
Network Bargaining:

Creating Stability

Using Blocking Sets

by

David Steiner

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2012

c©David Steiner 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

David Steiner

ii

Abstract

Bargaining theory seeks to answer the question of how to divide a jointly generated surplus
between multiple agents. John Nash proposed the Nash Bargaining Solution to answer
this question for the special case of two agents. Kleinberg and Tardos extended this idea
to network games, and introduced a model they call the Bargaining Game. They search
for surplus divisions with a notion of fairness, defined as balanced solutions, that follow
the Nash Bargaining Solution for all contracting agents. Unfortunately, many networks
exist where no balanced solution can be found, which we call unstable. In this thesis, we
explore methods of changing unstable network structures to find fair bargaining solutions.
We define the concept of Blocking Sets, introduced by Biro, Kern and Paulusma, and
use them to create stability. We show that by removing a blocking set from an unstable
network, we can find a balanced bargaining division in polynomial time. This motivates
the search for minimal blocking sets. Unfortunately this problem is NP-hard, and hence
no known efficient algorithm exists for solving it. To overcome this hardness, we consider
the problem when restricted to special graph classes. We introduce a O(1)-factor approx-
imation algorithm for the problem on planar graphs with unit edge weights. We then
provide an algorithm to solve the problem optimally in graphs of bounded treewidth,
which generalize trees.

iii

Acknowledgements

First, I would like to offer a deep and sincere thank you to my supervisors: Prof.
Jochen Könemann for being ever-enthusiastic and supportive in my work, and Prof. Kate
Larson for her direction and suggestions. They introduced me to a wide range of interests,
and encouraged me to push my boundaries whenever possible. This research would have
been impossible without their helps and guidance.

Many thanks go to Prof. Alejandro López-Ortiz and Prof. Chaitanya Swamy, the
readers of this thesis, for their thoughtful comments. Also, I would like to thank the staff,
faculty, and students of the School of Computer Science at the University of Waterloo for
providing me a home for the past seven years.

I would like to thank my friends here at the University of Waterloo, especially the
members and coaches of the volleyball programs, who played a very important role in
making my time more enjoyable, and offered their daily support. I am fortunate to have
such excellent companies.

Last but not certainly not least, my incredible family, who was always at my side,
receive my deepest love for their sweetest care and never-ending encouragement. I wish
to thank my beautiful sister-in-law Cait, my wise grandmother Marta, my loving parents
Judit and George, and my ever-supportive brother Adam. You are my foundation. This
work is dedicated to all of you.

iv

Contents

List of Figures vii

1 Introduction 1

2 Background 7

2.1 Preliminaries . 7

2.2 Gallai-Edmonds Decompositions . 8

2.3 Tree Decompositions and Treewidth . 10

2.4 Solution Concepts in Cooperative Game Theory 12

3 Bargaining Solutions in Social Exchange Networks 15

3.1 A Model for Bargaining Games . 15

3.2 Stable and Balanced Solutions . 16

3.3 Finding Stable and Balanced Solutions . 17

3.4 Extending the Model - Agent Capacities 23

4 Blocking Sets 27

4.1 Complexity of the Blocking Pairs Problem 28

4.2 Balanced Bargaining Solutions from Blocking Sets 31

5 Finding Blocking Sets 39

5.1 Linear Programming (LP) Approach . 39

5.2 Iterative Algorithm . 40

5.2.1 Iterative Rounding Model . 40

5.2.2 Approximation Algorithm Structure for Blocking Pairs Problem 41

5.2.3 Approximation Algorithm for Blocking Pairs on Planar Graphs . . 50

5.3 Blocking Sets in Graphs of Bounded Tree Width 56

6 Conclusions 61

6.1 Future Work . 62

v

Bibliography 65

vi

List of Figures

1.1 An Unstable Graph . 3
1.2 Balanced outcome after removal of a blocking set 3

3.1 A 5-Vertex Path . 17
3.2 Core * Stable solutions in bipartite networks with arbitrary capacities 24

4.1 Blocking Pairs is not equivalent to Edge-Deletion Stability 28

5.1 Creating G′ . 41
5.2 Bipartite Graph Structure where Blocking Pairs is non-integral 43
5.3 Example Structure for proof of Lemma 5.5 . 47
5.4 Doubled graph may not be planar . 54

6.1 K4 is stable but is not a KEG . 63

vii

Chapter 1

Introduction

The study of bargaining has a long history in many disciplines such as economics and
sociology. Bargaining theory asks the question of how to divide a jointly generated surplus
between multiple agents. In the 1950s, John Nash [24] proposed a solution to this question
for the special case of two agents. His Nash Bargaining Solution is a celebrated result still
used today in traditional economic research. Sociological study has focused on finding
experimental evidence for the way in which people behave in bargaining situations. On
the other hand, mathematical research has concentrated on developing models that are
both mathematically tractable, and agree with the results of the sociological experiments.
More recently, bargaining theory has been studied in algorithmic game theory settings.
In this thesis, we direct our focus to solutions based on Nash’s ideas for bargaining games
with more than two agents. We are particularly interested in efficient algorithms for
finding these solutions.

Consider a situation where two agents are negotiating how to divide one unit of money.
Each agent is self-interested with a simple monotonically increasing linear utility function.
Additionally, each agent has an alternate option, an amount that it can collect in case
the negotiations fail and no division can be agreed upon. Nash’s Bargaining Solution [24]
predicts that the two agents in such a case will agree upon money shares that evenly split
the value in excess of their combined alternate options.

Recent work by Kleinberg and Tardos [18] extended Nash’s ideas to the network
setting. They introduced a model for studying bilateral negotiations between multiple
agents called the Bargaining Game. Given a graph, the model positions a player at every
vertex, and assigns a money value to every edge of the graph. Two players joined by an
edge may enter into a contract and split the value on the edge, but only if they can agree
on a division. Each player is allowed to contract with at most one neighbour.

Network exchange theory focuses on identifying and analyzing structural conditions
of bargaining power in networks. Configurations or positions, resources, and connections

1

Network Bargaining: Creating Stability Using Blocking Sets

determine the distribution of strength across the participating players. High-power posi-
tions gain more favourable contract ratios. Kleinberg and Tardos [18] define two solution
concepts to help identify the factors influencing bargaining power. Let xu and xv be the
corresponding shares for players u and v of a negotiated contract with dollar value wuv.
Let αu and αv be the respective alternatives of the agents. Stable outcomes (Chapter 3)
are bargaining solutions with the property that xu ≥ αu for every player u ∈ V , and so
no agent has incentive to change contracts. A solution is a Balanced outcome (Chapter
3) if in addition to being a stable outcome, for every contracting pair of players (u, v),
the division is according to Nash’s solution. More formally, that is if xu + xv = wuv and
(xu − αu) = (xv − αv). Kleinberg and Tardos [18] argue that any stable or balanced
outcome will divide a total surplus of ν(G), the size of a maximum weight matching in
the underlying graph. They also give a polynomial time algorithm to compute the set of
balanced outcomes, proving many structural properties in the process.

Kearns and Chakraborty [8], expand on the model introduced by Kleinberg and Tar-
dos. They allow players to make an arbitrary number of deals, and each agent to have
its own unique utility function. By using utility functions that satisfy certain natural
conditions such as being continuous and concave, they prove that for general networks
there exist states of equilibrium. These are bargaining divisions where all the edges
are balanced for various solution concepts, including the Nash Bargaining Solution. In
later work, Chakraborty, Kearns and Khanna [9] show that these equilibrium states are
not unique in general graphs, consistent with the findings of Kleinberg and Tardos on
balanced solutions in their model.

A different approach to the bargaining game is with cooperative game theory, a field
which studies the problem of fair division. A cooperative game is a pair (v,N) where N
is a finite set of players, and v : 2N → R. Various solution concepts are defined for
cooperative games, each searching for some notion of fairness when dividing v(N) among
the players. The bargaining game we described can then be considered a transferable-
utility cooperative game. N is the vertex set of the underlying graph, and for all subsets
S ⊆ N , v(S) = ν(S), which is the size of the maximum weight matching in G[S], the
subgraph of G induced by S. This form of the game was first introduced by Shapley and
Shubik [30], and is known as the matching game. The core and prekernel (formal defini-
tions in Chapter 2) are two solution concepts for cooperative games. For the matching
game, it has been shown that the core is exactly the set of stable outcomes [30], and the
intersection of the core and prekernel is the set of balanced outcomes (as was observed
subsequently and independently by Bateni et al. [4]).

Unfortunately, the core of a matching game is empty for a large sets of graphs. Using
structural properties of networks we can identify these unstable graphs, those without
a stable outcome, where negotiations will break down as agents will not agree on fair
divisions.

2

Introduction

0.5

0

0.5 0

0.49

0.51 0.5

0.5

0

Figure 1.1: An Unstable Graph

Consider the simple situation with
three players whose connections form a
triangle, as shown in Figure 1.1. Each
contract is worth one dollar. As nego-
tiations take place, there will always be
one agent who will be left out and receive
nothing (blue vertices). This agent will
always be able to offer one of his neigh-
bours more than their existing contract (red edges), forming a beneficial switch. The
negotiators will never be able to agree, as there will be a continuous spiral of improving
offers, causing disorder. Our main work focuses on establishing stability for networks in
anarchy. We explore various methods of changing the composition of underlying graphs
to re-create order.

A common approach for changing network structure to establish desirable properties
is edge deletion [23, 34]. More formally, that is finding a minimal subset of edges E− ⊂ E
to remove, such that the graph G− = (V, E \ E−) has a property P. Our work is based
on this idea. We define the concept of Blocking Sets (Chapter 4), first introduced by
Biro, Kern and Paulusma [5], as a way to change network structure. Formally, for an
outcome of the bargaining game x on a graph G, the blocking set is the set of edges
{(u, v) ∈ E : xu + xv < wuv}.

Transfers

0.5 0.5

0.5

0.5

0.50.5

0.5 0.5

0.5

1

0.250.25

ν(G) = 3 ν(GB) = 2

Stable Outcome

With Blocking Set
Balanced Outcome

Figure 1.2: Balanced outcome after removal of
a blocking set

By removing a blocking set B for an
allocation x, we are left with a graph
GB = (V, E \ B). We do not change
the bargaining game divisions defined by
x, and so we still distribute a total ν(G)
surplus value across the contracting play-
ers. This is likely greater than ν(GB),
but the allocation x is then such that
xu + xv ≥ wuv for all remaining edges,
making it a stable outcome. We relax the
condition of balanced outcomes by allow-
ing xu+xv ≥ wuv for two players in a con-
tract, as we reassign extra surplus gained
from the blocked edges. Our first main
contribution shows that if we remove a
blocking set from a graph, we can compute a series of transfers that result in a balanced
bargaining outcome for the resulting subgraph (Chapter 4). All possible contracting play-
ers will have monetary shares consistent with Nash’s Bargaining Solution. An example
is shown in Figure 1.2. The red edge is a blocking set for the graph G, the blue edges
are negotiated contracts, and the red vertex values have been increased by the gained

3

Network Bargaining: Creating Stability Using Blocking Sets

blocking set surplus.

Theorem 1.1. Consider the bargaining game on a graph G = (V, E), with an empty
core. Let (B,x) be a feasible blocking set and allocation pair on G. Then we can find a
balanced bargaining allocation on the subgraph GB = (V, E \B) in polynomial time.

Naturally, this motivates the problem of finding minimal blocking sets, called the
Blocking Pairs Problem. Unfortunately, this is an NP-complete problem in general
graphs, so we focus our attention on restricted graph classes (Chapter 5). Our second and
third main contributions are a polynomial time approximation scheme (PTAS) for finding
minimal blocking sets in planar graphs with unit value contracts, and an algorithm that
finds the optimal blocking set in graphs of bounded treewidth.

Theorem 1.2. For planar graphs with unit edge weights, the Blocking Pairs problem
is O(1)-factor approximable.

Theorem 1.3. For a graph G = (V, E) with tree decomposition (Y ′, T ′) of width k, an
optimal blocking set and allocation pair can be found in time O(k · 9k · |V |3).

This thesis is organized as follows. We start with relevant background information
in Chapter 2. In this chapter, we explain the terminology and notation we use through-
out the thesis, and discuss concepts used in later chapters. We formally define Gallai-
Edmonds decompositions, solution concepts from cooperative game theory, tree decom-
positions and treewidth. Furthermore, we present an example of the general dynamic
programming approach for solving problems on graphs of bounded treewidth.

Chapter 3 describes the bargaining game model we use, and formally defines stable
and balanced solutions. We then survey previous work done with the model, the ma-
jority by Kleinberg and Tardos [18], and Bateni et al. [4]. We explain the relationship
between stable and balanced solutions and the core and prekernel solution concepts from
cooperative game theory. We then recall a proof by Bateni et al. that a graph is stable if
and only if it has a balanced solution, and that we can efficiently construct all balanced
solutions.

Chapter 4 is devoted to Blocking Sets. In this chapter, we formally define the Block-

ing Pairs problem, and show Biro et al.’s proof that it is NP-hard [5], reducing from
Maximum Independent Set. We then show that starting with an unstable graph, if
we remove a blocking set to create stability, using ideas due to Stearns [31] and Faigle
[12], we can find a balanced solution to the bargaining game.

Chapter 5 contains the main contributions of this thesis. It is concerned with al-
gorithms for finding minimal blocking sets on certain graph classes. First, we provide
an approximation algorithm for the Blocking Pairs problem on planar graphs. Then
we present a polynomial time algorithm for optimally solving the problem on graphs of
bounded treewidth.

4

Introduction

Finally, in Chapter 6 we conclude and discuss a list of open problems and potential
extensions for future work that we are interested in.

5

Chapter 2

Background

The topics and concepts used in this thesis are all quite broad. In this chapter, we cover a
sufficient part of each for later application purposes. The reader is referred to references
in each section to obtain any further knowledge.

We explain some basic preliminaries and notation in Section 2.1. In Section 2.2 we
describe the Galai-Edmonds decomposition of a graph and its properties. We define the
concepts of representing a graph as a tree (tree decomposition) and treewidth in Section
2.3. We also present an example of the general dynamic programming approach to solving
several NP-hard problems on graphs of bounded treewidth. We conclude by defining the
Core and Prekernel solution concepts of cooperative game theory in Section 2.4.

2.1 Preliminaries

We assume the reader is familiar with general concepts of linear programming such as
primal and dual linear program (LP) pairs, strong and weak duality, complimentary
slackness, and integer programs and their linear relaxations. The reader is referred to
standard references if additional information is required [32].

We also assume the reader is familiar with concepts of graph theory such as undi-
rected, directed, and bipartite graphs, trees, cycles, planarity, matchings, and connected
components. Again, the reader is referred to standard references for appropriate back-
ground knowledge [33].

Our graph terminology is described here. All graphs are finite, simple and undirected.
A graph G is represented by G = (V, E), where V is the set of vertices and E is the
set of edges. We may use V (G) and E(G) to refer to the set of vertices and edges of G
respectively, if the graph being discussed is not evidently clear. We represent an edge in
graph G between vertices u and v by e = (u, v). We call u and v the endpoints of edge e.
We say that vertices u and v are adjacent in graph G if there exists an edge (u, v) ∈ E.

7

Network Bargaining: Creating Stability Using Blocking Sets

We define n to be the number of vertices in a graph G, and m to be the number of
edges. We define ν(G) to be the size of the maximum matching in G. A perfect matching
is a matching M in a graph such that |M | = n

2 . We may at some point consider the
maximum fractional matching of a graph, defined as νf (G), where we allow fractional
weights for matching edges. We say a matching M covers a vertex u if there is an edge
(u, v) ∈ M . A matching M exposes a vertex u if it does not cover u. We call a vertex
u essential if it is covered in every maximum matching of G. A vertex is inessential if
it is not essential, that is, there exists at least one maximum matching in G where v is
exposed.

We define δ(u) = {v : (u, v) ∈ E} to be the neighbourhood of a vertex u in graph G.
We expand this definition to set notation for a subset S ⊆ V , with δ(S) = {v : (u, v) ∈
E, u ∈ S, v ∈ V \ S}. We may specify the set of edges across which we are interested in
a neighbourhood of vertices. We let δE′(u) = {v : (u, v) ∈ E′} for some E′ ⊆ E, with a
similar definition for a subset S ⊆ V .

An n-clique (Kn) is a graph G with n vertices in which every pair of vertices is
connected by an edge. A graph G represented by Kn1,n2

if it has a bipartition V1 and V2

such that |V1| = n1 and |V2| = n2 and there exists an edge (v1, v2) for every pair v1 ∈ V1,
v2 ∈ V2.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A graph G′ =
(V ′, E′) is an induced subgraph, denoted by G[V ′], if V ′ ⊆ V and E′ contains all edges
with both endpoints in V ′. We may use the notation G \ v for some v ∈ V to indicate
G′ = (V \ v, E \ δ(v)), or G[V \ v].

A graph (or component) G is said to be factor-critical if it has the property that for
every vertex v ∈ V , the subgraph G \ v has a perfect matching.

The symmetric difference of two sets of edges E1 and E2 is denoted as E1∆E2 =
{(u, v) : (u, v) ∈ E1 ∪E2, (u, v) /∈ E1 ∩ E2}.

2.2 Gallai-Edmonds Decompositions

The Gallai-Edmonds decomposition [21] for a graph G was independently discovered by
Jack Edmonds and Tibor Gallai, and it provides many useful properties for discussing
matchings. It is a partition of the vertex set V (G) into three sets {D, A, C}. The set
D contains the inessential vertices of G. The set A contains all the essential neighbours
of D. That is, A = {u ∈ δ(D)}. The set C contains the remaining V \ (D ∪A) essential
vertices.

We recall many useful properties about Gallai-Edmonds decompositions that we use
in later chapters.

Lemma 2.1. Let G′ = G \ v be the graph obtained from a graph G by removing a vertex
v ∈ A. The Gallai-Edmonds decomposition of G′ is {D, A \ {v}, C}.

8

Background

Proof. Let G′ = G \ v for some v ∈ A. Since v is essential in G, removing it from G
decreases the size of the maximum matching, that is ν(G′) = ν(G) − 1. Consider now
any maximum matching M in G, and let ev ∈ M be the matching edge that is incident
to v. Then M ′ = M \ ev is a matching on G′ of size ν(G′), so it is a maximum matching.

