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Abstract

Various machine learning algorithms like Neural Networks, Linear Regression, Feature
Learning etc. are being employed successfully in a wide variety of applications like com-
puter vision, speech recognition, bioinformatics etc. However, many of these learning
algorithms have been shown to be NP-Hard. Furthermore some of these algorithms are
even hard NP-Hard approximate. The intuition behind the success of these algorithms
is that in practical applications the input data is not ‘worst-case’ and has certain ‘nice’
properties. In this thesis, we take steps towards bridging the apparent gap between what is
predicted by theory and what is actually happening in practice. We consider two different
niceness assumptions.

The notion of Metric Distortion is fairly common for dimensionality reduction tech-
niques. The goal is to obtain reduction techniques such that the distortion is small for all
pairs of points. We show via an example that Metric Distortion is not good at modeling
dimensionality reduction techniques which would perform quite well in practice. We in-
troduce Retaining Distances, a probabilistic notion for modeling dimensionality reduction
techniques which preserve most of the inter-point distances. Retaining Distance can viewed
as a relaxation of Metric Distortion. We prove that common techniques like PCA can be
modeled by our notion.

Another niceness assumption inherent in many machine learning algorithms is that
‘close points tend to have same labels’. A notion of Probabilistic Lipschitzness (PL) was
introduced by Urner et al. [28] to capture this intuition. In this work, we propose a new
definition of PL.. We show that both these definitions are orthogonal to one another, in the
sense that, one is not implied by (or a relaxation of) the other. We give sample complexity
upper bounds for Nearest Neighbor under this new definition.

The crux of the thesis is combining the two notions to show that information (niceness)
is preserved across dimensions. We prove that if we have PL in a higher dimension and any
dimensionality-reduction technique retains distances then we have PL in reduced dimension
as well. That is, a distance retaining reduction preserves PL. In other words, the niceness
properties that existed in the original dimension also exist in reduced dimension space.

Towards the end, we validate both our notions experimentally. We show how our notion
of retaining distance maybe employed in practice to capture the ‘usefulness’ of a reduction
technique. We also perform experiments to show how the two notions of PL compare in
practice.
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Chapter 1

Introduction

The rapid rise of the internet and computing resources has led to the availability of a large
amount of data. Machine Learning techniques and algorithms aim to learn from the data
and make predictions. Some of the learning algorithms like decision trees, linear regression,
logistic regression, neural networks, nearest neighbors have been applied successfully in a
vast variety of fields including genetics, finance, language processing, weather prediction,
astronomy and many more.

However a lot of the learning algorithms mentioned above have been shown to be NP-

hard. For example Venkatesan et. al [18] showed that “weak agnostic proper learning
of half-spaces” is hard. Blum et al. [12] showed that training a neural network is NP-
Complete. Similarly, Rivest et. al [21] showed that decision tree learning is NP-Complete.

Despite these negative theoretical results for most of the popular machine learning
algorithms, they continue to employed in practice rather successfully. This success can
be attributed to the fact that the data we encounter in real-world applications is seldom
‘worst-case’. In most of the cases, the input data and the distribution have certain nice
properties which are exploited by the learning algorithms. For example, intuitively we
attribute the success of nearest neighbor algorithm to the fact that points which are close
in feature space tend to have same labels. Similarly, linear predictors would be successful
when the input data can be separated using half-spaces with relatively small error. Similar
assumptions are inherent in almost all the machine learning algorithms.

In this thesis, we want to mathematically model these assumptions and show that
learning is possible under these ‘niceness’ assumptions. We consider two niceness assump-
tions. One assumption which we call Retaining Distance is used to model dimensionality



reduction techniques and the other called Probabilistic Lipschitzness is used model labeling
functions.

1.1 Niceness assumptions in Dimensionality Reduc-
tion

Real world applications need to deal with data that have a large number of features (or high
dimension). A high dimensional data poses many challenges. The running time of many
common classification algorithms, regression algorithms depend linearly or exponentially
on the dimension of the data [5, 32]. As the dimension increases, the amount of data needed
to make a prediction also grows exponentially. These problems associated with working
with high dimensional data have been termed as the curse of dimensionality [10, 9].

Due to the prevalence of high dimensional data, dimensionality reduction techniques
are used in many domains of Machine Learning as a preprocessing step. Some of the
popular dimensionality reduction techniques include Principal Component Analysis (PCA),
Laplacian Eigenmaps, Multidimensional Scaling, Isomap, Neural Autoencoders, K-means
based Dimensionality Reduction and many more. A nice overview of these techniques can
be found in [30, 15].

Dimensionality reduction techniques (sometimes also referred to as embeddings) aim to
transform data from a high dimension space into a low dimension space while preserving the
important properties/features of the data. One of such properties is inter-point distances.
A lot of literature exists on finding embeddings which preserve inter-point distances for
all pairs of points (details in Chapter 2). However, often a more realistic assumption is to
enforce that the distance be preserved for most but not all the pairs of points. We show by
constructing simple examples that this assumption is indeed more realistic and intuitive.
We model this assumption by our notion of Retaining Distance.

PCA is perhaps the most popular dimensionality reduction technique used. In practical
applications it is seen that if PCA is able to capture the variance of the data then it performs
quite well. The better it captures the variance of the data the better is the performance
of the reduced representations. We show that under exactly these assumptions, PCA can
be modeled by our notion of Retaining Distance.



1.2 Niceness Assumptions for labeling functions

As discussed earlier, various classification algorithms rely on the assumption that the
data labeling function has certain ‘nice’ properties. An assumption inherent in learn-
ing paradigms like nearest neighbor, linear classification is that close points tend to have
similar labels. To model this assumption, the notion of Probabilistic Lipschitzness (PL)
was introduced by Urner et al. [29].

The function which labels the data can be either deterministic or non-deterministic.
For the deterministic case, the labeling function is well-defined. For the non-deterministic
case, the probability over the labels can be used as the ‘labeling’ function (this is slight
abuse of formal notation for simplicity). In this thesis, we restrict ourselves to the case
when the labeling function is deterministic.

In Mathematics, continuity is a notion which is very commonly used for functions.
Lipschitzness is a stronger form of continuity. Theoretical results (sample complexity upper
bounds) are known when the conditional probability function over the labels is Lipschitz
(Theorem 19.3 in [26]). Similar results were obtained by Urner et al. [28] when the labeling
function is deterministic and satisfies PL. The notion of PL can be viewed as a relaxation
of the standard Lipschitz condition. PL essentially says that the probability of generating
a point such that the standard Lipschitz condition is violated is small and bounded. In
this thesis, we introduce a different definition of PL and discuss its merits and demerits
over the original definition both theoretically and experimentally.

1.3 Preserving niceness while reducing dimension

Consider the following scenario. In some high dimension space, close points tend to have
same labels. We have a dimensionality reduction technique which preserves most of the
inter-point distances. We use this reduction technique to reduce the dimension of our
original data. Since most of the close points had same labels originally and our reduction
preserved most of the inter-point distances, intuitively one would expect that most of the
close points would have same labels even in the reduced dimension. In this thesis, we
build a theoretical framework and formally prove the above intuition with the appropriate
mathematical rigor. To summarize our result in a single sentence, “A nice dimensionality
reduction technique is such that if a labeling function was nice in original dimension then
the labeling function remains nice in the reduced dimension”.



1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 presents all the related work in the area
and then discusses the contributions that we have made. In Chapter 3 we introduce our
notion of retaining distance and prove that PCA retains distance. Chapter 4 introduces
our notion of Probabilistic Lipschitzness and gives sample complexity bounds for Nearest
Neighbor under PL assumptions. Chapter 5 combines PL and Retaining Distance to show
how retaining distances leads to niceness properties being preserved. Chapter 6 gives some
applications of how our notion can be useful in practice. In Chapter 7, we present our
experimental results. Chapter 8 concludes our work and discusses avenues for possible
future work.



