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Abstract

Hydrocephalus is a clinical conditon where the brain tissue is deformed by the expanding

ventricules. In this thesis, the mechanical deformation of a hydrocephalic brain is studied

using a biomechanical model, where the material properties of the tissue are described by a

viscoelastic model. A set of governing equations is derived when the motion is quasi-static

motion and deformation is small. Then, �nite element method is used for spatial discretiza-

tion, and �nite di�erence and trapezoidal rule are used for time-stepping. Moreover, the

computational meshes are generated from medical images of patient's brain using level set

method and a program called DistMesh. Numerical stability of the time-stepping scheme

is also studied.

Several numerical studies are conducted to investigate several aspect of the brain with

hydrocephalus. The state of stress of the tissue is found to be compressive everywhere

in the brain. The viscoelastic properties of the brain are investigated and found to be

dominated by elastic response. Lastly, the displacement made by the ventricular wall as it

expands and shrinks is found to be non-uniform.
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Chapter 1

Introduction

1.1 Hydrocephalus

Hydrocephalus is a clinical condition of the brain, where an abnormal amount of �uid

accumulates within a system of cavities inside the brain. This system of cavities called

ventricles, and the �uid is called cerebrospinal �uid (CSF). This condition presents ap-

proximately in 1-3 per 1000 birth of a child and can also be diagnosed in older adults. It

causes pressure inside the head to increase and brain tissue to be compressed. In the case

of an infant, where the skull is not rigid, the skull is enlarged. If untreated, hydrocephalus

can cause very serious neurological damages to the brain and even death. There are no

known way to prevent or cure hydrocephalus. A common treatment, that do not guarantee

success, is a surgical insertion of a shunt.

Cerebrospinal �uid is a watery liquid produced in the ventricles. Once produced, it

circulates through the ventricular system, into the subarachnoid space and also down the

spinal column. The subarachnoid space is the space between the brain and the skull, and it

is where CSF is absorbed into the bloodstream. See Figure 1.1. In a healthy body, CSF is

in constant circulation and has many important functions. It surrounds the brain and the

spinal cord and protects them in case of mechanical shocks. It also contains nutrients and

proteins necessary for the nourishment and normal function of the brain and also carries

waste product away from surrounding tissue.

When the balance between production and absorption of CSF is disrupted, an excess

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: (a) A simpli�ed schema of the connection between the subarachnoid space

and the ventricles from a top view of the brain. Features are exaggerated for illustrative

purpose. (b) Side view of a human brain [1]. CSF produces in the ventricles travel through

the aqueduct to the subarachnoid space and the spinal column.

of CSF accumulates in the ventricles. This build up may occur either over a long time or

relatively quickly, and it is usually the result of insu�cient absorption of CSF. This leads

to expansion of the ventricles and compression of the brain. See Figure 1.2.

A common treatment of hydrocephalus is to drain excess CSF by inserting a shunt

into the ventricles surgically. A shunt is a catheter inserted through the brain into the

ventricles, implanted under the skin. It diverts the excess CSF into either the heart or into

the abdomen cavity. Outside the skull is a pressure-operated valve designed to regulate the

shunt, which allows �uid �ow out only when the CSF pressure has exceeded a threshold.

Once a shunt is implanted, it stays with the patient for life, and it may function properly

for many years and the dilatation of the ventricles may be reversed. However, it is common

for a shunt to malfunction. According to a clinical trial described in Drake et al.[11], 40%
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Figure 1.2: When hydrocephalus develops, CSF accumulates within the system of ven-

tricles, and the ventricles enlarge and compressed the brain. c©1999-2006, Cincinnati

Children's Hospital Medical Center, see [7] for details .

of the shunts malfunction after they are implanted for 1 year, and 50% of them malfunction

after 2 years, and the most common cause of shunt failure is obstruction. Obstruction of

the catheter is a result of buildup of cells in the holes of the catheter, and it could occurs

when the shrinking ventricles move past the catheter tip. Thus, the shape of the ventricles

often needs to be monitored using MRI or CT scans, and when the shunt fails, the patient

needs to have surgery again.

Currently, there are various research activities trying to devise more e�ective and safer

treatments of hydrocephalus. One approach is to study the biomechanics of the underlying

biological process using mathematical models.

1.2 Current Biomechanical Models for Hydrocephalus

In a biomechanical model, the brain is assumed to be undergoing mechanical deformation

as the ventricles enlarge or shrink. This model focuses on the macroscopic and physical

process and omits the microscopic and cellular process during the deformation. Such a

model requires knowledge about the mechanical properties of brain tissue.

Depending on the application, in order to study the mechanical properties of brain
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tissue, the tissue has been modeled either as a viscoelastic or poroelastic, or even as a purely

elastic material. For hydrocephalus, the brain tissue was �rst modeled as a poroelastic

material. A poroelastic material is like a sponge saturated with �uid. When the sponge

deforms, �uid �ows through the sponge. It is inhomogeneous since it is composed of an

elastic solid and a �uid. �A major step in the development of brain biomechanics was taken

by Nagashima et al. [27]. [46]� They formulated a set of governing equations to model the

brain as a poroelastic material and used the �nite element method to solve these equations

numerically with an anatomically realistic geometry of the brain.

Since then, Tenti et al., [46, 40, 44], extended the governing equations to include tran-

sient e�ects and variable permeability and found analytical solutions for a cylindrical ge-

ometry. Kaczmarek et al. [21] studied large deformation by superposition of responses

from small deformation. Recently, Smillie et al. [39] combined the set of governing equa-

tions with a compartmental model, which allows them to model the �ow of CSF in the

ventricular system.

In addition to Nagashima et al., other researchers who have performed numerical simu-

lation of hydrocephalus with realistic geometry includes [29, 45]. Peña et al., [29], predicted

that the dilatation of the brain tissue would occur near the anterior and posterior horn

of the ventricles, sites of the ventricular wall with convex geometry. Both [27] and [29]

focus on simulating edema, which is a feature of acute stages of hydrocephalus where �uid

accumulates in the brain tissue.

On the other hand, brain tissue has also been modeled as a viscoelastic material. A

porous medium, such as brain tissue, behaves like a poroelastic material when the Reynolds

number is small, but behaves like a viscoelastic material when the Reynolds number is large

[12]. If one is interested in studying the interaction between the CSF and the brain tissue,

such as edema, modeling the brain as a poroelastic medium would likely give good results.

If, however, one is interested in studying the response of the brain to applied forces and

the resulted deformation, viscoelastic material is more appropriate. Although treating the

brain as viscoelastic material is a new approach in modeling hydrocephalus, it is common

in modeling traumatic brain injury.

In [41, 42], Sivaloganathan et. al. modeled the brain as viscoelastic solid and used the

elastic-viscoelastic analogy to obtain analytical solutions for a cylindrical geometry. They
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also extended their model to include pulsatile e�ect of the intracanial pressure (ICP),

pressure of the CSF. A nonlinear viscoelastic model is chosen in [12] to account for the

observed large deformation in a brain with hydrocephalus, and the speed of the ventricular

wall during a deformation is investigated.

A very di�erent approach in modeling hydrocephalus is employed in West's thesis, [48],

where a level set method is used to model the movement of the ventricular wall. Although

this is not a biomechanical model, it is worth mentioning because of its simplicity and

usefulness. This method describes the ventricular wall of a 2D image with a level set

function, and this function is evolved according to a hyperbolic equation that moves the

ventricles wall inward or outward.

1.3 Problem statement and Objective

This thesis is a numerical study of hydrocephalus where the brain tissue is considered to

be a viscoelastic material, and a realistic brain geometry is used. A common perspective

about numerical modeling of viscoelastic materials is that it is computationally expensive

to evaluate an integral term that arises in the governing equations. However, it is little

known that the relaxation modulus of the viscoelastic model of brain tissue has a special

form, so that the evaluation of the integral can be simple and e�cient. Speci�cally, the

computational time and memory required can be linearly proportional to the number of

time steps. Without this special form, the computational time and memory would increase

quadratically.

Currently, there are a few numerical studies of hydrocephalus that consider the brain

tissue to be a poroelastic solid �lled with �uid. In these studies, the focus is on studying

edema, because the distribution of �uid and the type of stress of the poroelastic solid

indicates where edema may occur and so where the tissue may be damaged. Since the

brain tissue is also known to behave like a viscoelastic material, how would tissue damage

be presented if a viscoelastic description of the tissue is used? This is investigated in this

thesis by studying the state of stress of the viscoelastic material.

Brain tissue is commonly considered to be viscoelastic in the study traumatic brain

injury, and so many experiments conducted to determine its viscoelastic property were
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designed to mimic the conditions leading to brain injury. So, if brain matter is described

as a viscoelastic material in the study of hydrocephalus, how would these viscoelastic

properties play a role in the evolution of hydrocephalus? Both the bulk modulus and the

shear modulus of the viscoelastic tissue are investigated in this thesis.

Recall that the shunting procedure has a high failure rate, and the major cause of failure

is obstruction. It would be bene�cial if the position of the ventricles as it shrinks could

be numerically simulated so that an optimal position for the shunt can be found before

surgery. Several people have addressed this goal, including [12, 48]. The use of the level set

method in [48] is simple, however it requires more information about how the ventricular

wall moves since it is not based on any mechanical or biological model. Numerical studies

using a viscoelastic model can provide some understanding of how the ventricular wall

moves and can also address the challenges of predicting the geometry of the ventricles.

Therefore, the �rst of the objectives of this thesis is to develop a numerical method for

solving the viscoelastic model using a realistic geometry of the brain. Then, three numerical

studies related to hydrocephalus are conducted. One of them is to study the state of stress

of the brain with hydrocephalus. Then, the role of the viscoelastic property of the brain in

modeling hydrocephalus is investigated. Lastly, the movement of the ventricular wall after

a shunting procedure is observed.

This thesis is divided into 3 major parts. First, the mathematical and physical back-

ground of biomechanical model are discussed in Chapter 2. In addition to the viscoelastic

model, an elastic model of the brain is discussed throughout this thesis, since it helps

to develop an analytical and numerical solution for the viscoelastic model. In Chapter

3, numerical methods for solving the biomechanical models and for generating grid are

introduced. Finally, several numerical studies are described in Chapter 4.



Chapter 2

Biomechanical Model

A biomechanical model of the brain is formulated using mechanics to describe how the

brain deforms under an applied force. The mechanical deformation greatly depends on

the material property of the brain, and thus an important part of the model is to have a

constitutive equation that describes the mechanical property of the brain accurately.

In this chapter, concepts of mechanical deformation are introduced. In Section 2.1,

stress and strain, physical laws and boundary conditions concerning the biomechanical

model of the brain are introduced. Then, to develop a biomechanical model with vis-

coelastic material, a simpler elastic material and its constitutive equations are �rst studied

in Section 2.2. Then, viscoelastic materials and their constitutive equations are discussed

in greater detail in Section 2.3. In Section 2.4, the particular viscoelastic properties of

brain tissue are described. Lastly, Section 2.5 summarizes the set of governing equations

for the biomechanical models of the brain as an elastic and a viscoelastic material, and

then the corresponding analytical solution is found in Section 2.6 for a simple geometry.

2.1 Governing Equations and Boundary conditions

A mathematical model for a hydrocephalic brain is developed by considering the defor-

mation of brain tissue when the ventricles enlarge or shrink. First let's introduce some

notation to describe a deformation. Consider the brain as a continuous body Ω ⊂ <3 made

of a certain material, then when hydrocephalus develops, the brain Ω, deforms from an

7
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initial con�guration C0 de�ned at time t0 to a new con�guration Ct de�ned at a later time

t. C0 is taken as the reference con�guration, and Ct is taken as the current con�guration.

Then, the resulting motion is a mapping between C0 and Ct, for t ∈ I where I = [0, T ].

When the motion is small, both C0 and Ct can be described using the same Cartesian

coordinate system. Let a material point in C0 be x = (xi) for i = 1..3. After a continuous

deformation, the same material point is located at the new position X = x+u(x, t) in Ct,

where u(x, t) = (ui(x, t)), i = 1..3, is the displacement.

In this section, the mechanics of deformation is introduced in three parts. First, the

state of stress and strain at a material point is de�ned. Then, physical laws governing

a deformation are established. Lastly, boundary conditions imposed on the brain are

described. For more information about mechanical deformation, one can refer to [16], [4]

and [14].

2.1.1 Stress and Strain

Consider a unit cube around x in Ct. When Ω undergoes deformation, this small cube is

also deformed. This deformation at x and t is described by a strain tensor. The Green's

strain tensor is de�ned as

Eij =
1

2
[
∂ui
∂xj

+
∂uj
∂xi

+
∂uα
∂xi

∂uα
∂xj

], (2.1)

and it is sometimes called the Lagrangian strain tensor. Note that Einstein summation

convention is used here, i.e., ∂uα

∂xi

∂uα

∂xj
=
∑3

α=1
∂uα

∂xi

∂uα

∂xj
.

When the motion is small, the displacements are small so that the last term ∂uα

∂xi

∂uα

∂xj
of

(2.1) are negligible compared to the �rst two terms. This assumption is called in�nitesimal

deformation. Under this assumption, the Green's Strain tensor reduces to the Cauchy's

in�nitesimal strain tensor

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

Cauchy's in�nitesimal strain tensor is symmetric by de�nition.

There are two kinds of strain represented in this strain tensor, and they are longitudinal

strain and shear strain. Longitudinal strain describes the change of length of a line element

and is the diagonal terms of the strain tensor. Tensorial shear strain is the half of the change
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of angle between two mutually perpendicular line, and it is represented in the o�-diagonal

terms of the strain tensor.

The strain tensor may be divided into a volumetric strain, εv and a deviatoric strain,

ε
′
ij as follows

εij =

 εv 0 0

0 εv 0

0 0 εv

+

 ε′11 ε12 ε13

ε12 ε
′
22 ε23

ε13 ε23 ε
′
33


= εvδij + ε

′

ij (2.2)

where

εv =
1

3
(ε11 + ε22 + ε33) =

1

3
εkk, (2.3)

and ε
′
11, ε

′
22 and ε

′
33 are the deviations from εv. Physically, the volumetric strain εv describes

a pure dilatation, that is expansion or contraction of a material body without changing

its shape. The deviatoric strain ε
′
ij describes pure distortion at constant volume, that is a

change of the material shape without changing its volume.

One way to deform the unit cube around x in Ct is to have forces acting on its surface.

Such forces are called surface forces, and examples are friction and pressure. Stress de-

scribes surface forces, which is de�ned as the ratio between a force acting on a given area

and that area. A stress tensor σij has nine components, and each of them describes a force

per unit area on a surface of the unit cube. Because of the conservation of moment, the

stress tensor is symmetric. So only six out of nine components are needed to completely

describe the state of stress at x and t.

The stress vector or traction g is de�ned as the force per unit area acting on a surface

with an outward unit normal n. An outward unit normal means that if the surface is a side

of the unit cube, n points away from the center of a cube. The stress vector g is related

to stress tensor σij by gi = σijnj according to Cauchy's Theorem. Stress vector g can be

projected onto a unit normal or a unit tangent of the surface. The vector projection of g

onto a unit normal is called the normal stress vector gn, and it describes the tensile stress

on that surface. The vector projection of g onto a unit tangent is called the shear stress

vector gt, and it describes shear stress on that surface.



10 CHAPTER 2. BIOMECHANICAL MODEL

Principle stress and direction is found when the unit cube is rotated for a constant state

of stress. A particular rotation can be found such that all the stress vectors on the cube

are perpendicular to its surface. Then, the shear stress vanishes and only normal stresses

exist. For such a con�guration, the unit normals on the rotated cube are called principle

directions np, and the normal stresses are called principle stresses σI > σII > σIII where

one of them is a maximum, and another is a minimum. So, the stress tensor of the rotated

con�guration becomes  σI 0 0

0 σII 0

0 0 σIII

 .
When a particular principle direction np gives a principle stress σp , Cauchy's Theorem

gives

σijnp = σpnp. (2.4)

This equation implies that the principle directions are the eigenvectors of the stress tensor

and the principle stresses are the associated eigenvalues.

Similar to the strain tensor, the stress tensor can also be divided into volumetric stress

σv and deviatoric stress σ
′
ij:

σij =

 σv 0 0

0 σv 0

0 0 σv

+

 σ
′
11 σ12 σ13

σ12 σ
′
22 σ23

σ13 σ23 σ
′
33


= σvδij + σ

′

ij (2.5)

where σv is

σv =
1

3
(σ11 + σ22 + σ33) =

1

3
σkk, (2.6)

and σ
′
11, σ

′
22 and σ

′
33 are the deviations from σv. Volumetric stress describes tensile or

compressive force, and deviatoric stress describes shearing force.

2.1.2 Physical Laws

The mechanical behaviour of any material is governed by certain physical laws, which

relates stress and strain together. In any solid body subject to external forces and dis-
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placement, the state of stress and strain at every points including points on the boundary

must satisfy three basic equations which are Cauchy's equations of motion, kinematics

equations and constitutive equations.

The �rst equations, the Cauchy's equations of motion, state that linear momentum is

conserved. That is the total force acting upon a body equals the rate of change of the total

momentum. The equations of motions in tensor notation are

ρ
∂2uj
∂t2

= Fj +
∂σij
∂xi

.

The term on the left hand side describes the rate of change of total momentum. The two

terms on the right hand side describe the two types of force involved: body forces, Fj, and

surface forces, σij. In modeling hydrocephalus, body force is neglected. This means that

the gravitational �eld is considered constant, and traumatic brain injury is not considered.

