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Abstract

Orthogonal Frequency Division Multiplexing, so called OFDM, has found a prominent place

in various wireless systems and networks as a method of encoding data over multiple carrier

frequencies. OFDM-based communication systems, however, lacking inherent diversity, are

capable of benefiting from different spatial diversity schemes. One such scheme, Cyclic Delay

Diversity (CDD) is a method to provide spatial diversity which can be also interpreted as a

Space-Time Block Coding (STBC) step. The main idea is to add more transmit antennas

at the transmitter side sending the same streams of data, though with differing time delays.

In [1], the capacity of a point-to-point OFDM-based channel with CDD is derived for inputs

with Gaussian and discrete constellations. In this dissertation, we use the same approach for

an OFDM-based single-input single-output (SISO) two-user interference channel (IC). In our

model, at the receiver side, the interference is treated as noise. Moreover, since the channel is

time-varying (slow-fading), the Shannon capacity in the strict sense is not well-defined, so the

expected value of the instantaneous capacity is calculated instead. Furthermore, the channel

coefficients are unknown to the transmitters. Thus, in this setting, the probability of outage

emerges as a reasonable performance measure. Adding an extra antenna in the transmitters,

the SISO IC turns into an MISO IC, which results in increasing the diversity. Both the

continuous and discrete inputs are studied and it turns out that decoding interference is

helpful in some cases. The results of the simulations for discrete inputs indicate that there
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are improvements in terms of outage capacity compared to the ICs with single-antenna

transmitters.
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Chapter 1

Introduction and Background

An interference channel is a channel with N transmitters and N receivers. Each transmitter

wants to send data to its corresponding receiver. So in each receiver there is one desire

signal and N-1 interference signals and each communication gets interfered by the other

communications [2]. The interference channel is an important channel in communication

since many communication systems such as, cellular and ad-hoc networks can be modeled

by that channel. An interference channel is one with N transmitters and N receivers. As each

transmitter wants to send data to its corresponding receiver, there is one desire signal and

N-1 interference signals in each receiver; hence, each communication is interfered by other

communications [2]. The interference channel is an important channel in communication,

since many communication systems, such as cellular and ad-hoc networks, can be modeled

after that channel.

1.1 Introduction

In this section, we first define capacity in general and then discuss interference channel (IC)

capacity in particular.
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1.1.1 Capacity Definition

In a channel, capacity is the highest rate that information can be transmitted with arbitrarily

low probability of error in terms of bits-per-channel use. Consider that in a discrete point-

to-point channel x is the space of the input signal, and y is the space of the output signal.

A channel is memoryless if the output depends on the input at that time. As well, it is

independent from the previous channel inputs or outputs.

Capacity of a discrete memoryless channel is defined as

C = sup
p(x)

I(X ; Y ) (1.1)

where I is the mutual information between input sequence X and output sequence Y , and

p is the probability distribution of the input [3].

Now consider a discrete memoryless M-user interference channel. Finite sets of x1, x2, ...,

xM are input alphabets and finite sets of y1, y2, ..., yM are output alphabets. q(x) is the set

of all joint probability distributions pi(x) i = 1, ...,M . The capacity is as follows:

Ci = sup
q(x)

I(Xi; Yi|X1, ..., Xi−1, Xi+1, XM) (1.2)

1.1.2 Interference Channel Capacity

The full capacity region of an interference channel is still an open problem. The largest

achievable rate for interference channel capacity is known as the Han-Kobayashi bound [4].

In this method, part of the noise is treated as noise, and part of it is decoded. Etkin et

al. have shown that the Han-Kobayashi inner bound can achieve the Gaussian interference

channel capacity within one bit, first as a symmetric case [5] and then for a general case [6].

There are also some results in [7, 8, 9] regarding the outer bound of capacity. Assume an

interference channel with two transmitters and two receivers, as shown in Figure 1.
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g11

g21

g12

g22

Figure 1.1: Two-user interference channel

Let x1 be the input signal from transmitter 1 and x2 from transmitter 2. Hence, the

output signals are:

y1 = g11x1 + g21x2 + n1. (1.3)

and

y2 = g22x2 + g12x2 + n2. (1.4)

where n1 and n2 are additive Gaussian noise.

ni = G(0, Ni), for i = 1, 2. (1.5)

Classifying interference channels with regards to the strength of the interference makes it eas-

ier to ascertain bounds on capacity. Such cases for discrete memoryless, two-user interference

channel are defined as follows:

Very strong interference-

If

I(x1; y2) ≥ I(x1; y1|x2) (1.6)

I(x2; y1) ≥ I(x2; y2|x1) (1.7)
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With regards to Gaussian input, and after applying some algebraic manipulation according

to Figure 1, Equations (1.6) and (1.7) simplify as follows:

1 + (
g221P1

g222P2 +N2
) ≥ 1 + (

g211P1

N1
) (1.8)

1 + (
g212P2

g211P1 +N1
) ≥ 1 + (

g222P2

N2
) (1.9)

Hence,

(g221P1N1) ≥ (g211P1)(g
2
22P2 +N2) (1.10)

(g212P2N2) ≥ (g222P2)(g
2
11P1 +N1) (1.11)

Let us now normalize the channel coefficients and additive noises in such a way that the

power of both Gaussian noise and forward gains become 1. In order to do that, we must first

divide Equation (1.3) by N1 and Equation (1.4) by N2. We can then define the new channel

coefficients as follows:

α11 = 1 α22 = 1 (1.12)

α12 = (
g212N2

g222N1

) (1.13)

α21 = (
g221N1

g211N2
) (1.14)

Additionally, we must define new power constraints.

q1 =
g211
N1

P1 (1.15)

q2 =
g222
N2

P2 (1.16)

After inserting the normalized coefficients into Equations (1.10) and (1.11), the result is:

α12 ≥ 1 + q1 (1.17)
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and

α21 ≥ 1 + q2 (1.18)

So, if Equations (17) and (18) are satisfied, we are in a very strong interference region.

Capacity in this region was obtained by Carleial and shows that interference under certain

conditions does not reduce capacity in [10, 11]. In despite of what one might expect (i.e.,

that the capacity region decreases monotonically when interference increases), when the

interference is too strong, the capacity region is the same as the capacity region with no

interference. In this region without any loss in rates, interference can be canceled [12].

Strong interference-

If

I(x1; y2|x2) ≥ I(x1; y1|x2) (1.19)

I(x2; y1|x1) ≥ I(x2; y2|x1) (1.20)

These inequalities compare the information in the desired signal with the information in the

undesired signal. After simplifying Equations (1.19) and (1.20), we have:

g221P1

N2
≥

g211P1

N1
(1.21)

g212P2

N1
≥

g222P2

N2
(1.22)

So if

α12 ≥ 1 (1.23)

α21 ≥ 1 (1.24)

and thus find ourselves in the strong interference region. Regarding Gaussian input, capacity

was established by Sato in [13]. Shortly thereafter, Costa and Gamal in [14] obtained results

on capacities of deterministic interference channels. They also established the capacity region

of discrete memoryless interference channels in this region.
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Weak interference-

If

I(x1; y2|x2) ≤ I(x1; y1|x2) (1.25)

I(x2; y1|x1) ≤ I(x2; y2|x1) (1.26)

Very weak interference-

If

I(x1; y2) ≤ I(x1; y1|x2) (1.27)

I(x2; y1) ≤ I(x2; y2|x1) (1.28)

Capacity for weak and very weak interference is unknown.

