P starting with y and accessing x,

and F1(x) ∩ [RT (Lx) − y] = ∅. The paper shows, for a locking protocol P which is both

serializable and deadlock-free:

1. D(P) is acyclic.

2. If y is an ancestor of x in D(P), then in all transactions that contain both x and y,

y gets locked before x.

3. If x is accessed by transaction T but is not the first entity T locks, then T references

at least some parent y of x in D′(P) before it locks x.

Based on D′(P), some sufficient conditions of deadlock-freedom of a serializable protocol

P are presented in the paper:

• If P is a serializable L-policy and D′(P) is a tree, then P is deadlock-free.

• the transaction holds a lock on at least one parent of n.

17

• If P is a serializable and deadlock-free policy, and D′(P) is a tree, then any prefix

of schedules under P policy (assuming all locks held are released at the end of the

prefix) are also serializable and deadlock-free.

• For an L-policy, if D′(P) is not a tree, there may be undirected cycles in D′(P) as

shown in Figure 2.2. Suppose P is a serializable L-policy and D′(P) is acyclic and

contains no undirected cycles in Figure 2.2 (b). Then P is deadlock-free if and only

if it satisfies the condition: if y is an ancestor of x in D(P), then in all transactions

that contain both x and y, y is locked before x.

Z

X

Y

(a)

Z1

Z2

X1 X2 X3

Z3

Xk-1 Xk

Zk

(b)

....

Figure 2.2: Undirected cycles in D′(P) (From [56])

For the TL protocol, D′(P) is the tree itself. So both the first and second conditions

apply to TL.

2.2.6 Edge locking

[12] introduces the edge locking protocol to replace node locking in TL and DAG locking.

It is noticed that in these protocols the exclusive lock on a node has multiple roles, i.e.,

to protect the data itself and to prohibit access to the subgraph underneath the node.

The paper shows that the latter functionality is ill-conceived, and suggests using edge

18

locking to lock the subgraph. And original TL and DAG locking can be transformed

to the corresponding edge locking, following the rules given. Example of write-only TL

and read-write TL are presented to show that edge-locking may have better concurrency

than the original node locking. In general, both L-policies [55] and L-policies extended

with write-only and read-only transactions [27] can be transformed to their edge locking

versions. It is shown that the edge locking protocol is serializable (deadlock-free) when its

original version is serializable (deadlock-free).

2.2.7 Dynamic TL

[17] introduces a variant of the TL protocol, dynamic TL. It addresses the problem of

potential concurrency loss in basic TL. The cause of the problem is that a transaction under

the TL protocol usually locks more data items than it actually accesses, especially when

the data items accessed are dispersed in the tree. So even transactions with disjoint access

sets may have overlapping lock sets in the tree. It is very difficult to find a static tree in

which the access set of each transaction is localized so as to relieve the problem. Therefore,

[17] proposes using a dynamic tree. The idea is keeping a tree for each transaction. When a

new transaction comes for execution, its access set is analyzed, and the trees of the existing

transactions that share data with the new transaction are merged with the tree of the new

transaction to build a new tree. The combined trees can also be decomposed to remove the

influence of the already finished transactions. The decomposition can be done at system

quiescence state when there is no locked transactions. Even when the system is busy with

rare quiescence states, deletion of a node is safe if

1. it is under the strong condition (the node has been locked and unlocked by all exe-

cuting transactions that may lock it), or

2. it is under the weak condition (the node is no longer access by any currently executing

locked transactions) and the schedule is a set of dynamically strongly tree-locked4

4[17] defines strongly tree-locked on several prior concepts. Let t be a locked transaction, and let α be
a set of database objects. The restrictions of t to α, denoted as t|α, is the subsequence of t that results
from the removal from t of all steps (access, lock, and unlock) referencing database objects not in α. For a
database tree ∆ and a set of database objects α, let ∆−α be the set of database trees {∆1, · · · ,∆n} that

19

transactions in the context of node deletion.

It is proved that the dynamic TL is still serializable and deadlock-free [17].

[17] leaves the work of changing the tree to the transaction management system at the

time when a transaction comes or exits. In contrast, [32] allows each transaction to change

the lock tree structure by itself. The added operations that change the tree structure

are switch (change the parent of a node), add child, and remove child. When all

transactions are assumed to be write-only, switch operation can be done if the transaction

holds locks on both the old and the new parents, add child can be done if it holds lock

on the node under which a child is to be added, and remove child can be done if it

holds locks on both the node and its child to remove. We can furthermore allow read

operations, and the method is similar to the heterogeneous protocol in [27] to allow write-

only transactions and read-only transactions. [32] shows that the new TL protocol with

these tree restructuring operations added still guarantees serializability and freedom from

deadlock.

2.2.8 Dynamic directed graph locking for dynamic databases

[15] studies the locking protocol for a dynamic database context, which has three kinds

of mutual exclusive operations: access, insert, and delete. A sequence of insertions

and deletions determines a state of the database. A schedule must be proper in that all

the operation steps of all the transactions must be defined in the database state they are

executed, i.e., in a state a transaction can access/delete an item only if it exists in the

database, and can insert an item only if it does not exist. The paper proposes for this

model the dynamic directed graph (DDG) locking protocol, whose locking structure is a

directed graph derived from the database. As a data item is inserted or deleted in the

database, the graph is updated and gets a new state accordingly. Furthermore, different

results from the deletion of nodes in α. Let V (G) be the set of vertices over which the graph G is defined,
and let t be a locked transaction which accesses data set A(t), t is strongly tree-locked w.r.t. a database
∆ if t|V (∆i) ∈ TL∆i for each ∆i in ∆−(V (∆)−A(t)). That is, if for each database tree ∆i that results from
deleting from ∆ those vertices not in A(t), the restriction of transaction t to the vertices of ∆i is tree
locked w.r.t. ∆i.

20

from the DAG protocol in Section 2.2.2, the graph can have cycles. The locking rules

are [15]:

DDG Rule 1 Before T performs any operation (insert, delete or access) on a node v (or

an edge 〈u, v〉), T has to lock v (both u and v).

DDG Rule 2 A node that is being inserted can be locked at any time.

DDG Rule 3 Each node can be locked by T at most once.

DDG Rule 4 A transaction may begin by locking any strongly connected component (SCC)5.

DDG Rule 5 And subsequently, all the nodes of an SCC are locked together in one step

provided that all the entry points6 of that SCC in the present state of G

have been locked by T in the past and T is now holding a lock on at least

one of them.

[15] shows the DDG protocol is both serializable and deadlock-free.

[14] extends the DDG protocol to the DDG-SX protocol that allows read operations

and shared locks. The rules are similar to those of the DDG locking except the following

changes:

DDG-SX Rule 1 Before T performs any insert, delete or write operation on a node

v (or an edge 〈u, v〉), T has to lock v (both u and v) in exclusive mode. Before T

performs a read operation on a node v (or an edge 〈u, v〉), T has to lock v (both u

and v) in either shared or exclusive mode.

DDG-SX Rule 5 All nodes on an SCC are locked together in one step if:

(a) All the entry points of that SCC in the present state of G have been locked by

T in the past and T is now holding a lock on at least one of them, and

5A strongly connected component Gi of a directed graph G is a maximal set of nodes such that for each
pair u, v ∈ Gi, there is a path in from u to v. An SCC is non-trivial if it has more than one node.

6Let Gi be a strongly connected component of graph G. An entry point of Gi is a node w in G but out
of Gi, such that there is an edge 〈w, v〉 in G and v is in Gi.

21

(b) For every node v on this SCC that is a child of an entry point, and every path

v1, · · · , vp, v, p ≥ 1 in the present state of the underlying undirected graph of

G, such that T has locked v1 (in any mode), and v2, · · · , vp in shared mode, T

has not unlocked any of v1 · · · , vp.

[14] shows that the DDG-SX protocol is serializable but not deadlock-free. It is obvious

that the DDG and DDG-SX protocols are natural extensions of DAG protocol [54] and its

variant homogeneous protocol [27], respectively. They extend the unit of locking from a

node to an SCC to deal with cycles in the locking graph. And in the DDG-SX protocol

the condition DDG-SX Rule 5(b) corresponds to the requirement of 2PL on pitfalls in

[27]. [14] also shows that both altruistic locking [40] and dynamic TL [17] still guarantee

serializability in dynamic databases with insert, delete, and (exclusive) access operations.

2.2.9 Applications of TL in index searching

There has been much research on the currency control of tree-structured indexes, especially

B-trees and B+-trees[5] [29] [33] [30] [37] [35] [41]. And these works are summarized in

textbooks [8], [23], and [53]. Many techniques in this area are closely related to TL and

DAG locking.

1. Lock coupling [8] [53] (lock crabbing [23]) is crucial for B-tree/B+-tree traversal. It

requires a searching operation to first hold the lock on the parent node before it

acquires the lock on the node itself during a top-down searching in a B-tree. This

conforms to the TL protocol in [42].

2. When we have insert and key search operations together, we consider them as

transactions. Both insert and key search traverse the B-tree from the root. The

former may change a node and and its ancestors because of possible node splits,

while the latter is read-only. Therefore, we can view the case as the heterogeneous

TL protocol with write-only transactions and read-only transactions [27], and the

locking is both serializable and deadlock-free. Because of the properties of B-trees,

there is an additional requirement for insert. An insert transaction must hold

exclusive locks on ancestor nodes along the path downwards until it finds a non-full

22

node. Then it knows the ancestors above the non-full node will not be split and can

be unlocked safely [53].

To improve the concurrency, the technique can be modified to allow insert to have

lock conversions, similar to the lock conversion for the heterogeneous TL protocol

suggested in [36]. An insert transaction first locks the nodes along the path in will-

write mode, and converts to write lock on the nodes it updates. Because will-write

lock does not conflict with read lock, this reduces unnecessary conflicts between

insert and key search operations. The modified protocol is still serializable and

deadlock-free [8].

3. When we consider range search in addition to insert and key search on a B+-

tree structure, we can link the leafs in ascending order of the keys to facilitate

range search. A range search first goes down from the root to a leaf, and then

follows the leaf chain to search on the designated range. Therefore, we have a DAG

instead of a tree. Following the result in [26], a naive thought is to satisfy the strong

locking condition (locking the majority of parents) to lock a node, i.e., to lock a

leaf, each insert, key search, or range search has to hold a lock on the leaf’s

parent in the B+-tree and its predecessor in the leaf chain, which results in low con-

currency. [53] shows this is unnecessary given the semantics of B+-tree operations,

e.g., both key search and range search are read-only, and the insert that causes

leaf split only adds the new node to the right of the original node. Therefore, the

weak condition (locking only one parent/predecessor) suffices. As a consequence, in

the proposed technique, an insert can lock a leaf in exclusive mode if it holds an

exclusive lock on its B+-tree parent; a key search can lock a leaf in shared mode if

it holds a shared lock on its B+-tree parent; and a range search can lock its first

leaf node in shared mode if it already holds a shared lock on the leaf’s B-tree parent,

and can lock the subsequent leafs in shared mode along the leaf chain if it holds a

shared lock on the predecessor in the chain. This technique is both serializable and

deadlock-free.

With knowledge on B-tree/B+-tree semantics, additional optimizations of index lock-

ing are not uncommon in practice, to name a few, link technique and giveup tech-

23

nique [41]. These variants improves index searching performance. However, they are

beyond the scope of the TL protocol and the DAG protocol themselves.

2.2.10 Application of TL in concurrency control in Java

A recent research with TL involved is the implementation of atomic block in Java pro-

gramming language [19]. Similar to a transaction, an atomic block executes an isolated

sequence of method invocations on shared objects. Both 2PL and TL are tried for the

concurrency control of atomic blocks.

As for TL, the lock trees in [19] are limited to binary trees with data items only on the

leaf nodes. All the internal nodes are extra “virtual nodes”. Some criteria for the “good”

lock tree structures w.r.t. transaction concurrency are presented:

• The lower the root node of a transaction7 is, the better the concurrency is.

• The acquisition of lock on a node must pay off, and concurrency can be optimal when

transactions access all resources located below that node in the tree.

• Concurrency is increased if accesses to the data of a subtree are adjacent in a trans-

action.

• Concurrency is generally increased if the shared data items are accessed by multiple

transactions in the same order.

Based on these criteria, [19] introduces a tree construction algorithm. The experimental

results in [19] show that:

• When data contention is low, TL has exceptionally poor performance.

• When contention is high, TL performs empirically a little better than 2PL.

• When data are organized in hierarchical structures (e.g., XML), TL performs far

better than 2PL.

• The runtime overhead of TL is higher than that of 2PL.

7The root node of a transaction is the lowest common ancestor in the lock tree of all the objects accesses
by it.

24

2.3 Non-flat transaction models

The classical transaction model [8], also known as page model [53], views a transaction as

a linear sequence of reads and writes. A history is made up by a set of transactions whose

operations can be interleaved, and a schedule is a prefix of a history. Two operations are

conflict if they are issued by two different transactions upon the same data item and at

least one of them is a write. The main standard of correctness is serializability.

Because database design is separated into multiple levels, and because of the introduc-

tion of abstract data types (ADTs) and object databases, it is natural and beneficial to

extend this classical transaction model to richer non-flat models w.r.t. operations, conflict

relations, and correctness. Some non-flat transaction models are reviewed as follows.

2.3.1 Nested transactions

Although many related models and algorithms are proposed earlier (e.g., [38]), it is in

[6] and [7] that a general formal model for nested transactions is given. The concepts of

computation, transaction/subtransaction, and computation forest (CF) are defined, and

the axioms each concept must satisfy are provided. In a tree of a CF, each transaction

can call some (sub)transactions under it as its operations and can be called by another

transaction above it. The papers extend serializability to this model. As defined, a CF is

serial if there is a total order on its roots and on the children of each node, and a CF is

serializable if it is equivalent to some serial CF. Moreover, the papers are more interested

in the order-preserving serializability, in which a correct CF is not only equivalent to

a serial CF but also has the same order of the root transactions as the serial one. So

the correctness of a CF can be proved by showing it can be transformed to a serial one

by applying finite steps of equivalence-preserving and order-preserving transformations,

including (1) commutativity-based reversal of leafs and (2) reduction and expansion of

subtransactions.

25

2.3.2 Multilevel transactions

[52] studies a restricted version of nested transaction model, multilevel transaction. It has

the following features:

1. All paths from the root of any transaction tree to any of its leaf are of the same

length. The nodes of the same distance from the roots form a level.

2. On each level Li, the conflict relation CONi between operations is defined.

3. Transactions are conflict-faithful [53], i.e., if two operations are conflict at a certain

level, at any lower level there must be a pair of conflict operations that are their

descendants respectively.

4. The model initially specifies < as a partial order only at the leaf level8 in a schedule.

For two conflict leaf operations, they must be ordered by <. And two non-leaf

operations o1 and o2 are <-ordered, say o1 < o2, if and only if for each leaf descendant

o1
′ of o1 and each leaf descendant o2

′ of o2, o1
′ < o2

′ holds. Derivation of the order

of internal operations from the leaf order is called tree-consistent node ordering [53].

The paper defines quasi-order ≤i at each level Li based on the relationships ≤i−1 and

CONi−1 at the level Li−1 below it. For two Li-operations o1 and o2, o1 ≤ o2 if and only if

there are a child o1
′ of o1 and a child o2

′ of o2 at Li−1 such that (o1
′, o2

′) ∈ CONi−1 and

o1
′ ≤i−1 o2

′. And at the leaf level, ≤0=<0 ∩CON0. A multilevel schedule is serializable if

and only if ≤i at each level Li is acyclic. For a serializable schedule, ≤i specifies the order

of Li-operations in the serial schedule to which it is equivalent9.

An interesting property of this model is that the multilevel serializability can be related

to the classical flat transaction serializability between adjacent levels. An n-level sched-

ule is serializable if all level-by-level schedules of adjacent levels are serializable, although

8In the nested transaction model in [6] and [7], the partial order < is general among all operations in
the CF.

9In the model, it can be concluded that <i ∩CONi ⊆≤i. The serializability only requires ≤i ∪(<i

∩CONi) at each level Li to be acyclic, but does not exclude the cycles in ≤i ∪ <i. So the serializability
is not order-preserving.

26

the inverse does not hold. This provides a practicable way to implement correct mul-

tilevel schedulers which allows independent concurrency control techniques (e.g., locking

protocols) at different levels.

2.3.3 Object transactions

The object transaction model is given in [53]. It models transactions with multiple abstrac-

tion levels with the lowest one being the page reads and writes. The object model inherits

many important features from the multilevel transaction model in [52], but generalizes

to arbitrary trees instead of trees with leafs of the same distance from the roots. The

definitions below are from [53].

In the object transaction model, each transaction tree ti is a pair (Oi, <i) with Oi as the

operation node set and <i the partial order on its leaf level nodes. An object model history

(Os, <s) is a partial ordered forest of transaction trees, in which the node set Os =
⋃

Oi

and the partial order <s satisfies (
⋃

<i) ⊆<s. As in the multilevel transaction model [52],

any pair of conflict leaf operations, which are issued by different transactions on the same

data item and at least one of which is write, must be ordered by <s. The <s-order of

internal nodes is derived from the <s-order of all their respective leaf nodes, following

the tree-consistent ordering (see Section 2.3.2). An object model schedule is a prefix of an

object history. The multilevel history/schedule in [52], which requires leafs to have the

same depth, is renamed as layered history/schedule in [53].

An object model schedule is serial if

• its roots are totally ordered, and

• for each root and for each i > 0, the descendants with distance i from the root are

totally ordered.

A related concept is isolated subtree. A node p and the corresponding subtree in an

object model schedule s are isolated if,

1. for all nodes q other than ancestors or descendants of p, for any leaf w of q, either

p <s w or w <s p, and,

27

2. for each i > 0 the descendants of p with distance i from p are totally ordered.

The correctness of an object model schedule is defined by its equivalence to a serial ob-

ject model schedule. Similar to the commutativity-based reversal and reduction/expansion

in [6] and [7], [53] defines a set of equivalence-preserving transformation rules upon a sched-

ule. These rules are:

1. Commutative rule: The order of two ordered leaf operations p and q with order p <s q

can be reversed provided that:

(a) both the subtrees rooted at p and q are isolated and adjacent (no other opera-

tions r such that p <s r <s q);

(b) the operations belong to different transactions, or if they belong to the same

transaction ti, the reversal does not contradict the specified order <i of ti.

(c) the operations p and q do not have ancestors p′ and q′ respectively which are

noncommutative and total ordered in p′ <s q′.

2. Ordering rule: Two unordered leaf operations p and q can arbitrarily be ordered if p

and q are commutative.

3. Tree pruning rule: An isolated subtree can be pruned in that it is replaced by its

root.

An object history is said to tree-reducible if it can be transformed to a total order of roots

by applying the above rules finitely many times. An object model schedule is tree-reducible

if its committed projection is tree-reducible. Tree reducibility specifies the correctness of

an object model schedule [53].

2.3.4 Saga model

The saga model [20] is originally proposed for long lived transactions (LLTs), for which

strict atomicity is both costly and unnecessary. A saga is an LLT that is realized by a

sequence of subtransactions, which can be interleaved with other transactions. After each

subtransaction finishes, its resources are released without waiting for the completion of the

28

saga. However, a saga still needs to be treated as an execution unit. If a subtransaction is

aborted and the saga can not complete successfully, the partial result of the already com-

mitted subtransactions of the saga is unacceptable. The cleanup requires a compensation

transaction for each subtransaction. Suppose a saga has subtransactions T1, · · · , Ti, · · · ,
Tn and each Ti has a compensation Ci. A successful saga is exactly the sequence

T1, · · · , Tn

with each Ti committed. If T1, · · · , Ti−1 have already committed but something goes wrong

with Ti, the sequence becomes

T1, · · · , Ti−1, Ti(aborted), Ci−1, · · · , C1

in which the compensations are executed in reverse order to undo those subtransactions

that have been finished. The saga model has only two levels (saga level and subtransaction

level), and the partial result of a saga is visible to other transaction (even if the saga is

aborted, it is visible before the compensations are done). It is a simplified and relaxed

non-flat transaction model suitable for LLTs that consist of a sequence of comparably

independent steps.

Our embedded control program case study of Linux kernel source code shows the im-

plementation of the system call fork also follows the saga model (see Appendix A.1).

Chapter 3

Applying TL to compiled database

applications

3.1 Definitions

For compiled data applications, each transaction type is modelled as a finite state machine,

in which each state represents an operation on a data item, and each directed arc indicates

a transition from an operation to a next one. A state may have more than one direct

successor, each with a probability assigned to the arc that leads to it. We assume only

write operations at each state. The formal definition of a transaction type is:

Definition 3.1.1. Let D be a data set that consists of data items in the database, and

each data item is identified with a name.

A transaction type T is defined as T = 〈N , s, F , A, data, cost, prob〉.

• N is a set of states, each representing an operation.

• s ∈ N is a starting state.

• F ⊆ N is a set of terminating states.

• A ⊆ (N − F) × N . A is a set of transition arcs from states to states. Terminating

states have no outgoing arcs.

29

30

• data is a function from N to D. For each n ∈ N , data(n) is the data item accessed

at state n.

• cost is a function from N to nonnegative real number set. cost(n) is the accessing

cost (time duration, number of instructions, etc.) of data(n) by state n.

• prob is a function from A to real numbers between 0 and 1. For each arc 〈n1, n2〉 ∈ A,

prob(〈n1, n2〉) is the probability that a transaction (See Definition 3.1.2) goes from n1

to n2. For each fixed n ∈ (N − F),

∑

〈n,n′〉∈A

prob(〈n, n′〉) = 1.

Based on the notations of the transaction type, we can define an individual transaction

as follows:

Definition 3.1.2. A transaction t of transaction type T = 〈N, s, F, A, data, cost, prob〉 is

a sequence n0, · · · , nk, where ni ∈ N for 0 ≤ i ≤ k. Moreover, n0 = s, nk ∈ F , and for

each adjacent pair ni−1, ni such that 1 ≤ i ≤ k, 〈ni−1, ni〉 ∈ A.

Example 3.1.1. An example of a transaction type is given in Figure 3.1. The starting

state is n1, and the terminating states are n5, n6, n7, n8. The data items and costs of the

states are shown in the state boxes, separated by “/”. The probabilities are attached to the

arcs. An example of a transaction of the transaction type is n1, n2, n2, n3, n4, n3, n6.

In a compiled database application, there is a set of predefined transaction types, each

with a probability. Such a set of transaction types is defined as a transaction system.

Definition 3.1.3. A transaction system S = 〈D, TS, prob〉 is characterized by a set of

transaction types TS = {T1, · · · , Tk}, on a data set D, and a function prob from TS to

real numbers between 0 and 1. For each Ti ∈ TS, prob(Ti) specifies the probability that a

transaction of the transaction type T is chosen when it is to select the next transaction to

execute.
∑

Ti∈TS prob(Ti) = 1. Moreover, D =
⋃

Ti∈TS{datai(n) | n ∈ Ni}, where each Ti

= 〈Ni, si, Fi, Ai, datai, costi, probi〉.

31

A/2 B/6 Y/0
1.0 0.1 0.8

0.2

D/6
0.1

Z/0

0.7

C/3

0.2 0.4

0.2

0.3
F/10

E/5

n1 n2 n3

n4n5

n6

n7

n8

Figure 3.1: An example of a transaction type

3.2 Runtime locking and unlocking algorithms

3.2.1 Definitions of lock trees

We first define a lock tree as follows:

Definition 3.2.1. A lock tree LT = 〈D,E〉 w.r.t. a transaction system S = 〈D, TS,

prob〉 is a tree with a node set D and an edge set E. When we know S in the context, we

call such a tree a global lock tree.

Since there is a one-to-one mapping between the data item set and the tree node set,

we define them as the same in Definition 3.2.1. In this paper, we will use the terms “data

item” and “tree node” interchangeably. Moreover, it is unnecessary for a transaction to

know the whole global lock tree. To manage tree locking, a transaction only needs to keep

a part of the global lock tree that covers all data items its transaction type accesses.

Definition 3.2.2. A cover of a transaction type T = 〈N , s, F , A, data, cost, prob〉 in

a global lock tree GLT = 〈GD, GE〉, denoted as CLT = 〈CD, CE〉, is a tree such that

CD ⊆ GD, CE ⊆ GE, and {data(n) | n ∈ N} ⊆ CD.

In-transaction nodes are the nodes {d ∈ CD | ∃ n ∈ N such that data(n) = d}. The

remaining nodes in CD are non-in-transaction nodes. A cover of T in GLT , denoted as

LLT = 〈LD, LE〉, is the minimal cover of T in GLT if there exists no cover of T in GLT ,

say, LT ′ = 〈D′, E ′〉 such that D′ ⊂ LD, E ′ ⊂ LE. When the context is clear, we call such

a minimal cover a local lock tree.

32

W

G

P Q

V

YA

B D

C E F

Z

U

(a) (b)

V

YXA

B D

C E F

Z

Figure 3.2: A global lock tree (a) and a local lock tree (b)

From Definition 3.2.2, the minimal cover of T in GLT must be unique. And all its leaf

nodes must be in-transaction nodes.

Example 3.2.1. For a global lock tree in Figure 3.2(a), the local lock tree w.r.t. the

transaction type in Figure 3.1 is shown in Figure 3.2(b). In the local lock tree, all nodes

but v are in-transaction nodes.