Chapter 2

Related Work

In this thesis, we introduce two assumptions to model the ‘niceness’ properties of distri-
butions. We present some of the other notions prevalent in literature and discuss how our
results are different.

2.1 Metric Distortion

Dimensionality reduction techniques (or embeddings) reduce the dimensionality of the data
while preserving important properties (like inter-point distances) of the data. A notion of
distortion is used to measure the fraction by which the distances have changed between a
pair of points as the dimensionality of the space reduces. More formally,

Definition 2.1 (Distortion). Let DR be any dimensionality reduction technique (embed-
ding) that takes points in R and returns points in R". Let d and d’ be distance functions
in the two spaces respectively. Let d” be the extension of d’ to R™. Then distortion
between a pair of points z,y is defined as

d
dist(z,y) = % And distortion of the embedding DR is defined as
,y
dist(DR) = max dist(z,y)
I?y

The general flavor of research in the area of Metric Distortion is to find embeddings with
provably small distortion. A classical and perhaps the most important result in this area



is the Johnson-Lindenstrauss (JL) Lemma [23]. The JL-Lemma says that n points can be
embedded in dimension O(e~?logn) with distortion 14¢. Moreover, this embedding can be
found using a linear map and in randomized polynomial time. Informally, the JL Lemma
says that dimension can be reduced by projecting the data along a random half-space
and this projection preserves inter-point distances. This lemma has found applications
in Manifold Learning, Compressed Sensing etc. besides being used for dimensionality
reduction.

However, one of the limitations the JL.-Lemma is the dependence of the reduced dimen-
sion on the number of points n. Hence as n becomes very large, the number dimensions
required to get a small distortion also increases. This maybe unfavorable for applications
which deal with a large amount of data with large dimension (e.g. computer vision). Alon
[2] showed that the dependence on n is essential and the JL-Lemma is tight upto a factor

of O(log(1)).

Often the data is of intrinsically low dimension. In such cases, it would make more
sense to reduce to a dimension which is closer to the intrinsic dimension and use methods
which exploit this property of the data. Hence, recent works in the area focus on trying to
remove the dependency on n using the doubling dimension of the data [17]. Abraham et.
al [1] show that a metric space S of n points embed into Euclidean space with dimension
O(dim(S)/e) and distortion O(log' ™ n) where dim(S) denotes the doubling dimension. In
this result, although the dimension is independent of n, however the distortion depends
on n. One of the open problems in the area is to obtain embeddings with dimension and
distortion both dependent only on dim(S5).

Although results are not known for the original metric d, but results have been obtained
for the Snowflake metric (d*). These metrics are obtained by raising the given metric d to
some fractional power(0 < a < 1). Gottlieb et. al [16] show that a snowflake metric can
be embedded in dimension O(e~*dim?(S)) with distortion 1 + e. Bartal et. al [¢] improve
the above bound to O(e3dim(S)). They also provide a local dimensionality reduction in
O(e%log k) dimension with distortion 1+ € where k is size of the neighborhood in which
small distances are preserved.

Our Contribution

A common thread in all the works we cited in the above section was to obtain embeddings
which had a small distortion. That is, the embeddings are such that all pairs of points
have small distortion. However, a less strict and more realistic requirement would be to
obtain embeddings such that the distortion is small for most but not all of the points.
It is fairly easy to construct examples of techniques which perform quite well in practice



and have small distortion for most of the pairs of points. In Chapter 3, we construct one
such example. In this work, we try to build a generic framework which can model all such
dimensionality-reduction techniques.

We formalize a new probabilistic notion of what it means to preserve distance as a
relaxation of Metric Distortion. We call it Retaining Distance. We show that common
techniques like Principal Component Analysis (PCA) can be modeled by our notion. While
using PCA in various applications, the following heuristic is commonly used. Choose the
reduced dimension size such that PCA captures 95% or 99% of the variance. We prove
that if the variance along directions orthogonal to the principal components is small then
PCA retains distances. Hence, we provide theoretical justifications for something which
is successfully used in practice. We give some experimental evidence which suggests that
datasets on which PCA retains distances in a ‘better’ way, the performance on subsequent
classification task is also better.

2.2 Probabilistic Lipschitzness

Theoretical Machine Learning works in a pessimistic or worst-case setting. For a learning
algorithm to be successful, it must perform well under all possible data distributions. Often
in practice, it is seen that algorithms perform much better than the bounds predicted by
this analysis. One such example is seen in algorithms which try to learn from unlabeled
data. Results obtained by Ben-David et al. [11], Raginsky et al. [25] prove that access to
unlabeled data does not help in the worst-case. However, many applications improve their
performance by taking unlabeled data into account. This is because in real life applications,
the data distribution often has some nice properties which are exploited by the learning
algorithm.

An assumption which is often inherent in many machine learning paradigms is that
points which are ‘close’ to one another in the feature space tend to have same labels. To
model this niceness property, a notion of Probabilistic Lipschitzness (PL) was introduced
by Urner et al. [29]. Under PL Assumptions, Urner et al. [28] showed that Nearest
Neighbor Algorithm has bounded sample complexity. Not only that, they show that PL
assumptions lead to sample savings, i.e., faster learning from nicer distributions. They
also show that under PL assumptions, proper semi-supervised learning has reduced sample
complexity. Another notion which is similar to PL was introduced by Steinwart et al. [27]
called the Margin Fxponent. They use margin exponents to give learning rates for Support
Vector Machines by bounding the approximation error for Gaussian Kernels.



Our Contribution

The PL assumption essentially says that the probability that two close points have different
labels is bounded and small. In this thesis, we consider a different definition of PL. We
show that our new definition of PL is complementary to the previous definition. That is,
there are situations in which one holds and the other does not and vice-versa. Under our
PL definition, we prove that nearest neighbor has bounded sample complexity.

The crux of the thesis is in combining the two notions PL. and Retaining Distance to
achieve ‘Information Preserving Dimensionality Reduction’. The information that we care
about in this setting is the property that close points have same labels (or PL). We show
that if any distribution had PL property in the original dimension then any dimensionality
reduction technique that retains distances preserves this property. Hence, the niceness
property that existed in the original dimension is also present in the reduced dimension
space.



Chapter 3

Retaining Distance

3.1 Preliminaries

Framework

A domain set S C RY generated i.i.d by some probability distribution P. Distance func-
tions d and d' in RY and R" respectively where N > n. A dimensionality-reduction
technique DR which takes points in RY and returns points in R”. Construct a distance
function d” which extends d’ to RY, that is, d’(x,y) = d'(2',y’) where 2/ = DR(x) and
y' =DR(y).

Motivation

The objective of many common dimensionality-reduction techniques (or embeddings) is
to ‘retain’ inter-point distances. Experiments also suggest that techniques which retain
distances in a ‘better’ way perform better on subsequent classification and other tasks.
Metric Distortion aims to construct embeddings which have distortion 1+ ¢ (0 < € < 1)
for all pairs of points. Intuitively, a more realistic requirement would be ensure that the
distortion is small for most but not necessarily all the pairs of points. To capture these
properties, a mathematical notion of Retaining Distances is introduced.

We consider two types of events. Points which were ‘close’ in the original representation
but whose distances have grown by a large factor (say 2) in the new representation. Another
event is points whose distances have shrunk be a large factor (say 2) and as a result are
‘close’ in the reduced representation. Our definition essentially says that the probability
of the above events is bounded and small.



Definition 3.1 (Retaining Distance). Consider the framework as introduced. A domain
set S, probability distribution P, distance functions d and d”. We say that a dimensionality-
reduction technique DR retains distances when there exists functions 1, and 5 such that
the following holds

Pr [d(z,y) >2d"(z,y) A d'(z,y) <A] < ()

z,y~P

Pr  [d"(z,y) > 2d(z,y) A dlz,y) <] < ()

zy~P

Example 3.1. Consider points in 2-dimensional plane. Let the distribution P be such that
it generates points y = 0 and z € [0, 1] with probability 1 — € uniformly and points y = 2
and x € [0, 1] with probability € uniformly. Let the dimensionality reduction technique be
such that it always projects points along the x-axis.