Also, the motion is assumed to be quasi-static. This implies the motion is slow enough

for the mass-acceleration term to be negligible. Physically, this quasi-static approximation

describes a motion where a change in the boundary conditions causes a change in static

deformation in a period of time. In this period of time, the faster wave motion damps out

completely and is not detectable. So, the body is assumed to be in static equilibrium with

the boundary conditions for all time. Examples of quasi-static process in neurosurgery

are neurosurgical retraction, brain shift during surgery, hematomas and hydrocephalus

[22]. Thus, the equations of motion for modeling hydrocephalus with the quasi-static

approximation and the absence of external body forces are

∂σij
∂xi

= 0.

The second equations are the kinematic equations which describe the motion of a defor-

mation, whereas the previous equations describe the forces involved. Kinematic equations

relate strain to displacement and are given in the de�nition of strain tensor. Assuming

in�nitesimal deformation, the kinematics equations are

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

The last set of equations are the constitutive equations, and they describe the intrinsic

characteristics of the material. Material bodies of same mass and same shape respond to the
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Figure 2.1: Geometry of the Brain and its Boundary

same external forces or displacement in di�erent ways. This di�erence in response is due to

the di�erence in the intrinsic characteristics of the material. Equations characterizing the

individual material and its reaction to external factors are called constitutive equations [14].

The behaviour of real material is very complex, especially when it depends on temperature.

Thus, an idealized material is considered where the constitutive equations is a relation-

ship between stress and strain. In Section 2.2 and Section 2.3, the constitutive equations

for a linear elastic and viscoelastic material are discussed respectively in detail. For now,

the constitutive equations have the following form

σij = F (εij).

2.1.3 Geometry and Boundary Conditions

For the purpose of developing a simple yet descriptive model, let the geometry of Ω be a

horizontal cross section of the brain, so that Ω is a 2-D geometry with an empty cavity

to represent the ventricles. The boundary of Ω are two curves, and let them be ∂Ωin and

∂Ωout.. Let nin and nout be the outward unit normal on ∂Ωin and ∂Ωout respectively, and

let tin be the unit tangent on ∂Ωin. The inner boundary ∂Ωin represents the ventricular

wall and the outer boundary ∂Ωout represents the outer surface of the brain which is in

contact with the skull. See Figure 2.1.

This two dimensional problem is assumed to be in plane strain; that is, Ω is considered

as a horizontal cross section of a very long cylinder extending in z direction. Assume all

external forces are perpendicular to z axis and do not vary along z axis, all cross sections
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are subject to the same boundary conditions; also, the end sections of the cylinder are

assumed to be con�ned. Then, the horizontal displacements, u1 and u2, are independent

of z, and the vertical displacement u3 is zero. Consequently, ε23, ε13 and ε33 vanish, and so

some components of stress tensor may also vanish depending on the constitutive equations.

In this thesis, Ω represents the brain of an adult, so that the skull is assumed to be

a rigid medium. The rigid skull prevents the points on ∂Ωout from moving, and so the

boundary conditions on ∂Ωout becomes

u(x, t) =
−→
0 ,

for x ∈ ∂Ωout , t ∈ I.
The boundary conditions on ∂Ωin are speci�ed by a stress vector g(x, t) at a point x

on ∂Ωin. Let the vector projection of g(x, t) onto nin(x) be gn(x, t), and let the vector

projection of g(x, t) onto tin(x) be gt(x, t). When CSF accumulates inside the ventricles,

the CSF pressure inside the ventricles increases and exerts a surface force onto the ventric-

ular wall ∂Ωinin normal direction. This surface force is related to the normal stress vector

gn(x, t) in an opposite direction

gn(x, t) = −P (t)nin(x), (2.7)

where P (t) is a scalar function of time representing the CSF pressure inside ∂Ωin relative

to the pressure outside ∂Ωout. That is, P (t) represents the pressure di�erence across the

two boundaries, which compresses Ω when it is positive and stretches Ω when it is negative.

Assuming there is no shear stress on the ventricles, set

gt(x, t) =
−→
0 . (2.8)

Using (2.7) and (2.8), an explicit expression for g(x, t) can be found. Let tin(x) = (t1, t2)
T ,

assuming tin(x) points clockwise around ∂Ωin, the normal nin(x) is found by rotating tin(x)

by -90 degrees, which is nin = (t2,−t1)T . Then the vector projection of g(x, t) at x are

gt(x, t) = (tin · g(x, t))tin =
−→
0

gn(x, t) = (nin · g(x, t))nin = −P (t)nin
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or [
t1 t2

t2 −t1

][
g1(x, t)

g2(x, t)

]
=

[
0

−P (t)

]
Solving this system of equations gives an expression for g(x, t)[

g1(x, t)

g2(x, t)

]
=

−1

t21 + t22

[
−t1 −t2
−t2 t1

][
0

−P (t)

]
. (2.9)

Thus the boundary conditions on ∂Ωin are

σij(x, t)n
in
j = gi(x, t), for x ∈ ∂Ωin

where g(x, t) is given in (2.9).

2.2 Constitutive Equations for Linear Elastic Material

A linear elastic solid behaves like the familiar elastic spring or rubber band. When stress

is applied on an elastic solid, strain responses instantaneously. When, the applied stress

is removed, strain restores to its original state. This type of solid is said to have a perfect

memory of its original shape.

Recall constitutive equations are a set of relationships between stress and strain; in this

section, the constitutive equations for a linear elastic solid is studied. Hooke's law for an

elastic solid states that the stress tensor is linearly proportional to the strain tensor, so the

general constitutive equations are

σij = Cijklεkl,

where Cijkl is a 4th order tensor describing the elastic moduli of a material and is indepen-

dent of stress and strain.

When a material is homogeneous, the components of Cijkl are constants. Cijkl is made

up of 81 constants in general; but due to the symmetry of the stress and strain tensor, the

number of independent constants reduces to 36. In addition, when a material is isotropic,

only two independent constants remains. A material is isotropic when it responses in every

directions the same way. Consequently, the constitutive equations have the following form

σij = λεkkδij + µεij, (2.10)
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where λ and µ are called the Lamé constants of a material.

Instead of λ and µ, the bulk modulus K and the shear modulus G are frequently used

to describe the experimental response of a material. λ and µ are related to K and G by

λ = K − 2G
3

and µ = 2G. The bulk modulus K relates the volumetric stress σv to bulk

strain εkk , and the shear modulus G relates the deviatoric stress to deviatoric strain in

σv = Kεkk (2.11)

σ
′

ij = 2Gε
′

ij. (2.12)

(2.11) means that the dilatation is proportional to the tensile stress acting on a volume's

surface, and the bulk modulus K is a constant of this proportionality. When a material

has a large bulk modulus K, greater tensile stress is required to expand the material; hence

the greater K, the more incompressible the material becomes. The shear modulus G in

(2.12) is the constant of proportionality between shear deformation and shear force. Note

that when one uses a value for the shear modulus from the literature, one needs to check if

the factor of 2 is included in the value. Or when one uses a commercial program to solve

a linear elasticity problem, one needs to check if the program takes G or µ as input, since

µ = 2G.

Another common way to describe a homogeneous isotropic material is with the Young's

modulus E and the Poisson's ratio ν. The λ and µ are related E and ν by µ = E
(1+ν)

and

λ = Eν
(1+ν)(1−2ν)

. Poisson's ratio ν is also used to measure incompressibility of a material,

and it is related to K by K = E
3(1−2ν)

. When its bulk modulus approaches in�nity, the

Poisson's ratio approaches 0.5. In terms of E and ν, the constitutive equations are

σij =
Eν

(1 + v)(1− 2ν)
εkkδij +

E

(1 + ν)
εij (2.13)

which will be used in next chapter to formulate an elastic model for the brain.

Inverting (2.13) to solve for the strain tensor yields

εij =
1 + ν

E
σij −

ν

E
σkkδij. (2.14)

Recall ε13 = ε23 = ε33 = 0 in plane strain. Thus using (2.13), two components of the stress

tensor become

σ13 = σ23 = 0,



16 CHAPTER 2. BIOMECHANICAL MODEL

and σ33 depends on ε11 and ε22. Using (2.14), σ33 is found to be

σ33 = ν(σ11 + σ22).

So only stress tensor components σ11, σ22 and σ12 are required to be solved in the plane

strain problem for linear elasticity.

2.3 Constitutive Equations for Linear Viscoelastic Ma-

terial

The general characteristic of a viscoelastic material can be compared with the characteristic

of an elastic solid and a viscous �uid. A perfectly elastic solid has a perfect memory of

its original shape; however, a �uid has no memory of its original shape. Upon the release

of a load, a �uid deforms continuously and eventually takes the shape of its container. A

viscoelastic material has the characteristics of both an elastic solid and a viscous �uid, so

it is said to have a partial memory of its original shape. This partial memory means the

current behaviour of a viscoelastic material depends on its recent history. Examples of

viscoelastic material are plastics, wood, natural and synthetic �bers, concrete and metals

at elevated temperatures [14].

The behaviour of a viscoelastic material can be precisely characterized by one of two

functions called the creep compliance and the relaxation modulus. The creep compliance of

a material is obtained by applying a constant stress to the material, and the compliance is

deduced from the strain response. On the other hand, the relaxation modulus is obtained

by applying a constant strain to the material and is deduced from the stress response. For

the purpose of developing a numerical model, only the relaxation modulus is considered,

because it relates stress and strain in the form σij = f(εij). However, a creep compliance

relates stress and strain in the form εij = f(σij). See Figure 2.2, which illustrates stress

relaxation.

A viscoelastic material is said to be linear if stress is a linear function of strain at a

given time. Most material are nearly linear over a small ranges of stress, strain, time and

temperature; but they are nonlinear over larger ranges of the same variables. See Figure

2.3.
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Figure 2.2: (a) A constant strain is applied to a viscoelastic material. (b) The resulting

stress. The decay in stress is known as stress relaxation.

Figure 2.3: Stress and Strain Relationship for Linear and Nonlinear Viscoelastic Material
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Figure 2.4: (a) linear spring element, (b) dashpot element

In this section, the constitutive equations of a linear viscoelastic material are studied

in greater detail. The constitutive equations can be represented in two di�erent ways: the

di�erential form and the integral form. First, the di�erential form is derived in 1-D by

considering the stress and strain relationship in an assembly of elastic springs and viscous

dashpots. When the relaxation modulus of a material is found, the integral constitutive

equation is derived in 1-D using Boltzmann's Superposition Principle. Lastly, both forms

are generalized to higher dimensions.

2.3.1 1-D Di�erential Form

The di�erential constitutive equation of a linear viscoelastic material is derived by consid-

ering an assembly elastic and viscous elements in series or in parallel like an electric circuit.

The elongation of an element refers to strain, ε = ε(t), and the force applied to elongate

an element refers to stress, σ = σ(t).

When elements are connected in parallel, the strains of each element are identical, and

the total stress is the sum of stresses from each element. When elements are connected

in series, the stresses of each element are identical, and the total strain is the sum of

strains from each element. Using these two rules, a di�erential constitutive equation in

1-D is derived. Like the elastic model, the linear viscoelastic material is assumed to be

homogeneous, and the model parameters do not depend on space. Thus, spatial variable

is omitted for convenience.

An elastic element is represented by a linear spring, see Figure 2.4(a). Its stress and

strain are related by

σ = Eε, (2.15)

where E is the Young's modulus for the spring.
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A viscous element is represented by a linear dashpot, see Figure 2.4(b). Its stress

depends on its strain rate by

σ = η
dε

dt
, (2.16)

where η is a coe�cient of viscosity.

Maxwell Model

A Maxwell model is a simple viscoelastic model represented by an elastic spring and a

viscous dashpot in series, as shown in Figure 2.5. Since the elements are connected in

series, their strains are di�erent, and their stresses are identical. Let the strain of the

spring and dashpot be ε1 and ε2 respectively, and let the stress of the two elements be σ.

ε1 and σ are related by (2.15), and ε2 and σ are related by (2.16). Since the two elements

are connected in series, the total strain is summed

ε = ε1 + ε2. (2.17)

Di�erentiating (2.15) and (2.17) with respect to time gives

dσ

dt
= E

dε1

dt
(2.18)

dε

dt
=

dε1

dt
+
dε2

dt
(2.19)

respectively. Combine (2.16) and (2.18) into (2.19) to obtain

E
dε

dt
=
dσ

dt
+
E

η
σ. (2.20)

This di�erential equation is the constitutive equation of a linear viscoelastic material rep-

resented by the Maxwell model.

To �nd the relaxation modulus of the Maxwell model, (2.20) is solved when a constant

strain is applied, that is ε(t) = ε0H(t), where H(t) is the Heaviside step function. To solve

(2.20), an initial condition is required. The sudden application of strain at t = 0 implies
dε
dt

is singular at this point. To deal with it, [15] suggested integrating (2.20) across this

point, from a point immediately to the left of t = 0 to a point immediately to the right of
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Figure 2.5: Maxwell Model

t = 0, which gives

E(ε(s+)− ε(s−)) = σ(s+)− σ(s−) +
E

η

∫ s+

s−
σ(s)ds.

When s approaches zero, the last term on the right hand side goes to zero, and

Eε0 = σ0,

where ε0 = ε(0+) and σ0 = σ(0+) are the value of ε and σ immediately to the right of

t = 0 respectively. Thus, the initial condition of the Maxwell model is the instantaneous

elastic response of its spring element, and the initial strain of the dashpot is zero.

When the Maxwell model is subject to a constant strain ε(t) = ε0H(t), (2.20) becomes

Eε0δ(t) =
dσ

dt
+

1

τR
σ,

where δ(t) is the Dirac Delta function, and τR = η
E
. Using the method of integrating

factors, where the integrating factor is e
t

τR , together with the initial condition σ0 = Eε0,

the stress response is

σ(t) = ε0Ee
− t

τR

for t > 0. The stress response is described by a function of decay, and the rate of decay is

determined by 1
τR
. τR is called the relaxation time, and it is a characteristic time of the

viscoelastic material when most of the stress vanishes at t = τR. For example, at t = τR,

σ(t) = σ0

e
= 0.37σ0, which means 37% of the initial stress remains at t = τR. The relaxation

modulus, G(t), is obtained from the stress response, which is

G(t) =
σ(t)

ε0

= Ee
− t

τR .

In general, the relaxation modulus is always a monotonically decreasing function of time.
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Figure 2.6: Kelvin Model

Kelvin Model

Another linear viscoelastic model is the Kelvin model. It is given by a spring and a dashpot

connected in parallel, see Figure 2.6. Since the elements are connected in parallel, their

stresses are di�erent, and their strains are identical. Let the stress of the spring and

dashpot be σ1 and σ2 respectively, and let the strain of the two elements be ε. σ1 and ε

are governed by (2.15), and σ2 and ε are governed by (2.16). Since the two elements are

connected in parallel, the total stress is additive

σ = σ1 + σ2. (2.21)

Substitute (2.15) and (2.16) into (2.21), and obtain

η
dε

dt
+ Eε = σ. (2.22)

This di�erential equation is the constitutive equation of a linear viscoelastic material de-

scribed by a Kelvin model.

Unlike the Maxwell model, the Kelvin model does not have relaxation modulus. When

substitute a constant strain, ε(t) = ε0H(t), into (2.22), it becomes

ε0δ(t) +
ε0

τ
H(t) =

σ(t)

η
,

where the �rst term describes an in�nite stress at t = 0, which is physically unattainable.

However, the Kelvin model can be combined with a spring to obtain a more realistic model,

as described next.
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Figure 2.7: Maxwell Solid Model

Maxwell Solid

Both the Maxwell and Kelvin model are not su�cient to represent the behaviour of most

viscoelastic material accurately[14]. A more realistic model, called a Maxwell Solid model,

is based on connecting a Kelvin model with a spring in series, as shown in Figure 2.7.

Since the Kelvin model is connected with a spring in series, their strains are di�erent,

and their stresses are identical. Let the strain of the spring E1 be ε1, and let the strain of

the Kelvin model be ε2. Their strains are summed

ε = ε1 + ε2. (2.23)

Let the stress of both the spring E1 and the Kelvin model be σ. Among the elements of

the Kelvin model, the stress and strain relationship is

σ = η
dε2

dt
+ Eε2. (2.24)

Use the fact ε2 = ε− ε1 in this equation to obtain

σ = E2(ε− ε1) + η
d

dt
(ε− ε1).

Since the stress σ and strain ε1 of the spring is related by ε1 = σ
E1
, substitute this into the

above equation to obtain

σ + p1
dσ

dt
= q0ε+ q1

dε

dt
. (2.25)

where p1 = η
E1+E2

, q0 = E1E2

E1+E2
and q1 = ηE1

E1+E2
. This is the di�erential constitutive

equation of the Maxwell Solid model.
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To �nd the relaxation modulus of this model, let strain be ε(t) = ε0H(t), and substitute

it into (2.25) to obtain

σ + p1
dσ

dt
= q0ε0H(t) + q1ε0δ(t).

Multiply both sides by 1
p1

and an integration factor e
t

p1 , and rearrange to give

d

dt
(σe

t
p1 ) = ε0(

q0
p1

e
t

p1H(t) +
q1
p1

e
t

p1 δ(t)).

Integrate from s = 0+ to s = t[
σ(s)e

s
p1

]t
0+

= ε0

∫ t

0+

q0
p1

e
s

p1H(s) +
q1
p1

e
s

p1 δ(s)ds

σ(t)e
t

p1 − σ(0+) = ε0(q0e
t

p1 − q1
p1

) (2.26)

where assuming e0
+

= 1. The initial condition of a Maxwell Solid model comes from the

elastic spring E1 only, since ε2(0) = 0 for the Kelvin element. That is, σ0 = Eε0 = q1
p1
ε0.