For each transaction type, we store its local lock tree. The tree nodes with the same

name in all local lock trees share a binary semaphore. Therefore, locking and unlocking a

single node can be implemented with the p and v semaphore operations.

3.2.2 Locking and unlocking algorithms

We remind the reader that the TL operates as follows [27]:

(TL1) A transaction must lock a data item before it operates on it.

(TL2) Except for the first data item that a transaction locks, a data item can be locked

by a transaction only if the transaction is currently holding a lock on its parent in

the tree.

33

(TL3) Once a transaction releases a lock on a data item, it can never lock it again.

Under TL rules, there is still flexibility to choose the exact time of locking and unlocking.

When the transaction types are fixed, the ideal policy that favors concurrency is the late-

locking/early-unlocking policy:

1. Locking a tree node as late as possible.

2. When condition 1 is satisfied, unlocking a tree node as early as possible.

When a transaction wants to access a data item at a state, if it has not locked the

corresponding tree node yet, it must lock it before accessing the data. It also retrieves

all ancestors of the node in the local lock tree that it does not currently lock, and locks

them in top-down order before it locks the node itself. Therefore, a transaction locks a tree

node only when the transaction needs to access its data item or needs to lock it in order

to further lock one of its children. The algorithm for locking is Algorithm 3.2.1, which

satisfies the late-locking requirement.

Algorithm 3.2.1. Locking the data item d accessed at a state:

Require: a set Locked that contains the tree nodes currently locked by the transaction.

1: initialize an empty stack;

2: while d /∈ Locked do

3: push d to the stack;

4: if d is root of the local tree then

5: break;

6: else

7: d ← d.parent;

8: end if

9: end while

10: while the stack is not empty do

11: pop d from the stack;

12: Locked ← Locked ∪ {d};
13: lock node d;

14: end while

34

Unlocking is more complicated than locking. We specify the unlocking conditions. From

the rules TL2 and TL3, a transaction T can unlock a node d only if,

(U1) T will not access d in the future, and

(U2) for each child c of d, either c has already been locked, or all nodes in the subtree

rooted at c will never be accessed by T in the future.

Condition U1 is formalized by the following definition.

Definition 3.2.3. Given a transaction type T = 〈N , s, F , A, data, cost, prob〉 along with

its local lock tree LLT = 〈LD, LE〉, for a state n ∈ N and a data item d ∈ LD, if on all

paths from n to all terminating states in F , each state n′ satisfies data(n′) 6= d, we say that

d is unreachable from state n. The data set that are unreachable from state n is denoted

as UR(n) (unreachable set).

The UR sets are inherent to the transaction type and can be computed at compile time.

Calculating UR(n) for each n is trivial. Therefore, at run time, testing both conditions U1

and U2 amounts to testing membership of the UR sets. If T unlocks d at the earliest state

that satisfies both U1 and U2, the early-unlock requirement is met. However, we realize

some difficulties in applying U1 and U2 directly:

• The size of UR(n) is usually big, and it takes much memory to store UR(n). More-

over, we only care about unlocking the data items that are being locked by the

transaction.

• Checking U2 may require going over the whole subtree, which can be time consuming.

To reduce the storage overhead of UR(n), we define two sets UL(n) and TUL as follows.

Definition 3.2.4. For a state n ∈ N in a transaction type T = 〈N , s, F , A, data, cost,

prob〉, its transaction-type-unlockable set, denoted as UL(n), is a set of data items. Each

d ∈ UL(n) satisfies:

1. There exists some state n′ that lies on a path from s to n, such that d = data(n′).

2. d ∈ UR(n).

35

3. On each path from each n′ (specified in 1) to n, there is no state n′′ between n′ and

n such that d ∈ UR(n′′).

Suppose a transaction of the transaction type T has gone through states n1=s, n2,· · · ,
nk−1, and is currently at state nk, the total transaction-unlockable set for the transaction,

denoted as TUL, is defined as TUL =
⋃

i=1,··· ,kUL(ni).

Intuitively, the elements in UL(n) are those data items possibly locked by the transac-

tion prior to the state n, and n is the earliest state from which these data items will never

be accessed by the transaction. UL(n) can also be computed at compile time. TUL is a

runtime set corresponding to an executing transaction and can be maintained incremen-

tally. When the transaction reaches a new state n, TUL ← TUL∪UL(n). From Definition

3.2.4, UL(n) ⊆ TUL ⊆ UR(n) holds at each state n. Usually the inclusion is strict, and

UL(n) is much smaller than UR(n) (See Example 3.2.2). We can store UL(n) for each

state n, and use TUL to approximate UR(n) at runtime. This saves considerable storage

space.

Example 3.2.2. For the transaction type in Figure 3.1 and the local lock tree in Figure

3.2(b), the unreachable sets UR and transaction-type unlockable sets UL for all states are

shown in Table 3.1.

If a transaction follows the sequence n1, n2, n3, n4, n3, n4, n7, the incrementally

computed total transaction-unlockable set TUL at each state is shown in Table 3.2. TUL

is often smaller than UR(n). For example, at state n7, TUL does not include F , Y , and

Z that are never accessed by the transaction, while they are in UR(n7). Moreover, TUL

never contains V , which corresponds to a non-in-transaction node in the tree, while all UR

sets include it.

Next, we use weak tree unlockability to save the runtime cost of testing the unlocking

condition U2.

Definition 3.2.5. At a state of a transaction, a data item d is weakly tree-unlockable if

each child c of d in the local lock tree either

1. has been locked by the transaction before, or

36

state UR UL

n1 {V } {}
n2 {V, A} {A}
n3 {V, A,B} {B}
n4 {V, A,B} {B}
n5 {V,A, B, C, D, E, F, Y } {C,D}
n6 {V,A, B, C,D, E, F, Z} {C,D}
n7 {V,A, B,C,D, F, Y, Z} {C,D}
n8 {V,A, B,C,D, E, Y, Z} {C,D}

Table 3.1: Unreachable and transaction-type-unlockable sets at each state of the transac-

tion type in Figure 3.1

state TUL up to the state

n1 {}
n2 {A}
n3 {A,B}
n4 {A,B}
n3 {A,B}
n4 {A,B}
n7 {A,B,C,D}

Table 3.2: Total transaction-unlockable set at each state of a transaction

37

2. is a leaf node and in TUL.

If a node is weakly tree-unlockable, it must satisfy U2. But the inverse does not hold.

Testing weak tree unlockability is much cheaper because it stops at the level of direct

children without testing the whole subtree underneath.

In terms of transaction-type unlockability and weak tree unlockability, the conditions

under which a transaction T can unlock d are:

(U’1) d ∈ TUL or d is a non-in-transaction node, and

(U’2) d is weakly tree-unlockable,

From the definitions, it is straightforward that U’1 implies U1, and U’2 implies U2. As

a tradeoff to save storage and runtime overhead, U’1 and U’2 no longer guarantee early-

unlocking but approximate it.

Based on U’1 and U’2, we design Algorithm 3.2.2 for unlocking. To improve the ef-

ficiency of weak tree unlockability testing, we attach a field num children qualified to

each tree node. The field shows the number of children that satisfy the two conditions of

weak tree unlockability. Each time a node is locked1, or its data item is added to TUL at

some state (if it is a leaf node), this field of its parent node is incremented by 1. If the

value of num children qualified equals to the number of children of the node, the node

is weakly tree-unlockable. Therefore, we only need to do a number comparison instead of

iterating over all children.

Algorithm 3.2.2. Unlocking data items, called at each state n:

Require: a set Locked that contains the nodes currently locked by the transaction.

1: {Update the TUL:}
2: for each e ∈ UL(n) do

3: if e /∈ TUL then

4: TUL ← TUL ∪ {e};
5: if (e /∈ LockSet) and (e is a leaf) then

6: e.parent.num children qualified++;

1This can be done by adding a statement that increments the num children qualified value of the
parent node by 1 after line 13 in Algorithm 3.2.1.

38

7: end if

8: end if

9: end for

10: for all d ∈ Locked do

11: {Testing the unlocking conditions:}
12: if d is an in-transaction node then

13: if d ∈ TUL then

14: if d.num children qualified == d.num children then

15: Locked ← Locked \ {d};
16: unlock node d;

17: end if

18: end if

19: else

20: if d.num children qualified == d.num children then

21: Locked ← Locked \ {d};
22: unlock node d;

23: end if

24: end if

25: end for

Algorithm 3.2.2 is invoked when a transaction reaches a state, immediately before

Algorithm 3.2.1 is called to lock the data item accessed. We further modify Algorithm

3.2.1 such that once we lock a node along the top-down tree path, we try unlocking its

parent by testing the conditions U’1 and U’2 on it. When the transaction finishes at a

terminating state, all remaining locks are released.

Example 3.2.3. Following Example 3.2.2, under our locking and unlocking algorithms,

the steps at each state of the transaction n1, n2, n3, n4, n3, n4, n7 are presented in Table

3.3. We use l to represent a locking step, u an unlocking step, and a a data accessing.

Please note the TUL sets at the states in the transaction are shown in Table 3.2.

39

state steps

n1 l(V), l(A), a(A)

n2 l(B), a(B)

n3 l(C),u(B), a(C)

n4 l(D),u(A), a(D)

n3 a(C)

n4 a(D)

n7 u(D), l(E), a(E),u(V),u(D),u(E)

Table 3.3: Steps at each state of a transaction

3.2.3 Correctness of the runtime algorithms

We formally prove that our runtime algorithms obeys the TL protocol. The satisfaction of

the TL1 rule is trivial. We show that Algorithm 3.2.1 and 3.2.2 also satisfy TL2 and TL3.

Lemma 3.2.1. Locking with Algorithm 3.2.1 obeys the rule TL2.

Proof. By Algorithm 3.2.1, a transaction T always at first locks the root of the local lock

tree. From the definition of the local lock tree (Definition 3.2.2), all data items that T may

access are reachable from the root of the local lock tree.

If T is going to lock a data item d when d’s parent d′ has not been locked by T , by

Algorithm 3.2.1, T will lock d′ and then holds the lock on d′ when it locks d. So TL2 is

satisfied.

Even if we modify Algorithm 3.2.1 in that it tries to unlock the parent after it locks

the child by testing unlocking conditions, it does not unlock the parent before it locks the

child. So it does not change the satisfaction of TL2.

Lemma 3.2.2. Following Algorithm 3.2.1 and the unlocking condition U1, if a transaction

T has to lock data item d immediately before accessing it, it is the first time T locks d.

Proof. By contradiction. Assume T has locked d, then unlocked it at state n′, and is now

requesting the lock on d again at a later state n. From condition U1, T can unlock d only if

T will never access d after state n′, including at state n. So we reach the contradiction.

40

Lemma 3.2.3. Locking with Algorithm 3.2.1 and unlocking under conditions U1 and U2

obey the rule TL3.

Proof. By contradiction. Assume that once a transaction t unlocks data item d, it is

possible that t locks it again. From condition U1, t will not access d again. So it will not

lock d again for accessing d. From Algorithm 3.2.1, the only possibility is that t locks d

again to lock and access a descendant of d in the local lock tree, say, d′′. From Lemma

3.2.2, t locks d′′ for the first time. Without loss of generality, we suppose the path from d

to d′′ consists of d0 = d, d1, · · · , dk = d′′. From Algorithm 3.2.1, t is current holding lock

on none of d0, · · · , dk. As t has unlocked d0, from condition 2, it must have locked d1 before

it unlocks d0. Therefore, t must have locked and then unlocked d1, and now is locking d1

again. By induction, t must have locked dk = d′′ before. So we have a contradiction.

Theorem 3.2.1. Locking with Algorithm 3.2.1 and unlocking under conditions U1 and U2

guarantee both serializability and deadlock-freedom.

Proof. From Lemma 3.2.1 and Lemma 3.2.3, and the features of TL in [27].

Corollary 3.2.1. Locking with Algorithm 3.2.1 and unlocking with Algorithm 3.2.2 guar-

antee both serializability and deadlock-freedom.

Proof. Algorithm 3.2.2 applies unlocking conditions U’1 and U’2. U’1 implies U1, and U’2

implies U2.

3.3 Compile-time processing

In Section 3.2, for each transaction type, runtime locking/unlocking relies on two types

of data structures: the transaction-type-unlockable sets and the local lock tree. For a

predefined transaction system, these structures can be generated at compile time.

3.3.1 Generating unlockable data sets

First, we derive the algorithm to compute the transaction-type-unlockable sets UL. In a

transaction type T = 〈N , s, F , A, data, cost, prob〉, only N , A, s, F are relevant to this

41

processing. We define G(T) = 〈N, A〉 as a directed graph whose nodes are the states in T

and whose arcs are transitions in T . G(T) has a source node s and a set of sink nodes F .

For two nodes n1, n2 ∈ N , we say that n2 is reachable from n1 if n2 and n1 are the

same node, or there is a directed path from n1 to n2 in G(T); and n2 is after n1 if n2 is

reachable from n1 but not vice versa.

For each n ∈ N , we define a set RL(n) = {nk ∈ N | nk is after n and data(n) ∈
UL(nk)}. For a data item d, we can conclude that

⋃

n′∈N,
data(n′)=d

RL(n′) = {n ∈ N |d ∈ UL(n)}. (3.1)

So once we have the RL sets for all states, we can build their UL sets. Next, we show how

to build the RL sets.

We denote L(n) as the set of all nodes ni such that:

1. ni is reachable from n, and,

2. there is an nk reachable from ni such that data(nk) = data(n).

Consequently, if ni ∈ L(n), then ni 6∈ RL(n). Moreover, immediately from the definitions

of UL(n), RL(n), and L(n), the following proposition holds.

Proposition 3.3.1. For each nj /∈ L(n), nj ∈ RL(n) if and only if there exists an nk ∈
L(n) and 〈nk, nj〉 ∈ A.

Based on Proposition 3.3.1, we can derive Algorithm 3.3.1 that computes the RL and

UL sets for all states. In each iteration of the main loop (line 5), the algorithm processes a

state n by calling the dfs mark procedure. dfs mark is based on the depth-first searching

algorithm, and it computes a subset of L(n), defined as L′(n) = {ni ∈ L(n) | ni is reachable

from n without passing any nk 6= n such that data(nk) = data(n)}. From Proposition 3.3.1,

for a node ni ∈ L′(n), its direct successor nk can only be one of the three following cases:

(1) nk ∈ L′(n), (2) data(nk) = data(n), or (3) nk ∈ RL(n).

After dfs mark returns, all nodes in L′(n) are marked. Then the main algorithm

continues to build a node set RL′(n) = {ni /∈ L′(n) | data(ni) 6= data(n) and there is an

42

nk ∈ L′(n) such that (nk, ni) ∈ A} in the rest of the iteration. We can see

(RL(n)−
⋃

ni is after n,
data(ni)=data(n)

RL(ni))

⊆ RL′(n) ⊆ RL(n).

(3.2)

For each ni ∈ RL′(n), the main program puts data(n) into UL(ni). Based on (3.1) and

(3.2), only correct data items are added to UL(ni), so the algorithm is sound.

Furthermore, we show the completeness of the algorithm. Because the algorithm loops

over all state nodes, the elements in RL(n) that are missing in RL′(n) will be compensated

when other nodes that access the same item are processed in the later iterations. Therefore,

for each data item d, ⋃
n∈N,

data(n)=d

RL(n) =
⋃

n∈N,
data(n)=d

RL′(n) (3.3)

holds. By the end of the algorithm, d is added into the UL sets at all nodes in
⋃

n∈N,
d=data(n)

RL(n).

Algorithm 3.3.1. Compute UL(n) for each state n:

1: compute the strongly connected components of G(T) [16]

2: for each state n ∈ N do

3: UL(n) ← {};
4: end for

5: for each state n ∈ N do

6: for each state n′ ∈ N do

7: n′.marked ← false;

8: n′.visited ← false;

9: end for

10: n.marked ← true;

11: call function dfs mark(data(n), n);

12: for each marked n′ do

13: for each successor n′′ of n′ do

14: if n′′ is not marked and data(n′′) 6= data(n) then

15: UL(n′′) ← UL(n′′) ∪ {data(n)};

43

16: end if

17: end for

18: end for

19: end for

Function dfs mark does a depth-first searching, and marks nodes in L′(n). The return

value indicates whether n is in L′(n).

1: function dfs mark(d, n) returns boolean

2: n.visited ← true;

3: flag ← false;

4: if n ∈ F then

5: return(false);

6: else

7: for each successor n′ of n do

8: if n′.visited then

9: if n′.marked then

10: flag ← true;

11: end if

12: else

13: if data(n′) = d then

14: flag ← true;

15: else

16: flag ← flag ∨ dfs mark(d, n′);

17: end if

18: end if

19: end for

20: end if

21: if flag then

22: n.marked ← true;

23: if n is in a strongly connected component C then

24: for each n′′ ∈ C do

25: if data(n′′) 6= d then

44

26: n′′.marked ← true;

27: end if

28: end for

29: end if

30: end if

31: return(flag);

3.3.2 Generating lock trees

Building a global lock tree that “fits” the transaction system is important for the efficiency

of the TL approach. We find some rough categories for tree fitness:

(C1) A lock tree should favor the transaction types with higher probabilities in a transac-

tion system.

(C2) A lock tree should favor the transactions with higher probabilities under the same

transaction type.

(C3) For those data items accessed at the states that are close in a transaction type, it

is preferable that their corresponding tree nodes are also close, e.g., as parent and

child, or children under the same parent.

(C4) A transaction should lock as few non-in-transaction nodes as possible in the lock tree.

Our idea is at first building individual reference trees from each transaction type, then

merging them into a global lock tree, and finally projecting the global lock tree to individual

transaction types to obtain local lock trees. Algorithm 3.3.2, which is based on depth-first

searching over a finite state machine, builds the reference tree for a transaction type T . It

always expands the unvisited successor with the highest probability of the current state.

This follows the category C2. The reference tree covers all data items accessed by the

transaction type.

Algorithm 3.3.2. Given a transaction type T = 〈N , s, F , A, data, cost, prob〉, build a

reference tree t:

1: add data(s) to t as root;

45

2: call procedure build tree(s, t);

1: procedure build reference tree(n, t);

2: n.visited ← true;

3: while there is unvisited successor of n in G(T) do

4: choose the unvisited successor c with the highest prob(〈n, c〉);
5: if data(c) is not a node in t then

6: add data(c) as child of data(n) in t;

7: end if

8: call procedure build reference tree(c, t);

9: end while

Example 3.3.1. Applying Algorithm 3.3.2 to the transaction type in Figure 3.1 returns

the tree in Figure 3.3.

A

B

D

C

Y

F E Z

Figure 3.3: The tree built by Algorithm 3.3.2 from the transaction type in Figure 3.1

For a transaction system with a transaction type set TS = {trans1, · · · , transn}, after

we build the reference trees from all transi ∈ S, we merge them into a global lock tree.

We sort the trees in descending order of the probabilities of the corresponding transaction

types, and get an array of trees [tree1, · · · , treen]. Then we build the global lock tree with

Algorithm 3.3.3.

Algorithm 3.3.3. Given an ordered array of trees [tree1, · · · , treen], build a global lock

tree GLT :

46

1: initialize GLT as a copy of tree1;

2: for i ← 2 to n do

3: for each node d in treei do

4: if d is not in GLT then

5: if the parent of d in treei, d′, is in GLT then

6: add d to GLT as a child of d′;

7: else if d has a child d′ in treei, and d′ is the root of GLT then

8: {d becomes the new root:}
9: add d to GLT as the parent of d′;

10: else if d has a child d′ in treei, and d′ is a non-root node in GLT then

11: find the parent of d′ in GLT , d′′;

12: add d to GLT as a child of d′′;

13: else

14: add d as the child of an arbitrary leaf node in GLT ;

15: end if

16: end if

17: end for

18: end for

Algorithm 3.3.3 initializes the global lock tree as the tree of the “most likely” transaction

type (line 1), and processes other trees following decreasing order of the probabilities of

the corresponding transaction types. By doing this, we try to favor the transaction types

with higher probabilities (category C1) and avoid non-in-transaction nodes in their local

lock trees (category C4). The rules for adding a new node into the global lock tree are

reflected at line 5-14, which is to fulfill category C3 and to make the data items that are

probably accessed at close states in a transaction type be also close in the global lock tree.

After the global lock tree is built, the algorithm to build the local lock tree for each

transaction type is straightforward. First, the set of tree nodes D = {d′1, · · · , d′n} that

correspond to the data items accessed by the transaction type belong to the local lock tree.

Then the algorithm sets r′ ← d′1, and then iterates over d′2, · · · , d′n. For each d′i, it finds

the lowest common ancestor r′′ of r′ and d′i, and adds all nodes and edges between r′′ and

r′ and between r′′ and d′i to the local lock tree. Then it resets r′ ← r′′ and continues to

47

process d′i+1. When the loop is over, the algorithm finishes building the local lock tree.

3.3.3 Inserting lock steps into transaction types

Given the lock tree and the transaction-type-unlockable sets, we can generate the locking

and unlocking programs following Algorithm 3.2.1 and 3.2.2 at compile time. However,

the runtime CPU overhead of locking and unlocking is still high, as there are loops in the

algorithms. Moreover, we still need to keep the local lock tree and unreachable sets for

each transaction type, and the total transaction-unlockable set for each transaction, which

incurs memory overhead. To save such costs, we further investigate how to generate all

locking steps at compile time.

We extend the notion of the transaction type in Definition 3.1.1 with lock steps. A lock

step is a step that locks or unlocks a data item on a transition arc2. Our task is inserting

lock steps into the transaction types following the TL protocol. As it is compile-time

processing, we can afford to use the bigger unreachable set UR and the slower but more

accurate unlocking conditions (U1 and U2 in Section 3.2)3.

Example 3.3.2. Suppose we have a transaction type and its local in Figure 3.4(a). After

we add lock steps into it, it becomes the transaction type in Figure 3.4(b), in which we use

solid round nodes to represent lock states. The sequence of locking and unlocking of data

items follows the TL protocol and late-lock/early-unlock policy.

Adding lock steps incurs a new complication. For a certain non-start state n, there may

be several paths from s to n. Each path may have accessed different data items, and thus

result in different sets of data items locked by the transaction at n. The lock steps after

2To hold lock steps before the starting state and after the terminating states, we add a transition arc
before the starting state, and one after each terminating state.

3Therefore, the locking conditions based on UL and TUL sets and weak tree unlockability in Algorithm
3.2.2 for runtime overhead saving are no longer necessary. It is also not necessary to calculate UL sets for
the states (Section 3.3.1). Computing UR sets at all states at compile-time is trivial. Suppose the data set
is D. To get UR(n), we just initialize a set V S ← ∅, and do a searching (either breadth-first or depth-fist)
from the state n. For each state n′ visited in the searching, we add data(n′) to V S. After the searching
is done, UR(n) ← D\V S.

48

A B

C

A

B

C

(a)

Lock_D

A

Lock_A

Unlock_A

Lock_B

Unlock_D

B

Unlock_B

Lock_C

C

(b)

Unlock_C

D

Figure 3.4: Adding lock states to a transaction type: (a) original transaction type and its

local lock tree; (b) expanded transaction type.

the confluence state n, which depend on the locked data set at n, may be nondeterministic.

The problem is illustrated in Example 3.3.3.

Example 3.3.3. Suppose we have the transaction type and the local lock tree in Figure

3.5 (copied from Figure 3.1 and 3.2(b)). For a transaction goes through n1, n2, n4, n5, its

sequence with lock steps added is Lock V , Lock A, n1, Lock B, n2, Lock D, Unlock A,

n4, Unlock B, Unlock D, Lock Y , Unlock V , Lock Z, Unlock Y , n5, Unlock Z. And for

another transaction that takes n1, n2, n4, n3, n4, n5, its sequence is Lock V , Lock A, n1,

Lock B, n2, Lock D, Unlock A, n4, Lock C, Unlock B, n3, n4, Unlock D, Unlock C,

Lock Y , Unlock V , Lock Z, Unlock Y , n5, Unlock Z. As the first transaction does not

have the state n3 and does not lock C, there is no lock step Unlock C on the arc 〈n4, n5〉.
The second accesses C at n3, so it has a lock step Lock C on 〈n4, n3〉, and an Unlock C

on 〈n4, n5〉.

To handle such problem, we need to expand a transaction type to make each possible

path have a unique sequence of lock steps. A naive approach is shown in Figure 3.6. If from

49

A/2 B/6 Y/0
1.0 0.1 0.8

0.2

D/6
0.1

Z/0

0.7

C/3

0.2 0.4

0.2

0.3
F/10

E/5

n1 n2 n3

n4n5

n6

n7

n8

V

A Y

ZB D

C E F

Figure 3.5: A transaction type and its local lock tree

s to nm there are two paths, then from nm on, we duplicate each state nk to a new state n′k
and the path going through the duplicated states accordingly. Therefore, along each path

in the expanded transaction type, the lock step sequence is deterministic. However, such

expansion based solely on prefix paths may not be necessary. Intuitively, if the two paths

from s to nm in Figure 3.6(a) are of the same length, and access the same set of data items

in the same order, the expansion is not necessary because the lock steps after nm are the

same. Next, we show that the number of different sets of locked items that a transaction

may have at the confluent state nm determines how many duplications we should have for

nm and the subsequent path.