Then for such a reduction technique, 1;(A) = e(1—€)A and ¥5(A\) = 0. Both these values
are quite small which is consistent with our intuition that this dimensionality reduction
technique performs well for the given distribution. However the distortion for this technique
would be large (> 2) for large datasets.

3.2 Principal Component Analysis(PCA)

3.2.1 Introduction

PCA is one of the most popular dimensionality reduction techniques. PCA projects the
original N-dimensional data along the n principal directions or an n-dimensional linear
subspace. The goal is to capture as much variance of the data as possible. The definition
of PCA which we would be using is due to Hotelling [20]. Given a set of data points, project
the data along orthogonal unit vectors such that the variance captured is maximum.

It turns out that finding orthonormal vectors with maximum variance captured is ac-
tually equivalent to finding the top eigenvectors of the sample covariance matrix. We omit
the mathematical details of this calculation here. For a more detailed discussion interested
readers are requested to refer [15] or any other standard Machine Learning text. Another
way to look at PCA is that the Principal Components minimize the squared reconstruction
error for the points.

From the point of view of real-world applications, the important decision here is the
choice of n, the dimensionality of the space to which the data should be reduced. Practi-
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Algorithm 1: Principal Component Analysis

Input: Data set X = {x,...,,,} where each z; C RY
Output: Y = {z,...,2/,} where each 2, CR", n < N

1 Compute the sample covariance matrix S = X X7,

2 Compute the top n eigenvectors of S and store in another matrix A. The matrix A
stores the principal components of the data.

3 Output Y = AX as the reduced representation of the original dataset X.

tioners often choose n such that ‘most’ of the variance of the data is captured. A dimension
n which retains 99% of the variance is often considered a good choice.

Intuitively, capturing the variance seems equivalent to capturing the relevant variations
and information inherent in the data. We will prove in the next subsection that this in
fact relates to distances. We will prove that as long as ‘most’ of the variance of the data
is captured by the n principal components then PCA retains distances. We will quantify
‘most’ of the variance as being such that the variance along any other direction orthogonal
to the principal component is bounded by € for some small constant e.

3.2.2 PCA retains distance

Let us assume that PCA projects the data along the n orthogonal unit vectors given by
U1, ...,Up. Let v,4q,...,vx be some other vectors such that vy, ..., vy form an orthogonal
basis for the original N-dimensional space. Then PCA is equivalent to choosing the first
n dimensions amongst the N given dimensions in this space. Let the distance functions
be the standard Euclidean distances. Hence, in this framework d(z,y) = ||z — y| =

\/(3?1 —y)?+...+(oy —yn)? and d"(z,y) = \/(931 — )2 (T — )2

Before we prove that PCA retains distances, let us consider the following lemma which
will be useful later on. In order to prove the lemma below, we will use a classical result from
Probability Theory called the Chebyshev’s inequality. Chebyshev’s inequality essentially
says that a random variable cannot take values which are very ‘far’ from the mean. More
formally, the probability that a random variable takes values far from the mean is bounded.

Chebyshev’s inequality [21] Let x be any random variable with expected value p and

11



variance o2. Let a > 0 be any real number,
1
P —ul > < = 3.1
Pr [z -yl >a0] < (3.1)
Lemma 3.1. Let S C RY be an unlabeled data set generated i.i.d by some unknown
probability distribution P. Let P; be the projection of P in direction 1,1 < i < N. If

var(P) <e,Vn+1<i< N, then %IEEI)EP [d(z,y) — d"(z,y) > \] < 8(N;;z)252'

Proof. In our proof, we will frequently use the following. If A C B then Pr(A) < Pr(B).
Now, observe that d(z,y) — d"(z,y) > X = d*(z,y) > (d"(z,y) + \)? = d*(z,y) —
d"™(z,y) > 2.

N

By, [day) - e 2 2] = Pr, [ 3 - 2 ¥]
2 2 , 2 A2
Now observe that Z;l(% —y) >N = Fi: (v —y) > T
- 2 2 ~ 2 N
.'xffp [i:;rl(xi_yi) = A }nggp [0+ (i — ) ZN—n]

Z IPIT |xz_yz|>L}
zn+1zyN _\/m

A
< Pr | |z; — ps| + |yi — pi| > ——===|, where y; = mean(F)

As before, one of |x; — u;| or |y; — ;| > and we get

A
2vV/N —n
N
A
P R A P o>
< 2 e, [l 2 o] Pr =il 2 5]

1= n+1

Using, Chebyshev’s Inequality (Eqn 3.1), we get

QZm]ZPEZ |z; — /LZ\_Q\/NT}.

i=n-+1
N
8(N —n)var?*(P) _8(N —n)*e
30 B onrtry s
i=n+1

12



Denote fi(\) := IPIrP [d(z,y) >2d"(x,y) A d"(z,y) < A] and fo(A) := ]PIrP [d"(x,y) >
€z, Yy~ Ty~

2d(z,y) N d(z,y) < A]. To prove that PCA retains distances, we need to show that
fi(A) < (X)) and fo(A) < 1ho(A) for some known functions ¢; and 1. We will now use
Lemma 3.1 to prove the following theorem which establishes that PCA retains distance.

Theorem 3.2. Let the framework be as in Lemma 3.1. Unlabeled dataset S C RY gener-
ated i.i.d by some unknown probability distribution P and var(P;) < e,¥Yn+1 <i < N.
Let fi and fs be functions as defined above. In addition, let fi(t) = ¢ for some constant t.

Then PCA retains distances with 1¥9(X) = 0 and Y1(\) = ¢+ M In other words,
3t
P1(\) € O(?)

Proof. In case of PCA| note that d” < d. Hence, for all A, fo()\) = 0 and hence 15(\) = 0.
We will now try to obtain an upper bound f;.

Now, observe that f; is an increasing function of A\. Therefore, for A < ¢, we have that
fi(A) < fi(t) = ¢ < ¥1(N). For A > ¢, we get,

ﬁ@pqﬂé)+Pm[ﬂmwzzwmw)A(%<W@m<A)]

z,y~P
— AN <A(D) + Pr [dwy) - d(@y) > 2
— 2 x’yNP ) Y — 2
Let ¢; := 32(N — n)?*, and using Lemma 3.1, we get that
A C1
< Z it
fi(d) < f1<2) 2
A 2 | o2 2 92, ot
<h(3)+pieel<s(3) + Sl

Now let m be such that

A
f1(>\) < f1(2m+1)+)\2[12—{—22+24—|_+22m]

A
T <t < gm” Then, repeating the above steps we get that

i C1 4m+2_4 16014m
SC+—E4 <C+—T§C+W
512(N — n)%e?
=c+ (3752 ") =:11(A)

13



Summary

We see that ¢ (\) = O(€?) and 1)5(A\) = 0. Hence, if the eigenvectors capture ‘most’ of the
variance of the data such that the variance along directions orthogonal to the eigenvectors
is small then PCA retains the distances between two points. Thus, our notion of retaining
distance is able to model PCA using assumptions which are actually used in practice.
Note that, the metric distortion of PCA would be large. Since for some pairs of points the
distortion maybe large. However, for most of the pairs of points the distortion is small.
This provides strong evidence that our notion is more realistic and closer to what is seen
in real-world applications.

14



Chapter 4

Probabilistic Lipschitzness(PL)

4.1 Preliminaries

Motivation

The framework of Statistical Learning Theory is agnostic to the probability distribution
which generates the data. An algorithm is said to be learnable only when it has low error
over all possible distributions which generate the data. Thus, learning theory works in the
pessimistic or the worst-case scenario. However, in practical scenarios, the data often does
not exhibit worst-case behavior.