Another channel model that has been extensively studied is the cognitive interference channel

(CIC). In CICs, one of transmitters knows the message of another transmitter non-causally

[15]. CICs capacity in a very strong interference region has been proposed by Rini et al. in

[16], who also obtained new results [17] on the inner and outer bounds of CIC.

1.2 Different strategies for dealing with interference

There are different ways to deal with interference. In each situation one of these methods or a

combination of them is the optimum choice. There are various ways to deal with interference.

In a given situation, any one of these methods or a combination of them could prove the

optimum choice.
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1.2.1 Treat interference as noise

One way to deal with interference is to treat it as noise. According to Figure 1, we would

thus have:

R1 ≤ 0.5 log(1 +
g211P1

g221P2 +N1
) (1.29)

R2 ≤ 0.5 log(1 +
g222P2

g212P1 +N2

) (1.30)

1.2.2 Avoiding Interference

In this strategy, the available time interval or bandwidth is divided between the users. Hence,

in the K-user channel, the rate per user becomes
1

K
log(1 + SNR) + o(log(1 + SNR)).

Time Division Multiplexing (TDM)

In time division multiplexing, each user sends a signal at a certain time interval, with no

overlap between intervals (i.e., no users send data simultaneously). Public telephone net-

works and 2G mobile systems use this method. So, if T is the whole time interval available

and we assign γT to the first user and (1− γ)T to the second user, we have:

R1 ≤ 0.5γ log(1 +
g211

P1

γ

g221
P2

1−γ
+N1

) (1.31)

R2 ≤ 0.5(1− γ) log(1 +
g222

P2

1−γ

g212
P1

γ
+N1

) (1.32)

Frequency Division Multiplexing (FDM)

Frequency division multiplexing is a process that divides the total available bandwidth into

several non-overlapping frequency sub-bands. Each of these sub-bands is assigned to one of

the communication channels.
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1.2.3 Decoding Interference

In this method, both interference and message are decoded [18]. When interference is

stronger, there is an alternative to decode it instead of the desired signal. After subtracting

the decoded interference from the received signal, the result is the sum of the desired signal

and AWGN. In this way, the desired signal can be decoded. However, as the implementation

of this method is complicated, it is not commonly used [19]. As shown in [13], the decoding

interference in a strong interference region is optimal.

Channels that have more than one antenna in their transmitters and receivers are called

multiple-input multiple-output (MIMO) channels. Many studies have been carried out on

capacity in MIMO interference channels. In [20], capacity of MIMO IC in a strong interfer-

ence regime was established. It was shown that, in a very weak interference region, treating

interference as noise is optimal. This result has been generalized for MIMO IC in [21].

1.2.4 Interference Alignment

This method aligns the interferences in space and reduces the dimensions of the interferences

so that more spaces become available for the intended signals [22]. The alignment can be

either in time or in frequency. By using interference alignment in a k user interference

channel, it is possible to allocate roughly half of the space to the interference signals and

the remaining half to the desired signals, with the sum capacity characterized as C(SNR) =

K

2
log(1 + SNR) + o(log(1 + SNR)) [19].

1.3 Orthogonal Frequency DivisionMultiplexing (OFDM)

Instead of using one wideband carrier, orthogonal frequency division multiplexing uses or-

thogonal narrowband multi-carriers (i.e., OFDM bandwidth divided into several narrower

8
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d0
d1

dM−1

...
...

b0

b1

bN−1

b0, b1, .., bN−1

h1

h2

hM

...

Figure 1.2: OFDM Block Diagram

bands). By choosing a sufficient number of carriers, OFDM converts a frequency-selective

channel to flat sub-channels. OFDM can be seen as either a modulation or multiplexing

technique. In communications, modulation is the variation of one or more parameters of

a periodic waveform, which is called the carrier signal. These parameters are amplitude,

phase, and frequency, and the information is mapped to the change of these properties.

Multiplexing means sending multiple data streams over one signal through a shared channel.

OFDM is a useful method, especially in wideband communications. The difference between

FDM and OFDM is that, in OFDM, this division is done in such a way that the obtained

sub-channels are orthogonal and thus do not interfere with each other. Since orthogonality

is an important factor, a small degradation in frequency or phase causes inter-channel inter-

ference (ICI). One of the main reasons to use OFDM is to increase the robustness against

frequency-selective fading or multipath environments. Also, in a mono-carrier system, a

narrowband interferer can cause the entire link to fail, but in a multi-carrier system, just

one or few of the sub-carriers are affected. Error correction coding can be used to correct for

the few erroneous sub-carriers. In addition, it makes equalization easier. An OFDM block

diagram is presented in Figure 2.

Suppose that we have a flat channel with a bandwidth of W . We divide the available

bandwidth into N orthogonal sub-bands. As defined in Eq. (1.33), we can choose sinc pulses
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as the sub-carriers. In this case, the sub-carriers would be non-causal, and small errors in

sampling time would result in inter-symbol interference (ISI). Accordingly, we can use a

raised-cosine signal, which is a smoother pulse. However, it needs excess bandwidth for the

same rate.

Sinc(
t

T
) =

sin(πt)
T
πt
T

(1.33)

Raised− cosine(t) = sinc(
π

T
)
cos(πβt

T
)

1− 4π2t2

T 2

(1.34)

where β is the roll-off factor and the excess bandwidth is dependent on this parameter. The

bandwidth of raised-cosine is 1
2T
(β + 1).

For generating OFDM signals, we use an inverse fast Fourier transform (IFFT) block, as

shown in Figure 2. FFT is an algorithm to compute discrete Fourier transform (DFT) in an

efficient way. DFT is defined as

Xk =

N−1∑

n=0

xne
(−2πikn

N
) k = 0, ..., N − 1 (1.35)

and IDFT equation given by,

xn =

N−1∑

k=0

Xke
(−2πikn

N
) n = 0, ..., N − 1 (1.36)

1.4 Alamouti Space Time coding

The Alamouti technique uses two transmitting antennas and one receiving antenna [23].

In this method, by sending the same data from both antennas, diversity order two can be

achieved for flat-fading channels and AWGN. If we have two channels, assume h1 and h2 are

the channel coefficients with additive white Gaussian noises, n1 and n2. In two time-slots,

signals x1, x
∗
2 and x2,−x∗

1 from the first and second antenna are sent respectively.
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X=



x1 x∗

2

x2 −x∗
1


 , H=



h1

h2


 and, N=



n1

n2


.

So the received signal Y=



y1

y2


 is Y = XH + N . We define an equivalent channel and

rewrite the received signal as below.

Y
′

=



y1

y∗2






h1 h∗

2

h2 −h∗
1






x1

x2


 +



n1

n∗
2


.

The equivalent channel matrix is orthogonal. In [24] Rupp et al., the Alamouti scheme

is extended in the case of N = 2K transmitting antennas and one receiving antenna with

QPSK modulation. [25] develops space-time block coding (STBC) and presents it as a real

constellation. This coding method achieves full diversity, while for complex constellations it

achieves half of the maximum possible rate.

1.5 Diversity Scheme and Cyclic Delays

A diversity scheme is a technique that can improve the reliability of a message signal by

using more than one channel. In this technique, each channel has different characteristics

as multiple versions of the intended signal are sent, a redundancy that can actually help.

For example, by using diversity methods in multipath propagation, we turn a slow-fading

channel to a fast-fading one, or a flat channel to frequency-selective one.