Consider now an inessential vertex u in G. The above statement implies that u is
inessential in G′ as well. Consider the matching Mu on G that exposes u. Removing the
edge incident to v in Mu creates a maximum matching in G′ that exposes u.

Conversely, let u now be an inessential vertex in G′. We show that u is also inessential
in G. Suppose for contradiction that u is essential in G. We know there is a maximum
matching M ′

u on G′ that exposes u. Since v ∈ A, it must have an inessential neighbour
x ∈ D. Let Mx be a maximum matching on G that exposes x.

Since Mx covers u, but M ′
u does not, the symmetric difference Mx∆M ′

u contains a
path P starting at u, whose first edge belongs to Mx. Note that P cannot end in an
M ′

u edge as otherwise M ′
u∆P is a maximum matching exposing u. So P ’s last edge also

belongs to Mx. This means that the matching M ′
u∆P has one more edge than M ′

u, and
so can not be contained in G′ (since M ′

u is a maximum matching). Since every internal
vertex of P is covered by both an M ′

u edge and an Mx edge, and u ∈ V (G′), it must be
the case that P ’s other endpoint is v. Then since x is Mx exposed, x /∈ P , and so let the
path P ′ = P ∪ (v, x). Then the matching Mx∆P ′ is a matching of size ν(G) that exposes
u, which is a contradiction.

Lemma 2.2. Every connected component in the graph G[D] is factor-critical. The graph
G[C] has a perfect matching.

Proof. Let GA = G \ A be the graph obtained from G by removing the set of vertices
A and set of edges δ(A). By Lemma 2.1, the Gallai-Edmonds decomposition for GA is
{D, ∅, C}.

It is known that a graph G consisting of only inessential vertices is factor-critical, as
proven in Theorem 3.1.13 in [21]. Since D is a set of inessential vertices in the graph
GA, each component of the graph G[D] contains exclusively inessential vertices and so is
factor critical.

Now consider the graph G[C]. Since C is a set of essential vertices in the graph GA,
it means that the graph G[C] must contain a perfect matching.

Lemma 2.3. Let M be a maximum matching of a graph G. M contains a perfect match-
ing from the graph G[C], and a maximum matching from each connected component in
the graph G[D]. Every vertex v ∈ A is matched to a vertex u ∈ D.

Proof. Let M be a maximum matching on G and let MA ⊆ M be the matching edges
that are incident to vertices in A. Repeating the argument from Lemma 2.1 shows that
M ′ = M \ MA is a maximum matching on the graph G′ = G \ A. Lemma 2.2 implies

9

Network Bargaining: Creating Stability Using Blocking Sets

that M ′ (and so M) must contain a perfect matching on the graph G[C] and a maximum
matching in each component of the graph G[D]. This proves the first part of the Lemma.

To prove the second part, consider any maximum matching M on the graph G. Let
some vertex v ∈ A be matched to a vertex u. Remove v fromG to get the graph G′ = G\v,
and consider the matching M ′ = M \ (u, v). Since |M ′| = ν(G) − 1, M ′ is a maximum
matching on G′ that exposes u. By Lemma 2.1, this means that u must be inessential in
G, and so u ∈ D.

We will use Gallai-Edmonds decompositions to characterize stable and unstable graphs,
to be defined in Chapters 3 and 4.

2.3 Tree Decompositions and Treewidth

In this section we describe graphs with bounded treewidth, which are known for their
good algorithmic-properties. Many intractable problems can be solved in polynomial time
on graphs of bounded treewidth.

The treewidth of a graph was first introduced by Robertson and Seymour [27] in their
work on graph minors. Before we can describe this concept, we must first define the
representation of a graph as a tree, which will be the basis of an algorithm in a later
chapter.

Definition 2.4 ([27]). A tree decomposition of a graph G = (V, E) is a pair (Y, T)
where T is a tree with node set I, and Y = {Yi : i ∈ I} is a family of subsets of V , with
the following properties:

(TW1)
⋃

i∈I(Yi) = V

(TW2) For every edge e = (u, v) ∈ E, there exists an i ∈ I such that {u, v} ∈ Yi

(TW3) (Running Intersection Property) For i, j, k ∈ I, if j lies on a path in T from i
to k, then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition, is defined as maxi∈I(|Xi| − 1). The treewidth of
a graph G is the minimum w ≥ 0 such that G has a tree decomposition of width ≤ w.
Then, for example, trees and forests both have treewidth 1.

It has been shown when given a graph G and integer k, the problem if G has treewidth
at most k is NP-complete. Fortunately, for many values of k, there are characterizations
of graph classes with treewidth at most k based on forbidden minors. We do not go into
more detail here, but rather refer the reader to work by Bodlaender for extra knowledge
[7].

As was mentioned, many NP-complete problems have polynomial-time algorithms
when restricted to graphs of bounded treewidth. While the class of graphs with bounded

10

Background

treewidth is not very large, these algorithms can lead to approximation schemes for larger
graph classes, for example planar graphs. Baker [3] introduced a method for finding
approximation algorithms for planar graphs by decomposing them into k-outerplanar
subgraphs. It has be shown that k-outerplanar graphs have treewidth at most (3k − 1)
[7], [26]. Using our efficient algorithms to solve problems in the k-outerplanar subgraphs,
we can sometimes find PTASs for intractable problems in planar graphs.

We now describe a dynamic programming algorithm to solve the Maximum Indepen-
dent Set problem on graphs of bounded treewidth. An independent set is a subset of
vertices I ⊆ such that there are no edges between any two members of I. The general
problem is defined as follows:

Maximum Independent Set

Instance: a graph G = (V, E) and an integer k ≥ 0.
Question: does G contain an independent set I with |I| ≥ k?

We begin by stating a useful Lemma also due to Bodlaender. The reader is referred
to the referenced material for the proof.

Lemma 2.5 ([7]). For a graph G = (V, E), with tree decomposition (Y ′, T ′) of width k,
we can in linear time transform (Y ′, T ′) into a new tree decomposition (Y, T) of equal
width k, where T is a binary tree (a binary tree decomposition). T will have O(k · |V |)
nodes.

Due to Lemma 2.5, without loss of generality we can assume that any given tree
decomposition of a graph G is a binary tree decomposition.

Let (Y, T) be a binary tree decomposition of G with treewidth k, where T is made
up of the nodes {t1, t2, · · · }. Arbitrarily pick a node to be the root of T , and let it be
t1. Let the bag at each node ti be Yi. For a node ti, let Di be the set of all vertices that
appear in the bags of the proper descendents of ti in T .

We define a function A(S, ti), where S ⊂ Yi is an independent set, to be the size
of a maximal independent subset I ⊆ (Yi ∪Di) such that I ∩ Yi = S. We also define a
second function B(S′, ℓ, u) for an independent set S′, and for two adjacent nodes tℓ and
tu, where tℓ is further (lower) from the root of T than tu (upper). We let B(S′, ℓ, u)
represent the size of the largest independent set I ⊂ (Yℓ∪Dℓ) such that (I∩Yℓ∩Yu) = S′.

The algorithm does a bottom up traversal of the tree, computing the A(S, ti) values
at every node for every subset S ⊂ Yi. Recursive formulas for A and B are given as
follows, where tp and tq are the children of a node ti:

A(S, ti) = |S|+
∑

j= p, q

(

B(S ∩ Yj, j, i)− |S ∩ Yj|

)

11

Network Bargaining: Creating Stability Using Blocking Sets

and

B(S′, ℓ, u) = max
So⊂Yℓ : So∩Yu=S′

A(So, tℓ)

Naturally, we remove the corresponding summation indices in the expression for
A(S, ti) if the node ti does not have two children. At every node ti, for each of the
2k possible subsets S ⊂ Yi, the algorithm includes S in a candidate independent set so-
lution for G, and searches for an expansion of this partial solution. Including B in the
calculation of A ensures that when we choose an independent subset S ⊂ Yi, we find the
largest independent set amongst the vertices of Di to combine with S. Once we have
finished computing the A(S, t1) values for all subsets S ⊂ Y1, we find the maximum A
value stored at the root t1, which is the size of the maximum independent set for G.

We will use a similar dynamic programming technique to solve the Blocking Pairs

problem on graphs of bounded treewidth (to be formally defined in Chapter 4).

2.4 Solution Concepts in Cooperative Game Theory

In this section we will define cooperative games and their solution concepts. We as-
sume the reader is familiar with basic game theoretic concepts such as strategies, utility,
payoff vectors, and coalitions. We refer the reader to the referenced material for more
information. [25]

A cooperative game is a game where groups of players, or coalitions, enforce compet-
itive strategies. The game is played between coalitions rather than individual players.
Formally, a game is a cooperative game if it contains:

(a) A finite set of players N

(b) A characteristic value function v : 2N ⇒ R, assigning a payoff to every subset
S ⊆ N , and v(∅) = 0.

The characteristic function can instead be defined as a cost function c : 2N ⇒ R, in
which case we call the game a cost game. For the purposes of this thesis, we use value
functions as they are more appropriate for the games we study.

A main assumption in cooperative game theory is that the grand coalition N will
always form. Usually the challenge is allocating the value v(N) among the players in
some fair way to form a solution x ∈ RN . We define three different solution concepts
based on notions of fairness. We use the shorthand x(S) =

∑

i∈S xi for any vector x and
subset S ⊆ N throughout the remainder of this thesis.

We begin with the Core of a cooperative game, whose modern definition is sometimes
attributed to Donald B. Gilles [15] from his work in 1959.

12

Background

Definition 2.6. Let v : 2N ⇒ R be the value function for a game with player set N .
The core of the game, C(v), is the set of payoff vectors

C(v) =

{

x ∈ RN : x(S) ≥ v(S), ∀ S ⊆ N ; x(N) = v(N)

}

Intuitively, for any solution x ∈ C(v), no player or coalition has an incentive to deviate
from the grand coalition N , as they will lower their combined utility. Core members are
highly desirable solutions to games, unfortunately the core is often empty. In these
situations, we try to find solutions with different ideas for fairness.

Before we can define our next solution concept, the Prekernel, we must first define a
concept of the power of player i with respect to player j.

Definition 2.7. Let x be a solution to some cooperative game with characteristic function
v : 2N ⇒ R and player set N . The power of player i with respect to player j is defined as

sij(x) = max
S⊂N

{

v(S) − x(S) : i ∈ S, j /∈ S

}

We are now ready to define the prekernel, which was first introduced by Morton Davis
and Michael Maschler [10] in 1965.

Definition 2.8. Let v : 2N ⇒ R be the value function for a game with player set N . The
prekernel of the game, P (v), is the set of payoff vectors such that for every pair i, j ∈ N ,
we have that sij(x) = sji(x).

While the core of the game provides a notion of stability where no coalition has an
incentive to leave the grand coalition, the prekernel instead provides a set of solutions
that are balanced with each other in terms of power.

Next, we define a unique solution, the nucleolus of a game, which was introduced by
Schmeidler [28] in 1969. Let the excess of a coalition be the value e(S) = v(S)−x(S) for

S ⊆ N . Let φ : RN → R2N be a function that computes the vector φ(x) of excesses for
an allocation x, arranged in non-increasing order. That is, φi(x) ≥ φj(x) for i < j. Note
that an allocation y is a core member if φ1(y) ≤ 0.

Definition 2.9. Let v : 2N ⇒ R be the value function for a game with player set N .
The nucleolus of the game is the allocation x that lexicographically minimizes the vector
of excesses φ(x), resulting from the function φ : N → 2N on x.

The nucleolus tries to combine the two ideas of fairness formulated by the core and the
prekernel. Schmeidler [28] proved that the nucleolus of a game is always contained in the

13

Network Bargaining: Creating Stability Using Blocking Sets

prekernel, and that if the core is non-empty, the nucleolus is a core member. Its definition
forces a unique solution, and hence it is often used to model an ideal fair allocation.

While there are many other solution concepts in cooperative game theory such as the
least-core or the stable set, our work focuses on the core and the prekernel in Chapters 3
and 4. Even though the nucleolus defines a unique allocation, we are more interested in
efficiently computing any balanced solution to our games.

14

Chapter 3

Bargaining Solutions in Social
Exchange Networks

This chapter surveys current significant known results for solutions to bargaining games
in social exchange networks. In Section 3.1, we build a model for the game and define the
form of a solution. We also introduce some notation we will use throughout this chapter.
In Section 3.2, we define two bargaining solution concepts and discuss their individual
properties.

In Section 3.3, using graph theoretical and combinatorial arguments, we explain a
relationship between bargaining solutions and solution concepts from cooperative game
theory. We discuss the process of finding bargaining solution instances with these results.
Finally, we finish this chapter by extending our model in Section 3.4, and present a
similar relationship between the extended bargaining game and cooperative game theory
solutions.

3.1 A Model for Bargaining Games

In the network bargaining game model, there is a set N of n agents. For each pair of
agents i, j ∈ N , we are given a weight wij representing the value of a potential contract
between i and j. Each agent is limited to making a single deal. The contract weights
describe an edge-weighted graph G = (V, E). We create a vertex vi for each agent i ∈ N .
We add an edge (i, j) with weight wij to E for every pair of agents i, j ∈ N with wij > 0.
We may refer to a game as the bargaining game on G = (V, E), where G is a weighted
graph. We use G to define the set of agents (N = V) and potential contracts, (the edge
set E with weights wij).

Every agent is rational and self-interested. All agents are equal in bargaining skill,
and have full knowledge of the tastes and preferences of the others. In addition, all agents

15

Network Bargaining: Creating Stability Using Blocking Sets

know the weight wij of every potential contract between any pair i and j.
Let xi denote the surplus each agent i receives. We define a solution to the game as

a pair (x,M) where M ⊆ E is a set of bargained contracts such that xi+xj = wij for all
(i, j) ∈ M , and x = {xi : i ∈ N}.

We define the alternative option (or outside option) of an agent i as the best deal that
the agent could make with someone he has not already made a contract with.

Definition 3.1. Let x be a solution where agents i and j are in a contract. The outside
option, αi, of agent i is

αi = max
k:(i,k)∈E\M

{

wik − xk

}

If the set {k : (i, k) ∈ E \M} is empty, we define the outside option of i to be zero.

3.2 Stable and Balanced Solutions

The theory of bargaining in some sense can be viewed as a way to select the most rea-
sonable outcome of a negotiation. Every agent seeks a division where they receive more
than their outside option. We want to identify those solutions that are also balanced
for all players. In this section we define two solution concepts we will use consistently
throughout this thesis.

Intuitively, if an agent i makes a deal in which they earn less than their outside option
αi, then they can improve their earnings by switching to form a contract with the agent
offering that outside option. We seek to find solutions where no switch is beneficial for
any agent. Kleinberg and Tardos formulated this idea and defined it formally as a stable
solution.

Definition 3.2 ([18]). Let i ∈ N be an agent in a bargaining game, and let (x,M) be a
solution to the game. We call (x,M) a stable solution if for all (i, j) ∈ M , xi ≥ αi.

We call a graph G = (V, E) stable if the bargaining game on G has a stable solution.
Conversely, we call G unstable if the bargaining game on G does not have a stable solution.

In 1950, Nash [24] argued that a solution to the bargaining game should have an extra
notion of equality for contracting agents. He proposed his Nash Bargaining Solution with
an idea of balancedness, suggesting that two agents will agree on a division of surplus
that lies halfway between the extremes of their alternate options. We use the terminology
of Kleinberg and Tardos [18], and call these solutions balanced. We define them formally
as follows.

Definition 3.3 (Nash Bargaining Solution). Let (x,M) be a solution to the bargain-
ing game. Let i and j be two contracting agents negotiating a deal worth wij. Let αi

and αj be the outside options for agents i and j respectively. A balanced solution is the

16

Bargaining Solutions in Social Exchange Networks

agreement that splits the surplus s = wij − αi − αj evenly between the two agents for
all pairs (i, j) ∈ M . That is, xi = αi +

s
2 and xj = αj +

s
2 . We often use an equivalent

condition that a solution is balanced if for all (i, j) ∈ M , (xi − αi) = (xj − αj).

We will show in Theorem 3.5 that for a stable solution (x,M), M must be a maximum
weight matching on the underlying graph G. Since by definition every balanced solution is
also a stable solution, it follows that M is also a maximum weight matching for balanced
solutions.

We also note that no solution can distribute a total surplus that is larger than the
size of a maximum weight matching, following simply from the definition of matchings.

3.3 Finding Stable and Balanced Solutions

Network bargaining theory tries to understand power imbalances in relationships between
pairs of agents in a bargaining game. The general hypothesis is that these imbalances
are mainly due to structural properties, that is, the position of agents within a social
exchange network. Intuitively, we may think that central positions, or those with the
highest number of options for potential contracts hold the power in bargaining games.
These are sometimes the case, however we can build simple examples that demonstrate
that we can not characterize powerful positions this easily.

a b c d e

Figure 3.1: A 5-Vertex Path

Consider the bargaining game on the simple 5-
vertex path, shown in Figure 3.1. Our first thought
may be that the central agent c will dominate negotia-
tions, however upon further analysis and experiments,
we find that agents b and d hold most of the power in
the network. The central position of c does not con-
fer any real bargaining power, since its two potential
contracting neighbours, b and d, both have alternate
and very weak neighbours of their own.

A natural question that is aggressively pursued is to find simple structural concepts
that explain these power imbalances, and that can also confirm results established from
experimental work with human agents. In this section we will discuss how some of
these graph and game theoretic concepts help in finding stable and balanced bargaining
solutions, which assign values based on the power of an agent in the network.

We begin by giving an efficient characterization of stable graphs for the unweighted
case using a combinatorial argument due to Kleinberg and Tardos [18]. It uses the Galai-
Edmonds decomposition of a graph G, which we defined in Section 2.2.

Theorem 3.4. Consider the bargaining game on a graph G = (V, E) with Galai-
Edmonds decomposition V = (D, A, C). Let {D1,D2, · · · } be the connected components
of the graph G[D]. G is a stable graph if and only if |Dk| = 1 for all k.