The success of many algorithms can be attributed to the fact that the distribution has
certain nice properties. For example, if a distribution is such that the closest point to any
given point has opposite label then for such a distribution Nearest Neighbor would have
large error and would probably not be learnable. Similarly, if there exists no half-space
which separates the data points with low error, a linear classifier would have large error
and would not be learnable.

The notion of Probabilistic Lipschitzness was introduced by Urner et. al in [29] to
quantify how likely it is for two close points to have same labels. “PL is useful for modeling
niceness properties of distributions with deterministic labeling functions [28].” In a nutshell,

the PL assumption says that the probability of two close points having different labels is
bounded and small. Such a relation is inherent in many Machine Learning paradigms.

In this thesis, we consider a slightly different definition of PL. We will show that the
sample complexity bounds for Nearest Neighbor that were obtained using the original

15



definition can also be obtained using our definition. Our definition of PL is more useful in
the context of a distance retaining dimensionality reduction (This we will show in Chapter
5). Throughout this Chapter and the remainder of the thesis, we will refer to our definition
of PL as PL-Conditional and the original definition as PL-Unary.

Framework

Let S be an unlabeled set generated i.i.d by some probability distribution P and labeled
by some deterministic function /. Let d be a distance function.

Definition 4.1 (PL-Unary). The labeling function [ satisfies Probabilistic Lipschitzness
w.r.t to the Urner definition (call it PL-Unary) when there exists a function ¢ such that

Pr [3y: d(zy) <A A ) £l)] < 60

In the papers where PL-Unary was introduced, two alternate formulations of the PL-
Unary definition have been considered. The work in [29] considers the above definition. A
more recent version of the author’s work on PL [28] considers another definition which is
almost similar (very slightly stronger) to the original definition.

Pr [P [dly) <A A @) £10)]>0] < o0 (11)
T~ Yy~
The sample complexity bounds and other results they present hold for both the ver-

sions of this definition. This slight distinction between the two versions will become more
apparent when we consider the following example.

Example 4.1. Let the domain be X = [0, 1], the labeling function [ be such that it labels 1
for irrationals and 0 for rationals and P be the uniform distribution. Then given any point
x and any A, there always exists another point y such that d(z,y) < A and [(z) # I(y).
Hence, according to the first version of PL-Unary, ¢(\) = 1. However, note that on the
real line, the probability of generating a rational number is 0. Hence, according to the
second version of PL-Unary, ¢(\) = 0.

In this chapter and the remainder of the thesis, we will be using the second version
(Equation 4.1) as the definition of PL-Unary.

Definition 4.2 (PL-Conditional). We say that the labeling function [ satisfies PL-
Conditional when there exists a function ¢ such that

Lo [lz) #1y) [ dlzy) <A] < 60
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4.2 Sample Complexity bounds for Nearest Neighbor
under PL-Conditional

We will now prove sample complexity bounds for Nearest Neighbor (NN) under PL-
Conditional assumptions. Nearest Neighbor is perhaps the most simplest to state algo-
rithms in Machine Learning. Let S be any training set of size m. Now, given any query
point z, find the point in S which is closest to x. Call this point the Nearest Neighbor of
z in S denoted by mg(x). Label the point x with the same label as that of mg(x).

Theorem 4.1. Let S C [0,1]" be an unlabeled set generated i.i.d by some distribution
P. Let S be labeled by some deterministic function | which satisfies PL-Conditional with
function ¢ . Then the sample complexity of Nearest Neighbor myy s upper bounded by

2 v\

Outline of the proof: The full proof of the theorem is quite long (about two and a half
pages in length). We give only the proof ideas in this section and include the detailed proof
in the Appendix A.

The essential proof idea is the same as that used in the proof of Theorem 19.3 in [20].
We divide the region [0,1]" into axis-aligned hyper rectangular boxes each of diagonal
length A. Now given a training set S of size m, there are two possibilities. A query point
x lies in a box that contains a point from S or the point lies in a box that is empty.

In the first case, since the box already contains a point from S, we know that the
distance to the Nearest Neighbor of z is bounded by the box length A\. We then use PL-
Conditional to bound the probability of error in this case as ¢(\). The second case is
equivalent to generating m points such that none of the points lie in a given box. We use
Lemma A.1 to bound the probability of this event. The basic intuition is that if the training
set size m is large enough, then most of the boxes would be hit by a sample point and the
probability of a box being empty would be small. Thus, we see that Nearest Neighbor has
bounded error in this case. The more examples we get the lesser is the probability of error.

4.3 Extensions to k-Nearest Neighbor

In this section we extend our results to a more generalized version of Nearest Neighbor,
that is, k-Nearest Neighbor (kNN). Given any training set S and a query point z, instead
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of just the closest point, find k points in S which are closest to x. Then assign the label of
x as the majority label over these k points. We will now prove sample complexity bounds
for kNN under both PL-Conditional and PL-Unary assumptions.

Theorem 4.2. Let S C [0,1]" be an unlabeled set generated i.i.d by some distribution
P. Let S be labeled by some deterministic function | which satisfies PL-Conditional with
function ¢ . Then the sample complexity of k-Nearest Neighbor mynn is upper bounded by

[ VN O\

Proof. The essential ideas used in the proof are identical to that used in Theorem 4.1.
Divide the region into axis-aligned boxes of predefined sizes. The basic idea is that if
we have enough samples we can hit most of the boxes k times. Now, either the nearest
neighbors are such that all of them are at a distance less than A or there exists atleast one
with distance greater than \. Using PL, we bound the probability of error in the first case.
The second case has a small probability of occurrence (Lemma A.2) The detailed proof is
given in Appendix A. n

We will now prove sample complexity bounds for kNN when the labeling function satisfies
the PL-Unary assumption. As expected, the proof is a simple extension of the proof for
Nearest Neighbor given by Urner et. al [28].

Theorem 4.3. Let S C [0,1]Y be an unlabeled set generated i.i.d by some distribution P.
Let S be labeled by some deterministic function | which satisfies PL-Unary with function
¢ . Then the sample complexity of k-Nearest Neighbor mynn is upper bounded by

4k VN "
mkNN(e,(S) S < )2/k>> (44)

6\ ¢o—1((e6/2

Proof. Please refer to the appendix. m

4.4 PL-Unary vs PL-Conditional

We will now compare the two notions of PL and see how they compare against one another.
We want to compare them both theoretically and practically. In this section, we only
consider the theoretical aspects. Detailed experiments are given Chapter 7.
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The first question that we try to investigate is that whether one of notions is stronger
than the other. We will construct two examples which will show that none is always
stronger than the other. Thus, there are scenarios when PL-Conditional is better and
scenarios when PL-Unary is better.

Note that both the definitions of Probabilistic Lipschitzness are parametrized by a
function ¢. Denote by ¢prc the function which parametrizes our definition and by ¢pry
the function which parametrizes the other definition.

Example 4.2. (PL-Conditional but not PL-Unary)

Consider the real line from [0, 1]. Let A be some constant and 7 be another constant such
that v << A\. Consider the closed interval X} = [kA — v, kX + 7] for some k € N. Let the
domain be the union of all such closed intervals which lie completely within [0, 1]. That is
the domain X = UX}, for all k£ such that X, C [0,1]. Hence, the domain is made up of n
subintervals where 1 —1 < n < 1.

Let the labeling function be such that all points of the form kX where k € N are labeled
1 and all the other points are labeled 0. Now, consider the following distribution P over
the domain X. All the subintervals are given equal weight of % Within the subinterval,
the point of the form kX (center) is given a weight of 1;—7 and the remaining weight of 1 is
spread uniformly over the remaining points.