Various types of diversity techniques are as follows:
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1.5.1 Time Diversity

In this technique, different versions of the intended signal are transmitted in different time

intervals, with the goal to increase time-selectivity.

1.5.2 Frequency Diversity

This method sends information on several frequency sub-channels. The available bandwidth

is divided into intervals and the effect of fading and attenuation is not the same on different

frequencies. Hence, the receivers choose the strongest signal.

1.5.3 spatial Diversity

One strategy to achieve spatial diversity is sending different versions of the desired signal

from multiple transmitting antennas or along several different paths. This method is also

called space-time coding (STC). Another strategy is having one transmit antenna and several

receive antennas so that the receiver adds the data from these multiple antenna linearly and

thereby results in diversity gain. This is also called reciprocity diversity [26] and relies on

different channels having different fading characteristics. In [27, 28], Winters proposes trans-

mitting diversity in Rayleighs fading channels. This method uses several transmit antennas,

with messages sent from antennas at various times. In [29, 30], Wittneben implements a sim-

ilar idea and introduces simulation diversity. The information in a flat fading environment

is sent by different antennas with different modulations. This goal is achieved by utilizing

finite impulse response filters. There are several techniques to implement spatial diversity

in OFDM systems [31].

12



S/P

OFDM
0

OFDM

OFDM

UC

UC

UC

1

M-1

... ...

DC IOFDM
Input Output

Figure 1.3: Subcarrier Diversity Block Diagram

Subcarrier Diversity

In each transmit antenna, there is an individual OFDM block. The subcarriers are divided

into M groups, and each group is used by one of the antennas, after which OFDM is applied.

Choosing subcarriers that are spread over the entire bandwidth is a better option.

Phase Diversity

In each antenna, the signal is transmitted by different phase shifts, as shown in Figure. The

equation below shows the applied phase shifts in mth antenna and nth subcarrier. N indicates

the number of subcarriers.

φm,n = 2π
kmn

N
, k ≥ 1, n = 1, ..., N, m = 1, ...,M − 1 (1.37)
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OFDM

UC

UC

UC

DC IOFDM
Output

Input e2π
in
N

n=0,..,N-1

e2π
in(M−1)

N

n=0,...,N-1

Figure 1.4: Subcarrier Diversity Block Diagram

Time-Varient Phase Diversity

This method works exactly like the previous one, except that the phase shifts change by

time, as follows:

φm,n = 2π
kmn

N
+ 2πfmt, k ≥ 1, n = 1, ..., N, m = 1, ...,M − 1 (1.38)

fm is the frequency shift of mth subcarrier.

Delay Diversity

Various delays are applied to the OFDM signals, as shown in Figure 4. The delayed versions

of the message signal are transmitted from the antennas and have to satisfy the condition

that the BW is the bandwidth of the transmitted signal.

δm =
km

BW
k ≥ 1, m = 1, ...,M − 1 (1.39)

14
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UC

UC

DC IOFDM
Output

Input d1

dN−1

...

Figure 1.5: Phase Diversity Block Diagram

Cylic Delay Diversity

Cyclic Delay Diversity (CDD) is a special case of delay diversity. The delays in CDD are, as

the name implies, cyclic. It can be shown that cyclic CDD is equal to PD. Consider a point-

to-point channel with two antennas at the transmitter with an OFDM-based transmission

scheme. Here, we also use cyclic delay diversity. In [32], simulation results show that applying

this diversity method almost achieves the same diversity as the well-known Alamouti scheme.

However, in the diversity method, and in contrast to the Alamouti scheme, there is no need

to add complexity to the receiver. Also, in some cases, the optimal shifts in CDD have

been calculated. The optimum cyclic delay, with phase shift key (PSK) modulation and the

cardinality of the modulation alphabet A, is:

∆N
opt = |δ1 − δ2| =

N

A
(1.40)

where N is the number of tones of OFDM.

As mentioned previously, there are two options for applying diversity: M transmitting an-

tennas and one receiving antenna (which is called transmitter-sided diversity) or one trans-

mitting antenna and M receiver antenna (which is called receiver-sided diversity).

Maximum ratio combining (MRC) is a technique with one antenna in the transmitter and
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several antennas in the receiver, where all of the received signals are added together with

their corresponding weighted factor. The weighted factor for each channel is proportional to

the received signal-to-noise ratio in that antenna. In [23], Alamouti compares its scheme with

MRC. The Alamouti scheme reaches the same order of diversity and has the same complexity

level without requiring feedback from the transmitter to receiver and excess bandwidth. In

[33], transmitter-sided CDD and receiver-sided MRC are combined and improve in terms of

complexity and performance.

1.6 Outage Probability

As we know, capacity depends on SNR. Since, in slow-fading channels, SNR is not constant

and varies over time, the channel rate also varies. In this situation, the capacity is compared

to a threshold rate. Thus, when its value is below the threshold, an outage occurs [34].

Calculating the probability of outage gives us a parameter that shows the reliability of the

link. The threshold rate should be chosen in such a way that the outage probability is

less than the certain outage probability. Outage capacity is the largest rate achieved in

a channel with a certain outage probability. The coding method that achieves it is called

universal coding. However, fast-fading channel capacity can be calculated with an arbitrary

small degree of error, and there is no need to use outage. When there is no knowledge

about channel coefficients in the transmitters capacity of outage is a reasonable criterion for

comparison [35].

1.7 Monte Carlo Algorithm

In the simulation part, we assume that the channels are time-varying and that channel

coefficients for each symbol are independent of each other. In this situation, capacity is
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a random variable. The Monte Carlo algorithm provides solutions to the mathematical

problems which need statistical simulations. This algorithm performs the simulations by

using a sequence of randomized numbers and calculating an approximation of the answer.

We choose one of the Monte Carlo methods on the basis of the problem [36].
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Chapter 2

Main Contribution

As mentioned in Chapter 1, diversity increases the performance of wireless systems. In this

chapter, spatial diversity, particularly the effect of adding one antenna to a transmitter, is

studied. The same data stream with different time delays is sent from both antennas in

each transmitter. We also consider a situation where the knowledge of channel coefficients

is unknown and we only know their probability distribution, which is complex Gaussian.

Hence, instead of capacity, we have to calculate outage probability. The Monte-Carlo method

is applied in the simulations, and delays can be continuous or discrete, depending on the

situation. Regarding continuous delays, infinite possible magnitude simulations have been

done only for discrete cases. Nevertheless, in the following formulations, both cases are

represented. Let us first investigate this situation in a PTP channel with continuous input.
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2.1 On Delay Diversity of Point-to-point Channels in

Continuous Time

There are two channels one between the first antenna in the transmitter and receiver,

and the other between the added antenna and the receiver. Let us assume both channels

are band-limited channels with bandwidth W , and that c1(·), c2(·) are channel impulse

responses, respectively. In this part, we consider flat channels with constant gains α1 and

α2. Using linear modulation signaling, the signal
∑∞

i=−∞
aiv(t− iT ) is transmitted from the

first antenna and a delayed version of this signal,
∑∞

i=−∞
aiv(t − τ1 − iT ) , is transmitted

from the second antenna. Here, v(·) is a T-orthogonal signal, i.e., T is the smallest number

T0 such that
∫∞

−∞
v(t)v(t− T0) = 0. Also, (ai)i∈Z is a stationary and ergodic sequence with

power spectrum Sa(e
j2πf). The processes

∑∞

i=−∞
aiv(t− iT ) and

∑∞

i=−∞
aiv(t− τ − iT ) are

cyclo-stationary with common power spectrum 1
T
Sa(e

j2πfT )|V (f)|2. We impose the condition

that

2

T

∫ ∞

−∞

Sa(e
j2πfT )|V (f)|2df ≤ P. (2.1)

The receiver observes

y(t) =
∞∑

i=−∞

ai(h(t− iT ) + h(t− τ − iT )) + z(t) (2.2)

where h = c ∗ v and z(·) in the AWGN process with the correlation function N0

2
δ(·).

