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Abstract 

The large-scale production of monoclonal antibodies (MAb) by mammalian cells in batch 

and fed-batch culture systems is limited by the unwanted decline in cell viability and 

reduced productivity that may result from changes in culture conditions. Therefore, it 

becomes imperative to gain an in-depth knowledge of the factors affecting cell growth 

and cell viability that in turn determine the antibody production. An attempt has been 

made to obtain an overall model that predicts the behaviour of both batch and fed-batch 

systems as a function of the extra-cellular nutrient/metabolite concentrations. Such model 

formulation will aid in identifying and eventually controlling the dominant factors in play 

to optimize monoclonal antibody (MAb) production in the future. 

 

Murine hybridoma 130-8F producing anti-F-glycoprotein monoclonal antibody was 

grown in D-MEM medium (Gibco 12100) with 2% FBS. A systematic approach based on 

Metabolic Flux Analysis (MFA) was applied for the calculation of intracellular fluxes for 

metabolites from available extracellular concentration values. Based on the set of 

identified significant fluxes (from MFA), the original metabolic network was reduced to 

a set of significant reactions. The reactions in the reduced metabolic network were then 

combined to yield a set of macro-reactions obeying Monod kinetics. Half saturation 

constants were fixed empirically to avoid computational difficulties that parameter 

estimation for an over-parameterized system of equations would cause. Using Quadratic 

Programming, the proposed Dynamic Model was calibrated and model prediction was 

carried out individually for batch and fed-batch runs. Flux distribution for batch and fed-

batch modes were compared to determine whether the same model structure could be 

applied to both the feeding profiles.  Correlation analysis was performed to formulate a 

Biomass Model for predicting cell concentration and viability as a function of the 

extracellular metabolite concentrations in batch and fed-batch experiments. Quadratic 

Programming was applied once again for estimation of growth and death coefficients in 

the equations for viable and dead cell predictions. The prediction accuracy of these model 

equations was tested by using experimental data from additional runs. Further, the 



 

 iv 

Dynamic Model was integrated with the Biomass Model to get an Integrated Model 

capable of predicting concentration values for substrates, extracellular metabolites, and 

viable and dead cell concentration by utilizing only starting concentrations as input. 

 

It was found that even though the set of significant fluxes was the same for batch and fed-

batch operations, the order of these fluxes was different between the two systems. There 

was a gradual metabolic shift in the fed-batch system with time indicating that under 

conditions of nutrient limitation, the available energy is channeled towards maintenance 

rather than growth. Also, available literature with regard to cell kinetics during fed-batch 

operation suggests that under nutrient limited conditions, the cells move from a viable, 

non-apoptotic state to a viable apoptotic state. This is believed to lead to variations in 

antibody production rates and might explain inaccurate predictions for MAb obtained 

from the model proposed in the current work. As a result more detailed analysis of the 

system and in particular, the switch from non-apoptotic to apoptotic state is required. 

 

As a continuation of efforts to study the system in-depth, fluorescence imaging is 

currently being applied as a tool to capture the changes in cell morphology along the 

course of experimental batch and fed-batch runs. These experiments maybe able to 

elucidate the transition from non-apoptotic to apoptotic cells and this information maybe 

used in the future to improve the accuracy of the existing mathematical model. 

. 
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Chapter 1 
Introduction 

1.1 Need for Large Scale Production of Monoclonal Antibodies (MAb)  

The last decade has seen an unprecedented increase in the demand for biopharmaceuticals produced 

from animal cell culture processes, primarily due to their application in diagnostics and therapeutic 

treatments. Mammalian cells are widely used to produce recombinant proteins such as hormones, 

enzymes, cytokines and antibodies for therapeutic purposes. Despite increasing demand, the 

manufacturers are faced with the challenge of meeting lower cost expectations of the health system 

and competition from other manufacturers. All these factors make it crucial that a more efficient 

production strategies than the ones currently in practice are devised for the large-scale manufacture of 

these drugs.  

1.2 Fermentation Strategies for Large Scale Production 

There are three possible fermentation strategies commonly utilized for antibody production 

on an industrial scale: 

• Batch Operation 

• Continuous Operation 

• Fed-batch Operation 

These operations are discussed in more detail below. 

1.2.1 Batch Operation 

Suspension cultures were initially propagated in batch operated bioreactors in which cells 

grow in a finite volume of liquid nutrient medium and follow a sigmoid pattern of growth. 

All cells are harvested at the same time. However, batch processes suffer from problems of 

nutrient limitation, low cell densities, low productivity and high toxin accumulation that 

leads to product degradation. Also, the stand-by time between batches is too long. 
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1.2.2 Continuous Operation 

In continuous fermentations fresh nutrient medium is added continuously to the fermentation 

vessel, accompanied by a corresponding continuous withdrawal of a portion of the medium 

for recovery of cells or fermentation products. Operating with continuous cultures makes it 

possible to achieve high cell density and high productivity without any nutrient limitation or 

growth inhibition due to toxin build-up in the system. But the drawback of continuous culture 

is that it requires a higher level of technical skill to operate and loss of productivity due to 

genetic changes may also occur. Additionally, continuous fermentations often waste nutrient 

substrate. 

1.2.3 Fed-batch Operation 

Fedbatch operations combine the advantages of batch and continuous modes and minimize 

the disadvantages that either of the two possesses. Just like batch operations, they are 

relatively easy to perform and simple to scale-up and unlike continuous culture systems, no 

additional special pieces of equipment are required to switch from batch to fed-batch 

operation. At the same time, they ensure prolonged cell growth (high cell densities) and 

product formation due to extension of working time that is particularly important in the 

production of growth-associated products. 

1.3 Challenges in MAb Production 

The large-scale production of MAb by mammalian cells in batch and fed-batch culture 

systems is limited by the unwanted decline in cell viability and reduced productivity that may 

result from changes in culture conditions. Therefore, it becomes imperative to gain an in-

depth knowledge of the factors affecting cell viability and subsequently antibody production. 

By understanding these effects it will become possible to impose the necessary conditions 

during a fed-batch operation to maximize product formation. 
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1.4 Past Efforts and Scope of the Research 

Some limited research work has been conducted on hybridoma cells (Ljunggren and 

Haggstrom, 1994) that illustrates that a dual substrate (glucose and glutamine) limited 

feeding profile reduces overflow metabolism of the two major growth inhibitors- lactate and 

ammonia without a decline in growth rate. Such reports have led to the exploration of fed-

batch culture mode in the current work to explore the possibility of developing an optimum 

feeding profile. In further studies, the kinetics of apoptosis onset and the correlation with 

exhaustion of nutrients in hybridoma cultures has been revealed (Franek and Dolnikova, 

1991; Mercille and Massie, 1994). Since the overall cell population in a bioreactor culture is 

comprised of individual cells going through the various transitions of the cell cycle, a better 

understanding of the system response necessitates a better understanding of cells on an 

individual level. The existing models lack in the level of detail required to explicitly model 

and predict system properties affecting MAb production and quite often use experimental 

values along the duration of the run as inputs. Overcoming these shortcomings of existing 

models may lead to substantial improvements in process efficiency and MAb production. 

Additional details on relevant research are presented in Chapter 2. 

1.5 Identification of Apoptosis and Necrosis 

There have been accounts in literature of an increase in the rate of MAb production 

associated with the onset of cell death in hybridoma cultures (Simpson et al., 1997). It has 

been documented that cell morphology is a clear indicator of the state of a cell. Each stage of 

the cell-life cycle exhibits characteristic morphology. Fluorescence imaging provides the 

means of identifying the different stages of cell growth and death by capturing the changes in 

cell morphology as the cell progresses through the various stages of its life-cycle (Mercille 

and Massie, 1994; Renvoize et al., 1997; Ziegler et al., 2004). 

1.6 Summary 

The focus of the thesis is the identification of an accurate mathematical model that accounts 

for the heterogeneity in the cell population and predicts the optimum feeding profile for a 
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fed-batch culture to enhance MAb productivity. A fluorescence imaging protocol/technique 

has been developed as a tool to capture the changes in cell morphology along the course of 

experimental batch runs to build on the model proposed in the current work. Identification of 

an active death process like apoptosis and the factors controlling it (as opposed to a passive 

one, i.e., necrosis) may lead to new strategies for the minimization of cell death during 

commercial animal cell culture. Ultimately, this may lead to substantial improvements in 

process efficiency. A switch from hybridoma to CHO cell cultures has been done as the CHO 

cell line has been reported to have better specific MAb productivity and it might lead to an 

appreciation of the differences in the kinetics of the two cell lines, if there are any. 
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Chapter 2 
Literature Review 

This chapter provides an overview of past literature with regards to the work presented in 

later chapters and has been sub-divided into three sections. The three sections discuss-  

(i) Biological Background 

(ii) Measurement Techniques 

(iii) Model Development 

 

The first section of this chapter discusses the common fermentation strategies for large-scale 

MAb production and the cell growth in a fermentation process. The second section provides 

an overview of the imaging techniques available for the quantification of cell sub-populations 

and similar measurements. The third section focuses on the various classical mathematical 

models utilized for modelling animal cell cultures. 

2.1 Biological Background 

2.1.1 Common Fermentation Strategies 

2.1.1.1 Batch Fermentation 

Suspension cultures were initially grown in  batch operated bioreactors in which cells grow 

in a finite volume of liquid nutrient medium and follow a sigmoid pattern of growth. All cells 

are harvested at the same time. For years, batch fermenters were prepared, inoculated, and 

run to completion with nothing added except air and some agent to control foaming. 

According to the reports that address animal cell culture in stirred bioreactors, production in 

stirred batch bioreactors is easy to perform and simple to scale-up with cell density varying 

between 106 and 107 cells/ml (Chisti, 1993; Shuler, 1999; Griffiths, 1988; Glacken et al., 

1983). However, batch processes suffer from problems of nutrient limitation, low cell 

densities, low productivity and potential high toxin accumulation that may lead to product 

degradation. Also, the down-time between batches may be too long and amounts to a wastage 
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of operation time. It seems obvious that the batch process changes should affect formation of 

the product and that these changes can be controlled by nutrient addition or process 

modification. However, it took a long while for this concept to gain momentum.  

2.1.1.2 Continuous Fermentation 

On the other hand, in continuous fermentations nutrient medium is added continuously to the 

fermentation vessel, accompanied by a corresponding continuous withdrawal of a portion of 

the medium for recovery of cells or fermentation products. Operating with continuous 

cultures makes it possible to achieve high cell densities and high antibody productivity 

without any nutrient limitation or growth inhibition due to toxin build-up in the system. But 

on the other side, it requires a higher level of technical skill to operate a continuous culture. 

Another drawback is that there may be loss of productivity due to genetic changes in the 

culture. Product quality control is often a serious problem. Additionally, continuous 

fermentations often waste nutrient substrate. The fermentation broth as it is continuously 

withdrawn for product recovery contains a certain amount of residual unused nutrients of the 

medium as well as a portion of the fresh nutrient constituents being continuously added to the 

fermentation (http://www.raifoundation.org). 

2.1.1.3 Fed-batch Fermentation 

Fed-batch operations combine the advantages of batch and continuous modes and minimize 

the disadvantages that either of the two possesses. In fed-batch culture, nutrients are 

continuously or semi-continuously added to the bioreactor, while effluent is removed 

discontinuously.  

 

Just like batch operations, they are relatively easy to perform and simple to scale-up 

(http://fachschaft.bci.unidortmund.de). Furthermore, unlike continuous culture systems, no 

additional special piece of equipment is required to convert from batch to fed-batch operation 

(Longobardi, 1994). At the same time, they ensure prolonged cell growth (high cell densities) 

and cell maintenance due to extension of working time, which is particularly important in the 

production of non-growth-associated products such as antibodies (Agrawal et al., 1989). It is 
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possible to exercise control over the production of by-products, or catabolite repression 

effects, due to limited provision of only those substrates solely required for product 

formation. In addition, fedbatch operation allows for the replacement of water lost by 

evaporation (McNiel, and Harvey, 1990). However, in a cyclic fed-batch culture, due care 

must be taken in the design of the process to ensure that toxic metabolites do not accumulate 

to inhibitory levels, and that nutrients other than those incorporated into the feed medium do 

not become limiting. Also, if many cycles are run, the accumulation of nonproducing or low-

producing mutants may result. 

2.1.2 Phases of Culture Growth during Fermentation 

When operating a mammalian cell culture, one encounters various different phases of growth 

and/or death starting from the point of inoculation of the medium with cell culture right until 

shut-down. The cell population in a batch culture, that happens to be the simplest mode of 

operation, typically has the following phases of development: (1)lag phase, (2)logarithmic or 

exponential growth phase, (3)deceleration phase, (4)stationary phase, (5)death phase (Shuler 

and Kargi, 1992). Figure 2-1 on the next page describes a batch growth cycle. 

2.1.2.1 Lag Phase 

Upon inoculation of cells into fresh medium, the cells take some time to acclimatize to the 

new nutrient/growth environment by means of reorganizing their molecular constituents. 

Depending on the composition of the new medium, new enzymes are synthesized, the 

synthesis of some other enzymes is repressed, and the internal machinery of cells is adapted 

to the new environmental conditions. These changes reflect the intracellular mechanisms for 

regulation of the metabolic processes. During this phase, the cell mass increases a little while 

the cell number remains essentially constant. However, at times when the seed density for the 

culture is too low or the cell viability of the seeding culture is not high enough, there may be 

encountered a pseudo-lag phase. It must be understood that this phase of arrested growth is 

not because of adaptation of cells to new culture environment but due to small inoculum size 

or poor condition of the inoculum (Shuler and Kargi, 1992). 
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Figure 2-1 Typical Growth Curve for a Mammalian Batch Culture 

 

2.1.2.2 Exponential Growth Phase 

The lag phase is followed by the exponential growth phase, also known as the logarithmic 

growth phase. In this phase, the cells have adjusted to their new environment and are able to 

multiply rapidly which is indicated by a steady exponential increase in cell number density 

with time. The exponential phase is often regarded as a period of balanced growth in which 

all components of a cell grow at the same rate. This means that the average composition of a 

single cell remains approximately constant during this phase of growth. Thus, during 

balanced growth, the specific growth rate determined from either cell number or cell mass 

will be the same. The exponential growth rate follows first order kinetics (Shuler and Kargi, 

1992):  

μXdt
dX = ,               X=X0 at t=0  (2.1) 
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where X and X0 are the instantaneous and initial viable cell concentrations, respectively; t 

represents the culture time from the instant of inoculation and μ signifies the growth rate 

constant. 

2.1.2.3 Deceleration Phase 

Since in a batch process there is no subsequent addition of nutrients to the system during the 

course of its operation, there is an eventual depletion of one or more essential nutrients. As 

there is no product recovery during the course of the batch either, there may be a gradual 

build-up of toxic or inhibitory by-products. The rapidly changing culture environment results 

in unbalanced growth. This state corresponds to the deceleration phase of growth. While in 

the exponential growth phase the cellular metabolic control system is directed to achieve 

maximum rates of reproduction, the deceleration phase witnesses the restructuring of the cell 

to increase the prospects of cell survival in response to the rapidly changing conditions. This 

phase is rather short-spanned and is often considered as a continuum between the exponential 

and stationary phase rather than as a separate phase by itself (Shuler and Kargi, 1992). 

2.1.2.4 Stationary Phase 

The deceleration phase is succeeded by the stationary phase, when cell division ceases. In 

other words, the growth rate is equal to the death rate. Even though the net growth rate is 

zero during the stationary phase, cells are still metabolically active and produce secondary 

metabolites (non-growth related products). In fact, the production of some metabolites is 

enhanced during the stationary phase (antibodies, hormones, etc.) due to metabolite 

deregulation (Suzuki and Ollis, 1990). During the course of the stationary phase, one or more 

of the following phenomena may take place: 

1. Total cell concentration stays constant but the number of viable cells decreases. 

2. Cell lysis is observed and there is a decline in viable cell concentration. A second 

growth phase may occur as cells may grow on products of lysed cells (cryptic 

growth). 

3. Cells do not grow but are metabolically active and produce secondary metabolites 

as a result of metabolite deregulation.  
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Reasons attributed to termination of growth may be either exhaustion of an essential nutrient 

or accumulation of toxic products. If there is production of an inhibitory product during the 

course of the batch operation, the growth rate will slow down with accumulation of that 

inhibitory substance and above a certain concentration of this inhibitor the growth will cease 

completely (Shuler and Kargi, 1992). In some studies, the kinetics of apoptosis onset and the 

correlation with exhaustion of nutrients in hybridoma cultures has been revealed (Franek and 

Dolnikova, 1994; Mercille and Massie, 1994). Incidence of cell death in A. fumigates, a 

pathogen has been reported by Mousavi and Geoffrey (2003) during the stationary phase, that 

appears to share similarities to apoptotic cell death in higher eukaryotes and seems to be 

dependent on a caspase-like activity. This was proved by the association of the pattern of 

death observed with markers for apoptotic death. Although, a connection between cell cycle 

and apoptosis has been suggested in mammalian cells, its nature is not clear yet (Frame and 

Balmain, 2000; Shapiro, 2001; Sears and Nevins, 2002). It has been hypothesized in the 

current work that an exit from stationary phase might be a prerequisite for apoptosis. 

2.1.2.5 Death Phase 

The death phase or decline phase follows the stationary phase. However, there is an overlap 

between these two stages of growth as some cell death may have already started in the 

stationary phase. The rate of death follows first order kinetics (Shuler and Kargi, 1992): 

Xkddt
dX ′−=    (2.2) 

where X is the instantaneous cell concentration at time t; and kd
 .is the death rate constant ׳

2.1.2.6 Fedbatch culture mode: Extension of Stationary Phase 

The fed-batch culture is initiated in the same way as a batch culture starting with inoculation 

of nutrient volume with seed culture. The Lag and Exponential phase progress in the same 

way as in batch culture mode.  In a batch culture, stationary phase occurs when the cells run 

out of their carbon and energy source or a particular nutrient. Many products are produced 

when cell growth slows down; i.e., during the stationary phase of a batch culture. A batch 
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culture, however, will produce relatively small amounts of these products as without 

sufficient nutrients, cells will not be able to maintain homeostasis and thus lyse or become 

biochemically inactive.  

 

However, in a fedbatch culture small nutrient volumes are gradually added to the culture in 

such a way that the nutrient(s) do not get exhausted and there is little or no toxin build-up 

over time. This intermittent feeding serves in replenishing the exhausted nutrients and/or 

dilution of toxified medium which promotes further growth and alleviates the adverse effects 

of toxin on cell growth. In this way, cells can have sufficient nutrients to either grow slowly 

or to maintain their internal integrity. Thus, the cells are maintained in an apparent stationary 

phase mode longer than in batch cultures (i.e., slow or no growth), but at the same time 

continue to produce products. Thus, a fed-batch reactor is expected to extend the stationary 

phase in fermentation (http://www.np.edu.sg/home/sitemap.html). 

2.1.3 Cell Cycle 

Since a cell culture comprises of individual cells, it is not possible to develop an 

understanding of the overall system without an understanding of the processes taking place 

within a single cell itself. Typically, the life-cycle of an individual cell progresses through the 

following 4 stages  

(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CellCycle.html):  

• G1 - Gap1 

• S - Synthesis 

• G2 - Gap2 

• M - Mitosis 

 

During the initial phase of a fermentation run, a cell feeds on nutrients available in the 

system, producing RNA and synthesizing protein. This stage is called the G1 phase where the 

cell grows in size and prepares itself for cell-division. Increase in cell size is followed by 

DNA replication; this is the S phase. After DNA replication is complete, the cell enters the 
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G2 phase, where it grows further and produces new proteins. Finally, it enters the mitosis 

stage where the cell divides into two daughter cells. This process of cell growth can continue 

indefinitely and has been illustrated in Figure 2-2 (http://www.cellsalive.com).  

 

 

 

Figure 2-2 Illustration of a Cell-cycle 

modified from (http://users.rcn.com) 

 

At times there may be errors in functions performed during the cell cycle. To remedy the 

errors that may be introduced during cell development, there are in-built checkpoints in the 

cell cycle that interrupt/abort the cell cycle if such an event occurs 

(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CellCycle.html). 