Define the set of data items in the local lock tree being locked by a transaction t at

a state n as Lt,n, and the set of data items in the local lock tree that have been locked

(possibly already unlocked) by t at n as Vt,n. We also define the set of data items locked

by t at a certain moment (possibly between two lock steps on the arc) as Lt, and the set of

data items that have been locked (possibly already unlocked) by t at the moment Vt. On

a transition arc 〈n, n′〉, a transaction t first tests on each data item d ∈ Lt,n with following

conditions:

(U1) d ∈ UR(n′);

(U2) for each child c of d in the local lock tree, either c ∈ Vt, or for all nodes c′ in the

subtree rooted at c, c′ ∈ UR(n′).

t unlocks d if they are satisfied. The processing up to now is named as the unlocking stage.

50

n i 1

n m

....

....

....

....

....

s

n
2j

n k

n i 1 n m

(a)

....

....

....

....s

n
2j

....

........

n k’

....

n k

n m’

(b)

Figure 3.6: A naive expanding approach: (a) original transaction type, (b) expanded

transaction type

51

If it is necessary, t enters the locking stage. It executes Algorithm 3.2.1 to lock data(n′).

It is possible that t has to lock its ancestors in the top-down order. Furthermore, after t

locks a tree node, it also tests the unlocking conditions on its parent and tries to unlock it.

For such processing, we prove Theorem 3.3.1.

Theorem 3.3.1. Given the transaction type T in Figure 3.6(a), suppose transaction t1

goes through s, · · · , ni1, · · · , nm, · · · , nk, · · · , and transaction t2 goes through s, · · · , nj2,

· · · , nm, · · · , nk, · · · , if Lt1,nm = Lt2,nm, then t1 and t2 have the same sequence of lock

steps after nm.

Proof. First, we show that the sequence of lock steps of t1 and t2 are exactly the same

between nm and its successor nm+1, and Lt1,nm+1 = Lt2,nm+1 . We restrict Lt1 , Vt1 , Lt2 , and

Vt2 to the arc 〈nm, nm+1〉. Denote Lt1,nm and Lt2,nm as Lnm .

Lemma 3.3.1. For each d′ on some path from the root to any d′′ ∈ Lnm, d′ ∈ Vt1,nm ∩
Vt2,nm.

Proof. By Algorithm 3.2.1.

Lemma 3.3.2. During the unlocking stage, t1 and t2 unlock the same set of data items by

testing the conditions U1 and U2 over Lnm.

Proof. During the unlocking stage, Vt1 = Vt1,nm , Vt2 = Vt2,nm , and Vt1 and Vt2 are not

changed.

When t1 and t2 test the conditions on a data item d ∈ Lnm , they have the same result

on U1. However, it is possible that Vt1,nm 6= Vt2,nm . So they have different Vt1 and Vt2 for

U2. To prove the lemma, it suffices to show such difference does not influence the testing

result of U2.

Without loss of generality, we suppose there is a child c of d such that c ∈ (Vt1,nm\Vt2,nm).

As c /∈ Lt1,nm , c has been unlocked by t1 rightly prior to a state ni1 . Either ni1 is before

nnm , or ni1 = nnm . From the unlocking conditions, c ∈ UR(ni1). Since UR sets are always

incremental along the path in the transaction type, c ∈ UR(nm+1). Moreover, for each

child c1 of c, either (1) c1 ∈ Vt1,ni1
, or (2) for all nodes c2 in the subtree rooted at c1, c2 ∈

UR(ni1). We discuss the two cases below.

52

• For case (2), because UR sets are incremental, for all c2 in the subtree rooted at c1

(including c1), all c2 ∈ UR(nm+1).

• For case (1), from Lemma 3.3.1, c1 /∈ Lnm . So c1 has also been unlocked by t1 before

nm. Therefore, c1 ∈ UR(nm+1). Moreover, because c /∈ Vt2,nm , c1 ∈ (Vt1,nm \ Vt2,nm).

By induction, for all data items c3 in the subtree rooted at c1, c3 ∈ UR(nm+1).

Therefore, for each data item c′ in the subtree rooted at c, c′∈UR(nm+1). When testing

the condition U2, if t1 gets c ∈ Vt1 , then t2 also finds that all node c′ in the subtree rooted

at c, c′∈UR(nm+1). So such difference in Vt1,nm and Vt2,nm does not influence unlocking

testing.

Lemma 3.3.3. During the locking stage, both t1 and t2 have the same sequence of lock

steps.

Proof. Because of Lemma 3.3.2, t1 and t2 have the same sequence of lock steps during the

unlocking stage. At the end the unlocking stage, Lt1 = Lt2 . It is obvious that data(nm+1)

∈ Lt1 if and only if data(nm+1) ∈ Lt2 . So either both t1 and t2 enter the locking stage, or

neither does. When Algorithm 3.2.1 is called in the locking stage, for both t1 and t2, it

puts the same sequence of data items data(nm+1) = dl, dl−1, · · · , d1 in the local lock tree

into the stack, and pops out the same data item d1 to start locking.

After d1 is locked, Lt1 = Lt2 still holds, Vt1 = Vt1,nm ∪ {d1}, and Vt2 = Vt2,nm ∪ {d1}.
Now the unlocking conditions are tested on the parent of d1, d0. In a way similar to the

proof of Lemma 3.3.2, we can infer that t1 unlocks d0 if and only if t2 unlocks d0. After

processing d0, we still have Lt1 = Lt2 . The final steps on the arc are locking dl and trying

unlocking dl−1. By induction, t1 and t2 have the same sequence of lock steps during the

locking stage, and at the end of the locking stage Lt1 = Lt2 remains true.

By Lemma 3.3.2 and Lemma 3.3.3, t1 and t2 have the same sequence of lock steps on

〈nm, nm+1〉, and Lt1,nm+1 = Lt2,nm+1 . By induction, t1 and t2 have the same sequence of

lock steps along the path after nm.

From Theorem 3.3.1, we can simulate transactions on the transaction type. We define

LT (n) = {Lti,n | ti is a transaction of the transaction type T that passes n}. Obviously,

53

LT (n) is a finite set. We duplicate the original state n to |LT (n)| new states, and duplicate

all states and paths after n accordingly. Hence, in the expanded transaction type, each

state n has |LT (n) = 1. Now we give the formal definition of expansion.

Definition 3.3.1. Given a transaction type T = 〈N , s, F , A, data, duration, prob〉,
the expansion process to generate the new transaction type T ′ = 〈N ′, s′, F ′, A′, data′,

duration′, prob′〉 must satisfies:

1. There is a duplication function dup state from N to the powerset of N ′. For an

n ∈ N , dup state(n) produces the set of duplicated states in N ′. For any two distinct

states n1, n2 ∈ N , (dup state(n1) ∩ dup state(n2)) = ∅. N ′=
⋃

n∈Ndup state(n).

2. There is a duplication function dup transition from A to the powerset of A′. For

an arc 〈n1, n2〉 ∈ A, dup transition(〈n1, n2〉) produces the set of duplicated arcs

in A′. And for each 〈n1
′, n2

′〉 ∈ dup transition(〈n1, n2〉), it must hold that n1
′ ∈

dup state(n1) and n2
′ ∈ dup state(n2). For two distinct transitions a1, a2 ∈ A,

dup transition(a1) ∩ dup transition(a2) = ∅. A′ =
⋃

a∈A dup transition(a).

3. F ′ =
⋃

n∈F dup state(n).

4. If a state n ∈ N has |LT (n)| = k, |dup state(n)| = k must hold in T ′. Each n′ ∈
N ′ can only have |LT ′(n

′) = 1. For each n′ ∈ N ′, suppose L′ is the unique element

in LT ′(n
′), there must be an n ∈ N ,n′ ∈ dup state(n), and L ∈ LT (n). dup state(s)

has only one element, s′.

5. If for 〈n1, n2〉 ∈ A, and 〈n1
′, n2

′〉 ∈ A′, n1
′ ∈ dup state(n1), and n2

′ ∈ dup state(n2),

then prob′(〈n1
′, n2

′〉) = prob(〈n1, n2〉).

6. For each n′ ∈ dup state(n), cost′(n′) = cost(n).

The 4th condition is derived from Theorem 3.3.1.

Example 3.3.4. For the transaction type T in Example 3.3.3, the LT values at the states

are:

54

LT (n1) = {{V, A}},
LT (n2) = {{V, A,B}},
LT (n3) = {{V, A,C}, {V,C, D}},
LT (n4) = {{V, B, D}, {V, C, D}},
LT (n5) = {{Z}},
LT (n6) = {{Y }},
LT (n7) = {{E}},
LT (n8) = {{F}}.

We expand T to the transaction type T ′ in Figure 3.7. In the expanded transaction type,

the duplicate state mappings are:

duplicate state(n1) = {n1},
duplicate state(n2) = {n2},
duplicate state(n3) = {n4, n5},
duplicate state(n4) = {n3, n9},
duplicate state(n5) = {n6},
duplicate state(n6) = {n10},
duplicate state(n7) = {n7},
duplicate state(n8) = {n8}.

Except the obvious one-to-one mappings, the LT ′ values are:

LT ′(n4) = {{V,A, C}},
LT ′(n5) = {{V,C,D}},
LT ′(n3) = {{V,B,D}},
LT ′(n9) = {{V,C,D}}.

Based on Theorem 3.3.1 and Definition 3.3.1, Algorithm 3.3.4 expands a transaction

type T to T ′. It is similar to a breadth-first search. Starting from s, the algorithm

duplicates an s′ into N ′, calculates LT ′(s
′), and put the triple 〈s′, s, LT ′(s

′)〉 into a queue.

When a triple 〈n′, n, L〉 is dequeued, it means n′ ∈ duplicate state(n) and L = L T ′(n′).

For each m ∈ N such that 〈n, m〉 ∈ A, the algorithm computes a lock set LS ∈ LT (m)

from LT ′(n
′) (which has only one member). Then it checks each m′′ ∈ N ′ such that

55

0.4 0.10.30.2 0.8

0.2

0.2

0.7

0.1

1.0

YZFE

n2

C

n4
n3

n8n10

0.8

0.2 0.3

n6n9

0.2

0.1

0.4

n5Dn7

n1

B

A

CD

Figure 3.7: Expanded transaction type

m′′ ∈ duplicate state(m) to find one such that LT ′(m
′′) = LS. If there is such a m′′,

there is no need to duplicate m, and just a new arc 〈n′, m′′〉 is added to A′. Otherwise, it

duplicates m to a state m′, adds m′ into N ′, 〈n′, m′〉 into A′, and m′ into duplicate state(m),

and enqueues the triple 〈m′, m, {LS}〉 for further expansion.

In the algorithm, calculating LS ∈ LT (m) from L(T
′)(n′) is in essence simulating

a transaction t along the arc 〈n, m〉 following the locking/unlocking algorithms, Algo-

rithm 3.2.1 and Algorithm 3.2.2 (with unlocking conditions modified). In the context of

t, L(T
′)(n′) = {Lt,n}, and LS = Lt,m. The simulation adds lock steps while maintaining

Lt as the result of the lock steps, and finally obtains Lt,m. Recall the unlocking conditions

applied are:

(U1) d ∈ UR(m);

(U2) for each child c of d in the local lock tree, either c ∈ Vt, or for all nodes c′ in the

subtree rooted at c, c′ ∈ UR(m).

As Algorithm 3.3.4 cannot maintain the Vt,n and Vt sets, U2 is modified to an equivalent

56

condition in term of Lt and then applied in Algorithm 3.3.4:

(U2) for each c′ in the subtree rooted at d, if c′ /∈ UR(m), then either c′ ∈ Lt, or there is

a d′ ∈ Lt standing between d and c′ on the path from d to c′.

Among the procedures called by Algorithm 3.3.4, check unlock checks unlocking condi-

tions, remove lock set tries to unlock a data item by calling check unlock, insert lock set

simulates the locking stage, and build L simulates the whole processing on the transition

arc.

Algorithm 3.3.4. Given a transaction type T = 〈N , s, F , A, data, duration, prob〉,
and a local lock tree LLT , expand to T ′ = 〈N ′, s′, F ′, A′, data′, duration′, prob′〉. For

each state n′ ∈ N ′, there are two fields lock set and original state. The former is the

member set in LT ′(n
′), and the latter is the state n ∈ N such that n′ ∈ dup state(n).

Each arc l∠n 1′, n 2′〉 is attached with a sequence of lock steps, lock steps. For each

final state n′f ∈ F ′, there is a sequence post final steps, which releases the remain-

ing locks after n′f . T ′ also has a pre start steps, which does locking before accessing

s′.

Require: an empty queue q;

1: generate a new node s′;

2: put s′ into T ′ as the starting state;

3: N ′ ← {s′};
4: s′.original state ← s;

5: cost′(s′) ← cost(s);

6: pre start steps ← empty sequence;

7: s′.lock set ← ∅;
8: {build LT ′(s

′) and the lock steps before s′: }
9: call procedure build L(s, s′.lock set, pre start steps);

10: enqueue(s′, q);

11: while the queue q is not empty do

12: n′ ← dequeue(q)

13: if n′ ∈ F ′ then

14: {a final state:}

57

15: for all d ∈ n′.lock set do

16: add “unlock d” into n′.post final steps;

17: end for

18: else

19: {not a final state: }
20: n ← n′.original state

21: for all m ∈ N such that 〈n,m〉 ∈ A do

22: temp lock steps ← empty sequence;

23: temp lock set ← n′.lock set;

24: call procedure build L(m, temp lock set, temp lock steps);

25: {try to find a m′ ∈ duplicate state(m) with the same lock set: }
26: flag ← false

27: for all node n′′ ∈ N ′ such that n′′.original state = m do

28: if n′′.lock set = temp lock set then

29: flag ← true

30: A′ ← A′ ∪ {〈n′, n′′〉}
31: prob′(〈n′, n′′〉) ← prob(〈n,m〉)
32: attach temp lock steps to 〈n′, n′′〉;
33: break

34: end if

35: end for

36: if flag = false then

37: generate a new state m′

38: m′.lock set ← temp lock set;

39: m′.original state ← m

40: N ′ ← N ′ ∪ {m′}
41: if m ∈ F then

42: F ′ ← F ′ ∪ {m′}
43: end if

44: cost′(m′) ← cost(m)

45: A′ ← A′ ∪ {〈n′,m′〉}

58

46: prob′(〈n′,m′〉) ← prob(〈n,m〉)
47: attach temp lock steps to 〈n′,m′〉;
48: enqueue(m′, q)

49: end if

50: end for

51: end if

52: end while

Procedure build L builds LS at m. The single member set in LT ′(n
′) is passed into lockset

at the calling time. LS is stored in lockset when the procedure returns. lock steps stores

the lock step sequence.

1: procedure build L(m, lock set, lock steps);

2: for all d ∈ lock set do

3: call procedure remove lock set(m, d, lock set, lock steps);

4: end for

5: call procedure insert lock set(m, lock set, lock steps);

Procedure remove lock set simulates unlocking d.

1: procedure remove lock set(m, d, lock set, lock steps)

2: if check unlock(m, d, lock set) then

3: add “unlock d” into lock steps;

4: lock set ← lock set \ {d};
5: end if

Function check unlock checks unlocking conditions U1 and U2.

1: function check unlock(m, d, lock set) returns boolean

2: if d ∈ UR(m) then

3: for all child c of d do

4: if c /∈ lock set then

5: if not check unlock(m, c, lock set) then

6: return false;

7: end if

8: end if

59

9: end for

10: return true;

11: else

12: return false;

13: end if

Procedure insert lock set simulating locking. It is similar to Algorithm 3.2.1.

1: procedure insert lock set(m, lock set, lock steps)

2: d ← data(m);

3: if d ∈ lock set then

4: return;

5: end if

6: initialize an empty stack;

7: while d /∈ lock set do

8: push d to the stack;

9: if d is root of the local tree then

10: break;

11: else

12: d ← d.parent;

13: end if

14: end while

15: while the stack is not empty do

16: pop d from the stack;

17: insert “lock d” into lock steps;

18: lock set ← lock set ∪ {d};
19: if d.parent 6= null then

20: remove lock set(m, d.parent, lock set, lock steps);

21: end if

22: end while

Example 3.3.5. Given the transaction type and local lock tree in Figure 3.5, we show in

Figure 3.8 the steps that Algorithm 3.3.4 generates the expanded transaction type presented

in Figure 3.7. The transaction type with the lock steps inserted is in Figure 3.9.

60

n7

n8 n9 n10

Z E F

n5

Cn4D

n2

n1

B

A

n7

n8 n9 n10

Z E

n3

D

Y

C

n6

n8

FEZ Y

n9 n10

n5D

n5Dn6

n5Dn6

n5Dn6

C n7

n6

(11)

Z

(13)(12)

n7

n8 n9 n10

Z E F

n5
D

Y

C

n6
n10n9n8

n5D

YFE

(10)

n1 n1

n7

C

(9)(8)

n7C

n3 C

(7)(6)(5)

n2

n1

n3C

(1) (2) (4)(3)

n2

n1

n2

F

Cn4D

n2

n1

B

A

n3 Cn4D

n3

n3 Cn4D

n2

n1

B

A

Y

n2

B

A

B

A

B

AA

n1

B

A

n4D

n2

n1

B

A

Y

n3 Cn4D

n2

n1

B

A

n3 Cn4

n5
D

Y

C

n6

D

B

A

n3 Cn4D

n2

n1

B

A

n2

n1

B

A

n3 Cn4D

n2

n1

Figure 3.8: Expanding the transaction type in Figure 3.5 to the one in Figure 3.7

61

Unlock_D

E

Unlock_E

F

Lock_F
Unlock_D

Unlock_F

Lock_Y

Unlock_V

Lock_Z

Unlock_Y

Z
C

Lock_C

n7

n6

 Unlock_C

Unlock_D

Lock_E

Lock_V

Lock_A

n1

Lock_B

n2

CD n4

Lock_D
Unlock_A

Unlock_V
Unlock_V

Lock_Y

Unlock_D Unlock_C

Unlock_Z

Unlock_C

Unlock_V

Unlock_C

Unlock_V

 Unlock_C

Unlock_A

Unlock_B

Unlock_D

Unlock_V
Unlock_BUnlock_B

Unlock_V

n3

Lock_D

Lock_Y

Unlock_Y

Unlock_B

Lock_C
Unlock_B

n9 n10

n8

D n5

Unlock_D

Lock_E

Unlock_D

Lock_F

Lock_Y

Unlock_Y

Lock_Z

Unlock_V
Unlock_A

A

B

Y

Figure 3.9: Transaction type with locking/unlocking steps (the solid cycles) inserted.

Chapter 4

Building workloads for compiled

database applications

To carry on our simulated experiments to evaluate the concurrency control techniques on

compiled database applications, we need a workload. There are two alternatives in getting

such a workload. First, we can derive a workload from an OLTP benchmark. Second, we

can choose an open source operating system as a sample of compiled database applications

and map its system calls to transaction types. We introduce the two approaches separately

in the chapter.

4.1 TPC-C workload

TPC-C [2] is a widely used OLTP benchmark to measure the performance of general

purposed database systems. It specifies 5 transactions of a wholesale supplier, which

access 9 tables that contain the information of customers, inventories, and orders. Each

transaction has a probability in the mixture. As it is similar to a transaction system defined

in Section 3.1, we started with TPC-C to build our workload.

62

63

4.1.1 Transforming TPC-C transactions to finite state machines

Naturally, we can build a transaction system from the TPC-C benchmark by mapping the

tables to the data set and the transactions to the transaction types. So we got 9 data ele-

ments (warehouse, customer, history, district, order, new order, order line, item,

and stock), and 5 transaction types (new order, payment, order status, delivery, and

stock level). From the TPC-C specifications, we also fixed the probabilities of the trans-

action types (for the above 5 transactions, 0.45, 0.43, 0.04, 0.04, and 0.04, respectively).

The remaining work was how to build the transaction types from the TPC-C transaction

programs.

We first transformed TPC-C transaction programs to finite state machines. In each

program, we are only interested in embedded SQL statements and control statements (e.g.

if-else and for), because they contribute to the states and transitions in the transaction

system. The steps are:

1. Mapping each embedded SQL statement (one-table operation or two-table join) in

the TPC-C transaction program to a component in the transaction type:

(a) If it is a SELECT, UPDATE, DELETE, or INSERT on a single table A,

we add a state n and let data(n) = A (Figure 4.1(a)).

(b) If it is a two-table join on table A and B:

i. If the two tables are pre-selected on their keys before they are joined, we

assume that the query first accesses A once, then accesses B once. So we

add two nodes n1 and n2 such that data(n1) = A and data(n2) = B, and

let n2 be the only successor of n1 (Figure 4.1(b)).

ii. Otherwise, we assume the query follows a nested-loop plan, and the join is

transformed to Figure 4.1(c).

2. Transforming control flow in the C program to the components:

(a) a sequential execution of embedded SQL statements s1, · · · , sn is transformed

to a lineal path through these nodes as in Figure 4.2(a);

(b) an if-else statement is transformed to a branch out in the finite state machine

(Figure 4.2(b));

64

(c) a loop statement is transformed as Figure 4.2(c).

(c)

BA

(b)(a)

1
BAA

Figure 4.1: Transformations of queries

1 1
....

s1 sn

(c)

1 1

s1 sn

(a) (b)

s1

Figure 4.2: Transformations of control flows

Next, we acquired the probabilities on the transition arcs. For the join in Case 1(b)ii,

the probabilities on the arcs in Figure 4.1(c) can be estimated from the table cardinality

and query selectivity. For if-else statements (Case 2b), the probability on each branch in

Figure 4.2(b) are obtainable from the TPC-C specifications. In Case 2c, if it is a for loop

of the form,

for(i=0; i<n; i++){

S1; ...; Sn;

}

we set the probability from sn back to s1 to n−1
n

, and the probability to exit the loop from

sn to 1
n
. If it is a while loop, unfortunately, we have to rely on some “guess work” to

approximate the probabilities.

For the simulation of 2PL, we also attached to each state with a tag r and w, indicating

whether it reads or writes. If the state corresponds to a SELECT statement, the tag is

set to r. If it corresponds to an UPDATE, INSERT, or DELETE, the tag is w.

65

So far we had the transaction types along with their probabilities to make a transaction

system. The only information missing was the costs of each state, which we would acquire

later on. As a byproduct, we built a global lock tree following the procedure in Section

3.3.2.

4.1.2 Partitioning the tables

Furthermore, we partitioned each table to table0, · · · , tablen, in which n is a partition

factor. We also added indexes if it is necessary. A key-matching selection on a table first

goes to the index and then goes to one of the partitions, and a fully sequential table scan

goes through all the partitions one by one. We reflected such changes in the transaction

types and global lock tree. If the query at a state is a key-matching search, we changed the

state as in Figure 4.3(a). If it is a fully sequential table scan, we changed it according to

Figure 4.3(b). For the new states that access each partition, the r/w tags are the same as

the original ones. Because of the special handling of index locking in commercial database

systems with 2PL, we assumed all index access operations are read and tag corresponding

states with r.

As for the global lock tree, if keyed queries on the table has a higher accumulative prob-

ability, we changed the tree node corresponding to the table as in Figure 4.3(c), otherwise

we changed the node as in Figure 4.3(d)1. Furthermore, we built the local lock tree for

each transaction type.

In our experiments, we set partition factor to 100.

4.1.3 Obtaining time costs

We also got the time costs of all operations. We created tables and indexes in an IBM

DB2 database and inserted rows into the tables, following the specifications of the TPC-

C benchmark. Then we ran in DB2 the SQL statements in the TPC-C programs with

plugged-in parameters, and got the time costs on indexes and tables from query plan

1We added partitions to transaction type graphs and global lock tree after generating the original global
lock tree from the transaction type graphs without partitions. The reason is that we believe it is necessary
to have all partitions directly under their indexes in the lock tree.

66

(b) transformation of state in a full table scan query

table_name

...
.

table_part_n

table_part_1

(d) transformation of tree node for full table scan query

...
.

table_part_n

table_part_1

....

....
table_name

table_index

table_name

(a) transformation of state in transaction type for keyed query

table_part_n

...
.

table_part_1

table_part_ntable_part_1

........
table_index

....
table_name

(c) transformation of tree node for keyed query

Figure 4.3: Adding indexes and partitions to transaction types and lock trees

67

graphs that are provided by the DB2 visualization tool.

The TPC-C transaction types are listed in Appendix A.2.

4.2 The MINIX workload

4.2.1 Basic approach

There are some features of main-memory data processing in embedded control programs:

1. Many (although not all) lock-protected data accesses do not involve I/O at all. Their

costs need to be measured in terms of CPU costs only.

2. The inter-state cost of the host program instructions cannot be ignored.

3. Overhead of locking/unlocking operations should be taken into account.

4. To reduce the locking overhead, setting the unit of lock protection to a coarse gran-

ularity may be preferable. From the main-memory database experiences [21] [9], the

table-level granularity and even database-level granularity (serial execution) are good

choices.

As our TPC-C workload in Section 4.1 is derived from the on-disk IBM DB2 database,

it is hard to capture all the above features except the last one (by setting partition factor to

1). We find it is important to design a dedicated workload for embedded control programs

to satisfy the features 1, 2, and 3. We decided to select an open source embedded control

program and build our new workload from its source code. The costs at the states are to

be characterized by the numbers of instructions that process the data. We also used the

same measurement for inter-state transitions and locking/unlocking operations.