Rearranging (2.26) using this information to obtain

σ(t) = ε0q0(1− e
− t

p1 ) + ε0
q1
p1

e
− t

p1

for t > 0. Thus, the relaxation modulus for a Maxwell Solid model is

G(t) =
σ(t)

ε0

= q0(1− e
− t

τR ) +
q1
p1

e
− t

τR ,

where the relaxation time is τR = p1.

Generalized Maxwell Solid

A generalized Maxwell Solid is assembled by adding more Kelvin elements in series to the

above Maxwell Solid, and it has a constitutive equation of the form

σ(x, t) + p1
dσ(x, t)

dt
+ p2

d2σ(x, t)

dt2
+ ... = q0ε(x, t) + q1

dε(x, t)

dt
+ q2

d2ε(x, t)

dt2
+ ... . (2.27)

Its stress relaxation modulus has multiple relaxation times and has the form of a Prony

series

G(t) = g0 +
N∑
i=1

gie
− t

τi . (2.28)
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In this thesis, the viscoelastic behaviour of brain tissue is represented by a generalized

Maxwell solid. Note the spatial dependence is included back here for clarity. (2.27) can be

written as

Pσ(x, t) = Qε(x, t)

where P and Q are time operators

P =
∑n

k=0 pk
dk

dtk
, Q =

∑m
k=0 qk

dk

dtk
,

where n and m depend on the nummber of terms in (2.27).

2.3.2 1-D Integral form

Another way to describe a constitutive equation is through a hereditary integral. An in-

tegral constitutive equation can describe all the characteristics contained in a di�erential

equation and has greater �exibility when it comes to rendering the measured properties

of an actual material [15]. For the di�erential form, the stress response can only be ob-

tained when the strain input is a constant function. However, for the integral constitutive

equation, the stress response can be found for any arbitrary strain function.

The hereditary integral is derived as follows for a non-aging homogeneous material.

This integral involves two time variables, t which describes the current time, and s which

describes the previous time, s ≤ t. Then, the relaxation modulus is a function of t and s,

G(t, s). A non-aging material implies the material does not change with time, and so its

relaxation modulus remains unchanged under time translation. That is, G(t, s) = G(t−s),
s ≤ t, depends on the elapsed time, t− s. A homogeneous material implies the relaxation

modulus does not depend on position. Note that the generalized Maxwell Solid describes

a material that is non-aging and homogeneous.

If an arbitrary strain function becomes nonzero at t0, ε(t0) = ε0, then the stress starts

to relax at t = t0, and has the form σ(t) = ε0G(t − t0) for t ≥ t0. If the strain remains

unchanged, the stress will be described by this equation for all t ≥ t0. However, if at t = t1,

an incremental strain of ∆ε1 is added, then for t ≥ t1, an additional stress of ∆ε1G(t− t1)
is produced according to the same relaxation modulus but at starting time t = t1. Thus,
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the total stress for t ≥ t0 is

σ(t) = ε0G(t− t0) + ∆ε1G(t− t1).

This is one step of a very general case. Assuming that the strain is a general function ε(t)

that is nonzero for t ≥ t0, an incremental change in strain is dε = dε
ds
ds, where ds is a

change in time. According to Boltzmann's Principle, the total stress at time t is the sum

of the stress resulted from each incremental change in strain at times t < s , that is

σ(x, t) = G(t− t0)ε(x, t0) +

∫ t

t0

G(t− s)
dε(x, s)

ds
ds (2.29)

for t ≥ t0. The integral in (2.29) is called a hereditary integral, and it shows how stress at

any time depends on all that has happened before, on the entire strain history of dε(s)
ds
, s < t.

Through integration by parts, (2.29) can be rewritten in another way

σ(x, t) = G(0)ε(x, t)−
∫ t

t0

dG(t− s)

ds
ε(x, s)ds (2.30)

for t ≥ t0. Consequently, the stress response for an arbitrary strain function can be either

(2.29) or (2.30), and they are also the integral constitutive equations for a material with

stress relaxation modulus G(t− s). However, only the form appearing in (2.29) is used in

the rest of this thesis.

In general, the relaxation modulus G(x, t, s) can be a general function that depend on

position x, current time t and previous time s, s < t. In this case, the material is aging

and inhomogeneous. Then, the constitutive equations can be written as follows:

σ(x, t) = G(x, t, t0)ε(x, t0) +

∫ t

t0

G(x, t, s)
dε(x, s)

ds
ds

or as

σ(x, t) = G(x, t, t)ε(x, t)−
∫ t

t0

dG(s, t, s)

ds
ε(x, s)ds

for t ≥ t0.



26 CHAPTER 2. BIOMECHANICAL MODEL

2.3.3 Higher Dimensional Model

The di�erential or integral constitutive equation considered so far is one-dimensional, thus

it can only describes uni-axial deformation. The constitutive equation of a viscoelastic ma-

terial can be generalized to higher dimensions by considering elastic constitutive equation

(2.10), and (2.11) and (2.12), which are restated here for convenience

σij = λεkkδij + µεij(x, t). (2.31)

and
σ
′
ij(x, t) = 2Gε

′
ij(x, t)

σkk(x, t) = 3Kεkk(x, t)
. (2.32)

The constant G and K in (2.32) can be replaced with bulk relaxation modulus K(t−s)
and shear relaxation modulus G(t− s), using hereditary integrals, such that the following

integral constitutive equations are formed

σ
′

ij(x, t) = 2G(t− t0)ε
′

ij(x, t0) +

∫ t

t0

2G(t− s)
dε

′
ij(x, s)

ds
ds (2.33)

σkk(x, t) = 3K(t− t0)σkk(x, t0) +

∫ t

t0

3K(t− s)
dσkk(x, s)

ds
ds (2.34)

for t ≥ t0.

Another form of the integral constitutive equations is found by replacing the Lamé con-

stants in (2.31) with their viscoelastic counterparts, λ(t− s) and µ(t− s), using hereditary
integrals

σij(x, t) = λ(t− t0)εkk(x, t0)δij + µ(t− t0)εij(x, t0)

+

∫ t

t0

λ(t− s)
dεkk(x, s)

ds
δij + µ(t− s)

dεij(x, s)

ds
ds, (2.35)

where λ(t− s) and µ(t− s), s < t, are also called relaxation functions.

To derive a 3 dimensions constitutive equations in di�erential form, consider (2.32)

where the dilatation and deviatoric part are separated, and replace the constant G and K

with di�erential operators to obtain

P1σ
′
ij(x, t) = Q1ε

′
ij(x, t)

P2σkk(x, t) = Q2εkk(x, t)
. (2.36)
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The two pairs, P1 and Q1, and P2 and Q2 are di�erential operators de�ned as

P1 =

n1∑
k=0

(p1)k
dk

dtk
,

Q2 = 2

m1∑
k=0

(q1)k
dk

dtk
,

P2 =

n2∑
k=0

(p2)k
dk

dtk
,

Q2 = 3

m2∑
k=0

(q2)k
dk

dtk
,

where (p1)k and (q1)k are the parameters that describe the viscoelastic dilatation, and

(p2)k and (q2)k are the parameters that describe the viscoelastic shear. The two pairs of

operators are independent of each other, and each pair can be modeled by an assembly of

springs and dashpots element as discussed previously.

Recall that the two dimensional problem of this thesis is assumed to be in plane

strain, which implies ε13(x, t) = ε23(x, t) = ε33(x, t) = 0. Thus, when substituting

these strain components into one of the above 3D viscoelastic constitutive equations,

σ13(x, t) = σ23(x, t) = 0 and σ33(x, t) depends on ε11(x, t) and ε22(x, t). Thus, similar

to the plane strain problem for linear elasticity, only three components of strain and stress,

ε11, ε12, ε22 and σ11, σ12, σ22, are needed to be solved.

2.4 Viscoelastic Properties of Brain Tissue

Brain tissue is a complex material; it is described as a soft yielding structure that is not

as sti� as gel or as plastic as paste [22]. It is composed of gray matter, which contains

neuronal cell, and white matter, which contains interconnecting �bers between areas of

grey matter.

Since the late 1960s, a number of studies were conducted to understand the viscoelastic

properties of brain tissue, and most of them were conducted for the purpose of understand-

ing its mechanical response in a traumatic head impact. The types of experiments include

compression, tension, shear and oscillatory loading of brain tissue in vitro. Its properties are
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found to be dependent on location of the brain, age of the patient, whether it is white or grey

matter and is anisotropic. Since these dependencies are not fully understood, brain tissue

is generally modeled as a homogeneous, non-aging and isotropic material. Also, it is found

to be relatively incompressible, nonlinear and viscoelastic [17, 13, 37, 38, 10, 26, 18, 25],

and its properties have been described with both the di�erential and integral constitutive

equations.

To fully characterize the tissue's mechanical behaviour over a large range of strain

and strain rates for all types of application, would require an extensive testing regime of

great cost and e�ort. Consequently, researchers have tended to conduct tests within a

regime that is relevant to an application in which they are interested. For a summary for

di�erent test regimes and proposed constitutive equations, see [9]. Also, in [9], several of

the proposed viscoelastic constitutive equations of di�erent forms have been rewritten into

a shear modulus G(t) of the generalized Maxwell model. Although is unclear how they are

rewritten, [9] provides a good summary for shear modulus for di�erent test regimes.

Since the interest to many researchers is traumatic head injury, the test regimes are

usually short in time, and the relaxation time of the observed shear modulus is usually

in seconds. The longest observed relaxation time is 80s in [12] which used experimental

data from [13, 17]. It is uncertain whether the viscoelastic parameters derived from such

experiments are suitable to model a brain with hydrocephalus, which is a very slow and

quasi-static process. Typical time scales may be weeks or months. However, due to a lack of

information about the behaviour of brain tissue on a long time scale, a linear viscoelastic

model with two relaxation times, 29.8 s and 1.82 s, taken from [18], is selected for this

thesis.

In particular, the shear relaxation modulus G(t) is derived from the relaxation response

of indentation test on a porcine brain in vivo at 1mm/s with 4mm indentation, and the

number of terms in the prony series of G(t) is N = 2. The authors of [18] have also

performed tests in situ, and they found that the long-term shear relaxation time of G(t)

derived in vivo is longer than the one derived in situ. In vivo refers to experimentation done

in or on the living tissue of a whole, living animal, while in situ refers to experimentation

done on the tissue that is in the place of a saci�ced animal.
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2.5 Model Equations for a Hydrocephalus Brain

To summarize, the domain Ω, shown in Figure 2.1, represents the brain undergoing physical

deformation in plane strain, and it is a 2-D geometry with two boundary curves ∂Ωin and

∂Ωout. For t ∈ I, the displacement vector u(x, t) = (u1(x, t), u2(x, t)) is measured from

position x = (x1, x2) ∈ Ω
⋃
∂Ω, which is the original con�guration, and the displacement

vector is governed by the equations of motion under quasi-static assumption:

∂σij(x, t)

∂xi
= 0, (2.37)

the kinematic equations for in�nitesimal deformation:

εij(x, t) =
1

2
(
∂ui(x, t)

∂xj
+
∂uj(x, t)

∂xi
), (2.38)

the linear constitutive equations of the form:

σij(x, t) = F (εij(x, t)),

and boundary conditions:

u(x, t) =
−→
0 , x ∈ ∂Ωout (2.39)

σij(x, t)n
in
j = −gi(x, t), x ∈ ∂Ωin (2.40)

where nin is an outward unit normal at x, and g(x, t) is a stress vector[
g1(x, t)

g2(x, t)

]
=

1

t21 + t22

[
t1 t2

t2 −t1

][
0

−P (t)

]

for tin is a unit tangent at x pointing clockwise, and P (t) represents the CSF pressure.

Elastic Problem

When the brain Ω is assumed to be homogeneous isotropic linear elastic, the constitutive

equations in terms of the Young's modulus E and the Poisson ratio ν is

σij(x, t) =
Eν

(1 + v)(1− 2ν)
εkk(x, t)δij +

E

(1 + ν)
εij(x, t). (2.41)
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Although it may be inaccurate to model the brain as a linear elastic material, it is studied

here because it is an analogy to the viscoelastic model and helps to develop an analytical

and numerical solution to the viscoelastic problem. Therefore, (2.37) to (2.41) are the

set of equations used in Section 3.1 to obtain a numerical solution to the elastic problem.

Note that time dependency in this problem exists only in the boundary condition. Thus,

whether the pressure changes instantaneously or incrementally to a �nal pressure, their

�nal solutions are identical.

Viscoelastic Problem

As mentioned in the previous section, brain tissue is generally considered to be homoge-

neous, isotropic, non-aging, nonlinear viscoelastic and nearly incompressible. Homogeneity,

isotropy and the non-aging property are already assumed in deriving the viscoelastic con-

stitutive equations in Section 2.3. To describe incompressibility, the bulk modulus K is

assumed to be a large constant, and so the dilatation response of the brain tissue is elastic.

For the shear response, the shear relaxation modulus G(t − q) is assumed to be a linear

viscoelastic model. For the viscoelastic problem, two di�erent constitutive equations are

used for di�erent purposes.

First, for developing a numerical method, the integral constitutive equations with K

and G(t− q) are used

σ
′

ij(x, t) = 2G(t− t0)ε
′

ij(x, t0) +

∫ t

t0

2G(t− s)
dε

′
ij(x, s)

ds
ds

σkk(x, t) = 3Kεkk(x, t),

where G(t − s) is de�ned in (2.28). These two equations can be combined together using

(2.2) and (2.5) to obtain

σij(x, t) =

[
Kεkk(x, t)−

2

3

(
G(t− t0)εkk(x, t0) +

∫ t

t0

G(t− s)
dεkk(x, s)

ds
ds

)]
δij

+2

(
G(t− t0)εij(x, t0) +

∫ t

t0

G(t− s)
dεij(x, s)

ds
ds

)
(2.42)

for t ≥ t0. Thus, (2.42) together with (2.37) to (2.40) are the set of model equations used

in Section 3.2 to formulate a numerical model.
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Second, to verify the correctness of the numerical solution, an analytical solution is

needed. In this case, the di�erential constitutive equations are more convenient in �nding

an analytical solution because Laplace Transform can be applied. Thus, the following

di�erential constitutive equations

P1σ
′

ij(x, t) = Q1ε
′

ij(x, t) (2.43)

σkk(x, t) = 3Kεkk(x, t) (2.44)

together with (2.37) to (2.40) are the set of model equations for deriving an analytical

solution in the next section.

2.6 Analytical Solutions

In general, it is not possible to �nd an analytical solution to the viscoelastic problem when

Ω is an arbitrary geometry. But when Ω is assumed to be a horizontal cross-section of a

thick-walled cylinder, an analytical solution exits in polar coordinates (r, θ). See Figure

2.8. Let the radius of inside wall be r = a, and the radius of the outside wall be r = b.

Then, the boundary conditions in polar coordinates are

σrr(r, θ, t) = −P (t)

σθθ(r, θ, t) = 0
(2.45)

at r = a and 0 ≤ θ ≤ 2π
ur(r, θ, t) = 0

uθ(r, θ, t) = 0
(2.46)

at r = b and 0 ≤ θ ≤ 2π.

Elastic Problem

The elastic problem for a thick-walled cylinder is a well-known example studied in many

texts, and [47, Chapter 27] provides an example similar to the elastic problem in this thesis.

Following the example in [47, Chapter 27], a general solution for the stress components are

σrr(r, θ, t) =
A

r2
+ 2C

σθθ(r, θ, t) = −A
r2

+ 2C,
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Figure 2.8: Domain Ω for analytical solutions.

and the displacements are

ur(r, θ, t) =
1

E

(
−(1 + ν)

r
A+ 2C(1− ν − 2ν2)

)
uθ = 0

for a ≤ r ≤ b and 0 ≤ θ < 2π, where the two unknowns A and C are determined by the

two boundary conditions (2.45) and (2.46). It is easy to show they are

A = −P (t)a2b2(1− 2ν)

a2 + b2(1− 2ν)
,

2C = −(P0 +
A

a2
).

Hence, radial displacement has the �nal form

ur(r, θ, t) = P (t)a2

(
b

r
− r

b

)
(1 + ν)(1− 2ν)

E(a2 + b2 − 2b2ν)
. (2.47)

Viscoelastic Problem

Analytical solution to general viscoelastic problems are also studied in [15, Section 8.7],

which uses a classical method called Correspondence Principle. Using this principle, the

elastic counterpart to a viscoelastic problem must be solved �rst, and then take its Laplace
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transform. In this case, the Laplace transform of (2.47) to give

ûr(r, θ, s) =
P0

s
a2

(
b

r
− r

b

)
(1 + ν)(1− 2ν)

E(a2 + b2 − 2b2ν)
, (2.48)

assuming P (t) = P0H(t) for convenience, and where s represent the frequency domain.