 

• G1 checkpoint- Before the cell enters the S-phase, the checkpoint mechanism in 

place senses DNA damage. Damage to DNA stops the progression of the cell 

Cell  
decides  
whether 
 to 
continue 
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cycle until the damage can be repaired. If the damage is irreparable, the cell enters 

the death phase and self-destructs by apoptosis. 

• G2 checkpoint: A check is made on the successful replication of DNA that takes 

place during S phase. If replication stops at any point on the DNA, progress 

through the cell cycle is halted until the problem can be fixed. If not, cell death by 

apoptosis is triggered.  

(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html).  

2.1.4 Association of Cell Cycle with the Progress of Culture 

In a bioreactor that contains a large cell population, there are cells going through the various 

developmental stages of the cell-cycle all at the same time. Thus, there exist a number of sub-

populations that are in different stages of the cell-cycle and make up an average overall cell 

population. In other words, the lag phase represents the state of the system where the 

population/culture is dominated by cells in the G1 stage that are feeding and growing in order 

to multiply, although there will be cells that are in any of the other three cell-cycle stages. 

Over time, majority of the cells progress from G1 to the mitosis stage where they divide and 

it is classified as the exponential stage of culture growth. With the subsequent exhaustion of 

nutrients, the cell growth slows down which is broadly regarded as the stationary phase. Due 

to lack of substrate, the cells go into growth arrest as they are unable to clear the checkpoints 

set in place by the cell machinery 

(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html). 

 

The progression of cell culture from stationary phase to decline phase marks the onset of 

death. 

2.1.5 Cell Death in Bioreactors- Apoptosis and Necrosis 

Cell death can be broadly classified into two categories (Wyllie, 2004; Renvoize et al., 

1997): 

• Apoptosis  
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• Necrosis 

Apoptosis, also called programmed cell death, is a physiological process that occurs under 

normal conditions by which unwanted or useless cells are eliminated during development or 

other biological process. Apoptosis is an energy requiring process. 

 

Necrosis also known as accidental cell death is a passive, catabolic pathological process that 

occurs when cells are exposed to as serious physical or chemical insult like heat stress or 

toxic agents. 

2.1.5.1 Causes of Apoptosis 

There has been evidence in literature (Mercille and Massie, 1994; Singh et al., 1994) 

supporting the incidence of apoptosis due to the following factors: 

• Nutrient limitation (namely, glucose and glutamine) 

• Oxygen deprivation 

• Cystine deprivation 

• Serum limitation 

• Hypoxia 

2.1.5.2 Causes of Necrosis 

• Ammonia accumulation (lowest concentration reported = 2mM) 

• Lactate accumulation (lowest concentration reported = 20mM) 

• Osmotic pressure 

• pH 

The lowest concentration of ammonia and lactic acid reported to cause necrosis in culture is 

2mM and 20 mM, respectively (Newland et al., 1990). It must be mentioned however, that 

when both are present in the culture, lactate and ammonia have a negative cumulative effect 

on cell growth and viability at concentrations lower than what have been reported for each of 

them individually. (Newland et al., 1990) reported lactate concentrations greater than 12mM 
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and ammonia in the range (1-4mM) to be growth inhibitory. Osmotic pressure may cause cell 

death via necrosis by cell implosion from hypertonic solutions, or cell explosion from 

hypotonic solutions (http://www.extravasation.org.uk). Some substances have been reported 

to cause tissue damage by having an osmolality greater than that of serum (281-289 

mOsmol/L) (Upton et al., 1979).  

2.1.5.3 Identification of Apoptosis and Necrosis 

It has been documented that cell morphology is a clear indicator of the state of a cell. Each 

stage of the cell-life cycle exhibits characteristic morphology. Fluorescence imaging provides 

the means of identifying the different stages of cell growth and death by capturing the 

changes in cell morphology as the cell progresses through the various stages of its life-cycle 

(Mercille and Massie, 1994; Renvoize et al., 1997; Ziegler et al., 2004). 

2.2 Cell Culture Related Measurement Techniques 

2.2.1 Estimation of Cell Viability 

The most widely practiced method for estimation of cell viability is the Dye Exclusion test 

which is based on the principle that live cells possess intact cell membranes that exclude 

certain dyes, such as Trypan Blue, Eosin, or propidium iodide, whereas dead cells do not. In 

this test, a cell suspension is mixed with a pre-determined volume ration of the dye. The 

mixture is transferred to a hemacytometer and visually examined under a microscope to 

determine whether cells take up or exclude dye. A viable cell will have a clear cytoplasm 

whereas a nonviable cell will have a blue cytoplasm (http://www.invitrogen.com).  

2.2.2 Amino-acid Analysis 

Amino acid analysis was pioneered by Moore et al. (1958). Over time the method was 

modified for suitability of the reagents being analyzed.  
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2.2.2.1 HPLC 

A pre-column derivatization method for the analysis of primary and secondary amino-acids 

developed by Bidlingmeyer (1984) based upon the formation of a phenylthiocarbamyl 

derivative of the amino acids. 

2.2.2.2 Ion Chromatography (IC) - An Alternative  

Ion Chromatography that uses amperometry as the principle for amino acid detection is an 

improvement over HPLC as it does not require derivatization and is therefore a much faster 

method of analysis. This method is designed specifically for analytes that can be oxidized at 

a selected potential, leaving all the other compounds undetected. The Integrated Pulsed 

Amperometric Detection (IPAD) as it is formally called is a powerful method that provides a 

broad linear range of detection with very low detection limits (Hanko et al., 2004). 

2.2.3 Assays for Apoptosis Detection 

A series of morphological changes distinct to the incidence of death by apoptosis in 

comparison to necrosis still remain the standard method its identification (Kerr et al., 1972; 

Renvoize et al., 1997). The different techniques that apply morphology of apoptotic cells for 

their identification have been mentioned as follows (Renvoize et al., 1997). 

2.2.3.1 Electron and Light Microscopy 

This method utilizes the detailed structural aspects of apoptosis, such as the loss of microvilli 

and pseudopodia and dilation of the endoplasmic reticulum. However, centrifugation and 

spreading of apoptotic cells on a glass slide can be damaging to the cells and lead to biased 

results. 

2.2.3.2 DNA Electrophoresis 

Apoptosis identification by means of agarose gel electrophoresis of DNA remains a 

significant method for identifying the oligonucleosomal digestion of chromatin. However, 

the application of this technique is limited to a qualitative analysis only. 



 

 17 

2.2.3.3 Flow Cytometry 

This method of analysis is based on the principle that apoptotic cells, among other typical 

features, exhibit DNA fragmentation and loss of nuclear DNA content. Use of a 

fluorochrome, such as propidium iodide, that is capable of binding and labeling DNA which 

makes it possible to obtain a rapid (within about 2 hours) and precise quantitative evaluation 

of cellular DNA content by flow cytometric analysis (Riccardi and Nicoletti, 2006). The only 

drawback of this method is that nuclear fragments of clumps of chromosomes could be 

counted as apoptotic cells (Darynkiewicz et al., 1997). 

2.2.3.4 Fluorescence Light Microscopy 

This technique utilizes the DNA-binding properties of fluorescent dyes for the purpose of 

characterization of apoptosis and necrosis. Apoptotic index and membrane integrity can be 

simultaneously determined and there is no cell-fixation step involved unlike flow cytometry. 

This protocol has been described in greater detail in Chapter 3 that discusses various 

experimental methods adopted. Due to the reasons states before, fluorescence light 

microscopy presents a simplistic way of quantitative determination of the apoptotic index. 

2.2.3.5 Caspase Measurement- FRET 

Most forms of apoptosis involve activation of caspases (Xiang et al., 1998). FRET is an 

experimental method that allows the continuous monitoring of caspase activity in individual 

mammalian cells. Caspases are proteases, which play essential roles in apoptosis and cleave 

(cut) other proteins. They are called cysteine proteases, because they use a cysteine residue to 

cleave other substrate proteins at the aspartic acid residue (http://www.wikipedia.org). More 

than a dozen caspases have been identified in mammalian systems using fluorescence 

resonance energy transfer (FRET) - a method, based on covalent linkage of a green 

fluorescent protein (GFP) with a and blue fluorescent protein (BFP) by a short peptide. FRET 

allows caspase activity in individual cells to be measured over time. Using this method, the 

kinetic differences in caspase activity between cells in a population can be correlated with 

whether the cells live or die within a particular time frame. These differences in caspase 

activity can be detected several hours before death actually occurs (Xiang et al., 1998). 
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2.3 Mathematical Modelling  

The performance of cells, in large, cell cultures can be controlled and enhanced provided that 

the system properties can be maintained at the required state. Mathematical models are 

especially useful for simulation, optimization and control purposes. A realistic cell model 

will not only aid in optimizing productivity but once such a model is formulated, prediction 

results can be obtained for metabolite concentrations that may otherwise be difficult to 

measure.  

2.3.1 Principles behind Model Formulation 

In general, the quantitative description of a bioprocess in terms of a mathematical model 

involves formulation of three fundamental types of equations (Tziampazis and Sambanis, 

1994)  

• Mass Balance equations 

• Yield equations 

• Rate equations 

 

The mass balance equations that are developed based on the reactor configuration and are 

essentially same for all cell systems if intrinsic kinetics of the culture is not taken into 

account. The yield and rate equations that describe cellular metabolism are independent of 

the reactor configuration. The yield equations are based on material and energy balances and 

relate the amounts/rates of the metabolite consumption and production. Although they may 

involve several underlying assumptions about metabolism, they have a theoretical basis and 

hence are reliable. The rate equations describe the kinetics of various processes, generally as 

functions of intracellular parameters and the composition of the extracellular medium. Being 

empirical in nature, rate equations are the most unreliable segment constituting a model 

(Tziampazis and Sambanis, 1994). The process mass balances and the yield equations are not 

sufficient to fully describe the system. To remove the remaining degrees of freedom, 

formulation of rate equations or measurements of the rates on-line is required (Andrews, 

1993; Hu and Himes, 1986). However, it is not always feasible to make on-line rate 
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measurements but for a few compounds. Consequently, certain rate equations need to be 

specified. In the absence of sufficient knowledge, experimental results are utilized to obtain 

information about cellular processes and hypothesize kinetic expressions (Glacken et al., 

1988). 

2.3.2 Classical Mathematical Models for Animal Cell Cultures- A Classification 

In cell process technology, models for animal cell cultures can be classified into the 

following categories (Tziampazis and Sambanis, 1994): 

• Segregated/ Unsegregated,  

• Structured/ Unstructured, and  

• Deterministic/ Stochastic.  

 

Figure 2-3 offers a schematic view of the above categorization. 

 

Figure 2-3 Model Classification for Cell Culture Systems  

adapted from (Sidoli et al., 2004) 
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Structured models attempt to elucidate intracellular processes in that they possess structure 

either in the physical sense, namely the organelles, cell shape or size, or in the biochemical 

sense where biomass is subdivided into its intracellular biochemical components. Structured 

models can provide a measure of the quality of the cell population and are based on more 

fundamental processes (Sidoli et al., 2004). On the other hand, unstructured models do not 

account for the intracellular processes and acknowledge only implicitly the change of cellular 

physiological state with the environment (Fredrickson, 1976). Such models treat the cell as a 

single homogeneous unit, hence their biological basis is limited, and the mathematical 

equations involved are only phenomenological descriptions of the actual system. 

Unstructured models are of limited applicability in situations where the cellular environment 

is highly dynamic in nature. Being highly empirical in nature, they are primarily used in 

cases where only parameter estimation is required for developing the full model in light of 

lacking physical knowledge of the system. Although their extrapolating ability is limited, 

these models are relatively easy to build, and are generally suitable for simulating steady-

state or slowly-changing systems. Structured models are superior to unstructured models as 

they attempt to imitate the biological system by separating/lumping the biomaterial into 

compartments that are chemically and/or physically distinct. The compartments' interactions 

with each other and with the environment are described by stoichiometric equations that 

account for various metabolic pathways and/or kinetic rate expressions. The evolution of 

concentrations with respect to time is mainly based on mass and energy balances and 

transport and reaction rate terms (Tziampazis and Sambanis, 1994). Structured models have 

wider applicability and have better extrapolating capability than unstructured models. 

Unstructured models, on the other hand, can provide a simplistic but quick alternative for the 

development of process systems applications (Tziampazis and Sambanis, 1994). 

 

Not all cells in a mammalian cell culture are alike; they are heterogeneous in composition.  

By classifying a model as being segregated or unsegregated, it is possible to account for the 

heterogeneity of the cell culture with regards to cell age, size, growth rate and metabolic 

state. Referring to a cell culture as segregated implies that it is composed of cells in different 
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stages of development and it is therefore heterogeneous. Conversely, an unsegregated model 

views the population as consisting of identical "average cells" and uses a lumped variable 

such as total biomass per unit volume, to describe the entire population. Segregated models 

build on the heterogeneous composition of a culture and offer the advantage of relating cell 

properties and biochemical activities within distinct parts of the population. Segregated 

models based on cell cycle relate the kinetics of growth, metabolic processes and product 

formation to the distribution of the population among the phases. Considering the differences 

between cells in the population is more representative of the true physical state. However, 

segregated models are also more computationally difficult to handle (Bailey and Ollis, 1986).  

 
Variability within a cell culture can be accounted for by means of stochastic models that 

describe random processes. For systems in which the cellular processes are not subject to 

variability, a deterministic model is applied. Stochastic models use probability distribution 

functions to describe process dynamics at the cell and population levels. Since they account 

for randomness in the culture, they are more accurate than deterministic models but that is 

the case only as long as the systems contains a small numbers of cells (Tziampazis and 

Sambanis, 1994). A more detailed description of the various categories discussed above 

follows. 

2.3.2.1 Unstructured Non-segregated Models 

The simplest way to model cell culture systems will be to consider an unstructured, 

unsegregated model. As these models do not require system details for their generation, they 

are essentially based on experimental data to derive information on cellular processes and 

postulate kinetic expressions. Generally, in the starting phase of model development for 

animal cell culture systems researchers and bioengineers focused on empirical models. 

 
For such a model, the growth rate expression can be written as (Shuler and Kargi, 1992): 

rx = dX/dt = µX   (2.3) 

 
where, rx is the rate of cell generation, X is the cell concentration and  

µ is the specific growth rate.  
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Many cell culture processes exhibit saturation type kinetics, i.e., the rate of the process µ is 

limited by a certain factor when its concentration c is low, but the limiting effect disappears 

and the process rate reaches a maximum value µmax, as the concentration increases. This 

behavior can be described by a Monod-type equation which is the most commonly used 

expression that relates the specific growth rate of the cell to the substrate concentration. 

Monod's equation is given as (Shuler and Kargi, 1992): 

SK
S

maxμμ
S +

=    (2.4)  

where, µ = specific growth rate  

µ max = maximum specific growth  

S = substrate concentration  

KS = saturation constant for substrate  
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Figure 2-4 Monod’s Growth Curve 

 

Figure 2-4 depicts the dependence of µ on S according to Monod’s equation. One should 

note that Monod's equation is empirical and does not have any mechanistic basis. This 

equation is only valid for an exponentially growing or steady state culture under condition of 

balanced growth. The equation does not fair well during transient conditions. Despite its 

simplicity and no fundamental basis, it works surprisingly well in a large number of steady 

state and dynamic situations. This characteristic has important implications in control of 

bioreactors.  

 

In contrast to behavior described by Monod kinetics, the effect of an inhibitor on the rate 

becomes pronounced when its concentration reaches a minimum threshold value; in other 

words, an inhibitor reduces the rate of a process as its level i increases. Such effects can be 

modeled by analogy to the various types of inhibition of enzymatic reactions (Bailey and 

µmax 

Specific 
growth 
rate(µ) 
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Ollis, 1986). Of those inhibition models, the simpler and easier to use is that of purely non-

competitive inhibition (Tziampazis and Sambanis, 1994): 

)(i/K1
μ

μ
i

max
+

=    (2.5) 

In the above equations, µ and µmax have the same implication as mentioned before. i is the 

inhibitor concentration while Ki is the inhibition constant. 

 

It is plausible that instead of one metabolite being the controlling factor, there may be a 

group of metabolites that control the metabolic processes within the culture. In that case, the 

expressions given above can be modified to incorporate additional terms (thus increasing the 

number of model parameters). Multiplicative models with concentration terms raised to 

various powers, introducing dependency of the parameters to other factors through empirical 

functions have been illustrated (Barford et al., 1992; Glacken et al., 1989). Factorial 

experiments may be considered to study and model the individual and interactive effect of 

many variables, individually and interactively, on the process considered (Sidoli et al., 2004). 

These models are rudimentary but offer insight into which of the variables are important and 

need to be studied further. 

2.3.2.2 Structured Non-segregated Models / Single cell models 

Although unstructured models may provide information on how the system properties affect 

the growth kinetics, they lack the level of detail necessary to understand change in cell 

kinetics and/or physiology in response to change(s) in culture conditions as such an approach 

does not consider intracellular processes. On the other hand, structured unsegregated models 

collectively known as single-cell models (SCMs) offer the advantage of explicitly accounting 

for intracellular phenomenon such as cell cycle changes, alterations in cell size and shape; 

this feature is particularly important during transient or unbalanced growth conditions. In 

addition, cases where the rate of transport between organelles is potentially rate-limiting, 

SCMs explicitly consider intracellular spatial organization within the cell. Under the SCM 

approach, a cell is divided into compartments on the basis of difference in 
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composition/concentration. However, it is assumed that each compartment is a lumped phase 

i.e., concentrations are constant throughout the compartment (Tziampazis and Sambanis, 

1994).  

  

In order to describe these biochemical processes, the same basic engineering formulations are 

utilized, as discussed previously under unstructured non-segregated models, namely mass 

balance, yield and rate equations. Cellular metabolism can be incorporated into an SCM 

model by defining terms like (i) transport, (ii) primary metabolism, (iii) product synthesis, 

and (iv) cell growth and death with respect to the system (Tziampazis and Sambanis, 1994). 

Transport processes include transport kinetics of biochemical species across membranes and 

between the various compartments that the cell has been divided into. In addition to 

transport, primary metabolism and product synthesis relates conceptually to two or more 

linked compartments within which either particular metabolic pathways and/or entire 

metabolic cycles operate. Conservation equations written for each compartment and for each 

biochemical species, result in a set of ordinary differential equations. Equation (2.6) 

illustrates the generic form of these conservation equations (Tziampazis and Sambanis, 

1994). The accumulation of any given component i depends on its flow into or out of the 

compartment j as a result of transport across the compartment barrier (first and second terms 

on the RHS of equation (2.6)), intra-compartmental reactions generating and consuming the 

component (third and fourth terms on the RHS) and its dilution due to growth of the cell and 

thus increasing compartment size (last term on the RHS):  
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  (2.6) 

where Cij is the concentration of the ith component in the jth compartment, Rijk represents the 

transport rate of species i into or out of compartment j from the kth source or sink 

compartment; Nin is number of source compartments; Nout  is number of sink compartments; 

rijl – reaction rate of component i in compartment j in the lth i-generating or i-consuming 
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reaction; Ngen – number of reactions generating component i; Ncon – number of reactions 

consuming component i; 

 
Figure 2-5 Single Cell Compartmentalization 

adapted from (Sidoli et al., 2004) 

 

Figure 2-5 represents compartmentalization of the cell in the physiological context with 

cellular structures, such as organelles, pooled biochemical components or the cell 

environment being treated as compartments. However a problem with multi-compartment 

models is that the ODEs in equation (2.6) that represent distinct pooled concentrations do not 

give any idea of spatial distribution of concentration gradients along the surface of the 

compartment but rather at a single point and do not represent physical dimensions or cell 

geometry. To overcome this drawback, instead of assuming constant concentration 

throughout a compartment as per the lumped phase assumption, a concession is made 

allowing concentration gradients to exist in some compartments. Hence, the resulting 

conservation equations will then include partial derivatives and additional diffusion equations 

that are required to compute the diffusive fluxes within the spatial geometry of each 

compartment. However, the addition of these terms and equations makes the model 

mathematically and computationally more complex (Tziampazis and Sambanis, 1994). There 

are two ways in which an SCM can be applied, via a kinetic approach or via a stoichiometric 

approach. 
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(i)  Kinetic Approach 

There are numerous reactions occurring within the cell at any time, and further within the 

compartments themselves. Kinetic models follow a deterministic approach where one can 

account for intracellular dynamics by rate and transport mechanisms that give rise to a set of 

differential algebraic equations (DAEs), which are then integrated over the domain of 

interest, generally the culture time and results in well-defined time trajectories for all model 

variables (Gombert and Nielson, 2000). The most commonly used form of expression to 

describe the reaction rates is the Michaelis–Menten equation. However, one must keep in 

mind that incorporating a greater level of detail into the system means that the more complex 

the reaction kinetics will be and the greater the number of parameters required in the SCM. It 

is important not to over-parameterize the model as this will result in parameter estimation 

problems due to measurement noise and make the model very time consuming to solve. An 

additional drawback in incorporating greater detail in terms of complex dynamic expressions 

is that it normally results in non-linearity in both parameters and variables which makes the 

models really difficult to solve. In addition, kinetic models are unable to incorporate 

regulation and control of cellular activity, which requires dynamic simulation (Tziampazis 

and Sambanis, 1994). 