A set of sufficient statistics in the receiver is given by

yj =

∫ ∞

−∞

y(t)(h(t− jT ) + h(t− τ − jT ))dt

=

∞∑

i=−∞

aigj−i + zj

= (a ∗ g)j + zj , j ∈ Z, (2.3)
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where

gn =

∫ ∞

−∞

h̃(t)h̃(t− nT ′)dt, n ∈ Z, (2.4)

zn =

∫ ∞

−∞

z(t)h̃(t− nT ′)dt, n ∈ Z (2.5)

and h̃(·) is defined as

h̃(t) = h(t) + h(t− τ). (2.6)

An application of the Maximum Entropy Lemma shows that, for anyN ∈ N, I((ai)
N
i=−N ; (yj)

N
j=−N)

is maximized if (ai)i∈Z is a Gaussian sequence. In this case1,

lim
N→∞

I((ai)
N
i=−N ; (yj)

N
j=−N)

NT
=

1

2πT

∫ π

0

log

(
1 +

Sa∗g(e
jω)

Sz(ejω)

)
dω. (2.7)

It is thus easy to see that

Sa∗g(e
jω) = Sa(e

jω)|G(ejω)|2 (2.8)

and

Sz(e
jω) =

N0

2
G(ejω). (2.9)

Noting that G(·) is a real function,

lim
N→∞

I((ai)
N
i=−N ; (yj)

N
j=−N)

NT
=

1

2πT

∫ π

0

log

(
1 +

2Sa(e
jω)G(ejω)

N0

)
dω. (2.10)

let us define

u(t) = h̃(t) ∗ h̃(−t). (2.11)

Then, gn = u(nT ), and hence,

G(ejω) =
1

T

∞∑

k=−∞

U

(
1

T

( ω

2π
+ k

))
(2.12)

where U(f) = |H̃(f)|2 =
∣∣1 + e−j2πτf

∣∣2 |H(f)|2 =
∣∣1 + e−j2πτf

∣∣2 |V (f)|2|C(f)|2 is the Fourier

transform of u(·).

1The entropy rate of a stationary Gaussian process with spectrum S(ejω) is 1

2π

∫
π

0
logS(ejω)dω.
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Let us consider a situation where C(·) is some constant gain α in [−W,W ], V (·) is flat

and equal to unity in [−W,W ] and (ai)i∈Z is an i.i.d. sequence, i.e., Sa(e
jω) = σ2. Then,

letting
∫∞

−∞
|V (f)|2df = 1, we get

σ2 ≤ PT. (2.13)

Hence,

Rate in bits/sec/hz =
1

2πT

∫ π

0

log

(
1 +

2σ2|G(ejω)|

N0

)
dω. (2.14)

where

G(ejω) =
α2

T

∞∑

k=−∞

∣∣∣1 + e−
j2πτ

T ( ω
2π

+k)
∣∣∣
2

(2.15)

2.2 On Delay Diversity of Interference Channels in

Continuous Time

Let us now implement the same strategy for an interference channel. c1(·), c2(·), e1(·), and

e2(·) are channel impulse responses from the first and second antennas in transmitter one

to receivers one and two, respectively. d1(·), d2(·), f1(·), and f2(·) are channel impulse re-

sponses from the first and second antennas in transmitter two to receivers two and one,

respectively. As above, by using linear modulation signaling, the signal
∑∞

i=−∞
aiv(t − iT )

in the first transmitter is transmitted from the first antenna and a delayed version of this

signal,
∑∞

i=−∞
aiv(t − τ1 − iT ), is transmitted from the second antenna. Similarly, in the

second transmitter, the signal
∑∞

i=−∞
aiu(t− iT ) is transmitted from the first antenna and a

delayed version of this signal,
∑∞

i=−∞
aiu(t−τ2−iT ), is transmitted from the second antenna.

v(·) and u(·) are T-orthogonal signals. Also, (ai)i∈Z and (bi)i∈Z are stationary and ergodic se-

quences with a power spectrum Sa(e
j2πf) and Sb(e

j2πf ). The processes
∑∞

i=−∞
aiv(t−iT ) and

∑∞

i=−∞
aiv(t−τ1−iT ) are cyclo-stationary with common power spectrum 1

T
Sa(e

j2πfT )|V (f)|2.
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So
∑∞

i=−∞
biu(t− iT ),

∑∞

i=−∞
biu(t−τ2− iT ) are cyclo-stationary with common power spec-

trum 1
T
Sb(e

j2πfT )|U(f)|2. We impose two conditions that

2

T

∫ ∞

−∞

Sa(e
j2πfT )|V (f)|2df ≤ P1. (2.16)

and

2

T

∫ ∞

−∞

Sb(e
j2πfT )|U(f)|2df ≤ P2. (2.17)

At the first and second receiver we observe y1(t) and y2(t) respectively,

y1(t) =

∞∑

i=−∞

ai(h1(t− iT ) + h2(t− τ1 − iT )) + bi(g1(t− iT ) + g2(t− τ2 − iT )) + z1(t) (2.18)

y2(t) =
∞∑

i=−∞

bi(h3(t− iT )+h4(t− τ2− iT ))+ ai(g3(t− iT )+ g4(t− τ1 − iT ))+ z2(t). (2.19)

where hi = ci ∗ v, i = 1, 2, hi = di−2 ∗u, i = 3, 4, gi = fi ∗u, i = 1, 2, gi = el−2 ∗ v, i = 3, 4

and zi(·), i = 1, 2 are both additive white Gaussian noises (AWGN) with the power of

N0

2
δ(·).

A set of sufficient statistics at the receiver 1 and 2 are given by,

y1(j) =

∫ ∞

−∞

y1(t)(h1(t− jT ) + h2(t− τ1 − jT ))dt

=

∞∑

i=−∞

aih
(1)
j−i + big

(1)
j−i + z1(j)

= (a ∗ h(1))j + (b ∗ g(1))j + z1(j), j ∈ Z, (2.20)

and

y2(j) =

∫ ∞

−∞

y2(t)(h3(t− jT ) + h4(t− τ2 − jT ))dt

=

∞∑

i=−∞

bih
(2)
j−i + aig

(2)
j−i + z2(j)

= (b ∗ h(2))j + (a ∗ g(2))j + z2(j) j ∈ Z, (2.21)

where,

h(i)
n =

∫ ∞

−∞

h̃(i)(t)h̃(i)(t− nT )dt, n ∈ Z, (2.22)
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and

g(i)n =

∫ ∞

−∞

g̃(i)(t)h̃(i)(t− nT )dt, n ∈ Z, (2.23)

zi(n) =

∫ ∞

−∞

zi(t)h̃(i)(t− nT )dt, n ∈ Z (2.24)

for i = 1, 2. and,

h̃(1)(t) = h1(t) + h2(t− τ1). (2.25)

h̃(2)(t) = h3(t) + h4(t− τ2). (2.26)

g̃(1)(t) = g1(t) + g2(t− τ2). (2.27)

g̃(2)(t) = g3(t) + g4(t− τ1). (2.28)

An application of the Maximum Entropy Lemma shows that, for anyN ∈ N, I((ai)
N
i=−N ; (yj)

N
j=−N)

is maximized if (ai)i∈Z is a Gaussian sequence. In a similar way, (bi)i∈Z must be a Gaussian

sequence.