17

Network Bargaining: Creating Stability Using Blocking Sets

Proof. Suppose first that for all k, |Dk| = 1. Then consider the solution x on any
maximum matching M defined as follows:

xi =







0 : if i ∈ D
1 : if i ∈ A
1
2 : if i ∈ C

We show that x is a stable solution. Since |Dk| = 1 for all k, αd = 0 for all d ∈ D,
and so xd = αd = 0. By Lemma 2.3, since every a ∈ A is matched to some d ∈ D, it
must be that a has at least two neighbours in D (as otherwise d would be an essential
vertex). This means that for every a ∈ A, αa = 1, but since xa = 1, it is the case that
xa = αa = 1. Finally, consider some node c ∈ C. Since c only has neighbours in A ∪ C,
αc ≤

1
2 . Then xc ≥ αc, implying that x is a stable solution, and so G is a stable graph.

Next, suppose that G is a stable graph. Let (x,M) be a stable solution for the
bargaining game on G where M is a maximum matching. We show that |Dk| = 1 for
all k. Suppose for contradiction that for some k, |Dk| ≥ 3 (we say 3 since by Lemma
2.2, Dk is factor-critical and hence is an odd component). It is known that the size of

the maximum fractional matching in factor-critical graphs of size |Dk| is νf (Dk) =
|Dk|
2 .

This means that the minimum fractional vertex cover is at least |Dk|
2 , since the problems

are duals of each other. Since we are only able to distribute |M | = ν(G) across the x
variables, this means that there must be an edge (i, j) ∈ E such that xi + xj < 1. By
definition of a solution (x,M), this means that (i, j) /∈ M . So then αi ≥ (1 − xj) > xi,
contradicting stability.

While Theorem 3.4 gives us a nice characterization of stable graphs, its use is limited
since it only applies to the unweighted case. We wish to provide a similar efficient
characterization for general weighted graphs. We draw connections to solution concepts
from cooperative game theory to give us our desired result.

We begin by defining a value function for any subset of the vertices of G. We use
ν(S) as our value function for S ⊆ N . As in Section 2.1, ν(S) is the total weight of a
maximum weight matching on the graph G[S]. We use this value function in the definition
from Section 2.4, so the core of the bargaining game consists of any bargaining solution
x such that x(S) ≥ ν(S) for all subsets S ⊂ N , and x(N) = ν(N). We simplify this
core membership condition as follows. Let (x,M) be a solution for the bargaining game
on some graph G = (V, E). For all edges (i, j) ∈ E, if xi + xj ≥ wij . We show that
this condition is in fact equivalent to the core membership condition. Consider a subset
S ⊆ N , and let MS be a maximum matching in G[S]. Then if for all edges (i, j) ∈ MS ,
xi + xj ≥ wij, it follows that x(S) ≥ ν(S) as required. We use this fact to prove a result
due to Bateni et al. [4]

18

Bargaining Solutions in Social Exchange Networks

Theorem 3.5. Let (x,M) be a solution to the bargaining game on a graph G = (V, E).
x is a stable solution if and only if x is in the core of the bargaining game.

Proof. We use the strong duality theorem and complementary slackness conditions from
linear programming theory to prove the theorem. Suppose first that (x,M) is a stable
solution. We show that x must satisfy both conditions for core membership. We begin
with the second condition. Since by definition x(V) =

∑

(i,j)∈M wij, we must show simply
that M is a maximum weight matching. Consider the following LP and its dual.

(LPC) Min
∑

i∈N

xi

subject to xi + xj ≥ wij ∀ (i, j) ∈ E (3.1)

xi ≥ 0 ∀ i ∈ V

(DC) Max w⊺y

subject to
∑

j∈δ(i)

yij ≤ 1 ∀ i ∈ V (3.2)

yij ≥ 0 ∀ (i, j) ∈ E

Let y be a solution to (DC) such that yij = 1 if (i, j) ∈ M and yij = 0 otherwise.
For every edge (i, j) ∈ M , by definition we have xi + xj = wij . So consider an edge
(i, j) /∈ M . By the definition of an outside option, αi ≥ wij − xj . Since x is a stable
solution, xi ≥ αi by definition. So it follows that xi+xj ≥ wij. Then x and y are feasible
solutions to (LPC) and (DC) with equal objective values, which by strong duality means
they are optimal solutions. Since (DC) is simply the matching LP for the graph G, we
conclude that M is in fact a maximum matching, and so x(V) = ν(V) as required. The
first core membership condition is satisfied by constraint (3.1) since x is a feasible solution
to (LPC).

Next we prove that if x is a member of the core of the bargaining game, it must
correspond to a stable bargaining solution (x,M) on G where M is a maximum matching.
Since x is a member of the core, it must be a feasible solution to the above linear program
(LPC), with an objective value of ν(V). Consider any maximum-weight matching M and
set yij = 1 if (i, j) ∈ M , and yij = 0 otherwise. Then y is a feasible solution to (DC).
Since x(V) = |M | = ν(V), by strong duality it must be that x and y are optimal solutions
to (LPC) and (DC) respectively. Then by complimentary slackness, for every edge (i, j)
with yij > 0, xi+xj = wij . So (x,M) is a solution to the bargaining game. Now consider
any vertex i ∈ V . Let j be the neighbour of i that induces the outside option of i, Ie.

19

Network Bargaining: Creating Stability Using Blocking Sets

αi = (wij − xj). Since xi + xj ≥ wij, it follows directly that xi ≥ αi for all i ∈ V . So
(x,M) is in fact a stable bargaining solution.

In addition to showing a one-to-one correlation between members of the core and
stable solutions, the proof of Theorem 3.5 gives us the desired characterization of stable
graphs.

Corollary 3.6 ([4]). The bargaining game on a graph G has a non-empty core, and so
G is a stable graph, if and only if (DC) has an integral optimal solution for finding a
maximum-weight matching.

Now that we have found an efficient way to decide whether a general weighted graph
has a stable solution, we steer our focus towards finding balanced bargaining solutions.
As with stable solutions, we begin by restricting our discussion to graphs where the edge
weights are all wij = 1 for (i, j) ∈ E. With a combinatorial argument, Kleinberg and
Tardos [18] prove that a graph G contains a balanced solution if and only if it contains a
stable solution. We state the theorem and then sketch its proof, and refer the reader to
the referenced material for a more details.

Theorem 3.7. For a graph G = (V, E) with unit edge weights, a balanced solution exists
to the bargaining game on G if and only if a stable solution exists to the bargaining game
on G.

The existence of a stable solution if a balanced solution exists follows directly from
their definitions. We suppose then that there exists a stable solution to the game on G.
We argue the existence of a balanced solution by describing an algorithm that finds such
a solution.

First, we find the Gallai-Edmonds decomposition V = (D∪A∪C) of G. By Theorem
3.4, D must be an independent set. We begin with the partial stable solution (x,M)
where we set xv = 0 for v ∈ D, and xv = 1 for v ∈ A, and M is any maximum matching
in G. Define a set S′ = {D ∪ A}. The x values for vertices in the set S′ will not change
throughout the algorithm. We will iteratively assign x-values to vertices and include
them in S′. Let the slack of an edge be σuv = xu + xv − 1. Note that in a stable
solution the slack at every edge is non-negative. Kleinberg and Tardos [18] define a linear
program which finds the maximum slack across the non-matching edges with at least
one endpoint in V \ S′. We repeatedly solve the LP, which identifies specific subgraph
structures that limit the maximum slack. The endpoints of matching edges (u, v) in the
limiting structure are then gradually assigned x values. The slack is spread through the
graph as much as possible while balancing matched edges, and we expand S′ with the
newly-assigned vertices. We repeat this step until V \ S′ = ∅, and (x,M) is a balanced
bargaining solution.

20

Bargaining Solutions in Social Exchange Networks

Theorem 3.7 combined with Theorem 3.4 gives us a nice way of showing existence of
balanced bargaining solutions in unweighted graphs. Again, we wish to take this result
further and find a simple characterization for graphs with general edge weights. Similarly
to stable solutions, we shift our focus towards concepts from cooperative game theory to
find our desired result.

We use the same value function as we did for the proof of Theorem 3.5, ν(S), which
is equal to the maximum matching on the graph G[S]. We relate balanced solutions
to the prekernel of the bargaining game. Recall the necessary conditions of prekernel
membership, sij(x) = sji(x) for every pair i, j ∈ N , as in Definition 2.8. The condition
uses the notion of the power of agent i with respect to agent j, defined as

sij(x) = max
S⊂N

{

v(S) − x(S) : i ∈ S, j /∈ S

}

We first prove a useful claim, which simplifies the calculation of the power of an agent
with respect to another.

Lemma 3.8 ([4]). Let (x,M) be a stable solution to the bargaining game on a graph
G = (V, E). The formula for sij(x) can be simplified as follows: sij(x) = maxk∈δ(i){wik−
xi−xk : k 6= j}, taking the maximum to be −xi over the empty set. That is, it is sufficient
to only consider coalitions of the form S = {i, k} in the definition of the power of agent
i with respect to agent j.

Proof. Suppose for contradiction that sij(x) 6= s′ := maxk∈δ(i);k 6=j{wik − xi − xk}. Then
there exists a subset S ⊆ V containing i but not j such that ν(S) − x(S) > s′. Let MS

be any maximum matching in the graph G[S]. Every edge (u, v) ∈ MS where u 6= i, v 6= i
contributes wuv to ν(S) and at least wuv to x(S) since x is a stable solution, implying
that xu + xv ≥ wuv by Theorem 3.5. So adding any set of vertices to S that expands
the maximum matching MS can not be of any help when calculating sij(x). Clearly,
including any vertex that does not expand the maximum matching MS does not help
either when maximizing sij(x). So we consider only those coalitions that include a single
neighbour of i when maximizing sij(x).

We do note that the formula given for sij(x) in Lemma 3.8 does not take into account
the case in the weighted instance when the maximizing coalition may be S = {i}. This
happens when αi = 0 and xk > wik for all k ∈ δ(i), k 6= j. This slight modification does
not change our discussion for the rest of this chapter, but we will formally include it in
the following chapter.

Using Lemma 3.8, we now prove a result that will directly imply the main presented
result of this section.

21

Network Bargaining: Creating Stability Using Blocking Sets

Theorem 3.9 ([4]). Let (x,M) be a solution to the bargaining game on a graph G =
(V, E). x is stable and balanced if and only if x is in the intersection of the core and
prekernel of the bargaining game.

Proof. Suppose first that (x,M) is a solution to the bargaining game, and that x is stable
and balanced. We have already shown by Theorem 3.5 that x is a member of the core.
For two agents i and j we consider two cases and show that in both x is in the prekernel.

1. (i, j) ∈ M : Consider the simplified formula for sij(x). xi is a fixed value in the formula,
so we consider maxk∈δ(i);k 6=j{wik − xk}. Note that this is the exact definition of αi,
the outside option of i. In any balanced solution, by definition we have that for any
(i, j) ∈ M , xi − αi = xj − αj . This implies that sij(x) = sji(x) as required.

2. (i, j) /∈ M : If i is matched in M , that is there exists some k such that (i, k) ∈ M , then
sij ≥ wik − xi − xk = 0. Since x is in the core, sij(x) ≤ 0, implying that sij(x) = 0.
If there is no such k, then xi = 0 by definition. Then consider any edge (i, k′) ∈ E,
k′ 6= j. Again since x is in the core and xi = 0, it must be that xk′ = wik′ , again
implying that sij(x) = 0. Finally if there was no such k′ ∈ V , then sij(x) = −xi = 0.
We use a similar argument for j to show that sji(x) = 0, and thus sij(x) = sji(x) as
desired.

Suppose now that x is in the intersection of the prekernel and the core of the bargaining
game. Consider an edge (i, j) ∈ M . By the simplified definition of sij(x), sij(x) = αi−xi.
Similarly, sji(x) = αj − xj . By the definition of prekernel, for every pair i, j ∈ V , we
know that sij(x) = sji(x). This directly implies that x is in fact a balanced bargaining
solution.

Kleinberg and Tardos [18] establish the following main result, by extending the com-
binatorial argument used to prove Theorem 3.7. We argue its correctness based on the
mentioned results from cooperative game theory.

Theorem 3.10. The bargaining game on a graph G has a stable solution if and only
if it has a balanced solution, and the set of all balanced solutions can be constructed in
polynomial time.

The proof of the first part of Theorem 3.10 follows from Theorem 3.9 and the known
economic fact that if the core is non-empty, then the core intersect prekernel is also
non-empty [28]. The constructibility of all balanced solutions follows from work done by
Meinhardt [22], who proves using an LP-based algorithm that the prekernel can be effi-
ciently constructed for zero-monotonic cooperative games (ZMCG). ZMCG’s are defined
as follows:

22

Bargaining Solutions in Social Exchange Networks

Definition 3.11. A game is called zero-monotonic if ν(S) ≤ ν(T)−
∑

i∈T\S ν({i}) when-
ever S ⊆ T 6= ∅.

The bargaining game on a graph G is then a ZMCG, since ν({u}) = 0 for any single
agent u ∈ N , and ν(S) ≤ ν(T) if S ⊆ T .

Meinhardt’s algorithm, using a set of LPs, iteratively computes a series of maximal
transfers between agents (we will explore this idea further in the next chapter). It then
computes the intersection of the solution sets from the solved LPs, which include elements
of the kernel of the game (similar solution concept to prekernel). This implies that we
can construct the prekernel in polynomial time, as it was shown that the prekernel and
kernel coincide for ZMCG’s. Hence, we can efficiently construct all balanced solutions.

3.4 Extending the Model - Agent Capacities

In this section we discuss an extension to the model where we allow agents to participate
in multiple contracts. Each agent i is assigned a capacity ci > 0. Bateni et al. established
many of the results from Section 3.3 for this model. In order to discuss these results, we
must first redefine some concepts.

Let (x,M) be a solution to the bargaining game with capacities. Here, xi is the
aggregate of the surpluses that agent i receives from all the deals it makes. Let zij be
the amount of money i earns from its contract with j. If (i, j) ∈ M then zij + zji = wij .
Conversely, if (i, j) /∈ M then zij = zji = 0. We may refer to a solution to the bargaining
game as (z,M), where xi =

∑

j∈δ(i) zij.

Definition 3.12. Let (z,M) be a solution to the bargaining game with capacities. The
outside option αi of agent i is

αi = max
k:(i,k)∈E\M

{

max
j:(j,k)∈M

(wik − Ikzkj)
}

where Ik = 1 if agent k is utilized to capacity, and Ik = 0 otherwise. If the set {k :
(i, k) ∈ E \M} is empty, we define the outside option of i to be zero.

Definition 3.13. Let (z,M) be a solution to the bargaining game on a graph G = (V, E).
z is a stable solution if for all (i, k) ∈ M , zik ≥ αi, and αi = 0 if i has residual capacity.

Definition 3.14. Let (z,M) be a solution to the bargaining game on a graph G = (V, E).
z is a balanced solution if for all (i, k) ∈ M , zik − αi = zki − αk.

Definition 3.15. Let S ⊆ V be a coalition in the bipartite bargaining game with ar-
bitrary capacities on the graph G = (V, E). Let v(S) be a value function equal to the
optimum value of (LP1) for S, defined as follows.

23

Network Bargaining: Creating Stability Using Blocking Sets

(LP1) Max
∑

(i,j)∈S

xijwij

subject to
∑

j∈{δ(i)∩S}

≤ ci ∀ i ∈ S

xij ≤ 1 ∀ i, j ∈ S

xij ≥ 0 ∀ i, j ∈ S

(3.3)

Intuitively, v(S) finds the maximum total payout for all agents in S over all possible
feasible contract schemes.

We begin with a Lemma giving an example of a bipartite network with arbitrary
capacities. We will show that core solutions are not necessarily stable solutions, and so
we will have to restrict the set of example graphs in our discussion.

v1 :
4
5 v2 :

4
5 v3 :

6
5 v4 :

6
5

u1 :
6
5 u2 :

6
5 u3 :

4
5 u4 :

4
5

Figure 3.2: Core * Stable solutions in bipartite networks with arbitrary capacities

Lemma 3.16 ([4]). Let (x,M) be a core solution to the bargaining game on G = (V, E)
with arbitrary capacities. Then (x,M) is not necessarily a stable solution.

Proof. We prove this Lemma with a counterexample. Consider the network shown in
Figure 3.2. Let all the agents have capacity two, and let every contract be worth one. Let
(x,M) be a solution such that xv1 = xv2 = xu3

= xu4
= 4

5 , and xu1
= xu2

= xv3 = xv4 = 6
5

as shown, and every agent is in two contracts. Consider the agents v2 and u3. By the
pigeonhole principle, each must have a contract from which they earn less than 1

2 . So
they have incentive to cancel those contracts and split the contract between themselves,
(v2, u3), in half. So (x,M) can not be a stable solution to the game.

We now show that (x,M) is in fact in the core. In this network, ν(V) = 8, and
x(V) = 8 as required. Consider a subset S ⊆ V . We analyze the core condition x(S) ≥

24

Bargaining Solutions in Social Exchange Networks

ν(S) for varying sized coalitions S. If |S| = 0 or |S| = 1, then the core condition is
satisfied as ν(S) = 0. If |S| = 2, then ν(S) ≤ 1, and x(S) ≥ 8

5 . For |S| = 3, ν(S) ≤ 2,
and x(S) ≥ 12

5 , so the condition is satisfied. If |S| = 4 and ν(S) = 4, then we know
S must contain the endpoints of all four black edges from one side of the network, Ie.
either S = {v1, v2, u1, u2} or S = {v3, v4, u3, u4}. In this case x(S) = 4 as well. Otherwise
ν(S) ≤ 3, and then the core condition is satisfied as x(S) ≥ 16

5 . By a similar argument,
coalitions of size |S| = 5 and |S| = 7 have ν(S) values of at most 4 and 6, respectively. In
both cases the core condition is satisfied as they receive x(S) ≥ 22

5 and x(S) ≥ 34
5 . This

leaves the case when |S| = 6. Here x(S) ≥ 28
5 , and ν(S) ≤ 5, as two vertices will not be

able to exhaust their capacities in a six vertex coalition.
The above case analysis shows that the built example allocation x is in fact a member

of the core of the bargaining game on G, however is not a stable solution.

The example in the proof of Lemma 3.16 implies that the core does not fully coincide
with the set of stable solutions for bipartite graphs with arbitrary vertex capacities.
Bateni et al. restrict their work to a set of graphs they call constrained capacity bipartite
graphs. These are bipartite graphs with bipartition V = (V1 ∪ V2), where one side of
the network is limited to a single deal, and the other side of the network has arbitrary
capacities. Formally, ci = 1 for i ∈ V1, and ci ≥ 0 for i ∈ V2. While this restriction to the
model has its limitations, it does still present a practical setting. Consider an example
network where on one side the agents are screenwriters, each with a movie script for
sale. The agents forming the other side of the network are production studios that are
interested in buying the scripts. Each studio can produce a number of movies, however
each script can only be sold to a single producing company.