 

(ii) Stoichiometric Approach 

Stoichiometric modelling represents an alternative to the kinetic approach. Such a model 

yields a static instance of metabolic activity and is represented by a system of flux balance 

equations based on reaction stoichiometry of a metabolic network with accompanying 

constraints on flux values. The resulting equations are solved as a constrained optimization 

problem using some assumed objective; there exists a mathematical and therefore 

physiological feasible region in which a range of possible mathematical solutions or 

phenotypes are acceptable though not optimal (Gombert and Nielson, 2000).  

 

The key advantage of stoichiometric models is that they can account for competing reactions, 

which enables us to study the relative activity of certain pathways under various culture 
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conditions. For example, the existence of more than one physiological steady state, known as 

steady-state multiplicity, has been observed by a number of investigators using 

stoichiometric models and metabolic flux analysis (Follstad et al., 1999; Europa et al., 2000; 

Cruz et al., 1999; Zhou et al., 1997; Linz et al., 1997; Paredes et al., 1999).  

 

Generally, most existing SCMs are only partially mechanistic and contain empirical 

mathematical functions that best seem to describe the observed phenomenon. This is due to 

the fact that many cellular processes that these models seek to describe have not yet been 

accurately described. The development of SCMs requires the incorporation and integration of 

either parts or the entirety of other smaller models each of which describe specific sub-

processes. Utilizing the most accurate sub-models that correspond to the components of 

cellular metabolism is, therefore, of key importance to the construction of a good SCM. On 

the whole, the SCM approach is a very effective tool to relate hypotheses about molecular 

level mechanisms to the whole cell and population response to changes in the local 

environment (Tziampazis and Sambanis, 1994).  

2.3.2.3 Segregated Models- Population Balance Models 

All segregated (or corpuscular) models can be collectively grouped under the category of 

population balance models (PBMs). PBMs have been available since the 1960s and are the 

most mathematically concise way of elucidating the property variation of cells within a 

population and recognize the individuality of cells within a population. 

PBMs are further classified into (Mantzaris et al., 2001): 

(i) Single- or Multi-variable,  

(ii)  Single- or Multi-staged, and  

(iii) Mass or Age-structured  

 

A single-variable model differentiates on the basis of one cell property which is generally 

cell mass. Whereas a multi-variable model uses more than one cellular characteristic to 

distinguish between cells and can be used to account for any number of biochemical 

constituents within the cell. Using a multi-stage model, it is possible to describe multiple 
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developmental phases in the population with each stage of growth added representing each 

additional phase considered.  

 

Finally, if population differentiation is done on the basis of mass conservation laws, then the 

model is mass structured, whereas if cell age/maturity is used, the model is said to be age 

structured (Tziampazis and Sambanis, 1994).  

 

Three parameters are required in a generalized PBM, each having physiological significance. 

They are: (i) the single cell growth rates, (ii) the transition rates between each of the cell 

cycle phases, and (iii) the partition function. Together, these three process parameters define 

the collective state of the cell population (Sidoli et al., 2004; Tziampazis and Sambanis, 

1994).  

 

In essence, PBMs are a number balance on a cell population. Unfortunately, they are also 

particularly difficult to solve, being partial-integro-differential equations and the accurate 

determination of model parameters imposes a more limiting restriction. Hence, in general, 

numerical methods must be used for their solution (Villadsen, 1999).  

 

(i) A Single-stage Single-variable PBM  

Single stage PBMs consider cell growth as a single stage in that there is no subdivision of the 

cell cycle. The cell mass (m) is used to distinguish the physiological states of cells- parent or 

daughter cells. The key variable of interest is the total number of cells or cell number 

distribution, N(m,t) which is treated as a function of time (t) and cell-mass (Sidoli et al., 

2004). 
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In equation (2.7) above, LHS of the equation changes as a result of specific cell lifecycle 

events represented by RHS of the equation. The first derivative term on the LHS accounts for 

accumulation of cells over time while the second term on the LHS accounts for loss of cells 

of a given mass due to their transition into larger cells – single cell growth. The RHS of the 

equation represents the two fundamental life-cycle processes, namely cell division, which 

results in the loss of dividing cells of mass m with a division rate Γ(m, S) and cell birth, 

which gives rise to two daughter cells from the division of a single parent cell of mass m'. 

Thus, the product ΓN represents the total number of parent cells in the culture at any time t. 

The partition function, p(m, m', S) expresses the probability of a parent cell of mass m' 

giving birth to a daughter cell of mass m so that 2pΓN quantifies the number of newborn 

cells originating from parent cells of a single mass. As parent cells take on a range of masses 

m0 along the mass continuum, to include all parent cell divisions, integration is required for 

calculating all possible parent cell masses ranging from the minimum, τ, to the theoretical 

maximum, i.e., infinity. To completely define the model, the physiological functions r, Γ and 

p expressed in equation (2.7) and the substrate variation S must be specified along with initial 

and boundary conditions (Sidoli et al., 2004).  

 

Initial Condition: 

At the start of the culture process (t =0), the number distribution of cells (N0) is known and 

can be expressed as: 

N(m,0)=N0(m)   (2.8) 

Boundary Conditions:  

The boundary condition is derived from knowledge of the fact that cells can’t have zero 

mass.  

N(0,t)=0  (2.9) 

The most widely used representation for substrate, S is by relating it to biomass production 

rate via a yield coefficient, Y (Mantzaris et al., 1999). 

 

For a well-mixed system, 
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where, the initial substrate concentration (at t=0) S0 is known. 

 

The partition function, p, which is mathematically a distribution function and specifies 

distribution of cellular material of a parent cell amongst its two daughter cells, is expressed 

as a unimodal symmetric beta distribution B(q, q) (implying the shape parameters are equal): 
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Other distributions of cell partition function that have been used in previous studies are a 

Gaussian-type distribution implemented by Eakman et al. (1966) where the underlying 

assumption made is that the partition function variance is very small which translates to equal 

partitioning always occurring.  

 

The division rate, Γ is proportionally related to growth r by the expression as most commonly 

reported in literature, for example, Mantzaris et al. (1999): 

S)r(m,
m)dmf(1

f(m)S)Γ(m, m
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=
−

  (2.12) 

where, f(m) is the division probability density function assumed to be a LHS truncated 

normal distribution with a mean of µf and standard deviation σf. 

 

The normal distribution is truncated to exclude cells of mass less than zero. The denominator 

of the density function represents the proportion of all cells that have reached a mass m and 

remain undivided. It is used to re-normalize f (m) in order to yield the fraction of cells of 

mass m that will divide, given that no division of cells with mass less than m has yet taken 

place. For detailed derivation the reader is referred to Eakman et al. (1966). 
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Various forms have been used to describe the growth rate, including constant, linear and 

quadratic growth forms. 

 

(ii) Single-stage Multi-variable PBM.  

It is possible to distinguish cells on the basis of more than one physiological state. 

Mathematically, this translates to the use of a ‘physiological state’ vector (x) in place of the 

cell-mass (m) only as done in the previous section. Otherwise, the form of this PBM is 

analogous to the single-variable form: 
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         (2.13) 

Here, the variables used have the same meaning as mentioned before. D is the dilution rate 

and r(x,s) is the single cell growth rate. 

 

Once again, the corresponding initial and boundary conditions may be specified as follows 

(Sidoli et al., 2004).  

 

Initial Condition: 

 N(x,0)=N0(x)   (2.14) 

Boundary Conditions: 

r(x,S)N(x,t)=0  ∀x∈B  (2.15) 

where, B represents the physiological state space boundary and at least one element of x is at 

its maximum or minimum value. The cell environment is considered as multi-component 

represented by a vector form s. The physiological state vector x has maximum (xmax) and 

minimum (xmin) states of daughter cells, and parent cells cannot divide unless in a minimum 

physiological state (xmin).  
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The equation for the substrate utilization- equation (2.16) has been taken from Liou and 

Fredrickson (1997) that applies PBMs to a CSTR setup. An extra term has been included to 

account for the effect of continuously fed and removed substrate in (2.16). 

∫−−=∂
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t)dx,()()D(t
t),(

xNSx,qSS
x1N

f    (2.16) 

where, q is a nutrient consumption vector. 

 

The equation (2.16) is subject to the following initial conditions:  

S(0)=S0  (2.17) 

 

(iii) A Multi-stage Multi-variable PBM 

Unlike single stage PBMs that are based on the premise that cell life cycle is represented by 

one stage from birth to death, multistage PBMs divide the overall culture population into 

subpopulations based on a distinct classification of cell cycle phases. Thus each 

subpopulation is treated to be in a distinct phase of growth. Hatzis et al. (1995) illustrated the 

general structure and framework of a multivariable multi-staged PBM as follows. 
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Each equation in (2.18)-(2.20) provides a population balance for each cycle phase population 

Ni for 3 phase cycle, i.e., i=1…3. Since a ‘constant environment’ has been assumed, substrate 

concentration s does not feature in the model equations. Consequently, an equation for 

expressing the substrate utilization is not required in this case. The distribution of the cellular 
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properties at the phase transitions can either be measured directly and used to generate a 

histogram that can be used directly to describe the transition rate, or be approximated by a 

parametric distribution.  

 

Irrespective of which approach is used the shape of the distribution will determine the 

transition rate. Also, the physiological functions r, Γ, and p are related to experimentally 

obtainable cell properties and can thus be determined from known experimental population 

data. This eliminates the need for simulating the behavior of a population based on assumed 

functions for single cell parameters (Tziampazis and Sambanis, 1994). 

2.3.2.4 Combined Single Cell and Population Balance Models  

Single cell models describe detailed intracellular structure but introduce no population 

heterogeneity. On the other hand, population Balance models emphasize characterization of 

overall cell population into subpopulations based on differences in growth phases of the cell 

cycle but fail to take into account intracellular detail.  Thus combining the two models may 

help to address inaccuracies associated with either of the two approaches. 

 

The single cell-population balance model developed by Sidoli et al. (2006) uses SCMs to 

describe growth and death mechanisms that appear as part of the bigger PBM. 

2.3.3 Common Models Proposed for Antibody Production 

Ultimately, the key motivation to improve cell culture Modelling is the need to optimize the 

system for achieving increased productivity. Since protein production is the ultimate goal of 

many cell culture operations, accurate quantitative descriptions of this process are important 

for simulation and optimization of product formation. For this, it is necessary to have 

predictive models relating the growth and death rates, and the specific rates of substrate 

consumption and product formation to the environmental state of the culture (Seamans and 

Hu, 1990). 
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Cell growth and death depend on the chemical composition of the medium and the age of the 

culture. As is evident from the vast amount of literature available, a lot of work has been 

done in this respect till date. This section focuses on the gradual development and 

improvement of models in cell process technology over the years. 

 

An unsegregated, unstructured model for explaining growth and antibody production in 

hybridoma cultures was developed by Barford et al. (1992). Their work laid the foundation 

for more detailed and extensive models capturing cellular kinetics to a greater detail than had 

been done previously.  

 

The model was unique in the sense that 

(i)  A detailed stoichiometry (for catabolic, anabolic reactions and their interactive 

effects) was included and was capable of explaining both continuous and fedbatch 

behavior. 

(ii)  A large number of nutrients were simulated through the model. The nutrients were 

clubbed into 6 groups that were then solved for. The reader is referred to Barford et 

al. (1992) for details. 

(iii) The model was more extensive than previous models as it could simulate both 

fedbatch and continuous behavior. 

 

Nutrient consumption rates were explained by Monod expressions and simple linear kinetics 

was used for internal metabolism. 

 

A number of unstructured models for cell-specific antibody production have been compared 

by Portner and Schafer (1996) for hybridomas in chemostat cultures. Specific growth rate, 

substrate concentration, serum and death rate have all been proposed as being the variables 

on which productivity depends, although which of these should be used and to what extent 

productivity is sensitive to them is very much cell line dependent. 
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Table 2-1 that follows illustrates the common factors considered to model animal cell 

cultures. Most of the correlations for the specific growth rate are Monod type but differ in 

their choice of glucose or glutamine as the growth limiting substrate. Some models consider 

both of them as growth limiting species. Some models include additional terms to account for 

growth inhibition. Metabolites such as lactate and ammonia were found to be inhibitory or 

toxic for the system. Some models allow for the absence of cell growth at non-zero substrate 

concentrations by incorporating a ‘threshold term’. In one particular case, serum has been 

included as a variable affecting specific growth rate. However, serum is subject to batch to 

batch variability and some of the components in serum cannot be accounted for. 

Consequently, there is a general tendency to work with serum-free media, which may 

eliminate the need to consider serum effects in any future models. Antibody production 

seems to follow non-growth associated kinetics, negatively growth-associated kinetics 

increased specific productivity (at reduced growth rates) or a combination of the two. 

Exceptions, however, exist. 

 

Table 2-1: Correlations for the Specific Growth Rate and the Specific Death Rate 

adapted from (Portner and Schafer, 1996) 

Serial 
No. Specific Growth Rate Specific Death Rate 

1 GlnGlc KGln
Gln

KGlc
Glc

maxμ
++

 
( )( )AmmKμLacKμ

K

Ammd,maxLacd,max

maxd,
−−

 

2 
( )( )

( ) GlnthGlc
thminmax

KGln
Gln

GlcGlcK
Glc-Glcμμ

maxμ
+−+

−

 
( ) ( )

( )thd

thmaxd,
GlcGlcK

GlcGlcK
minDminμ

−+
−

−−  

3 
Lac

Lac
Amm

Amm
Gln KLac

K
KAmm

K
KGln

Gln
maxμ

+++
 

Lacd,Ammd,Glnd,

Glnd,
KLac

Lac
KAmm

Amm
KGln

K
dK

+++
 

4 ( )
GlnKlnG

GlnSermaxμ
+

 ( )
d

d
KGln

K
mind,Kmaxd,Kmind,K

+
−+  



 

 37 

5 
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Non-segregated structured models have also been developed to describe product formation. 

Compartmental models describe the system as a set of distinct pools which may be defined 

either by location or by kinetic behavior. Interactions between compartments occur via 

unidirectional substance transfer, usually following first order kinetics with or without time 

delays (Noe and Delenick, 1989). Other types of kinetic equations, such as Michaelis-

Menten, can be incorporated, notwithstanding increasing mathematical complexity. 

(Sambanis et al., 1991) developed a model incorporating chemical and physical structure to 

describe intracellular protein trafficking and secretion in a pituitary cell line. Sanderson 

(1997) has been reported to have developed a structured, unsegregated, deterministic SCM 

for mammalian cells that may be applicable to any type of suspension culture. The model 

incorporates glycolysis, glutaminolysis, the TCA cycle, the pentose-phosphate pathway, and 

fatty and amino acid metabolism in addition to cell growth and death and antibody 

production into a compartmental form. There are three cell-related compartments: the 

medium, cytoplasm and mitochondria. The concentrations of some 49 biochemical 

components are modeled using Monod-type kinetics. The model accounts for the effects of 

feedback inhibition in certain reactions and competitive reactions by modifying the 

Michaelis–Menten expression. Transport equations account for membrane transport and link 

the various intracellular and extracellular concentrations. A simplified concentration driving 

force has been used to quantify flux. The model’s practical accuracy is accessed by using 

certain experimental data set for model calibration and then performing a second experiment 

under different conditions and comparing the data with the model’s simulation. The ratio of 

the difference (error) between measured and predicted concentration values of the reaction 

species provides an indication of the model’s accuracy. The error lies in the range of 10% to 
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15%. Simulations for glutamine and antibody concentration, however, are significantly 

inaccurate.  
 

Segregated models for mammalian cell cycle have been developed with population 

characterization based on differences in cellular activities, morphology, and even mechanical 

properties (Mitchison, 1971; Needham et al., 1990; Ramirez and Mutharasan, 1990; 

Henderson et al., 1992).  

 

Segregated models can be enhanced by incorporating additional biological information to 

create models of higher structure. For example, the cell cycle theory can be combined with 

intracellular processes like the translation of messenger RNA (mRNA) to protein product 

(Suzuki and Ollis, 1990). There also exist cell cycle models that take into account the 

reportedly different antibody synthesis rates in each of the cell cycle phases (Garatun et al., 

1976; Liberti and Baglioni, 1973; Mitchison, 1971; Abraham et al., 1976; Ramirez and 

Mutharasan, 1990). The advantage offered by these models is that no particular productivity 

function is needed. Instead, the productivity is described as a function of the population 

fractions in each cycle phase that are in turn dependent on the growth rate and can be 

described either with the aid of deterministic (Suzuki and Ollis, 1990) or stochastic models 

(Linardos et al., 1992; Cazzador and Mariani, 1993). An underlying assumption made here is 

that the synthesis rate is constant in each cycle phase; the culture conditions affect only the 

viable cell number and the distribution of cells among the phases. The validity of this 

assumption probably depends on the particular system under consideration and the range of 

conditions employed. 

2.4 Summary 

From the above description it is evident that a structured, segregated, stochastic model is the 

ideal form of cell model. A major challenge presented by these models, however, is that they 

easily get so intensive computationally with increasing detail in the model that they cannot be 

easily handled by computers. Parameter and process lumping and timescale separation 

methods can be used as tool for providing the necessary simplifications. In the future, such 



 

 39 

models could be further improved by incorporating new biological knowledge, which rapidly 

accumulates with the advent of new techniques, and by simplifying the final expressions so 

that the resulting descriptions remain computationally manageable. 

 

Since currently available experimental data is limited, a compromise needs to be made on the 

level of detail incorporated into the proposed model to avoid over-parameterization and non-

linearity in the model. Hence, an unstructured, segregated, deterministic model has been 

proposed. A systematic approach has been adopted for model development based on Metabolic 

Flux Analysis (MFA) proposed by Provost and Bastin (2004) that has been applied by Gao et 

al. (2006) with some modifications for batch production of MAb. However, in the mentioned 

works, in the development of the MFA and the resulting dynamic model of metabolites, the 

viable and dead cell concentrations and their corresponding rates of change have not been 

explicitly modeled. Instead, their experimental values have been used as an input for the 

metabolites model.  

 

The current work addresses these issues as follows:  

1. MFA is applied to a fed batch situation in order to obtain a dynamic model for this 

mode of operation. In this context, this study compares the flux values obtained in 

batch and fed batch operations and investigates whether the same structure of the 

dynamic model is applicable to both.  

2. The viable and dead cell concentrations are explicitly modeled. Correlation analysis is 

used to investigate the dependencies of growth and death rates on nutrient and 

product concentrations. Then, the cell concentrations model is coupled to the 

metabolites dynamic model that utilizes experimental starting values to come up with 

an integrated model that predicts for all significant system variables, including viable 

and dead cell concentrations, independent of subsequent experimental values.  

 

The dynamic metabolic model proposed is based on a combination of stoichiometric and 

dynamic mass balances and has been explained in detail in further sections. First, 



 

 40 

stoichiometric flux balances based on a comprehensive metabolic network were constructed. 

Second, the metabolic network was simplified by systematic elimination of fluxes that were 

deemed insignificant. 