Open source operating systems are good candidates for our goal. The justifications are:

• The kernel data of operating systems are memory-resident.

• The semantics of the kernel data structures and system calls are well-known. There-

fore, the former can be re-engineered to relational data, while the latter can be

modelled as pre-defined transaction types.

68

• The operating systems are mainly written in C language. The C-compilers can

generate the corresponding low-level assembly instructions. Therefore, we can sum

up the numbers of assembly instructions to approximate the costs.

There are two candidates, Linux [11] [1] and MINIX [46]. Linux is a sophisticated operating

system widely used in industry, with a rich collection of mechanism for mutual exclusion

and synchronization, e.g., atomic operations, spinlocks, and semaphores. However, the

“hacker-written” Linux source code is too complicated for our current purpose. We decided

to choose MINIX instead because of its simple and readable code and data structures, which

are well introduced [46]. On the other hand, different from Linux, MINIX has no mutual

exclusion and synchronization primitives except the basic interrupt disabling. When we

added the locking overhead, we only considered semaphore lock, and implemented it upon

MINIX source code by ourselves2.

4.2.2 Building transaction types

First, to characterize the inter-state cost in terms of machine instructions, we change the

definition of a transaction type in Definition 3.1.1.

Definition 4.2.1. Let D be a data set that consists data items in the database, and each

data item is identified with a name.

A transaction type T is defined as T = 〈N , s, F , A, data, cost, prob〉.

• N , s, F , A, data, and prob are the same as in Definition 3.1.1;

• Change the cost element in Definition 3.1.1 to: cost is a function from N ∪ A to

nonnegative integer set. This represents the number of CPU instructions it takes on

the a ∈ A or n ∈ N .

2We remind the readers that our goal is to get a workload for transaction processing in the field of
embedded control programs. Therefore, we did not stick to all the features of MINIX or Linux themselves.
MINIX assumes a single user and the system calls are processed sequentially. Although we got our
transaction types from the MINIX code, we just use them as reference and are not restricted to such
limitations of the operating system. Our workload is adjustable from fully preemptive to fully sequential,
based on particular experimental settings.

69

We built the transaction types from the MINIX code of the system calls. At first, we

did not consider the locking implementations and costs. The steps are:

1. Selecting system calls;

2. Modifying and simplifying the C code of the system calls;

3. Mapping the kernel data structures to relational tables;

4. Changing the pure C code to the C code with embedded SQL statements (C/SQL

code);

5. Obtaining the finite state machines from the C/SQL code, and getting the probabil-

ities of state transitions.

6. Generating assembly instructions from the C code at Step 3, and obtaining the costs

by summing up the number of instructions;

Selecting system calls

From the MINIX code in [46], we selected 5 system calls, fork, exit, waitpid, exec, and

brk to build up our workload. The reasons that we chose them are:

1. All these system calls are well-known and frequently used in Unix-like operating

systems [49] [46].

2. They are highly related to the data structures that represent process and memory

chunk descriptors.

Modifying C code

We singled out a collection of data structures of interest relating to the selected system

calls. They are process descriptors, opened file descriptors, in-memory inode descriptors,

main-memory chunk descriptors, and free memory hole descriptors. We simplified the

programs that process the system calls in [46], and kept only the parts that manipulate on

the above mentioned data structures.

70

The MINIX operating system has a microkernel architecture with 4 layers, from the low-

est to the highest, process management, I/O tasks, server processes, and user processes [46].

The kernel consists of the 2 lowest layers. Many traditional kernel functionalities are moved

to the 3rd layer to make the kernel small. In particular, main memory management is put

to the main memory server (MM), and file system is put to the file system server (FS).

Usually several layers are involved in the handling of a system call.

Example 4.2.1. To process the system call fork, MM is invoked to assign the memory

for the new process, FS is invoked to duplicate the opened file descriptors to the new

process, and the low-level kernel is invoked to record the new process for further scheduling.

From the code perspective, MM, FS, and the kernel all have their own fork handlers,

each implements the corresponding processing in its own module. In addition, all the three

modules have their own process descriptors and process tables. The process descriptor in

the kernel keeps the register information of the process, the one in MM keeps its memory

information, and the one in FS keeps its opened file information.

For simplicity, we “flattened” the system call processing to one layer. Because we are

mainly interested in processing control data in main memory, we focused on the handlers

of the system calls in MM. We also added some processing from the kernel and FS.

From the kernel level, we took the part that maintains the ready queue, but ignored the

processing of the register values. From FS, we only took into account the processing

of the file descriptors to reflect that the files are duplicated in fork, and closed in exit

and exec. The code in exec that opens and reads the executable file to get its image,

was ignored. Correspondingly, we also combined the process descriptor data structures at

different levels. Although in MINIX not all of these data structures and programs are in

its kernel part, here we still call them kernel data structures and kernel programs.

The kernel data structures are listed in Table 4.1. Their detailed definitions and the

modified programs are in Appendix A.3.1.

Mapping data structures to relational tables

We mapped the kernel data structures defined in Section 4.2.2 to relational tables. Most

of the mappings are straightforward. They are listed below, in which the left hand side is

data structure in the C language, and right hand side is the table name.

71

description element data type data variable

process proc t proc

in-memory inode inode t inode

all opened files filp t filp

files opened by a process filp t embedded as the field fp filp in proc t

main-memory chunk mem map t embedded as the field seg in proc t

free memory hole hole t hole

ready process queue proc t rdy head, rdy tail

Table 4.1: MINIX kernel data structures

• proc[NR PROCS] → proc;

• inode[NR INODES] → inode;

• filp[NR FILPS] → filp;

• hole[NR HOLES] → hole;

• rdy head[USER Q], rdy tail[USER Q] → ready user proc;

• fp filp[OPEN MAX] in proc[NR PROCS] → proc filp;

• seg[NR SEGS] in proc[NR PROCS] → segment.

• 1..30000 → pids

In the C program, segments (seg) are defined as a nested array inside the process

descriptor (proc t). Since the relational model supports only “flat” tables, we put the

segment information into a separate table segment, and defined an artificial identifier field

seg id for segment and a corresponding foreign keys in the table proc. The fp filp array

in proc t shows the m : n relationship between process descriptors and file descriptors,

which reflects that several files can shared the same file descriptor and a process can

open several files. This cannot be encoded in relational model without an auxiliary table.

72

Therefore, we introduced a key filp id in filp, and created an additional table proc filp

which contains the foreign keys to both proc and filp.

The DDL statements that create the tables are listed in Appendix A.3.2.

Changing the pure C code to the C code with embedded SQL statements

Next, we transferred the pure C program in Appendix A.3.1 to the corresponding C pro-

gram with embedded SQL statements (C/SQL). The main work at the step is changing the

code blocks that operate on the kernel data structures to the embedded SQL statements

that manipulate the mapped tables. The C/SQL programs for the system calls are listed

in Appendix A.3.3.

Obtaining finite state machines from the C/SQL code

Following the same steps as used for the TPC-workload in Section 4.1.1, we transformed

the C/SQL programs to finite state machines, and obtained the probabilities of state

transitions. Different from the TPC-C workload, we did not partition the table, because

we assume that the unit of protection for main memory databases should be of coarse

granularity, i.e., the table level. The finite state machines are listed in Appendix A.3.4.

Generating assembly instructions and getting the costs

The next task was getting the costs at each transition arc and each state in the finite state

machine to build up the final transaction types. Because we have mapped the statements

in the C program to the embedded SQL statements, we can view the C statements as the

low-level query plans for the SQL statements. Therefore, if we can calculate the cost of

a “block” of C statements that represents a query plan, then we can get the costs of the

states involved in the SQL query. In addition, from the C statements that do not belong

to any block corresponding to a query plan, we can get the inter-state costs on the arcs.

Currently we measure the cost of a sequence of C statements with the total number of

their assembly instructions. We ran the gcc -g -S command over the C programs. This

produces the assembly code of the program without code optimization. So the sequence

of assembly instructions for each C statement are generated. Then we got the costs at

73

transaction type probability

fork 11.7%

exit 11.7%

waitpid 9.3%

exec 9.3%

brk 58%

Table 4.2: The probabilities of the transaction types

the states and arcs by summing up the number of instructions of their statements. When

there are loops or conditional statements in the code, we approximated the numbers by ad

hoc “averaging” or even “guessing”. For more techniques details, please refer to Appendix

A.3.4.

4.2.3 Getting the probabilities of the transaction types

After we have the set of transaction types, we also need their probabilities to make the

final transaction system. Here we assume that there is the same percentage of fork and

exit in the transaction mixture, 80% of forked processes calls exec, and 80% of the parent

processes call waitpid for their child processes. brk is the underlying system call that

implements malloc and free. We also assumed that on average each process calls brk for

5 times. So we calculated the percentage of each transaction type. The probabilities are

given in Table 4.2.

Therefore we have finalized the whole transaction system as the workload.

4.2.4 Calculating the costs of locking

We also considered the costs of locking protections. The MINIX system has only inter-

rupt disabling protection. This is equivalent to the serial scheduling on a uniprocessor

system, and can implemented by one cli instruction for locking and one sti for unlocking.

Unix/Linux also uses high level semaphores [49] [11] for synchronization and protection.

Both locks and latches are usually implemented by semaphores. We treated exclusive locks

(x-lock) and locks that allow sharing (rw-lock) separately. With the implementation of the

74

spinlock functions (spin lock and spin unlock) borrowed from the Linux code [11], we

implemented a simple version of both types of locks based on MINIX data structures.

We also calculated the average costs for locking and unlocking operations by totalling the

numbers of machine instructions. The technical details are given in Appendix A.3.5.

Chapter 5

Experiments

5.1 Experimental setting

On the two workloads we have designed, we simulated the transaction processing under

TL and the traditional 2PL, respectively, and compared their throughput. The hardware

of our experiments is a workstation with an Intel P4 1.5GHz CPU, 256M RAM, and a 20G

hard disk. The programs of the experiments are written in the Java language.

We programmed a discrete event simulator [24] for each locking protocol. Our exper-

iments assume single CPU and shared memory. A queue is managed for each data item

to block the transactions that are waiting for the lock on it, and a global event queue is

maintained to schedule transactions that are ready to run. The TL simulator follows the

locking/unlocking algorithms in Section 3.2. We ignore the runtime costs of tree traversal

and TL unlocking condition testing, assuming the lock steps have already been inserted at

compile time. The 2PL simulator uses strict 2PL and logs all updates. We implemented

a deadlock detector for the 2PL simulator. It uses the waits-for-graph approach [8], and

always aborts the youngest transaction involved in a deadlock. When a transaction is

aborted, the logged updates are rolled back in reverse order. The overhead of deadlock de-

tection is ignored. For the TPC-C workload, we also ignore the costs of locking/unlocking

operations in both TL and 2PL simulators.

We model the time duration of a state as below. For each state, there is a CPU

time followed by a waiting time. The waiting time is used to simulate disk I/O and

75

76

communication delaying. It follows a negative exponential distribution1. The time duration

of a state is the sum of the CPU time and the waiting time. During the CPU time, the

transaction occupies the CPU exclusively. When the waiting time starts, the transaction

relinquishes the CPU, so that another transaction which is ready can run on the CPU

during the waiting time of the first transaction. The ratio of the mean waiting time to

the CPU time is named as waiting factor. For the TPC-C workload, we approximated

the mean waiting time with the time cost we acquired from DB2, and set the CPU time

by dividing the mean waiting time by the waiting factor. For the MINIX workload, we

approximated the CPU time with the number of instructions, and set the mean waiting

time by multiplying the CPU time by the logging factor. For each state that writes in

2PL simulations, we also add a logging overhead to the state cost. The logging overhead

also includes a CPU time and a waiting time. The CPU time and the mean waiting time

for logging are obtained by multiplying the CPU time and the mean waiting time of the

original write by a logging factor, respectively. When a transaction is aborted, a logged

write is rolled back with the CPU time and mean waiting time of the original write. For

traditional on-disk databases, because the I/O overhead is high, the waiting factor is high;

and because logging can be done efficiently [23], the logging factor is low. For embedded

control programs that operate on main-memory data, because there is little I/O and the

overhead to move data in memory is high, the waiting factor is low and the logging factor

is high. By setting the two parameters waiting factor and logging factor, we are able to

describe whether the operation is for on-disk or in-memory data processing.

The number of user terminals is set to 10. A transaction is submitted from a termi-

nal after the previous one from the same terminal commits, and its transaction type is

chosen based on the probabilities given by the transaction system. Transactions issued

from different terminals run concurrently. In 2PL simulations, an aborted transaction is

immediately restarted from the same terminal.

We generated random number sequences for transaction type selection, state transition

selection, and other random events. In each trial, the same random number sequences

1Let mean waiting time be the mean waiting time, rand be a random number with a uniform distrib-
ution between 0 and 1, a random waiting time waiting time is generated by the formula waiting time =
−loge(rand)×mean waiting time.

77

are applied to the TL and 2PL simulations so that comparisons are made under the same

condition.

5.2 Simulated results on TPC-C

For the TPC workload, we considered two versions of the 2PL, the normal 2PL that

allows both shared and exclusive locks (2PL-rw), and the 2PL that allows only write

operations and exclusive locks (2PL-w). We ran the TL, 2PL-rw, and 2PL-w simulators

for comparison. Under different settings of logging factor and waiting factor, we conducted

30 trials, each with a simulated time of 60 minutes. The throughput of each locking protocol

was measured by the average number of transactions committed per trial in its simulation.

Following the TPC-C specifications, we compared the throughput w.r.t. all transaction

types and the new order transaction type (the one with the highest probability).

First, we set the logging factor to 0.2 and the waiting factor to 10, which simulates

the on-disk database situation. The result is shown in Figure 5.1. TL performs better

than 2PL-w. This is because of the logging overhead of 2PL-w. On the other hand,

2PL-rw outperforms TL by 2:1. This is because many operations in TPC-C are reads.

2PL-rw supports shared lock and allows concurrency between reads, while TL suffers from

its write-only property. The logging overhead of writes has little influence on the 2PL-rw

throughput. Additionally, we included the numbers of transactions that are aborted for

deadlock resolution under 2PL-rw and 2PL-w in Figure 5.1. The abort rate under 2PL-w

is tiny. Although there are much more aborts under 2PL-rw, the number is still relatively

low compared with the large number of transactions committed. This shows that deadlock

of 2PL-rw and 2PL-w does not affect their performance noticeably.

Furthermore, we switched the settings from on-disk databases to main-memory data

repositories, which is the primary field of compiled database applications. We only made

comparisons between TL and 2PL-rw, because by its nature the performance of 2PL-w

can only get worse under the new settings. First, for main-memory data processing, the

logging factor can be larger (between 1 and 10), because it is relatively cheaper to access

in-memory data and more expensive to move data in main memory (logging). Therefore,

we investigated how the throughput of 2PL goes down with increasing logging factors. In

78

Figure 5.1: The simulated throughput comparisons between 2PL-rw, TL and 2PL-w, with

logging factor=0.2, waiting factor=10

our experiments, we examined the throughput of 2PL-rw with logging factors 0.2, 1, 5, 15,

20, and 25, respectively. The result is presented in Figure 5.2. Although the performance

of 2PL-rw decreases as the logging factor goes up, it is still better than TL until the logging

factor reaches about 20, which is too high to be meaningful.

Next, we changed the waiting factor from 10 to 1, because for main-memory data

processing, there is little I/O cost, and the CPU cost is dominant. We did experiments

with logging factors 1, 5, 8, and 10. Figure 5.3 shows the result. With lower waiting time,

the parallelism of 2PL-rw is less favored. Moreover, the throughput of 2PL-rw is reduced

by aborts because of deadlock. Compared with Figure 5.2, the deadlock rate is much

higher. The numbers of aborted transactions are very close under different logging factors.

In particular, the new order transaction type has an exceptionally high deadlock rate, so

its number of commits goes down drastically. Therefore, the throughput of 2PL-rw and

TL is comparable when the logging factor is between 5 and 10, a fairly reasonable range

for main-memory logging.

79

Figure 5.2: The simulated throughput comparisons between 2PL-rw with increasing log-

ging factor and TL, waiting factor=10

Figure 5.3: The simulated throughput comparisons between 2PL-rw with increasing log-

ging factor and TL, waiting factor=1

80

5.3 Simulated results on the MINIX workload

We continued our experiments with the MINIX workload. We compared the throughput

of TL and 2PL (with reads and writes). In our simulations, we added in the costs of inter-

state transitions and the overhead of locking and unlocking. The MINIX workload is from

the main-memory condition, and the costs at each state and each transition are measured

by numbers of CPU instructions. For simplicity, we used CPU instruction as the time

unit. We took into account the memory delay and the parallelism from the modern CPU

design, and modelled them as the waiting time both of the states and of the transitions.

We used the two parameters waiting factor and logging factor to acquire the waiting time

and logging overhead (in 2PL).

Same as in TPC-C experiments, under the same setting of two factors, we conducted

30 trials with different random number sequences each time. The throughput is measured

by the average number of transactions committed per trial. Following the idea of TPC-

C, we recorded the numbers of all transaction types, and 3 selected transaction types

with high probabilities, brk, fork, exit. We also recorded the numbers of aborts for

deadlock resolutions as well. First, we simulated main memory data processing, and set

the waiting factor to 1, and the logging factor to 1 and 5. The simulated time duration of

the experiments was set of 3.6 × 106 time units (CPU instructions). The result is shown

in Figure 5.4. We can see that the number of transaction committed TL is twice as many

as 2PL even when the logging factor is 1, and the difference is far larger when it increase

to 5. It is observed that 2PL always has a large number of aborts, even more than the

number of commits. In fact, all transaction types except exit have high deadlock rates.

That explains why fork has much lower number of commits than exit under 2PL in Figure

5.4 although they have the same probability in the MINIX workload (See Section 4.2.3).

Under TL, the numbers of commits of fork and exit are very close.

We also simulated the on-disk data processing. We set the logging factor to 0.2, and

increased waiting factor at each state to 30. We still kept the waiting fact at each transition

as 1. The simulated time duration of each trial is increased to 4.32 × 107 time units. We

present the result in Figure 5.5. The influence of deadlock of 2PL goes down, and the

throughput of 2PL is getting closer to TL. For the transaction type exit, which has a low

deadlock rate, 2PL has obviously more transactions commits. But for fork transactions

81

Figure 5.4: The simulated throughput comparisons between 2PL with logging factor 1 and

5 and TL, waiting factor=1

82

Figure 5.5: The simulated throughput comparisons between 2PL and TL, with wait-

ing factor=30 and logging factor=0.2

with high likelihood of deadlock, 2PL still does poorly. For the MINIX workload, TL can

in general compete with 2PL even under the on-disk setting2. Recall in the experiments

with the TPC-C workload, 2PL does far better than TL in processing on-disk data (Figure

5.1). The reasons for the difference can be:

• Most MINIX transaction types have high deadlock rates.

• MINIX workload has a coarse granularity (table level) of lock protection, which

reduces the concurrency of 2PL more than TL.

2We sampled some trials with the waiting factor setting to 50 and 100, and the results of comparisons
remain similar.

Chapter 6

Conclusions and future work

6.1 Conclusions

In the thesis, we explored how to apply the deadlock-free TL protocol to the concurrency

control of compiled database applications. Because the transaction types are predefined,

we can generate all data structures, including the unlockable sets and the lock tree, that are

necessary for the runtime locking/unlocking at compile time. We have designed compile-

time algorithms to generate such data structures (Section 3.3.1 and 3.3.2), and the runtime

TL locking/unlocking algorithms based on them (Section 3.3.3). Moreover, at compile time,

we can also insert the lock steps into the transaction types at the cost of expanding the

transaction types. We have also designed an algorithm for transaction type expansion and

lock step insertion (Section 3.3.3).

We evaluated the performance of TL using the simulation method. We have built two

compiled database application workloads for our simulations. The first is from the OLTP

benchmark TPC-C, and the second is from the open source operating system MINIX. We

transformed the programs into transaction types. For the TPC-C workload, we got the

time cost by running the SQL queries in DB2. For the MINIX one, we tried to approximate

the features of main-memory data processing, and measured the costs by CPU instructions.

Our simulated experiments compared the throughput of the TL protocol with the clas-

sical 2PL protocol. By changing parameters, we did the simulations under both on-disk

and and main-memory settings. For on-disk setting, TL is in general inferior to 2PL be-

83

84

cause it has no shared lock. Although TL has no logging overhead, it has obvious effects

on the throughput comparison only when the transactions are write-only or dominated by

writes. On the other hand, for main-memory data processing, which has low I/O costs and

high 2PL logging costs, TL performs comparably to 2PL. In particular, for the workload

which has a high deadlock rate under 2PL, the deadlock-free TL has a clear lead.

Our work can be added into the query optimization approaches in [13] and [47]. With

the generated query plans as the transaction types, the extended optimizer further builds

the lock tree, generates the locking/unlocking code that implements the algorithms in

Section 3.2, and inserts it into the generated query processing code. As an alternative, the

optimizer can also modify the transaction types and then insert the lock steps directly into

the transaction types. Since TL has no deadlock, no logging and recovery are necessary.

Therefore, it becomes entirely possible to decouple concurrency control from from any

recovery considerations in compiled database applications.

6.2 Future work

As the MINIX workload is still very primitive, we need to improve our compiled database

workload in the future. There are several directions to consider:

• the SMP environment under which spinlock plays an important role;

• a workload from a more sophisticated embedded control program, e.g., Linix;

• an automated tool that extracts the workload from the source code of embedded

control programs.

In the thesis, a transaction type is modelled a probabilistic finite state machine. All

compile-time and runtime processing are based on it. We need to further formalize how to

map between the finite state machine and the query plan in terms of the plan algebra [13].

This is more important for the insertion of lock steps. As we usually have to expand

the transaction type, we need to modify the corresponding query plan as well to make it

practicable.

We also plan to consider the following:

85

• an in-depth study of the tree fitness, and

• an exploration on how to extend the TL-based concurrency control to the multilevel

transaction model [52] [53] (See Section 2.3.2 and 2.3.3).

Appendix

A.1 Case study: abort handling in Linux system call

fork

We take Linux kernel source code [1] as a study case of low-level embedded control program,

and view its system calls as the predefined transaction types. An operation can be either

a block of statements or a function call. Usually, a system call can not be “aborted” by

the caller. But it may still end up with a failure, e.g., when there is no enough memory

or other resources. This is usually indicated by an error code returned to the caller. And

the implementation of a system call must cleanup the partial changes to the kernel data

structures if the system call fails, and thus provides a view of “atomicity” for the caller. We

picked up an important system call fork1 and inspected the program code2 that implements

it.

In the source code, we find not all updates on the kernel data need to be recovered

at the failure. More important, for those operations need to be recovered, compensation

operations are supplied. An operation and its compensation are typically implemented

with a pair of functions with straightforward names, e.g., copy fs and exit fs. When a

failure is encountered, the program executes the compensation operations for those already

finished operations in a reverse order. Thus the atomicity of the system called is guaranteed.

The program control flow of fork, including operations and their compensations, is shown

1For a more detailed introduction of fork, please refer to [49] (under Unix) and [11] (under Linux).
2The source code is at “http://lxr.linux.no/source/kernel/fork.c”. And the main function is do fork.

86

87

in Figure A.1. We find this paradigm follows the two-level saga transaction model [20]

(surveyed in Section 2.3.4).

alloc_task_struct

do_fork

copy_thread

failure processing

Sucess processing

copy_files copy_fs

free_task_struct

copy_sighand copy_mm

O O

exit_files exit_fs exit_sighand exit_mm

C C C C

compensation

pair

operation-

Operation

Compensation

O O O

operation implemented by

a function

Figure A.1: The control flow of fork

A.2 The TPC-C workload

The TPC-C transaction types are shown in Figure A.2 to A.6. The number attached to

each state is its cost, and the text inside a state box is the name of the data item. The

r and w tags indicate whether a state reads or writes. The number on each arc is the

probability for the transition, and its values is between 0 and 1. The partition factor is set

to be 1 for simplicity.

88

stockstock_i
1

50.03

1

1
25.01

stock
1

stock_i

50.13

1
25.01

item

50.03

 item_i
1

25.00
1

new_order

25.00

order

1

1

1
50.01

50.01

end

r

w

wrrr

rr

ww

wr

rr

rrrr

25.00

customerwarehouse

0.1
s3

0.9

1
order_line

distict

0.03

district_i

1
25.00

1
0.03

district_i district

customer_iwarehouse_i
111

25.0150.0325.000.02

Figure A.2: The new order transaction type

A.3 The MINIX workload

A.3.1 C programs that handle the selected system calls

In the section, we list the programs of the selected system calls. They are modified from the

MINIX source code in [46]. In the programs for fork and exec, the function phys copy

called is a function written in assembly language in MINIX source code.

Constants, types, and data structures

The constants and types are taken from various header files in [46]. We gather their
definitions in file types.h.