Now, observe that, given any point = there exists another point y with finite probability
such that d(z,y) < A and I(z) # l(y). Hence, ¢pry = 1. We now need to show that for
the above example ¢prc is small.

Lemma 4.4. For the example described above, ¢prc(N) = 47.
Proof. For the proof of the above lemma, we need a small result from probability theory.
Pr(AnB|C) < %. The proof of this result is fairly elementary. Now, I(x) # [(y)
if and only if x is some interval center (C;) and y is not a center (denoted by NC) or
vice-versa. Hence, we get
Pr  [l(z) #U(y) | d(z,y) <] = 2 Pr [z=C; A yis NC|d(z,y) <]
z,y~P - z,y~P
Now, consider the quantity on the right of the above equation and using the probability
result, we get that

Pr [d(z,y) <A A yis NC |z =C;]

z,y~P

Pr [2=C A yisNC|d(r.y) <] = Pr [d(x,y) <A|2=0Ci]

z,y~P
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In the above equation, denote the numerator by num(C;) and the denominator by den(C;).
Now, there are two possibilities. The first possibility is when the interval is not one of the
first or the last intervals. And the second possibility is when it is one of the two.

In the former case, we have that num(C;) = 32 and den(C;) = 3> + 289 And hence,
we get that 72;7:((0 )) < 437 < 27. Similarly, in the latter case, we get that num(C’Z) =3

and den(C;) = 2 + 1 209 - And hence, we get that ZZZ(C(’})) < ;% < 27y. Substituting this
throughout, we get that

Pr [l(z) #U(y) | d(z,y) < ] <22:27:47n<%y

z,y~P
]

Since 7 << A, we see that ¢prc is small as desired. However, in this case ¢pry = 1.
Hence, we got an example as desired. Now, we will construct an example which is the
other way round. That is, PL-Unary is small but PL-Conditional is large.

Example 4.3. (PL-Unary but not PL-Conditional)

Consider the real line from [0, 1]. Let A << 1 be some small constant. Let S = {\, ... kA}
be the maximal set such that & € N and S C [0,1]. Let the domain X = SU (k+ 1)) Let
n be the number of points in the domain X. Then + < n < 5 4 1. Let P be the uniform
distribution over the domain X. Let the labeling function be such that it labels all points
in S as 1 and the point (k4 ) as 0.

Now, if it is given that d(z,y) < A, then the only possibility is z = kX and y = (k+$)A
or vice-versa. In both of these cases due to the choice of the labeling function, we know
that [(z) # l(y). Hence, ]PIrP [{(z) #1(y) | d(z,y) <A] =1=¢prc(N). In this example,

Ty~

¢prc has a large value. The only thing left to show is that ¢pry has a small value in this
case. For points z € S\ kA, we see that the IPIIrD [d(z,y) < A] = 0. For the other two
yN

points, we see that there does exist a y with non-zero probability of opposite label. Hence,
we get that ]PIIFD []PIIL; [d(z,y) <X A l(z) #l(y)] >0] = 2 < 2X = ¢pru(A). For
T~ Yy~

this example, we see that ¢pry has a small value but ¢prc does not.
In both the Examples (4.2 and 4.3), intuitively we had the situation that close points had
same labels. In Example 4.3, PL-Unary was better at modeling this intuition since it had a

small value while in Example 4.2 PL-Conditional was better. Hence, we conclude that none
of the two notions of Probabilistic Lipschitzness is always than the other. We would also
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like to see how these two notions compare in practice. From our experiments on different
datasets, it seems that the performance of both the notions are somewhat similar. The
details of our experiments are included in Chapter 7.

The last thing that we want to consider is the convergence rates for Nearest Neighbor
Learning (myx) under PL-Unary and PL-Conditional. From Theorem 4.1, we know that

under PL-Conditional N
< 2 VN
m — | ——] .
M= e\ opl (€6 /2)

Similarly, Theorem 3 of [28] says that under PL-Unary, the sample complexity upper bound

for Nearest Neighbor
N
R 2 VN
NNS | =T | -
ede \ dpri(e/2)

Hence, given € and § the learning rates depend on the values of ¢p; - (€5/2) and ¢py;(€/2).
Since, nothing can be said about whether ¢pr ¢ is greater or less than ¢pry in general, we
cannot say anything about the learning rates in general. The actual rates would vary from
application to application. In some cases, learning under PL-Conditional would be faster
while in some learning under PL-Unary.
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Chapter 5

Distance Retaining Reduction
preserves PL-Conditional

So far, we have introduced the notion of Retaining Distance and demonstrated in Chapter 3
that it is good at modeling dimensionality reduction techniques which preserve inter-point
distances. In this chapter, we will show that this is not the only advantage of a distance
retaining reduction.

Besides inter-point distances, a distance retaining dimensionality reduction preserves
some of the nice properties of the distribution as well. One of such nice properties is Prob-
abilistic Lipschitzness which we introduced in Chapter 4. Theorem 5.1 and Lemma 5.2
together show that if we have PL-Conditional in the original dimension and any dimen-
sionality reduction technique which retains distance reduces the data to a lower dimension
then we would have the PL-Conditional property in the lower dimension as well.

Another way of stating the same result is that, Nearest Neighbor has bounded sample
complexity in the reduced dimension space as well. There are certain conditions under
which Nearest Neighbor has bounded sample complexity. We want to show that under a
distance retaining reduction, if those conditions are true in the original dimension, then
those conditions are true in the reduced dimension as well. One such condition is PL-
Conditional.

PL-Conditional definition says that ]PIrP [1(z) # Uy) | d(z,y) < A] < ¢(N). We
T,yn~

break this definition into two statements. The first is that the probability of the ‘and’

condition is upper bounded and that the denominator is lower bounded by some function

of \. More formally, we assume that lPIrP [{(z) # U(y) A d(z,y) <] < a()) and
Ty~
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]Prrp [d(a:,y) < )\} > [B(A\) where ¢ = 5. We will now show that these quantities are
Ty~

bounded in the reduced dimension space as well.

Theorem 5.1. Consider the framework as in the Definition 3.1. Domain set X C RY
generated by some probability distribution P, distance functions d and d”, dimensionality
reduction technique DR which retains distances wrt functions Y1 and o and a labeling
function l. Denote ' = DR(x) and y' = DR(y). Let P’ be the distribution obtained by
projecting P, that is, P'(z') = P(x) and " be the corresponding labeling function, that
is, U'(z") = U(z). If x]ljlrp [l(z) # l(y) Ad(z,y) < A] < «X) then I satisfies the
corresponding inequality in low dimension Pr  [U'(z) #U(y)Ad(2',y) <A] < ai(N)

a'sy'~P
where a; = Y1 + .2,

Proof. We know that DR retains distances, hence

Pr  [d(z,y) > 2d"(z,y) Ad"(z,y) <A] < i(N)

z,y~P

Note, that I',d" and P’ are just projections of [,d” and P respectively. Hence, we have

Pr  [d(@,y) <X AlU(z)#(y)] = Pr_ [d'(z,y) <X A l(z) #1(y)]

:v’,y’NP' 2y~ P
= Pr ld(z,y) < 2d"(z,y) Nd"(z,y) < AAU(z) # 1(y)]
Ty~
+ IPIrP [d(z,y) >2d"(z,y) A d"(z,y) <X A l(z) #(y)]
T,yn~
< Pr_ [d(z,y) <2X A lz) #1(y)] + Pr_ [d(z,y) >2d"(z,y) A d"(z,y) < )]
z,y~P z,y~P

<a2)) + ¥i(A) = ai(A)
O

To complete the proof that the labeling function satisfies PL-Conditional in the new
dimension as well, we need to lower bound Pr[d”(x,y) < A]. The proof for this is fairly
easy as is stated as a Lemma below.