In this case2,

lim
N→∞

I((ai)
N
i=−N ; (y1(j))

N
j=−N)

NT
=

1

2πT

∫ π

0

log

(
1 +

Sa∗h(1)(ejω)

Sz1(e
jω) + Sb∗g(1)(e

jω)

)
dω. (2.29)

and

lim
N→∞

I((bi)
N
i=−N ; (y2(j))

N
j=−N)

NT
=

1

2πT

∫ π

0

log

(
1 +

Sb∗h(2)(ejω)

Sz2(e
jω) + Sa∗g(2)(e

jω)

)
dω. (2.30)

It is easy to see that

Sa∗h(1)(ejω) = Sa(e
jω)|H(1)(ejω)|2 (2.31)

Sb∗g(1)(e
jω) = Sb(e

jω)|G(1)(ejω)|2 (2.32)

Sa∗g(2)(e
jω) = Sa(e

jω)|G(2)(ejω)|2 (2.33)

2The entropy rate of a stationary Gaussian process with spectrum S(ejω) is 1

2π

∫
π

0
logS(ejω)dω.
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Sb∗h(2)(ejω) = Sb(e
jω)|H(2)(ejω)|2 (2.34)

and

Sz1(e
jω) =

N0

2
H(2)(ejω). (2.35)

Sz2(e
jω) =

N0

2
H(2)(ejω). (2.36)

Note that H(1)(·), H(2)(·), G(1)(·), and G(2)(·) are all real functions. Let us now define

r1(t) = h̃(1)(t) ∗ h̃(1)(−t) (2.37)

r2(t) = h̃(2)(t) ∗ h̃(2)(−t) (2.38)

r3(t) = g̃(1)(t) ∗ h̃(1)(−t) (2.39)

and,

r4(t) = g̃(2)(t) ∗ g̃(2)(−t) (2.40)

So

h(1)
n = r1(nT ), (2.41)

h(2)
n = r2(nT ), (2.42)

g(1)n = r3(nT ), (2.43)

g(2)n = r4(nT ), (2.44)

After applying Fourier transform, we have

H(1)(ejω) =
1

T

∞∑

k=−∞

R1

(
1

T

( ω

2π
+ k

))
(2.45)

H(2)(ejω) =
1

T

∞∑

k=−∞

R2

(
1

T

( ω

2π
+ k

))
(2.46)
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G(1)(ejω) =
1

T

∞∑

k=−∞

R3

(
1

T

( ω

2π
+ k

))
(2.47)

G(2)(ejω) =
1

T

∞∑

k=−∞

R4

(
1

T

( ω

2π
+ k

))
(2.48)

where

R1(f) = |H̃(1)(f)|2

=
∣∣H1(f) + e−j2πτ1fH2(f)

∣∣2

=
∣∣C1(f) + e−j2πτ1fC2(f)

∣∣2 |V (f)|2 (2.49)

R2(f) = |H̃(2)(f)|2

=
∣∣H3(f) + e−j2πτ2fH4(f)

∣∣2

=
∣∣D1(f) + e−j2πτ2fD2(f)

∣∣2 |U(f)|2 (2.50)

R3(f) = G̃(1)(f) H̃(1)(f)∗

=
(
G1(f) + e−j2πτ2fG2(f)

) (
H1(f) + e−j2πτ1fH2(f)

)

=
(
F1(f) + e−j2πτ2fF2(f)

) (
C1(f) + e−j2πτ1fC2(f)

)∗
U(f)V ∗(f) (2.51)

R4(f) = G̃(2)(f) H̃(2)(f)∗

=
(
G3(f) + e−j2πτ1fG4(f)

) (
H3(f) + e−j2πτ2fH4(f)

)∗

=
(
E1(f) + e−j2πτ1fE2(f)

) (
D1(f) + e−j2πτ2fD2(f)

)∗
V (f)U(f)∗ (2.52)

Here, interference is treated as noise. Let us consider a situation where Ci(·)=αi, di(·)=βi,

ei(·)=γi, and fi(·)=δi are constant gains in [−W,W ] for i = 1, 2, V (·) and U(·) are flat

and equal to unity in [−W,W ], and both that (ai)i∈Z and (ai)i∈Z are i.i.d. sequences, i.e.,
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Sa(e
jω) = σ2

a and Sb(e
jω) = σ2

b . Then, letting
∫∞

−∞
|V (f)|2df = 1 and

∫∞

−∞
|U(f)|2df = 1, we

get

σ2
a ≤ PT (2.53)

σ2
b ≤ PT (2.54)

Hence,

Rate1 in bits/sec/hz =
1

2πT

∫ π

0

log

(
1 +

2σ2
a|H

(1)(ejω)|2

2σ2
b |G

(1)(ejω)|2 +N0H(1)(ejω)

)
dω. (2.55)

where

H(1)(ejω) =
1

T

∞∑

k=−∞

∣∣∣α1 + α2e
−

j2πτ1
T ( ω

2π
+k)

∣∣∣
2

. (2.56)

G(1)(ejω) =
1

T

∞∑

k=−∞

(
α1 + α2e

−
j2πτ1

T ( ω
2π

+k)
)(

δ1 + δ2e
−

j2πτ2
T ( ω

2π
+k)

)∗

. (2.57)

Rate2 in bits/sec/hz =
1

2πT

∫ π

0

log

(
1 +

2σ2
b |H

(2)(ejω)|2

2σ2
a|G

(2)(ejω)|2 +N0H(2)(ejω)

)
dω. (2.58)

where

H(2)(ejω) =
1

T

∞∑

k=−∞

∣∣∣β1 + β2e
−

j2πτ2
T ( ω

2π
+k)

∣∣∣
2

. (2.59)

G(2)(ejω) =
1

T

∞∑

k=−∞

(
γ1 + γ2e

−
j2πτ1

T ( ω
2π

+k)
)(

β1 + β2e
−

j2πτ2
T ( ω

2π
+k)

)∗

. (2.60)

2.3 On Delay Diversity of Point-to-point channels in

Discrete time

In this part, a PTP channel with two transmit antennas in its transmitter has been studied.

The modulation scheme at the transmitter is based on OFDM. Assume that the number of

tones of OFDM is N. The delay can be applied in either a linear or a circular way. However,

as mentioned in 1.4, cyclic delay diversity (CDD) has an advantage over linear delay diversity

(LDD) (see [1] for different PSK/QAM transmit symbols). Here, Gaussian input is applied.
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Let (si[n])0≤n≤N−1 be a vector of size N representing N consecutive symbols in a codeword

of user i.