Then, the Laplace transform of the di�erential constitutive equations (2.43) and (2.44) are

P̂1(s)σ̂
′

ij(x, s) = Q̂1(s)ε̂
′

ij(x, s), (2.49)

P̂2(s)σ̂kk(x, s) = Q̂2(s)ε̂kk(x, s), (2.50)

and in particular, let the shear response be described by a simple Maxwell Solid model

with one relaxation time

P̂1 = 1 + p1s Q̂1 = 2(q0 + q1s)

P̂2 = 1 Q̂2 = 3K
, (2.51)

where q1 > p1q0, and p1, q0, q1 and K are some constants that describes an arbitrary

material. The di�erential constitutive (2.49) and (2.50) are now algebraic relations, and if

the following substitutions are made, they become identical with the constitutive equations

of the elastic counterpart (2.41)

E → 3Q̂1Q̂2

2P̂1Q̂2 + Q̂1P̂2

, (2.52)

v → P̂1Q̂2 − Q̂1P̂2

2P̂1Q̂2 + Q̂1P̂2

. (2.53)

Substitute the viscoelastic parameters (2.51) into (2.52) and (2.53) which then substitute

into the transformed elastic solution (2.48) to obtain the transformed viscoelastic solution

ûr(r, θ, s) =
3P0a

2(b2 − r2)

r

1 + p1s

s [(6a2p1K + 2a2q1 + 6b2q1)s+ 6a2K + 2a2q0 + 6b2q0]
. (2.54)

Then, take the inverse Laplace transform of this equation to obtain the analytical solution

of the viscoelastic problem

ur(r, θ, r) =
3P0a

2(b2 − r2)

r

[
1

β
+

(
p1

α
− 1

β

)
e−

β
α
t

]
,
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where

α = 6a2p1K + 2a2q1 + 6b2q1

β = β = 6a2K + 2a2q0 + 6b2q0.



Chapter 3

Numerical Method

The �nite element method is often used to solve elliptic partial di�erential equations,

and the elastic problem described in Chapter 2 is a classical application of �nite element

method. Moreover, because of the similarity between the elastic and viscoelastic problem,

�nite element method can also be applied to the viscoelastic problem for space discretiza-

tion.

In this chapter, the concepts of �nite element method are introduced in Section 3.1 using

the elastic problem as an example �rst. Then, in Section 3.2, the viscoelastic problem is

discretized in space using the same �nite element method, and its time domain is discretized

using �nite di�erence and trapezoidal rule. Next, image segmentation and grid generation

are discussed in Section 3.3, since the computational meshes used in numerical simulations

are generated using a medical image of a patient's brain.

Once the numerical methods for solving the two problems and for generating com-

putational meshes are developed, the numerical solution is compared with the analytical

solution in Section 3.4. Finally, the stability of the numerical method for the viscoelastic

problem is studied in Section 3.5.

35
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3.1 Finite Element Method for the Elastic Problem

From Chapter 2, the model equations for the elastic problem are

∂σij(x, t)

∂xj
= 0, (3.1)

εij(x, t) =
1

2

(
∂ui(x, t)

∂xj
+
∂uj(x, t)

∂xi

)
, (3.2)

σij(x, t) =
Ev

(1 + v)(1− 2v)
εkk(x, t)δij +

E

(1 + v)
εij(x, t), (3.3)

and the boundary conditions are

u(x, t) = 0, x ∈ ∂Ωout, (3.4)

σij(x, t)n
in
j = −gi(x, t), x ∈ ∂Ωin, (3.5)

where nin is the outward unit normal at x on ∂Ωin, and g(x, t) is a stress vector.

In this section, the three main steps of �nite element method are introduced with the

elastic problem. The �rst step is to set up a weak formulation of the problem. The second

step is to discretize the weak formulation. Lastly, elementary sti�ness matrix and load

vector are assembled to form a system of equations that solves for displacement. For more

information about �nite element method for the elastic problem, see [6] and [49].

3.1.1 Step 1: Weak Formulation

Let H1(Ω) be the usual Sobolev space of functions whose generalized derivatives of order

at most 1 are squared integrable, that is they belong to L2(Ω), and a product space be

(H1(Ω))2 = H1(Ω)×H1(Ω). Let a trial space for the elastic problem be given by

V =
{
v(x) ∈ (H1(Ω))2, v(x) = 0 on ∂Ωout

}
.

Let v(x) = (v1(x), v2(x)) ∈ V be a test vector function. Spatial and temporal dependence

are omitted in the following derivation for convenience. Take the scalar product of the

system (3.1) with the test vector function v, and integrate over Ω gives∫
Ω

∂σij
∂xj

vidx = 0. (3.6)
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The repeated index in this equation sums over i = 1, 2 and j = 1, 2, to give a scalar, since
∂σij

∂xj
is a divergence of a tensor which gives a vector, and so the scalar product of

∂σij

∂xj
and

v gives a scalar. Then substitute the following product identity,

∂

∂xj
(σijvi) = vi

∂σij
∂xj

+ σij
∂vi
∂xj

,

into (3.6), and it becomes ∫
Ω

∂

∂xj
(σijvi) dx−

∫
Ω

σij
∂vi
∂xj

dx = 0. (3.7)

Apply the Divergence Theorem to the �rst term of (3.7), and get∫
Ω

∂

∂xj
(σijvi) dx =

∫
∂Ωin

viσijn
in
j ds+

∫
∂Ωout

viσijn
out
j ds,

where nout is a unit normal at x on ∂Ωout pointing outward. Since v ∈ V which implies

v = 0 on ∂Ωout, the second term on the right hand side is zero. Then using the Neumann

boundary condition (3.5), the �rst term of the right hand side becomes −
∫
∂Ωin

vigids. Thus,

the �rst term of (3.7) becomes∫
Ω

∂

∂xj
(σijvi) dx = −

∫
∂Ωin

vigids. (3.8)

Next, consider the second term of equation (3.7), its integrand can be written using the

fact that σij = σji as follows

σij
∂vi
∂xj

= σij
1

2

(
∂vi
∂xj

+
∂vi
∂xj

)
=

1

2

(
σij

∂vi
∂xj

+ σij
∂vi
∂xj

)
=

1

2

(
σij

∂vi
∂xj

+ σji
∂vj
∂xi

)
= σijεij(v) (3.9)

where εij(·) = 1
2

(
∂·
∂xj

+ ∂·
∂xi

)
is treated as an functional operator on v(x). So using (3.8)

and (3.9), (3.7) becomes
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∫
∂Ωin

vigids+

∫
Ω

σij(u)εij(v)dx = 0 (3.10)

where σij(x, t) is written as σij(u) to emphasize its dependence on the unknown displace-

ment u(x, t).

Since σij and εij are symmetric, the stress tensor σ and the strain tensor ε can be

written as:

σ =

[
σ11 σ12

σ12 σ22

]
, ε =

[
ε11 ε12

ε12 ε22

]
.

De�ne the stress vector, σ, as

σ =

 σ11

σ22

σ12

 , (3.11)

and de�ne the strain vector, ε, as

ε(u) =

 ε11

ε22

2ε12

 =


∂u1

∂x1
∂u2

∂x2
∂u1

∂x2
+ ∂u2

∂x1

 . (3.12)

Then, in vector notation, (3.10) is∫
∂Ωin

vTgds+

∫
Ω

ε(v)Tσ(u)dx = 0. (3.13)

Note that the factor of 2 in the strain vector is introduced to account for the duplicate

products in summation of σij(u)εij(v).

Lastly, rewrite the constitutive equation (3.3) in terms of stress and strain vector, using

a constitutive matrix, D,

σ(u) = Dε(u)

where

D =
E

(1 + v)(1− 2v)

 1− v v 0

v 1− v 0

0 0 1−2v
2

 .
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The factor of 1
2
in the matrix D is introduced to account for the factor of 2 in the strain

vector. Substituting σ(u) = Dε(u) into (3.13) gives∫
Ω

εT (v)Dε(u)dx = −
∫
∂Ωin

vTgds.

Therefore, the weak formulation for the 2D linear elasticity problem is:

Find u(x, t) ∈ V at each t ∈ I such that

a(u,v) = L(v, t) ∀v(x) ∈ V , (3.14)

where a(u,v) is called a bilinear operator,

a(u,v) =

∫
Ω

εT (v)Dε(u)dx, (3.15)

and L(v, t) is called the load operator,

L(v, t) = −
∫
∂Ωin

vTg(t)ds. (3.16)

Note the load operator depends on time through g(t). The Dirichlet boundary condition is

imposed on u implicitly by requiring u ∈ V . The solution of (3.14) is called a weak solution

because of the transfer of spatial derivatives from u onto the test function v, thus weaker

regularity is required for u. For information about the existence and uniqueness of solution

to this weak formulation (3.14), see Appendix A.

3.1.2 Step 2: Discretizing the Weak Formulation

The second step is to discretize the weak formulation. First, discretize the domain Ω by

dividing it into a set of non-overlapping element so that the approximation of Ω is

Ωh = T 1 ∪ T 2... ∪ TE,

where T e denotes the eth element, and E denotes the total number of elements in Ωh. The

element could be any simple polygon, and it is a triangle in this thesis. The vertices of a
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Figure 3.1: ψk(x) of Vh at x = xj

triangle are called nodes, and P denotes the total number of nodes in Ωh. Then, the jth

node is denoted by xj = (xj, yj), and j is referred as the global index of a node.

Let Vh be a �nite-dimensional subspace of V . De�ne Vh as

Vh = {v : vi ∈ C0(Ω), vi |T e∈ P1(<2), and vi = 0 on ∂Ωout, for i = 1, 2}

where v|T e means the restriction of v over region T e, and P1(<2) is the space of linear

polynomials in 2-D. Thus, the space Vh consists of all continuous vector functions that are
linear polynomials over each element T e and vanish on ∂Ωout.

Let the basis functions of Vh be the column vectors of a 2× 2P matrix, Ψ(x),

Ψ(x) =

[
ψ1(x) 0 ψ2(x) 0 ... ψP (x) 0

0 ψ1(x) 0 ψ2(x) ... 0 ψP (x)

]

with components ψk(x) ∈ P1(<2), k = 1, ..., P , such that

ψk(xj) =

{
1 if k = j

0 if k 6= j
.

Figure 3.1 shows ψk(x) is a linear function over an element T e, and the support of ψk(x)

consists of the elements with the common node xk.

Since the basis functions of Vh are the columns of Ψ(x), let the ith column be Ψi(x) so

that for i = 1...2P

Ψi(x) = Ψ(x)êi
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where êi is the i
th column of a 2P ×2P identity matrix. Then, the weak formulation (3.14)

is equivalent to

a(u,Ψi) = L(Ψi, t) for i = 1...2P.

where the test function v(x) is replaced with Ψi(x). This gives 2P equations to solve for

2P unknowns.

Let uh ∈ Vh be the approximation of u. The displacement vector at xj, uh(xj, t), are

the unknowns, and uh(x, t) can be written in vector form as

uh(x, t) = Ψ(x)U(t), (3.17)

where U(t) is a vector of length 2P . This implies uh(x, t) is a linear combinations of the

basic vector of Vh, and uh is a piecewise linear function over Ωh. So, U(t) is a decomposition

of uh(x, t) in the basis vectors of Vh. at time t, and it is called the global displacement

vector. It consists of all displacement vectors at every nodes at time t. For example, the

displacement along x and y direction at the node xk is

uh(xk, t) =

[
U2k−1(t)

U2k(t)

]
.

In the bilinear form (3.15), the strain vector associated with uh is

ε(uh) = BU(t) (3.18)

where B is a 3× 2P matrix de�ned by

B =


∂ψ1(x)
∂x1

0 ... ∂ψP (x)
∂x1

0

0 ∂ψ1(x)
∂x2

... 0 ∂ψP (x)
∂x2

∂ψ1(x)
∂x2

∂ψ1(x)
∂x1

... ∂ψP (x)
∂x2

∂ψP (x)
∂x1

 .
Since ψk(x) are linear polynomial, B is a constant matrix. Similarly, the strain vector

associated with the test function Ψi(x) is

ε(Ψi(x)) = Bêi. (3.19)
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Then, after replacing the test function v(x) with Ψi(x), substitute (3.18) and (3.19)

into (3.15) and (3.16), the bilinear operator and load operator becomes

a(uh(x, t),Ψi(x)) = êTi (

∫
Ωh

BTDB dx)U(t),

L(Ψi(x),g(x, t)) = −êTi
∫
∂Ω

NT (x)g(x, t)ds.

De�ne

K =

∫
Ωh

BTDB dx (3.20)

as the global sti�ness matrix of size 2P × 2P , and

L(t) = −
∫
∂Ωin

ΨT (x)g(x, t)ds (3.21)

as the global load vector of length 2P . Thus, the weak formulation (3.14) is discretized as

êTi (

∫
Ωh

BTDB dx)U(t) = −êTi
∫
∂Ω

ΨT (x)g(x, t)ds ∀i,

which is a system of equations

KU(t) = L(t).

Thus, �nding the weak solution at time t is equivalent to solving a system of equations.

3.1.3 Step 3: Assembling the Elementary Matrix and Vector

The last step is to construct the basis vector functions, the elementary sti�ness matrices

and load vectors, and assemble the elementary matrix and vector together to form a global

system. Consider a single triangle, T e, and let the 3 nodes on T e be xa, xb and xc, where

a, b, c ∈ {1...P}. Then, let the displacements of these 3 nodes be represented by an

elementary displacement vector, Ue(t), where

Ue(t) =



U2a−1(t)

U2a(t)

U2b−1(t)

U2b(t)

U2c−1(t)

U2c(t)


,
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and the piecewise continuous function, uh(x, t), over the region T
e is de�ned as

uh(x, t)|T e =

[
ψa(x) 0 ψb(x) 0 ψc(x) 0

0 ψa(x) 0 ψb(x) 0 ψc(x)

]
Ue(t). (3.22)

To build the basis functions ψi(x), let ψa(x), ψb(x) and ψc(x) be

ψa(x) = αa + βax+ γay

ψb(x) = αb + βbx+ γby

ψc(x) = αc + βcx+ γcy

. (3.23)

Apply the matrix multiplication in (3.22), and uh(x, t)|T e can be rewritten as

uh(x, t)|T e =

[
p1 + p2x+ p3y

q1 + q2x+ q3y

]
(3.24)

where the coe�cients p1, p2, p3, q1, q2 and q3 are to be determined. For i = a, b, c,

uh(xi, t)|T e =

[
U2i−1

U2i

]
, and (3.24) gives

 1 xa ya

1 xb yb

1 xc yc


 p1

p2

p3

 =

 U2a−1

U2b−1

U2c−1

 .
for the �rst component of uh. Let A be the matrix on the left hand side of the above

equation. If A is invertible, then

p1 =
c∑
i=a

U2i−1αi

p2 =
c∑
i=a

U2i−1βi

p3 =
c∑
i=a

U2i−1γi

where
αa = xbyc−xcyb

det(A)

βa = yb−yc

det(A)

γa = xb−xc

det(A)

αb = xcya−xayc

det(A)

βb = yc−ya

det(A)

γb = xc−xa

det(A)

αc = xayb−xbya

det(A)

βc = ya−yb

det(A)

γc = xa−xb

det(A)

. (3.25)
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If A is non-invertible, the triangle is degenerate and has zero area, which will not be

considered. The same idea is applied to the second component of uh(x)|T e . Therefore, αi,

βi and γi in (3.23) are found, and uh(x, t)|T e is de�ned as a linear polynomial over T e.

Recall the strain vector over the whole domain Ωh is de�ned in (3.18) using the matrix

B. Then, over the element Te, the elementary strain vector is de�ned as

ε(uh) |T e
.
= εe = BeUe, (3.26)

where Be can be evaluated using (3.23) and (3.25)

Be =


∂ψa(x)
∂x

0 ∂ψb(x)
∂x

0 ∂ψc(x)
∂x

0

0 ∂ψa(x)
∂y

0 ∂ψb(x)
∂y

0 ∂ψc(x)
∂y

∂ψa(x)
∂y

∂ψa(x)
∂x

∂ψb(x)
∂y

∂ψb(x)
∂x

∂ψb(x)
∂x

∂ψc(x)
∂y


=

 βa 0 βb 0 βc 0

0 γa 0 γb 0 γc

γa βa γb βb γc βc


Now, the elementary sti�ness matrix is de�ned as

Ke =

∫
T e

(Be)T DBedx = (Be)T DBe(
1

2
|det(A)|).

Since (Be)T DBe is constant over T e, the evaluation of the integral is exact, and the area

of T e is 1
2
|det(A)|.

Let the set EdgesIn contain the global index of the nodes on the boundary ∂Ωin.

Approximate ∂Ω as a polygonal curve, then the global load vector (3.21) is approximated

by piecewise line integrals

L(t) ≈
∑

i∈EdgesIn

∫ xi+1

xi


ψi(x) 0

0 ψi(x)

ψi+1(x) 0

0 ψi+1(x)


[
g1(x, t)

g2(x, t)

]
ds.

Since ψi(x) is a linear function on the line segment from xi to xi+1, the elementary load
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vector over an boundary segment is

Le =

∫ xi+1

xi


ψi(x)g1

ψi(x)g2

ψi+i(x)g1

ψi+1(x)g2

 ds ≈ |xi+1 − xi|
2


g1

g2

g1

g2


where the vector g = [g1, g2]

T is evaluated at the mid-point of the boundary segment.

After the elementary sti�ness matrix Ke and the elementary load vector Le are com-

puted for each element, they are assembled to form the global sti�ness matrix K and global

load vector L according to how each element is connected together.

All remains is to apply the Dirichlet boundary condition (3.4), which is u(x) = 0 for

x ∈ ∂Ωout. Let the set EdgesOut contain the global index of the nodes on the boundary

∂Ωout. Then truncate the global sti�ness matrix and global load vector by setting the

entries of the corresponding rows and columns to zero; i.e. for j ∈ EdgesOut

K2j,k = K2j−1,k = 0 for k = 1...2P

Kk,2j = Kk,2j−1 = 0 for k = 1...2P

L2j = L2j−1 = 0

Let the truncated sti�ness matrix be K̃, and let the truncated load vector be L̃, so solving

the system

K̃Ũ(t) = L̃

gives the displacement vector Ũ(t) for the interior nodes and the boundary nodes on ∂Ωin.