 

The objective of the experimental and modelling efforts presented in the thesis is the 

identification of an accurate mathematical model that accounts for the heterogeneity in the 

cell population and predicts the optimum feeding profile for a fed-batch mode culture to 

enhance MAb productivity. Fluorescence imaging has been applied as a tool to capture the 

changes in cell morphology along the course of experimental batch runs to build on the 

model proposed in the current work. Identification of an active death process like apoptosis 

and the factors controlling it (as opposed to a passive one, i.e., necrosis) may lead to new 

strategies for the minimization of cell death during commercial animal cell culture. 

Ultimately, this may lead to substantial improvements in process efficiency. A switch from 

hybridoma to CHO cell cultures might lead to an appreciation of the differences in kinetics of 

the two cell lines, if there are any. 
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Chapter 3 
Materials & Methods 

A set of batch and fed-batch experiments were conducted using a hybridoma 130-8F cell line 

and a Chinese Hamster Ovary IgG1-9B8 cell line. The details of the experimental 

infrastructure and the experimental settings have been summarized in this chapter. The 

experimental techniques applied for analysis of the experimental samples have been covered 

as well. 

3.1 Sources of Materials 

Bellco, N.J., U.S.A.: 250 mL Bellco Spinners; 1000 mL Bellco Spinners 

Corning (from various locations): 75 cm2 T-Flask  

Invitrogen Canada Inc., Burlington, Ontario: Gibco D-MEM containing glutamine and 

glucose (12100), Gibco D-MEM w/o glutamine and glucose (23800), DMSO (Gibco 11101-

011), D-MEM high Glucose (10566), Ham’s F-12 Nutrient Mix (11765), L-Glutamine 

(25030), D-Glucose (15023)  

JRH Biosciences - A Division of Sigma-Aldrich Corp. (from various locations): Fetal 

Bovine Serum (FBS, JRH 12107-78P) 

Nalgene (from various locations): 1.8 ml cryovials  

Sigma, Burlington or Oakville, ON: sodium hydrogen carbonate (S-5761), pluronic F68 (P-

1300), insulin (I-6634), transferrin (T-1283), FeSO4* (F-8633), ZnSO4* (Z-0251), sodium 

pyruvate (P-5280), lipoic acid* (T-1395), biotin* (B-4639), putrescine* (P-5780), CuS04* 

(C-8027), cholesterol (C-8503), linoleic acid (L-1012), β-cyclodextrin (C-4805), proline 

(Sigma P-8449), 66 mg/L l-asparagine (Sigma A-4159), and 33.5 mg/L l-aspartic acid 

(Sigma A-4534), glutamine (Sigma G-8540) and glucose (Sigma G-6152), histidine (Sigma 

H-5659), threonine (Sigma T-8625), arginine (Sigma A-3784), tyrosine (Sigma T-3754), 

valine (Sigma V-0500), methionine (Sigma M-2893), tryptophan (Sigma T-0271), 

phenalanine (Aldrich 16,261-2), isoleucine (Sigma I-2952), leucine (Sigma L-1512), and  
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lysine (Sigma L-5626); Sigma Ammonia Kit (Sigma 171-B), Acridine Orange (Aldrich 

A6014), Ethidium Bromide (Aldrich E8751), Amino Acid Standard (AA-S-18) 

VWR (from various locations) - SFX-CHO-GLN-GHT (CA16777) , Glass Slides and cover-

slips: 3in.x1in.; 1mm thickness glass-slides and 25mm2 cover-slips. 

Caution: Acridine Orange and Ethidium Bromide have been found by the Ames test to be 

highly mutagenic and must be handled carefully. 

3.2 Cell Line 

The cell line, hybridoma 130-8F, used in this study was obtained from Sanofi Pasteur Ltd. 

Toronto, Ontario. The cell strain was produced by the fusion of Sp 2/0 myeloma cells with 

spleen cells from 12 to 20 week old immunized BALB/c mice (De Alwis Seneviratne, 2004).  

 

The CHO cell line, IgG1-9B8, used for the second set of experiments involving fluorescence 

imaging was obtained from Cangene Corporation, Mississauga, Ontario. The cell line was 

produced as a result of modifications performed on another CHO cell line originally 

produced by ATCC. 

 

In addition, seed-bank for two other cell lines was created. The first cell line was a 

hybridoma CRL-10463 obtained from ATCC. The other cell line was a CHO CRL-9606 also 

obtained from ATCC. CRL-9606 is a producer of human tissue plasminogen activator (t-pA). 

However, they were not utilized for experimental work because the focus was attached to the 

first two cell lines mentioned. 

3.3 Media Formulation 

3.3.1 Hybridoma 130-8F 

The hybridoma cells were cultured in basal medium consisting of D-MEM containing 25 

mmol/L glucose and 4 mmol/L L-glutamine. The medium was further supplemented with 

additional reagents that have been specified in Table 3-1 along with their final concentration 

in the medium (De Alwis Seneviratne, 2004). 
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Table 3-1: Supplements added to Basal Medium 

Component Concentration 

Sodium hydrogen carbonate, NaHCO3  2.2 g/L 

PluronicF68  0.7 g/L 

Insulin  9mg/L 

Transferrin  5 mg/L 

Zinc Sulphate, ZnSO4*  0.86 mg/L 

Sodium pyruvate  0.11 mg/L 

Lipoic acid*  0.1 mg/L 

Biotin*  0.1 mg/L 

Putrescine*  0.161 mg/L 

Copper Sulphate anhydrous, CuS04*  0.0025 mg/L 

Cholesterol  0.5 mg/L 

Linoleic acid  0.08 mg/L 

ß-cyclodextrin  0.1 g/L 

Proline  29 mg/L 

L-asparagine  66 mg/L 

L-aspartic acid  33.5 mg/L 

 
Solutions marked with an asterix (*) were added from pre-made concentrate solutions. 

 

It must be noted that amino acids originally present in the medium were taken into 

consideration when creating supplemented medium based feed solutions for fed-batch runs. 

For feed solutions, glutamine and glucose were added to “glutamine and glucose free basal 
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media” as required. Additional amino acids added to fed-batch feed medium have been 

specified in Table 3-2 that follows. 

Table 3-2: Additional Amino-acids added to Feed Medium 

Histidine Tryptophan 

Threonine Phenalanine 

Arginine Isoleucine 

Tyrosine Leucine 

Valine Lysine 

Methionine  

 

Basal medium from powdered DMEM was prepared by dissolving it in 18.0 mOhm-cm 

Milli-Q water. The resulting concentrate was diluted to the desired volume, pH equilibrated 

to 7.2 and, filtered through a 0.2 μm filter. Basal medium was stored at 4°C for a maximum 

of 3 weeks prior to use. Insulin was dissolved in 10 mL of Milli-Q water with the aid of a 

few drops of 2.0M HCl. Fetal Bovine Serum (FBS, JRH 12107-78P) was added prior to use 

on a per liter basis. 

3.3.2 CHO IgG1-9B8 

For CHO cells grown in serum free conditions, the basal medium used was HyQ-SFX CHO 

containing 17.5 mmol/L glucose but no glutamine; it was supplemented with glutamine upon 

use to be brought to a final concentration of 3 mmol/L glutamine. For CHO cells grown in 

serum supplemented conditions, the basal medium used was D-MEM containing 4mmol/L 

glutamine, 4500mg/L glucose, 1mmol/L sodium pyruvate and 1500 mg/L sodium 

bicarbonate. For both serum-supplemented and serum-free cultures, no amino-acid 

supplementation was done.  
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3.3.3 Hybridoma CRL-10463 

The basal medium was D-MEM containing 4mmol/L glutamine, 4500mg/L glucose, 

1mmol/L sodium pyruvate and 1500 mg/L sodium bicarbonate. For passaging cells, the basal 

medium was supplemented 10% v/v fetal bovine serum (FBS) but no amino-acid 

supplementation was done. 

3.3.4 CHO CRL-9606 

Ham’s F-12 Nutrient Mix was utilized as the basal medium. It contained 4mmol/L glutamine, 

4.5 g/L glucose. The culture medium contained 90% v/v basal media and 10% v/v fetal 

bovine serum (FBS). No amino-acid supplementation was done. 

3.4 Pre-Experiment Protocols 

All cultures were grown in a CO2 incubator (Sanyo IR Sensor, 37 °C) at 8.0% CO2 for 

hybridoma 130-8F and 5.0 % CO2 for the other cell lines mentioned in section 3.3. In case of 

the hybridoma 130-8F, the culture pH was maintained in the range 7.1-7.4  by adding a 

solution of 7.5% NaHSO4 as per requirements (De Alwis Seneviratne, 2004). 

3.4.1 Developing a Cell Bank 

3.4.1.1 Cell Bank for 130-8F 

Cells for 130-8F were adapted to growth in 2% serum conditions over a period of two 

months prior to performing the actual experiments. It was observed that the reduction in 

serum did not result in a reduction of overall productivity or robustness of the cell-line. The 

cell bank was established using these adapted cells. 

 

Cells in the late exponential growth phase (>90% viability) were centrifuged, re-suspended at 

a concentration of 30 x 106 cells/mL, and aliquoted into 100x1-1.8 mL cryovials. The vials 

were initially frozen at -80°C and half of the cell bank was transferred to liquid nitrogen 

storage. The cells used in subsequent experiments were obtained from the vials stored at        

-80°C (De Alwis Seneviratne, 2004). 
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3.4.1.2 Cell Bank for IgG1-9B8 

One of the frozen vials received from Cangene was thawed upon arrival and transferred to a 

T-flask. The cells were passaged a number of times to ensure that they had adapted to the 

new culture environment. Cells in late exponential growth phase (>90% viability) were 

centrifuged, re-suspended at a concentration of 1.0 x 106 cells/mL, and aliquoted into 40x1-

1.8 mL cryovials. The vials were initially frozen at -80°C for 24 hours and then transferred to 

liquid nitrogen storage. Two vials from the freeze-down were stored in the -80°C freezer as 

backup. 

 

A supplementary cell bank of serum adapted cells for this cell line was also created. Cells in 

late exponential growth phase (>90% viability) were centrifuged, re-suspended at a 

concentration of 0.5 x 106 cells/mL, and aliquoted into 40x1-1.8 mL cryovials. The vials 

were initially frozen at -80°C for 24 hours and then transferred to liquid nitrogen storage.  

3.4.1.3 Cell Bank for CRL-10463 and CRL-9606 

For hybridoma CRL-10463, the frozen vial was thawed and the contents of the vial were 

transferred to a T-flask. The vial for CHO CRL-9606 cell was received from ATCC and was 

thawed upon arrival and its contents transferred to a flask.  

 

Thereafter, the procedure for the two cell lines was the same. The cells were passaged a 

number of times to ensure that they had adapted to the culture environment. Cells in late 

exponential growth phase (>90% viability) were centrifuged, re-suspended at a concentration 

of 107cells/mL for CRL-10463 and 4x106 cells/ml for CRL-9606, and aliquoted into 40x1-

1.2 mL cryovials. The vials were initially frozen at -80°C for 24 hours and then transferred to 

liquid nitrogen storage. Two vials from the freeze-down for each of the cell lines were stored 

in the -80°C freezer as backup but were lost due to a freezer malfunction. 

 

For freezing down a cell bank, the composition of the freezing medium is as described in 

Table 3-3.  
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Table 3-3: Freezing Medium 

Component % Concentration 
for 130-8F 

% Concentration 
for IgG1-9B8 

% Concentration 
for CRL-10463 

% Concentration 
for CRL-9606 

Fresh culture 
medium, 

i.e., the basal 
medium 

80 45 80 80 

Spent cell 
culture 
medium 

0 45 0 0 

DMSO 10 10 10 10 

Serum 10 0 10 10 

 

3.4.2 Initiation of Cell Culture from Thawed Vials 

Cell culture was initiated by thawing a cryovial in a 37°C water bath for under 2 minutes.  

3.4.2.1 Hybridoma 130-8F 

The contents of the thawed vial were suspended in 10mL of fresh media, centrifuged for 4 

minutes at 1000 rpm. The supernatant was removed in order to eliminate DMSO that may 

inhibit cell growth to some extent. The cell pellet was resuspended in a 75 cm2 T-Flask 

containing 21mL fresh media with 15% (or 10%) serum. The T-flasks were incubated for 

two to three days (depending on the rate of cell growth) before passaging (De Alwis 

Seneviratne, 2004).  

3.4.2.1.1 Serum Reduction 

The hybridoma cells were grown in serum containing medium. Cells were passaged every 

two days during the week and every three days if it was a weekend, i.e., a Monday, 

Wednesday, and Friday. At high serum concentrations some cell attachment was observed on 

the bottom of the flask. Cells were detached by sharp tapping. The T-flasks were repeatedly 



 

 48 

monitored under a microscope to ensure that almost all the cells had detached from the 

surface of the flask. If the attachment of cells to the surface still persisted, the flask was 

tapped a few more times. Cell concentration and viability were determined and cells were 

further passaged using an inoculation density of 0.1 x 106 cells/ml. The serum concentration 

was gradually decreased as outlined in Table 3-4. Once the cells reached 2% serum 

conditions, it was observed that cell attachment was considerably less. At least two weeks 

were required from initial thaw to the commencement of experiments the details of which 

have been covered in later sections. The cells were grown in suspension using spinners for 

two or three consecutive passages prior to the start of the batch and fed-batch experiments. 

Table 3-4: Procedure for Serum Reduction  

(De Alwis Seneviratne, 2004) 

Passage Percentage Serum 

1 15 (10) 

2 10 (7.5) 

3 7.5 (5) 

4 5 (3.5) 

5 3.5 (2) 

6 2 (2) 

7 2 (2) 

 

3.4.2.2 CHO IgG1-9B8 

The contents of the thawed vial were suspended in 5 ml fresh medium containing 3mmol/L 

glutamine and 17.5 mmol/L glucose. The T-Flask was incubated for a day (depending on the 

rate of cell growth) before passaging. After the cell density was appreciably high, the cells 

were passaged to a higher volume of 20 ml. This diluted the DMSO present to an 

insignificant concentration. Thereafter, the T-flasks were incubated for two to three days 
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(depending on the rate of cell growth) before passaging. The glutamine concentration was 

gradually reduced to 2 mmol/L for performing spinner experiments. 

3.5 Experiments 

The first set of experiments that was utilized for model development was performed at the 

Sanofi Pasteur facilities at Sunnybrook Health Sciences Centre with a hybridoma cell line. 

Two different modes of reactor operation were adopted: batch culture (3 to 9 days) and fed 

batch culture (>7 days duration) and were carried out in 250 mL and 1000 mL spinners.  

The second set of batch experiments was performed at the University of Waterloo as part of 

efforts to generate fluorescence images along the course of the run to gain an understanding 

of the incidence of apoptosis. The cell line utilized was a CHO cell line (De Alwis 

Seneviratne, 2004). 

3.5.1 Batch Experiments- Set 1 

Batch experiments (se Set 1, Batch Experiment in Appendix A) were performed in 250 mL 

and 1 L spinners inoculated with 0.1 x 106 cells/mL to start with. The same spinners were re-

inoculated by replacing spent media with fresh media again every 3 days, two times in a row 

before the start of the experiment (i.e., 2 passages prior to start of experiment). Spinners were 

stored at random positions in two incubators at 37.0 ºC and 8.0 % CO2. The starting basal 

medium was MDMEM with 4mmol/L Glutamine, 25 mmol/L Glucose, 2% FBS.  

 

Samples of 1-3 mL volume were taken daily and analyzed for viable cell concentration, 

percent viability, and pH. Thereafter, samples were sent for analysis for total mouse IgG 

assay by ELISA and amino acid analysis by HPLC. Cell concentration and viability were 

determined using a haemocytometer and 0.5% trypan blue in PBS diluted to a ratio of 1:1. 

3.5.2 Fed-batch Experiments- Set 1 

Fed-batch experiments (see Set 1, Fed-batch Experiment in Appendix A) were performed in 

500 mL spinners inoculated with 0.1 x 106 cells/mL in 300 mL medium to start with. The 

experiment duration was 8 days. Initial volume of the culture was 300 mL with 4 mmol/L 
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glutamine and 25 mmol/L glucose. The starting basal medium taken was MDMEM 

containing 2% FBS without glutamine and glucose.  

 

For the fed-batch experiment, the ratio of glutamine to glucose in the feed was kept at 0.32 

while the glutamine concentration was 4mM in one spinner and 2mM in the other. After 

initial sampling, the spinners were left in the incubator undisturbed for about 20 hours. 

Thereafter, samples were taken regularly for analysis of viable cell concentration, percent 

viability, pH, total antibody titre, and amino acid composition. Samples were taken every 3 

hours during the day and every 12 hours overnight. Sample volume of 0.5 mL was taken for 

glucose and glutamine concentration analysis and cell viability analysis; 1.5 mL for pH 

analysis. Sample volumes were replaced with fresh medium containing 4 mmol/L glutamine, 

25 mmol/L glucose, and 2% serum.  The feeding schedule was adjusted over the course of 

the study from 4-hour to 6-hour schedules. Since fed batch experiments ran the duration of at 

least seven days, 8 to 12-hour periods of ‘night-time non-feeding’ occurred. When possible, 

these periods were minimized. 

 

Also, aliquots of a 1 mL sample were taken for cell count and in/out lab sample retention. 

Cell concentration and viability were determined by Trypan Blue dye exclusion test using a 

hemacytometer. Aliquots were frozen at -80°C to be sent out of the lab for total mouse IgG 

assay by ELISA and amino acid analysis by HPLC. 

 

Once fed batch feeding commenced after 60 hours, sample volumes removed from fed batch 

spinners were not replaced. 7.5 % NaHCO3 was added for any necessary pH adjustments 

during the experiment (pH was maintained between 7.1-7.3). The experiment was terminated 

after 194 hrs.  

3.5.3 Batch Experiments- Set 2 

Batch experiments (see Set 2, Batch Experiment in Appendix A) were performed in spinners: 

2x1-100 and 2x1-250 mL spinners inoculated with 0.3 x 106 cells/mL inoculum. Spinners 

were stored at random positions in two incubators at 37.0 °C and 5.0 % CO2. 
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The starting basal medium was  HyQ SFX-CHO with 17.5 mmol/L glucose in all spinners 

while the glutamine concentration was 4 mmol/L for 1x100 ml spinner and 3 mmol/L 

glutamine in the rest of the spinners. The cultures were grown in serum free conditions.  
 

Samples of 1 mL and 0.6 ml volume were taken daily and analyzed immediately for viable 

cell concentration, percent viability, glucose and fluorescence imaging. Thereafter, 

eppendorfs were centrifuged at 1000rpm for 5 minutes and the culture supernatant was 

removed and transferred to new eppendorfs and frozen at -30˚C. The samples were kept in a 

frozen state for further analysis- ammonia analysis using an ammonia meter, total mouse IgG 

assay by ELISA, amino acid analysis by HPLC. Cell concentration and viability were 

determined using a haemocytometer and 0.5% trypan blue in PBS diluted to a ratio of 1:1. 

Fluorescence images were generated by adding 10 µL of a fluorescent dye-mix (Acridine 

Orange and Ethidium Bromide, mixed together to a final concentration of 50 µg/ml) and 

added to 250 µL of cell suspension in an eppendorf. The sample was allowed to stand for 1 

minute after which a glass slide was stained with 10 µL of the fluorescent sample and images 

were generated with the use of the imaging software- Image-J.   

3.6 Analytical Methods 

3.6.1 Viable Cell Concentration 

Total cell concentration and viability were determined via the Trypan Blue Exclusion Test 

using a hemacytometer and a 1:1 dilution with 0.5% trypan blue in PBS. Cell count was 

made within one minute of dye addition, and within 30 minutes of sampling. The percent 

viability was determined as a ratio of the number of non-stained i.e., viable cells counted to 

the total number of cells counted i.e., stained+non-stained.  
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3.6.2 Substrate Concentration(s) 

3.6.2.1 Hybridoma 130-8F 

Samples were centrifuged for 4 minutes at 1000 rpm to remove cells. Measurements for 

substrate concentrations were recorded and the sample was further aliquoted and stored at     

-80°C for out of lab analysis. The maximum storage time was approximated 1 month. 

 

Glucose, lactate, glutamine, and glutamate concentration was quantified using two YSI 

Biochemistry Analysers. The detection ranges for each respective substance is summarized in 

Table 3-5. A fresh 5 mmol/L calibration standard for glutamine was prepared daily. Samples 

outside this range were diluted with sterile Milli-Q water. 