/***/

/* constants */

/***/

/* error messages */

#define OK 0

#define EGENERIC (-99) /* generic errors */

#define ECHILD (-10) /* no child process */

89

25.01

customer

0.4

0.1

0.10.9

0.9

customer_i

customer

50.03

25.01

1

1

1

customer_i

50.03

district

25.00

0.6

customer_i

7393.43

78790.86

customer

1

customer_i

1

customer

7393.04

78790.87

customer_i

1

customer

wr

r

r

r

r

r

r

r

w

r

r

r

w

w

r

50.03

50.01

customer_i 50.03

customer

1

50.01

1

1
history

25.00

r w r r

r

1

1
warehouse_i

0.02

11
warehouse

25.00

district_i district

0.03 50.01

1
district_i

0.03

1

warehousewarehouse_i

0.02 50.01

Figure A.3: The payment transaction type

90

1
1

65772.94

order

1

1
25.01

50.03

customer

customer_i

70366.16 1

7392.93

customer
order_line_i

r

r

r

r

r

r

r

r

r

r

start

25.01

order_line

75.04

1

customer_i

1

customer

79366.16

0.40.6

7392.92

customer_i

Figure A.4: The order status transaction type

50.03

customer_i

25.0175.04

1

1

order_lineorder_line_i

25.0175.04

order_iorder_line_i
111

25.01

order

1

50.03

50.01

end

r

wrrr

wrwr

rrwr

0.1
0.9

11 customer

order_i

25.0150.03

111 orderorders_i

4463.71

new_order

137.75

new_order_i

Figure A.5: The delivery transaction type

91

25.00

order_line

50.03

stock_index

23.51

stock

order_line_i

order_line

0.33

0.03

1

1

1

1

1
0.005

0.995

r r
r

r

r

r

r

r

rend

75.04

district_i

0.03

district

25.00
1

order_line_i
1

Figure A.6: The stock level transaction type

#define EAGAIN (-11) /* resource temporarily unavailable */

#define ENOMEM (-12) /* no enough memory */

/* memory chunk */

#define CLICK_SIZE 256 /* click unit size */

#define CLICK_SHIFT 8 /* bit shift */

/* segments */

#define NR_SEGS 3 /* segments text, data, stack */

#define T 0 /* text */

#define D 1 /* data */

#define S 2 /* stack */

/* holes */

#define NR_HOLES 128 /* line 18820 */

/* file system */

#define OPEN_MAX 20 /* line 167 */

#define NR_FILPS 128 /* line 19506 */

#define NR_INODES 65 /* line 19507 */

/* processes */

#define MM_PROC_NR 0 /* process id of memory manager */

#define INIT_PID 1 /* process id of init process */

#define IDLE 2 /* idle task */

92

#define NR_PROCS 32 /* maximum number of user processes */

#define IN_USE 001 /* the process array element is used */

#define WAITING 002 /* the process is waiting: it has called waitpid

and is waiting a child to exit */

#define HANGING 004 /* the process is hanging: it has called exit and

is waiting for the parent to call waitpid */

#define SEPARATE 040 /* the process has separate text and data segments */

/* misc constants */

#define FALSE 0

#define TRUE 1

#define MAX(a, b) ((a) > (b) ? (a):(b));

#define MIN(a, b) ((a) < (b) ? (a):(b));

#define ARG_MAX 4096 /* args + environ on small

machines (for exec()) */

/***/

/* types and structures */

/***/

typedef int boolean;

typedef int pid_t; /* process id */

typedef long time_t; /* time */

typedef unsigned short mode_t; /* file type and permission */

typedef unsighed long off_t; /* position in a file for r/w */

typedef short dev_t; /* device id */

typedef unsigned short ino_t; /* inode id */

typedef unsigned reg_t; /* register value format */

typedef unsigned int vir_clicks; /* virtual memory chunk */

typedef unsigned int vir_bytes; /* virtual memory byte */

typedef unsigned int phys_clicks; /* physical memory chunk */

typedef unsigned int phys_bytes; /* physical memory byte */

/* memory segment */

struct mem_map {

vir_clicks mem_vir; /* virtual address */

phys_clicks mem_phys; /* physical address */

vir_clicks mem_len; /* length in clicks */

};

/* holes */

struct hole_t {

phys_clicks h_base; /* physical starting address */

phys_clicks h_len; /* length */

struct hole_t *h_next; /* pointer to the next entry */

93

} hole[NR_HOLES];

#define NIL_HOLE (struct hole_t *) 0 /* null hole pointer */

struct hole_t *hole_head; /* pointer to the first hole */

struct hole_t *free_slots; /* pointer to the first

unused hole table slot */

/* inode */

struct inode_t {

int count; /* reference count:

if it is 0, the entry is free */

time_t i_ctime; /* when was inode itself changed*/

dev_t i_dev; /* which device is the inode on */

ino_t i_num; /* inode number on its device */

} inode[NR_INODES];

/* file descriptor */

struct filp_t {

int filp_count; /* how many processes share this slot?*/

struct inode_t *filp_ino; /* pointer to the inode */

mode_t mode; /* file mode and permission */

off_t pos; /* position for read or write */

} filp[NR_FILPS];

#define NIL_FILP (struct filp_t *)0 /* null filp pointer */

/* process descriptor */

struct proc_t {

pid_t pid; /* process id */

pid_t parent_pid; /* parent process id */

pid_t wpid; /* pid this process is waiting for */

char exitstatus; /* storage for status when process

exits */

char sigstatus; /* storage for signal number for

killed processes */

struct mem_map seg[NR_SEGS]; /* text, data, stack segments */

/* File identification for sharing */

ino_t ino; /* inode number of exec file */

dev_t dev; /* device number of file system */

time_t ctime; /* inode changed time */

unsigned proc_flags; /* flag bits */

reg_t sp; /* stack pointer */

94

struct filp_t *fp_filp[OPEN_MAX]; /* opened file descriptors */

struct proc_t *p_next_ready; /* pointer to the next process

in the ready queue */

} proc[NR_PROCS];

/* ready queues */

#define TASK_Q 0 /* kernel tasks */

#define SERVER_Q 1 /* servers */

#define USER_Q 2 /* user process */

#define NQ 3 /* totally 3 queues */

struct proc_t *rdy_head[NQ]; /* header of a ready queue */

struct proc_t *rdy_tail[NQ]; /* tail of a ready queue */

struct proc_t *proc_ptr; /* current running process */

struct proc_t *bill_ptr; /* process to be billed */

Memory allocation

The function alloc mem allocates a memory chunk from the free memory holes to a
process as one of its segments, and free mem frees the memory chunk of a segment, and
returns it to the hole list. del slot is an auxiliary function to delete a slot in the hole list.
They are modified from the functions of the same names in [46].

#include "types.h"

phys_clicks alloc_mem(phys_clicks clicks)

{

register struct hole_t *hp, *prev_ptr;

phys_clicks old_base;

hp = hole_head;

/* scan the hole list */

while(hp != NIL_HOLE) {

if(hp->h_len >= clicks) {

/* we find a hole big enough, use it */

old_base = hp->h_base;

hp->h_base += clicks;

hp->h_len -= clicks;

if(hp->h_len == 0){

del_slot(prev_ptr, hp);

}

return(old_base);

95

}

prev_ptr = hp;

hp = hp->h_next;

}

return(NO_MEM);

}

void free_mem(phys_clicks base,

phys_clicks clicks)

{

boolean flag;

struct hole_t *hp, *hp1, *prev_hp1, *hp2,

*new_ptr, *prev_ptr;

if(clicks == 0) return;

new_ptr = free_slots;

/* trying add the freed memory to front of a hole */

flag = FALSE;

hp1 = (prev_hp1 = hole_head);

while(hp1 != NIL_HOLE){

if(hp1->h_base == base + clicks){

flag = TRUE;

hp1->h_base = base;

hp1->h_len = hp1->h_len + clicks;

break;

}

prev_hp1 = hp1;

hp1 = hp1->h_next;

}

/* trying add the freed memory to the end of

a hole */

hp2 = hole_head;

while(hp2 != NIL_HOLE){

if(hp2->h_base + hp2->h_len == base){

if(!flag){

flag = TRUE;

hp2->h_len += clicks;

}

else{

/* we need to merge the two holes */

hp2->h_len += hp1->h_len;

del_slot(prev_hp1, hp1);

}

break;

96

}

hp2 = hp2->h_next;

}

/* we cannot attach the memory chunk to

any existing hole. So we have to add

a new hole to the hole list. */

if(!flag){

new_ptr->h_base = base;

new_ptr->h_len = clicks;

free_slots = new_ptr->h_next;

hp = hole_head;

if(hp != NIL_HOLE || base <= hp->h_base) {

new_ptr->h_next = hp;

hole_head = new_ptr;

}

else{

while(hp != NIL_HOLE && hp->h_base < base){

prev_ptr = hp;

hp = hp->h_next;

}

new_ptr->h_next = prev_ptr->h_next;

prev_ptr->h_next = new_ptr;

}

}

}

void del_slot(register struct hole_t prev_ptr,

register struct hole_t hp)

{

if(hp==hole_head)

hole_head = hp->h_next;

else

prev_ptr->h_next - hp->h_next;

hp->h_next = free_slots;

free_slots = hp;

}

fork

The function is combined and modified from the functions do fork in MM, do fork in
FS, and do newmap in the kernel part in [46].

#include <string.h>

#include "types.h"

97

int fork(pid_t parent_pid){

int i, j;

int index;

pid_t pid;

boolean flag;

int proc_in_use;

struct proc_t parent_proc;

phys_clicks prog_clicks, child_base = 0;

phys_bytes prog_bytes, parent_abs, child_abs;

ino_t ino;

dev_t dev;

time_t ctime;

unsigned proc_flags;

pid_t wpid;

reg_t sp;

struct mem_map text_seg, data_seg, stack_seg;

/* count the number of processes */

proc_in_use = 0;

for(i=0; i<NR_PROCS; i++){

if(proc[i].proc_flags & IN_USE != 0) {

proc_in_use++;

}

}

/* if the number of processes exceeds the

system limit, return error. */

if (proc_in_use > NR_PROCS) {

return(EAGAIN);

}

/* get the information of the parent process. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0) &&

(proc[i].pid == parent_pid))

{

parent_proc = proc[i];

break;

}

}

ino = parent_proc.ino;

dev = parent_proc.dev;

ctime = parent_proc.ctime;

sp = parent_proc.sp;

wpid = parent_proc.wpid;

proc_flags = parent_proc.proc_flags;

98

/* calculate the memory that is needed for the new

process. */

/* stack */

stack_seg.mem_vir = parent_proc.seg[S].mem_vir;

stack_seg.mem_len = parent_proc.seg[S].mem_len;

/* data */

data_seg.mem_vir = parent_proc.seg[D].mem_vir;

data_seg.mem_len = parent_proc.seg[D].mem_len;

/* text */

text_seg.mem_len = parent_proc.seg[T].mem_len;

text_seg.mem_vir = parent_proc.seg[T].mem_vir;

/* total memory size for the new process */

prog_clicks = (phys_clicks)parent_proc.seg[S].mem_len;

prog_clicks += (parent_proc.seg[S].mem_vir - parent_proc.seg[D].mem_vir);

/* allocate memory */

if((child_base = alloc_mem(prog_clicks))==NO_MEM)return(EAGAIN);

/* Create a copy of the parent’s core image for the child */

child_abs = (phys_bytes)child_base << CLICK_SHIFT;

parent_abs = (phys_bytes)parent_proc.seg[D].mem_phys << CLICK_SHIFT;

phys_copy(parent_abs, child_abs, prog_bytes);

/* now get an id for the new process */

for(i=0; i<30000; i++){

flag = FALSE;

for(j=0; j< NR_PROCS; j++) {

if((proc[j].pid == i) && (proc[j].proc_flags & IN_USE != 0)){

flag = TRUE;

break;

}

}

if(!flag) {

pid = i;

break;

}

}

/* set the text segment physical address */

if(!(proc_flags & SEPARATE)){

text_seg.mem_phys = child_base;

}

else {

99

text_seg.mem_phys = parent_proc.seg[T].mem_phys;

}

/* find an available entry in the . */

for(i=0; i<NR_PROCS; i++){

if(0 == (proc[i].proc_flags & IN_USE)){

index = i;

break;

}

}

/* there must be one. assign the values to the

fields */

proc[index].pid = pid;

proc[index].parent_pid = parent_pid;

proc[index].ino = ino;

proc[index].dev = dev;

proc[index].ctime = ctime;

proc[index].sp = sp;

proc[index].seg[T] = text_seg;

proc[index].seg[D] = data_seg;

proc[index].wpid = wpid;

proc[index].proc_flags = proc_flags;

/* share the open file descriptors with the

new child */

for(i=0; i<OPEN_MAX; i++){

proc[index].fp_filp[i] = parent_proc.fp_filp[i];

if(proc[index].fp_filp[i] != NIL_FILP){

(proc[index].fp_filp[i])->filp_count++;

}

}

/* add to ready queue *

if(rdy_head[USER_Q] == NIL_PROC)

rdy_tail[USER_Q] = &proc[index];

rdy_head[USER_Q] -> p_next_ready = rdy_head[USER_Q];

rdy_head[USER_Q] = &proc[index];

return (pid);

}

100

exit

The function is combined and modified from the handlers do exit in MM, and do xit in

the kernel part in [46].

#include "types.h"

void do_exit(pid_t pid){

int i, j;

struct proc_t *current_proc_ptr, *init_proc_ptr,

*parent_proc_ptr;

struct proc_t *xp, *rp, **qtail;

boolean text_shared, right_child;

unsigned parent_waiting;

pid_t parent_pid;

pid_t wait_pid, parent_wait_pid;

char exit_status;

char sig_status;

unsigned proc_flags, parent_proc_flags;

ino_t ino;

dev_t dev;

time_t ctime;

/* find the index of the process to exit. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0) && (proc[i].pid == pid)){

/* there must be one, because myself exists */

current_proc_ptr = &proc[i];

break;

}

}

/* first close all open file. */

for(i=0; i<OPEN_MAX; i++){

if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

(current_proc_ptr->fp_filp[i])->filp_count--;

if((current_proc_ptr->fp_filp[i])->filp_count == 0){

(current_proc_ptr->fp_filp[i])->filp_ino->count--;

}

current_proc_ptr->fp_filp[i] = NIL_FILP;

}

}

/* get all information of the current process. */

parent_pid = current_proc_ptr->parent_pid;

101

wait_pid = current_proc_ptr->wpid;

exit_status = current_proc_ptr->exitstatus;

sig_status = current_proc_ptr->sigstatus;

proc_flags = current_proc_ptr->proc_flags;

ino = current_proc_ptr->ino;

dev = current_proc_ptr->dev;

ctime = current_proc_ptr->ctime;

/* remove the process from the ready queue,

and pick the next process to run. */

if((xp = rdy_head[USER_Q]) == current_proc_ptr){

rdy_head[USER_Q] = xp->p_next_ready;

/* pick the next proc to run */

if ((rp = rdy_head[TASK_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ((rp = rdy_head[SERVER_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ((rp = rdy_head[USER_Q]) != NIL_PROC) {

proc_ptr = rp;

bill_ptr = rp;

}else{

/* No one is ready. Run the idle task. The idle task might be made an

* always-ready user task to avoid this special case.

*/

bill_ptr = proc_ptr = &proc[IDLE];

}

}

qtail = &rdy_tail[USER_Q];

while (xp->p_next_ready != current_proc_ptr){

if ((xp = xp->p_next_ready) == NIL_PROC) break;

}

if(xp != NIL_PROC){

xp->p_next_ready = xp->p_next_ready->p_next_ready;

if (*qtail == current_proc_ptr) *qtail = xp;

}

/* find whether the text segment is shared */

text_shared = FALSE;

for(i=0; i<NR_PROCS; i++) {

102

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if(proc[i].pid == pid || proc[i].ino != ino

|| proc[i].dev != dev || proc[i].ctime != ctime)

continue;

text_shared = TRUE;

break;

}

/* if text is not shared, free the text segment */

if(!text_shared){

free_mem((current_proc_ptr->seg[T]).mem_phys,

(current_proc_ptr->seg[T]).mem_len);

}

/* free the data and stack segments */

free_mem((current_proc_ptr->seg[D]).mem_phys,

(current_proc_ptr->seg[S]).mem_len +

(current_proc_ptr->seg[S]).mem_vir

- (current_proc_ptr->seg[D]).mem_vir);

/* find the init process, and let it be parent of the

children processes if necessary. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) || (proc[i].pid == INIT_PID)){

init_proc_ptr = &proc[i];

break;

}

}

parent_waiting = init_proc_ptr->proc_flags & WAITING;

/* if parent is waiting */

if(parent_waiting){

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].parent_pid == pid)){

/* if the child already exits */

if(proc[i].proc_flags & HANGING){

/* free the child entry. */

proc[i].proc_flags = 0;

init_proc_ptr->proc_flags &= ~WAITING;

break;

}

}

}

}

/* reset the parent of the children to

103

the process init */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].parent_pid == pid))

{

proc[i].parent_pid == INIT_PID;

}

}

/* find the parent of the exiting process */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE) &&

(proc[i].pid = parent_pid)){

parent_proc_ptr = &proc[i];

break;

}

}

parent_wait_pid = parent_proc_ptr->wpid;

parent_wait_pid = parent_proc_ptr->proc_flags & WAITING;

/* Is the parent waiting for the exiting process? */

if(parent_wait_pid == -1 || parent_wait_pid == pid){

right_child = TRUE;

}

else{

right_child = FALSE;

}

if(parent_waiting && right_child){

/* the parent is waiting for the exiting

process, so free the process descriptor,

and clear the waiting flag of the parent.

*/

current_proc_ptr->proc_flags = 0;

parent_proc_ptr->proc_flags &= ~WAITING;

}

else{

/* set the flag showing the exiting process

is a zombie. */

current_proc_ptr->proc_flags |= HANGING;

}

}

waitpid

The code is modified from the do waitpid function in MM in [46].

104

#include "types.h"

int waitpid(pid_t current_pid,

pid_t pidarg)

{

int i;

unsigned parent_proc_flags;

struct proc_t *current_proc, *child_proc;

pid_t wait_pid;

boolean flag;

/* pidarg == -1, wait for any child,

pidarg > 0, wait for a special child with the pid specified by

the parameter.

*/

if(pidarg != -1 && pidarg <= 0) return(EGENERIC);

/* get the info of current process. */

for(i=0; i<NR_PROCS; i++){

if(proc[i].pid == current_pid){

current_proc = &proc[i];

break;

}

}

if(pidarg == -1){

/* pidarg == -1: waiting for any child. */

flag = FALSE;

/* scan the children to see if there is

a zombie. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE)

&& proc[i].parent_pid == current_pid){

child_proc = &proc[i];

flag = TRUE;

if(child_proc->proc_flags & HANGING){

/* find a zombie, delete the process descriptor,

and clear the parent process flag. */

child_proc->proc_flags = 0;

current_proc->proc_flags &= ~WAITING;

return(OK);

}

}

}

if(!flag){

/* Error: we have no child */

return (ECHILD);

}

105

else{

/* pidarg is a certain pid

that we are waiting for */

flag = FALSE;

for(i=0; i<NR_PROCS; i++){

if(proc[i].proc_flags & IN_USE) &&

proc[i].parent_pid == current_pid &&

proc[i].pid == pidarg){

child_proc = &proc[i];

flag = TRUE;

if(child_proc->proc_flags & HANGING){

/* find a zombie, delete the process

descriptor, and clear the parent

process flag */

child_proc->proc_flags = 0;

current_proc->proc_flags &= ~WAITING;

return(OK);

}

}

}

/* no child, return an error. */

if(!flag){

/* no qualified children, must be error */

return(ECHILD);

}

}

current_proc->proc_flags |= WAITING;

return (OK);

}

exec

The code is combined and modified from the functions with the same name do exit from
MM and FS in [46]. As a simplification, the code here omits the procedure that reads in
the executable file from the file system. We assume the image of executable is already in
the main memory. The information of the image is passed to the system call handler as
parameters.

#include "types.h"

#include <string.h>

int exec(pid_t current_pid,

vir_bytes stack_ptr,

vir_bytes stk_bytes,

vir_bytes data_bytes,

vir_bytes bss_bytes,

106

vir_bytes text_bytes,

vir_bytes tot_bytes,

ino_t ino,

dev_t dev,

time_t ctime,

int ft

)

{

int i;

struct proc_t *current_proc_ptr, *mm_proc_ptr;

vir_bytes src, dst;

vir_bytes data_vir_addr, data_phy_addr;

vir_bytes bytes, base, bss_offset, count;

vir_clicks max_hole_clicks, new_base, proc_clicks;

boolean text_shared, delete_text;

vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks;

phys_clicks tot_clicks;

struct hole_t *hp;

struct mem_map text_seg;

ino_t old_ino;

dev_t old_dev;

time_t old_ctime;

static char zero[1024];

static char mbuf[ARG_MAX];

/* find the process descriptor of the current process */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == current_pid)){

current_proc_ptr = &proc[i];

old_ino = current_proc_ptr->ino;

old_dev = current_proc_ptr->dev;

old_ctime = current_proc_ptr->ctime;

break;

}

}

/* store the stacks of the process temporarily at the memory server. */

data_vir_addr = (current_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (current_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

src = stack_ptr - data_vir_addr + data_phy_addr;

/* find the memory management server. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == MM_PROC_NR)){

mm_proc_ptr = &proc[i];

break;

107

}

}

data_vir_addr = (mm_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (mm_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

dst = (vir_bytes)mbuf - data_vir_addr + data_phy_addr;

phys_copy(src, dst, stk_bytes);

/* find whether the new executable image is already used by

some existing process and whether we can still share it */

text_shared = FALSE;

for(i=0; i<NR_PROCS; i++) {

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if(proc[i].pid == current_pid || proc[i].ino != ino

|| proc[i].dev != dev || proc[i].ctime != ctime)

continue;

text_shared = TRUE;

text_bytes = 0;

text_seg = proc[i].seg[T]; /* shared text */

break;

}

/* sizes of the segments for the executed proc */

text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

gap_clicks = tot_clicks - data_clicks - stack_clicks;

if ((int)gap_clicks < 0) return(ENOMEM);

/* get the hole of maximum size to assign memory for the

segments. */

max_hole_clicks = 0;

hp = hole_head;

while(hp != NIL_HOLE) {

if(hp->h_len > max_hole_clicks) max_hole_clicks = hp->h_len;

hp = hp->h_next;

}

if(max_hole_clicks < tot_clicks + text_clicks) return (EAGAIN);

/* if the text is shared by other process, we cannot delete it. */

delete_text = TRUE;

for(i=0; i<NR_PROCS; i++) {

if((proc[i].proc_flags & (IN_USE | SEPARATE | HANGING))

!= (IN_USE | SEPARATE)) continue;

if(proc[i].pid == current_pid || proc[i].ino != old_ino

108

|| proc[i].dev != old_dev || proc[i].ctime != old_ctime)

continue;

delete_text = FALSE; /* it is shared */

break;

}

/* delete the segments of the original process. */

if(delete_text){

free_mem((current_proc_ptr->seg[T]).mem_phys,

(current_proc_ptr->seg[T]).mem_len);

}

free_mem((current_proc_ptr->seg[D]).mem_phys,

(current_proc_ptr->seg[S]).mem_len +

(current_proc_ptr->seg[S]).mem_vir

- (current_proc_ptr->seg[D]).mem_vir);

/* allocate memory for the segments of the executed image */

proc_clicks = tot_clicks + text_clicks;

if((new_base = alloc_mem(proc_clicks))==NO_MEM)return(EAGAIN);

if(!text_shared){

(current_proc_ptr->seg[T]).mem_phys = new_base;

(current_proc_ptr->seg[T]).mem_vir = 0;

(current_proc_ptr->seg[T]).mem_len = text_clicks;

}

else{

current_proc_ptr->seg[T] = text_seg;

}

/* data segment. */

(current_proc_ptr->seg[D]).mem_phys = new_base + text_clicks;

(current_proc_ptr->seg[D]).mem_vir = 0;

(current_proc_ptr->seg[D]).mem_len = data_clicks;

/* stack segment. */

(current_proc_ptr->seg[S]).mem_phys = new_base + text_clicks +

data_clicks + gap_clicks;

(current_proc_ptr->seg[S]).mem_vir = data_clicks + gap_clicks;

(current_proc_ptr->seg[S]).mem_len = stack_clicks;

/* "zero" the bbs, gap, and stack */

bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;

base = (phys_bytes)((new_base+text_clicks) << CLICK_SHIFT);

bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;

base += bss_offset;

bytes -= bss_offset;

data_vir_addr = (mm_proc_ptr->seg[D]).mem_vir << CLICK_SHIFT;

data_phy_addr = (mm_proc_ptr->seg[D]).mem_phys << CLICK_SHIFT;

109

src = (vir_bytes)zero - data_vir_addr + data_phy_addr;

while (bytes > 0) {

count = MIN(bytes, (phys_bytes) sizeof(zero));

phys_copy(src, base, count);

base += count;

bytes -= count;

}

/* copy the stacks back from memory server */

src = dst;

dst = (vir_bytes)((current_proc_ptr->seg[S]).mem_phys << CLICK_SHIFT);

dst += (vir_bytes)((current_proc_ptr->seg[S]).mem_len << CLICK_SHIFT);

dst -= stk_bytes;

phys_copy(src, dst, stk_bytes);

current_proc_ptr->proc_flags &= ~SEPARATE;

current_proc_ptr->proc_flags |= ft;

/* set the fields of the process descriptor */

current_proc_ptr->proc_flags &= ~SEPARATE;

current_proc_ptr->proc_flags |= ft;

current_proc_ptr->ino = ino;

current_proc_ptr->dev = dev;

current_proc_ptr->ctime = ctime;

current_proc_ptr->sp = (reg_t)dst;

/* close the files open originally by the process before

exec. */

for(i=0; i<OPEN_MAX; i++){

if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

(current_proc_ptr->fp_filp[i])->filp_count--;

if((current_proc_ptr->fp_filp[i])->filp_count == 0){

(current_proc_ptr->fp_filp[i])->filp_ino->count--;

}

current_proc_ptr->fp_filp[i] = NIL_FILP;

}

}

}

brk

The function is modified from the function do brk in MM in [46].