This system of equations can be solved by iterative methods or direct methods. In this

thesis, this system is solved by Gaussian elimination through LU factorization.

3.2 Numerical Solution for the Viscoelastic Problem

Finite element method is also used to discretized the viscoelastic problem in space. In

addition, the viscoelastic problem requires a time stepping scheme for its time-dependent

constitutive equations. These constitutive equations are the only di�erence between the two



46 CHAPTER 3. NUMERICAL METHOD

problems, for both problems have the same equations of motions, kinematic equations and

boundary conditions. Recall from Section 2.5, the time dependent constitutive equation

for viscoelastic problem is

σij(x, t) =

[
Kεkk(x, t)−

2

3

(
G(t− t0)εkk(x, t0) +

∫ t

t0

G(t− s)
dεkk(x, s)

ds
ds

)]
δij

+2

(
G(t− t0)εij(x, t0) +

∫ t

t0

G(t− s)
dεij(x, s)

ds
ds

)
. (3.27)

In this section, the viscoelastic problem is �rst discretized in space using �nite element

method, which gives a semi-discretization. Then, it is discretized in time using �nite di�er-

ence and trapezoidal rule, which results in a full discretization. This numerical technique

is discussed thoroughly in the work of Shaw el at. such as [34], [19] and [36], and in the

Ph. D. thesis of Chinviriyasit, [6].

3.2.1 Semi-Discretization

Similar to the elastic problem, a weak formulation for the viscoelastic problem is required.

Following the same procedure as in Section 3.1.1, take a scalar product of
∂σij

∂xj
with a

test function v(x) ∈ V , integrate over Ω, and apply the Divergence Theorem to obtain

a weak formulation. Then, consider the same �nite dimensional space Vh and the same

displacement uh(x, t), the semi-discrete weak formulation is to �nd uh(x, t) ∈ Vh, at t,
such that ∫

Ω

εT (v)σ(uh)dx = −
∫
∂Ωin

vTgds (3.28)

for all v(x) ∈ Vh.
Then, omitting spatial dependence, rewrite (3.27) using stress and strain vectors as
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follows:

σ(t) =

 K K 0

K K 0

0 0 0

 ε(t)−


2
3

2
3

0
2
3

2
3

0

0 0 0

 (G(t− t0)ε(t0)

+

∫ t

t0

G(t− s)
dε(s)

ds
ds

)
+

 2 0 0

0 2 0

0 0 1

 (G(t− t0)ε(t0)

+

∫ t

t0

G(t− s)
dε(s)

ds
ds

)
or

σ(t) = DKε(t) +DGG(t− t0)ε(t0) +

∫ t

t0

DGG(t− s)
dε(s)

ds
ds, (3.29)

where DK and DG are constitutive matrices

DK =

 K K 0

K K 0

0 0 0

 , DG =


4
3

−2
3

0
−2
3

4
3

0

0 0 1

 .
Noting σ(t) = σ(uh(t)), substitute (3.29) into (3.28). Assume it is permissible to inter-

change the order of integration, and replace the test function v(x) with Ψi(x), the basis

vector function of Vh, the semi-discrete weak formulation for the viscoelastic problem is:

Find uh(x, t) ∈ Vh for each t ∈ I such that∫
Ωh

εT (Ψi) (DKε(uh(t)) +DGG(t− t0)ε(uh(t0))) dx

+

∫ t

t0

∫
Ωh

εT (Ψi)DGG(t− s)
dε(uh(s))

ds
dxds = −

∫
∂Ωin

Tg(t)ds (3.30)

for i = 1...2P .

Note that when the constitutive equations (3.27) are used, this weak formulation is not

de�ned with a bilinear operator. However, the weak formulation can be written with a
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di�erent form of constitutive equations such that a bilinear operator is de�ned, and exis-

tence and uniqueness of solution to the weak formulation can be shown. See Appendix A

for details.

Replace uh(x, t), ε(uh(x, t)) and ε(Ψi(x)) in (3.30) with their expressions in (3.17),

(3.18) and (3.19), and obtain

êi

∫
Ωh

BT (DKBU(t) +DGG(t− t0)BU(t0))dx +

∫ t

t0

êk

∫
Ωh

BTDGG(t− s)B
dU(s)

ds
dx ds

= −ê
i

∫
∂Ωin

NT (x)g(x, t)ds

for k = 1...2P. Since DK , DG and B are constant matrices, and G(t − q) is a scalar, the

above equation becomes

AKU(t) + AGG(t− t0)U(t0) + AG

∫ t

t0

G(t− s)
dU(s)

ds
ds = L(t), (3.31)

where AK and AG are 2P × 2P sti�ness matrices de�ned as

AK =
∫

Ω
BTDKB dx, AG =

∫
Ωh

BTDGB dx .

These two matrices are assembled in the same way as in Section 3.1.3. Therefore, (3.31)

is a system of integral equations solving for U(t) which is the global displacement vector

at time t.

3.2.2 Fully Discrete Formulation

Next, discretize the continuous time domain I into Ih = {t0, ..., tk, ..., tJ} with constant

time step ∆t = tk − tk−1. Let Uk = U(tk) be the global displacement vector at time tk.

As discussed in Section 2.5, the shear relaxation modulus G(t− s) follows the generalized

Maxwell Solid model and has the form

G(t− s) = g0 +
N∑
i=1

gie
− t−s

τi (3.32)
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for s < t. Substitute the relaxation modulus (3.32) in the system of integral equations

(3.31), and change the order of integration and summation to obtain

AKUk + AGG(tk − t0)U
0 + AG

∫ tk

t0

g0
dU(s)

ds
ds+ AG

N∑
i=1

(∫ tk

t0

gie
− tk−s

τi
dU(s)

ds
ds

)
= L(t).

(3.33)

At time t0, the displacement vector U0 in (3.33) is simply found by solving

(AK + AGG(0))U0 = L(0)

because both integral terms in (3.33) vanish.

At time tk, the �rst integral of (3.33) can be evaluated and simpli�ed to

AG

∫ tk

t0

g0
dU(s)

ds
ds = AGg0

(
Uk −U0

)
,

and (3.33) becomes

(AK + AGg0)U
k + AG

N∑
i=1

gie
− tk−t0

τi U0 + AG

N∑
i=1

(∫ tk

t0

gie
− tk−s

τi
dU(s)

ds
ds

)
= L(t). (3.34)

At this point, the numerical method for evaluating the integrals in (3.34) strongly

depends on the form of the relaxation functions. Fortunately, these functions have a special

form which renders the problem simpler. In this case, G(t− s) is non-aging as discussed in

Section 2.3.2. Also, the time dependent terms of G(t − s), gie
− t−s

τi , are separable, so that

the following Lemma can be applied to evaluate the integrals.

Lemma 1. Assume χ(t − s) is separable, such that χ(t − s) = χa(t)χb(s) for some χa(t)

and χb(s). Let

θ(t) =

∫ t

0

χ(t− s)ds.

Then

θ(t+ ∆t) =

∫ t+∆t

t

χ((t+ ∆t)− s)ds+
χa(t+ ∆t)

χa(t)
θ(t).
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Proof.

θ(t+ ∆t) =

∫ t+∆t

0

χ(t+ ∆t− s)ds

=

∫ t+∆t

t

χ(t+ ∆t− s)ds+

∫ t

0

χa(t+ ∆t)χb(s)ds

=

∫ t+∆t

t

χ(t+ ∆t− s)ds+
χa(t+ ∆t)

χa(t)

∫ t

0

χa(t)χb(s)ds

=

∫ t+∆t

t

χ(t+ ∆t− s)ds+
χa(t+ ∆t)

χa(t)
θ(t)

This lemma gives a recurrence relationship for evaluating the integral in (3.34), which

is desirable in developing numerical schemes. With this property, the memory requirement

and operation counts of a numerical program remain constant throughout the time step-

ping. Without this property, evaluating the integral in (3.34) requires storing the solutions

Uk at every time step and evaluating the integrand k times at time tk; thus, both memory

requirement and operation counts increase rapidly [19]. To use Lemma 1, let χai (t) = gie
− t

τi

and χbi(s) = e
s
τi
dU(s)
ds

.

Then, suppose for 1 ≤ i ≤ N

θi(tk−1) =

∫ tk−1

t0

gie
−

tk−1−s

τi
dU(s)

ds
ds

are known from previous time step tk−1. Apply Lemma 1 to the last integral term of (3.34)

to obtain

N∑
i=1

(∫ tk

t0

gie
− t−s

τi
dU(s)

ds
ds

)
=

N∑
i=1

[∫ tk

tk−1

gie
− tk−s

τi
dU(s)

ds
ds+ e

−∆t
τi θi(tk−1)

]
. (3.35)

All that remains is to �nd an approximation for evaluating the integral∫ tk

tk−1

gie
− tk−s

τi
dU(s)

ds
ds.
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First, apply the midpoint rule on dU(s)
ds

. Then approximate it with �nite di�erence for

t ∈ [tk−1, tk], and �nally apply trapezoidal rule for numerical integration [36, 34] as follows∫ tk

tk−1

gie
− tk−s

τi
dU(s)

ds
ds ≈

∫ tk

tk−1

gie
− tk−s

τi ds
dU(tk−1 + ∆t

2
)

ds

≈
∫ tk

tk−1

gie
− tk−s

τi ds

(
Uk −Uk−1

∆t

)
≈ 1

2
∆t
(
gi + gie

−∆t
τi

)(Uk −Uk−1

∆t

)
=

1

2
gi

(
1 + e

−∆t
τi

) (
Uk −Uk−1

)
(3.36)

where Uk−1 is known from previous time step. After substituting (3.35) and (3.36) into

(3.34), Uk is found by solving the following system of equations

(AK + AGg0)U
k + AG

(
N∑
i=1

gie
− tk−t0

τi

)
U0

+AG

N∑
i=1

[
1

2
g1

(
1 + e

−∆t
τi

) (
Uk −Uk−1

)
+ e

−∆t
τi θi(tk−1)

]
= L(tk)

or

A(tk)U
k = b(tk) (3.37)

where

A(tk) =

(
AK + AG

(
g0 +

N∑
i=1

1

2
gi

(
1 + e

−∆t
τi

)))
, (3.38)

b(tk) = L(tk+1)− AG

(
N∑
i=1

gie
− tk−t0

τi

)
U0 − AG

N∑
i=1

e
−∆t

τi θi(tk−1)

+
N∑
i=1

1

2
gi

(
1 + e

−∆t
τi

)
Uk−1. (3.39)

Once Uk is found, θi(tk), which is

θi(tk) =

∫ tk

tk−1

gie
− tk−s

τi
dU(s)

ds
ds+ e

−∆t
τi θi(tk−1)

≈ 1

2
gi

(
1 + e

−∆t
τi

)
(U(tk)−U(tk−1)) + e

−∆t
τi θi(tk−1), (3.40)



52 CHAPTER 3. NUMERICAL METHOD

is computed and stored for the next time step.

Finally, the pseudo-code for solving the viscoelastic problem is outlined in Algorithm

1.

3.2.3 Computing Stress and Strain

Once the displacement vectors are found at every nodes, the state of stress and strain are

computed to provide a better understanding of the behaviour of the viscoelastic material.

Since uh(x, t) are linear piecewise functions, the components of strain tensor which involves

the �rst derivative of uh(x, t) are constant within an element. The components of the

stress tensor are also constant within the element since it is a function of the strain tensor.

The volumetric strain, volumetric stress and the principle stress and directions are also

computed. In this case, it is common to assign all these variables at the centroid of an

element [49], since they are constant within an element.

Given an elementary displacement vector, the elementary strain vector εe is simply

given by (3.26). Then, the complete strain tensor at the element, εeij, is determined from

the components of εe and the fact that εe13 = εe23 = εe33 = 0 for plane strain.

Note that the strain computed above is Cauchy's in�nitesimal strain tensor, which is

the linear part of the Green's strain tensor de�ned by (2.1). The nonlinear part is assumed

to be small and omitted in the mathematical model. But once the displacement is found,

it is bene�cial to compute the nonlinear part and check how small it really it is, which will

be done in Chapter 4. Denote ε̃ij as the nonlinear part of Green's strain tensor, which is

ε̃ij =
∂uα
∂xi

∂uα
∂xj

. (3.41)

The �rst derivative of displacements for each element are

∂u1

∂x1

=
[
βa 0 βb 0 βc 0

]
Ue

∂u2

∂x1

=
[

0 βa 0 βb 0 βc

]
Ue

∂u1

∂x2

=
[
γa 0 γb 0 γc 0

]
Ue

∂u2

∂x2

=
[

0 γa 0 γb 0 γc

]
Ue.
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Algorithm 1 Fully discrete algorithm for the viscoelastic problem
1. Given:

2. a �nite element mesh Ωh

(a) Bulk modulus K and Shear Relaxation Modulus G(t− q)

(b) CSF pressure P (t)

3. De�ne the constitutive matrices DK and DG.

4. Assemble the Global Sti�ness Matrices AK and AG.

5. Apply Dirichlet Boundary condition by removing some rows and columns of AK and

AG .

6. For t = 0 to tJ

(a) Set up the Load Vector L(t)

(b) When t = 0

i. Solve (Ak + AGG(0))U(0) = L(0)

ii. Set θi(0) = 0 for 1 ≤ i ≤ N

(c) When tk > 0

i. Solve A(tk)U(tk) = b(tk) where A(tk) and b(tk) are de�ned in (3.38) and

(3.39).

ii. Compute θi(tk) for 1 ≤ i ≤ N according to (3.40).
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where βi and γi are de�ned in (3.25) and the derivatives are also constant over an element.

Then, the components ε̃eij are computed at each element according to (3.41) using the

above derivatives, and the fact that ε̃e13 = ε̃e23 = ε̃e33 = 0 for plane strain.

The elementary stress vector is determined by substituting the elementary strain vector

into constitutive equations (3.29), which can be rewritten using θi(tk) as follows since it is

computed and stored at every time,

σe(x, tk) = DKεe(x, tk) +DGG(tk − t0)ε
e(x, t0)

+DGg0 (εe(x, t0)− εe(x, tk)) +DGB
eθei (tk), (3.42)

where θei (tk) is the elementary θi(tk), a vector of length 6 representing the value of θi(tk)

at the 3 nodes of an element.

Then, the complete stress tensor at the element, σeij, can be determined from the com-

ponents of σe, and the fact that σe13 = σe23 = 0 and σe33 de�ned as follows. Substituting

εe33 = 0 in the constitutive equations (3.27) for σe33 gives

σe33 = K (εe11(x, tk) + εe22(x, tk))−
2

3
(G(tk − t0) (εe11(x, t0) + εe22(x, t0))∫ t

t0

G(t− s)
d (εe11(x, s) + εe22(x, s))

ds
ds

)
.

Rewriting this equation using θi(tk) by letting ϕ
e
i (tk) = Beθei (tk), which is a vector of length

3. Letting ϕi1(tk) be the �rst component of this vector, the above equation is

σe33 = K [εe11(x, tk) + εe22(x, tk)]−
2

3
[G(tk − t0) (εe11(x, t0) + εe22(x, t0))

g0 (εe11(x, t0) + εe22(x, t0)− εe11(x, tl)− εe22(x, tk)) +
N∑
i

ϕi1(tk) + ϕi2(tk)

]
.(3.43)

Once the stress tensor σeij is found, volumetric strain and stress are computed according

to (2.3) and (2.6) respectively, and principle stresses and directions are computed according

to (2.4). Lastly, since the element is a triangle, and the centroid of an triangle, (xC , yC),

is de�ned as

xC =
1

3
(xa + xb + xc),

yC =
1

3
(ya + yb + yc),

where (xa, ya), (xb, yb) and (xc, yc) are the 3 nodes of the triangles.
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Figure 3.2: Visualization of the level set function z = φ(x, y, t) and its zero level set φ = 0.

3.3 Grid Generation from an Image

To simulate a brain with hydrocephalus accurately, the geometry of a computational mesh

Ωh should resemble the geometry of a brain as much as possible. Furthermore, since

each patient's brain is di�erent from another, Ωh should be customized for each individual

patient. This is possible if the computational mesh Ωh is generated from a medical image

of a patient's brain, such that the two boundaries of Ωh accurately represents the boundary

of a patient's skull and ventricles. In 2D, these two boundaries are curves, and the method

to trace a curve is called segmentation, which can be done using the level set method. Once

two boundaries are identi�ed and represented with a signed distance function, a triangular

mesh can be created using a grid generation program, called DistMesh1. In this section,

the level set method and the grid generation program are brie�y introduced.

A simple closed curve in 2D can be described by a level set of a surface in 3D, and the

level set method is a way to evolve the surface such that its level set becomes a curve of

interest. Let this curve be ξ(t), and let the corresponding level set function be φ(x, y, t)

such that its zero level set is the curve,

ξ(t) = {(x, y) | φ(x, y, t) = 0} .

For example, the level set function z =φ(x, y, t) = x2 + y2− (t+1)2 is a cone in xyz-space,

and its zero level set φ(x, y, t) = 0 is a circle of radius t+ 1 at time t. See Figure 3.2.

1http://www-math.mit.edu/~persson/mesh/
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(a) Before (b) After

Figure 3.3: To segment the ventricles, start with a simple signed distance function as in

(a), then evolve the function to match the ventricles as in (b).