Lemma 5.2. Consider the framework as in Theorem 5.1. If IPIrP [d(z,y) < A] > B(A),
Z,y~
then Pr_ [d"(z,y) < X] > Bi(\) where By = B.2 — s,

z,y~P
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Proof.

Pr [d(x,y)<g}—w2()\)< Pr [d'(z,y) <A] < Pr [d(z,y) < 2X\]+ (V)

z,y~P z,y~P z,y~P

]

We divided the PL-Conditional definition as a bound on two quantities. Theorem 5.1
and Lemma 5.2 together show that if these quantities are bounded in the higher dimension
then they are bounded in the lower dimension as well provided that the reduction retains
distance. In other words, PL-Conditional holds in the reduced dimension as well. Thus
Nearest Neighbor bounds and other nice properties follow in the reduced dimension space.

In our discussion in this chapter, one slight detail is missing. Note that Probabilistic
Lipschitzness is sensitive to the scale of the data. To obtain bounds for Nearest Neighbor
under PL, we needed an implicit assumption on the diameter of the data. This is because
we assumed that the domain was [0, 1]. Hence, we should upper bound the diameter in
the reduced dimension as well. However, in this work we only considered dimensionality
reduction techniques which reduce the distance namely PCA (where diameter reduces),
hence we don’t give any explicit upper bounds. In future, we plan to extend our approach
to other reduction techniques. In such a case, these bounds would be essential.

24



Chapter 6

Applications

So far we have presented a theoretical analysis of the different niceness notions. Specifi-
cally, we showed that our notion of Retaining Distance is good at modeling dimensionality
reduction techniques which preserve inter-point distances. Moreover, such a reduction
also preserves Probabilistic Lipschitzness (another nice property of a distribution). In this
section, we want to show how our notion of Retaining Distance might be used in prac-
tice. Consider the algorithm below which can be used to do an empirical evaluation of a
reduction technique.

Algorithm 2: Empirical evaluation of a reduced representation

Input: Unlabelled data set X C RY and X' C R™.
Output: fi(\) and f2()) for different values of A.

1 Randomly sample n (say 100, 000) pairs of points. For each of the pairs of points,
compute the original distance d(x,y) and the reduced distance d”(z,y).

2 Let fi(\) = Fraction of pairs of points [d(z,y) > 2d"(xz,y) Nd"(z,y) < A].
3 Let fy(\) = Fraction of pairs of points [d"(z,y) > 2d(z,y) Ad(x,y) < A].
4 Compute f; for different values of d”(z,y) and f, for different values of d(z,y).

From our definition of Retaining Distance (Defn. 3.1), a good dimensionality reduction
technique should have low values for functions v; and 1». However, calculation of v,
and 19 needs knowledge of the distribution which is almost always not available to us in
practical situations. Hence, we replace the ‘probability over z,y’ used in definition 3.1 by
‘fraction of pairs of points’ and introduce quantities f; and fs.
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For representations that preserve distance, we would expect f; and f, values to be
small and bounded especially for small values of A. Our experiments (Section 7.1) indicate
that there is some correlation between the performance of a reduced representation and
values of f; and fo. The lower these values the better is the performance (classification
accuracy) of the reduced representation. Thus, our notion is somewhat helpful in capturing
the usefulness of a representation especially in the context of PCA.
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Chapter 7

Experiments

We now describe the experiments we ran to validate and compare the different notions we
introduced in this thesis. Our experiments can broadly be divided into two categories. The
first set of experiments is used to validate the notion of Retaining Distance. In the second
set of experiments we compare how the two notions of Probabilistic Lipschitzness, PL-
Unary and PL-Conditional, perform in practice. We ran all our experiments on a standard
Linux distribution running Ubuntu 13.04 with 4GBs Main Memory. We have used Octave
(an open source version of Matlab) to implement all our algorithms.

Before we discuss our experimental results in detail, we first describe each of the datasets
on which we ran our experiments.

e VMNIST is a dataset of images of handwritten digits. Each image is 28 % 28, hence the
data is 784-dimensional. The dataset has 60,000 training examples and a test set of
10,000 examples.

e Gassensor is our abbreviation for the Gas Sensor Array Drift Dataset [31]. This
dataset contains measurements from chemical sensors used to differentiate between
six gases at different levels of concentrations. The dataset is 128-dimensional and
has 13910 examples. We randomly divided these examples into train and test sets of
sizes 12,000 and 1,910 respectively.

e HAR is our abbreviation for Human Activity Recognition using Smartphones dataset
[3]. This dataset contains recordings of subjects while performing six different activi-
ties. The dataset is 561-dimensional and contains 7352 train and 2947 test examples.
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e Spambase is a dataset of emails classified as spam or not spam available on the UCI
Machine Learning Repository [7]. It contains 4601 examples each of which have a
dimension of 57. We randomly split the examples into a training set of size 3900 and
a test set of size 701.

e [solet is a dataset of audio recordings of the 26 english letters available on UCI
Repository [7]. It contains about 7800 examples of recordings each of which have
dimension 617. We randomly split the dataset into a training and a test set of size
6238 and 1559 respectively.

A point to note here is that we have tried to include datasets from diverse domains.
One of our datasets is from the domain of speech recognition, one from image recognition,
one from chemical sensors, one from email classification and another one from activity
recognition. We used such a collection of datasets so that our results and conclusions
would be more general in nature and not restricted to a particular domain.

7.1 Retaining Distance

In Chapter 3, we introduced our notion of Retaining Distance. We showed that this
notion is good at modeling dimensionality reduction techniques which preserve inter-point
distances. Specifically, we proved that PCA retains distance if the principal components
capture most of the variance of the distribution. We want to validate this experimentally
as well.

This is how our experiments work. We take a dataset and use PCA to reduce the
dimension of the data in such a way that about 98% of the sample variance is preserved.
This is the reduced representation of a dataset. Our goal is to show that the Retaining
Distance correlates to the performance of the reduced representations. To show that PCA
retains distance, we need to show that the probabilities introduced in Definition 3.1 are
small. Since, we have no knowledge of the distribution which generates the data, we use
the quantities f; and f5 (introduced in Chapter 6) to estimate these probabilities.

f1(X\) = Fraction of pairs of points [d(z,y) > 2d"(z,y) Nd"(x,y) < \]
f2(X) = Fraction of pairs of points [d"(z,y) > 2d(x,y) Ad(z,y) < A]

We want to compare the f; and f; as a function of A for different datasets. Hence it
makes sense to have the distance functions d and d” on the same scale for all the datasets.
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Table 7.1: Difference of classification accuracy (test) on reduced (PCA) representation vs
Original representation on different datasets over 4 different algorithms

MNIST
Algorithm
Nearest ) Linear | Gaussian Average
Regression
Neighbor SVM SVM Accuracy Gap
PCA 96.92 92.19 94.64 98.62
0.00
Original 96.91 92.2 94.69 98.59
Gassensor
PCA 99.319 94.398 87.43 99.27 5 81
Original | 99.267 | 95.602 | 97.32 | 99.47 '
HAR
PCA 87.95 96.13 95.55 95.55
0.37
Original 87.85 96.10 96.23 96.47
Spambase
PCA 91.869 91.411 86.02 93.87 194
Original | 92.725 89.58 91.15 94.72 .
Isolet
PCA 88.775 96.087 96.22 96.99 0.13
Original | 88.582 96.087 96.02 96.85 .
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Therefore, we first normalize the distances (d/diameter and d”/diameter) and then plot
f1 and fy as a function of A for different datasets. Note that for PCA, we only care about
the value of f; since projection along half-spaces reduces the distance between points and
hence f5 is always zero. For the second part, we ran four classification algorithms namely,
Nearest Neighbor, Regression, Linear SVM and Gaussian SVM on the reduced as well
as the original representations. We then calculated the test accuracy difference between
the original and reduced representation averaged over these four classification algorithms.
This we call the ‘performance gap’. Our experiments show that there is some correlation
between the fi, fo values and the performance gap.