By only considering constrained bipartite graphs, it is possible to relate stable and
balanced solutions to the core and prekernel solution concepts from cooperative game
theory. Using (LP1), as defined in Definition 3.15, with its dual and complimentary
slackness, we can show analogous results to the ones we presented in Section 3.3. We
state these results for completeness, and refer the reader to the referenced article for the
proofs.

Theorem 3.17 ([4]). For the bargaining game on a constrained bipartite graph G =
(V, E), a solution (x,M) is a stable solution if and only if it is in the core of the game

Theorem 3.18 ([4]). For the bargaining game on a constrained bipartite graph G =
(V, E), a solution (x,M) is a stable and balanced solution if and only if it is in the core
intersect prekernel of the game

25

Chapter 4

Blocking Sets

In this chapter, we explore an approach to finding fair solutions in unstable graphs. We
discuss the idea of blocking edges without reducing the amount we can distribute to the
vertices.

As mentioned in Section 3.2, an unstable graph G = (V, E) does not allow a stable
solution. We study the concept of the blocking pairs of an allocation x ∈ RV as edges with
under-assigned endpoints. Formally, we define the set of all blocking pairs, the blocking
set of an allocation x, as B(x) = {(u, v) | xu + xv < wuv}. We call (B,x) a blocking set
and allocation pair where B = B(x), and say B is the blocking set induced by x.

Biro, Kern and Paulusma studied the connection between blocking sets and testing if
a weighted graph allows a stable solution, Ie. has a non-empty core. Any core member of
the matching game on G = (V, E) is an allocation x with B(x) = ∅. If the core is empty,
we can try to minimize the number of blocking pairs. This leads to the decision problem:

Blocking Pairs

Instance: a matching game on G = (V, E) and an integer k ≥ 0.
Question: does G allow an allocation x with |B(x)| ≤ k?

We note this problem does differ from the Edge-Deletion Stability problem,
defined formally in Chapter 6, which searches for a minimal edge-set to remove such
that the remaining graph is stable. Removing the edges of a minimum blocking set for
a graph G does not necessarily produce a stable graph. Consider the graph K5, with
a single additional edge (a, b) forming a separate component, as shown in Figure 4.1.
The allocation xu = 1

2 if u 6= a, xa = 0 induces a blocking set of size 1, shown in
red. Conversely, a minimum edge-deletion stabilizer set for this graph has size 4, also
shown in red. By removing any less than three edges in the neighbourhood of a single
vertex, the odd cycle contained in the K5 component is not broken, and all the vertices

27

Network Bargaining: Creating Stability Using Blocking Sets

in that component will remain inessential. Removing a subset of three edges in the
neighbourhood of a vertex v also does not create stability, as matching v to its remaining
neighbour will still leave an odd cycle between the unmatched vertices.

Blocking Set Stabilizer Set

Figure 4.1: Blocking Pairs is not equivalent to Edge-Deletion Stability

The rest of this chapter is organized as follows. We restate the NP-completeness
theorem for the blocking pairs decision problem, as proven by Biro, Kern and Paulusma
[5]. We then motivate the reason for finding blocking sets, as we can remove a blocking
set and find a balanced bargaining allocation on the resulting graph.

4.1 Complexity of the Blocking Pairs Problem

In this section, we provide a proof to show that the Blocking Pairs problem is NP-
complete. We start with a lemma to be used later.

Lemma 4.1 ([5]). Let K be a complete graph with vertex set {1, · · · , ℓ} for some odd
integer ℓ, and let x ∈ RK

+ . If x(K) < ℓ
2 then |B(x)| ≥ ℓ−1

2 holds.

Proof. We write ℓ = 2q + 1 and use induction on q. For the base case, if q = 1, then the
statement holds trivially. Suppose q ≥ 2. We can assume without loss of generality that
x1 ≤ x2 ≤ · · · ≤ x2q+1. Since x(K) < ℓ

2 , we have that x1 <
1
2 by the pigeonhole principle.

If x1 + x2q+1 < 1, then x1 + xi < 1 for 2 ≤ i ≤ 2q + 1. So we have 2q ≥ ℓ−1
2 blocking

pairs. Suppose that x1 + x2q+1 ≥ 1. Then x2 + x3 + · · ·+ x2q <
2q−1
2 . By induction this

yields q−1 blocking pairs. Note also that x2 <
1
2 holds by the same pigeonhole principle.

Hence x1 + x2 < 1, and we have at least q = ℓ−1
2 blocking pairs.

28

Blocking Sets

Theorem 1 ([5]). Blocking Pairs is NP-complete.

Proof. Clearly, this problem is in NP. To prove NP-completeness, we will reduce from
Maximum Independent Set (MIS) which tests if a graph G contains an independent
set of size at least k, Ie., a set U (with |U | ≥ k) such that there is no edge in G between
any two vertices in U . Garey, Johnson and Stockmeyer [13] show that the MIS problem
is already NP-complete for the class of 3-regular connected graphs, Ie., graphs, in which
all vertices are of degree three. So we assume that G is 3-regular and connected. We
may without loss of generality then assume that k ≤ 1

2n; as otherwise G does not have
an independent set of size k. We also assume that we have unit edge weights, as variable
weights are then a generalization.

From G = (V, E) we construct a new graph G∗ by introducing a set Y of np new
vertices for some integer p, the value of which we will determine later. We denote the
vertices in Y by yu1 , · · · , y

u
p for each u ∈ V . We connect each yui to its associated vertex

u. All the original V vertices now have degree 3+p, and all the vertices of Y have degree
exactly one. Next, let K be a complete graph on ℓ vertices, where ℓ is some odd integer
larger than np, the value again of which will be made clear later. We add 2(n− k) copies
K1, · · · ,K2(n−k) of K to G∗ without introducing any further edges. The resulting graph
consists of 2(n − k) + 1 components and is denoted by G′ = (V ′, E′). We note that
{uyu1 : u ∈ V } is a maximum matching in G∗ of size n. Because of this and because ℓ is
odd, we obtain that ν(G′) = 1

2(ℓ− 1)2(n − k) + n = ℓ(n− k) + k.
We show that the following statements are equivalent for suitable choices of ℓ and p,

proving the Theorem.

(i) G has an independent set U of size |U | ≥ k

(ii) |B(x)| ≤ (n− k)p+ 3
2n− 3k for some allocation x on G′.

(i) ⇒ (ii): Suppose G has an independent set U of size |U | ≥ k. We define an allocation
x as follows, x ≡ 1

2 on each Kh, x ≡ 1 on U ′ for some subset U ′ ⊆ U of size |U ′| = k and
x ≡ 0 otherwise. Then the blocking set is

{(u, yui) : u ∈ V \ U ′, 1 ≤ i ≤ p} ∪ {(u, v) : u, v ∈ V \ U ′ and uv ∈ E}.

We observe that |{(u, yui) : u ∈ V \ U ′, 1 ≤ i ≤ p}| = (n − k)p. Furthermore,
because G is 3-regular, U ′ ⊆ U is an independent set and k ≤ 1

2n, we find that
|{(u, v) : u, v ∈ V \U ′}| = |E| − 3k = 3

2n− 3k ≥ 0. Hence, |B(x)| = (n− k)p+ 3
2n− 3k.

(ii) ⇒ (i): Suppose |B(x)| ≤ (n − k)p + 3
2n − 3k for some allocation x on G′. We

may without loss of generality assume that x has a minimum number of blocking pairs.
We first prove a number of claims.

Claim 1. We may without loss of generality assume that xi ≤ 1 for all i ∈ V ′.

29

Network Bargaining: Creating Stability Using Blocking Sets

Proof. We prove Claim 1 as follows. Suppose xi = 1 + α for some α > 0. We set xi := 1
and redistribute α over all vertices j ∈ V ′ \Y with xj < 1. We ensure while redistributing
that we do not add more than 1− xj to any xj . The resulting allocation would have an
equal or smaller number of blocking pairs.

Claim 2. We may without loss of generality assume that xy = 0 for each y ∈ Y .

Proof. We prove Claim 2 as follows. Suppose xy > 0 for some y ∈ Y . Let u be the
unique neighbour of y. We set xy := 0 and xu := min{xu + xy, 1}. If necessary we
redistribute the remainder over V ∪

⋃

j K
j without violating Claim 1. This is possible

since x(N) = ℓ(n − k) + k < 2ℓ(n − k) + n = |V | + |
⋃

j K
j |. The resulting allocation

would have an equal or smaller number of blocking pairs.

Claim 3. x(
⋃

j K
j) = ℓ(n− k).

Proof. We prove Claim 3 as follows. First suppose x(
⋃

j K
j) > ℓ(n − k). Then we set

xi := 1
2 for each i ∈

⋃

j K
j and redistribute the remainder over V without violating

Claim 1. This is possible, since after setting xi := 1
2 for each i ∈

⋃

j K
j, we have

x(V ′)−x(
⋃

j K
j) = ℓ(n−k)+k−ℓ(n−k) = k ≤ n. The resulting allocation would have a

smaller or equal number of blocking pairs. Hence we may assume that x(
⋃

j K
j) ≤ ℓ(n−k)

holds.

Suppose x(
⋃

j K
j) < ℓ(n−k). Then there is some Kj with x(Kj) < ℓ

2 . By our earlier

Lemma, there are at least ℓ−1
2 blocking pairs in Kj. We choose ℓ ≥ 2np + 2|E| + 2 and

obtain |B(x)| ≥ l−1
2 > (n − k)p + |E|. However, let x∗ be given by x∗ ≡ 1

2 on
⋃

j K
j,

x∗ ≡ 0 on Y , x∗ ≡ 1 on some U ⊂ V of size |U | = k and x∗ ≡ 0 on V \ U . Then x∗ is
an allocation as x∗i ≥ 0 for all i ∈ V ′, and x∗(V ′) = ℓ(n − k) + k = ν(G′). We observe
that |B(x∗)| < (n − k)p + |E|. Hence x is not an allocation with the minimum number
of blocking pairs. This proves Claim 3.

We now continue with the proof. Combining Claims 2 and 3 leads to

x(V) = x(V ′)− x(

2(n−k)
⋃

j=1

Kj)− x(Y) = ν(G′)− ℓ(n− k) = ℓ(n− k) + k − ℓ(n− k) = k.

Let R be the set of vertices v in G with xv < 1. We first show that |R| ≤ n − k.
Suppose |R| ≥ n−k+1. Since x(Y) = 0 due to Claim 2, we find that (n−k)p+ 3

2n−3k ≥
|B(x)| ≥ |R|p ≥ (n − k)p + p. This is not possible if we choose p = 2n. Hence, indeed
|R| ≤ n− k holds.

Let U consist of all vertices u ∈ V with xu = 1. Note that U = V \ R due to Claim
1. Since x(V) = k as we deduced above, we find that |U | ≤ k and thus |R| ≥ n − k. As

30

Blocking Sets

we already know that |R| ≤ n− k, we find that |R| = n − k, and consequently, |U | = k.
The latter equality implies that xv = 0 for all v ∈ R.

Now because G is 3-regular, G has 3n
2 edges. Then |B(x)| ≥ (n − k)p + 3n

2 − 3|U |,
with equality only if U is an independent set. Equality must hold since we assume that
B(x) ≤ (n − k)p + 3n

2 − 3k and |U | = k. Hence, indeed U is an independent set of size
k.

We note that while the reduction used in Theorem 1 shows NP-completeness, it is not
approximation preserving. Suppose we construct the expanded graph G′ = (V ′, E′) as
we did in the reduction from our input graph G = (V, E) by adding vertex set Y and
2(n− k) copies of Kℓ. Consider the 4-approximation algorithm for the Blocking Pairs

problem on G′, where we simply return the edge set:

Bapprox =

{

(u, v) : (u, v) ∈ E} ∪ {(u, yui) : u ∈ V, 1 ≤ i ≤ p}

}

This is a 4-approximation for any general 3-regular graph G, where the allocation
producing an optimal blocking set is x∗, as

|Bapprox| = np+
3n

2
≤ 2np ≤ 4(n − k)p+ 6n− 12k = 4 ∗ |B(x∗)|

Now suppose we pick G to have an independent set of size ε > 0. We can not find
an approximation for Maximum Independent Set using the approximation algorithm
for Blocking Pairs as we have no information about the structure of the graph from
Bapprox.

4.2 Balanced Bargaining Solutions from Blocking Sets

In this section we discuss the motivation for studying Blocking Sets. We explain how
removing a blocking set from a graph G leaves us with a subgraph in which a balanced
bargaining allocation exists.

Recall from Section 2.4 the definition of power of player i with respect to player j:

sij(x) = max
S⊂N

{

ν(S)− x(S) : i ∈ S, j /∈ S

}

The prekernel is defined as the set of allocations where for every pair i, j ∈ N , sij(x) =
sji(x). Bateni et al. [4] showed that any allocation x in both the prekernel and the core
is a balanced outcome for the bargaining game in general graphs. We use this result with
blocking sets to find a balanced allocation. Let GO = (VO, EO) be a graph with an empty
core, and let N = VO for our discussion. We begin with a blocking set and allocation

31

Network Bargaining: Creating Stability Using Blocking Sets

pair (B,x) for GO, where by definition x has the property that xu + xv ≥ wuv for all
(u, v) ∈ {EO \B}. We let the graph GB = (VO, EO \B). For the bargaining game on GB ,
x may not be a core member as x(V) = ν(GB) may not be true. We relax our definition
of a stable outcome to allow allocations with x(V) = ν(G) when ν(G) > ν(GB). Clearly,
ν(G) − ν(GB) ≤ |B|, so picking a minimal blocking set is keeps the relaxation small.
With this new definition, we call any allocation x on a graph GB = (V, E \B) stable if
xu + xv ≥ wuv for all (u, v) ∈ E \B.

We will proceed to compute a series of transfers between x variables that will converge
to a balanced allocation x∗, with (αu − x∗u) = (αv − x∗v) for all contracting pairs (u, v).
Again, x∗(V) may be greater than ν(GB), but additionally the transfers may also result
in pairs of players in a contract with combined money shares that are larger than the
contract value. We relax our definition of a balanced outcome to allow x∗u+x∗v > wuv for
players (u, v) in a deal, as we reassign extra surplus gained from the blocked edges. Again,
the total excess surplus divided between the agents is at most w(B), so picking a minimal
blocking set is aimed at keeping the relaxation small. With this relaxed definition, we
call an allocation x∗ balanced if every contract is split according to the Nash Bargaining
Solution, that is (αu − x∗u) = (αv − x∗v) for all contracting agents (u, v).

For the remainder of this section, we refer to GB simply as G = (V, E). Since x
satisfies the condition xu + xv ≥ wuv for all edges in E, for all subsets of vertices S ⊆ V ,
we claim that x(S) ≥ ν(S). This is because the edges in the maximum matching on S
can each provide exactly wuv to ν(S). The endpoints of (u, v) provide at least wuv to
x(S), proving the claim. We will show that we do not violate this condition with any of
our transfers to maintain a notion of stability.

Next, we consider the power of agent i with respect to agent j. Similar to the
result by Bateni [4], we will show that we can simplify sij(x) as follows: sij(x) =
max

{

−xi, maxk : (i,k)∈E, k 6=j{wik − xi − xk}
}

. Note that if sij(x) = −xi, it implies that
αi = 0.

Suppose that x, for any pair (i, j) ∈ V , satisfies the property that sij(x) = sji(x).
Then, using the simplified formula for sij(x), sij(x) = sji(x) implies that (αi − xi) =
(αj − xj) for all contracting pairs (i, j). So x is a balanced bargaining allocation. We
focus on finding such an allocation starting from the aforementioned blocking set and
allocation pair, (B,x).

For the remainder of this section, let sij(x) ≤ sji(x) for all allocations x and all
ordered pairs of players (i, j) ∈ V . We begin by assuming there exists some pair (i, j)
such that sij(x) = sji(x) − 2µ, as otherwise no transfers are needed and x is balanced.
Let x′ be an allocation defined by

x′v =







xv − µ : if v = i
xv + µ : if v = j
xv : otherwise

32

Blocking Sets

We say that the allocation x′ arises from x by a transfer from i to j (of size µ) or simply
an (i, j)-transfer.

We say that the coalition S ⊆ V separates the ordered pair (i, j) of vertices if i ∈ S
and j ∈ {V \ S}. Given the allocation x, the coalition S ⊆ V is called (i, j, x)-maximal
if S separates (i, j) and sij(x) = ν(S)− x(S). That is, S is the coalition that maximizes
the equation for sij(x).

We now prove multiple Lemmas, slightly modifying the known results to apply them
to our setting.

Lemma 4.2 ([12]). Let the allocation x′ ∈ RV arise from x by an (i, j)-transfer of size
µ > 0. Then

(i) skl(x)− µ ≤ skl(x
′) ≤ skl(x) + µ for all pairs (k, l) ∈ V

(ii) sij(x
′) = sji(x

′) = sij(x) + µ

Proof. Consider some coalition S ⊂ N . Then

x′(S) =







x(S)− µ : if S is (i, j)-separating
x(S) + µ : if S is (j, i)-separating
x(S) : otherwise

Now let S be (k, l, x)-maximal for some pair (k, l) ∈ V . Then

skl(x) = ν(S)− x(S) ≤ ν(S)− x′(S) + µ ≤ skl(x
′) + µ

which implies that skl(x)− µ ≤ skl(x
′).

Now similarly, assume that S is (k, l, x′)-maximal. Then

skl(x
′) = ν(S)− x′(S) ≤ ν(S)− x(S) + µ ≤ skl(x) + µ

which proves part (i).
To prove part (ii) of the lemma, note first that the subset S′ that is (i, j, x)-maximal is

also (i, j, x′)-maximal. This is because for every subset S′ that is (i, j)-separating, x(S′)
increases by µ. So all subsets that can be considered to be the (i, j, x′)-maximal subset
increase by the same amount.

Let Si and Sj be the (i, j, x)-maximal and (j, i, x)-maximal subsets respectively. Then

sij(x) = ν(Si)− x(Si) = ν(Si)− (x′(Si) + µ) = sij(x
′)− µ

and
sji(x) = ν(Sj)− x(Sj) = ν(Sj)− (x′(Sj)− µ) = sji(x

′) + µ

implying that sij(x
′) = sji(x

′) = sij(x) + µ as required since sij(x) = sji(x)− 2µ.