2.4 On Delay Diversity of Interference Channels in

Discrete time

Let us generalize the equations in the previous section for an interference channel with nT

antennas at each transmitter and nR antennas at each receiver. The following equations are

derived for any channel impulse responses and Gaussian input. We can then simplify the

equations for two antennas at the transmitters and receivers. The impulse response from

antenna n in the transmitter i to receive antenna m in the receiver i (in other words, the

forward channels) is given by

h
(mn)
i = [h

(mn)
i (0), h

(mn)
i (1), ..., h

(mn)
i (D), 0, ..., 0] (2.61)

and the impulse response of cross channels are

g
(mn)
i = [g

(mn)
i (0), g

(mn)
i (1), ..., g

(mn)
i (D), 0, ..., 0] (2.62)

For n = 1, ..., nT , m = 1, ..., nR and i = 1, 2. D is the maximum length of channel memories.

All channel coefficients are independent complex Gaussian random variables. Additive white

Gaussian noise with variance σ2 = N0/2 per real dimension is added at each receive antenna.

The output symbols in transmitters 1 and 2 before applying cyclic delay diversity are x1[n]

and x2[n], n = 0, 1, ..., N − 1. After applying cyclic delay diversity, ∆
(j)
1 , j = 1, ..., nT , delays

in transmitter 1 and ∆
(j)
2 , j = 1, ..., nT , delays in transmitter 2. Hence,

x
(j)
i [n] = x

(j)
i [((n−∆

(j)
i ))N ] for i = 1, 2 j = 1, ..., NT , and n = 1, ..., N. (2.63)

are data sent from transmitter 1 and 2, respectively.
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It is possible to replace this channel with an equivalent SIMO channel with the channel

impulse responses, as below:

h
(n)
i

= [h
(n)
i

(0), ...,h
(n)
i

(N − 1)] (2.64)

where,

h
(n)
i

(d) =

nT∑

n=1

h
(nm)
i ((d−∆

(n)
i ) mod N), m = 1, ..., nR and i = 1, 2. (2.65)

In the same way,

g
(n)
i

= [g
(n)
i

(0), ..., g
(n)
i

(N − 1)] (2.66)

where,

g
(n)
i

(d) =

nT∑

n=1

g
(nm)
i ((d−∆

(n)
i ) mod N), m = 1, ..., nR and i = 1, 2. (2.67)

After applying discrete Fourier transform to Equations (2.64) and (2.66),

H
(n)
i

= [H
(n)
i (0), ..., H

(n)
i (N − 1)], n = 1, ..., nR and i = 1, 2 (2.68)

and,

G
(n)
i

= [G
(n)
i (0), ..., G

(n)
i (N − 1)] n = 1, ..., nR and i = 1, 2 (2.69)

where,

Hi
(n)(d) =

nT∑

n=1

H
(n)
i (d)e(2πd∆

(n)
i )/N, d = 0, ..., N − 1, n = 1, ..., nR (2.70)

Gi
(n)(d) =

nT∑

n=1

G
(n)
i (d)e(2πd∆

(n)
i )/N, d = 0, ..., N − 1, n = 1, ..., nR (2.71)

As in the previous sections, the input distribution here is Gaussian and interference is treated

as noise. Assume a sufficiently long gaurd interval of length G ≥ D with no channel state

information (CSI) at the transmitters but perfect CSI at the receivers. pi is power per tone

in transmitter i, for i=1,2. Hence,

Rate1 =
1

N +G

N−1∑

d=0

log2(det(InR
+

p1H1(d)H1(d)
H

N0 + p2G1(d)G1(d)
H
)) (2.72)
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Rate2 =
1

N +G

N−1∑

d=0

log2det(InR
+

p2H2(d)H2(d)
H

N0 + p1G2(d)G2(d)
H
) (2.73)

As discussed in the previous chapter, there are several methods to deal with interference.

One method is treating interference as noise, which is a popular choice especially when inter-

ference is weak. We also talked about diversity in the previous chapter, ascertaining that a

diversity scheme improves the reliability of a message signal. The diversity method that we

use here is antenna diversity or space diversity. Specifically, we use more than one antenna

in each transmitter and send the same data streams from antennas one and two, but with

different time delays.

Now consider a two-user interference channel where each transmitter is equipped with two

transmitting antennas. The modulation scheme at each transmitter is based on OFDM to-

gether with cyclic delays in the second antenna, as shown in Figure 6. Here, let (si[n])0≤n≤N−1

be a vector of size N representing N consecutive symbols in a codeword of user i. For i=1,2

let

(x
(1)
i [n])0≤n≤N−1 = IDFT((si[n])0≤n≤N−1), (2.74)

and

(x
(2)
i [n])0≤n≤N−1 = (x

(1)
i [((n− δi))N ])0≤n≤N−1, (2.75)

where ((a))b indicates a mod b. Note that we can also write

(x
(2)
i [n])0≤n≤N−1 = IDFT((W nδi

N si[n])0≤n≤N−1), (2.76)

where

WN = e−
ĵ2π
N . (2.77)

Then, (x
(1)
i [n])0≤n≤N−1 and (x

(2)
i [n])0≤n≤N−1 are transmitted from the first and second an-

tennas of user i, respectively, in N consecutive transmitted slot. Let us denote the channel

gain from transmitting antenna k of user i to the receiving antenna of user j by h
(k)
i,j . Denoting

29



the N received symbols of user i by (yi[n])0≤n≤N−1,

(y1[n])0≤n≤N−1 =

2∑

k=1

h
(k)
1,1(x

(k)
1 [n])0≤n≤N−1 +

2∑

k=1

h
(k)
2,1(x

(k)
2 [n])0≤n≤N−1 + (z1[n])0≤n≤N−1,

(2.78)

(y2[n])0≤n≤N−1 =
2∑

k=1

h
(k)
2,2(x

(k)
2 [n])0≤n≤N−1 +

2∑

k=1

h
(k)
1,2(x

(k)
1 [n])0≤n≤N−1 + (z2[n])0≤n≤N−1,

(2.79)

where (z1[n])0≤n≤N−1 and (z2[n])0≤n≤N−1 are the ambient noise symbols at the receiver of

user 1 modeled as i.i.d. CN (0, 1) random variables. One can also write (2.78) and (2.79) as

~y1 = A1~s1 + A2~s2 + ~z1, (2.80)

~y2 = A3~s1 + A4~s2 + ~z2, (2.81)

where

A1 = F−1(h
(1)
1,1IN + h

(2)
1,1D1), (2.82)

A2 = F−1(h
(1)
2,1IN + h

(2)
2,1D2), (2.83)

A3 = F−1(h
(1)
2,2IN + h

(2)
2,2D2), (2.84)

A4 = F−1(h
(1)
1,2IN + h

(2)
1,2D1), (2.85)

F = (Wmn
N )0≤m,n≤N−1, (2.86)

is the DFT matrix of size N ×N and

Di = diag((W nδi
N )0≤n≤N−1), i = 1, 2. (2.87)

Let us denote the noise plus interference as

~w1 = A2~s2 + ~z1. (2.88)
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Assuming both users employ random Gaussian codewords, the transmission rate of user 1

and user 2, R1(δ1, δ2, C1, C2,H1) and R2(δ1, δ2, C1, C2,H2) respectively, are:

R1(δ1, δ2, C1, C2,H1) =
I(~s1; ~y1)

N

=
1

N
log

det cov(~y1)

det cov(~w1)

=
1

N
log

det(A1C1A
H
1 + A2C2A

H
2 + IN)

det(A2C2AH
2 + IN)

, (2.89)

R2(δ1, δ2, C1, C2,H2) =
I(~s2; ~y2)

N

=
1

N
log

det cov(~y2)

det cov(~w2)

=
1

N
log

det(A3C1A
H
3 + A4C2A

H
4 + IN)

det(A3C1AH
3 + IN)

, (2.90)

where

Ci = cov(~si), i = 1, 2, (2.91)

and Hi denotes the set of all channel gains that are involved in the expression of Ri for i=1,2.