 

Table 3-5: Detection Range for YSI Bioanalyser  

(De Alwis Seneviratne, 2004) 

Chemical  Detection Range  

D-Glucose  0-25 g/L  

L-Lactate  0-2.67 g/L  

L-Glutamine  0-8 mmol/L  

L-Glutamate  0-10 mmol/L  

  

3.6.2.2 CHO IgG1-9B8 

Measurements for glucose concentration were recorded using an Ascensia Contour glucose 

meter and the samples were centrifuged for 5 minutes at 1000 rpm to remove cells. The 

sample was further aliquoted and stored at -30°C for further analysis.  
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3.6.3 Ammonia Assay 

For set-1 of experiments, diluted samples (1:10 with Milli-Q water) were stored either at -

80ºC or 4ºC (< 1 week) and tested for ammonia content using a Sigma Ammonia Kit (Sigma 

171-B). 

 

For set-2 of experiments, acidified samples (with phosphoric acid) were stored at -30ºC and 

tested for levels of ammonia using an Orion ammonia meter. Fresh standards for calibration 

of ammonia meter were prepared daily. 

3.6.4 Out-of-lab Analysis for Samples from Set-1 Experiments 

Samples of volume between 0.2-1.0 mL of supernatant were aliquoted and stored at -80ºC 

prior to being sent for analysis for monoclonal antibodies and amino acid assay (De Alwis 

Seneviratne, 2004). 

3.6.4.1 Monoclonal Antibody Assay 

Total IgG titre or monoclonal antibody concentration was determined using the competitive 

Enzyme Linked ImmunoSorbent Assay (ELISA). The assay was carried out by the Research 

Microbiology Group at Aventis Pasteur Ltd. The assay involves standard ELISA techniques. 

3.6.4.2 Amino Acid Assay 

Amino Acids were assayed using High Performance Liquid Chromatography (HPLC, 

Agilent 1100 Series, Hypersil AA-ODS column). Analysis was carried out by the Process 

Development Formulations & Stability Platform of Aventis Pasteur Ltd. Samples were run in 

groups according to each cell culture growth run. The samples were filter centrifuged in 

Millipore Microcon YM-10 and microcentrifuged for 15 minutes at 8000 rpm to deproteinize 

the cell culture media. The filtrate was further diluted as required. Twenty amino acids, listed 

in Table 3-6, in deproteinized cell culture media were quantified using an automated a two 

step precolumn derivatization method for reverse phase HPLC analysis with fluorescence 

detection. The two step pre-column derivatization reaction occured first with OPA (o-

phthaldehyde and 3-mercaptopropionic acid in borate buffer, Agilent 5061-3335), which 
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reacts with primary amino acids; and then with FMOC (9- fluorenylmethylchloroformate in 

acetonitrile, Agilent 5061-3337), which reacts with secondary amino acids. The OPA 

derivatives elute chromatographically before the FMOC derivatives. 

 

Table 3-6: Amino Acids Quantified in Assay 

ASP Aspartic Acid TYR Tyrosine 

GLU Glutamic Acid CYS Cystine 

ASN Asparagine VAL Valine 

SER Serine MET Methionine 

GLN Glutamine TRP Tryptophan 

HIS Histidine PHE Phenylalanine 

GLY Glycine ILE Isoleucine 

THR Threonine LEU Leucine 

ALA Alanine LYS Lysine 

ARG Arginine PRO Proline 

3.6.5 Fluorescence Imaging  

3.6.5.1 Protocol 

Basic Protocol has been adapted from Coligan (1994) and the work of Mercille and Massie 

(1994). According to this assay, a cell suspension is mixed with fluorescent DNA-binding 

dyes and the sample is then observed under a fluorescence microscope to examine chromatin 

organization. 100µg/ml Acridine Orange (AO) and 100 µg/ml Ethidium Bromide (EB) are 

mixed in a ratio of 1:1. 10 µl of this dye mixture is added to 250 µl of cell suspension having 

cell concentration in the range 5x105 to 6x106 cells/ml in an eppendorf that is then allowed to 

stand for a minute. 10 µl of the sample is then placed on a glass slide and covered with a 
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cover-slip. The specimen is examined under a fluorescence microscope (Coligan, 1994; 

Mercille and Massie, 1994; Wyllie, 2004). 

3.6.5.2 Instrument Settings 

Microscope used: Zeiss Axiovert 200 with eppiilumination. 

Objective lens: Nikon 40X Plan Neofluar with numerical aperture 0.75.  

Digital Camera: Sony, Model No.XCD-X700; DC8-30V 

Filter settings: as specified in Table 3-7 below. 

Table 3-7: Filter Specification for Fluorescence Imaging 

Filter set Fluorochrome Excitation Beam Splitter Emission 

Blue Filter Acridine Orange  

(both DNA and RNA)

475-495 nm 510 nm 515-565 nm

Red Filter Ethidium Bromide 515-560 nm 565 nm 580-630 nm

 

3.6.5.3 Image Processing 

The images captured by the available set-up were gray-scale images and needed to be 

processed to colored images by a software called Image-J. Image-J is a public domain, Java-

based image processing program that can open and save all supported data types as TIFF 

(uncompressed) or as raw data. It is capable of opening and saving GIF, JPEG, BMP, PNG, 

PGM, FITS and ASCII, DICOM, TIFFs, GIFs, JPEGs, DICOMs and raw data using a URL 

and many other formats using plugins (http://rsb.info.nih.gov/ij/features.html). 

3.6.5.4 Assays for Identification of Apoptosis and Necrosis 

Before progressing to the classification of cells in regular cell culture, it is imperative to be 

able to independently identify apoptosis and necrosis. In order to do so, assays for apoptosis 

and necrosis were performed whereby apoptosis and necrosis was induced in a cell culture in 

the exponential phase of growth.  
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(i) Induction of Apoptosis  

For the induction of apoptosis, the protein synthesis inhibitor cycloheximide was added.  

Cycloheximide was added at a final concentration of 25 µg/ml to a T-75 flask containing 

over 1x106 cells/ml. The flask was then incubated in a CO2 incubator at 37 ˚C. Images were 

taken after addition of the mentioned reagents and incubation overnight. 

 

(ii) Induction of Necrosis 

Although several different methods have been suggested for the induction of necrosis by 

artificial means in a cell culture (Mercille and Massie, 1994), the easiest method was 

considered for application. For induction of necrosis, 25 % v/v HPLC grade ethanol was 

added to a T-75 culture flask with cells at a concentration of over 0.6x106 cells/ml and 

viability equal to 98%. The flask was then incubated in a CO2 incubator at 37 ˚C. After 

overnight incubation, the flask was tested for necrotic morphology every few hours for the 

next day since it was not known for certain what the time span for induction of necrosis was 

using this approach. 24 hours after incubation, all cells were necrotic; the Trypan Blue 

exclusion test confirmed this. 
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Chapter 4 
Model Development 

The importance of model development has been highlighted in the literature review section. 

In this section, the exercise of model development and the mathematical concept behind it 

have been explained.  

 

The large-scale production of MAb by mammalian cells in batch and fed-batch culture 

systems is limited by the unwanted decline in cell viability and reduced productivity that may 

result from changes in culture conditions. Therefore, it becomes imperative to gain an in-

depth knowledge of the factors affecting cell viability and subsequently antibody production. 

Although considerable effort has been made to understand the kinetics of hybridoma growth 

and metabolism, it has become evident that a model structure is not a priori obvious. A 

common limitation of the currently available models is that they focus on individual 

characterization of selected aspects of the overall cell metabolism (exponential or post-

exponential).  

 

The aim of the present work is to obtain an overall dynamic model that predicts the behaviour 

of both batch and fed-batch systems as a function of the extra-cellular nutrient/metabolite 

concentration at any time and utilize this model for optimization of MAb production in the 

future. A systematic approach has been adopted for model development based on Metabolic 

Flux Analysis (MFA) for animal cell culture proposed by Provost and Bastin (2004) that has 

been applied by Gao et al. (2006) with some modifications for batch production of MAb. 

However, in the development of the MFA and the resulting dynamic model of metabolites, the 

viable and dead cell concentrations and their corresponding rates of change have not been 

explicitly modeled. Instead, their experimental values have been used as an input for the 

metabolites model.  
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The current work addresses these issues as follows:  

1. MFA has been applied to a fed batch situation in order to obtain a dynamic model for 

this mode of operation. In this context, this study compares the flux values obtained 

in batch and fed batch operations and investigates whether the same structure of the 

dynamic model is applicable to both.  

2. The viable and dead cell concentrations are explicitly modeled. Correlation analysis is 

used to investigate the dependencies of growth and death rates on nutrient and 

product concentrations. Then, the cell concentration model is coupled to the dynamic 

model for metabolites that utilizes experimental starting values to come up with an 

integrated model that predicts for all significant system variables, including viable 

and dead cell concentrations, independent of subsequent experimental values.  

 

The dynamic metabolic model proposed here is based on a combination of stoichiometric and 

dynamic mass balances as is explained in detail in further sections. First, stoichiometric flux 

balances based on a comprehensive metabolic network are constructed. Second, the 

metabolic network is simplified by systematic elimination of fluxes that are deemed 

insignificant. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 59 

4.1 Metabolic Flux Analysis (MFA): 

4.1.1 Theory 

A powerful methodology for the determination of significant metabolic pathways is MFA, 

whereby intracellular fluxes are calculated by utilizing a stoichiometric model for the major 

intracellular reactions and applying mass balances around intracellular metabolites 

(Papoutsakis and Lee, 1999). The final outcome of flux calculation is a metabolic flux 

network representing the biochemical reactions included in the calculation along with an 

estimate of the steady state rates, referred to as the fluxes, at which the reactions occur. Thus, 

MFA permits to calculate values of intracellular fluxes from available extracellular fluxes, 

some of which are significant and some are negligible. Based on the set of the most 

significant fluxes, the original metabolic network can be reduced to contain only the 

reactions corresponding to significant fluxes. The reactions in the reduced network are 

further used to formulate a set of elementary macro- reactions linking the substrates to the 

products, thus eliminating involvement of intracellular metabolite concentrations in the 

mathematical model. A set of dynamic mass balances is then devised that involves rate 

expressions for the consumption/ production of substrates/ metabolites.  

 

Furthermore, MFA provides additional information on the following aspects (Papoutsakis 

and Lee, 1999): 

 

(i)  Identification of Alternative Pathways: 

Often the actual biochemical route by which a substrate is converted into products is not 

evident as there are many alternate pathways available for the conversion to take place. MFA 

is important in identifying pathways that can reproduce the macroscopic flux measurements 

of extracellular metabolites equally well and eliminate alternate pathways that are not 

possible because of their inability to satisfy material balances. 
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(ii)  Calculation of Non-measured Extracellular Fluxes: 

In case of under-determined systems, where the number of extracellular measurements 

available is less than what is required to calculate intracellular fluxes, we can still compute 

their values by applying the stoichiometric model proposed under MFA approach. 

 

(iii)  Calculation of Maximum Theoretical Yields: 

Although ad hoc theoretical yield determination is possible and is often performed; however, 

in complex metabolite networks MFA provides a more formalized approach.  

4.1.2 Metabolic Network for Hybridoma Cells 

The starting point of MFA is obtaining the reaction network stoichiometries describing the 

conversion of substrates into metabolic products and biomass constituents (or 

macromolecular pools). The overall metabolic network for hybridoma has been taken from 

(Gao et al., 2006) and is shown in Figure 4-1. This figure represents the system under study 

and accounts for all the major energy producing pathways in hybridoma, namely the TCA 

cycle, Embden-Meyerhoff Fermentative pathway, Glutaminolysis and Respiration that 

produce both energy and precursors for biosynthesis (Barford et al., 1992). A key component 

of the metabolic network is the TCA cycle or Citric Acid cycle that is involved in the 

catabolism of all three major food groups: carbohydrates, lipids and proteins. As Figure 4-1 

illustrates, the complete reaction network involves m(=30) metabolites and n(=32) fluxes 

corresponding to 32 reactions. 
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Figure 4-1 Simplified Metabolic Network of Hybridoma Cells 

adapted from (Gao et al. 2006) 

The reactions corresponding to the metabolic flux network are given in Table 4-1. 

Table 4-1: List of Stoichiometric Equations 

ji.  

(i=1,2,…,32) 

Reaction 

j1.  GLC→ 2PYR + 2NADH + 2ATP 

Ala,Cys 

29,30 
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j2.  PYR→ AcCoA + CO2+NADH 

j3. AcCoA + OAA→ aKG + NADH + CO2 

j4.  aKG→ SuCCoA+ NADH + CO2 

j5.  SuCCoA→ FUM + NADH 

j6.  FUM→ OAA + NADH 

j7.  OAA→ PYR + NADPH + CO2 

j8.  PYR + NADH→ LAC 

j9.  THR→ PYR + CO2 + NH3 + 2NADH 

j10.  2GLY→ SER+CO2+NH3 + NADH 

j11.  SER→ PYR+NH3 

j12.  PHE→ TYR + NADH 

j13.  TYR→ FUM + 2AcCoA + NH3 + CO2 + NADPH 

j14.  VAL→ SuCCoA + CO2 + NH3 + NADPH 

j15.  THR→ SuCCoA + NH3 

j16.  ILE→ SuCCoA + AcCoA + NADPH + NH3 

j17.  MET + O2→ SuCCoA + SO2 + NADPH + NH3 

j18.  LEU→ NH3 + 3AcCoA + NADPH 

j19.  LYS→ 2 AcCoA + 2CO2 + 2NADPH + 2NH3 

j20.  HIS→ GLU+2NH3+CO2 

j21.  ARG→ aKG + 2NH3 + UREA + 3 NADH 

j22.  GLU + ATP + 2 NADPH→ PRO 

j23.  ASN→ ASP + ATP + NH3 

j24.  GLN + ASP + 2 ATP→ ASN + GLU 
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j25.  GLN→ GLU + ATP + NH3 

j26.  GLU→ AKG + NADPH + NH3 

j27.  PYR + GLU→ ALA + AKG 

j28.  GLU + OAA→ ASP + AKG 

j29.  CYS + O2→ PYR + SO2 + NADH + NH3 

j30.  ALA→ PYR + NADH + NH3 

j31.  

 

 

0.0508GLC +0.0577GLN +0.0133ALA +0.007ARG +0.006ASN 

+0.020lASP +0.0004CYS +0.0016GLU +0.0165GLY +0.0033HIS 

+0.0084ILE +0.0133LEU +0.0101LYS +0.0033MET +0.0055PHE 

+0.0081PRO +0.0099SER+0.008THR+0.004TYR+0.0096VAL→BIOMASS 

j32.  

 

 

0.0104GLN +0.011ALA +0.005ARG +0.0072ASN +0.0082ASP 

+0.005CYS +0.0107GLU +0.0145GLY +0.0035HIS +0.005ILE 

+0.0142LEU +0.0145LYS +0.0028MET +0.0072PHE +0.0148PRO 

+0.0267SER +0.0160THR +0.0085TYR +0.0189VAL→ MAb 

  

4.1.3 Calculation of Conversion Rates and Fluxes 

Mass balances for the intracellular and extracellular metabolites involved in the system can 

be represented as follows: 

(t)vX
dt

(t)d Rψ
=   (4.1) 

where ψ is the vector of intracellular and extracellular metabolite concentrations and t is the 

culture time. R is the vector of specific uptake/production rate of substrates/metabolites. 

Xv(t) is the viable cell concentration and is a function of culture time, t. Here, an assumption 

of balanced growth condition has been made. This implies that the system is at a quasi-steady 

state and consequently the net conversion rate of all intracellular metabolites is equal to zero. 
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This is a common assumption made in the literature for this type of flux analysis (Provost 

and Bastin, 2004). 

 

Upon integration of equation (4.1) and assuming an average value of R over the integration 

interval:  

∫ ∫=
t

0

t

0

(t)dX(t)d vRψ    (4.2) 

 ψt-ψ0 = R(CHt-CH0)  (4.3) 

CH is referred to as the cumulative volumetric cell hours (Dutton et al., 1998) and can be 

mathematically expressed as:  

∫=
t

0

(t)dtXCH v   (4.4) 

The integral expression in equation 4.4 can be approximated by an algebraic expression as 

shown by Dutton et al. (1998): 
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where Xv is the viable cell concentration and t is the culture time. 

 

The use of the cumulative volumetric cell hours allows for an assessment of productivity and 

biological capacity for production on the same cumulative basis (Dutton et al., 1998). 

R is calculated from linear regression between measured concentrations of metabolites and 

volumetric cell hours (CH) based on equation (4.3). The need for concentration measurements 

for intracellular metabolites is eliminated by assuming that the system operates under balanced 

growth conditions and consequently, the reaction rates corresponding to intracellular 
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metabolites(1 to 6 according to the numerical designation given in Figure 4-1) are assumed to 

be equal to zero (Provost and Bastin, 2004; Gambhir et al., 2003). 

 

The growth curve for batch or fed-batch run has been broadly divided into two phases: 

exponential and post-exponential. Essentially, all data points corresponding to the peak viable 

cell density and before are part of the exponential phase. Conversely, the data points from the 

peak viable cell density and beyond constitute the post-exponential phase. This is 

schematically shown in Figure 4-2(a).  

 

 

 

 

Exponential
Post-Exponential 

C
el

l C
on

ce
nt

ra
tio

n 
 

(c
el

ls
/1

09  c
el

l h
ou

rs
) 

Time (hours) 
(a) 



 

 66 

 

 

 
Figure 4-2 Division into Phases for Calculation of R for (a) Batch Run and (b) Fed-

batch Run, respectively 

 

The division into various growth phases requires special attention for fed-batch culture as 

addition of feed at several instances during the run caused abrupt drop in biomass 

concentration. The separation of data into intervals was done as shown in Figure 4-2(b) by 

classifying all time intervals immediately after a feed addition as exponential and the point in 

time where the viable cell concentration started to fall was considered as the beginning of the 

post-exponential phase. In the experiments under study, there were 10 successive exponential 

phases followed by a post-exponential phase. Thus, an average R value was calculated for the 

exponential phase, one for the post-exponential phase and another for the overall experiment. 

 

Under the assumption of quasi-steady state, the conversion or production rate, R(m) of a 

nutrient or metabolite in a biological system can be expressed as (Bonarius et al., 1996):  
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ij
i
α(m) mi,∑=R   (4.6) 

where R is the uptake or production rate of metabolite m (=1,2,…M) in reaction i (=1,2,…N). 

 α
i,m 

is the stoichiometric coefficient for metabolite m in reaction i. α
i,m 

has a negative value for 

substrates that get consumed and is positive for metabolites that are produced. j
i 

is the 

intracellular flux for reaction i. In matrix notation, equation (4.6) may be written as:  

R=Aj    (4.7) 

where R is the vector of average uptake or production rates, j is the vector of all intracellular 

and extracellular species fluxes and A is the matrix of stoichiometric coefficients of the 

corresponding reaction species involved in the system metabolic network as shown in Figure 

4-1.  

A={αi,m}i=1,2,…N;  m=1,2,…M (4.8) 

In the case under study, N=32 and M=28. 

 

Referring back to system of equations in (4.7), experimental data was available to determine 

values of the vector R while the expression for the stoichiometric matrix A was be extracted 

from the reaction scheme in Figure 4-1. Thus, values for the flux vector j were easily 

determined using regression under the Quadratic Programming approach.  

( ) ( )AjRAjR −− TMin   (4.9) 

 

Now, it must be remembered that only 28 extracellular and intracellular measurements were 

known using which 32 flux values needed to be determined. Henceforth, the system of 

equations was underdetermined i.e., less equations than unknowns. Among the unknown 

quantities were concentrations for cystine and ammonia. Fortunately, a unique solution for 

the system was possible by imposing additional constraints on the system. These additional 

constraints were based on the assumption that all reactions should proceed in the direction 
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indicated in the metabolic flux network shown in Figure 4-1. This implies that all fluxes will 

have values at least greater than or equal to zero. Since there were 32 unknowns with 28 

equations, a unique solution is assured as long as the number of active constraints in the 

solution of the QP is greater than or equal to four. All the solutions found in the current work 

satisfied this criterion. Also, since cystine measurements were not available, its consumption 

rate was taken to be equal to zero as opposed to being excluded, because otherwise, a 

physically unrealistic flux distribution was obtained as solution, i.e. the flux corresponding to 

cystine consumption was unusually high. 