#include "types.h"

110

#include "proc.h"

#define DATA_CHANGED 1

#define STACK_CHANGED 2

int brk(vir_bytes addr, pid_t current_pid){

int i;

reg_t sp;

struct proc_t *current_proc_ptr;

vir_bytes v;

vir_clicks new_clicks, sp_clicks, gap_base, lower;

phys_clicks data_phy, stack_phy;

vir_clicks data_vir, data_len, stack_vir, stack_len;

long base_of_stack, delta;

int changed;

/* find the current process descriptor and its stack

pointer. */

for(i=0; i<NR_PROCS; i++){

if((proc[i].proc_flags & IN_USE != 0)

&& (proc[i].pid == current_pid)){

current_proc_ptr = &proc[i];

sp = current_proc_ptr->sp;

break;

}

}

v = addr;

new_clicks = (vir_clicks)(((long)v + CLICK_SIZE - 1) >> CLICK_SHIFT);

data_vir = (current_proc_ptr->seg[D]).mem_vir;

data_phy = (current_proc_ptr->seg[D]).mem_phys;

data_len = (current_proc_ptr->seg[D]).mem_len;

/* the address will before the start of data segment. */

if(new_clicks < data_vir)

return(ENOMEM);

new_clicks -= data_vir;

stack_vir = (current_proc_ptr->seg[S]).mem_vir;

stack_phy = (current_proc_ptr->seg[S]).mem_phys;

stack_len = (current_proc_ptr->seg[S]).mem_len;

base_of_stack = (long) stack_vir + (long) stack_len;

sp_clicks = sp >> CLICK_SHIFT; /* click containing sp */

if (sp_clicks >= base_of_stack) return(ENOMEM); /* sp too high */

/* Compute size of gap between stack and data segments. */

111

delta = (long) stack_vir - (long) sp_clicks;

lower = (delta > 0 ? sp_clicks : stack_vir);

/* Add a safety margin for future stack growth. Impossible to do right. */

#define SAFETY_BYTES (384 * sizeof(char *))

#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)

gap_base = data_vir + new_clicks + SAFETY_CLICKS;

if (lower < gap_base) return(ENOMEM); /* data and stack collided */

/* Update data length (but not data orgin) on behalf of brk() system call. */

if (new_clicks != data_len) {

data_len = new_clicks;

changed |= DATA_CHANGED;

}

/* Update stack length and origin due to change in stack pointer. */

if (delta > 0) {

stack_vir -= delta;

stack_phy -= delta;

stack_len += delta;

changed |= STACK_CHANGED;

}

if(changed & STACK_CHANGED){

(current_proc_ptr->seg[S]).mem_vir = stack_vir;

(current_proc_ptr->seg[S]).mem_phys = stack_phy;

(current_proc_ptr->seg[S]).mem_len = stack_len;

}

if(changed & DATA_CHANGED) {

(current_proc_ptr->seg[D]).mem_vir = data_vir;

(current_proc_ptr->seg[D]).mem_phys = data_phy;

(current_proc_ptr->seg[D]).mem_len = data_len ;

}

}

A.3.2 Table definitions for kernel data

segment table of main memory segments that hold code, data, or stack of processes:

create table segment(

seg_id integer NOT NULL,

virtual_address integer,

physical_address integer,

length integer,

PRIMARY KEY (seg_id)

)

112

proc process descriptor table:

create table proc(

pid integer NOT NULL,

parent_pid integer,

wait_pid integer,

exit_status integer,

sig_status integer,

data_segment integer,

text_segment integer,

stack_segment integer,

ino integer,

dev integer,

ctime timestamp,

stack_pointer integer,

proc_flags integer,

PRIMARY KEY (pid),

FOREIGN KEY (parent_pid) REFERENCES proc(pid),

FOREIGN KEY (wait_pid) REFERENCES proc(pid),

FOREIGN KEY (data_segment) REFERENCES segment(seg_id),

FOREIGN KEY (text_segment) REFERENCES segment(seg_id),

FOREIGN KEY (stack_segment) REFERENCES segment(seg_id)

)

In the table definition, proc flags is an integer whose bits correspond to the flags

SEPARATE, WAITING, and HANGING, which are defined together with the

process descriptor proc t in Section 4.2.2. Another flag IN USE defined there does

not need to be mapped, as it is shown by whether the row “exists” in the table.

inode table of the in-memory inodes of opened files.

create table inode (

inode integer,

dev integer,

ctime timestamp,

count integer,

PRIMARY KEY (inode)

)

filp file descriptor table:

create table filp(

filp_id integer NOT NULL,

inode_id integer,

position integer,

mode integer,

filp_count integer,

113

PRIMARY KEY (filp_id)

)

proc filp table that associates processes to their file descriptors:

create table proc_filp(

proc_id integer,

flip_id integer,

FOREIGN KEY (proc_id) REFERENCES proc(pid),

FOREIGN KEY (proc_id) REFERENCES filp(filp_id)

)

hole free memory hole table:

create table hole (

base integer,

len integer

)

pid table of integers from 1 to 30000 to get a process identifier:

create table pid (

pid integer

)

ready user proc table of user processes that are ready to run:

create table ready_user_proc (

pid integer,

FOREIGN KEY (pid) REFERENCES proc(pid)

)

A.3.3 C/SQL programs for the system calls

fork

int fork(int pid){

EXEC SQL BEGIN DECLARE SECTION;

int proc_in_use;

int parent_pid;

int child_pid;

int wait_pid;

int available_holes;

int hole_base;

int hole_len;

114

int mem_len_stack;

int mem_len_data;

int mem_len_text;

int mem_vir_stack;

int mem_vir_data;

int mem_vir_text;

int mem_phys_data;

int mem_phys_stack;

int mem_phys_text;

int prog_clicks;

int seg_id_stack;

int seg_id_data;

int seg_id_text;

int curr_proc_flags;

int exit_status;

int sig_status;

int ino;

int dev;

char change_time[27];

int filp_id;

int stack_pointer;

EXEC SQL END DECLARE SECTION;

int i;

int child_base;

int child_abs;

int parent_abs;

int ret_value;

/* wether we reach the upperlimit of number of processes? */

EXEC SQL

SELECT count(*) into :proc_in_use

FROM proc;

if (proc_in_use >= NR_PROCS) {

ret_value = EAGAIN;

goto out;

}

/* select all fields from the proc */

115

parent_id = pid;

EXEC SQL

SELECT data_segment into :seg_id_data,

stack_segment into :seg_id_stack,

text_segment into :seg_id_stack,

ino into :ino,

dev into :dev,

change_time into :change_time,

proc_flags into :curr_proc_flags,

wait_pid into :wait_pid,

stack_pointer into :stack_pointer

FROM proc

WHERE proc.pid = :parent_id;

/* calculate the memory that is needed for the new

process */

/* stack */

EXEC SQL

SELECT segment.length into :mem_len_stack,

segment.virtual_address into :mem_vir_stack

FROM segment

AND segment.seg_id = :seg_id_stack;

/* data */

EXEC SQL

SELECT segment.virtual_address into :mem_vir_data,

segment.physical_address into :mem_phys_data

FROM segment

WHERE segment.seg_id = :seg_id_data;

/* calculate the full memory */

/* for text, it is either shared (in same physical

memory) by multiple processes, or merged with

data segment, so we handle it later. */

mem_len_data = mem_vir_stack - mem_vir_data

proc_click = mem_len_stack + mem_len_data;

/* get memory chunk from the holes and adjust the hole size */

EXEC SQL DECLARE hole_cursor CURSOR FOR

SELECT len, base

FROM hole

WHERE len >= :proc_click

FOR UPDATE;

EXEC SQL OPEN hole_cursor;

EXEC SQL FETCH hole_cursor into :hole_len, :hole_base;

116

if(SQL_CODE != 0){

EXEC CLOSE hole_cursor;

ret_value = EGAGAIN;

goto err_label;

}

child_base = hole_base;

hole_len -= proc_click;

hole_base += proc_click;

if(hole_len>0){

EXEC SQL

UPDATE hole SET len = :hole_len, base = :hole_base

WHERE CURRENT OF CURSOR hole_cursor;

}

else{

/* if the segment takes the entire hole, the hole is

deleted */

EXEC SQL

DELETE FROM hole

WHERE CURRENT OF CURSOR hole_cursor;

}

EXEC SQL CLOSE hole_cursor;

/* copy the content of main memory */

child_abs = child_base << CLICK_SHIFT;

parent_abs = mem_phys_data << CLICK_SHIFT;

phys_copy(parent_abs, child_abs, prog_bytes);

/* now get a child id */

/* it must be different from any existing process */

EXEC SQL DECLARE pid_cursor FOR

SELECT pid

FROM pids

WHERE NOT EXISTS

(SELECT *

FROM proc

WHERE proc.pid = pids.pid

);

EXEC OPEN pid_cursor;

EXEC fetch pid_cursor into :child_pid;

EXEC close pid_cursor;

/* set the address of the child’s segments */

mem_phys_stack = childbase + mem_len_data;

mem_phys_data = childbase;

117

/* get segment ids */

/* times 10 to get room for text segment id */

/* overwrite the value of the variables, which are the parent’s segments,

except the text segment if it shared. */

seg_id_data = mem_phys_data;

seg_id_stack = mem_phys_stack;

seg_id_data *= 10;

seg_id_stack*= 10 + 2;

/* insert into segment table */

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_stack, :mem_vir_stack, :mem_phys_stack, :mem_len_stack);

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_data, :mem_vir_data, :mem_phys_data, :mem_len_data);

/* if non-separate text and data */

if(!(curr_proc_flags & SEPARATE)){

/* make the segment id */

seg_id_text = seg_id_data + 1;

/* text segment and data segment are not separated */

EXEC SQL

INSERT INTO segment

VALUES(:seg_id_text, :mem_vir_text, :mem_phys_data, :mem_len_text);

}

/* else share the original text segment */

/* insert a row into the process table */

EXEC SQL

INSERT INTO

proc(pid,

parent_id,

wait_pid,

exit_status,

sig_status,

data_segment,

text_segment,

stack_segment,

ino,

dev,

change_time,

stack_pointer,

proc_flags)

VALUES(:child_pid, :parent_pid, :wait_pid,

118

:exit_status, :sig_status,

:seg_id_data, :seg_id_text, :seg_id_stack,

:ino, :dev, :change_time,

:stack_pointer, :curr_proc_flags);

/* share the files with the child */

EXEC SQL DECLARE proc_filp_cursor CURSOR FOR

SELECT filp_id

FROM proc_filp

WHERE proc_id = :parent_pid;

EXEC SQL OPEN proc_filp_cursor;

if(SQLCODE == 0){

while(true){

EXEC SQL FETCH proc_filp_cursor into :filp_id;

if(SQLCODE != 0) break;

EXEC SQL

INSERT INTO proc_filp

VALUES(:child_pid, :filp_id);

EXEC SQL

UPDATE filp SET filp_count = filp_count + 1

WHERE filp_id = :filp_id;

}

}

EXEC SQL CLOSE proc_filp_cursor;

/* add to ready queue */

EXEC SQL

INSERT INTO ready_user_proc

VALUES (:child_pid);

out:

return (ret_value);

}

exit

exit(int pid) {

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int parent_pid;

int wait_pid;

119

int exit_status;

int sig_status;

int data_segment;

int text_segment;

int stack_segment;

int proc_flags;

int file_count;

int text_share_count;

int generic_count;

int mem_vir_text;

int mem_phy_text;

int mem_len_text;

int mem_vir_data;

int mem_phy_data;

int mem_len_data;

int mem_vir_stack;

int mem_phy_stack;

int mem_len_stack;

int mem_phy_base;

int mem_phy_len;

int mem_phy_end;

int parent_wait_pid;

int parent_proc_flags;

int init_proc_pid;

int child_id;

int child_proc_flags;

int ino;

int dev;

int ctime;

int base1;

int len1;

int base2;

int len2;

int temp_pid;

int temp_proc_flags;

120

int temp_ino;

int temp_dev;

int temp_c_time;

EXEC SQL BEGIN DECLARE SECTION;

int flag;

int right_child;

int parent_waiting;

boolean delete_text;

int temp_len;

current_pid = pid;

/* first close all open files */

/* we simplify file close to delete */

/* decrement the reference count in filp */

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

/* decrement the count of the inode in memory of an

open file */

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

/* delete from the proc-filp relationship */

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;

/* delete the entries which has no

process that references it */

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

/* delete the entries of inodes which has

been closed by all processes */

EXEC SQL DELETE FROM inode

WHERE count = 0;

/* get all info of the exiting process */

121

EXEC SQL SELECT

parent_pid into :parent_pid,

wait_pid into :wait_pid,

exit_status into :exit_status,

sig_status into :sig_status,

data_segment into :data_segment,

text_segment into :text_segment,

stack_segment into :stack_segment,

proc_flags into :proc_flags,

ino into :ino,

dev into :dev,

ctime into :ctime

FROM proc

WHERE pid = :current_pid;

/* get the process out of the ready queue */

DELETE FROM ready_user_proc

WHERE pid = :current_pid

/* delete segments */

delete_text = FALSE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags;

if((temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE) continue;

if((temp_pid == pid) || (temp_ino != ino) ||

(temp_dev != dev) || (temp_ctime != ctime))

continue;

else{

delete_text = TRUE;

break;

}

}

EXEC CLOSE proc_cursor;

/* check the case of shared text segment */

if(delete_text){

/* get the physical address and length of the text */

122

EXEC SQL SELECT physical_address into :mem_phy_text,

length into :mem_len_text

FROM segment

WHERE segment.sid = :text_segment;

/* next, we free the text_segment and insert the

physical segment into the hole table */

/* fist see whether we can merge it to other holes. */

flag = FALSE;

/* now we have the end of the text segment */

mem_phy_end = mem_phy_text + mem_len_text;

/* can we merge it with the hole after it */

EXEC SQL DECLARE hole_cursor1 CURSOR FOR

SELECT base, len

FROM hole

WHERE base = :mem_phy_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor1;

EXEC SQL FETCH hole_cursor1 INTO :base1, :len1;

if(SQLCODE == 0){

/* we can merge */

flag = TRUE;

len1 = len1 + mem_len_text;

base1 = mem_phy_text;

/* merge */

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor1;

}

/* can we merge it with the hole ahead of it */

EXEC SQL DECLARE hole_cursor_2 FOR

SELECT base, len

FROM hole

WHERE base + len = :mem_phy_text

FOR UPDATE;

EXEC SQL OPEN hole_cursor_2;

EXEC SQL FETCH hole_cursor_2 to :base2, :len2;

/* we can merge */

123

if(SQLCODE == 0){

/* Have we already merged it with the one afterwards. */

if(!flag){

/* no. so merge it to the one in front of it. */

flag = TRUE;

EXEC SQL UPDATE hole

SET len = :len2 + :mem_len_text

WHERE current of hole_cursor_2;

}

else{

/* the hole afterwards is from the merging in

the above step. */

/* merge the hole with the hole after it. */

EXEC SQL UPDATE hole

SET len = :len2 + :len1

WHERE current of hole_cursor_2;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_1;

}

}

EXEC SQL CLOSE hole_cursor_1;

EXEC SQL CLOSE hole_cursor_2;

if(!flag){

/* no merge at all, add the segment to the hole table. */

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_text, :mem_len_text);

}

}

/* handle the stack and data */

/* they are contiguous physical segments */

/* so we return them together */

EXEC SQL SELECT mem_phy_data into :mem_phy_data,

mem_vir_data into :mem_vir_data

FROM proc, segment

WHERE segment.seg_id = :data_segment

AND proc.pid = :current_pid;

EXEC SQL SELECT mem_vir_stack into :mem_vir_stack,

mem_len_stack into :mem_len_stack

FROM segment

WHERE segment.seg_id = :stack_segment

temp_len = mem_vir_stack -

124

mem_vir_data + mem_len_stack;

mem_phy_end = mem_phy_data + temp_len;

flag = FALSE;

/* merge with the one after it */

EXEC SQL DECLARE CURSOR hole_cursor_3 FOR

SELECT base, len

FROM hole

WHERE base = :mem_phy_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor_3;

EXEC SQL FETCH hole_cursor_3 INTO :base1, :len1;

if(SQLCODE = 0){

flag = TRUE;

base1 = mem_phy_data;

len1 = len1 + temp_len;

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor_3;

}

/* merge the one ahead of it */

EXEC SQL DECLARE CURSOR hole_cursor_4 FOR

SELECT base, len

FROM hole

WHERE base + len = :mem_phy_data;

FOR UPDATE;

EXEC SQL OPEN hole_cursor_4;

EXEC SQL OPEN hole_cursor_4 into :base2, :len2;

/* has the segment already merged with the one

behind it? */

if(SQLCODE == 0){

if(!flag){

flag = TRUE;

len2 += temp_len;

EXEC SQL UPDATE hole

SET len = :len2

WHERE current of hole_cursor_4;

}

else{

125

/* it may cause merge of three segments */

EXEC SQL UPDATE hole

SET len = :len1 + :len2

WHERE current of hole_cursor_4;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_3;

}

}

EXEC SQL CLOSE hole_cursor_3;

EXEC SQL CLOSE hole_cursor_4;

if(!flag){

/* no merge at all, so insert the hole

into the table. */

mem_phy_len = temp_len;

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_data, :mem_phy_len);

}

/* set the segments pointers to NULL */

/* this is because they are foreign keys */

/* then we will delete the three segments in

the segment table */

EXEC SQL UPDATE proc

SET stack_segment = NULL,

text_segment = NULL,

data_segment = NULL;

/* delete the segments in the segment table */

EXEC SQL DELETE FROM segment

WHERE seg_id = :stack_segment

OR seg_id = :data_segment;

if(delete_text){

EXEC SQL DELETE FROM segment

WHERE seg_id = :text_segment;

}

/* Let INIT_PROC adopt my children */

EXEC SQL DECLARE CURSOR init_cursor FOR

SELECT proc_flags

FROM proc

WHERE pid = :init_proc_pid

FOR UPDATE;

126

EXEC SQL OPEN init_cursor;

EXEC FETCH init_cursor into :parent_proc_flags;

parent_waiting = parent_proc_flags & WAITING;

/* if parent is waiting */

if(parent_waiting){

EXEC SQL DECLARE child_proc_cursor CURSOR FOR

SELECT proc_flags FROM proc

WHERE parent_pid = :current_pid

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

while(SQLCODE == 0){

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag */

EXEC SQL UPDATE proc

SET proc_flags = :parent_proc_flags;

WHERE current of init_cursor;

break;

}

}

EXEC SQL CLOSE init_cursor;

EXEC SQL CLOSE child_proc_cursor;

}

EXEC SQL UPDATE proc

SET parent_pid = :init_proc_id

WHERE parent_pid = :current_pid;

/* Is my parent waiting? */

EXEC SQL DECLARE CURSOR parent_cursor FOR

SELECT wait_pid into :parent_wait_pid,

proc_flags into :parent_proc_flags

FROM proc

WHERE proc.pid = :parent_pid;

127

FOR UPDATE;

EXEC SQL OPEN parent_cursor;

EXEC SQL FETCH parent_cursor INTO :parent_wait_pid,

:parent_proc_flags;

parent_waiting = parent_proc_flags & WAITING;

/* wait for any child or wait for me? */

if(parent_wait_pid == -1 || parent_wait_pid == current_pid){

right_child = TRUE;

}

else{

right_child = FALSE;

}

if(parent_waiting && right_child){

/* parent is waiting for me */

/* delete the table record for the process */

DELETE FROM proc

WHERE pid = :current_pid;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag */

EXEC SQL UPDATE proc

SET proc_flags =: parent_proc_flags

WHERE CURRENT OF parent_cursor;

}

else{

/* parent not waiting, set the HANGING flag */

proc_flags |= HANGING;

EXEC SQL UPDATE proc

SET proc_flags = :proc_flags

WHERE CURRENT OF parent_cursor;

/* the entry will be deleted when the parent calls wait */

}

EXEC CLOSE parent_cursor;

}

waitpid

int waitpid(int, pid, int pidarg)

/* pidarg == -1, wait for any child,

pidarg > 0, wait for a special pid */

{

128

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int wait_pid;

int child_proc_flags;

int parent_proc_flags;

int wait_pid;

int child_count;

EXEC SQL END DECLARE SECTION;

if(pidarg != -1 && pidarg <= 0) return (ERROR);

wait_pid = pidarg;

/* get the parent. */

current = pid;

EXEC SQL DECLARE CURSOR parent_flag_cursor FOR

SELECT proc_flags

FROM proc

WHERE pid = :current_pid

FOR UPDATE;

EXEC OPEN parent_flag_cursor;

EXEC FETCH parent_flag_cursor into :parent_proc_flags;

if(pidarg == -1){

/* wait for any child */

/* get a children */

EXEC SQL DECLARE child_proc_cursor FOR

SELECT proc_flags

FROM proc

WHERE parent_pid = :current_pid

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

if(SQLCODE != 0) {

/* Error in getting children */

return(ECHILD);

}

while(SQLCODE == 0){

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

129

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag. */

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return(OK);

}

}

}

else{ /* pidarg is wait_pid */

/* wait for a certain pid */

/* get the children */

EXEC SQL DECLARE child_proc_cursor FOR

SELECT proc_flags

FROM proc

WHERE parent_pid = :current_pid

AND pid = :wait_pid;

FOR UPDATE;

EXEC SQL OPEN child_proc_cursor;

if(SQLCODE != 0){

/* no qualified children, must be an error */

return(ECHILD);

}

EXEC SQL FETCH child_proc_cursor into :child_proc_flags;

if(child_proc_flags & HANGING){

/* delete the child if the parent is waiting and the child

has already exited */

DELETE FROM proc

WHERE CURRENT OF child_proc_cursor;

parent_proc_flags &= ~WAITING;

/* clear the waiting flag. */

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

130

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return(OK);

}

}

/* we have qualified children, but can not find a child that has

exited */

/* set the parent’s status to waiting */

parent_proc_flags |= WAITING;

EXEC SQL UPDATE proc

SET proc_flags := parent_proc_flags

WHERE CURRENT OF parent_flag_cursor;

EXEC SQL CLOSE child_proc_cursor;

EXEC SQL CLOSE parent_flag_cursor;

return (OK);

}

exec

#define MM_PROC_NR 0

#define ARG_MAX 4096

into exec(int pid,

int stack_ptr,

int stk_bytes,

int data_bytes,

int bss_bytes,

int text_bytes,

int tot_bytes,

int ino_param,

int dev_param,

int ctime_param,

int ft) {

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int mm_proc_pid;

int stack_segment_phy;

int stack_segment_vir;

int stack_segment_len;

int data_segment_phy;

131

int data_segment_vir;

int data_segment_len;

int text_segment_phy;

int text_segment_vir;

int text_segment_len;

int segment_end;

int text_count;

int text_seg_id;

int data_seg_id;

int stack_seg_id;

int old_text_seg_id;

int old_data_seg_id;

int old_stack_seg_id;

int proc_flags;

int max_hole_size;

int hole_base;

int hole_len;

int ino;

int dev;

int ctime;

int old_ino;

int old_dev;

int old_ctime;

int temp_pid;

int temp_ino;

int temp_dev;

int temp_ctime;

int proc_clicks;

int count_generic;

int stack_pointer;

int base1;

int len1;

int base2;

132

int len2;

EXEC SQL END DECLARE SECTION;

char mbuf[ARG_MAX];

int src, dst;

boolean text_shared;

boolean delete_old_text;

boolean flag;

int new_base;

int text_clicks, data_clicks, stack_clicks,

total_clicks, gap_clicks;

int base, bytes, count, bss_offset;

static char zero[1024];

int mm_data_phy, mm_data_vir;

int temp_len;

int ft;

ino = ino_param;

dev = dev_param;

ctime = ctime_param;

/* copy the content of the stack to the mem space of mm task */

current_pid = pid;

EXEC SQL SELECT

text_segment into :old_text_seg_id,

stack_segment into :old_stack_seg_id,

data_segment into :old_data_seg_id,

proc_flags into :proc_flags,

ino into :old_ino,

dev into :old_dev,

ctime into :old_ctime

FROM proc

WHERE proc_id = :current_pid;

EXEC SQL SELECT segment.physical_address into :data_segment_phy,

segment.virtual_address into :data_segment_vir

FROM segment

WHERE seg_id = old_data_seg_id;

mm_data_vir = data_segment_vir << CLICK_SHIFT;

mm_data_phy = data_segment_phy << CLICK_SHIFT;

src = stack_ptr - mm_data_vir + mm_data_phy;

mm_proc_pid = MM_PROC_NR;

EXEC SQL SELECT segment.physical_address into :data_segment_phy,

segment.virtual_address into :data_segment_vir

FROM proc, segment

WHERE segment.seg_id = proc.data_segment

133

AND proc_id = :mm_proc_pid;

mm_data_vir = data_segment_vir << CLICK_SHIFT;

mm_data_phy = data_segment_phy << CLICK_SHIFT;

dst = mbuf - mm_data_vir + mm_data_phy;

phys_copy(src, dst, stack_bytes);