Then, the level set function evolves according to the following partial di�erential equa-

tion
∂φ(x, y, t)

∂t
+ F |∇φ(x, y, t)| = 0, (3.44)

where F = F (x, y) describes the speed of the evolving curves in the normal direction. To

segment a curve from an image, select the intensity value of the image pixels which lies

on the curve of interest, and de�ne an initial simple level set function φ(x, y, 0) that lies

within, intersects or enclose the curve of interest. Then, evolves the level set function by

solving (3.44) numerically, such that points inside the curve move outward, and the point

outside move inward, until the zero level set becomes the desired curve. See Figure 3.3.

The program that performed segmentation in this thesis is written by West for his Master's

thesis [48].

Once the two level set functions, φs and φv, that represent the boundary of skull and

ventricles are found, they are combined into one function, according to

φ(x, y) = max(φs(x, y),−φv(x, y)), (3.45)

so that the region of interest is represented by negative value of φ(x, y). This region is

where the triangular mesh will be. See Figure 3.4 and Figure 3.5.
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(a) (b) (c)

Figure 3.4: (a) Segmentation of the ventricles. (b) Segmentation of the skull. (c) Combine

(a) and (b).

Figure 3.5: The �nal level set function, where the region with negative distance is the

region of interest.
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Next, the grid generation program, DistMesh, uses the combined level set function

φ(x, y) to generate a triangular mesh. First, a random distribution of nodes is created over

a computational domain, then by evaluating φ(x, y) at each node, the program eliminates

the nodes that are outside the region of interest.

The goal of any mesh generation program is to have equilateral triangles, and DistMesh

accomplished this goal by considering the triangular mesh to be a mechanical structure.

The nodes of a triangular mesh are assumed to be connected by an elastic spring, so that

force exists to extend or compress the length between two nodes. There are also forces on

the boundaries to keep a node inside. When this structure of springs are con�ned by the

two boundaries and equilibrium of forces is reached, the triangles should be equilateral.

Denote F (xi) as the sum of external boundary force and internal spring force at node xi.

Equilibrium of force implies F (x) = 0, which is solved as a system of ordinary di�erential

equations with an arti�cial time dependence

dx

dt
= F (x).

This equation is solved iteratively until dx
dt
is close to zero, and the �nal result is a triangular

mesh that resembles the geometry of a patient's brain. See Figure 3.6. DistMesh is written

by Persson for his Ph. D. thesis [30].

3.4 Compare with Analytical Solution

In this section, the numerical algorithm is validated by comparing the numerical solutions

with the analytical solutions discussed in Section 2.6. The computational mesh Ωh and

boundary conditions are set to be the same as those of the analytical solution. That is,

Ωh is an annulus with inner radius, a = 10mm, and outer radius, b = 20mm, and the

pressure at the inner boundary is constant, P (t) = P0. In general, the analytical solution is

not identical to the numerical solution because of numerical error, but this error is usually

bounded and can be estimated.

First, the program for the elastic problem is validated with �ve di�erent mesh sizes

in two test cases, where the parameters P0, E and ν are di�erent. The numerical error
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Figure 3.6: A triangular mesh of a patient's brain
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between the numerical and analytical solutions is estimated in the following theorem found

in [20]:

Theorem 1. Let u ∈ C0(Ωh ∪ ∂Ωh) be the analytical solution. Let uh be the numerical

solution. Let the mesh size h be the longest side of all triangles in Ωh. There is an absolute

constant C independent of u and h such that numerical error e(h) is bounded by

e(h) = ‖u− uh‖L2(Ω) ≤ Ch2 |u|H2(Ω)

where ‖·‖L2(Ω) is the L2-norm

‖ϕ(x)‖L2(Ω) =

[∫
Ω

|ϕ(x)|2 dx
] 1

2

,

and |·|H2(Ω) is a semi-norm, that measure the L2-norm of only second partial derivatives,

|ϕ(x)|H2(Ω) =

[∫
Ω

∣∣D2ϕ(x)
∣∣2 dx] 1

2

.

This theorem shows that the error bound between the analytical and numerical solution,

measured by L2-norm, is proportional to h2, so that when the mesh size is reduced by half,

the error is reduced at least by a fourth. Note that, in general, the error estimate depends

on the order of the basic functions and how is e(h) estimated. Since the basic functions is

linear and e(h) is measured by L2-norm, the error is order 2 in space. If h is the mesh size

of mesh Ωh, and
h
2
is the mesh size of mesh Ωh

2
, then the ratio between their numerical

errors

e(h
2
)

e(h)
≤

C
(
h
2

)2 |u|H2(Ωh)

Ch2 |u|H2(Ωh
2

)

=
1

4
.

Thus, the power of h2 indicates the convergence rate of the numerical solution as the mesh

size decreases.

In Section 2.6, the analytical solution for the radial displacement ur(r, θ) is found, but

it is de�ned in polar coordinates. So, node xj is converted into (rj, θj), and then ur(rj, θj)
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is evaluated and projected along the x and y axes to obtain[
u2j

u2j−1

]
=

[
ur(rj, θj) cos θj

ur(rj, θj) sin θj

]
.

which are two components of the vector u, and u is compared with the global displacement

vector U of the numerical method. Then, the the error ‖u− uh‖L2(Ω) is approximated by

d1(h), which is

‖u− uh‖L2(Ω) ' d1(h) =

[
2P∑
i=1

|ui −Ui|2 h2

] 1
2

. (3.46)

Consider �ve di�erent meshes Ωh, where the mesh size h is reduced by half between each

mesh. Then, d1(h) and the ratio between the consecutive values of d1(h) are computed for

each mesh and for the two test cases.

In Test Case 1, where P0 = 200Pa, E = 600Pa and ν = 0.25, the ratio between

consecutive values of d1(h) is shown in Table 3.1, and the ratio is consistently close to 0.25

which matches with the estimated value. Therefore, the program gives a correct solution

to the elastic problem. In Test Case 2, where P0 = 106Pa, E = 3.07×105Pa and ν = 0.49,

the ratio between consecutive values of d1(h) is shown in Table 3.2, and it is approaching

0.25 slowly. Since the convergence rate approaches 0.25 slower in Test Case 2 compared

with Test Case 1, this suggests the numerical error e(h) depends on the Poisson's ratio and

the mesh size. Also, when ν = 0.49, the material is nearly incompressible, and the problem

is slightly ill-conditioned. In fact, in the study of hydrocephalus using consolidation theory,

Tenti et al [46], have shown that the stress components of an poroelastic solid approaches

an indeterminate form of 0
0
as ν → 0.5.

Next, the program that solves the viscoelastic problem is also veri�ed with the analytical

solution found in Section 2.6. There are several error estimates for the viscoelastic problem.

In [34], it is shown that, there exist a constant C ≥ 0 that is depending on uh but not

on h and ∆t such that ‖u− uh‖H1(Ω) ≤ C(h2 + ∆t2) for tk ∈ Ih. This shows convergence
rate in space and in time; however, it is more di�cult to demonstrate this convergence rate

numerically.

Hence, the following norm is used in measuring the numerical error

‖φ(x, t)‖L2(I;L2(Ω)) =

(∫ t

0

‖φ(x, t)‖2
L2(Ω) dt

) 1
2

, (3.47)
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Test Case 1 h (mm) d1(h) ' ‖u− uh‖L2(Ω)
d1(hi)
d1(hi−1)

h1 5 3.12× 10−6 -

h2 2.5 6.44× 10−7 0.21

h3 1.25 1.58× 10−7 0.24

h4 0.625 4.24× 10−8 0.27

h5 0.313 1.03× 10−8 0.24

Table 3.1: Test Case 1 for the elastic problem: P0 = 200Pa, E = 600Pa and ν = 0.25

Test Case 1 h (mm) d1(h) ' ‖u− uh‖L2(Ω)
d(hi)
d(hi−1)

h1 5 1.10× 10−5 -

h2 2.5 3.67× 10−6 0.33

h3 1.25 1.03× 10−6 0.28

h4 0.625 2.80× 10−7 0.27

h5 0.313 6.58× 10−8 0.23

Table 3.2: Test Case 2 for the elastic problem: P0 = 106Pa, E = 3.07 × 105Pa, and

ν = 0.49
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Test Case h (mm) d2(h) ' ‖u− Πhu‖L2(0,T ;L2(Ω))
d2(hi)
d2(hi−1)

h1 5 1.66× 10−4 -

h2 2.5 3.88× 10−5 0.23

h3 1.25 9.65× 10−6 0.25

h4 0.625 2.63× 10−6 0.27

h5 0.313 6.47× 10−7 0.25

Table 3.3: Test Case 1 for the viscoelastic problem: K = 1Pa, p1 = 1s q1 = 1Pa · s,
q0 = 0.1Pa, and P (t) = 1Pa.

and check if there is a consistent convergence rate.

Let ‖u− uh‖L2(I;L2(Ω)) be approximated by d2(h),

‖u− uh‖L2(0,T ;L2(Ω)) ' d2(h) =

[
J∑
k=1

|d1(h)|2 ∆t

] 1
2

,

where d1(h) is de�ned in (3.46). In a test case, the pressure is P (t) = 1Pa, for 0 < t < 50s,

the bulk modulus K = 1Pa, the parameters of the shear relaxation modulus is p1 = 1s,

q1 = 1Pa · s and q0 = 0.1Pa. Hence, relaxation time τR = p1 = 1s, and so the time step

is set as ∆t = 0.1τR. Table 3.3 shows the ratios between consecutive values of d2(h). This

ratio is consistently close to 0.25; thus, the time-stepping component of the viscoelastic

program is correct and its convergence rate in space is h2.

To illustrates this convergence in space visually, Figure 3.7 shows the analytical solution

at the inner radius, ur(r = a, t), and the numerical solution at the inner boundary, uh(|x| =
a, t) for three di�erent mesh size. As the mesh size decreases, it is shown that the numerical

solution becomes closer to the analytical solution.

3.5 Stability Analysis

In this section, the stability of the numerical method for solving the viscoelastic problem is

studied. When a numerical method is stable, an error in the numerical solution is bounded

in time. Suppose there is an error, ε, in the �rst solution U0, so that the perturbed solution
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Figure 3.7: Comparison between analytical and numerical solution of the viscoelastic prob-

lem. Solid line represents numerical solution and dotted line represents analytical solution.

In case (a), the mesh size is h=5mm; in case (b), h=2.5mm; in case (c), h=1.25mm. For

all these cases, ∆t = 0.1τR
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is Ũ0 = U0 + ε. Then, since the solution at t = tk depends on all solutions at previous time

steps, Uk is also perturbed, Ũk = Uk + εk. If εk is bounded, then the numerical method is

stable. To determine the form of εk, the explicit form for the solution Uk is required.

Note that the solution for the viscoelastic problem at t > t0 is found by solving (3.34),

which is restated here for convenience

(AK + AGg0)U
k + AG

N∑
i=1

gie
− tk−t0

τi U0 + AG

N∑
i=1

(∫ tk

t0

gie
− tk−s

τi
dU(s)

ds
ds

)
= L(t). (3.48)

For simplicity, let N = 1 and t0 = 0, and then discretize this equation in time without

using recurrence relationship Lemma 1. When tk = k∆t, the integral term of (3.48) is

divided into k− 1 terms, where each is approximated by a �nite di�erence and trapezoidal

rule as discussed in Section 3.2.2∫ tk

0

ge−
tk−s

τ
dU

ds
ds

≈
∫ t1

0

ge−
tk−s

τ
dU

ds
ds+ ...+

∫ tk

tk−1

ge−
tk−s

τ
dU

ds
ds

≈ 1

2
g1

(
e
− (k−1)∆t

τ1 + e
− k∆t

τ1

) (
U1 −U0

)
+ ...+

1

2
g1

(
1 + e

−∆t
τ1

) (
Uk −Uk−1

)
=

1

2
g1e

− (k−1)∆t
τ1

(
1 + e

−∆t
τ1

) (
U1 −U0

)
+ ...+

1

2
g1

(
1 + e

−∆t
τ1

) (
Uk −Uk−1

)
.(3.49)

Assuming U0 is known, �nd an explicit form for the solutions, U1,U2 and U3. For t1 = ∆t,

using (3.49) to discretize (3.48) gives

(AK + AGg0)U
1 + AGg1e

−∆t
τ1 U0 + AG

1

2
g1

(
1 + e

−∆t
τ1

) (
U1 −U0

)
= L(∆t).

Solving this equation for U1 gives

U1 = F−1L(t1) + F−1AG
1

2
g1

(
1− e

−∆t
τ1

)
U0, (3.50)

where

F = AK + AG

(
g0 +

1

2
g1

(
1 + e

−∆t
τ1

))
.
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For t2 = 2∆t, U2 is found similarly by solving the following

(AK + AGg0)U
2 + AGg1e

− 2∆t
τ1 U0

+AG

(
1

2
g1e

−∆t
τ1

(
1 + e

−∆t
τ1

) (
U1 −U0

)
+

1

2
g1

(
1 + e

−∆t
τ1

) (
U2 −U1

))
= L(2∆t),

so U2 is

U2 = F−1L(2∆t) + F−1AG
1

2
g1

(
1− e

− 2∆t
τ1

)
U1 + F−1AG

1

2
g1e

−∆t
τ1

(
1− e

−∆t
τ1

)
U0. (3.51)

And for t3 = 3∆t, U3 is found after some lengthy algebraic calculation,

U3 = F−1L(3∆t) + F−1AG
1

2
g1

(
1− e

− 2∆t
τ1

)
U2 + F−1AG

1

2
g1e

−∆t
τ1

(
1− e

− 2∆t
τ1

)
U1

+F−1AG
1

2
g1e

− 2∆t
τ1

(
1− e

−∆t
τ1

)
U0. (3.52)

If Ũ0 = U0 + ε, then from (3.50) the perturbed Ũ1 is

Ũ1 = U1 + F−1AG
1

2
g1

(
1− e

−∆t
τ1

)
ε.

De�ne the matrix B as

B = F−1AG
1

2
g1

(
1− e

−∆t
τ1

)
=

[
AK + AG

(
g0 +

1

2
g1

(
1 + e

−∆t
τ1

))]−1

AG
1

2
g1

(
1− e

−∆t
τ1

)
. (3.53)

If Ũ0 = U0 + ε and Ũ1 = U1 +Bε, then from (3.51) the perturbed Ũ2 is

Ũ2 = U2 + F−1AG
1

2
g1

(
1− e

− 2∆t
τ1

)
Bε+ F−1AG

1

2
g1e

−∆t
τ1

(
1− e

−∆t
τ1

)
ε

= U2 + F−1AG
1

2
g1

(
1− e

− 2∆t
τ1

)
Bε+ e

−∆t
τ1 Bε

= U2 +

[
F−1AG

1

2
g1

(
1− e

− 2∆t
τ1

)
+ e

−∆t
τ1 I

]
Bε.

De�ne the matrix C as

C = F−1AG
1

2
g1

(
1− e

− 2∆t
τ1

)
+ e

−∆t
τ1 I

=

[
AK + AG

(
g0 +

1

2
g1

(
1 + e

−∆t
τ1

))]−1

AG
1

2
g1

(
1− e

− 2∆t
τ1

)
+ e

−∆t
τ1 I. (3.54)
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where I is the identity matrix. Similarly, after some lengthy algebraic calculation, the

perturbed Ũ3 can be found to be

Ũ3 = U3 + C2Bε.

In general, if Ũ0 = U0 + ε, then the perturbed solution at t = tk is given by

Ũk = Uk + CkBε.

When the numerical scheme is stable, the error at εk = CkBε is bounded for all time. The

error εk to be bounded if and only if

‖B‖2 ≤ 1 (3.55)

‖C‖2 ≤ 1. (3.56)

Since B and C are non-symmetric, it turns out to be quite di�cult to prove (3.55) and

(3.56). Instead, the eigenvalues of B and C are considered in the following Lemma, since

a necessary condition for stability requires the eigenvalues of B and C to be less than 1.

Lemma 2. Let λB be eigenvalues of B de�ned by (3.53), and let λC be the eigenvalues of

C de�ned by (3.54). Then, λB < 1 and λC < 1.

Proof. To show λB < 1, let

D = AK + AGg0

E = AG
1

2

(
1 + e

−∆t
τ1

)
G = AG

1

2

(
1− e

−∆t
τ1

)
,

so that B = (D + E)−1G. Let v be the corresponding eigenvector of λB. Then

(D + E)−1Gv = λBv

Gv = λB (D + E) v

vTGv = λB
(
vTDv + vTEv

)
λB =

vTGv

vTDv + vTEv
. (3.57)
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By the de�nition of E and G, vTEv > vTGv, for ∆t > 0. Therefore, by (3.57), λB < 1.

To show λC < 1, rewrite C as

C =

[
AK + AG

(
g0 +

1

2
g1

(
1 + e

−∆t
τ1

))]−1

AG
1

2
g1

(
1 + e

−∆t
τ1

)(
1− e

−∆t
τ1

)
+ e

−∆t
τ1 I.

Then,

C = (D + E)−1E
(
1− e

−∆t
τ1

)
+ e

−∆t
τ1 I.

Let the eigenvalue and corresponding eigenvector of (D + E)−1E be λ and w. Then

(D + E)−1Ew = λw

wTEw = λ
(
wTDw + wTEw

)
λ =

wTEw

wTDw + wTEw
,

which implies λ < 1. Then, the eigenvalue of C is

λC = λ
(
1− e

−∆t
τ1

)
+ e

−∆t
τ1

= λ+ (1− λ) e
−∆t

τ1

< λ+ (1− λ)

= 1,

for ∆t > 0. Therefore, λC < 1.