 

The metabolic flux analysis presented above is strongly based on averaged measured 

consumption and production rates of extracellular metabolites. Consequently, it is expected 

that the measurement experimental noise will surely affect the calculated flux distribution. In 

order to reduce sensitivity to noise, experimental values of R for a number of batches or for 

measured values of R at different times during the run in case of a fed-batch experiment were 

considered together to conduct the QP regression proposed above. For example, if s sets of 

experimental batches are considered, the augmented system of equations may be expressed 

as follows.  

jAR

A

A

R

R

modmod

sets

set1

=⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

sMxNsMx1

MM

  (4.10) 

s: is the number of batches/sections considered in a fedbatch experiment.  

Then, a solution for the resulting over-determined system of equations given by (8) can be 

obtained from the following minimization problem:  

)(T)Min( jmodAmodRjmodAmodR −−  

    s.t. j≥0      (4.11) 
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The problem in (4.11) can be solved by a Quadratic Programming (QP) algorithm (Gao et al., 

2006). The result of flux calculation is a metabolic flux network outlining the various 

biochemical reactions included in the calculations along with an estimate of the steady state 

rate (i.e., the flux) at which each reaction in the diagram occurs. Depending on the 

contribution of each reaction in the network, the smaller flux values that are a negligible 

portion of the net flux through the system can be eliminated to obtain a reduced metabolic 

network. The results of this reduction process are given in Chapter 5.  

4.2 Reaction Kinetics and Development of the Dynamic Model  

A dynamic model was developed for predicting metabolite concentrations over the duration 

of the culture and is specifically referred to as ‘Dynamic Model’ elsewhere in the text to 

differentiate it from other dynamic models developed in this work. 

 

The dynamics involved in a stirred spinner is given by the following macroscopic material 

balance model:  

(t)(t)
dt
(t)d uKrξ

+=   (4.12) 

In the equation above, the symbol ξ = (ξ
1
, ξ

2
... ξ

i
)

T 
is the vector of concentrations of 

extracellular species and is a subset of the vector ψ given by equation (4.1). r = (r
1
, r

2
…r

i
)

T 
is 

the macro-reaction rate vector. K is the matrix containing stoichiometric coefficients of the 

reaction species involved in the elementary macro reactions. The second term on the right 

hand side of the equation u(t) represents the vector of net exchange rate of species with the 

surroundings. The term is zero for all species except for CO2 which is a gas. However, 

measurements corresponding to CO2 were not available and such measurements are difficult 

to make. As a result, the term u(t) has been effectively dropped from equation 4.12 and it can 

in turn be written in the matrix form as follows: 

(t)
dt
(t)d Krξ

=     (4.13) 
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Monod kinetics has been assumed for all the reactions according to the general expression:  

ev,X
kNutrient

Nutrient
ia(t)ir

ii
i

⎥⎦
⎤

⎢⎣
⎡

+
∏=  (4.14) 

where ri(t) 
is the reaction rate for i

th 
reaction; Nutrient

i 
and k

i 
are the corresponding substrate 

concentration and half-saturation constant, respectively. a
i 
is the maximum rate at which the 

reaction can proceed, while X
v,e 

is the experimental viable cell concentration.  

 

There are two methods for estimation of the specific growth rate, ai and the associated 

Monod constant, ki in equations elucidating behavior of growing cultures. One is the steady 

state measurement of growth and the limiting substrate concentration in continuous culture at 

different dilution rates. An alternative method is the measurement of the growth rate at 

different substrate concentrations in batch culture (Banerjee, 1993). 

 

The assumption of balanced growth made previously implies that the reactions taking place 

in the system operate at a constant maximum rate during the exponential phase. In the 

absence of experimental data for estimation of ai and ki, the maximal rates, ai’s can be 

obtained by choosing the half saturation constants k
i
’s in equation (4.14) to be significantly 

smaller in comparison to substrate concentration for major part of the experimental run, i.e. 

r(t)≈aX
v,e

(t). However, attention was paid that the values were not too small to avoid any 

numerical stiffness problems (Gao et al., 2006). The dynamic model expressed in (4.13) can 

thus be stated as:  

(t)ev,X
dt
(t)d Kaξ

=   (4.15) 

Additionally, following equation (4.1) the mass balances for the extracellular metabolites 

specified by the vector ξ can be expressed as:  

(t)ev,X
dt
(t)d

ξRξ
=   (4.16) 
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where R
ξ 
is the conversion rate vector and is a subset of vector R.  

 

Next, utilizing equations (4.13) and (4.14), a system of algebraic equations can be derived as 

follows.  

Ka=Rξ    (4.17) 

As explained before, experimental data is used to compute the values for R and the reduced 

reaction scheme for determining expression for K. Again, the system in (4.17) is generally 

over-determined and correspondingly the a-values can be estimated by applying QP to solve 

the following constrained minimization:  

Min (R
ξ
-Ka)

T
(R

ξ
-Ka) 

s.t. a≥0   (4.18) 

4.3 Development of the Biomass Model 

The second objective of the study was to model the growth and death of the cells. The 

underlying motive was to develop a general model to balance the viable and dead cell 

concentrations as a function of system properties at that instant in time. Thus, the 

fundamental model structure was expected to be of the general form expressed in equation 

4.19.  

)g(dk
dt

dX
X
1

)g(dk-)f(gk
dt

dX
X
1

d
v

v
v

ξ

ξξ

=⎟
⎠

⎞
⎜
⎝

⎛

=⎟
⎠

⎞
⎜
⎝

⎛

  (4.19) 

where Xv and Xd are the viable and dead cell concentration, respectively and kg and kd are the 

parameters of the system. 

 

Here, Biomass Model refers to the dynamic model that predicts the viable and dead cell 

concentration over the duration of the culture and the metabolite concentrations over time act 

as inputs to the model. The phrase ‘Biomass Model’ has the same implication as mentioned 

here elsewhere in the text. 
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The key challenge in this model was to find from experimental data the explicit dependence 

of the growth and death rates with respect to the extracellular metabolites.  Although no 

starting assumptions were made as to whether the model would be multiplicative or not, it 

was expected that the Xv and Xd will show dependence on more than one variable/metabolite. 

To find these dependencies, it was decided to use correlation analysis between the 

experimentally measured terms in the left hand side of equation (4.19) and different 

functional forms of nutrient and product concentrations. Since there was no prior information 

to indicate the nature of mathematical functions that would account for behavior of f(ξ) and 

g(ξ), Monod functions for metabolite concentration were initially used for testing correlation. 

The software- STATISTICA was used to find these explicit functional forms. Results of the 

correlation analysis for the system under study are presented in Chapter 5. Finally, after these 

functions were found, the growth and death rate coefficients, k
g 

and k
d given in (4.19) were 

found from the following minimization problem. 

Min [Sum of squares] = ∑∑ −+− 2)pd,Xed,(X2)pv,Xev,(X   (4.20) 

Where Xv,e, Xv,p, Xd,e, Xd,p are the experimental and predicted values of the viable and dead 

cell concentrations, respectively.  

4.4 Integration of the Dynamic Model and Biomass Model 

Once separate models for predicting metabolite concentrations and biomass concentration 

over time were developed, an integration of these two models is required to come up with an 

overall generalized model. Integration of the two models into one overall model is 

schematically described in Figure 4-3. The advantage of the overall model over the 

individual sub-models is its ability to predict both metabolite and biomass concentration 

solely on the basis of starting concentrations of the metabolite/concentration variables 

involved in the model. The estimated parameters for the two separate models needed to be 

adjusted in order to fine-tune the predictions as combining the two models led to introduction 

of greater noise in the overall data-set. The obtained integrated model is presented in greater 

detail in Chapter 5. 
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Figure 4-3 Integration of Dynamic and Biomass Model 
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Chapter 5 
Results 

As part of the modelling procedure, firstly MFA was applied to a general reaction network 

for hybridoma cells developed on the basis of published information. A reduced metabolic 

network was obtained as a result. The reactions in the reduced network were further utilized 

to develop rate expressions for consumption/ production rates of substrates/products. A 

dynamic model was then constructed that predicted metabolite concentrations over time. 

Next, correlation analysis was applied to obtain the dependence of specific growth and 

specific death rates on metabolite concentration(s). Thus, a multiplicative model was 

developed for biomass prediction. And finally, individual models were integrated to give an 

overall model that utilizes starting values for metabolite concentrations and predicts their 

subsequent concentration values in time.  

 

Two sets each of batch and fed-batch data were available. MFA was applied based on the 

available data sets. One batch and one fed-batch data set were utilized towards model 

calibration and the other set of batch/fed batch data was used for model prediction. This 

enabled us to test the validity of the model(s).  

 

Based on the results obtained from the simulations, hypotheses about the cell metabolism and 

kinetics of the system have been made in Chapter 7. Additionally, the drawbacks of the study 

have been highlighted and improvements have been suggested that will be a part of future 

work. 
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5.1 Obtainment of the Reduced Metabolic Network 

The first step in the process of model development is the MFA. Initially experimental batch 

data for two separate runs was considered. The complete run was divided into exponential 

and post-exponential phases as described in the previous chapter. The data included 

concentration measurements (mmol/L) for 22 extracellular metabolites that were further 

converted to mmol/(109cell-hours). The formula(s) for such a conversion have been given in 

the previous chapter. Corresponding specific uptake/production rates for these metabolites 

were calculated for the exponential, the post-exponential and the complete run; and have 

been denoted by Rexp, Rpost-exp and Rfull respectively.  The uptake/production rate for 

intracellular metabolites was taken equal to zero under the assumption of balanced growth 

conditions. Equation (4.3) was used to compute these three R-vectors. The calculated values 

have been expressed in Appendix-B. R-values for the intracellular metabolites in the reaction 

scheme were taken to be equal to zero on the basis of the balanced-growth assumption made 

earlier. 

 

Now, it must be mentioned that only 28 measurements- extracellular and intracellular were 

known using which 32 flux values needed to be determined. Henceforth, the system of 

equations was underdetermined i.e., less equations than unknowns. Among the unknown 

quantities were concentrations for cystine and ammonia. However, the system can be made 

over-determined by applying additional constraints to the system; it was stated the solution 

should be such that all flux values are at least greater than or equal to zero. Furthermore, an 

assumption was made to the system; the consumption rate of cystine (missing measurement) 

was taken to be equal to zero rather than being just left out. This is because otherwise a 

physically unrealistic flux distribution was obtained as solution, i.e., flux corresponding to 

cystine consumption had an unusually high value. It was found that any time, more than three 

constraints were satisfied; thus the solution was unique. In order to reduce the sensitivity to 

noise, experimental values of R for a number of batches were considered. 
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By substituting values of the calculated uptake/production rate vector Rmod into equation 

(4.10) where the expression for the stoichiometric matrix Amod is obtained by inspection from 

Figure 4-1, the flux vector j was obtained by applying a Quadratic Programming routine as in 

equation (4.11). As explained above, three values for vector R corresponding to the 

exponential, post-exponential and overall average phase were obtained. The corresponding 

values for the flux vector have been denoted by jexp, jpostexp, jfull.  

 

On observation of the overall flux distribution (jfull) in Figure 5-1(a), it is evident that the flux 

values from j9-j22; and then j26, j29 and j30 have values very close to zero. This implies that 

the reactions these fluxes represent do not proceed appreciably and hence do not contribute to 

the overall cellular metabolism. Consequently, they were ignored and henceforth the original 

reaction network was reduced to Figure 5-2. 

 

To obtain the reduced metabolic network for the fed-batch case, the growth phase of each of 

the two fed-batch experimental runs was subdivided into 10 time intervals that has been 

described in detail in Chapter 4. The post-exponential phase of fed-batch experiments has 

been defined as decline phase when feeding was stopped and there was an irreversible drop 

in viable cell concentration. Subsequently, average reaction rate values, as per equation (4.3), 

were calculated for each one of these 10 time intervals (R1,…,R10). Then, the data 

corresponding to the 10 intervals was simultaneously used to define the over-determined 

system of equations given by equation (4.10) and the corresponding fluxes were obtained 

from the QP solution based on (4.11). And finally, an overall average value of R denoted by 

Rfull was computed based on equation (4.3). Again, the calculated values for R have been 

given in Appendix-B while the graphical representation for the average fed-batch flux values 

follows in Figure 5-1(b).  
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Figure 5-1 Distribution of Average Fluxes for (a) Batch Run and (b) Fed-batch Run 

 

It is clear from Figures 5-1(a) and 5-1(b) that the distribution trend of fluxes in batch and fed-

batch cultures is strikingly similar. Based, on the flux distribution, the same exercise of 



 

 78 

eliminating insignificant fluxes from the complete metabolic network was undertaken for the 

fed-batch case. Since the same fluxes were found to be insignificant in both culture modes, a 

common reduced metabolic network was obtained and has been shown in Figure 5-2. 
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Figure 5-2 Reduced Metabolic Network 

 

The reduced network obtained in the current work is very similar to the one obtained by Gao 

et al. (2006) for hybridoma in batch culture with the only difference being that flux j28 

instead of j26 is eliminated, otherwise the reduced metabolic network is identical.  
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5.2 Obtainment of the Dynamic Model 

5.2.1 Developing Fundamental Macro-Reactions 

Each reaction species in Figure 5-2 represents a ‘flux mode’. Based on the reduced reaction 

network, the elementary flux modes were computed and in turn, translated into a set of 

macro-reactions linking/establishing relationships between the various extracellular 

substrates and products (Provost and Bastin, 2004).  

 

The intracellular metabolites were eliminated by simple algebraic manipulation in light of 

missing measurements for the same. The intracellular fluxes could not be measured in this 

work and therefore even if they could be calculated, their values could not be verified due to 

a lack of experimental data for the same. The process of elimination of the intracellular 

fluxes can be illustrated by the following example: 

 

J1  Glc→2Pyr     …જ1 Multiplying equation J1 by 1 and,  

J2  Pyr→Lac     …જ2  Multiplying equation J2 by 2 

------------------------------------------------------------Adding up J1 and J2 so as to eliminate Pyr 

E1:  Glc→2Lac  

---------------------------------------------------------------- 

 

After the elimination of intracellular fluxes from the reduced reaction network, 9 elementary 

macro-reactions were derived and have been summarized in Table 5-1.  

 

Table 5-1: Elementary Macro Reactions 

Ei 

(i=1,2…9) 

Reaction 

E1 Glc(G) →2Lac  
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E2 Glc+2Glu(U) →2Ala+2CO
2
+2Lac  

E3 Glc+2Glu→2Lac+2NH
3
+8CO2 

E4 Glu→Pro 

E5 Asn(S) →Asp+NH
3
 

E6 Gln(Q)+Asp→Asn+Glu 

E7 

Biomass

0.0096Val0.004Tyr0.008Thr0.0099Ser

0.0081Pro0.0055Phe0.0033Met0.0101Lys0.0133Leu0.0084Ile

0.0133His0.00084Ile0.0033His0.0165Gly0.0016Glu0.004Cys

0.0201Asp0.006Asn0.007Arg0.0133Ala0.0577Gln0.0508Glc

→

++++

++++++

++++++

+++++

E8 

MAb

0.0189Val

0.0085Tyr0.0160Thr0.0267Ser0.0148Pro0.0072Phe0.0028Met

0.0145Lys0.0142Leu0.0054Ile0.0035His0.0145Gly0.0107Glu

0.0005Cys0.0082Asp0.0072Asn0.005Arg0.011Ala0.0104Gln

→

+

++++++

++++++

+++++

 

E9 Gln→Glu+NH
3
 

 

Based on the above results for the reduced reaction network, the reduced stoichiometric 

coefficient matrix, K can be written as:  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−−
−−−
−−−−−

−−−−
−−−−

=

010000000MAb
001000000Biomass
00148.00081.0001000Pro
0011.00133.0000020Ala
00082.00201.0110000Asp
00072.0006.0110000Asn
10107.00016.0101220Glu
000000222Lac
10104.00577.0100000Gln

000508.0000111Glc
987654321 rrrrrrrrr

K
  (5.1) 

 

The rows in K represent the various extracellular metabolites being considered in the model, 

and the columns represent the number of macro-reactions obtained as a result of the 

elimination of intracellular measurements that are represented in Table 5-1. It should be 

noted that unmeasured components such as CO
2 
and NH

3 
were eliminated in the equations.  

5.2.2 Development of Rate Expressions 

Since it was assumed that the reactions shown in Table 5-1 proceed by Monod kinetics, the 

reaction rates could be expressed as Monod functions of the nutrient concentrations involved 

in the reaction under consideration. For example, the reaction rate for the elementary reaction  

E2: Glc+2Glu→2Ala+2CO
2
+2Lac  

can be expressed as:  

vX
kGlu

Glu
kGlc

Glcar
uG22 ++

=   (5.2) 

The fundamental macro reactions and their rate expressions are stated in Table 5-2.   
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Table 5-2: Macro Reactions and Accompanying Reaction Rates 

Reaction Rate Expression Parameters 

E1 ev,X
kG

Gar
G11 +

=  a1,kG 

E2 ev,X
kU

U
kG

Gar
UG22 ++

=  a2,kG,kU 

E3 ev,X
kU

U
kG

Gar
UG33 ++

=  a3,kG,kU 

E4 ev,X
kU

Uar
U44 +

=  a4,kU 

E5 ev,X
kS

Sar
S55 +

=  a5,kS 

E6 ev,X
kF

F
kQ

Qar
FQ66 ++

=  a6,kQ,kF 

E7 ev,X
kG

Gar
G77 +

=  a7,kG 

E8 ev,X
kQ

Qar
Q88 +

=  a8,kQ 

E9 ev,X
kQ

Qar
Q99 +

=  a9,kQ 

 

5.2.3 Model Calibration and Testing  

The half saturation constants, kij (i= a certain metabolite and j= number of the elementary 

reaction) in Table 5-2 were chosen by inspection such that they were small enough to be 

negligible when the nutrient concentration was reasonably high but would be large enough to 

avoid any stiffness problems (Gao et al., 2006).Their exact values have been given in Table 

5-3. 
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Table 5-3: Values for the Half-saturation Constants 

Constant Batch Mode  

(in mmol/L) 

Fed-batch Mode  

      (in mmol/L) 

kG 4 0.5 

kQ 0.05 0.5 

kU 0.01 0.01 

kS 0.02 0.12 

kF 0.05 0.05 

 

Putting all rate expressions in the matrix form, and utilizing equalities specified in Chapter 4, 

we get: 

ev,X
dt
(t)d

ev,X(t)
dt
(t)d

Kaξ

KaKrξ

=⇒

==
  (5.3) 

The a-coefficients in the reaction rate expressions in (5.3) were calculated by Christian 

Fischer, a summer co-op student separately for the exponential and post exponential phases 

of batch and then fed-batch operation. It was seen that the a-coefficients determined for batch 

operation differed from similar estimation for fed-batch operation; and even within one 

batch, the values of a-coefficients for exponential phase of growth were different from the 

post-exponential phase because of differences in kinetics. The values for the a-coefficients 

have been given in Appendix-B.  

 

Based on the set of equations derived in (5.3), the model calibration was performed on the 

basis of one batch and one fed-batch experiment, and the estimated a-values were in turn 

tested for accuracy on an additional batch and fed-batch experiment.  
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Calibrated batch and fed-batch data sets are given in Figure 5-3 (a) and (b). The model has 

been tested by a comparison between experimental data and model predictions given in 

Figure 5-3 (c) and (d). In these figures, experimental cell concentration, also included, was 

used as input to the dynamic model of metabolites. Viable cell concentration acts as input as 

model equations for predicting viable cell concentration had not been developed at this stage. 

Figures are shown on the following page. Figures 5-3(a, b) are the model calibrations and 

Figures 5-3(c, d) are the corresponding model predictions. 
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Figure 5-3 Dynamic Model Simulations (-) vs Experimental (●) Metabolite 

Concentrations in Batch Run (a,c) and Fed-batch Run (b,d) 
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5.3 Obtainment of the Biomass Model 

5.3.1 Correlation Analysis 

To obtain a mathematical model that does not require the experimental data for cell 

concentration, it was necessary to predict the trends for growth and death of the cells with 

respect to influencing factors that affect cell growth and viability. To find the exact 

dependence relationship, the software STATISTICA was used to run the correlation analysis 

with respect to the various metabolite measurements available including nutrients, amino 

acids and by-products. 