The results of our experiments are summarized in Figure 7.1 and Table 7.1. Figure
7.1 shows the plot of f; for the five different datasets. Notice that the values of f; are
small (< 0.15) for four of the five datasets. Also, observe that for three of the datasets
the f; values are very close to zero for small values of A\. In fact, for Isolet and MNIST
the values are very close to zero even for very large values of A. This shows that the PCA
representations for these datasets retains distance. Even for the dataset Gassensor, the f;
value is bounded by 0.25. Figure 7.1 can also be viewed as capturing a distance profile
of these representations. Such a plot should be useful for other dimensionality reduction
techniques as well. It gives an indication of how the reduction technique changes the
distances between points.

We ran the PCA representations on different classification algorithms (Nearest Neigh-
bor, Regression, Linear SVM and Gaussian SVM). For each of these algorithms we obtained
some test accuracy. We compared these accuracies with accuracy obtained when we use
the original representation. These values are listed in Table 7.1. In addition, we also cal-
culate the accuracy difference averaged over all the classification algorithms. Notice the
correlation between the accuracy gap of the datasets and the f; values. For Gassenor, the
accuracy gap is the highest 2.9% and so is its f; value which goes upto 0.25. For spambase,
the accuracy gap is less 1.24 and so is its f; values. For MNIST and Isolet the f; values
are very very close to zero. Their accuracy gap is also very close to 0. In fact for Isolet
its —0.13. A negative indicates that the performance of Isolet representations are in fact
better than the original representation.

From our experiments in this section, we make the following observation. Datasets
on which PCA retains distances in a better way tend to perform better on subsequent
classification algorithms as well. In future, we would like to extend this approach to other
dimensionality reduction techniques as well and see if similar conclusions can be made for
them or not.
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Figure 7.1: Fraction of points whose distance have shrunk by a factor of 2 plotted against
their normalized distance in reduced representation.
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Figure 7.2: Fraction of pairs of points which have different labels given that the normalized
distances are less than A.
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7.2 Probabilistic Lipschitzness

In the second set of experiments, we compare the performance of the two notions of Proba-
bilistic Lipschitzness, namely PL-Unary and PL-Conditional. To evaluate the two quanti-
ties for a particular dataset, we need to calculate the probabilities introduced in Definition
4.2 and 4.1. However, calculation of these probabilities needs knowledge of the distribution
which is seldom available in real-world applications. Hence, we estimate these probabilities
using the following quantities.

f1(A\) = Fraction of pairs of points[I(z) # I(y) | d(z,y) < A] and
f2(A) = Fraction of points [Jy : I(x) # I(y) Ad(x,y) < \]

Just as in Section 7.1, we use the normalized version of the distance function d. Figures
7.2 and 7.3 show the plot of f; and f, respectively for different datasets. To calculate fi,
we first randomly sample 100, 000 pairs of points. For each of the pairs of points we check
if their labels are the same and calculate f;. The calculations for fy are also somewhat
similar.

Now, note that the general trend in the graph of both these functions is somewhat
similar. f5 is smooth increasing function of distance A while the graph of f; is a little bit
more noisy. This is to be expected from the definitions of PL-Unary and PL-Conditional.
PL-Unary is an increasing function of the parameter A while PL-Conditional is not. But
even then, the general trend for f; is that roughly it increases with increasing value of .
Another point to note is that for large values of A\, f; is always less than f5.

Note that for each of the datasets, the values of f; and f, spike at about the same
A. Note that for Probabilistic Lipschitzness, we only care about small values of X\ in the
range of two to four. We would expect points which are separated by a large distance to
have different labels. Thus, our experiments suggest that both the notions of Probabilistic
Lipschitzness are roughly the same in practice.
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Figure 7.3: Fraction of points which have a point of different label when the normalized
distance is less than .
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Chapter 8

Conclusion and Future Work

In this thesis, we introduced a new notion to model dimensionality reduction techniques (or
embeddings) which preserve inter-point distances called Retaining Distance (Def. 3.1). We
showed that common techniques like PCA do have this property (Theorem 3.2). We then
showed that an embedding which retains distance not only preserves inter-point distances
but also some of the other ‘niceness’ properties of the distribution as well (Theorem 5.1).
The niceness property that we considered was Probabilistic Lipschitzness (Def. 4.2). "Close
points tend to have same labels’ - we showed that the notion of PL-Conditional is useful
for modeling this assumption (Fig 7.2). We proved sample complexity bounds for Nearest
Neighbor under PL-Conditional (Theorem 4.1). Hence, we showed that a distance retaining
embedding can be used to achieve information preserving dimensionality reduction.

There are several avenues for future work. The first is extending the notion of retain-
ing distance to other dimensionality reduction techniques. In future, we want to identify
assumptions under which techniques such K-Means based reduction, Neural Autoencoders
retain distance. We want to use Retaining Distance as a means to identifying assumptions
under which one would expect dimensionality reduction techniques to work well. An-
other direction that we want to explore is using PL-Conditional in other domains. Using
PL-Unary results have been obtained for Active Learning and other semi-supervised tech-
niques. We want to see if similar results would hold under PL-Conditional assumptions.
Another direction is using PL-Conditional or some similar niceness assumptions to obtain
results for half-spaces, SVMs etc. In this work, we considered niceness assumptions in the
domain of dimensionality reduction and labeling functions. Another interesting idea would
be to consider similar assumptions in the field of Kernel Learning.
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Appendix A

Lemmas and Proofs

For the proof of Theorem 4.1, we need a few Mathematical tools. The first is a lemma
which bounds the probability of a point being far away from all the points of the sample
S. Then we would also need Markov’s inequality which upper bounds the probability that
a non-negative random variable is greater than some positive constant.

Lemma A.1. Let C,Cy,...,C, be subsets of some domain set X and let S C X be an
unlabeled set of size m generated i.1.d by some distribution P over X. Then

Exp Z Pr [x € C’i} < =
S~P™ | iins=o " me
Proof. The proof of this Lemma can be found in the book [26] Lemma 19.2. O

Lemma A.2. Let C1,Cs, ..., C, be subsets of some domain set X and let S C X be an
unlabeled set of size m generated i.i.d by some distribution P over X. Then for every k > 2

2rk
Exp Z Pr [mGC’Z} < kil
S~ P ) z~P m
:|CiNS|<k
Proof. The proof of this Lemma can be found in the book [26] Lemma 19.6. O]

Lemma A.3. Let x,x1,...,7; be k + 1 points generated i.i.d in [0, 1]N which are labeled

by a 0-1 function | which satisfies PL-Conditional with function ¢. Assume that the points

are such that d(z,z;) < X\ for all 1 <i < k. Let the set A= {x;:l(x) # l(x;)}. Then
k.g(N)

Pr []4] > 1] < =52
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Proof. d(x,z;) < A and hence using PL-Conditional, we get that Pr[l(z) # [(x;)] < &(N).
We will model this by a binomial distribution. Consider the event [(z) # [(z;) as success.
Then the probability of success p < ¢(\). In this case, the event |A| > ¢ is equivalent to
number of successes being greater than ¢. The expected number of successes in k trials for
a binomial distribution is kp. Using, Markov’s inequality

Pr [|A| > t] = Pr[no success > t] < EXPUA'N} < ko) -

Markov’s inequality Let x be any random variable which takes only non-negative values.
Let a > 0 be any real number and p the expected value of the random variable x, then

Pr [z>a] < Kk (A.1)

z~P a

Note that Markov’s inequality is actually a more general version of the Chebyshev’s in-
equality which we used in Section 3.2. Chebyshev’s inequality can actually be derived as
a corollary to the Markov inequality. We will now give the detailed proof of Theorem 4.1.
The proof will use the ideas already discussed in Section 4.2.