/* find text share */

text_shared = FALSE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags, text_segment

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags, :text_seg_id;

if((temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE) continue;

if((temp_pid == current_pid) || (temp_ino != ino) ||

(temp_dev != dev) || (temp_ctime != ctime))

continue;

else{

text_shared = TRUE;

text_bytes = 0;

break;

}

}

EXEC CLOSE proc_cursor;

/* new segments for the executed proc */

text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;

gap_clicks = tot_clicks - data_clicks - stack_clicks;

if ((int) gap_clicks < 0) return(ENOMEM);

/* whether there is a hole that can fit the memory */

EXEC SQL SELECT max(len) into :max_hole_size

FROM hole;

if(max_hole_size < tot_clicks + text_clicks) return (EAGAIN);

134

/* first release the old segment */

/* text segment */

delete_old_text = TRUE;

EXEC SQL DECLARE proc_cursor CURSOR FOR

SELECT pid, ino, dev, ctime, proc_flags

FROM proc;

EXEC OPEN proc_cursor;

while(SQLCODE == 0){

EXEC FETCH proc_cursor

into :temp_pid, :temp_ino, :temp_dev, :temp_ctime,

:temp_proc_flags;

if((temp_proc_flags & (SEPARATE | HANGING)) !=

SEPARATE) continue;

if((temp_pid == current_pid) || (temp_ino != old_ino) ||

(temp_dev != old_dev) || (temp_ctime != old_ctime))

continue;

else{

delete_old_text = FALSE; /* it is shared, cannot delete it */

break;

}

}

EXEC CLOSE proc_cursor;

/* check the case of shared text segment. */

if(delete_old_text){

/* get the physical address and length of the text */

EXEC SQL SELECT physical_address into :text_segment_phy,

length into :text_segment_len

FROM segment

WHERE segment.sid = :old_text_seg_id;

/* next, we free the text_segment and insert the

physical segment into the hole table. */

/* fist see whether we can merge it to other holes. */

flag = FALSE;

/* now we have the end of the text segment. */

segment_end = text_segment_phy + text_segment_len;

/* can we merge it with the hole after it? */

EXEC SQL DECLARE hole_cursor1 CURSOR FOR

SELECT base, len

FROM hole

WHERE base = :segment_end

135

FOR UPDATE;

EXEC SQL OPEN hole_cursor1;

EXEC SQL FETCH hole_cursor1 INTO :base1, :len1;

if(SQLCODE == 0){

/* we can merge */

flag = TRUE;

len1 = len1 + text_segment_len;

base1 = text_segment_phy;

/* merge */

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor1;

}

/* can we merge it with the hole ahead of it? */

EXEC SQL DECLARE hole_cursor_2 FOR

SELECT base, len

FROM hole

WHERE base + len = :text_segment_phy

FOR UPDATE;

EXEC SQL OPEN hole_cursor_2;

EXEC SQL FETCH hole_cursor_2 to :base2, :len2;

/* we can merge */

if(SQLCODE == 0){

/* Have we already merged it with the one afterwards. */

if(!flag){

/* no. so merge it to the one in front of it. */

flag = TRUE;

EXEC SQL UPDATE hole

SET len = :len2 + :text_segment_len

WHERE current of hole_cursor_2;

}

else{

/* the hole afterwards is from the merging in

the above step. */

/* merge the hole with the hole after it. */

EXEC SQL UPDATE hole

SET len = :len2 + :len1

WHERE current of hole_cursor_2;

136

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_1;

}

}

EXEC SQL CLOSE hole_cursor_1;

EXEC SQL CLOSE hole_cursor_2;

if(!flag){

/* no merge at all, add the segment to the hole table. */

EXEC SQL INSERT INTO hole

VALUES(:text_segment_phy, :text_segment_len);

}

}

/* handle the stack and data */

/* they are contiguous physical segments */

/* so we return them together */

EXEC SQL SELECT mem_phy_data into :data_segment_phy,

mem_vir_data into :data_segment_vir

FROM segment

WHERE segment.seg_id = :old_data_seg_id;

EXEC SQL SELECT mem_vir_stack into :stack_segment_vir,

mem_len_stack into :stack_segment_len

FROM segment

WHERE segment.seg_id = :old_stack_seg_id;

temp_len = stack_segment_vir - data_segment_vir

+ stack_segment_len;

segment_end = data_segment_phy + temp_len;

flag = FALSE;

/* merge with the one after it */

EXEC SQL DECLARE CURSOR hole_cursor_3 FOR

SELECT base, len

FROM hole

WHERE base = :segment_end

FOR UPDATE;

EXEC SQL OPEN hole_cursor_3;

EXEC SQL FETCH hole_cursor_3 INTO :base1, :len1;

if(SQLCODE = 0){

flag = TRUE;

base1 = data_segment_phy;

137

len1 = len1 + temp_len;

EXEC SQL UPDATE hole

SET base = :base1,

len = :len1

WHERE current of hole_cursor_3;

}

/* merge the one ahead of it */

EXEC SQL DECLARE CURSOR hole_cursor_4 FOR

SELECT base2, len2

FROM hole

WHERE base + len = :segment_data_phy;

FOR UPDATE;

EXEC SQL OPEN hole_cursor_4;

EXEC SQL OPEN hole_cursor_4 into :base2, :len2;

/* has the segment already merged with the one

behind it? */

if(SQLCODE == 0){

if(!flag){

flag = TRUE;

len2 += temp_len;

EXEC SQL UPDATE hole

SET len = :len2

WHERE current of hole_cursor_4;

}

else{

/* it may cause merge of three segments */

EXEC SQL UPDATE hole

SET len = :len1 + :len2

WHERE current of hole_cursor_4;

EXEC SQL DELETE FROM hole

WHERE current of hole_cursor_3;

}

}

EXEC SQL CLOSE hole_cursor_3;

EXEC SQL CLOSE hole_cursor_4;

if(!flag){

len1 = temp_len;

EXEC SQL INSERT INTO hole

VALUES(:mem_phy_data, :len1);

138

}

/* set the segments pointers to NULL */

/* this is because they are foreigh keys */

/* then we will delete the three segments in

the segment table */

EXEC SQL UPDATE proc

SET stack_segment = NULL,

text_segment = NULL,

data_segment = NULL

WHERE proc_id = :current_pid;

/* delete the segments in the segment table */

EXEC SQL DELETE FROM segment

WHERE seg_id = :old_stack_seg_id

OR seg_id = :old_data_seg_id;

if(delete_old_text){

EXEC SQL DELETE FROM segment

WHERE seg_id = :old_text_seg_id;

}

proc_clicks = tot_clicks + text_clicks;

/* get memory chunk from the holes and adjust the hole size */

EXEC SQL DECLARE hole_cursor CURSOR FOR

SELECT len, base

FROM hole

WHERE len >= :proc_clicks

FOR UPDATE;

EXEC SQL OPEN hole_cursor;

EXEC SQL FETCH hole_cursor into :hole_len, :hole_base;

new_base = hole_base;

hole_len -= proc_click;

hole_base += proc_click;

if(hole_len > 0){

EXEC SQL

UPDATE hole SET len = :hole_len, base = :hole_base

WHERE CURRENT OF CURSOR hole_cursor;

}

else{

/* if the segment takes the entire hole, the hole is

deleted */

EXEC SQL

DELETE FROM hole

139

WHERE CURRENT OF CURSOR hole_cursor;

}

EXEC SQL CLOSE hole_cursor;

/* if the text is not shared yet, insert a segment for it. */

if(!text_shared){

text_segment_phy = new_base;

text_segment_vir = 0;

text_segment_length = text_clicks;

text_seg_id = new_base * 10 + 1;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:text_seg_id, :text_segment_vir, :text_segment_phy,

:text_segment_length);

}

data_segment_phy = new_base + text_clicks;

data_segment_vir = 0;

data_segment_length = data_clicks;

data_seg_id = data_segment_phy * 10;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:data_seg_id, :data_segment_vir, :data_segment_phy,

:data_segment_length);

stack_segment_phy = new_base + text_clicks + data_clicks + gap_clicks;

stack_segment_vir = data_clicks + gap_clicks;

stack_segment_length = stack_clicks;

stack_seg_id = stack_segment_phy * 10 + 2;

EXEC SQL INSERT INTO segment

(seg_id, virtual_address, physical_address, length)

VALUES(:stack_seg_id, :stack_segment_vir, :stack_segment_phy,

:stack_segment_length);

/* zero the segments in memory */

bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;

base = (phys_bytes)data_segment_phy << CLICK_SHIFT;

bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;

base += bss_offset;

bytes -= bss_offset;

while (bytes > 0) {

count = MIN(bytes, (phys_bytes) sizeof(zero));

sys_copy(ABS, 0, zero - mm_data_vir + mm_data_phy, ABS, 0, base, count);

140

base += count;

bytes -= count;

}

/* recovery the stacks from the MM server. */

src = dst;

dst = stack_segment_phy << CLICK_SHIFT;

dst += stack_segment_len << CLICK_SHIFT;

dst -= stk_bytes;

stack_pointer = dst;

phys_copy(src, dst, stk_bytes);

proc_flags &= ~SEPARATE;

proc_flags |= ft;

/* update the process descriptor. */

EXEC SQL UPDATE proc

SET text_segment = :text_seg_id,

data_segment = :data_seg_id,

stack_segment = :stack_seg_id

ino = :ino,

ctime = :ctime,

dev = :dev,

stack_pointer := stack_pointer;

proc_flags = :proc_flags,

WHERE proc.pid = :current_pid;

/* close open files of the process before calling exec */

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

/* decrement the count of the inode in memory of an

open file */

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

/* delete from the proc-filp relationship */

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;

141

/* The above update filp may changes

filp_count to 0

*/

/* delete the entries which has no

process that references it */

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

/ * delete the inode if no process is

referencing to it */

EXEC SQL DELETE FROM inode

WHERE count = 0;

}

brk

#define DATA_CHANGED 1

#define STACK_CHANGED 2

brk(int addr, int pid){

EXEC SQL BEGIN DECLARE SECTION;

int current_pid;

int stack_pointer;

int data_phy;

int data_vir;

int data_len;

int data_seg;

int stack_phy;

int stack_vir;

int stack_len;

int stack_seg;

EXEC SQL BEGIN DECLARE SECTION;

vir_bytes v, new_sp;

vir_clicks new_clicks, sp_click, gap_base, lower;

long base_of_stack, delta;

int changed;

/* get the segment info of the process. */

current_pid = pid;

EXEC SQL SELECT

142

data_segment into :data_seg,

stack_segment into :stack_seg,

stack_pointer into :stack_pointer

FROM proc

WHERE proc.pid = :current_pid;

v = addr;

new_clicks = (vir_clicks) (((long)v + CLICK_SIZE - 1) >> CLICK_SHIFT);

EXEC SQL SELECT

virtual_address into :data_vir,

physical_address into :data_phy,

length into :data_len

FROM segment

WHERE proc.data_segment = :data_seg;

if(new_clicks < data_vir)

return(ENOMEM);

new_clicks -= data_vir;

EXEC SQL SELECT

virtual_address into :stack_vir,

physical_address into :stack_phy,

length into stack_len

FROM segment

WHERE proc.stack_segment = :stack_seg;

base_of_stack = (long) stack_vir + (long) stack_len;

sp_clicks = stack_pointer >> CLICK_SHIFT; /* click containing sp */

if (sp_clicks >= base_of_stack) return(ENOMEM); /* sp too high */

/* compute size of gap between stack and data segments. */

delta = (long) stack_vir - (long) sp_clicks;

lower = (delta > 0 ? sp_clicks : stack_vir);

#define SAFETY_BYTES (384 * sizeof(char *))

#define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)

gap_base = data_vir + new_clicks + SAFETY_CLICKS;

if (lower < gap_base) return(ENOMEM); /* data and stack collided */

/* update data length (but not data origin) on behalf of brk() system call. */

if (new_clicks != data_len) {

data_len = new_clicks;

changed |= DATA_CHANGED;

}

/* Update stack length and origin due to change in stack pointer. */

143

if (delta > 0) {

stack_vir -= delta;

stack_phy -= delta;

stack_len += delta;

changed |= STACK_CHANGED;

}

if(changed & STACK_CHANGED){

EXEC SQL UPDATE segment

SET virtual_address = :stack_vir,

physical_address = :stack_phy,

length = :stack_len

WHERE seg_id = :stack_seg;

}

if(changed & DATA_CHANGED) {

EXEC SQL UPDATE segment

SET length = :data_len

WHERE seg_id = :data_seg;

}

return(OK);

}

A.3.4 MINIX transaction types

Finite state machines

The finite state machines for the system calls are shown in Figure A.7 to A.11. The number

attached to each state is the state identifier, and the text inside a state box is the data

item accessed. In addition, the r or w attached to each state indicates whether the state

read or write the data item. We include in Table A.1 to A.5 the probabilities of transitions

from the states with multiple successors. The state identifiers in the tables are from Figure

A.7 to A.11.

Calculating the state costs

We assume the general features of the kernel data structures are:

hole: hole is an array of hole t elements of the size 128, which specifies the maximal

number of holes. However, the real hole list is chained by the h next pointer field

144

w

n

Succ

w

w

w

ready_user_proc

filp

proc_filp

proc

w

segment

w

w

segment

segment

err

r

proc

pids

n

r

r

1

9

r

segment

w

4hole

16
15

1413

12

11

10

8

7

6

5

321
0

segment

r

segmentproc

r

r

proc

Figure A.7: The finite state machine of fork

arc prob arc prob arc prob

(0, 1) 0.95 (0, 16) 0.05 (4, 5) 0.95

(4, 16) 0.05 (6, 5) 0.967 (6, 7) 0.033

(8, 11) 0.67 (8, 10) 0.33 (12, 13) 0.95

(12, 14) 0.05

Table A.1: The probabilities of state transitions in fork

arc prob arc prob arc prob

(1, 2) 0.95 (1, 3) 0.05 (3, 4) 0.95

(3, 5) 0.05 (10, 10) 0.9375 (10, 11) 0.0417

(10, 19) 0.0208 (11, 12) 0.2 (11, 13) 0.8

(12, 14) 0.8 (12, 15) 0.2 (21, 22) 0.2

(21, 23) 0.8 (22, 24) 0.8 (22, 25) 0.2

(30, 31) 0.67 (30, 32) 0.33 (32, 36) 0.5

(32, 34) 0.125 (32, 33) 0.375 (37, 38) 0.5

(37, 40) 0.5

Table A.2: The probabilities of state transitions in exit

145

w

w

holehole hole

ww

hole

w

hole

proc

r

proc

8 9

12 13

14 15 16

17

18

232628

22

w

hole

w

hole

ww

proc

w

segment

w

w

segment

proc

w

proc

w

proc

w

proc

procproc
ww

w

hole

w

hole

w

25 20

19

w

proc

proc 34

35

w

36

37

40

41

0

w

r

r

10

11

filpproc_filp

filp inode

wr

r w

Succ

r

27

24

29
30

31

32

33

3839

w

proc_filp

filp

w

inode

1 2

3 4

5

6

7
proc

w

segment

21

r
segment

w

proc ready_user_proc

w

proc

segment
r

holew

hole

w

hole

w

hole

hole

Figure A.8: The finite state machine of exit

arc prob arc prob arc prob

(0, 1) 0.225 (0, 3) 0.05 (0, 12) 0.225

(0, 5) 0.225 (0, 6) 0.05 (0, 13) 0.225

Table A.3: The probabilities of state transitions in waitpid

146

r

0

proc

11

10

9

8

7

4

2

ok

w
proc

wproc

wproc

w

1

r

r r

proc

13

6

12

proc

rr3

procproc

proc proc

5 rr

w

proc

proc

error

Figure A.9: The finite state machine of waitpid

arc prob arc prob arc prob

(4, 4) 0.9375 (4, 5) 0.0575 (4, 6) 0.005

(5, 6) 0.005 (5, 7) 0.995 (7, 7) 0.9375

(7, 8) 0.0417 (7, 16) 0.0208 (8, 9) 0.2

(8, 10) 0.8 (9, 11) 0.8 (9, 12) 0.2

(17, 18) 0.2 (17, 19) 0.8 (18, 21) 0.2

(18, 22) 0.8 (26, 27) 0.67 (26, 28) 0.33

(28, 29) 0.67 (28, 30) 0.33 (33, 34) 0.95

(35, 36) 0.95 (35, 37) 0.05

Table A.4: The probabilities of state transitions in exec

arc prob arc prob arc prob

(1, 2) 0.05 (1, 3) 0.95 (3, 2) 0.05

(3, 4) 0.095 (3, 7) 0.19 (3, 5) 0.19

(3, 6) 0.475

Table A.5: The probabilities of state transitions in brk

147

segment

w

hole

w

hole

w

w

hole

hole

w

w

holeproc

w

w

segment

segment

w

segment

w

segment

w

segmentproc

w

4

segment

error
r

0

segment

3

r

proc

2

r

segment

1 proc

r

proc
r

segment

r

w

hole

w

hole

w

hole

w

r

r

5

32

31

30

29

w

35

proc_filp

w

filp 38

37

succ 40

n

inodew 39

w

inode filp

r

filp proc_filp

w r

36

33

6

7

8

9

w

w

10

11 12 13

14 15

16

17

18

19

20

21

22

23

2425

26

27

w

28

34

hole

hole
w

hole
w

hole

hole

hole

hole

hole
w

proc

r r

Figure A.10: The finite state machine of exec

148

segment

r
error

segment

segment

segment

r

r

w

w

0 1

4

3

2

segment 7

ok

6

5

w

proc

Figure A.11: The finite state machine of brk

in the hole t data structure. We assume that on average the hole list has 128
2

= 64

elements. For segment allocation, we assume on average the searching goes over
64
2

= 32 elements before it finds a hole big enough for the segment.

proc: proc is an array of proc t elements of size 32. Whether the element is a valid is

indicated by the lowest bit (IN USE) in the proc flags field of proc t. We assume

that 3
4
× 32 = 24 elements in the array are in use. We also assume:

• Given a process id, on average a searching scans 32
2

= 16 elements in the array

to find the corresponding process descriptor.

• On average there are 32 − 24 = 8 proc t elements are not in use. They are

distributed uniformly in the array. To find the first free element in the proc

array, the searching scans on average 32
8

= 4 elements.

rdy head: We assume the probability that the ready queue of user-level processes

(rdy head[USER Q]) is empty is 1
10

, and the respective probabilities that the ready

queue of kernel tasks (rdy head[TASK Q]) and servers (rdy head[SERVER Q])

are 1
4
.

filp: The descriptors of the files opened by a process is represented by the fp filp array

enclosed in the proc t. Each element of the array is a pointer to filp t, and the size

149

of the array is 20. We assume that on average a process open 20
2

= 10 files, so 10

pointers in the array are not NULL.

We got the costs manually. We illustrate how to get the costs by examples.

Example A.3.1. In fork, we need to get the information of the parent process (state 1 in
Figure A.7). The SQL statement embedded in the C/SQL program (Appendix A.3.3) is:

EXEC SQL SELECT

parent_pid into :parent_pid,

wait_pid into :wait_pid,

exit_status into :exit_status,

sig_status into :sig_status,

data_segment into :data_segment,

text_segment into :text_segment,

stack_segment into :stack_segment,

proc_flags into :proc_flags,

ino into :ino,

dev into :dev,

ctime into :ctime

FROM proc

WHERE pid = :current_pid;

The C statements that process the query, taken from Appendix A.3.1, are listed with
line numbers:

/*line 1*/ for(i=0; i<NR_PROCS; i++){

/*line 2*/ if((proc[i].proc_flags & IN_USE != 0) &&

/*line 3*/ (proc[i].pid == parent_pid))

/*line 4*/ {

/*line 5*/ parent_proc = proc[i];

/*line 6*/ break;

/*line 7*/ }

/*line 8*/ }

/*line 9*/ ino = parent_proc.ino;

/*line 10*/ dev = parent_proc.dev;

/*line 11*/ ctime = parent_proc.ctime;

/*line 12*/ sp = parent_proc.sp;

/*line 13*/ wpid = parent_proc.wpid;

/*line 14*/ proc_flags = parent_proc.proc_flags;

The corresponding assembly instructions for the above C code are shown below. They
are annotated with the line numbers in the C program.

!**********************************

!*********** line 1****************

!**********************************

movl $0, -12(%ebp)

150

!1 instruction

!**********************************

.L8:

cmpl $31, -12(%ebp)

jle .L11

!2 instructions

!**********************************

jmp .L9

!1 instruction

!**********************************

!************line 2 ***************

!**********************************

.L11:

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

sall $3, %eax

movl proc+60(%eax), %eax

andl $1, %eax

testl %eax, %eax

je .L10

!11 instructions

!**********************************

!************line 3 ***************

!**********************************

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

sall $3, %eax

movl proc(%eax), %eax

cmpl 8(%ebp), %eax

jne .L10

!10 instructions

!**********************************

!************line 5****************

!**********************************

movl -12(%ebp), %edx

movl %edx, %eax

sall $3, %eax

addl %edx, %eax

sall %eax

addl %edx, %eax

151

sall $3, %eax

leal -200(%ebp), %edi

leal proc(%eax), %esi

cld

movl $38, %eax

movl %eax, %ecx

rep

movsl

!14 instructions

!**********************************

!************line 6****************

!**********************************

jmp .L9

!1 instruction

!**********************************

!************line 8****************

!**********************************

.L10:

leal -12(%ebp), %eax

incl (%eax)

jmp .L8

!3 instructions

!**********************************

!**********************************

!************line 9****************

.L9:

movl -148(%ebp), %eax

movw %ax, -222(%ebp)

!2 instructions

!**********************************

!************line 10***************

!**********************************

movw -146(%ebp), %ax

movw %ax, -224(%ebp)

!2 instructions

!**********************************

!************line 11***************

!**********************************

movl -144(%ebp), %eax

movl %eax, -228(%ebp)

!2 instructions

!**********************************

!************line 12***************

!**********************************

movl -136(%ebp), %eax

movl %eax, -240(%ebp)

!2 instructions

!**********************************

152

!************line 13***************

!**********************************

movl -192(%ebp), %eax

movl %eax, -236(%ebp)

!2 instructions

!**********************************

!************line 14***************

!**********************************

movl -140(%ebp), %eax

movl %eax, -232(%ebp)

!2 instructions

!**********************************

NR PROC is 32. By our assumption, 3
4

of the elements in proc are in use and they

are distributed evenly. In addition, the loop iterates 32
2

= 16 times on average to find the

qualified element that matches the process id parameter. Therefore, from the the number

of assembly instructions for each each line of the C code, the cost to process the SQL

statement is
cost =1 + 2× 16 (line 1)

+ 11× 16 (line 2)

+ 10× 16× 3

4
(line 3)

+ 14 (line 5)

+ 1 (line 6)

+ 3× (16− 1) (line 8)

+ 2 + 2 + 2 + 2 + 2 + 2 (line 9-14)

=401

Example A.3.2. In exit, the opened files are to be closed. The C/SQL statements (from
Appendix A.3.3) are:

EXEC SQL UPDATE filp set filp_count = filp_count - 1

WHERE EXISTS (

SELECT * FROM proc_filp

WHERE proc_filp.proc_id = :current_pid

AND proc_filp.filp_id = filp.filp_id

);

EXEC SQL UPDATE inode set count = count - 1

WHERE EXISTS (

153

w

proc_filp

filp

w

inode

1 2

3 4

5

6

7

w

inodefilp

proc_filp filp

r

w r

w

Figure A.12: Part of the finite state machine of exit

SELECT * from filp

WHERE filp.filp_count = 0

AND filp.inode_id = inode.inode

)

EXEC SQL DELETE FROM proc_filp

WHERE proc_id = :current_pid;

EXEC SQL DELETE FROM filp

WHERE filp_count = 0;

EXEC SQL DELETE FROM inode

WHERE count = 0;

They represent the subgraph of the finite state in Figure A.8 generated by Node 1 to 7. We

show the subgraph in Figure A.12.
The C program that process the queries, taken from Appendix A.3.3, are:

/*line 1*/ for(i=0; i<OPEN_MAX; i++){

/*line 2*/ if((current_proc_ptr->fp_filp[i])!=NIL_FILP){

/*line 3*/ (current_proc_ptr->fp_filp[i])->filp_count--;

/*line 4*/ if((current_proc_ptr->fp_filp[i])->filp_count == 0){

/*line 5*/ (current_proc_ptr->fp_filp[i])->filp_ino->count--;

/*line 6*/ }

/*line 7*/ current_proc_ptr->fp_filp[i] = NIL_FILP;

/*line 8*/ }

/*line 9*/ }

To map the C statements to the embedded SQL statements, we partition the for loop. The

154

first embedded SQL statement that joins filp and proc filp is processed by scanning the

fp filp array in the process descriptor. So the first join (the loop with with state 1 and 2 in

Figure A.12) is processed by line 1, 2, 3, 8, and 9. The second one that joins filp and inode

is processed by line 1, 2, 5, 6, 8, and 9. The third deletes the relevant rows in the proc filp

table. This is processed by line 1, 2, 7, 8, 9. The last two delete statements actually have

nothing to do at the physical level, because when the reference counts in inode t and filp t

equal to 0, the entry is free.
The assembly code is:

!**********************************

!************line 1****************

!**********************************

movl $0, -4(%ebp)

!1 instruction

!**********************************

.L7:

cmpl $19, -4(%ebp)

jle .L10

!2 instructions

!**********************************

jmp .L8

!1 instruction

!**********************************

!************line 2****************

!**********************************

.L10:

movl -12(%ebp), %edx

movl -4(%ebp), %eax

cmpl $0, 68(%edx,%eax,4)

je .L9

!4 instructions

!**********************************

!************line 3****************

!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

decl (%eax)

!4 instructions

!**********************************

!************line 4****************

!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

155

cmpl $0, (%eax)

jne .L12

!5 instructions

!**********************************

!************line 5****************

!**********************************

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl 68(%edx,%eax,4), %eax

movl 4(%eax), %eax

decl (%eax)

!5 instructions

!**********************************

!************line 7****************

!**********************************

.L12:

movl -12(%ebp), %edx

movl -4(%ebp), %eax

movl $0, 68(%edx,%eax,4)

!3 instructions

!**********************************

!************line 9****************

!**********************************

.L9:

leal -4(%ebp), %eax

incl (%eax)

jmp .L7

!3 instructions

!**********************************

The costs are:

State 1 is processed by the 2 instructions immediately under .L7 for line 1, i.e., one cmpl

and one jle. Its cost is 2.