 

Since Monod expressions are the most common types of mathematical functions used for 

explaining cellular behavior in systems biology, the first few attempts focused on finding 

similar functional dependence (Monod) in the system under study. The functions with which 

the growth and death terms showed correlation were referred to as influencing factors. The 

terms that did not improve correlation were left out from the overall expression for 

influencing factors. The results summarized in Table 5-4 show that the influencing factor is a 

function of glutamine and lactate.  

Table 5-4: Results of Correlation Analysis 

Expression Influencing factor 
Correlation coefficient 
highest-value (average-

value) 

Growth:  
dt

dX
X
1 v
v

 
gQkQ

Q
+

 0.93 (0.84) 

Growth:  
dt

dX
X
1 v
v

 
dQkLac

Lac
+

 -0.90 (0.81) 

Death:  
dt

dX
X
1 d
v

 
dQkLac

Lac
+

 0.92 (0.83) 

 

Thus Biomass Model can be concisely expressed as follows in equation 5.4. 
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⎛
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−⎟⎟
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⎝

⎛
+

=

dQ
d

dQgQ
v

kLac
Lac

dk
dt

dX

kLac
Lac

dk
kQ
Q

gk
dt

dX

  (5.4) 

5.3.2 Model Calibration and Testing 

The parameters kgQ and kdQ were determined by simply choosing values that gave the best 

possible fit of the simulations to experimental data. The growth and death coefficients kg and 

kd were estimated by applying a least squares minimization routine in MATLAB using 

fmincon function. The optimized objective function was as follows: 

 

Min [Sum of squares] = ∑∑ −+− 2)pd,Xed,(X2)pv,Xev,(X  (5.5) 

 

Where Xv,e, Xv,p, Xd,e, Xd,p  are the experimental and predicted values of the viable and dead 

cell concentrations, respectively. Values for the estimated coefficients are furnished in Table 

5-5. 

Table 5-5: Values for Parameters in Biomass Model 

Parameter Value for Batch Mode Value for Fed-batch Mode 

kg 0.05 0.05 

kd 0.0004 0.0004 

kgQ 0.05 0.05 

kdQ 0.43 0.43 

 

It is worth commenting that the parameter values in Table 5-5 for batch and fed-batch mode 

are the same and the model built on these values is able to capture the process behaviour. To 

test validity of the model, a separate data set was used for calibration and prediction of the 
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Biomass model for the batch as well as the fed-batch case. Figure 5-4 shows the calibrations 

and predictions based on the calibrations. 
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Figure 5-4 Experimental Data for Viable and Dead Cell Concentrations (*) vs 

Simulated Data (-) for Biomass Model for Batch Mode (a,c) and Fed-batch Mode (b,d) 

Note: For fed-batch, the various maxima in the graph for X
v 
correspond to addition of feed to 

culture.  



 

 92 

Graphs in Figure 5-4(a) are calibration results for batch mode and graphs in Figure 5-4(b) are 

calibration results for fed-batch mode. The graphs in Figure 5-4(c) are prediction results for 

batch mode and graphs in Figure 5-4(d) are prediction results for fed-batch mode. 

5.4 The Integrated Model 

The final step in the formulation of a general model for MAb production was the integration 

of the dynamic model for extracellular species and the cell concentration model as per the 

schematic diagram in Figure 4-3. By combining the two sets of equations (5.3 and 5.4) meant 

that instead of using experimental values (as inputs) for model prediction, only starting 

values would be used for successively predicting metabolite concentrations and cell 

concentrations over time. In short, the system of equations for the cell culture system under 

analysis can be finally stated as in equation (5.6).  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=

dQ
d

dQgQ
v

kLac
Lac

dk
dt

dX

kLac
Lac

dk
kQ
Q

gk
dt

dX

(t)
dt
(t)d Krξ

  (5.6) 

5.4.1 Model Calibration and Testing  

A re-adjustment of growth and death coefficients (kg and kd) was required because upon 

integration of the individual models into one, the predictions were slightly inaccurate. Some 

of the half saturation constants for fed-batch data required adjustment as well. The 

coefficients k
g 

and k
d 

for batch mode were 0.04 (x106 cells/ml-hr) and 0.001 (x106 cells/ml-

hr) respectively while for fed-batch these values were 0.04 (x106 cells/ml-hr) and 0.0001 

(x106 cells/ml-hr) respectively. The values for the half-saturation constants for the integrated 

model have been summarized in Table 5-6. 
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Table 5-6: Values for the Half-saturation Constants 

Constant 
Batch Mode 

(in mmol/L) 

Fed-batch Mode 

(in mmol/L) 

kG 4 4 

kQ 0.03 0.05 

kU 0.01 0.01 

kS 0.02 0.12 

kF 0.05 0.05 

 

Based on results obtained from equations in (5.6), a separate set of batch and fed-batch 

experimental runs was taken to test accuracy of estimated parameters in predicting for future 

runs. The results are shown in Figure 5-5. 
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(b) 

Figure 5-5 Comparison of Predicted Data (-) with Experimental Data (●) for (a) Batch 
Culture and (b) Fed-batch Culture.  
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Note: Experimental MAb data is unavailable for batch experiment 

 

In addition to predicting experimentally measured metabolite concentrations, the model also 

predicts for ammonia that was not measured during the course of the experiment. The 

simulated results for ammonia have been given in Figure 5-6. 
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Figure 5-6 Simulations for Ammonia Concentration in (a) Batch and (b) Fed-batch 

Systems 

 

At this point, the simulation results for ammonia could not be verified experimentally 

because ammonia measurements were unavailable for the current experiments. 
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Chapter 6 
Fluorescence Imaging 

6.1 Overview 

Analysis of the modelling results presented in Chapter 5 suggests that a more detailed 

characterization of the cell population is required. Until now, Trypan blue dye exclusion test 

was used to characterize the overall population of cells as either viable or dead. However, 

this staining technique cannot provide any further details about the state of the cell 

population and hence it is not possible to derive a more detailed characterization of cells 

based on this technique alone. Compared with the usual Trypan blue dye exclusion method 

of establishing culture viability, dual staining demonstrated that under stressful conditions a 

significant proportion of cells that excluded Trypan blue were also moribund through 

apoptosis, i.e. programmed cell death. This chapter presents preliminary results on the 

application of fluorescence imaging for a more detailed classification of cells by identifying 

apoptotic and necrotic cells in-situ. 

6.2 Identification of Apoptosis and Necrosis- Why is it Crucial?  

Even though cell cultures are sometimes treated as a homogeneous mixture of identical cells, 

the fact is that individual cells exhibit heterogeneity as a result of small differences in their 

cellular metabolism and cell-cycle dynamics. Repeated progression through the cell cycle 

yields a heterogeneous population in which individual cells differ according to their size and 

intracellular state (Henson, 2003). 

 

There have been accounts in literature of an increase in the rate of MAb production 

associated with the onset of cell death (Simpson et al., 1997). This negative association 

between productivity and cell growth has been attributed duly in part to the passive release of 

MAb stored in cytoplasmic vesicles (Al-Rubeai et al., 1992). As cells die and membrane 

integrity deteriorates, the cytoplasmic content of the cell is released. Experiments have been 
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conducted with hybridoma cultures where cell growth was slowed by either a DNA synthesis 

inhibitor (thymidine or hydroxyurea) or by a selective inhibitor of initiation of nonantibody 

protein (potassium acetate) and exhibited 50-130 % MAb production rate enhancement for 

growth slowed up to 50 % (Suzuki and Ollis, 1990).  

 

It has been hypothesized in the current research that cells at different stages of the cell cycle 

may exhibit different product formation rates and different death rates in the absence of 

nutrients. Therefore, identifying different patterns of cell death such as apoptosis or necrosis 

may be essential for obtaining an accurate model of the operation. 

6.3 Differentiation between Apoptosis and Necrosis 

As apoptosis marks the onset of cell death, it is important to accurately distinguish between 

the apoptotic and necrotic states from the stand-point of the current work. Table 6-1 and 

Figure 6-1 enlist the differences between the two modes of cell death based on morphology.  

 

Table 6-1: Differential Features and Significance of Necrosis and Apoptosis 

adapted from (Wyllie, 2004) 

Apoptosis Necrosis 

Morphological Features  

• Protrusions on the cell membrane, but no loss 
of membrane integrity 

• Aggregation of chromatin in the nuclear 
membrane 

• Begins with shrinking of cytoplasm and 
condensation of nucleus 

• Ends with fragmentation of cell into smaller 
bodies 

• Formation of membrane bound vesicles 

• Loss of membrane integrity 

 

 

 

• Begins with swelling of cytoplasm 
and mitochondria 

• Ends with total cell lysis 
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(apoptotic bodies) 

• Mitochondria become leaky due to pore 
formation involving proteins of the bcl-2 
family 

 

• No vesicle formation, complete 
lysis 

• Disintegration (swelling) of 
organelles 

Biochemical features  

• Tightly regulated process involving activation 
and enzymatic steps 

• Energy(ATP)-dependent process (active 
process, does not occur at 4˚C)  

• Loss of regulation of ion 
homeostasis 

• No energy requirements (passive 
process, can occur even at 4˚C) 

Physiological significance  

• Affects individual cells  

• Induces physiological stimuli (lack of growth 
factors, changes in hormonal environment) 

• No inflammatory response 

• Affects groups of contiguous cells  

• Evoked by non-physiological 
disturbances (complement attack, 
lytic viruses, hypothermia, hypoxia, 
hyperoxia, ischemica, metabolic 
toxins)  

• Significant inflammatory response 
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Figure 6-1 Illustration of the Morphological Features of Necrosis and Apoptosis 

borrowed from (Wyllie, 2004) 

 

6.3.1 Morphology in Apoptosis and Necrosis 

It has been documented that cell morphology may be used to infer the state of a cell. Each 

stage of the cell-life cycle exhibits characteristic morphology. Fluorescence imaging provides 

the means of identifying the different stages of cell growth and death by capturing the 

changes in cell morphology as the cell progresses through the various stages of its life-cycle 

(Mercille and Massie, 1994; Renvoize et al., 1997; Ziegler et al., 2004). 

 
Sources from available literature (Mercille and Massie, 1994: Renvoize et al., 1997; Wyllie, 

2004) have classified the various stages of growth and death morphologically as in Table 6-2. 
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Table 6-2: Morphological Characteristics of Various Stages of Cell Growth and Death 

Cell Morphology Identifying Characteristics 

Viable Non-apoptotic (VNA) Cytoplasm intact, nucleus intact 

Viable Apoptotic (VA) Cell-shrinkage, rounding-up, loss of 
contact with adjacent cells  

Non-viable Apoptotic (NVA)- Early Highly condensed chromatin in the shape 
of crescents around the periphery of the 
nucleus or present as groups of spherical 
beads/ Surface protrusions 

Non-viable Apoptotic (NVA)- Late Cell fragmentation into apoptotic bodies 

Non-viable Necrotic (NEC) Swelling of entire cell, ruptured plasma 
membrane, release of intracellular 
constituents and slow dissolution of the 
nucleus 

 

6.3.2 Dual Channel Fluorescence Staining for Apoptosis and Necrosis 

Before proceeding towards the classification of cells in batch and fed-batch cultures, it is 

imperative to be able to independently identify apoptosis and necrosis. In order to do so, 

assays for apoptosis and necrosis were performed whereby cell death was induced in a cell 

culture in the exponential phase of growth. 

 

The determination of cell death by apoptosis is made primarily on the basis of distinct 

structural changes in the cell’s chromatin that occur prior to the lysis of the membrane. These 

changes include the aggregation of chromatin in the nuclear membrane and may be 

accompanied by the appearance of protrusions on the cell membrane, but without any loss of 

membrane integrity. 
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Typically, apoptosis begins with the shrinkage of the cytoplasm and condensation of nucleus. 

Fragmentation of cell into smaller membrane bound vesicles (apoptotic bodies) marks the 

end of apoptosis (Coligan, 1994; Wyllie, 2004).  

 

Basic protocol adopted for the purpose of characterization of apoptosis/necrosis utilizes the 

DNA-binding properties of fluorescent dyes- AO and EB. This protocol has been described 

in greater detail in Chapter 3 that discusses the various experimental methods adopted.  

 

AO and EB are both intercalating fluorochromes that bind to the DNA to emit green and 

orange fluorescence respectively. AO can penetrate the plasma membrane and is thus taken 

up by both live and dead cells. It binds to the DNA staining it green and binds to the RNA 

making it fluoresce as red. On the other hand, EB cannot penetrate the cytoplasm and is 

therefore only taken up by non-viable cells that have suffered membrane disintegration. EB 

binds to the DNA making it appear orange and binds somewhat weakly to the RNA present 

that may give weak red fluorescence. Thus, viewed under a fluorescence microscope, a 

viable non-apoptotic cells cell stained with both AO and EB will have bright green nucleus 

with intact structure while early apoptotic cells will display bright green chromatin 

condensed in the form of crescents in the nucleus. As EB dominates AO fluorescence, a non-

viable apoptotic cell will exhibit bright orange nucleus with widespread chromatin 

condensation and the non-viable necrotic cells will appear to be larger than the average cell 

in size and will exhibit an orange nucleus with cytoplasm intact and emitting orange-red to 

bright red fluorescence (Coligan, 1994; Mercille and Massie, 1994). 

6.3.2.1 Induction of Apoptosis 

Method for induction of apoptosis has been discussed in detail in Chapter 3. Briefly stating, 

cycloheximide was added to a cell culture at a final concentration of 25 µg/ml and incubated 

for overnight. Figure 6-2 exhibits the images taken for the cell culture and clearly shows the 

morphology exhibited during apoptosis. The details in Table 6-1 under ‘Morphological 

Features’ can be used as a guideline for characterization. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Continued on next page… 
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(e) 

 

(f) 

 

Figure 6-2 Images of Apoptotic Cells Exhibiting Characteristic Associated Morphology 

6.3.2.2 Induction of Necrosis 

Method for induction of necrosis has been discussed in detail in Chapter 3. Briefly stating, 

HPLC grade ethanol was added to a cell culture at a final concentration of 25% v/v and 

incubated overnight. Figure 6-3 shows the images taken for the cell culture and clearly 

depicts the morphology exhibited during necrosis. The details in Table 6-1 under 

‘Morphological Features’ can be used as a guideline for characterization. 
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(a) (b) 

 

(c) (d) 

Figure 6-3 Images of Necrotic Cells Exhibiting Characteristic Associated Morphology 

 

Based on the analysis of images for apoptotic and necrotic cell cultures, a general guideline 

for distinguishing the cell population was developed. Thus, the cells can be categorized as 

illustrated in Figure 6-4. 
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Viable 

Non-apoptotic 
Necrotic 

   

Viable Apoptotic Non-Viable Apoptotic (early 
stages) 

Non-Viable Apoptotic (late 
stages) 

Figure 6-4 Images Exhibiting Characteristic Morphology for Cells in Different Stages 

of Growth/Death 
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6.4 Present Research Efforts 

Efforts in the future focus on carrying out regular batch and fed-batch runs and 

characterization of the overall population into (i) Viable Non-apoptotic, (ii)Viable Apoptotic, 

(iii) Non-viable Apoptotic, (iv) Necrotic. 

6.4.1 Preliminary Image Results for Batch Mode 

Images shown in this section were obtained in experiments conducted with CHO IG1-9B8 

for batch mode in spinners. Two frames for each day have been exhibited for a total duration 

of 12 days for which the experiment was run. 

 

The culture was initiated on March 29 and incubated overnight. This period formed the lag 

period of the culture age. The images taken from the experiment have been illustrated in the 

figures that follow.  

 

Figure 6-5 displays images taken after overnight incubation that revealed some chromatin 

condensation in the cell population indicating a slightly apoptotic cell population on day 1 of 

growth; the culture had not yet entered the exponential phase of growth. Images taken after 

another day of growth on day 2 illustrated an exponentially growing population with viable 

non-apoptotic cell population, i.e. green stained cells with a well-defined nucleus in their 

center.  
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March 30- Day 1  

March 31-Day 2  

 

Figure 6-5 Day 1 and 2 of the Batch Culture Experiment 
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Figure 6-6 displays images taken on day 3 and 4 of culture. There was marked cell shrinkage 

and the appearance of “blebs” on the surface of the cells at the end of day 3 indicating the 

onset of apoptosis. On day 4, there was visible chromatin condensation in some of the cells 

with no loss of nuclear integrity further confirming apoptotic cell morphology. 

April 1-Day 3  

 

April 2-Day 4  

  

Figure 6-6 Day 3 and 4 of the Batch Culture Experiment 
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April 3-Day 5  

 

April 4-Day 6  

 
Continued on next page… 
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April 5-Day 7  

Figure 6-7 Day 5, 6 and 7 of the Batch Culture Experiment 

 

As Figure 6-7 illustrates, on day 5 the chromatin condensation became more pronounced and 

widespread which is an indicator that the culture was largely apoptotic although apoptosis 

induction was still in its earlier stages. Over the progress of the day, some of the cells 

progressed to the late apoptotic stage where the cellular membrane exhibited permeability 

and stained orange. The trend continued on day 6 and 7 with some cells receding into the 

final stages of apoptotic death or secondary necrosis as indicated by the red stained cells. The 

cells stained green are also apoptotic since they show a large degree of chromatin 

condensation. 

 

Figure 6-8 that follows on the next page confirms that the trend continued for the next two 

days with the progression of culture from early apoptosis to late apoptosis which is marked 

by a greater permeability of the cell membrane to Trypan Blue dye. This is confirmed by the 

results obtained from the Trypan Blue dye exclusion test in Figure 6-11 that displays a 

decline in cell viability. 
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April 6-Day 8  

  

April 7-Day 9  

  

Figure 6-8 Day 8 and 9 of the Batch Culture Experiment 

Figure 6-9 indicates that almost all cells in the culture had turned apoptotic by day 10 and 

this trend carried on to day 11 as evidenced by the formation of apoptotic bodies. By day 11, 

more than 50% of the cells had undergone death via apoptosis. There is sufficient reason to 
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believe that there was not sufficient primary necrosis as the cells did not show incidence of 

necrosis earlier in the run and the cells did not lose membrane integrity which is a salient 

characteristic of necrosis. 

April 8-Day 10  

  

April 9-Day 11  

  

Figure 6-9 Day 10 and 11 of the Batch Culture Experiment 
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April 10- Day 12  

  

April 12-Day 14  

  

Figure 6-10 Day 12 and 14 of the Batch Culture Experiment 
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As is evident from Figure 6-10 and Figure 6-11, by the end of day 14, all cells were dead. 

This observation was supported by the results from the Trypan Blue dye exclusion test. The 

reader may see Appendix A for reference. 
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Figure 6-11 Viable(*) and Dead(o) Cell Concentration as per the Trypan Blue Exclusion 

Test 

 

In addition, Mercille and Massie (1994) observed similar behavior in D5-hybridoma and 

attributed the induction of apoptosis in batch results to the exhaustion of glutamine. Further 

analysis of the culture supernatant sampled during the course of the experiment will yield 

valuable information about the possible factors leading to cell death by apoptosis and enable 

the analysis of MAb productivity. 
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Chapter 7 
Conclusions and Recommendations  

Dynamic models for batch and fed-batch operations were derived based on initial metabolic 

flux analysis. The simplified elementary fluxes and consequent model structure were similar 

for batch and fed-batch processes. However, differences in reaction rate constants were noted 

indicating a shift in energy metabolism during fed-batch operation. The results imply that the 

nutrients in fed-batch mode are essentially channeled towards cell-maintenance rather than 

growth.  