33

Network Bargaining: Creating Stability Using Blocking Sets

Lemma 4.3. Let x be an allocation such that for every (u, v) ∈ E, xu + xv ≥ wuv.
Let x′ be an allocation that arises from x by an (i, j)-transfer of size µ. Then for every
(u, v) ∈ E, x′u + x′v ≥ wuv.

Proof. Suppose for contradiction there exists some (i, k) ∈ E such that x′i + x′k < wik.
Note that since x′i is the only variable that decreased during the transfer, vertex i must
be adjacent to the under-satisfied edge. Consider the coalition S = {i, k}, where ν(S)−
x′(S) > 0 since x′i + x′k < wik. Also, note that S is an (i, j)-separating coalition, so
by definition, sij(x

′) ≥ ν(S) − x′(S) > 0. Then by Lemma 4.2, sij(x
′) = sji(x

′) > 0.
However 0 ≥ sji(x) > sji(x

′), by definition of a transfer, which is a contradiction.

Lemma 4.4. Let (B,x) be a blocking set and allocation pair for an unstable graph
G = (V, E), such that for all (u, v) ∈ E \ B, xu + xv ≥ wuv. Let x′ be an al-
location that arises by some number of transfers. The simplified formula sij(x

′) =
max

{

−x′i, maxk : (i,k)∈E\B, k 6=j{wik − x′i − x′k}
}

, can be used for computing the power
values of x′ for all pairs (i, j) ∈ V .

Proof. Let m := max
{

−x′i, maxk : (i,k)∈E\B, k 6=j{wik − x′i − x′k}
}

. Suppose for contradic-
tion that there is some (i, j)-separating coalition S, such that ν(S)−x′(S) > m. Let MS

be any maximum matching induced by S.

If i is not matched in MS , we claim that −xi ≥ ν(S)− x′(S). First, if we remove the
contribution of the endpoints of the edges (u, v) ∈ MS from the formula, since x′u + x′v ≥
wuv by Lemma 4.3, 0 − x′(S \ {u, v : (u, v) ∈ MS}) ≥ ν(S) − x′(S). Next, remove all
vertices other than i from {S \MS}. Again this does not decrease the value, and in fact
gives us our desired inequality. That is:

ν(S)− x′(S) ≤ 0− x′(S \MS) ≤ −x′i

Since m ≥ −x′i by definition, we have a contradiction.

Next assume that i is matched to some vertex ℓ 6= j in MS . Remove all endpoints
of the edges {MS \ (i, ℓ)}, Ie. all matching edges except (i, ℓ). Lemma 4.3 implies that
wiℓ − x′(S \MS ∪ {i, ℓ}) ≥ ν(S) − x′(S). Next, remove all vertices that are not i and ℓ
from S. Since none of these vertices are now matched, they do not contribute anything
to the ν term of the formula. So this gives us our desired inequality:

ν(S)− x′(S) ≤ wiℓ − x′(S \MS ∪ {i, ℓ}) ≤ wiℓ − x′i − x′ℓ

which by definition is at most m, proving the Lemma.

Lemma 4.5 ([12]). Let x′ be an allocation that arises from x by an (i, j)-transfer of size
µ. Let (k, l) be a pair of players such that skl(x) > sji(x). Then skl(x

′) = skl(x).

34

Blocking Sets

Proof. Let the endpoints of e ∈ E be (k, l, x)-maximal. Then the given hypothesis

skl(x) > sji(x) > sij(x)

implies that e does not have either i or j as an endpoint (as otherwise it would be (i, j)
or (j, i)-separating). So by definition we have that x(e) = x′(e). The argument if {k} is
the (k, l, x)-maximal coalition is identical, which proves the lemma.

For an allocation x ∈ RV , recall that sij(x) ≤ sji(x) for all ordered pairs of players
(i, j) ∈ V . Then, let

s(x) :=

{

−∞ : if skl(x) = slk(x) ∀ (l, k) ∈ E
max{sji(x) : sji(x) > sij(x)} : otherwise

Lemma 4.6 ([12]). Let x′ be an allocation that arises from x by an (i, j)-transfer of size
µ. Then

(i) skl(x
′) > skl(x) implies skl(x

′) ≤ sji(x
′) = sji(x)− µ

(ii) s(x′) ≤ s(x)

Proof. To prove part (i), assume that skl(x) < skl(x
′) for some (k, l) ∈ E. Let S ⊆ N

be (k, l, x′)-maximal. Then S is (i, j)-separating since skl decreased as a result of the
transfer, and so,

skl(x
′) ≤ sij(x

′) = sji(x
′) = sji(x)− µ

Part (ii) is a direct consequence of (i).

Let an (i, j)-transfer from an allocation x be called canonical if sji(x) = s(x).

Lemma 4.7 ([12]). Given an allocation x, we obtain an allocation x(t) satisfying s(x(t)) <
s(x) after t ≤ |E| canonical transfers.

Proof. Consider the set I(x) := {(k, l) : skl(x) = s(x)} of pairs of players. Let x′ be an
allocation that arises from x by a (i, j) canonical transfer of size µ. Suppose s(x′) = s(x).
Then (i, j) /∈ I(x′). Let a new pair (k, l) /∈ I(x) enter I(x′). If skl(x) > s(x), then
skl(x

′) = skl(x) by Lemma 4.5, and we have a contradiction. If skl(x) < sji(x) = s(x),
then skl(x

′) > skl(x), and so by Lemma 4.6, skl(x
′) ≤ sji(x) − µ < s(x) = s(x′), a

contradiction. So no new pair enters I(x′), which implies that |I(x′)| ≤ |I(x)| − 1, so
after at most t = |E| canonical transfers, x(t) will be an allocation with s(x(t)) < s(x).

35

Network Bargaining: Creating Stability Using Blocking Sets

After finding the allocation computed from Lemma 4.7, we could continue to compute
a sequence of transfers which would strictly decrease s(x(t)). However, it is not clear
whether this sequence converges to a point in the prekernel. Instead we follow an idea of
Faigle et al. [12] using linear programming.

We order the sij(x) values in non-increasing order:

si1j1(x) ≥ si2j2(x) ≥ · · · ≥ simjm(x) for m ≤ 2 · |E|

Let Sx =
{

(i, j) : sij(x) > s(x)
}

, and let ∆x = min(i,j)∈Sx
sij(x). Also, let eij be

the (i, j, x)-maximal edge. In the special case when sij(x) = −xi, let eij = {i}. Then
consider the following linear program, where x is a stable allocation:

(Px) Max δ

subject to y(V) = ν(V) (4.1)

y(eij) = x(eij) ∀ (i, j) ∈ Sx (4.2)

ν(eij)− y(eij) ≥ ν(e)− y(e) ∀ (i, j) ∈ Sx, e ∈ δ(i) \ (i, j) (4.3)

we − y(e) ≤ ∆x − δ ∀ (i, j) /∈ Sx, e ∈ δ(i) \ (i, j) (4.4)

−yi ≤ ∆x − δ ∀ (i, j) /∈ Sx (4.5)

yi + yj ≥ wij ∀ (i, j) ∈ E (4.6)

We prove two final lemmas which will directly imply the main contribution of this
section.

Lemma 4.8. Let x be a solution to the bargaining game on G = (V, E) such that
xu + xv ≥ wuv for (u, v) ∈ E. Consider a sequence of canonical transfers starting from
x:

{

x = x0, x1, · · · xq
}

such that Sxq = Sx. Then xq is a feasible solution to (Px) for some δ > 0.

Proof. The argument in the proof of Lemma 4.7 implies that

s(x) = s(x0) ≥ s(x1) ≥ · · · ≥ s(xq)

We will proceed using induction on p, the number of transfers we have done since starting
from x. Clearly x0 is a feasible solution for (Px) for some δ > 0. Suppose for induction
then that xp is feasible for p ≥ 0. Suppose further that xp+1 is an allocation that arises
from xp by an (i, j)-transfer of size µ. Then

xp+1
v =







xpv − µ : if v = i
xpv + µ : if v = j
xpv : otherwise

36

Blocking Sets

Then, constraint (4.1) clearly holds. For constraint (4.2), since Sx = Sxp , it follows
from Lemma 4.5 that

xp+1(eij) = xp(eij) = x(eij)

where the last equality holds due to induction.
Suppose constraint (4.3) is not satisfied by xp+1. Consider some (k, ℓ) ∈ Sxp+1 = Sx,

and let e ∈ δ(k) \ (k, ℓ) be such that ν(ekℓ)− xp+1(ekℓ) < ν(e)− xp+1(e). By Lemma 4.6
we know that

skℓ(x
p+1) ≤ skℓ(x

p) = ν(ekℓ)− xp(ekℓ)

where the equality is by induction since xp is feasible. Then:

ν(ekℓ)− xp+1(ekℓ) < ν(e)− xp+1(e) ≤ skℓ(x
p+1) ≤ skℓ(x

p) = ν(ekℓ)− xp(ekℓ)

implying that xp+1(ekℓ) > xp(ekℓ), and so j must be an endpoint of ekℓ, but i is not an
endpoint, Ie. ekℓ is an (i, j)-separating edge. Then since (i, j) /∈ Sx, the found inequality
ν(ekℓ)− xp+1(ekℓ) > ν(eij)− xp+1(eij) contradicts the definition of sij(x

p+1).
Next consider constraint (4.4). Since s(xp+1) ≤ s(xp) as mentioned, for (i, j) /∈ Sx

and e ∈ δ(i) \ {(i, j)}, we have that

we − xp+1(e) ≤ sij(x
p+1) ≤ s(xp+1) ≤ s(xp) ≤ ∆xp − δ = ∆x − δ

where the last inequality is because Sx = Sxp .
For constraint (4.5), the argument is similar where for (i, j) /∈ Sx, we have

−xp+1
i = sij(x

p+1) ≤ s(xp+1) ≤ s(xp) ≤ ∆xp − δ = ∆x − δ

Finally, constraint (4.6) is satisfied directly by Lemma 4.3 since xp was feasible, which
proves the lemma.

Lemma 4.9. Let (x, δ) be an optimal solution to (Px). Consider a series of allocations
ending in x′ resulting from canonical transfers. Then s(x′) < s(x) implies that Sx ⊂ Sx′.

Proof. Since s(x′) ≤ s(x), it is clear that Sx ⊆ Sx′ . Suppose that s(x′) < s(x) and
Sx = Sx′ . This means that the transfers must have lowered every skl(x) value satisfying
skl(x) = s(x). Note that x′ is a feasible solution to (Px) by Lemma 4.8, and let δ′ =
∆x′ − s(x′). This is a feasible value for δ′ by the definition of s(x′). Then:

(∆x − δ′) = (∆x′ − δ′) = s(x′) < s(x) ≤ (∆x − δ)

where the first equality is since Sx = Sx′ . This implies that δ′ > δ, which contradicts the
optimality of δ, and proves the lemma.

We now provide the main contribution of this section: an algorithm for finding a
balanced allocation for an unstable graph GB , after removing a blocking set B.

37

Network Bargaining: Creating Stability Using Blocking Sets

Algorithm 4.10.
Input: Unstable graph G = (V, E), and a blocking set and allocation pair (B,x)
Output: A balanced bargaining allocation on the graph GB = (V, E \B)

(i) Starting with x, perform canonical transfers until an allocation x′ with s(x′) < s(x)
is found.

(ii) Find and return a balanced bargaining solution:

(a) If s(x′) = −∞ then output x′ and stop.

(b) Compute an optimal solution (x∗, δ∗) to the LP (Px).

(c) Starting with x∗, perform canonical transfers until an allocation x′ with s(x′) <
s(x∗) is found.

(d) Go to Step (ii)(a).

Lemma 4.8 and Lemma 4.9 directly imply the correctness and polynomial running
time of the algorithm.

Theorem 2. For an unstable graph G = (V, E), when given a blocking set and allocation
pair (B,x), a balanced bargaining allocation can be found in polynomial time for the graph
GB = (V, E \B).

38

Chapter 5

Finding Blocking Sets

In this chapter we explore different methods for finding cheap blocking sets. We describe
a natural integer program for solving the problem, and show that the relaxation has a
poor integrality gap for general graphs, even with unit edge weights. We explain Iterative
Rounding, a method for finding approximations for problems with linear programming
formulations. We use an iterative rounding based algorithm to show that the Blocking

Pairs problem has is O(1)-factor approximable if the graph is planar.
We proceed to present a dynamic programming algorithm for finding the optimal

blocking set in polynomial time for graphs with bounded tree width, and unit edge
weights: wuv = 1 ∀ (u, v) ∈ E.

5.1 Linear Programming (LP) Approach

In this section we present a natural mixed integer programming formulation of the
Blocking Pairs problem. We will then later use the LP-relaxation in rounding schemes
to try and find an approximation algorithm.

Consider the following mixed integer programming formulation, where ν(G) is again
the size of the maximum integer matching in a graph G = (V, E).

(IPBS) Min w⊺z

subject to xu + xv + zuvwuv ≥ wuv ∀ (u, v) ∈ E (5.1)

~1⊺x ≤ ν(G) (5.2)

xu ≥ 0 ∀ u ∈ V

z ∈ {0, 1} (5.3)

Any feasible solution (x, z) to this program is a feasible blocking set and allocation
pair in the graph G = (V, E), where an edge (u, v) belongs to the blocking set B if

39

Network Bargaining: Creating Stability Using Blocking Sets

zuv = 1. The objective function forces the program to find the minimum weight blocking
set.

The following LP is the dual of the canonical LP relaxation, (LPBS), of the above IP
where (5.3) is replaced by z ≥ 0. We do not need to upper bound z with a constraint
since clearly no zuv variable will be larger than 1 in an optimal solution. In the dual LP, y
is an edge-vector of reals corresponding to the (5.1) edge constraints. γ is a real variable
corresponding to constraint (5.2). The program is provided here for completeness, and
used later.

(DBS) Max w⊺y − γ · ν(G)

subject to y(δ(v)) ≤ γ ∀ v ∈ V (5.4)

wuvyuv ≤ wuv ∀(u, v) ∈ E (5.5)

y ≥ ~0

5.2 Iterative Algorithm

Many NP-hard problems have natural mixed integer programming formulations like the
one mentioned in the previous section. These problems can sometimes be solved approxi-
mately using an iterative method. In this section, we will describe this method, then give
an approximation algorithm for the Blocking Pairs problem on planar graphs with
unit edge weights.

5.2.1 Iterative Rounding Model

Iterative Rounding was first used by Jain [16] to solve the NP-hardGeneralized Steiner

Network Problem. It has since been used for finding approximations to many in-
tractable problems.

To apply the method, we first define a general problem along with its linear program-
ming relaxation, and a starting instance I. We exactly solve the LP for I to obtain a
solution x, and include elements with integral variable values in our eventual solution
set. Then, based on some preset conditions on the LP solution x, we reduce the problem
to a residual instance IR of the general problem. The conditions on x are defined such
that x̄, the projection of x onto the residual instance, is a feasible solution to the general
problem for IR. Formally, x̄ = (x)

∣

∣

IR
= {xj : j ∈ IR}. We recursively solve the problem

for the residual instance, and return the optimal solution x̂. Then since x̄ was feasible
for IR, x̂ ≤ x̄, implying:

{x \ x̄}+ x̂ ≤ {x \ x̄}+ x̄ = x

40

Finding Blocking Sets

We return the combined solution {x \ x̄ ∪ x̂} as our solution to the general problem for
I.

There are two simple options for reducing an instance of the general problem to a
residual instance, as specified in [19]

1. If there is a variable in the optimal extreme point solution that is set to a value of
1, then include the element in the integral solution.

2. If there is a variable in the optimal extreme point solution that is set to a value of
0, then remove the corresponding element.

Unfortunately, there exist many problems where the natural LP formulations are non-
integral. For these we design approximation algorithms where for each instance we solve,
we may also use an additional step:

Rounding: Fix a threshold α ≥ 1. If there is a variable xi that has a value of at
least 1

α
in the optimal extreme point solution then pick the corresponding element in

the solution being constructed.

Using this rounding step allows us to find solutions within an α-ratio of the optimal
integral solution. There are many extensions of the iterative method. One is to use a
Relaxation step instead or alongside of rounding, where we allow some constraints to be
violated by a certain fixed amount β. We refer the reader to [20] for further information.

5.2.2 Approximation Algorithm Structure for Blocking Pairs Problem

Double

Figure 5.1: Creating G′

We outline our approximation algorithm here,
and then define it formally. We input a graph
G = (V, E) with unit edge weights, and max-
imum matching of size ν(G). We first build a
new bipartite graph G′ = (V ′, E′) by doubling
G, to help our analysis at a later step by having
no odd length cycles. For every vertex u ∈ V ,
we add two vertices to G′, u1 and u2. For ev-
ery edge (u, v) ∈ E, we add two edges to G′,
(u1, v2) and (u2, v1). We let ωG′ = 2 ·ν(G), and
replace all instances of ν(G) with ωG′ in all instances of (IPBS) and (DBS). The analysis
may be possible on non-bipartite graphs, but it is easier with the absence of odd length
cycles.

For the remainder of this section, let OPTG be the optimal blocking set on the graph
G.

41

Network Bargaining: Creating Stability Using Blocking Sets

Lemma 5.1. Let (x̂′, ẑ′) define the optimal (integral) solution to the Blocking Pairs

optimization problem on the expanded graph G′ = (V ′, E′). Then we can find a feasible,
integral solution (x, z) to (LPBS) for G, defining a blocking set of at most twice the size
OPTG.

Proof. First, suppose (x̂, ẑ) is the optimal integral solution to (LPBS) for the graph G
that defines the blocking set OPTG. Then let x′u1

= x′u2
= x̂u, and z′u1v2

= z′u2v1
= ẑuv.