Note that λB < 1, and λC < 1 are necessary condition for stability, since the perturbed

solution is given by Ũk = Uk + CkBε. Suppose there is an eigenvalue of C where λC > 1

and the corresponding eigenvector is vC . If ε happens to be B
−1vC , then the error at time

tk is

εk = CkBε

= CkvC

= λkCvC ,

which implies the error εk will grow unbound. So, λC < 1 is a necessary condition for

stability.



Chapter 4

Numerical Studies

Now that the viscoelastic model of the brain can be solved numerically, and a realistic

computational mesh can be generated, numerical experiments are conducted to provide

a better understanding of the biomechanics of hydrocephalus. By changing the pressure

P (t), one can simulate di�erent conditions for a brain with hydrocephalus.

In this chapter, some background information about the numerical experiments are �rst

introduced. Then, three numerical studies are conducted. First, the state of stress of the

brain tissue as the ventricles expand are observed. Then, the role of viscoelastic properties

in modeling hydrocephalus is investigated. Lastly, the movement of the ventricular wall

after the shunting procedure is studied. In addition to these studies, the limitation of the

in�nitesimal deformation and linear viscoelasticity are investigated.

4.1 Background Information

For the following numerical experiments, the chosen computational mesh, material param-

eters for the elastic and viscoelastic problem and the time step are described as follows.

4.1.1 Computational Mesh

In the following experiments, simple computational mesh, such as an annulus, are generated

using a MATLAB's toolbox called pdetool. Other computational meshes are generated

69
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from medical images of actual patients with hydrocephalus using the methods discussed

Section 3.3. These images were obtained from the database of the hydrocephalus group at

the Hospital for Sick Children in Toronto, and they were also used in West's thesis [48].

The images are taken before and after a shunting procedure of 8 patients, typically a year

apart, and the 8 patients are identi�ed as Patient A to Patient H. An image taken before

the surgery is referred as the pre-shunt image and after the surgery as the post-shunt image.

However, little is known about the actual length scale of these images. Therefore, they are

roughly scaled to the average size of a human head, which is 140mm in width and 167 mm

in length [2].

Among these set of images, only a few were used to generated a computational mesh

in this thesis. The mesh size of the generated meshes are: h = 2.08mm from a post-shunt

image of Patient A, h = 2.11mm from a post-shunt image of Patient C, h = 2.14 from a

post-shunt image of Patient H, and h = 1.56mm from a pre-shunt of Patient D.

4.1.2 Material Parameter for the Elastic and Viscoelastic Problem

The parameter for the elastic constitutive equations are the Young's modulus E and the

Poisson's ratio ν, and they are

E = 10KPa

ν = 0.49. (4.1)

This value of Young's modulus also used in [21, 29] to describe the elasticity of the brain

tissue. To describe that fact that the tissue is nearly incompressible, the Poisson's ratio is

chosen to be close to 0.50.

The viscoelastic constitutive equations require a value for the bulk modulus K and a

function for shear relaxation modulus G(t) of the brain tissue. As mention in Section 2.4,

the shear relaxation modulus G(t) is taken from [18], and it is

G(t) = g0 + g1e
− t

τ1 + g2e
− t

τ2 , (4.2)

where g0 = 717Pa, g1 = 430Pa, τ1 = 1.82s, g2 = 405Pa and τ2 = 29.8s. Two values for the

bulk modulus are considered in the following experiments. One of them is K = 2100MPa,
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taken from the studies of traumatic brain injury [3, 8, 32]. The other value isK = 166KPa,

calculated from setting E and ν to be (4.1) in

K =
E

3(1− 2ν)
. (4.3)

4.1.3 Time Step

Although a small time step gives greater accuracy, it also takes a longer computational

time. So, di�erent time steps were tested for the gain in accuracy. In two test cases that

solves the viscoelastic problem, two di�erent time steps are used, ∆t = 60s and ∆t = 600s.

The result shows that the resulting displacement is identical for the �rst 5 non-zero digits.

Thus, having the greater time step does not cause a noticeable di�erence in the solution,

but it reduces computational time by 1
12
. So, ∆t = 600s is used in the following experiment,

unless it is stated otherwise.

4.2 State of Stress of Brain Tissue

When hydrocephalus develops and the ventricles expand, the state of stress of the brain

tissue changes. The region of high stress may indicates areas where the brain tissue is

damaged. In this section, the state of stress of the brain tissue is studied in a numerical

experiment where the pressure increases to simulate the development of hydrocephalus

using a realistic geometry of the brain.

In this experiment, the computation domain Ωh is generated from a post-shunt image

of Patient A, and the pressure P (t) is increased linearly 0 to 3000Pa (306mmH2O) over 8

hours of simulated time. The shear modulus G(t) is de�ned by (4.2), and the bulk modulus

is K = 166KPa.

The result of this experiment is shown in Figure 4.1. Figure 4.1(a) shows the original

shape of Ωh, and Figure 4.1(b) shows the resulting geometry of Ωh after 8 hours of simulated

time. Comparing Figure 4.1(a) and Figure 4.1(b), the greatest displacement occurs on the

ventricular wall, and it is 1.5 mm.

The volumetric stress is also computed at every element and is shown in Figure 4.2 in

mmH2O. Since the values on the colour bar of this �gure are negative, the volumetric stress
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Figure 4.1: (a) The original shape of Ωh. (b) The resulted shape of Ωh after 8 hours of

simulated time. (c) The pressure P (t) at the ventricular wall which linearly increases over

8 hours.
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Figure 4.2: Volumetric stress of the resulted Ωh at day 14.

is negative at every element which implies the brain tissue is compressed everywhere. The

�gure also shows that volumetric stress at the anterior and posterior ventricular horns are

di�erent from other region. In particular, near these regions, elements with high value of

stress are next to elements with low value of stress. So, principle stresses and directions are

computed to investigate further. This observation at the two horns is consistently observed

in meshs of di�erent resolution, thus the principle stress and direction are computed on a

coarser grid, which allows the principle directions to display clearly.

The computed principle stress and directions along with the volumetric stress near one

of the anterior horns are shown Figure 4.3. Figure 4.3(a) shows the volumetric stress and

Figure 4.3(b) shows the corresponding principle stress and its direction. The arrows in black
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represents the principle directions, and its length indicates the magnitude of the principle

stress. In Figure 4.3(a), two elements with very di�erent magnitude in volumetric stress

are indicated by two arrows in red. The corresponding elements are indicated with two

red arrows in Figure 4.3(b), which shows the principle stress of one element, represented

by the length of arrows, is slightly larger then the other.

It is unclear why elements so close to each other are compressed by slightly di�erent

amount. Such observation is only found in regions of near anterior and posterior ventricular

horns, regions where the ventricular wall has the same concavity. Since this observation

is also found in a simple mesh that is annulus with the �nest mesh, h = 0.313mm, of

this thesis. This observation may be due to a numerical di�culties described in [25].

�Severe numerical di�culties are encountered for incompressible or nearly incompressible

materials because small volumetric strains cause large volumetric stress due to the high

e�ective bulk modulus. Thus, the hydrostatic part of the stress tensor is very sensitive to

computed �uctuations in the hydrostatic strain, which leads to numerical instability in the

�nite element simulation. [25]�

Although the exact distribution of volumetric stress may be unclear, the above experi-

ment shows that the state of stress of brain tissue is compressive everywhere. This result

is di�erent from the numerical result of Peña et. al. in [29], where they describe the tis-

sue as poroelastic solid �lled with �uid and study edema1. In their numerical simulation,

they computed the mean e�ective stress of the poroelastic solid and found that there is a

region of expansive stresses surrounding the anterior and posterior horns, and a region of

compressive stress in the concave region of the ventricles system. They conclude that �uid

accumulates in the region of expansive stress, resulting in edema.

Comparing the results in [29] and in this thesis, their di�erence in the state of stress

highlights the di�erence between the two ways of modeling the brain tissue. The pressure

and simulated time in this thesis are set to be the same as those in [29]. The bulk modulus

K is calculated from E and ν, where the value E is same as the value in [29]. The di�erence

between the two models is that, in [29], the tissue is modeled as an inhomogeneous material,

and so the poroelastic solid requires a lower Poisson's ratio (ν = 0.3). But, in this thesis,

the tissue is model as a homogeneous material, and so a higher Poisson's ratio (ν = 0.49) is

1Edema is a feature of acute stages of hydrocephalus where CSF accumulates in the brain tissue.
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Figure 4.3: (a) The volumetric stress at one of the anterior horns. (b) The corresponding

principle stress and direction, where the principle direction is represented by an arrow, and

the magnitude of a principle stress is represented by the length of an arrow.
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necessary. Interestingly, when a lower Poisson's ratio is tested for the viscoelastic problem,

the state of stress is both compressive and expansive in regions similar to [29]. Thus, the

di�erence in the type of stress observed is due to the way incompressibility is modeled, and

these two biomechanical models of the brain tissue provide di�erent information about the

state of stress for the brain with hydrocephalus, which provide di�erent view on how brain

tissue is damaged.

4.3 Material Parameter for the Viscoelastic Problem

Many experiments conducted to determine the material property of brain tissue use a

viscoelastic model to �t the experimental data, and most of experiments were designed

to mimic the loading conditions of traumatic brain injury. Using the material parameters

derived from such experiments, how does this viscoelastic model of brain tissue play a

role in modeling hydrocephalus? In this section, the e�ect of the bulk modulus and shear

modulus of the viscoelastic model are investigated.

4.3.1 Choice of Bulk Modulus

When G(t) is �xed and de�ned by (4.2), the choice of bulk modulus has a direct in�uence

on the pressure P (t) required to move the ventricular wall. Although the bulk modulus is

known to be a large number to describe a nearly incompressible tissue, it is unclear how

large it should be for modeling hydrocephalus. In the study of brain traumatic injury, the

value of bulk modulus is usually around K = 2100MPa , but is it appropriate for modeling

hydrocephalus? The e�ects of di�erent values for K is investigated in the following two

experiments.

In these two experiments, the computational mesh Ωh is generated from a post-shunt

image of Patient A, and di�erent value of pressure is used such that both experiment gives

the similar magnitude in displacement. In the �rst experiment, where K = 2100MPa,

P (t) is increased from 0 to 30MPa over 8 hours of simulated time with ∆t = 200s. The

numerical result shows that the greatest displacement that occurs on the ventricular wall

is 1.60mm. Moreover, the average volumetric stress over Ωh is -29.98MPa or −3.06 ×
106mmH20. In the second experiment, where K = 166KPa, P (t) is increased from 0
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to 3000Pa over 8 days of simulated time with ∆t = 200s. The numerical result shows

that the greatest displacement is 1.55mm, and the average volumetric stress is -2952Pa or

-300mmH2O.

Thus, the above two numerical experiments shows that the higher bulk modulus requires

a higher pressure to move the ventricular wall, and the resultant state of stress is also

higher. To illustrate which value of K is probable, let's relate the state of stress with the

intracranial pressure (ICP) of the brain. Intracranial pressure is the pressure exerted by

the brain, CSF and the brain's blood supply on the closed skull cavity, and it is usually

100-180mmH20 for a healthy individual[33]. From the de�nition of ICP, it is permissible

that ICP and the state of stress has the same order of magnitude, for it is assumed here that

the viscoelastic material is homogeneous describing all material inside the skull cavity. So,

in the case where K = 2100MPa, the state of stress shown in the numerical experiment

is signi�cantly higher than the normal value of ICP, and the ventricular wall have only

moved by 1.60mm. Therefore, in modeling hydrocephalus, it is unlikely that the patient's

brain can su�er such high states of stress over a long period of time, and such high state

of stress in brain trauma may only last a few seconds. Thus, between these two values for

the bulk modulus, it is more reasonable to consider the bulk modulus to be 166KPa, and

the bulk modulus for modeling traumatic brain injury is not suitable.

4.3.2 Choice of Shear Modulus

The viscoelastic model is di�erent from the elastic models because of the time dependent

shear response of the tissue. To study the role of the time-dependent shear modulus in

modeling hydrocephalus, the numerical result of the viscoelastic problem is compared with

those of the elastic problem in the following two numerical experiments.

But �rst, to fairly compare the two problems, their dilatation responses are set to be

the same, such that they both describes the same degree of incompressibility. That is,

the Young's modulus and the Poisson's ratio of the elastic problem are de�ned in (4.1),

and the bulk modulus of the viscoelastic problem is de�ned by (4.3) using E and ν to

give K = 166KPa. However, the shear modulus G(t) is de�ned in (4.2), and the constant

shear modulus of the elastic problem is G = E
2(1+v)

= 3356Pa, which is larger in magnitude

compared to G(t) and will make a di�erence to their response.
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In the �rst experiment, the pressure is set to be

P (t) = 1000 (H(t)−H(t− 600))Pa

= 102 (H(t)−H(t− 600))mmH2O

for 0 ≤ t ≤ 1200s as shown in Figure 4.4, and ∆t = 10s. Also, the computational mesh is

an annulus with an inner radius a = 35mm and an outer radius of b = 70mm, so that the

outer diameter is close the length scale of a human brain. The mesh size is h = 1.25mm.

Thus, with such simple geometry, the radial displacement at the inner boundary can be

computed easily from the displacements uh = (u1, u2) at node xa that lies on the inner

boundary. The resulting radial displacement from a numerical experiment at the inner

boundary is computed by

ur(r = a, t) =
√
uh1(xa, t)2 + uh2(xa, t)2.

The numerical result for radial displacements of the two problems are shown in Figure

4.5. Figure 4.5(a) shows ur(r = a, t) of viscoelastic material, which is slightly di�erent

from ur(r = a, t) of elastic material at t = 0 and t = 600, as shown in Figure 4.5(b). The

elastic response is instantaneous and time independent. That is, when pressure is applied,

the displacement becomes non-zero immediately. When the applied pressure is removed,

the displacement becomes zero immediately which implies Ωh has returned to its original

shape. For the viscoelastic problem, the viscoelastic response is time dependent as a result

of the time dependent shear modulus. But since the relaxation times of the shear modulus

are short, and the magnitude of the shear modulus is small compared to that of the bulk

modulus, the dependent response is short and soon dominated by the elastic dilatational

response. Then, when the applied pressure is removed, the displacement of the viscoelastic

problem decreases rapidly to zero in time.

Moreover, when volumetric stress is computed at t = 590s, the distribution of the stress

for the two problems over Ωh is also similar, as shown in Figure 4.6. Note that the value

of volumetric stress is higher for the viscoelastic case, but this is consequence of the higher

displacement for the viscoelastic case compared to the elastic case. The average volumetric

stress in space is -99.9mmH2O for the viscoelastic case and -93.5mmH2O for the elastic

case.
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Figure 4.4: Pressure P (t) as a function of time
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Figure 4.5: The radial displacement at the inner boundary when the material is (a) vis-

coelastic, and (b) elastic.
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Figure 4.6: The volumetric stress of (a) the viscoelastic problem at t = 590s, and (b) the

elastic problem at t = 590s.

In the second experiment, the two problems are compared with a realistic geometry of

the ventricular wall, and a realistic time scale and pressure. The computational domain

Ωh is generated from a post-shunt image of Patient C. P (t) is increased linearly from 0 to

9000Pa over 14 days of simulated time. The material parameters K, G(t), E and ν are

the same as the previous experiment.

The numerical result of the second experiment shows that, at day 14, the greatest

displacement around the ventricular wall is 4.73mm for the elastic problem and 5.12mm

for the viscoelastic problem. Because the di�erence in displacement is small, the shapes

of the ventricular wall for the two problems are nearly identical. Figure 4.7 shows the

boundaries of the original mesh and the boundaries of the deformed mesh for the two

problems.

From the observations of these two numerical experiments, the displacement, strain

and stress response of the elastic and viscoelastic problems are very similar, and they

have a small di�erence in magnitude since their magnitude in shear modulus are di�erent.

Moreover, when a realistic geometry is used, the shape of their deformed ventricles are
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Figure 4.7: The symbol �∆� outlines the original boundaries of Ωh. The symbol �*� outlines

the deformed boundaries of Ωh of the viscoelastic problem. The symbol �o� outlines the

deformed boundaries of Ωh of the elastic problem.
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similar. This is because both problems describe their dilatation response as elastic, and

have the same degree of incompressibility. Another reason is that the relaxation time of

the shear modulus G(t) is short, and its magnitude is small compared to the magnitude

of the bulk modulus. In [9], several forms of the shear modulus G(t) are summarized, and

the one with the greatest magnitude is three times bigger than the current shear modulus

used. However, it is still small compared to the bulk modulus. Also, the longest relaxation

time is 80s found in [12] with a quasi-linear model, but it is still short compared to the

time scale of hydrocephalus. Thus, given the current material parameters for the linear

viscoelastic model of brain tissue, the description of brain tissue response is similar to the

elastic description in modeling hydrocephalus.

4.4 Movement of the Ventricular Wall

Since the success of a shunting procedure depends on the placement of the shunt, it is

bene�cial to know how the ventricular wall will move inward when a shunt is placed. It

would even be better if the shape of the ventricular wall can be predicted. In this section,

the movement of the ventricular wall is studied as the pressure increases and decreases.

Then, the challenge to predict the shape of the ventricular wall is addressed.

4.4.1 Movement of the Ventricular Wall

If the ventricular wall and the skull were two concentric circles, then as the pressure

changes, the radius of ventricular wall would change but it would still remains a circle.

Since the ventricular wall and the skull are not circles, how the ventricular wall expands

and shrinks is unclear. To study how the ventricular wall shrinks after a shunting pro-

cedure, the development and treatment of hydrocephalus is simulated by increasing and

then decreasing the pressure, and then the displacement made by the ventricular wall is

observed.