Note that user i has a transmission power constraint

E
{
‖~x(1)

i ‖2 + ‖~x(2)
i ‖2

}
≤ NPi. (2.92)

It is clear that this is equivalent to

tr (Ci) ≤
NPi

2
, i = 1, 2. (2.93)

Since in our case we do not know the channel channels, i.e., Hi we have to write the capacity

formulas in terms of these variables and for comparing different configurations we have to

consider outage probability. For a certain selection of C1 and C2, we are interested in the

following design criteria

However, as we do not know the channel channels (i.e., Hi we have to write the capacity

formulas in terms of these variables and when comparing different configurations), we have

31



to consider outage probability. For a certain selection of C1 and C2, we are interested in the

following design criteria

δ̂1, δ̂2 = argmax
δ1,δ2

Coutage(ε), (2.94)

where Coutage(ε) is ε-outage sum-capacity given by

Coutage(ε) = sup

{
r1 + r2 : Pr

{
2⋃

i=1

{
Ri(δ1, δ2, C1, C2,Hi) < ri

}}
< ε

}
. (2.95)

Note that,

Pr

{
2⋃

i=1

{
Ri(δ1, δ2, C1, C2,Hi) < ri

}}
=

2∑

i=1

Pr {Ri(δ1, δ2, C1, C2,Hi) < ri}

−
2∏

i=1

Pr {Ri(δ1, δ2, C1, C2,Hi) < ri}. (2.96)

as H1 and H2 are independent.

2.4.1 Simulation Results

In this section, we simulate the derived equations in section 2.4 using a Matlab program

[37]. Since we do not know the channel coefficients, we perform the simulations using the

Monte-Carlo algorithm; the channels are Rayleigh fading. Therefore, instead of capacity,

outage capacity is calculated.

According to Equations 2.95 and 2.96 rates, probability and capacity of outage are dependent

on these parameters: delays δ1 and δ2, covariance matrices C1 and C2, channel matrices H1

and H2, and N number of tones in OFDM.

With the assumption of complex Gaussian channels coefficients, there are two options:

channel gains are constant for all realizations of channels (frequency-flat channels), or channel

gains are different for each realization (frequency-selective channels). As mentioned in [1],

simulation results are presented for point-to-point channels, with the input of Gaussian,

BPSK, and QPSK for both cases of frequency-flat and frequency-selective channels. Here,

32



simulations are done for two-user interference channel with Gaussian inputs for frequency-

flat and frequency-selective channels assumptions, when interference is treated as noise.

. Since power allocated to transmitter antennas is equal, covariance matrix elements Ci =

[ρi(m,n)] for m 6= n must also be the same. This is due to symmetry; in other words, if we

exchange two antennas, we should have the same results. Thus, ρi(m,n) = ρi for i=1,2. For

the PTP channel, [32] and [1] assume that input symbols are independent. Our simulations

prove both of these results. Note that valid values for ρ1 and ρ1 are between 0 and 1. In

the simulation figures we have shown the result curves for only few values including the best

one in terms of rate.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate/tone (bits)

P
ro

ba
bi

lit
y 

of
 O

ut
ag

e

 

 

ro=0
ro=0.5
ro=1

Figure 2.1: point to point channel N=4 and SNR=20dB
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Figure 2.2: point to point channel N=8 and SNR=10dB

As stated previously, since the channels are Rayleigh fading, capacity is the average of

a large number of capacities calculated for various random channel gains. Simulations are

first done for the frequency-flat channel, N=8, SNR=30 dB, and independent inputs. In this

simulation, capacity of outage is fixed at Coutage = 0.4, and probabilities of outage vs. delays

are calculated as presented in Table 1.

34



Figure 2.3: Probability of Outage vs. delays

As we can see from Table 1, some delays result in lower outage, indicating that choosing

non-zero delays helps achieve higher rates. Let us now find out if the assumption of inde-

pendent input symbols is optimal or not. To reach this goal, different values of ρ1 and ρ2

outage probability vs rate per tone are depicted for a specified number of tones and four

different SNRs in the figures below. Note that each graph is sketched for its corresponding

optimum delays.
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Figure 2.4: Two-user Gaussian interference channel with N=4 and SNR=40dB (Frequency-

flat)
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Figure 2.6: Two-user Gaussian interference channel with N=4 and SNR=20dB (Frequency-

flat)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ro

ba
bi

lit
y 

of
 O

ut
ag

e

Rate/tone (bits)

 

 

ro1=0&ro2=0
ro1=0&ro2=0.5
ro1=0&ro2=1
ro1=0.5&ro2=0
ro1=0.5&ro2=0.5
ro1=0.5&ro2=1
ro1=1&ro2=0
ro1=1&ro2=0.5
ro1=1&ro2=1

Figure 2.7: Two-user Gaussian interference channel with N=4 and SNR=10dB (Frequency-

flat)
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Figure 2.8: Two-user Gaussian interference channel with N=4 and SNR=0dB (Frequency-

flat)

The above figures show that, for SNR= 0 dB to 40 dB and N=4 around the outage

probability of 0.05 (which is a reasonable value), the optimum value of ρ1 and ρ2 is one. For

other SNRs and numbers of tones, we achieve the same result. Figure (2.4.1) provides yet

another example.

38



Figure 2.9: Two-user Gaussian interference channel with N=8 and SNR=40dB

Similar simulations are done for frequency-selective interference channels. The difference

between frequency-flat and frequency-selective channels is that, in the former, channels are

constant when sending OFDM tones, while in the latter channel gains are different for

each OFDM symbol. In [1], Bauch has carried out simulations for both frequency-flat and

frequency-selective point-to-point channels.
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Figure 2.10: Two-user Gaussian interference channel with N=4 and SNR=30dB (Frequency-

selective)
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Figure 2.11: Two-user Gaussian interference channel with N=4 and SNR=10dB (Frequency-

selective)

As mentioned another way to deal with interference is decoding interference. So by adding

this ability receiver chooses between two options: treating interference as noise or decoding

interference. This flexibility helps in terms of rate and in a similar situation achieving rate

is equal or higher.
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Figure 2.12: Two-user Gaussian interference with and without decoding interference option

2.4.2 Mathematical Derivations for Simulation Results

As we know from Equations (2.89) and (2.90), both R1 and R2 are dependent on covariance

matrices C1 and C2. In our situation, since we do not know channel coefficients, we must

therefore consider outage probability and maximize the sum-rate r1 + r2. However, finding

the optimum matrices by considering probability of outage is not a straightforward task.

Moreover, as increasing R1 and R2 increases the sum-rate, we instead must find the matrices

that maximize R1 and R2.

As we can see from simulation results the studied interference channel in terms of covariance

matrices is symmetry so we suppose that C1 = C2 = C and that P1 = P2 = P . Hence, the

optimization problem becomes:

max
C

log det
{A1CAH

1 + A2CAH
2 + IN}

{A2CAH
2 + IN}

(2.97)

subject to

tr(C) ≤ NP (2.98)
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Since this problem is not convex, solution can not be found with common methods of opti-

mization. In this section we simplify equation (2.97) but closed form solution is still open.