(x′, z′) is a feasible, integral solution to the LP for G′. It defines a blocking set of size at
most 2 · |OPTG|. So then, for OPTG′ ,

|OPTG′ | ≤ z′(E′) ≤ 2 · |OPTG|

Next, suppose we are given the integral LP solution (x̂′, ẑ′) that defines the optimal

blocking set for G′, OPTG′ . For every vertex u ∈ V , we set xu =
x̂′

u1
+x̂′

u2

2 . For every edge

(u, v) in E, we set zuv =
ẑ′u1v2

+ẑ′u2v1
2 . If zuv = 1

2 for any (u, v) ∈ E, we round zuv up to
1. Since (x̂′, ẑ′) is a feasible LP solution for G′, for every (u, v) ∈ E, if we add the two
corresponding edge constraints together and divide by two:

x̂′u1
+ x̂′u2

+ x̂′v1 + x̂′v2 + ẑ′u1v2
+ ẑ′u2v1

≥ 2

⇒ xu + xv + zuv ≥ 1 ∀ (u, v) ∈ E

So (x, z) defines a feasible blocking set and allocation pair for G.

Since we may have rounded values of zuv = 1
2 up to 1, the blocking set defined by z

will have size at most

2 ·
∑

uv∈E

ẑ′u1v2
+ ẑ′u2v1

2
=

∑

uivj∈E′

ẑ′uivj
= |OPTG′ | ≤ 2 · |OPTG|

From now on we assume that graphs G′ are bipartite, and built by doubling the
original graph G. We will find a solution for G once we have found a blocking set for G′,
by using the mapping described in Lemma 5.1.

Unfortunately, even on the bipartite graph G′, the Blocking Pairs problem is not
integral. Consider the example in Figure 5.2. The boxes with the text K1001 inside
represent complete subgraphs of 1001 vertices (cliques). The boxes with K−

1001,1001 in
them represent complete bipartite graphs with bipartitions each of size 1001, minus the
edges (u1, u2) for all u ∈ V . The vertices on the borders of the boxes are members of the
respective cliques and bipartitions (coloured black and red).

42

Finding Blocking Sets

K1001 K1001 K−
1001,1001 K−

1001,1001

G G′

Double

Figure 5.2: Bipartite Graph Structure where Blocking Pairs is non-integral

Lemma 5.2. Let (LPBS) be the canonical linear programming relaxation of (IPBS).
(LPBS) may be non-integral for a bipartite graph G′, built from doubling some general
graph G.

Proof. Consider the example in Figure 5.2. To minimize the blocking set on G′, it is clear
we will assign xu = 1

2 to all the vertices u in the bipartite K−
1001,1001 subgraphs. Then

we have distributed all of the allowed ωG′ = 2 · ν(G) = 2002. This means we will need
zuv = 1

2 values on the four (u, v) edges that are not part of the two K−
1001,1001 subgraphs.

This solution has an objective value of 2.

We show that this allocation is the optimal solution to (LPBS) by building a dual
solution of equal size. First, assign γ = 2. Then assign yuv = 1 for the four (u, v)
edges that are not part of the two K−

1001,1001 subgraphs. Let EO be the set of these four
edges. Also assign yuv = 1 for 6 extra edges that create a 10-cycle when combined with
EO. Consider now two K−

999,999 subgraphs, formed from the vertices of the K−
1001,1001

subgraphs, but excluding the four boundary vertices, and the four extra vertices used in
the 10-cycle. Within each of these subgraphs, find two edge-disjoint perfect matchings of
size 999 each. Assign yuv = 1 for all edges in these four matchings. This is possible since
the subgraphs are complete bipartite graphs, minus (u1, u2) edges for all u ∈ V .

This solution, (y, γ), has an objective value of ~1⊺y − γ · ωG′ = 4006 − 2 · 2002 = 2,
implying that (x, z) is an optimal, non-integral solution.

We apply iterative rounding techniques mentioned in the previous section to a more
general version of the blocking pairs problem to be able to formulate the arising residual
subproblems. We partition the edge set E = (E1 ∪ E2), and find a blocking set B ⊆ E1.
We call E2 the set of forbidden edges, as they cannot be a part of any blocking set.

Generalized Blocking Set

Instance: A graph G = (V, E1, E2), a value ν(G), and an integer k
Question: Does G allow an allocation x with |B(x)| ≤ k, where B(x) ⊆ E1

43

Network Bargaining: Creating Stability Using Blocking Sets

E1 ∪E2 forms the complete edge set of the graph G. This problem can be formulated
with an IP similar to (IPBS). We state its canonical linear programming relaxation here
for the unit weight case.

(LPGBS) Min ~1⊺z′

subject to x′u + x′v + z′uv ≥ 1 ∀ (u, v) ∈ E1 (5.6)

x′u + x′v ≥ 1 ∀ (u, v) ∈ E2 (5.7)

~1⊺x′ ≤ ν(G) (5.8)

x′u ≥ 0 ∀ u ∈ V

z′ ≥ 0

We double G, and solve (LPGBS) for G
i = (V ′, E′, ∅), starting with i = 1, to get a

solution (xi, zi). Note that E2 starts empty and may grow. We then reduce the problem
to a residual instance on a graph Gi+1:

1. If there is a vertex u with xiu = 1, Gi+1 = (V i \{u}, Ei
1 \ δEi

1
(u), Ei

2 \ δEi
2
(u)). This

removes u and all its adjacent edges. Set ωGi+1 = ωGi − 1.

2. If there is an edge (u, v) with ziuv = 0, Gi+1 = (V i, Ei
1 \ {(u, v)}, Ei

2 ∪ {(u, v)}).

3. If there is an edge (u, v) with ziuv ≥ 1
3 , then Gi+1 = (V i, Ei

1 \ (u, v), E
i
2).

We continue to set variables and solve residual instances on Gi graphs using (LPGBS)
until we have removed all edges from Ei

1. We map the built solution back to a solution on
the original graph G, as was described in Lemma 5.1, and return the resulting blocking
set.

44

Finding Blocking Sets

Algorithm 5.3.
Input: Graph G = (V, E), w = ~1
Output: A blocking set B for the graph G of size ≤ 6·|OPTG|, where OPTG is the optimal
blocking set for the graph G.

(i) Double G to get the bipartite graph G′ = (V ′, E′):

(a) For every vertex u ∈ V , add two vertices, u1, u2, to V ′.

(b) For every edge (u, v) ∈ E, add two edges, (u1, v2) and (u2, v1) to E′.

(c) Set ωG′ = 2 · ν(G), and replace all instances of ν(G) with ωG′ .

(d) (x′, z′) are defined for every vertex and edge respectively in the graph G′.

(ii) Let the graph G1 = (V 1, E1
1 , E

1
2) = (V ′, E′, ∅), and ωG1 = ωG′ . Set i = 1.

(iii) While Ei
1 6= ∅

(a) Find an optimal extreme point solution (xi, zi) to (LPGBS) for graph Gi. Define
a residual problem:

(1) If there is a vertex u ∈ V i with xiu = 1, let Gi+1 = (V i \ u, Ei
1 \ {(u, v) :

v ∈ δ(u)}, Ei
2 \ {(u, v) : v ∈ δ(u)}). Also, ωGi+1 = ωGi − 1.

(2) Else if there is an edge (u, v) with ziuv = 0, then let Gi+1 = (V i, Ei
1 \

(u, v), Ei
2 ∪ (u, v)). Set ωGi+1 = ωGi .

(3) Else if there is an edge (u, v) with ziuv ≥ 1
3 then let Gi+1 = (V i, Ei

1 \
(u, v), Ei

2). Set ωGi+1 = ωGi .

(b) Remove all singleton vertices VS = {u ∈ V i+1 : δ(u) = ∅} from the residual
problem, setting xiu = 0 for all u ∈ VS , as they do not affect any (LPGBS)
constraints: V i+1 = V i+1 \ VS .

(c) i = i+ 1.

(iv) Map the complete resulting (xi, zi) solution back to (x̂, ẑ):

(a) For every vertex u ∈ V , x̂u =
xi
u1

+xi
u2

2 .

(b) For every edge (u, v) ∈ E, ẑuv =
ziu1v2

+ziu2v1
2 .

(v) Round up any edges with ẑ values of 1
2 to 1.

(vi) Return B = {(u, v) ∈ E : ẑuv = 1}.

We now analyze the correctness of the algorithm. For the remainder of this section,

45

Network Bargaining: Creating Stability Using Blocking Sets

let OPTLP (G) be the optimal solution to (LPGBS) for the graph G = (V, E1, E2).

Claim 5.4. If for some graph G, Algorithm 5.3, at every iteration, finds a vertex with
x′u = 1 in step (iii)(a)(1), or an edge (u, v) with z′uv = 0 in step (iii)(a)(2), or an edge
(u, v) with z′uv ≥ 1

3 in step (iii)(a)(3), then it returns a blocking set of size at most
6 ·OPTLP (G), and so at most 6 · |OPTG|.

Proof. The proof will proceed based on induction on the number of iterations of the
algorithm, analyzing the return value from every iteration.

The base case is trivial if only one iteration of the algorithm is needed. We have an
extreme point solution (x1, z1), where we round any z1uv ≥ 1

3 up to 1. We then map
(x1, z1) to (x̂, ẑ), possibly multiplying ẑ values by 2 to obtain an integral solution, as
described in Lemma 5.1. This gives us a blocking set of size no more than 6 ·OPTLP (G).

Let LP (Gj) be the instance of (LPGBS) for the graph Gj at some iteration j ≥ 1,
and let CLP (Gj) be the constraint set of LP (Gj). Also, let (x̄, z̄) be the projection of the

solution (xi, zi) onto the residual instance with graph Gi+1. Recall that x̄ = (xi)
∣

∣

Gi+1 =

{xiu ∀ u ∈ V i+1}, and similarly, z̄ = (zi)
∣

∣

Gi+1 = {ziuv ∀ (u, v) ∈ Ei+1
1 }. We split the

remainder of the proof into three cases.

Case (a): Suppose at some iteration i, the optimal LP solution assigned some value
xiu = 1. By step (iii)(a)(1) of Algorithm 5.3, a residual problem is built by removing the
vertex u and all its adjacent edges from Gi. Since xiu = 1, we know that for any v in the
neighbourhood of u, ziuv = 0, as otherwise we are contradicting optimality. Then, since
(xi, zi) was feasible for LP (Gi), and CLP (Gi+1) ⊂ CLP (Gi), (x̄, z̄) is a feasible solution to

LP (Gi+1), the residual problem.
By induction, from iteration i+ 1, the algorithm returns a blocking set Bi+1. Then:

|Bi+1| ≤ 6 ·OPTLP (G
i+1) ≤ 6 ·

∑

uv∈Ei+1

1

z̄uv ≤ 6 ·
∑

uv∈Ei
1

ziuv = 6 ·OPTLP (G
i)

Since ziuv = 0 for all v ∈ δ(u), then Bi+1 is a feasible blocking set for Gi if we set
xu = 1, and ~1⊺x = ωGi holds.

Case (b): Suppose at some iteration i, the optimal LP solution assigned some value
ziuv = 0. By step (iii)(a)(2) of Algorithm 5.3, a residual problem is built by moving (u, v)
from E1 in Gi to E2 in Gi+1. Again, (x̄, z̄) is a feasible solution to LP (Gi+1), since
CLP (Gi+1) = CLP (Gi) \ {xu + xv + zuv ≥ 1} ∪ {xu + xv ≥ 1}, and xiu + xiv ≥ 1 as ziuv = 0.

By induction, from iteration i + 1 the algorithm returns a blocking set Bi+1. Since
ziuv = 0, the same inequalities from Case (a) apply, and Bi+1 is a feasible blocking set for
Gi, when we set ziuv = 0.

46

Finding Blocking Sets

Case (c): Suppose at some iteration i, the optimal LP solution assigned some value
ziuv ≥ 1

3 . By step (iii)(a)(3) of Algorithm 5.3, a residual problem is built by removing
(u, v) from E1. Again, (x̄, z̄), the projection of the solution (xi, zi) onto the residual graph
Gi+1, is feasible for LP (Gi+1) as again CLP (Gi+1) ⊂ CLP (Gi).

By induction, from iteration i+ 1 the algorithm returns a blocking set Bi+1 where:

|Bi+1|+1 ≤ 6 ·OPTLP (G
i+1)+1 ≤ 6 ·

∑

uv∈Ei+1

1

z̄uv+3 ·ziuv ≤ 6 ·
∑

uv∈Ei
1

ziuv = 6 ·OPTLP (G
i)

Together, Bi+1 and (u, v) form a feasible blocking set for Gi of the proper size. This
proves the claim.

Unfortunately, there are instances when Algorithm 5.3 gets stuck, as none of three
conditions, step (iii) (a)(1), (2), and (3), are true. We show an example of such an
instance in the proof of Lemma 5.5.

The following linear program is the dual of (LPGBS), for graph G with unit edge
weights, where y and a are E1 and E2 edge-vectors respectively, with real values. γ is
a real variable corresponding to constraint (5.8). The program is written here using ν
to remain consistent with the statement of (LPGBS). We replace ν(G) with ωG′ in our
analysis.

(DGBS) Max ~1⊺y +~1⊺a− γ · ν(G)

subject to y(δE1
(u)) + a(δE2

(u)) ≤ γ ∀ u ∈ V (5.9)

y ≤ ~1

yuv ≥ 0 ∀ (u, v) ∈ E1

auv ≥ 0 ∀ (u, v) ∈ E2

Y

X

O

K1001

K

Figure 5.3: Example Structure for proof of Lemma 5.5

47

Network Bargaining: Creating Stability Using Blocking Sets

Lemma 5.5. For general graphs, there are instances of the residual problem with optimal
solutions, and so extreme points, where none of the three conditions, step (iii) (a)(1), (2),
(3) in Algorithm 5.3, are true.

Proof. Consider the example in Figure 5.3. Let G = (V = {X ∪ Y ∪ O ∪K}, E) where
|Y | = 4 and |X| = 9. Let the vertices of K form a clique of size 1001. Let every vertex
u ∈ X be adjacent to exactly 4 vertices in O. Let (u, v) ∈ E for every pair u ∈ X, v ∈ Y
(X and Y form a complete graph). Run Algorithm 5.3 on G. The sets X ′, Y ′, O′ and K ′

are the copies of X,Y, O and K respectively in the doubled instance G′, made in step
(i). ν(G) = |X|+ 500, so ωG′ = 1018. Clearly, the clique components will be covered by
assigning xu = 1

2 for all u ∈ K∪K ′, as otherwise it will result in a very large LP solution.
So the amount to distribute across the sets X,Y, and O, and their copies, is exactly 17.

Now consider the feasible solution (x, z) defined as:

xu =















9
10 : if u ∈ {X ∪X ′}
1
10 : if u ∈ {Y ∪ Y ′}
1
2 : if u ∈ {K ∪K ′}
0 : otherwise

zuv =

{

1
10 : if u ∈ {X ∪X ′}, v ∈ {O ∪O′}
0 : otherwise

Then, our LP solution has an objective value of 4 · (|X|+ |X ′|)(1
10) =

36
5 .

Consider now the feasible dual solution (y, a, γ) defined as:

yuv =

{

1 : if u ∈ {X ∪X ′}, v ∈ {O ∪O′}
0 : otherwise

auv =







36
5000 : if u, v ∈ {K ∪K ′}
4
5 : if u ∈ {X ∪X ′}, v ∈ {Y ∪ Y ′}
0 : otherwise

γ =
36

5

This dual solution also has an objective value of 36
5 , which means it is an extreme

point as it is equal to the objective value of a feasible primal solution.

48

Finding Blocking Sets

Note that once we remove the zuv variables for all (u, v) where u ∈ X ∪X ′, v ∈ Y ∪Y ′

(by step (iii)(a)(2) of Algorithm 5.3), then 0 < zuv ≤ 1
3 for all (u, v) ∈ E1, and there is

no vertex u ∈ V such that xu = 1. This proves the lemma.

In fact, using the structure of the example in the proof of Lemma 5.5, we show that
(LPGBS) can have an arbitrarily large integrality gap for general graphs.

Theorem 3. For general graphs, (LPGBS) has O(V) integrality gap, even with unit edge
weights.

Proof. Consider the example in Figure 5.3, but set G to have |Y | = n for some n ≥ 4.
Let |X| = 2n + 1, and let the clique be K1001n. After doubling, since for any optimal
solution we have to assign x∗u = 1

2 to all u in the K−
1001n,1001n subgraph, we can assign a

total value of ωG′ − 1001n = 4n + 1 to the remainder of the vertices. Let:

x∗u =















2n+1
2n+2 : if u ∈ {X ∪X ′}

1
2n+2 : if u ∈ {Y ∪ Y ′}
1
2 : if u ∈ {K ∪K ′}
0 : otherwise

z∗uv =

{

1
2n+2 : if u ∈ {X ∪X ′}, v ∈ {Y ∪ Y ′}

0 : otherwise

The optimal solution to (LPGBS) will then have an objective value of at most:

4 · (|X| + |X ′|) ·
1

(2n+ 2)
< 4 · (4n + 4) ·

1

(2n + 2)
= 8

Now consider the best integral solution (x̄, z̄) to (LPGBS). Because we have to dis-
tribute at least 1001n to the K−

1001n,1001n subgraph, there must be at least one vertex
u ∈ X ∪X ′ with value x̄u = 0. This vertex is adjacent to n vertices in Y ∪ Y ′. If we as-
sign these vertices x̄ values of 0, then we have a blocking set of size at least 4+n = O(V).
If we assign x̄ = 1 values for some number c ≤ n of these vertices, we must have at least
c vertices in X ∪ X ′ with x̄ values of 0. Then we have a blocking set of size at least
4(c + 1) + (c + 1)(n − c) = (4 + n − c)(c + 1). This value is minimized at the extreme
values of c, either c = 0 or c = n. In both cases, it is at least (4 + n) = O(V), proving
the Theorem.

49

Network Bargaining: Creating Stability Using Blocking Sets

5.2.3 Approximation Algorithm for Blocking Pairs on Planar Graphs

Unfortunately, Theorem 3 states that Algorithm 5.3 does not provide an approximation
for the Blocking Pairs problem in general graphs. However, this approach does provide
benefits on planar graphs.

Suppose we have a planar graph G = (V, E). Run Algorithm 5.3 on graph G. The
algorithm will either finish, or get stuck at an iteration where none of step(iii)(a) (1),
(2), or (3) are true. Suppose we get stuck at some iteration i, on the bipartite graph
Gi = (V i, Ei

1, E
i
2). We find an extreme point solution (xi, zi) to (LPGBS) on Gi. Since

none of the (a)(1), (2), and (3) conditions are true, we know that for every (u, v) ∈ Ei
1,

0 < ziuv < 1
3 . We also know that for all u ∈ {X ∪ Y }, xiu > 0, since no xu = 1.