Proof of Theorem 4.1
We need to upper bound the quantity S]P}I)rm [Errp(NN(S)) > €]. Let S :={xy,...,2n}

be the unlabeled dataset. Partition the domain X = [0, 1]" into r = (v N/\)V axis-aligned
boxes C4,...,C, each of length A\/v/N and diameter A for some A (to be chosen later).

For any = € [0,1]" denote by C(z) the region in which x lies and by mg(z) the Nearest
Neighbor of x in S.

Errp(NN(S)) = Pr [l(rs(z)) # I(z)]

x~P

=Pr [C(z) NS =¢ Al(ns(2)) # U(z)] + Pr [C(z) NS # ¢ Allms(2)) # ()]

z~P

< Pr [C(@)NS = 0]+ Pr [C(@) NS #0 Allns(a)) £ 1(x)]

xz~P
= Z Pr [z e€Ci]+ Pr [z € C; A l(mg(x)) # ()]

o= T iCingze ™™
For notational convenience, denote P[C;] := ]Pr}r) [z € C;]. Then the above becomes
= >, PG+ ) PO Pr [Ums(z)) # ()]

:CiNS=o §:CiNS#£d Ci
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where P, denotes the distribution P restricted to the set C;. Observe that, since C;NS # ¢,
we have that d(x, mg(z)) < .

~Errp(NN(S) < 3 PG+ > P[C) Pr [Uns(x) # U(x)] (A-2)
1:C;NS=¢ :C;NS#¢ g

For brevity of notation, denote a(x,y) := (I(x) # {(y)). Now consider the expectation over
the sample S of the quantity on the extreme right of Equation A.2.

v [alrs(z).2)] 1@05#]

m x~ P m JJNP
S~P™ | i Cinste C; S~ P (o8

Exp| ). P[Ci] Pr [a(ms(a ] ZIP’ | Exp

S~pm | 2~Fc;

<Z]P’ | Exp| Pr [a(ﬂs(iﬂ),x)]]

= 3" PICExp | Exp [Logrste) PICEXD | Lagrs(en |
Z | Exp xw}fg[ ( ] Z S}z}g (s @) )
L z~Pc,

—ZIP’ SNPm: (ws(@,x)} (A.3)

JJNPC

Now, consider the quantity Pla(mg(x),z)] in Equation A.3. Using conditional probability,
we get that

Pr la(ms(@),0)| =3 Pr la(rs(@),2) | 7s(x) = o] JE.[rs(e) =)
Denote Pg[m,,] := SP}grm[WS(a:) = x;]. Now, observe that the labeling function [ is inde-
J?NPCi

pendent of the choice of the nearest Neighbor 7g(z) which depends only on the distance
function d. Hence, we get

Plljrm[ (ms(x } ZPS )] Ngm [a(z, z)]

z~Fc, z~Fc;
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Now using the fact that the labeling function satisfies ¢-PL, we get that the above quantity
is upper bounded by

< Z]P’S[mj] d(A) < ¢(N). Substituting this in Eqn A.3, we get
=1

Exp| Y P[C] Pr [NN(S)(x)#l(l’)]} < ZP[@] ¢(A) < 9(N) (A.4)

S~P™ " CinS#é wFe;

Now, using Equations A.2 and A.4 together with Lemma A.1, we get that
r

Exp [ETTP(NN(S»} < — 4+ 9(N)

Sopm me

Using Markov’s inequality (Equation A.1) and substituting values we get

o [Errp(NN(S) > €] < L<@> L)

mee A €

Using A = ¢~ '(€§/2), we get the result of the Theorem. O

Proof of Theorem 4.2

The proof is very similar to the proof of theorem 4.1. However, for completeness, we state
this proof in complete detail. We need to upper bound the quantity SlPlr [Errp(KNN(S)) >
~Pm

€]. Let S := {x1,...,2,} be the unlabeled dataset. Partition the domain X = [0, 1]" into
r = (V' N/A)N axis-aligned boxes C, ..., C, each of length A/v/N and diameter \ for some
A (to be chosen later). For any x € [0,1]" denote by C(z) the region in which z lies and
by mi(z),...,m(x) the k nearest neighbors of z in S. Let A, . (x) == {m(z) : l(x) #
[(mi(x))}. That is, A, . . (2) is the set of neighbors of z which have different labels than
x. Assuming that the labeling function [ is {0, 1}, we get that

Brrp(kNN(S)) = Pr [ [ Ar,,.n(2)| > /2]

Now, we have two possibilities. Either all the k nearest neighbors are such that d(z, m;(z)) <
A or there exists atleast one i such that d(z,m;(z)) > A. In the latter case, we have that
|C'(z) N S| < k. Hence, we get that the error above

,,,,,

L Errp(ENN(S) < ) PG + Prl | Ar _n(2)| > k/2] (A.5)
i:|CiNS|<k
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where P[C}] := ]PIIE [z € C;]. Now consider the expectation over the sample S of the

quantity on the riwght hand size of Equation A.5. Note that in this case, for all : = 1 to k,
we have that d(z,m;(x)) < A\. We omit this in equation A.5 only for brevity of notation.

= Exp [1|Am ..... ()| >k/2
S~Pm™

EXIP[]PH" [ [As(z) [ > k/2]} = Exp [EXIP [Lan, wk(x>\>k/2u

.....

S~pm Lz~P S~pPmLtg~P
x~P
= Pr | An.m (@)] > k/2] (A.6)
x~P

= > SEI;"M[IA% ..... wi (O | > K2m = @iy ome = wa | Pr[me= g me =
all k tuples x~P z~P
Denote by Pglz;,,...,2; ] the quantity on the extreme right of above equation. Also,

-----

Pr [ Anm @ > 82 = > Pslwi,zi] Pr (e, (@) > 5/2]
z~P all k tuples z~P
< Z Ps|xi, ..., 2] 2¢(N) (Using Lemma A.3)
all k tuples
< 2¢(A). Substituting this in Eqn A.6, we get
Exp | Pr [ |As(2)] > k/2]] < 26(3) (A7)
S~pm LzP

Now, using Equations A.5 and A.7 together with Lemma A.2, we get that

EﬁE[ETTP(NN(S)” < ——+20())

Using Markov’s inequality (Equation A.1) and substituting values we get

2k (VN " 2¢(\
Pr [Errp(kNN(S)) > e] < —<_> + &
S~p™ me\ A €
Using A = ¢~ '(ed/4), we get the result of the Theorem. O

41



Proof of Theorem 4.3

As in the proof of Theorem 4.2, let S := {xy,...,2,,} be the unlabeled dataset. Partition
the domain X = [0,1]" into r = (vV/N/A)V axis-aligned boxes C,...,C, each of length
A/V/N and diameter \. For any « € [0,1]" denote by C(z) the region in which z lies and
by mi(z),...,m(x) the k nearest neighbors of x in S.

Now, there are two possibilities. In the first case assume that there exists atleast one
i such that d(x,m;(z)) > A. In this case, |C(x) NS| < k and we can use Lemma A.2 to
bound the probability of error. In the other case we have that, for all i, d(z,m;(x)) < A.
In this case, the error is upper bounded by the event that there exists k/2 points of label
different than z. Hence, we get that

Errp(ENN(S)) < Z P[C;] + IPIIrD[EIyl, kg2 s forall i l(z) # U(y:) Ad(z,y) < Al
i:|CinS|<k o

< Y PC]+ ¢(N) (A.8)

:|CiNS|<k

where P[C}] := lPI]rD [z € C;]. Now, using Lemma A.2, we get that

EX]p[Errp(kNN(S))} < % _|_¢(/\)k:/2

S~pm

Using Markov’s inequality (Equation A.1) and substituting values we get

N
2k (VN k2
Pr [Errp(kNN(S)) > €] < 2k (—) + $()
S~pm me\ A €
Using A = ¢ '((ed/2)%*), we get the result of the Theorem. O
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