State 2 is processed by line 2 and 3. As we assume half of the elements in fp filp are

non-null pointers and the other half are null, there is 50% probability that line 3 is

executed. Therefore,

cost =4 (line 2)

+ 4× 0.5 (line 3)

=6

Arc(1, 2) has cost 0.

156

Arc(2, 1) is done by line 9. Its cost is 3.

Arc(1, 3) is processed by 2 instructions for line 1 (the first one movl that initializes and

the last one jmp). Its cost is 2.

State 3 is similar to state 1. Its cost is 2.

Arc(3, 4) has cost 0.

State 4 is processed by line 2, 5, and 6 (empty). As we assume that half of fp filp

elements are not null, the probability that line 4 is executed is 50%. We also assume

the probability that line 5 is executed is 40%.

cost =4 (line 2)

+ 5× 0.5 (line 4)

+ 5× 0.4 (line 5)

=9

Arc(4, 3) is processed by line 9. The cost is 3.

State 5 is processed by line 1, 2, 7, 8 (empty), and 9. As the state occupies the whole loop

block, OPEN MAX is 20, and we assume 10 elements are not null, the total cost

is,

cost =1 + 2× 20 + 1 (line 2)

+ 4× 20 (line 2)

+ 3× 10 (line 7)

+ 3× 19 (line 9)

=209

Arc(3, 5) is done by the last instruction for line 1. So the cost is 1.

Arc(5, 6), State 6 and State 7 all have the cost 0.

The transaction types with the costs we have acquired are shown in Figure A.13 to

A.17. The numbers attached to the states and the arcs are their costs.

157

proc

r

r

proc segment

r

segment

r

n

r

pids

proc

r

err

segment

segment

w

w

segment

w

proc

proc_filp

filp

ready_user_proc

w

w

w

Succ

n

w

6

559
4

2

6

0
44

0

0

5

0

0

6

0

16
2

401

372

0

5

3

164

3

5

22

03

6

51

hole 398

w

9

segment

r

40

16

2

4

1

Figure A.13: The costs of fork

A.3.5 Calculating the locking cost

Spinlock

We use the assembly code that implements spinlock locking in Linux [11]. It is assumed
that the lock is encoded in a byte slp.

1: lock; decb slp

jns 3f

2: cmpb $0, slp

pause

jle 2b

jmp 1b

3:

The unlocking code is:

lock; movb $1, slp

So when the value of slp is 1, the lock is free. The locking code will directly jump to

label 3. So it takes 2 instructions (the first 2 instructions). Otherwise, the code loops after

label 2 and tests whether the value is reset to 1. If it is, the code goes back to label 1 to

retest whether the lock is still free. So the resumption of the process takes 4 instructions,

including a jle and a jmp. The unlocking has only 1 instruction.

158

w

0

0

rsegment

0

segment

w

385

proc

0

209

92

62

proc

240

0

0

32

3

1

3

5

404

774

w

5

404proc

inode

512

proc

r

proc

hole

w

hole

w w

holehole hole

w

w

w

w

424

w

w

filp

proc_filp

w

6 2

783

373

0

0
0

408 408

408

392391

0

0

0 11

0

1
0

0

6

6
6

2

0

0

0

0

9

0
Succ

w

0
4

3

0

1

0

r w

inodefilp

filpproc_filp

r w

10

3

4

12

6
2

767

000

1313

3

43

432
64

0

9

4

391

2
0

0

12

20
6

392
0

424

512

20

r 0

0

3

hole

w

proc

w w

hole

w

hole

w
hole

hole

w

hole

w

hole

w hole

segment

w

hole

w

w w
proc proc

proc

w

proc

w

proc

w

proc

segment

w

w

r
segment

r
proc

w

ready_user_proc

r

proc

Figure A.14: The costs of exit

159

proc

829

781

799

proc

rr751

procproc

proc proc

426 rr

406r

proc

10

5

2

5

r

r

4

4

2

0

0

33

1

3

2 5

4

3

3

2

0

0

3

3

7
7

r

2

ok

w
proc

wproc

wproc

w

w

proc

proc

error

Figure A.15: The costs of waitpid

X-lock

First we consider the costs of x-locks. The data structures of an x-lock are:

#define LOCK_FREE 0

#define LOCK_X 1

typedef int lock_mode_t;

/* the waiting queue */

struct wait_queue_t {

struct proc_t * head;

struct proc_t * tail;

};

/* the semaphore */

struct semaphore_t {

lock_mode_t mode; /* free or exclusively locked */

spinlock_t lock;

pid_t owner;

struct wait_queue_t wait_queue;

};

Also we add a pointer field into the process descriptor structure (proc t defined in
Appendix A.3.1.

160

13
0

0
403

7

9

9

13

12

25

398

0

767

424

512

373

00 424

1313

4

3
6

42

640

0

43

500
0

0

segment

w

segment

segment

w

w

proc hole

w

w

hole

hole

w

w

hole

w

w

0

408

392391

w

w

512

0

46

3440

w

proc segment

w

segment

767

inode 0

n 3succ

0

0

189

0filp

w

proc_filp

w
11

3

0

w

0

rw

proc_filpfilp

inode

rw

filp

13

8

0

2

2

0

1

0

391

392

0

0

20

20

0

3

93

4

2

12

6

0

2

3293
w

0

16

7

11

0

0

0

0

3

9

4

12

6

408

hole

hole

hole

hole

hole

hole

w
hole

w
hole

w

proc
segment

r

proc

r

segment r
errorhole

rr

proc r

w

segment

segment

r

r

w

hole

w

hole

w

hole

w

r

segment

r
proc

Figure A.16: The costs of exec

161

r

r

w

w

9

12

12

9

3

segment 12

3

388
6

6

5

49

20

42

45

38

4

4

ok

3

0

w

segment

segment

segment

error
r

segmentproc

Figure A.17: The costs of brk

struct proc_t {

.....

/* add waiting queue list */

struct proc_t * wait_next;

} proc[NR_PROCS];

The pointer links the process descriptor into the waiting queue. Based on the Linux
spinlock, we implement the x-lock locking and unlocking by ourselves. The code is given
below.

#define INVALID_PID (-1000)

/* add the process to the tail of the waiting queue */

void add_wait(struct wait_queue_t *wait_queue, struct proc_t *proc)

{

proc->wait_next = NIL_PROC;

/* add to tail */

if(wait_queue->tail){

(wait_queue->tail)->wait_next = proc;

}

wait_queue->tail = proc;

/* add to header if the queue is empty */

if(!(wait_queue->head)){

(wait_queue)->head = proc;

}

}

162

/* remove the process from the ready list,

and schedule another process to run. */

void unschedule(struct proc_t * current_proc_ptr){

struct proc_t *xp, *rp, **qtail;

/* copied from unready() and pick_proc() */

if((xp = rdy_head[USER_Q]) == current_proc_ptr){

rdy_head[USER_Q] = xp->p_next_ready;

/* pick the next proc to run */

if ((rp = rdy_head[TASK_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ((rp = rdy_head[SERVER_Q]) != NIL_PROC) {

proc_ptr = rp;

}

else

if ((rp = rdy_head[USER_Q]) != NIL_PROC) {

proc_ptr = rp;

bill_ptr = rp;

}else{

/* No one is ready. Run the idle task. The idle task might be made an

* always-ready user task to avoid this special case.

*/

bill_ptr = proc_ptr = &proc[IDLE];

}

}

qtail = &rdy_tail[USER_Q];

while (xp->p_next_ready != current_proc_ptr){

if ((xp = xp->p_next_ready) == NIL_PROC) break;

}

if(xp != NIL_PROC){

xp->p_next_ready = xp->p_next_ready->p_next_ready;

if (*qtail == current_proc_ptr) *qtail = xp;

}

}

/* acquire an exclusive lock. */

void x_lock(struct proc_t* current_proc, struct semaphore_t * sem){

spin_lock(&(sem->lock));

if(sem->mode != LOCK_X) {

sem->mode = LOCK_X;

sem->owner = current_proc->pid;

spin_unlock(&(sem->lock));

163

return;

}

else{

/* must be locked */

/* if the current proc already locks it, do nothing. */

if(sem->owner == current_proc->pid){

spin_unlock(&(sem->lock));

return;

}

/* block it. */

add_wait(&(sem->wait_queue),current_proc);

unschedule(current_proc);

spin_unlock(&(sem->lock));

}

}

/* remove the process from the head of the waiting queue */

void remove_wait(struct wait_queue_t *queue, struct proc_t *proc){

proc = NIL_PROC;

if(queue->head != NIL_PROC){

proc = queue->head;

queue->head = (queue->head)->wait_next;

}

}

/* put the process to the ready list */

void schedule(struct proc_t *current_proc){

if(rdy_head[USER_Q] == NIL_PROC)

rdy_tail[USER_Q] = current_proc;

rdy_head[USER_Q] -> p_next_ready = rdy_head[USER_Q];

rdy_head[USER_Q] = current_proc;

}

/* unlock */

void x_unlock(struct proc_t *current_proc, struct semaphore_t *sem){

struct proc_t *proc_wakeup;

spin_lock(&(sem->lock));

/* I am not the owner of the lock. do nothing. */

if(sem->mode != LOCK_X || sem->owner != current_proc->pid){

spin_unlock(&(sem->lock));

return;

}

/* wake up the first proc in the wait queue. */

remove_wait(&(sem->wait_queue), proc_wakeup);

164

if(NIL_PROC != proc_wakeup){

/* if wait queue is not empty */

schedule(proc_wakeup);

sem->owner = proc_wakeup->pid;

}

else{

/* no waiting process */

sem->owner = INVALID_PID;

sem->mode = LOCK_FREE;

}

spin_unlock(&(sem->lock));

}

By using the machine instruction counting method used in Section 4.2.2, we calculate

the average cost for locking. We assume the probability that queue is empty is 1
2
. We omit

further details and just give the result. For locking, if the lock is free and the process can

get it immediately, the cost is 30 instructions; if the lock is held by another process and

the process has to wait, the cost is 134. The unlocking takes 62 instructions.

Rw-lock

The second type of lock, rw-lock, allows readers to share it. It follows the classical model
of multiple readers and single writer. The data structures are:

#define LOCK_INVALID (-1)

#define LOCK_FREE 0

#define LOCK_S 1

#define LOCK_X 2

typedef int lock_mode_t;

/* the waiting queue */

struct wait_queue_t {

struct proc_t * head;

struct proc_t * tail;

};

struct rw_semaphore_t {

lock_mode_t mode; /* free, share, or or exclusive */

spinlock_t lock;

int count; /* number of holders: 0 free,

1 exclusive or shared, >1 shared */

struct wait_queue_t wait_queue;

165

};

We add three fields to the process descriptor structure (proc t originally defined in
Appendix A.3.1.

struct proc_t {

.....

struct proc_t * wait_next; /* waiting queue link */

lock_mode_t hold_lock; /* lock mode the process is holding */

lock_mode_t wait_for_lock; /* lock mode the process is waiting for */

} proc[NR_PROCS];

wait next is the linking pointer inside the waiting queue. hold lock shows the mode of
the lock the process is holding (free, shared, or exclusive). When a process is waiting for
a lock in the waiting queue, wait for lock shows the mode of the lock it is waiting for.
The function schedule, unschedule, add wait, and remove wait are the same as in
Appendix A.3.5. The other functions added are listed below.

/* check what kind of lock the first process in the wait queue

requests for */

lock_mode_t get_header_wait_for(struct wait_queue_t *queue){

if(queue->head == NIL_PROC){

return LOCK_INVALID;

}

else{

return queue->head->wait_for_lock;

}

}

/* locking */

void rw_lock(struct proc_t *current_proc,

struct rw_semaphore_t *sem,

lock_mode_t mode)

{

spin_lock(&(sem->lock));

if(sem->mode == LOCK_FREE) {

/* lock free, so obtain it. */

sem->mode = mode;

sem->count = 1;

current_proc->hold_lock = mode;

spin_unlock(&(sem->lock));

return;

}

else{

/*

/* if the current proc already locks it, do nothing. */

166

if(mode <= current_proc->hold_lock){

spin_unlock(&(sem->lock));

return;

}

else

if(mode == LOCK_S && sem->mode == LOCK_S &&

(sem->wait_queue).head == NIL_PROC)

{

sem->mode = mode;

sem->count++;

current_proc->hold_lock = mode;

spin_unlock(&(sem->lock));

return;

}

/* block it. */

add_wait(&(sem->wait_queue),current_proc);

current_proc->wait_for_lock = mode;

unschedule(current_proc);

spin_unlock(&(sem->lock));

}

}

/* unlocking */

void rw_unlock(struct proc_t *current_proc,

struct rw_semaphore_t *sem){

struct proc_t *proc_wakeup;

spin_lock(&(sem->lock));

/* I am not the owner of the lock. do nothing. */

if(sem->mode == LOCK_FREE ||

sem->mode != current_proc->hold_lock) {

spin_unlock(&(sem->lock));

return;

}

sem->count--;

/* wake up procs in the wait queue. */

if(sem->count == 0){

remove_wait(&(sem->wait_queue), proc_wakeup);

/* the wait queue is empty? */

if(NIL_PROC != proc_wakeup){

/* not empty, wake up the first one */

sem->mode = proc_wakeup->wait_for_lock;

proc_wakeup->hold_lock = sem->mode;

schedule(proc_wakeup);

167

/* wake up more readers if necessary */

if(LOCK_S == sem->mode){

while(get_header_wait_for(&(sem->wait_queue)) == LOCK_S)

{

remove_wait(&(sem->wait_queue), proc_wakeup);

proc_wakeup->hold_lock = LOCK_S;

schedule(proc_wakeup);

}

}

}

else{

/* wait queue empty */

sem->mode = LOCK_FREE;

}

}

current_proc->hold_lock = LOCK_FREE;

spin_unlock(&(sem->lock));

}

Following the same assumption as the above x-lock, we calculate the numbers of instruc-

tions of locking and unlocking. For the locking in shared mode, a successful locking

takes 37 instructions, and if the lock cannot be granted, a blocking takes 136 instruction.

For the locking in exclusive mode, the corresponding costs are 32 and 131 respectively.

Unlocking takes 68 instructions on average.

Bibliography

[1] Linux Cross-Reference. URL http://lxr.linux.no.

[2] Transaction Processing Performance Council. URL http://www.tpc.org.

[3] Data Management in Embedded Real-Time Software Systems. NSERC Colloborative

Research Project 661-135/94, Government of Canada, 1994.

[4] Static Embedded OQL for Real-Time Applications. Research Project, Information

Technology Research Center, Government of Ontario, 1996.

[5] Rudolf Bayer and Mario Schkolnick. Concurrency of Operations on B-Trees. Acta

Informatica, 9:1–21, 1977.

[6] C. Beeri, P.A. Bernstein, N. Goodman, M.Y. Lai, and D.E. Shasha. A Concurrency

Control Theory for Nested Transactions (Preliminary Report). In Proceedings of the

Second ACM Symposium on Principles of Distributed Computing, pages 45–62, Mon-

treal Canada, August 1983.

[7] Catriel Beeri, Philip A. Bernstein, and Nathan Goodman. A Model for Concurrency

in Nested Transactions Systems. Journal of ACM, 36(2):230–269, April 1989.

[8] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, 1987.

[9] Stephen Blott and Henry F. Korth. An almost-serial protocol for transaction execution

in main-memory database systems. In Proceedings of the 28th VLDB Conference, 2002.

168

169

[10] Alex Borgida. Description Logics in Data Management. IEEE Transactions on Knowl-

edge and Data Engineering, 7(5):671–682, October 1995.

[11] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly, 2nd

edition, 2002.

[12] Gael N. Buckley and Avi Silberschatz. Concurrency Control in Graph Protocols by

Using Edge Locks. In Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, pages 45–50, 1984.

[13] Petrus Kai Chung Chan. Optimizing OQL on Legacy Main Memory Data Structures

with Existential Graphs. Master’s thesis, University of Waterloo, Waterloo, ON,

Canada, 1997.

[14] Vinay K. Chaudhri and Vassos Hadzilacos. Safe Locking Policies for Dynamic Data-

bases. In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, May 22-25, 1995, San Jose, California, pages 233–

244. ACM Press, 1995.

[15] Vinay K. Chaudhri, Vassos Hadzilacos, and John Mylopoulos. Concurrency Control

for Knowledge Bases. In Proceedings of the 3rd International Conference on Knowledge

Representation and Reasoning, pages 762–773, October 1992.

[16] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. McGraw Hill, 2001.

[17] Albert Croker and David Maier. A dynamic tree-locking protocol. In Proceedings of

the Second International Conference in Data Engineering, pages 49–56, Los Angeles,

CA, USA, 1986.

[18] K. P. Eswaran, J. Gray, R.A. Lorie, and I.L. Traiger. The Notions of Consistency and

Predicate Locks in Database System. Communications of the ACM, 19(16):624–633,

1976.

[19] Pasal Felber and Michael K. Reiter. Advanced Concurrency Control in Java. Con-

currency and Computation: Practice and Experience, 14(4):261–285, 2002.

170

[20] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of the ACM SIG-

MOD Annual Conference on Management of Data, pages 249–259, New York, NY,

USA, 1987. ACM Press.

[21] Hector Garcia-Molina and Kenneth Salem. Main memory database systems: An

overview. IEEE Transactions on Knowledge and Data Engineering, 4(2):509–516,

December 1992.

[22] Seymour Ginsburg and Richard Hull. Order Dependency in the Relational Model.

Theoretical Computer Science, 26:149–195, 1983.

[23] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

[24] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,

1991.

[25] Z. Kedem, C. Mohan, and A. Silberschatz. An efficient deadlock removal scheme for

non-two-phase locking protocols. In Proceedings of 8th International Conference on

Very Large Data Bases, pages 91–97, Mexico City, Mexico, September 1982.

[26] Zvi Kedem and Abraham Silberschatz. Controlling Concurrency Using Locking Pro-

tocols (Preliminary Report). In Proceedings of 20th Symposium on Foundations of

Computer Science, pages 274–285, October 1979.

[27] Zvi M. Kedem and Abraham Silberschatz. Locking Protocols: From Exclusive to

Shared Locks. Journal of ACM, 30(4), October 1983.

[28] Udo Kelter. The queue protocol: A deadlock-free homogeneous non-two-phase locking

protocol. In Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 142–151, Austin, Texas, USA, March 1988.

[29] H. T. Kung and Philip L. Lehman. Concurrency Manipulation of Binary Search Trees.

ACM Transactions on Database Systems (TODS), 5(3):354–382, September 1980.

171

[30] Yat-Sang Kwong and Derick Wood. A New Method for Concurrency in B-Trees. IEEE

Transactions on Software Engineering, 8(3):211–222, May 1982.

[31] Stella Yuen Mei Lai. On Integrating Legacy Main Memory Data Structure with

Database Schema. Master’s thesis, University of Waterloo, Waterloo, ON, Canada,

1999.

[32] Vladimir Lanin and Dennis Shasha. Tree Locking on Changing Trees. Technical

report, Courant Institute of Mathematical Sciences, New York University, 1990.

[33] Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent operations on

B-trees. ACM Transactions on Database Systems (TODS), 6(4):650–670, December

1981.

[34] Huizhu Liu, David Toman, and Grant Weddell. Fine Grained Information Integration

with Description Logics. In Proceedings of the 2002 International Description Logics

Workshop (DL-2002), pages 1–12, Toulouse, France, April 2002.

[35] Udi Manbar and Richard E. Ladner. Concurrency control in a dynamic search struc-

ture. ACM Transactions on Database Systems (TODS), 9(3):439–455, September

1984.

[36] C. Mohan, Donald Fussell, and Zvi M. Kedem. Locking Conversion in Non-Two-Phase

Locking Protocols. IEEE Transactions on Software Engineering, 11(1), january 1985.

[37] Y. Mond and Yoav Raz. Concurrency Control in B+-Trees Databases Using Prepara-

tory Operations. In Proceedings of 11th International Conference on Very Large Data

Bases (VLDB), pages 331–334, Stockholm, Sweden, August 1985.

[38] J. E.B. Moss. Nested transactions: an approach to reliable distributed computing. MIT

Press, 1985.

[39] Don Roberts. The Existential Graphs of Charles S. Peirce. Mouton, The Hague, 1973.

[40] Kenneth Salem, Hector Garcia-Molina, and Jeannie Shands. Altruistic Locking. ACM

Transactions on Database Systems, 19(1):117–165, March 1994.

172

[41] Dennis Shasha and Nathan Goodman. Concurrent search structure algorithms. ACM

Transactions on Database Systems (TODS), 13(1):53–90, March 1988.

[42] Abraham Silberschatz and Zvi Kedem. Consistency in Hierarchical Database Systems.

Journal of ACM, 27(1), January 1980.

[43] Abraham Silberschatz and Zvi M. Kedem. A Family of Locking Protocols for Database

Systems that Are Modeled by Directed Graphs. IEEE Transactions on Software

Engineering, 8(6):558–562, November 1982.

[44] Lubomir Stanchev and Grant Weddell. Index Selection for Compiled Database Ap-

plications in Embedded Control Programs. In Proceedings of CASCON 2002, pages

156–170, Toronto, ON, Canada, September - October 2002.

[45] Lubomir Stanchev and Grant Weddell. Index Selection for Embedded Control Appli-

cations using Description Logics. In Proceeding of the 2003 Internation Workshop on

Description Logics (DL-2003), pages 9–19, Rome, Italy, September 2003.

[46] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: design and im-

plementation. Prentice Hall, 2nd edition, 1997.

[47] David Toman and Grant Weddell. On Attributes, Roles, and Dependencies in De-

scription Logics and the Ackermann Case of the Decision Problem. In Carole Goble,

Deborah L. McGuinness, Ralf Möller, and Peter F. Patel-Schneider, editors, Working

Notes of the 2001 International Description Logics Workshop (DL-2001), pages 76–85,

Stanford, CA, USA, 2001.

[48] David Toman and Grant E. Weddell. Query Processing in Embedded Control Pro-

grams. In Proceedings of the Second International Workshop on Databases in Telecom-

munications, number 2209 in Lecture Notes in Computer Science, pages 68–87.

Springer-Verlag, 2001.

[49] Uresh Vahalia. Unix Internals: the New Frontiers. Prentice Hall, 1996.

173

[50] M.F. van Bommel and G.E. Weddell. Reasoning About Equations and Functional

Dependencies on Complex Objects. IEEE Transactions on Knowledge and Data En-

gineering (TKDE), 6(3):455 – 469, June 1994.

[51] Grant E. Weddell. Reasoning about Functional Dependencies Generalized for Se-

mantic Data Models. ACM Transactions on Database Systems (TODS), 17(1):32–64,

1992.

[52] Gerhard Weikum. Principles and Realization Strategies of Multi-level Transaction

Management. ACM Transactions on Database Systems, 16(1):132–180, March 1991.

[53] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory,

Algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann,

2001.

[54] M. Yannakakis, C. H. Papadimitriou, and H.T Kung. Locking policies: Safety and

Freedom from Deadlock. In Proceedings of 20th IEEE Symposium on Foundations of

Computer Science, pages 286–297, October 1979.

[55] Mihalis Yannakakis. A Theory of Safe Locking Policies in Database Systems. Journal

of ACM, 29(3):718–740, July 1982.

[56] Mihalis Yannakakis. Freedom from Deadlock of Locking Policies. SIAM Journal on

Computing, 11(2):391–408, May 1982.

[57] Heng Yu and Grant Weddell. Investigations in Tree Locking for Compiled Database

Applications. Technical Report CS-2003-25, School of Computer Science, University

of Waterloo, Waterloo, ON, Canada, September 2003.

[58] Heng Yu and Grant Weddell. Investigation in Tree Locking for Compiled Database

Applications. In Proceedings of CASCON 2004, pages 217–231, Toronto, ON, Canada,

October 2004.

[59] Heng Yu and Grant Weddell. Building an Embedded Control Program Workload.

Technical Report CS-2005-04, School of Computer Science, University of Waterloo,

Waterloo, ON, Canada, February 2005.