We now state two Lemmas to help classify the vertices of V i. We refer the reader to
the referenced material for the proofs.

Lemma 5.6 (Ghouila-Houri [14]). A matrix M is totally unimodular if and only if each
subset J ⊆ [n] of the columns of M can be partitioned into two classes J1 and J2 such
that for each row r ∈ [m] we have |

∑

j∈J1
mij −

∑

j∈J2
mij | ≤ 1.

Lemma 5.7 ([29]). Let M be a totally unimodular matrix and b be an integral vector.
Then the polyhedron P = {x : Mx ≤ b} is integral.

Lemmas 5.6 and 5.7 help us prove a structural result.

Lemma 5.8. For some specific αGi ≤ 1, for every u ∈ V i, xiu ∈ {0, (1 − αGi), αGi , 1}.
Also, for every (u, v) ∈ Ei

1, z
i
uv ∈ {0, (1 − αGi), αGi , 1}.

Proof. Consider (LPGBS) for Gi, but remove constraint (5.8). Call this new linear pro-
gram (LP−

GBS). Consider the constraint matrix of (LP−
GBS), let it be M . Note that Gi is

bipartite, and let V i = (A ∪B) be its bipartition. Note that every row of M has exactly
3 non-zero entries. We first show that M is totally-unimodular. Take a subset of the
columns of M , J ⊆ [n] as in Lemma 5.6. We partition the columns of J as follows. If
column j corresponds to some u ∈ A, then include j in the set J1. If j corresponds to
some u ∈ B, include j in J2. We then have to classify each column cuv, corresponding to
the variable zuv. Note first that each such column has exactly 1 non-zero entry. Consider
the row ruv where the zuv column is non-zero. Let cu and cv be the two other columns
where ruv is non-zero. If cu, cv ∈ J or cu, cv /∈ J then include cuv ∈ J1. If only one of cu
and cv are in J , include cuv in the opposite set as the included column, cu or cv . Since
mij = 1 for all non-zero entries row, this partition scheme for the columns in J shows
that M is totally unimodular.

Then by Lemma 5.7, we know (LP−
GBS) is integral. Suppose we now add constraint

(5.8) back into the formation of M . Because our extreme point solution (xi, zi) is non-
integral, it must mean that it satisfies constraint (5.8) with equality. This means the

50

Finding Blocking Sets

hyperplane defining the equality section of this constraint intersects the feasible region of
(LP−

GBS) at some point along a line between two extreme points of (LP−
GBS). That is, for

some 0 < αGi < 1, (xi, zi) = αGi · (x∗1, z
∗
1) + (1− αGi) · (x∗2, z

∗
2), where (x∗l , z

∗
l) for l = 1, 2

are the two mentioned extreme points of (LP−
GBS). This proves the lemma.

To analyze the structure of Gi, we now classify every vertex u ∈ V i according to its
xiu value. We note that because of step (iii)(a) (1), xiu 6= 1 for any u ∈ V i.

Definition 5.9. We define three sets, O, X, and Y :

(i) Let O = {u ∈ V i : xiu = 0}.

(ii) Let X = {u ∈ V i : xiu = αGi}

(iii) Let Y = {u ∈ V i : xiu = (1− αGi)}

Consider a neighbour v of some u ∈ O. Since for all (u, v) ∈ Ei
1, 0 < ziuv < 1

3 , x
i
v > 2

3 .
Without loss of generality, let αGi = xiv > 2

3 . (As otherwise, just switch the labels of the
sets X and Y).

We now prove three Lemmas to help us later.

Lemma 5.10. O ∪ Y is an independent set in Gi.

Proof. We first show that O and Y are individually independent sets.
Suppose that O is not an independent set, and let u, v ∈ O such that (u, v) exists.

Then, since xiu = xiv = 0, ziuv = 1, a contradiction.
Similarly, suppose that Y is not an independent set, and let u, v ∈ Y such that (u, v)

exists. Then ziuv = 1− 2 · (1− αGi) = 2αGi − 1 > 1
3 , again a contradiction.

Finally, suppose there exists and edge (u, v) such that u ∈ O and v ∈ Y . Then
ziuv = 1− (1− αGi) > 2

3 , a contradiction. This proves the lemma.

The assumption that αGi > 2
3 and Lemma 5.10 imply that the vertices of the set X

are adjacent to all edges Ei
1 ∪ Ei

2. Note also that no vertex v ∈ O can be adjacent to
an Ei

2 edge since no xu = 1. Similarly, no vertex v ∈ Y can be adjacent to an Ei
1 edge.

Suppose it was adjacent to some (u, v) ∈ Ei
1, for some u ∈ X. Then ziuv = 0, which is a

contradiction.
An extreme point of (LPGBS) is uniquely determined by a set {c1, c2, · · · } of tight

constraints of type (5.6) or (5.7), and the extra (5.8) constraint. The incidence vectors of
the left hand side of these constraints are all linearly independent. We call two constraints
linearly independent and linearly dependent if the incidence vectors of their left hand sides
are linearly independent or dependent, respectively.

We now state the Rank Lemma which we will use to prove multiple Lemmas later.
We refer the reader to the referenced material for the proof.

51

Network Bargaining: Creating Stability Using Blocking Sets

Lemma 5.11 (Rank Lemma [19]). Let P = {x : Ax ≥ b, x ≥ 0} and let x be an
extreme point solution of P . Let E = {e : xe > 0} be the set of elements with non-
zero variables. Then the size of any maximal set of linearly independent tight constraints
equals |I|, the number of non-zero variables in the extreme point solution x.

Consider the constraints of (LPGBS) for G
i. First note that every (5.6) constraint is

tight in all extreme point solutions. The set of all such constraints is linearly independent,
as each individual (u, v) ∈ Ei

1 constraint is the only equation containing zuv .

Let GT = Gi[X ∪ Y] be the bipartite subgraph of Gi containing the Ei
2 edges. Let

T be a spanning tree for GT . It is known that any connected graph on n vertices has
a spanning tree containing exactly n − 1 edges. We will show later that Gi must be
connected. It is also known that adding even a single edge to a spanning tree creates a
cycle, in our case, an even cycle since GT is bipartite. We note that even cycles of Ei

2

edges define sets of linearly dependent constraints. To see this, let M1 and M2 be the
two edge-disjoint perfect matchings of an even cycle C = {e1, e2, · · · e2p}, where the set
of ei are the incidence vectors of the edges that form C. Then, M1 = {ei : i is odd}, and
similarly, M2 is the set of edges where i is even. If we take the difference of these two
sets:

e1 + e3 + · · ·+ e2p−1 − e2 − e4 − · · · − e2p = ~0

and so we show by definition that the set of all ei is linearly dependent. The edges of T
in fact then define a maximal set of linearly independent (5.7) constraints of (LPGBS).

Finally, it is clear that constraint (5.8), combined with all of the (5.6) constraints,
and the (5.7) constraints defined by the edges of T , form a maximal linearly independent
set. So we know that the extreme point solution (xi, zi) can have at most |X|+ |Y |+ |Ei

1|
non-zero variables.

Lemma 5.12. Gi is connected

Proof. Suppose for contradiction Gi is not connected, and has k connected components.
Let C1 · · ·Ck be the connected components of Gi. For 0 ≤ i ≤ k, let XCi

, YCi
and OCi

be the subsets of X, Y , and O containing the vertices of Ci respectively. Let TCi
be the

subtree of T containing the vertices and edges of Ci. Note that every TCi
will have exactly

|XCi
|+|YCi

|−1 edges. This means that in total, the edges of T will define only |X|+|Y |−k
linear independent constraints. This combined with the (5.6) and (5.8) constraints will
be a maximal linearly independent set of size only |X|+ |Y |− (k−1)+ |Ei

1|, which by the
Rank Lemma (Lemma 5.11) is a contradiction due to the number of non-zero variables
in our extreme point solution (xi, zi).

Before we prove the next Lemma, consider (DGBS), the dual of (LPGBS) at this
iteration. By complimentary slackness we then know:

52

Finding Blocking Sets

(CS1). Since for every vertex u ∈ X ∪ Y we have xiu > 0, every corresponding dual
constraint is tight. Ie. yi(δ(u)) + ai(δ(u)) = γi.

(CS2). Since for all (u, v) ∈ Ei
1, z

i
uv > 0, every edge (u, v) ∈ Ei

1, y
i
uv = 1. Then,

since ~y = ~1, γi ≥ 1 by constraint (5.9).
(CS3). For all (u, v) ∈ Ei

1 : u, v ∈ X, since xiu + xiv > 1, auv = 0.
As was mentioned, every edge in both sets Ei

1 and Ei
2 is adjacent to an X vertex, and

any edge between two X vertices has a value of 0. So at this iteration i, by summing
over all vertices in X and using (CS1), we find an expression for the optimal solution to
(DGBS), OPTD(G

i):

OPTD(G
i) =

∑

u∈X

(yi(δEi
1
(u)) + ai(δEi

2
(u))) − γiωGi = γi(|X| − ωGi)

Lemma 5.13. |X|+|Y |
2 < ωGi < |X|

Proof. The upper bound is clear, as suppose ωGi ≥ |X|, then set xu = 1 for all u ∈ X.
Since X is adjacent to all edges in Ei

1 ∪ Ei
2, this solution has an objective value of 0,

contradicting optimality. So ωGi < |X|. Note this argument also implies that |X| > |Y |,
as otherwise xi would be an allocation with ~1⊺xi > |X| > ωGi .

We now prove the lower bound. Since constraint (5.8) is satisfied with equality,
ωGi = αGi · |X| + (1− αGi) · |Y |. Rearranging this for αGi > 2

3 , we get an inequality for
ωGi .

ωGi >
2 · |X|+ |Y |

3
>

|X|+ |Y |

2

since |X| > |Y |.

The following is a Corollary of Euler’s Identity for planar graphs. We state it here
and refer the reader to [33] for the proof.

Corollary 5.14. (Euler’s Identity) In a connected planar graph G = (V, E),

|E| ≤ 3|V | − 6

Lemma 5.15. Let G be a planar graph. Double G as in step (i) of Algorithm 5.3 to get
the bipartite graph G′ = (V ′, E′). Then, G′ may not be planar.

Proof. Let G be the planar graph K5 minus one edge. Let V = {a, b, c, d, e} and let
E = {(u, v) : u, v ∈ V } \ {(a, b)}. Double G as in Algorithm 5.3 to get G′. We show
that G′ has a K3,3 minor. Take the subgraph G′[V \ {a, e′}], then contract the two edges
(b, c′) and (b, d′). The resulting minor is K3,3. See Figure 5.4, where we delete the red
vertices. The blue vertex is the result of contracting the red dashed edges. This proves
the Lemma by Kuratowski’s Theorem [33].

53

Network Bargaining: Creating Stability Using Blocking Sets

Double Contract

Figure 5.4: Doubled graph may not be planar

We are now ready to prove the main result of this section.

Theorem 4. For planar graphs with unit edge weights, the Blocking Pairs problem is
O(1)-factor approximable.

Proof. We are given a planar graph G. Run Algorithm 5.3 on G. If the algorithm com-
pletes, we have found a blocking set of size at most 6 ·OPTG and we are done. So suppose
the algorithm computes an extreme point solution (xi, zi) at iteration i, such that none
of step(iii)(a) (1), (2), or (3) are true. Define the sets X, Y and O as in Definition 5.9.
We are left with a specific Gi = (X ∪ Y ∪O, Ei

1, E
i
2) structure.

For the remainder of the proof, let m = |X|−ωGi . Suppose the Ei
2 edges are no longer

forbidden, and can be included in a blocking set (Ie. let them have ziuv ≥ 0 variables in
(LPGBS)). Consider the solution (x̄, z̄) defined as follows:

(i) Set x̄u = 1 for ωGi many vertices in X (to be specified later). Set x̄u = 0 for all
other vertices u.

(ii) Set z̄uv as the minimum amount needed to satisfy each respective (5.6) constraint
in (LPGBS).

Since by Lemma 5.10, O is an independent set, this solution yields a blocking set B(x̄),
of size:

|B(x̄)| ≤
∑

u∈X:x̄u=0

|δEi
1
(u)|+ |δEi

2
(u)| ≤ γi ·m+

∑

u∈X:x̄u=0

|δEi
2
(u)|

where the second inequality is from (CS2) and the corresponding (5.9) constraint in
(DGBS) for each u ∈ X.

To show this value is bounded, we make use of Euler’s identity in planar graphs. By
Corollary 5.14, we can bound the second term in the sum expression of B(x̄). We started
with a planar graph G, and at step (i) of Algorithm 5.3 we double the number of edges
to create G′. When the algorithm reaches iteration i, by Lemma 5.12 we are left with a
connected structure. Consider the subgraph Gp = (X ∪ Y, Ei

2), which contains all of Ei
2

54

Finding Blocking Sets

as its edge-set. Lemma 5.15 states that Gp may not be planar, but it is a subgraph of
the doubled structure of the planar graph G. So then:

|Ei
2| ≤ 2(3(|{X ∪ Y }| − 6)

by Lemma 5.14.

This means, applying the pigeonhole principle, there exists some u0 ∈ X with |δEi
2
(u0)| ≤

2(3|{X∪Y }|−6)
|X| . Suppose we remove u0 and all adjacent edges from the graph, and repeat.

Our pigeonhole argument still applies, but now we can find a vertex u1 ∈ X \ {u0} with

|δEi
2
(u1)| ≤

2(3|{X∪Y }|−6)−|δ
Ei
2

(u0)|

|X|−1 . We can repeat this process m times, to find a set

D := {u0, u1, · · · , um−1} such that:

∑

u∈D

|δEi
2
(u)| ≤

∑

u∈D

2(3|{X ∪ Y }| − 6)

|X| −m
≤

2m(3|{X ∪ Y }|)

ωGi

≤
6m(|X|+ |Y |)

|X|+|Y |
2

= 12m

where the denominator in last inequality comes from the lower bound of ωGi > |X+|Y |
2

specified in Lemma 5.13. Note that this argument requires all edges to have weight wuv =
1, as with arbitrary edge weights we cannot bound the cost

∑

u∈D

∑

(u,v)∈δ
Ei
2

(u) wuv.

Putting it all together, in step (i) of constructing (x̄, z̄), set x̄u = 0 for all u ∈ D, and
x̄u = 1 for u ∈ X \D. Set x̄u = 0 for all u ∈ Y ∪ O. Then since γi ≥ 1 by (CS2), and
constraint (5.9) for all u ∈ D implies |δEi

1
(u)| ≤ γi as mentioned:

|B(x̄)| ≤ (12 + γi)m ≤ 13 · γim = 13 ·OPTD(G
i) ≤ 13 · OPTGi

Let (x̄, z̄) be the solution that is constructed in the proof of Theorem 4 of size at most
13 · OPTGi . To apply the proven result, we modify Algorithm 5.3 by adding another
condition inside the while loop of step (iii). We add the following Step (iii)(a) (4):

Else If return the solution (x̄, z̄)

We return the approximate blocking set, and map it back to the solution (x̂, ẑ) in step
(iv). Step (v) may round some zuv variables to 1 then step (vi) returns the blocking set
B = {(u, v) ∈ E : ẑuv = 1} for the graph G. The proof of Theorem 4 then implies that
|B| ≤ 26 · OPTLP (G) ≤ 26 ·OPTG.

We note that in practice, anytime there exists a vertex u ∈ X such that |δEi
1
(u)| > 1,

then γi > 1. In these graphs, the approximation factor for this algorithm is much smaller.
For example, even with γi = 2, the approximation factor drops to 14.

55

Network Bargaining: Creating Stability Using Blocking Sets

5.3 Blocking Sets in Graphs of Bounded Tree Width

As was mentioned in Section 2.3, many problems which are intractable in general graphs
can be solved polynomially in graphs of bounded treewidth. In this section, we describe
a polynomial time dynamic programming algorithm to optimally solve the Blocking

Pairs problem in graphs of bounded treewidth. We restrict our analysis to graphs with
unit edge weights, then mention the extension of our work to weighted graphs.

We begin by stating a useful lemma that we will use later.

Lemma 5.16. Let B be an optimal blocking set for a graph G = (V, E). Then there
exists a blocking set and allocation pair (B,x) such that xu ∈

{

0, 12 , 1
}

for all u ∈ V .

Proof. Suppose for graph G = (V, E) we are given an optimal blocking set and allocation
pair, (B,x). Let ν∗ be the size of the maximum matching in graph G.

Remove the edges (u, v) ∈ B from G, forming a new graph G′ = (V, E \ B). By
definition, x is a vertex cover for G′ of size ν∗. Since the canonical vertex cover LP is
known to be half-integral, if a vertex cover of size ν∗ exists, a vertex cover x∗ of size at
most ν∗ with x∗ ∈

{

0, 12 , 1
}

exists. Then (B,x∗) is a optimal blocking set and allocation
pair for graph G.

Next, we describe some notation used for the remainder of this section. Let G =
(V, E) be a graph with binary tree decomposition (Y, T) of width k, and maximum
matching size of ν∗. Let T be a tree on a set of nodes {1, 2, · · · }, with bags {Y1, Y2, · · · },
and suppose node r is the root of T . Additionally, for a node i, let Di be the set of
all vertices that exist in bags at non-root nodes in the subtree rooted at i. Formally,
Di = {u ∈ Yj : j is a proper descendant of i in tree T}. Let E[Yi] be the set of edges
of G induced by the vertices in Yi, E[Yi] = {(u, v) : (u, v) ∈ E, u, v ∈ Yi}. Let
G[Yi] = (Yi, E[Yi]) be the subgraph of G induced by the vertices of Yi.

For some node i, suppose x is an allocation assigning a value to every vertex in Yi.
We define the set of allocation extensions of x onto a node j.

Definition 5.17. Let x be an allocation assigning a value to every vertex in Yi for a
node i. Then, Ext(x, j, νj) is the set of allocations y on the vertices Yj such that:

(i) For every u ∈ (Yi ∩ Yj), yu = xu.

(ii) For every u ∈ (Yj \ Yi), yu ∈
{

0, 12 , 1
}

(Lemma 5.16).

(iii) y(Yj) ≤ νj.