Before attempting to solve the problem, let us review the details of this optimization.

Optimization with inequality constraints (The Kuhn-Tucker conditions)

Consider a problem of the form

max
x

u(x) subject to gi(x) ≤ ci i = 1, ..., n (2.99)

The problem model in the above is general. All other optimization problems (i.e., either

minimization problems or problems with equality constraints) can be converted to a maxi-

mization problem with inequality constraints. To solve this problem, we need to define the

Lagrangean function, as below:

L(x) = u(x)− λi(gi(x)− ci) (2.100)

It has been proved that, if g(x∗) = c, we have λ ≥ 0, and if g(x∗) < c the value of λ

does not matter. In this case, we can choose any value, and so select λ = 0. Under this

assumption, we have u
′

(x) = L
′

(x) and, therefore, we have L
′

(x∗) = 0. In the first case, we

have g(x∗) = c and in the second case λ = 0.

The inequalities λ ≥ 0 and g(x∗) ≤ c are called complementary slackness conditions.

We know that L(x) is maximum at x̄ if

DL(x̄, x− x̄) = lim
t→0

L(x̄+ t(x− x̄))− L(x)

t
≤ 0 (2.101)

where D is a directional derivation. The directional derivative of a given function f at x with

increment d is defined by

Df(x; d) = lim
t→0

f(x+ td)− f(x)

t
(2.102)
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If this limit exists for all of d, the function is a Gateaux differentiable at x. A Gateaux

derivative is a generalization of the concept of directional derivative. Here, our objective

function is(2.97). We also know that derivation is a linear function, i.e., D(a+ b) = D(a) +

D(b). Thus, we first need to calculate the directional derivation of our objective function.

Let

D(log(det(A1CAH
1 + A2CAH

2 + IN))− log(det(A2CAH
2 + IN ))) =

D(log(det(A1CAH
1 + A2CAH

2 + IN)))−D(log(det(A2CAH
2 + IN))) (2.103)

Now we want to find the optimum covariance matrix C. We start with the second part of

the expression above and try to calculate it. From (2.83) we have

det{A2CAH
2 + IN} = det{F−1(h

(1)
2,1IN + h

(2)
2,1D2)C(F−1(h

(1)
2,1IN + h

(2)
2,1D2))

H} =

det{F−1(h
(1)
2,1IN + h

(2)
2,1D2)C((h

(1)
2,1IN + h

(2)
2,1D2))

HF−H} =

det{F−1} det{(h(1)
2,1IN + h

(2)
2,1D2)C((h

(1)
2,1IN + h

(2)
2,1D2))

H} det{F−H} (2.104)

because we know that det(AB) = det(A) det(B). According to the definition of matrix F

(2.86) det{F−1} = det{F−H} = 1. Hence if we define

E2 = h
(1)
2,1IN + h

(2)
2,1D2 (2.105)

then (2.104) equals to det{E2CEH
2 + IN}.

Let C=




c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
... · · ·

...

cN,1 cN,2 · · · cN,N




DL(C) = D{log(det(E2CEH
2 + IN))} = ∇C{log(det(E2CEH

2 + IN))} (2.106)
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DL(C) =




∂L
∂c1,1

∂L
∂c1,2

· · · ∂L
∂c1,N

∂L
∂c2,1

∂L
∂c2,2

· · · ∂L
∂c2,N

...
... · · ·

...

∂L
∂c1,N

∂L
∂cN,2

· · · ∂L
∂cN,N




(2.107)

∂L

∂ci,j
=

∂ log{det(E2CEH
2 + IN)}

∂ci,j
=

∂ det(E2CEH
2 +IN )

∂ci,j

det(E2CEH
2 ) + IN

(2.108)

Based on the definition of determinant of a matrix [38] we have

det{A} =

N∑

j=1

(−1)i+jai,jMi,j (2.109)

{Mi,j}Nj=1 are the minors of the matrix A. The Mi,j is the determinant of the (N1)(N1)

matrix resulting from removing the i − th row and the j − th column of matrix A and

(−1)i+jMi,j are called co-factors.

We define a new matrix R = E2CEH
2 + IN in order to simplify the equations. ri,j is the

element of the matrix R in the ith row and the jth column.

∂ det{R}

∂ci,j
=

∂
N∑

n=1

(−1)i+jri,jMi,j

∂ci,j
=

N∑

n=1

(−1)i+n{Mi,n

∂ri,n
∂ci,j

+ ri,n
∂Mi,n

∂ci,j
} (2.110)

As indicated above, Mi,n is the matrix resulting from omitting row i and column n so Mi,n

is independent from ci,j. Hence,

∂Mi,n

∂ci,j
= 0 (2.111)

According to (2.105), D2 and IN are diagonal matrices E2 is also a diagonal matrix. thus,

let ei be the i
th element of the diameter of E2. The element in row i and column n of matrix

R is now

ri,n = eie
∗
nci,n + δi,n (2.112)

where

δi,n =





0 if n 6= i

1 if n = i
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Hence,

∂ri,n
∂ci,j

=





0 if n 6= i

eie
∗
n if n = i

Consequently,

∂ log{det(E2CEH
2 + IN)}

∂ci,j
=

eie
∗
j (−1)i+jMi,j

det(E2CEH
2 + IN)

(2.113)

Let A be an N × N matrix. The adjugate matrix of A is an N × N matrix and is defined

as below:

adj(A)i,j = (−1)(i+j)Mj,i (2.114)

Hence,

Aadj(A) = det(A)IN (2.115)

So

D{log(det(E2CEH
2 + IN ))} = eie

∗
j (E2CEH

2 + IN)
−H = E2(E2CEH

2 + IN)
−HEH

2 (2.116)

In the same way we have,

D{log(det((12CEH
1 +E2CEH

2 + IN))} = E1(E1CEH
1 + IN)

−HEH
2 +E2(E2CEH

2 + IN )
−HEH

2

(2.117)
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Chapter 3

Conclusion and Future Work

3.1 Conclusion

In this thesis, we have shown that we can increase achievable rates by using antenna diversity

in OFDM-based interference channels. This method can also be considered as space-time

block coding. The channels are time-varying and unknown at transmitters, so outage capac-

ity and probability are the criterion. Similar work has been done for point-to-point channels

by Bossert et al. and Bauch in [32, 1], respectively, who have shown that adding extra

antennas to PTP channel transmitters increases channel rates. Shifted versions of data are

sent from transmit antennas, with delays done in a cyclic way, causing no restriction to the

applied delays by guard interval. In this method, in contrast to other spatial diversity meth-

ods such as the Alamouti scheme, there is no need to change the receiver in comparison to

one antenna case. We have implemented the same strategy on a two-user SISO interference

channel while treating interference as noise. In addition to obtaining optimum delays, we

found optimum covariance matrices. Independent OFDM symbols are not ideal for interfer-

ence channels, as they must be completely correlated. We also investigated another scenario

which decodes interference, with results showing that, in this case, optimum covariance ma-
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trices are not equal anymore.

3.2 Future Work

While we have established results for SISO ICs, the same can also be done for MIMO ICs.

The proposed method can be generalized for k-user channels, and more than one extra

antenna can be added to the transmitters. As well, it can be compared to other space-time

block coding in order to ascertain its advantages and disadvantages, and simulations can be

done for channels with memory (D-tap impulse response channel where D ≥ 2). In addition

to Gaussian input, we can use other modulations such as BPSK, QPSK, and, PAM.
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