Three experiments are conducted using the viscoelastic model with three computation

meshes Ωh generated from a post-shunt image of Patient A, Patient C and Patient H.

The pressure P (t) increases linearly, then becomes stationary, and then decreases linearly
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Figure 4.8: Pressure P (t) as a function of time

within three weeks, as shown in Figure 4.8. Also, the shear modulus G(t) is de�ned in

(4.2), and the bulk modulus K = 166KPa.

Figure 4.9, Figure 4.10, and Figure 4.11 show the outline of the boundaries of the three

meshes at day 14 and day 21, which describe the displacement made by the ventricular

wall as it moves inward. In all three �gures, the displacement around the ventricular wall

is non uniform. In particular, the regions where the displacement is greatest are where

the ventricular wall is concave and are furthest away from the skull. Similarly, the regions

where the displacement are smallest are where the ventricular wall is convex and are closest

to the skull. This shows the di�erent regions of ventricular wall are moving at di�erent

speeds.

Such observation is useful in the research conducted by West in [48], where the level

set method is used to simulate the ventricular motion. This method requires information

about how the ventricular wall moves, and West tried both uniform speed and curvature

dependent speed. The observation of these experiments shows that the speed is de�nitely

not uniform, even when the deformation is small. When the deformation is small such

as those shown in this experiment, the motion of the ventricular wall is in�uenced by the

concavity of the wall and the distance between the ventricular wall and the skull. It is

not clear which of these two factors plays a more important role, since the wall is usually
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Figure 4.9: Ωh represent the brain of Patient A. The symbol �o� outlines the boundaries

of Ωh at day 14. The symbol �*� outlines the boundaries of Ωh at day 21.
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Figure 4.10: Ωh represent the brain of Patient C. The symbol �o� outlines the boundaries

of Ωh at day 14. The symbol �*� outlines the boundaries of Ωh at day 21.
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Figure 4.11: Ωh represents the brain of Patient H. The symbol �o� outlines the boundaries

of Ωh at day 14. The symbol �*� outlines the boundaries of Ωh at day 21.
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concave when it is far from the skull.

4.4.2 Predicting the Shape of Ventricles During Treatment

When a shunting procedure is needed, medical images are taken of the enlarged ventricular,

and the surgeon decides on the shunt placement based on these images. It would be bene-

�cial if the position of the shrinking ventricles can be predicted by a numerical simulation,

so that an optimal placement can be decided before surgery. It seems that such simulation

could be performed by decreasing the pressure in the numerical model developed in this

thesis; however, it is found to be more di�cult.

To illustrate, an experiment is conducted using a computational mesh generated from

a pre-shunt image of Patient D, which describes an enlarged ventricles. Then, the pressure

is decreased linearly from 0 to -18000Pa or -1836mmH2O in 14 days. The shear modulus

G(t) is de�ned in (4.2) and the bulk modulus K = 166KPa .

Figure 4.12(a) shows the original geometry of the enlarged ventricles, and Figure 4.12(b)

shows the resulted geometry at day 14. Comparing these two �gures, the ventricular wall

have moved inward and become very close to each other in some region, and the ventricles

surrounding the frontal and occipital horns remain dilated. This observation is di�erent

from what is actually observed in the post-shunt image. Figure 4.13(a) and Figure 4.13(b)

show the pre-shunt and post-shunt image of Patient D respectively. The post-shunt image

shows the overall size of the ventricles is reduced, and the regions near the frontal and

occipital horns have also reduced in size, which is not the case in the numerical experiment.

What is missing in the numeral simulation that leads to this discrepancy is the state

of stress and strain of the deformed brain of Patient D. Like all previous experiments,

the mathematical model considers the initial geometry as the natural original shape of

the brain, and once it is deformed, the stress and strain become non-zeros. Thus this

experiment is pulling the ventricular wall inwards, instead of allowing the compressed

brain tissue to restore its shape. Therefore, it is incorrect to model the treatment of

hydrocephalus simply by decreasing the pressure. More information is needed about the

state of stress and strain of a patient's brain. Unfortunately, current technology does not

enable one to measure the state of stress and strain of a human brain. Even if it is possible,

the viscoelastic model of the brain would require the entire history of the deformation.
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Figure 4.12: (a) The original shape of Ωh. (b) The resulted shape of Ωh after 14 days of

simulated time. (c) The pressure P (t) at the ventricular wall which linearly decreases over

14 days.
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(a) (b)

Figure 4.13: (a) a pre-shunt image of Patient C. (b) a post-shunt image of Patient C.

4.5 Assumptions of Linearity

In formulating the mathematical model for hydrocephalus, the assumption of linearity is

used twice: �rst, the deformation is assumed to be small enough such that the Cauchy's

in�nitesimal strain tensor is used; second, the stress and strain relationship of the material

is assumed to be linear. Most behaviour of a material is nearly linear over a certain ranges

of stress, strain and time, but over a larger range of these variable, the use of linear theory

will gives only a poor approximation of the actual behaviour of the material. Thus, in

this section, an acceptable range of strain over which linear theory may be employed is

discussed.

First, the in�nitesimal deformation approximation is discussed, and the limitation of

this approximation is that the deformation resulting from a numerical experiment should

not be too large. Since this assumption requires that the nonlinear part of the Green's

strain tensor ε̃ij to be small compare to the Cauchy's in�nitesimal strain tensor εij, the

ratio between ε̃ij and εij provides a good indication of the validity of this assumption.

Consider the following ratio κ

κ =
1
N

∑N
e=1(

∣∣trace(ε̃eij) ∣∣)
1
N

∑N
e=1(

∣∣trace(εeij)∣∣) , (4.4)
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where N is the total number of elements, and εeij and ε̃eij are computed as described in

Section 3.2.3.

To set a reasonable bound on κ, four experiments with progressively larger deformation

are performed. Since both the elastic and viscoelastic problems made the same assumption,

it is su�cient to conduct these experiments with only the elastic problem. The computation

domain Ωh is generated from a post-shunt image of Patient A, and the Young's modulus

and Poisson's ratio are de�ned in (4.1). Then, the pressure of the four experiments are

10KPa, 20KPa, 40KPa and 80KPa, so that the deformation between each experiment

is increased.

The result of these four experiments are shown in Figure 4.14. Figure 4.14(a) shows

the original ventricles shape of Ωh. Figure 4.14(b), (c), (d) and (e) shows the deformed

geometry of Ωh, the maximum displacement and the ratio κ for the four experiments, which

is becoming larger between each experiment. Figure 4.14(b) shows the result of the �rst

experiment, where the ventricles are slightly enlarged with a maximum displacement of

4.71mm, and the ratio κ is 0.13. This implies the magnitude of the nonlinear terms, that

are excluded in the mathematical model, is roughly 13% of the magnitude of the linear

terms. Similarly for the next experiment, with a larger deformation and displacement as

shown in Figure 4.14(c), the ratio κ is already 0.27 implying a greater magnitude of the

nonlinear strain tensor is excluded. Thus, when a deformation gives κ > 0.50 as shown in

Figure 4.14(d) and Figure 4.14(e), the use of in�nitesimal strain tensor surely yield a poor

approximation of the actual behaviour of the material.

To ensure the nonlinear terms ε̃eij is small enough in numerical experiments of this

thesis, the ratio κ is computed and bounded above by 0.15. This value is chosen because it

is small enough such that the experiments give su�ciently noticeable changes in the shape

of the ventricles.

Lastly, the assumption of linear viscoelasticity is discussed. According to [12], the linear

viscoelastic model is insu�cient to describe the brain tissue if the strain is greater than

40%. Thus, the average volumetric strain over Ωh is computed and observed. It is found

that as long as the ratio κ < 0.15, the resulting strain of an experiment will not exceed

40%. Thus, as long as the deformation is in�nitesimal, the use of the linear viscoelastic

model is acceptable. Therefore, since the ratio κ and volumetric strain of the numerical
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Figure 4.14: (a) The original shape of Ωh. The deformed Ωh with parameters (b) P (t) =

10KPa, maxu = 4.70mm, and κ = 0.13, (c) P (t) = 20KPa, maxu = 9.41mm, and

κ = 0.27, (d) P (t) = 40KPa, maxu = 18.82mm, and κ = 0.54. (e) P (t) = 80KPa,

maxu = 37.64mm, and κ = 1.09.
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experiments in this thesis are bounded, the experiments in this thesis give an accurate

approximation of in�nitesimal deformations.



Chapter 5

Conclusions

5.1 Summary

In this thesis, the viscoelastic model for studying hydrocephalus is described, and �nite

element method and a time-stepping scheme for solving this model is presented. Analytical

solution is also found when the geometry of brain is a cylinder, and the numerical solution

is validated with the analytical solution. The elastic model is also introduced to assist the

development of analytical and numerical solution. Also, realistic computational mesh are

generated using level set method and a program called DistMesh. Numerical stability of

the time-stepping scheme is also studied.

Using the generated computational meshes, three numerical studies related to hydro-

cephalus are conducted. In one of these studies, the state of stress of the brain tissue when

hydrocephalus develops is investigated and found to be compressive everywhere in the

brain. However, in [29], the state of stress is found to be both compressive and expansive

when the brain tissue is modeled as a poroelastic solid �lled with �uid. Consequently, the

two approaches give a di�erent description on how the brain tissue may be damaged.

In another study, the role of viscoelastic material in modeling hydrocephalus is inves-

tigated. When the tissue is described with a bulk modulus that is used in brain traumatic

injury, the volumetric stress of tissue is signi�cantly much higher compared to normal

ICP. Hence this suggests such bulk modulus might not be appropriate for modeling hydro-

cephalus. Also, the time dependent shear response of the tissue is very short compared to

93
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a typical time scale of hydrocephalus, and the viscoelastic response is soon dominated by

elastic response. Therefore, the time scale of current viscoelastic models may be suitable

for brain traumatic injury, but it is insigni�cant in modeling hydrocephalus.

In the last study, the movement of the ventricles is observed when the pressure gradient

increases and decreases, and it is found that the ventricular wall does not move uniformly

inward, even when the deformation is small. When ventricles of di�erent geometry are

tested, it is found that the greatest displacement occurs in the region where the ventricular

walls are concave and are furthest away from the skull. Moreover, it would be bene�cial

to predict the position of the ventricles before the shunt is implanted, but it is shown that

the challenges lie in knowing the state of stress of the deformed brain.

5.2 Future work

There are a number of possible extensions to this work. An important one is to model

large deformation by using the fully nonlinear Green's strain tensor, since the deformation

of the brain is usually quite large when hydrocephalus develops. A large deformation can

be described by a series of small deformation, and this subject is referred to as mechanics

of incremental deformation. One can refer to [5] for a comprehensive reference on this sub-

ject. Finite element method has also been developed to model large deformation through

incremental deformations, where each increment is solved using the method introduced

in this thesis. [31, 28] are two excellent references to this subject. [24] provides a good

summary of numerical methods for biomechanical models of soft tissue but it requires

some knowledge of �nite element method. Nonlinear constitutive equations could also be

considered. Unless a viscoelastic model have a longer relaxation time, a nonlinear elastic

model might be su�cient.

Another extension involves predicting the shape of ventricles. Since the state of stress

and strain of the patient's brain is unknown, it is an ill-posed problem to predict the

geometry of the ventricles as it shrinks. So, instead of trying to �nd a way to measure the

state of stress of the tissue, one could try to �nd the initial geometry of the ventricles. Given

an pre-shunt image, its original shape might be found by deforming an arbitrary shape

with a possible pressure gradient, such that the deformed shape resembles the ventricles
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on the pre-shunt image. Such an arbitrary shape should resemble the general shape of the

normal ventricles. Then using this shape as the initial geometry, one could simulate the

development and then the treatment of hydrocephalus. However, such an initial geometry

may not be unique, so the initial shape could be chosen such that a function measuring

the deformation is minimized. However, it is unclear how this function should be de�ned.

Other possible extensions include combining a compartmental model with the governing

equations and extending the governing equations to 3D. A compartmental model describes

the CSF volume and pressure relationship in the ventricles, and it would gives a more real-

istic way to model the boundary condition at the ventricular wall. See [43, 39] for details.

The numerical methods for grid generation methods can be applied for 3-D geometry.





Appendix A

Existence and Uniqueness of Solutions

For completeness, the conditions for the weak formulation of the two problems to have

unique solution are stated. These conditions are discussed in [20] for the elastic problem,

and in [34, 35] for the viscoelastic problem.

First, consider the Lax-Milgram Theorem which is often used in proving existence and

uniqueness of solution to a weak formulation.

Theorem 2. Lax-Milgram Theorem. Consider a weak formulation: �nd u ∈ V such that

a(u,v) = L(v), ∀v ∈ V. Consider the following properties for a(u,v) and L(v, t)

1. a(u,v) is symmetric, i.e., a(u,v) = a(u,v), ∀u, v ∈ V .

2. a(u,v) is continuous, i.e., there is a constantm > 0 such that |a(u,v)| ≤ m ‖u‖V ‖v‖V ,
∀u, v ∈ V .

3. a(u,v) is V-elliptic, i.e., there is a constant α > 0 such that a(v,v) ≥ α ‖v‖2
V ,

∀u, v ∈ V .

4. L(v) is continuous, i.e., there is a constant Λ > 0 such that |L(v)| ≤ Λ ‖v‖V ,
∀u, v ∈ V .

When these property holds, the weak formulation has a unique solution.
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Theorem 3. Consider the weak formulation of the elastic problem (3.14). If the Young's

modulus E ≥ 0 and the Poisson's ratio v ≥ 0, then the weak formulation of the elastic

problem has a unique solution.

Proof. It can be shown that a(u,v) and L(v, t) of (3.14) satis�es property 1, 2 and 4.

Property 3 follows from Korn's inequality, provided that the Young's modulus, E ≥ 0, and

the Poisson's ratio ν ≥ 0. Therefore, the elastic problem has an unique solution according

to Theorem 2.

To show that the weak formulation of the viscoelastic problem has a unique solution,

the formulation needs to be written with a di�erent form of constitutive equations, and it

is derived in (2.35)

σij(x, t) = λ(t− t0)εkk(x, t0)δij + µ(t− t0)εij(x, t0)

+

∫ t

t0

λ(t− s)
dεkk(x, s)

ds
δij + µ(t− s)

dεij(x, s)

ds
ds.

Using a relaxation matrix D(t− s), this constitution equations become

σ(x, t) = D(t− t0)ε(x, t0) +

∫ t

t0

D(t− s)
dε(x, s)

ds
ds (A.1)

where

D(t− s) =

 λ+ µ λ 0

λ λ+ µ 0

0 0 µ
2

 (t− s).

Following the same procedure in Section 3.2.1, the resulted weak formulation can be de�ned

neatly with a bilinear operator and a load operator.

Find u(x, t) ∈ H1(I,V) such that ∀v ∈ V , ∀t ∈ I

a (λ(t− t0), µ(t− t0),u(x, t0),v(x)) +
∫ t
t0
a
(
λ(t− s), µ(t− s), du(x,s)

ds
,v(x)

)
ds

= L(v(x)),

(A.2)

where the bilinear operator is

a (λ(t− q), µ(t− q),u(x, q),v(x)) =

∫
Ω

εT (v(x))D(t− q)ε(u(x, t0))dx,



99

and the load operator is

L(v(x), t) = −
∫
∂Ω

vT (x)g(x, t)ds.

The Sobolev space H1(I,V) consists of all functions u ∈ L2(I,V) such that du
ds
exits in the

weak sense and belongs to L2(I,V), and the norm of L2(I,V) is de�ned in (3.47). Another

way to write the weak formulation is to use the alternate form of hereditary integral, as

appeared in (2.30), and the resulted weak formulation is

a (λ(0), µ(0),u(x, t),v(x))−
∫ t
t0
a
(
dλ(t−s)
ds

, dµ(t−s)
ds

,u(x, s),v(x)
)
ds

= L(v(x)).
(A.3)

Next, consider some properties of a stress relaxation function for the weak formulation

(A.2) to have a unique solution.

Theorem 4. Assume the stress relaxation function λ(t − q) and µ(t − q) satisfy the fol-

lowing:

1. Positive De�niteness: ϕ(t− q) > 0, ∀t, t− q ∈ I.

2. The fading memory hypothesis: dϕ(t−q)
dq

> 0, ∀t, t− q ∈ I. This implies disturbances

which occurred in the distant past have less in�uence on the present solution than

those which occurred in the more recent past [12].

3. Regularity: ϕ(t− q) ∈ C∞(I).

4. Causality: ϕ(t − q) = 0 ∀q > t such that t, q ∈ I. This simply means future events

does not a�ect present behaviour.

then the bilinear operator a(λ(t − q), µ(t − q),uh(x, q),v(x)) is V-elliptic, and the weak

formulation has a unique solution

Proof. It is to check a (λ(t− q), µ(t− q),uh(x, q),v(x)) and L(v, t) of (A.2) satis�es prop-

erty (1), (2) and (4) of Theorem 2. In addition, when λ(t− q) and µ(t− q), satisfy the four
assumptions, its bilinear operator is V-elliptic. Thus, it can be shown using the Picard

iteration, detailed in [23], that (A.3) has an unique solution. Since (A.3) is mathematically

equivalent to (A.2), (A.2) also has an unique solution[34].
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Note that when the spatial domain is discretized using �nite element method, the weak

formulation (A.2) is written as

A(t− t0)U(t0) +

∫ t

t0

A(t− s)
dU(s)

ds
ds = L(t), (A.4)

where A(t− s) is a sti�ness matrix. The resulted equation is a Volterra system of integral

equations of the �rst kind for U
′
(t).
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