For some edge set E[V ′] where V ′ ⊆ V , let C
(

E[V ′], x
)

be the set of blocked edges
in E[V ′] induced by an allocation x, that is

C
(

E[V ′], x
)

=

{

(u, v) : (u, v) ∈ E[V ′], xu + xv < 1

}

56

Finding Blocking Sets

Consider the problem of finding the minimum blocking set on the subtree rooted at a
node i. Let p and q be the children of i in T . If i has just one or even no children, then p
and q may not exist, in which case, we will adjust our recursive function accordingly by
removing the non-existent children.

Let β
(

i, x, ν
)

be the minimum blocking set on the subgraph G[Yi ∪ Di] (Ie. the
subtree rooted at i), where x is an allocation on the vertices of Yi, and ν = x(Yi ∪ Di)
is the exact sum of the allocation on the vertices

{

u : u ∈ (Yi ∪ Di)
}

. We find every
β
(

i, x, ν
)

by trying all possible
{

0, 12 , 1
}

assignments for the vertices in Yi. Consider one
such assignment. It induces a blocking set with members in E[Yi]. For any distribution
(νp, νq) of ν − x(Yi) over the two subtrees rooted at p and q, we recursively compute the
minimum blocking sets of the subtrees (ensuring the x-assignments agree with the one
on the vertices of Yi). We find the distribution that leads to the minimum blocking set
for the subtree rooted at i, and return the blocking set itself.

We formally define the recursive function β, slightly modifying standard notation.
The min functions will return the actual sets of minimum cardinality, instead of their
numerical size:

β
(

i, x, ν
)

= C
(

E[Yi], x
)

⋃

min
(νp,νq)

⋃

j=p,q

min
y ∈Ext(x, j, νj)

[

β
(

j, y, νj
)

\C
(

E[Yi], x
)

]

where νp + νq = ν − x(Yi).

As mentioned, if p or q do not exist because i does not have two children, in the above
equation, νp = 0 and νq = 0 respectively. We remove the elements of C

(

E[Yi], x
)

from
the blocking sets for the subtrees rooted at p and q to eliminate all duplicate counting
situations (Ie. when an edge (u, v) exists in both Yi and Yj).

For a graph G = (V, E) with tree decomposition (Y, T), every edge (u, v) ∈ E must
be contained in some bag Yi by property (TW1) of tree decompositions. This means
that every edge will be considered at some bag in the calculation, so we do not need to
consider any cross-bag edges (u, v), with u ∈ Yi and v ∈ Yj, j 6= i.

Note that it is sufficient to consider just the two possible children of a node i when
calculating β. By the running intersection rule, property (TW3) of tree decompositions,
any overlapping edge (u, v) that exists in both Yi and Yj, must also exist in the bags at
every node along the path from i to j. This means that any common vertices in Yi and
Di will exist in (Yp ∪ Yq).

The edges in the bags at the children of i may also not be disjoint, but by the same
property (TW3), any edge in the bags of both children must also be a part of Yi, the
parent’s bag. In case such an edge is blocked, we make sure not to count it more than
once.

An outline of our algorithm is as follows. To calculate the blocking set for graph G, we
take a tree decomposition (Y ′, T ′) of G, and if T ′ is not a binary tree, using Bodlaender’s

57

Network Bargaining: Creating Stability Using Blocking Sets

method [7], Lemma 2.5, we convert (Y ′, T ′) into a binary tree decomposition (Y, T). If
T ′ is a binary tree, let (Y, T) = (Y ′, T ′). We arbitrarily pick a node to be the root of
T , and call it node r as above. We then calculate the β and C values by a bottom-up
traversal of the tree. The optimal blocking set will be the minimum sized β set across all
possible allocations x at the root node.

Algorithm 5.18.
Input: Graph G = (V, E) of bounded treewidth, and tree decomposition (Y ′, T ′)
Output: Optimal blocking set B for the graph G

(i) Find a binary tree decomposition (Y, T) of G

(a) If T ′ is a binary tree, let (Y, T) = (Y ′, T ′).

(b) If T ′ is not a binary tree, transform (Y ′, T ′) into a binary tree decomposition
(Y, T) as mentioned in [7]

(ii) Pick an arbitrary root node r of T

(iii) Using a bottom-up traversal of the tree, calculate β
(

i, x, ν
)

for every possible x
allocation, and for every ν ∈ {0, 12 , 1, · · · , ν

∗ − 1
2 , ν

∗}.

(iv) Find and return the minimum blocking set B at the root node r:

x∗ = argmin
x

| β
(

r, x, ν∗
)

|

B = β
(

r, x∗, ν∗
)

We will now prove the algorithm’s correctness, and then argue that it requires a
number of calculations polynomial in the treewidth value k.

Lemma 5.19. For a graph G = (V, E), the subsection of the optimal blocking set of G on
the graph G[Yi ∪Di], is stored at β

(

i, x, ν
)

for some allocation x, with ν = x(Yi ∪Di).

Proof. We prove the lemma using induction on ℓ, the depth of the tree rooted at node
i ∈ T .

If ℓ = 0, then Di = ∅ and the result is trivial. The algorithm calculates the blocking
set for every possible allocation x that sums to ν and sets β

(

i, x, ν
)

to the set.
Suppose for induction the lemma is true for ℓ ≤ (d−1) for some d ∈ Z+. Now suppose

that the tree rooted at i has depth ℓ = d. Let p and q be the children of i. The calculation
of β is calculated for every possible allocation x on the vertices Yi, being minimized over
every possible combination of νp and νq. These are the portions of ν that are assigned

58

Finding Blocking Sets

to each of the subtrees rooted at p and q. One such allocation and distribution will be
consistent with the optimal solution on G. Call this allocation x∗, and the distribution
(ν∗p , ν

∗
q). Then, β is minimized over every possible extension y ∈ Ext(x∗, j, ν∗j) for

j = p, q.

Then, by induction, for some y ∈ Ext(x∗, j, ν∗j), β
(

j, y, ν∗j
)

will calculate the
subsection of the optimal blocking set of G on the subgraph G[Yj ∪Dj] for j = p, q. The
calculation for β at node i will include these allocation extensions since it is minimized over
all possible y ∈ Ext(x∗, j, ν∗j) when it is computed with allocation x∗ and distribution
(ν∗p , ν

∗
q). This proves the lemma.

Using Lemmas 2.5, 5.16, and 5.19, we are now ready to prove the main result of this
section.

Theorem 5. For a graph G = (V, E) with tree decomposition (Y ′, T ′) of width k,
Algorithm 5.18 finds the optimal blocking set in time O(k · 9k · |V |3).

Proof. By Lemma 5.19, after obtaining a binary tree decomposition of G, we know the
optimal blocking set is one of the calculated β values at the root node. We show that all
the calculations can be done in time polynomial in k. We can then simply search through
the at most 3k blocking sets calculated at the root node to find the minimum.

Since at any node i there are at most k vertices in the Yi bag, by Lemma 5.16,
there are at most 3k possible allocations x for the vertices in Yi. There are also at most
2ν∗ + 1 = O(|V |) possibilities for ν, as we must also consider half integral values. This
means we must compute O(3k · |V |) β values at each node.

Let p and q be the children of node i. For every β calculation at node i, it is clear that
C
(

E[Yi], x
)

can be found in O(1) time. In addition, there are again 2ν∗ + 1 = O(|V |)
possibilities for the pair (νp, νq) to be split, and finally, at most another 3k possibilities
for the extensions y ∈ Ext(x, j, νj) for j = p, q. This means for every β calculation at a
node i, we must minimize over O(3k · |V |) possible β values at i’s children.

Combining these, we need to calculate the O(3k · |V |) possible β values at each node,
at a time cost of O(3k · |V |) per calculation. This gives us a total time of O(3k ·3k · |V |2) =
O(9k · |V |2) for the computation of each node.

By Lemma 2.5, we know there are O(k · |V |) nodes in T , so we get a total time
complexity of O(k · 9k · |V |3) for Algorithm 5.18.

We mention that the vertex cover problem is known to be half integral even on graphs
with integer weighted edges. If the maximum weight of an edge in G is bounded, with
a slight modification, Algorithm 5.18 will continue work in polynomial time. One can
simply search through the O(2 · wmax) options for each vertex in step (iii), where wmax

is the maximum weight of any edge in G. We must also adjust the definition of C to

59

Network Bargaining: Creating Stability Using Blocking Sets

C
(

E[V ′], x
)

=

{

∑

(u,v) wuv : (u, v) ∈ E[V ′], xu + xv < wuv

}

. In this section we

assumed that all edges have weight wuv = 1 to simplify our analysis.

60

Chapter 6

Conclusions

Finding balanced solutions to the bargaining game is the main focus of this thesis. The
discussions can be divided into three main categories.

First, we described a model introduced by Kleinberg and Tardos [18] for the bargaining
game on general graphs. We discussed a number of results about the relationship between
bargaining solutions and concepts from cooperative game theory due to Bateni et al. [4].
We recalled Bateni’s proofs that a stable solution is a member of the core of the bargaining
game, and then that a balanced solution corresponds to an allocation in the core intersect
prekernel of the game. Using these results, we sketched a proof by Kleinberg and Tardos
showing that if a graph has a stable solution, it has a balanced solution. We then discussed
another result by Bateni et al., who argued that for stable graphs, all balanced bargaining
solutions can be constructed in polynomial time.

Second, we defined the Blocking Pairs problem, which has been proven to be NP-
complete by Biro, Kern, and Paulusma [5]. We presented the proof of NP-completeness,
reducing from the Maximum Independent Set problem. Using the relationships be-
tween the bargaining game and cooperative game theory, we then proved that starting
with a blocking set and allocation pair (B,x) for an unstable graph G, we can compute
a series of transfers to find a balanced bargaining allocation on G′ = (V, E \B).

The problem of finding minimal blocking sets in unstable graphs is motivated by the
existence of balanced bargaining allocations for graphs obtained by removing a blocking
set. We presented a natural integer-programming formulation for the Blocking Pairs
optimization problem. Unfortunately we proved that the linear-programming relaxation
does not have an integrality gap of 1, even for graphs with unit edge weights. Instead,
using iterative rounding, we described an LP-based O(1)-approximation algorithm for
finding cheap blocking sets in planar graphs, again with unit edge weights. We then
presented a polynomial time dynamic programming algorithm to optimally solve the
Blocking Pairs problem for graphs of bounded treewidth. With a slight modification, the

61

Network Bargaining: Creating Stability Using Blocking Sets

algorithm works for graphs with arbitrary positive integer edge weights.

6.1 Future Work

In this section we describe our topics of interest moving forwards.

Most of the later results presented in this thesis apply to specific graph classes, some
with even further restrictions on edge weights. Our first steps are to expand our results
to a wider range of general graph classes.

Instead of considering expanded graph classes, another approach is to allow for varying
utility functions among agents. As was mentioned in Chapter 1, Kearns and Chakraborty
[8] studied how differing utility functions affect solutions to the bargaining game. Their
model differs in that it allows for agents to make an arbitrary number of deals. It would
be interesting to expand our results for graphs using a combined model, maintaining our
restriction to single deals for agents, but allowing agents to have more complex utility
functions.

A third direction for future work is to consider blocking sets when we relax our model
allowing agents to make multiple deals in the network. As was mentioned in Section 3.4,
Bateni et al. [4] prove results about stable and balanced bargaining solutions for certain
graph classes in this relaxed model. We are interested in finding balanced bargaining
allocations when removing blocking sets in unstable graphs, in which agents can make a
capacity constrained number of contracts.

We have also studied two additional problems closely related to the Blocking Pairs
problem. The second was previously mentioned in Chapter 4. We formally define them
here and then discuss them in more detail. Our work has only considered the unweighted
case. For a graph G = (V, E), let DV and DE be subsets of V and E respectively.

Vertex-Deletion Stability

Instance: a bargaining game on G = (V, E) and an integer k ≥ 0.
Question: does the graph G[V \DV] allow a stable solution x with |DV | ≤ k?

Edge-Deletion Stability

Instance: a bargaining game on G = (V, E) and an integer k ≥ 0.
Question: does the graph G− = (V, E \DE) allow a stable solution x with |DE | ≤ k?

We note that while the Edge-Deletion Stability problem is very similar to the Blocking
Pairs problem, the difference lies in the total value of the allocation. In the Blocking Pairs
problem, ν(G) is distributed across an allocation, where as in the Edge-Deletion Stability
problem, we are limited to distributing the size of the maximum matching of the resulting
graph ν(G−). We note that any edge stability set solution, DE , is a feasible solution to

62

Conclusions

the Blocking Pairs problem. However, it will often not be optimal.
We suspect that both the Vertex-Deletion Stability and Edge-Deletion Stability prob-

lems are NP-hard. They are respectively very similar to two known NP-complete prob-
lems, König Vertex-Deletion and König Edge-Deletion, studied by Mishra et
al. [23]. To describe the similarities between the problems, we must first define König-
Egerváry graphs.

Definition 6.1. Let the size of the minimum integral vertex cover for a graph G be µ(G).
A König-Egerváry graph (KEG graph), is a graph where µ(G) = ν(G). That is, a graph
in which the size of the minimum integral vertex cover equals the size of a maximum
matching.

This definition leads to two natural deletion problems. Again let DV and DE be
subsets of V and E respectively.

König Vertex-Deletion

Instance: a graph G = (V, E) and an integer k ≥ 0.
Question: is G[V \DV] a KEG graph with |DV | ≤ k?

König Edge-Deletion

Instance: a graph G = (V, E) and an integer k ≥ 0.
Question: is the graph G− = (V, E \DE) a KEG graph with |DE | ≤ k?

By definition, we know that any KEG graph is also a stable graph. A vertex cover
for a KEG graph is itself a stable allocation. Unfortunately the converse is not true.

K4

Figure 6.1: K4 is stable but is not
a KEG

Consider K4, the clique on four vertices, with
ν(K4) = 2 as shown in Figure 6.1 in red. K4 is
clearly a stable graph, as the allocation that assigns
xu = 1

2 to each vertex is stable. Unfortunately how-
ever, µ(K4) = 3, as is also shown in Figure 6.1 in
blue. Hence K4 is not a KEG graph.

The slight variation in definition, allowing non-
integral stability allocations, is enough so that we
can not naturally reduce either of the Vertex-Deletion
Stability and Edge-Deletion Stability problems to their respective König deletion prob-
lems for general graphs. Still, their similarities suggest that the stability problems are
NP-hard, and we are searching for a reduction.

63

Bibliography

[1] Yossi Azar, Benjamin Birnbaum, L. Elisa Celiz, Nikhil R. Devanur, and Yuval Peres.
Convergence of local dynamics to balanced outcomes in exchange networks. 50th
IEEE Symposium Foundations of Computer Science, 2009.

[2] Yossi Azar, Nikhil R. Devanur, Kamal Jain, and Yuval Rabani. Monotonicity in
bargaining networks. SODA, 2010.

[3] Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar
Graphs. Journal of the ACM, 41:153–180, 1994.

[4] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Nicole Immorlica, and
Hamid Mahini. The cooperative game theory foundations of network bargaining
games. Lecture Notes in Computer Science, 6198:67–78, 2010.

[5] Peter Biro, Walter Kern, and Daniel Paulusma. Computing solutions for matching
games. International Journal of Game Theory, 2011.

[6] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. Mathematical
Foundations of Computer Science, pages 19–36, 1997.

[7] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1-2):1–45, 1998.

[8] Tanmoy Chakraborty and Michael Kearns. Bargaining solutions in a social network.
LNCS, 5385:548–555, 2008.

[9] Tanmoy Chakraborty, Michael Kearns, and Sanjeev Khanna. Network bargaining:
Algorithms and structural results. 2009.

[10] M. Davis and M. Maschler. The kernel of a cooperative game. Naval Research
Logistics Quarterly, 12:223–259, 1965.

[11] Kimmo Eriksson and Johan Karlander. Stable outcomes of the roomate game with
transferable utility. International Journal of Game Theory, 29:555–569, 2001.

65

[12] U. Faigle, W. Kern, and J. Kuipers. On the computation of the nucleolus of a
cooperative game. International Journal of Game Theory, 30:79–98, 1999.

[13] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some Simplified NP-complete Graph
Problems. Theoretical Computer Science, 1:237–267, 1976.

[14] A. Ghouila-Houri. Caracterisation des matrices totalement unimodulaires. C. R.
Acad. Sci. Paris, 254:1192–1194, 1962.

[15] D. B. Gilles. Solutions to general non-zero sum games. Contributions to the theory
of games (Annals of Mathematics Studies 40), 4:47–85, 1959.

[16] K. Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21:39–60, 1998.

[17] Walter Kern and Daniel Paulusma. Matching games: The least core and the nucle-
olus. Mathematics of Operations Research, 28:294–308, 2003.

[18] Jon Kleinberg and Eva Tardos. Balanced outcomes in social exchange networks.
Symposium on Theory of Computing, 2008.

[19] Lap Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Opti-
mization. Cambridge University Press, 2011.

[20] Lap Chi Lau and Mohit Sing. Additive approximation for bounded degree survivable
network design. STOC, 2008.

[21] Laszlo Lovasz and Michael D. Plummer. Matching Theory. AMS Chelsea Publishing,
1986.

[22] Holger Meinhardt. An lp approach to compute the pre-kernel for cooperative games.
Computer and Operations Research, 33:535–557, 2004.

[23] Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C.R. Sub-
ramanian. The complexity of konig subgraph problems and above-guarantee vertex
cover. Algorithmica, 61:857–881, 2010.

[24] John F. Nash. The bargaining problem. Econometrica, 18:155–162, 1950.

[25] Martin J. Osbourne. An Introduction to Game Theory. Oxford University Press,
2003.

[26] Neil Robertson and Paul D. Seymour. Graph minors. iii. planar tree-width. Journal
of Combinatorial Theory, Series B, 36:49–64, 1984.

66

[27] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. Journal of Algorithms, 7:309–322, 1986.

[28] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of
Applied Mathematics, 17:1163–1170, 1969.

[29] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, New
York, 1986.

[30] L.S. Shapley and M. Shubik. The assignment game i: The core. International Journal
of Game Theory, 1:111–130, 1972.

[31] R.E. Stearns. Convergent transfer schemes for n-person games. Trans. Amer. Math.
Soc., 134:449–459, 1968.

[32] Robert J. Vanderbei. Linear Programming Foundations and Extensions. Springer,
2007.

[33] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2001.

[34] Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297–309, 1981.

67