 

It was observed from calculated flux values that while glutamine is not exhausted, the viable 

cell count was maintained at about 4.5x10
5 

cells/ml and the dead cell count remained 

relatively low at 1x10
5 

cells/ml until the very end of the experimental run. Also, during this 

period, the death rate k
d 

was significantly lower for fed-batch mode as compared to batch 

mode. Comparing the distribution of fluxes during batch and fed-batch operation, it is 

evident that the ratio of flux 8 (Pyr→Lac) to flux 2 (Pyr→TCA cycle) in batch culture is 2.41 

while in fed-batch culture it equals 1.29, almost twice as high as in batch culture. Moreover, 

there is a slight increase in flux 1(Glc→Pyr) in fedbatch mode because there was no glucose 

limitation during fed-batch experiment. All these facts indicate that the energy-producing 

metabolism becomes more efficient in fed-batch as compared to batch. The reason could be a 

possible metabolic shift with higher emphasis on cellular maintenance rather than growth or 

metabolite accumulation. There is published evidence to support the above statement 

(Follstad, et al., 1999). Thus, although the set of significant fluxes remains the same in batch 

and fed-batch operations, the order of magnitude is different.  
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The model is an improvement over pre-existing models of similar nature as: 

1. MFA has been applied to a fed batch situation in order to obtain a dynamic model for 

this mode of operation. The same structure of the dynamic model has been applied to 

both batch and fed-batch systems.  

2. The viable and dead cell concentrations have been explicitly modeled. Correlation 

analysis has been used to investigate the dependencies of growth and death rates on 

nutrient and product concentrations.  

3. The cell concentration model is coupled to the metabolite dynamic model that utilizes 

experimental starting values to generate an integrated model that predicts all 

significant system variables, including viable and dead cell concentrations, 

independent of subsequent experimental values. 

  

However, there are some drawbacks in the model.  

1. In the final predictions for the Integrated Model in fed-batch mode, there was a 

noticeable under-prediction of death and MAb concentration whose accurate 

prediction is the primary objective.  

2. The proposed model does not account for viable apoptotic and non-apoptotic cells 

individually. 

 

The difference between experimental data and corresponding predictions may be explained 

on the basis of the fact that viable cells can be further categorized as apoptotic and non-

apoptotic. Available literature with regards to cell kinetics during fed-batch suggests that 

under nutrient limited conditions, the cells move from a viable, non-apoptotic state to a 

viable apoptotic state. This could lead to variation in antibody production rates and might 

explain inaccurate predictions for cell death and MAb in the current work. It is probable that 

these two different classes of viable cells have different rates of reaction or to be more 

specific, MAb production. Therefore, there is a possibility that the present model predicts an 

average rate of generation based on an averaging of apoptotic and non-apoptotic cells as 
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viable population. Thus, there is a clear motivation to monitor the evolution of apoptotic and 

non-apoptotic cells during operation. 

Fluorescent images taken for batch experiments indicated that death of the CHO cells is 

primarily through apoptosis. This observation is similar to the work of Mercille and Massie 

(1994) who found that death of D5 hybridomas occurred primarily through apoptosis. They 

also found that such a trend coincided with the exhaustion of glutamine. Analysis of the 

culture supernatant is still pending and will yield valuable information in this regard. Such an 

analysis will yield useful information that can then be extended to fed-batch experiments and 

help in the modelling of individual cell populations present in culture more accurately and 

representing the trends of death and MAb production more accurately. 

 

Additionally, it has been hypothesized in this work that under conditions of nutrient 

limitation there is a constant accumulation of apoptotic cells in the system. When the feeding 

is stopped, the apoptotic cells go into death mode almost instantaneously that would explain 

the sudden death scenario in fed-batch cultures. The current model only classifies the cell 

population as viable and dead. As a result, more detailed analysis of this switch from non-

apoptotic to apoptotic state is required.  

 

Based on the above, future work shall focus on the following points: 

1. Use of fluorescence imaging as a tool to capture the changes in cell morphology 

along the course of experimental runs- batch and fed-batch and relate them to 

changes in concentrations of the various metabolites present in the system at any 

time. 

2. Identification of an active death process such as apoptosis and the factors controlling 

it (as opposed to a passive one, i.e., necrosis) may lead to new strategies for the 

minimization of cell death during commercial operation of animal cell cultures. 

Specifically, this will aid in the design of an optimum fed-batch feeding regime with 

controlled nutrient supply that maximizes product formation with minimal toxin 

accumulation.  
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3. Modelling of the mechanisms leading to apoptosis at the intracellular level such as 

cell-cell signalling, activation of caspases and the correlation of this activation 

process to the extracellular metabolite levels. 
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Appendix A 
Raw Experimental Data 

SET-1 

Batch Experiment-1  

 

Time 

(hours) 
Cell Hours 

Viable Cell Concentration

(x106 cells/mL) 
% Viability pH 

IgG 

(mg/L) 

GLC 

(g/L) 

LAC

(g/L)

1.00 0.0000 0.11 76.27 7.57    

25.10 4.8711 0.33 85.39 7.11    

49.50 20.8364 1.15 88.08 6.81    

73.50 47.1476 1.05 80.44 6.82    

76.00 0.0000 0.12 84.07 7.77    

98.50 2.3730 0.09 75.51 7.40    

123.50 8.0731 0.46 84.26 7.12    

143.00 23.1183 1.21 90.88 6.93    

145.00 0.0000 0.10 84.95 7.68 2.46 3.91 0.18 

164.50 2.3505 0.15 85.29 0.00 2.92 3.62 0.44 

192.00 12.4236 0.74 83.10 6.92 14.08 2.43 1.41 

217.75 38.4855 1.34 94.19 6.90 26.54 1.70 1.68 

239.00 61.4044 0.86 60.64 6.90 44.25 1.63 1.64 

263.50 74.4412 0.30 18.62 7.16 33.08 1.63 1.63 

287.00 77.9675 0.06 3.66 7.20 28.87 1.59 1.66 

308.50 78.7504 0.02 1.32 7.15 35.93 1.67 1.77 
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Related Amino-acid Data 

All the measurements for the amino-acid concentrations have been expressed in mmol/L. 

 

Time 

(hours) 
ASP GLU ASN SER GLN HIS GLY THR ALA ARG 

1.00 0.26 0.07 0.47 0.36 3.35 0.21 0.38 0.70 0.14 0.33 

25.10 0.21 0.11 0.41 0.33 2.20 0.17 0.34 0.62 0.43 0.26 

49.50 0.08 0.09 0.32 0.28 0.27 0.09 0.30 0.48 1.07 0.12 

73.50 0.01 0.02 0.28 0.33 0.00 0.08 0.36 0.46 1.32 0.13 

76.00 0.25 0.06 0.45 0.36 3.31 0.20 0.37 0.69 0.16 0.33 

98.50 0.23 0.10 0.42 0.34 2.65 0.18 0.35 0.64 0.27 0.29 

123.50 0.18 0.14 0.36 0.32 1.27 0.14 0.34 0.55 0.64 0.20 

143.00 0.09 0.12 0.31 0.33 0.05 0.09 0.30 0.48 1.10 0.12 

145.00 0.27 0.06 0.47 0.39 3.35 0.21 0.41 0.73 0.15 0.35 

164.50 0.26 0.10 0.46 0.41 2.83 0.19 0.47 0.72 0.36 0.33 

192.00 0.15 0.13 0.37 0.34 0.92 0.13 0.37 0.57 0.85 0.19 

217.75 0.03 0.06 0.32 0.33 0.00 0.09 0.38 0.52 1.34 0.14 

239.00 0.01 0.03 0.29 0.33 0.00 0.09 0.52 0.52 1.45 0.15 

263.50 0.02 0.03 0.26 0.33 0.00 0.09 0.62 0.54 1.53 0.16 

287.00 0.04 0.04 0.24 0.33 0.00 0.09 0.64 0.54 1.55 0.17 

308.50 0.06 0.05 0.22 0.33 0.00 0.09 0.65 0.55 1.60 0.18 

 

Time 

(hours) 
TYR VAL MET TRP PHE ILE LEU LYS PRO 

1.00 0.33 0.70 0.18 0.06 0.33 0.63 0.62 0.45 0.23 

25.10 0.30 0.60 0.15 0.05 0.31 0.55 0.53 0.57 0.23 

49.50 0.22 0.41 0.08 0.03 0.22 0.37 0.27 0.34 0.30 
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73.50 0.21 0.37 0.07 0.03 0.22 0.31 0.22 0.34 0.43 

76.00 0.33 0.70 0.19 0.06 0.34 0.66 0.66 0.62 0.28 

98.50 0.30 0.63 0.17 0.05 0.32 0.58 0.58 0.57 0.25 

123.50 0.26 0.51 0.12 0.04 0.27 0.46 0.41 0.50 0.24 

143.00 0.23 0.39 0.08 0.03 0.23 0.34 0.24 0.38 0.29 

145.00 0.34 0.70 0.19 0.05 0.33 0.66 0.65 0.62 0.29 

164.50 0.33 0.69 0.19 0.05 0.32 0.60 0.59 0.60 0.29 

192.00 0.26 0.47 0.11 0.03 0.24 0.41 0.33 0.36 0.26 

217.75 0.23 0.41 0.08 0.03 0.22 0.35 0.24 0.36 0.46 

239.00 0.22 0.38 0.08 0.03 0.22 0.29 0.22 0.36 0.51 

263.50 0.23 0.38 0.09 0.03 0.23 0.28 0.22 0.41 0.56 

287.00 0.23 0.38 0.09 0.03 0.23 0.27 0.22 0.39 0.59 

308.50 0.23 0.38 0.10 0.03 0.23 0.27 0.22 0.39 0.60 

 

Batch Experiment-2 

 

Time  

(hours) 

Viable Cell Concentration

(x105 cells/mL) 
%Viability 

GLC

(g/L) 

LAC 

(g/L) 

GLN 

(mmol/L) 

GLT 

(mmol/L ) 

0 1.00 86.52 4 0.003 4 0.106 

1 1.31 71.43 2.99 0.135 3.92 0.307 

19 1.04 70.76 2.48 0.191 3.66 0.585 

23 1.58 77.78 3.64 0.688 2.21 0.18 

27 1.53 79.22 3.52 0.745 2.21 0.206 

43 3.88 84.24 2.81 1.38 1.62 0.213 

47 4.15 90.71 2.68 1.49 1.3 0.238 

51 5.43 88.93 2.58 1.59 1.08 0.24 
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52 5.80 88.93 2.45 1.5 1.04 0.233 

55 6.55 93.24 2.4 1.66 0.824 0.242 

56 6.81 93.24 2.37 1.71 0.767 0.223 

67 8.05 90.06 2.14 1.84 0.125 0.207 

68 8.16 90.06 2.12 1.87 0.103 0.221 

71 8.90 89 2.1 1.84 0.043 0.221 

72 9.14 89 2.09 1.86 0.029 0.212 

75 10.00 80.65 2.08 1.85 0 0.229 

76 10.30 80.65 2.09 1.86 0.003 0.194 

80 9.60 85.33 2.03 1.84 0 0.21 

81 9.41 85.33 1.99 1.83 0.004 0.194 

96 6.95 63.47 1.89 1.8 0 0.212 

97 6.81 63.47 1.86 1.82 0 0.225 

100 7.75 59.16 1.85 1.83 0 0.218 

101 8.08 59.16 1.83 1.81 0 0.223 

104 6.85 56.61 1.88 1.87 0 0.237 

105 6.47 56.61 1.83 1.84 0 0.22 

116 5.00 50.25 1.84 1.84 0 0.24 

120 5.50 52.88 1.9 1.84 0 0.247 

124 4.20 39.81 1.9 1.81 0 0.242 

140 4.15 33.6 1.79 1.73 0 0.28 

144 2.60 22.61 1.86 1.79 0 0.289 

148 3.15 26.25 1.87 1.87 0 0.293 

164 1.60 11.99 1.86 1.83 0 0.289 
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168 1.85 15.88 1.82 1.75 0 0.323 

172 0.46 13.96 1.84 1.75 0 0.315 

189 0.80 5.67 1.85 1.84 0 0.329 

194 0.65 5.94 1.84 1.77 0 0.333 

 

Related Amino-Acid Data 

All the concentration measurements for the amino-acids have been expressed in mmol/L. 

 

Time 
(hours) ASP GLU ASN SER GLN HIS GLY THR ALA ARG 

19 0.22 0.17 0.4 0.37 2.28 0.2 0.38 0.64 0.46 0.32 

23 0.21 0.13 0.41 0.37 2.36 0.21 0.39 0.65 0.47 0.32 

27 0.22 0.14 0.41 0.38 2.34 0.21 0.4 0.66 0.51 0.32 

43 0.19 0.19 0.39 0.35 1.52 0.18 0.43 0.62 0.84 0.29 

47 0.19 0.18 0.37 0.34 1.33 0.17 0.62 0.6 0.91 0.27 

51 0.18 0.18 0.37 0.34 1.12 0.17 0.39 0.59 1.01 0.26 

52 0.18 0.18 0.36 0.32 1.06 0.16 0.37 0.58 0.99 0.25 

55 0.17 0.18 0.34 0.31 0.82 0.15 0.4 0.56 1.08 0.24 

56 0.16 0.18 0.34 0.31 0.75 0.15 0.37 0.55 1.1 0.24 

67 0.15 0.19 0.34 0.37 0.19 0.13 0.38 0.56 1.5 0.23 

68 0.14 0.17 0.32 0.35 0.16 0.12 0.35 0.52 1.42 0.2 

71 0.13 0.17 0.31 0.35 0.07 0.12 0.34 0.51 1.42 0.2 

72 0.13 0.16 0.27 0.31 0.04 0.11 0.34 0.46 1.3 0.18 

75 0.12 0.16 0.29 0.33 0.04 0.11 0.39 0.49 1.41 0.19 

76 0.13 0.17 0.32 0.37 0.06 0.12 0.37 0.54 1.53 0.21 

80 0.13 0.18 0.33 0.39 0.03 0.12 0.45 0.57 1.66 0.22 

81 0.12 0.16 0.31 0.36 0.04 0.12 0.46 0.54 1.59 0.21 

96 0.1 0.16 0.28 0.3 0.02 0.12 0.6 0.53 1.68 0.21 
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97 0.1 0.17 0.28 0.29 0.03 0.12 0.58 0.52 1.63 0.21 

100 0.1 0.17 0.28 0.28 0.02 0.12 0.64 0.54 1.72 0.21 

101 0.1 0.18 0.28 0.29 0.03 0.12 0.69 0.57 1.82 0.23 

104 0.09 0.17 0.26 0.25 0.02 0.12 0.64 0.51 1.66 0.2 

105 0.1 0.18 0.27 0.26 0.03 0.12 0.68 0.54 1.74 0.21 

116 0.09 0.18 0.24 0.23 0.02 0.11 0.69 0.5 1.65 0.2 

120 0.09 0.18 0.23 0.22 0.02 0.12 0.66 0.49 1.63 0.19 

124 0.09 0.18 0.22 0.21 0.03 0.11 0.68 0.48 1.61 0.19 

140 0.1 0.21 0.23 0.22 0.02 0.12 0.8 0.54 1.88 0.21 

144 0.12 0.21 0.19 0.2 0.03 0.11 0.78 0.51 1.8 0.2 

148 0.12 0.22 0.19 0.21 0.03 0.11 0.8 0.53 1.84 0.2 

164 0.13 0.23 0.18 0.21 0.02 0.1 0.79 0.51 1.82 0.19 

168 0.11 0.21 0.16 0.18 0.02 0.1 0.73 0.46 1.63 0.17 

172 0.12 0.22 0.16 0.19 0.02 0.11 0.75 0.47 1.65 0.18 

189 0.14 0.23 0.15 0.19 0.02 0.11 0.78 0.49 1.72 0.18 

194 0.14 0.24 0.16 0.19 0.02 0.11 0.8 0.5 1.78 0.18 

 

Time 
(hours) TYR VAL MET TRP PHE ILE LEU LYS PRO 

19 0.31 0.59 0.17 0.08 0.33 0.57 0.58 0.66 0.28 

23 0.32 0.61 0.17 0.08 0.34 0.59 0.6 0.7 0.26 

27 0.33 0.61 0.18 0.08 0.34 0.6 0.6 0.71 0.27 

43 0.3 0.54 0.15 0.07 0.31 0.53 0.51 0.63 0.3 

47 0.29 0.53 0.15 0.07 0.3 0.52 0.49 0.61 0.3 

51 0.29 0.52 0.14 0.07 0.3 0.51 0.48 0.61 0.31 

52 0.28 0.5 0.14 0.07 0.29 0.49 0.45 0.57 0.31 

55 0.27 0.48 0.13 0.06 0.28 0.46 0.42 0.53 0.32 

56 0.26 0.47 0.13 0.06 0.27 0.45 0.41 0.53 0.31 
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67 0.27 0.47 0.12 0.06 0.28 0.45 0.38 0.54 0.4 

68 0.25 0.44 0.11 0.06 0.26 0.42 0.35 0.5 0.37 

71 0.25 0.42 0.11 0.06 0.25 0.39 0.32 0.42 0.32 

72 0.22 0.37 0.1 0.06 0.22 0.33 0.27 0.37 0.39 

75 0.23 0.39 0.1 0.05 0.24 0.35 0.29 0.43 0.39 

76 0.26 0.44 0.11 0.06 0.26 0.41 0.33 0.48 0.41 

80 0.27 0.45 0.11 0.06 0.27 0.4 0.32 0.53 0.47 

81 0.25 0.42 0.11 0.06 0.25 0.36 0.3 0.46 0.42 

96 0.25 0.39 0.1 0.06 0.26 0.3 0.25 0.5 0.42 

97 0.24 0.37 0.1 0.05 0.24 0.27 0.22 0.29 0.36 

100 0.25 0.38 0.1 0.05 0.25 0.27 0.22 0.37 0.42 

101 0.27 0.4 0.11 0.06 0.27 0.29 0.25 0.52 0.51 

104 0.24 0.36 0.1 0.05 0.24 0.25 0.2 0.4 0.4 

105 0.25 0.37 0.1 0.05 0.26 0.26 0.21 0.46 0.51 

116 0.23 0.32 0.09 0.05 0.24 0.21 0.17 0.46 0.48 

120 0.23 0.32 0.09 0.05 0.24 0.2 0.16 0.44 0.41 

124 0.23 0.3 0.09 0.05 0.23 0.18 0.15 0.45 0.44 

140 0.25 0.31 0.09 0.05 0.26 0.16 0.13 0.52 0.54 

144 0.24 0.29 0.09 0.05 0.25 0.15 0.12 0.49 0.52 

148 0.24 0.3 0.09 0.05 0.26 0.15 0.12 0.49 0.54 

164 0.24 0.27 0.08 0.05 0.25 0.12 0.09 0.47 0.54 

168 0.21 0.24 0.08 0.04 0.22 0.11 0.08 0.39 0.49 

172 0.22 0.24 0.07 0.05 0.23 0.11 0.08 0.43 0.46 

189 0.23 0.25 0.07 0.05 0.23 0.11 0.08 0.29 0.31 

194 0.23 0.25 0.08 0.05 0.24 0.11 0.08 0.33 0.33 
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Fed-batch Experiment-1 

 

Time 
(hours) 

Viable Cell Concentration 

( x 105 cells/mL) 
%Viability 

GLC 

(g/L) 

LAC 

(g/L) 

GLN 
(mmol/L) 

GLT  

(mmol/L) 

0 1.00 86.52 4 0.003 4 0.106 

1 0.78 76.54 3.01 0.13 3.89 0.303 

19 0.88 84.85 2.54 0.171 3.63 0.576 

23 1.18 82.46 3.68 0.668 2.29 0.187 

27 1.61 76.79 3.57 0.721 2.4 0.2 

43 2.15 86.87 2.98 1.26 1.88 0.23 

47 3.35 87.01 2.8 1.36 1.54 0.254 

51 3.53 87.58 2.75 1.52 1.38 0.263 

52 3.46 87.58 2.79 1.55 1.47 0.266 

55 4.08 90.06 2.57 1.52 1.27 0.243 

56 3.24 90.06 2.45 1.19 1.85 0.214 

67 5.50 90.16 2 1.49 1.1 0.233 

68 4.97 90.16 2 1.33 1.4 0.215 

71 5.05 88 1.91 1.39 0.832 0.252 

72 4.70 88 1.85 1.29 1.37 0.216 

75 4.10 93.71 1.84 1.45 1.17 0.227 

76 3.58 93.71 1.7 1.26 1.34 0.202 

80 4.80 91.43 1.62 1.49 1.15 0.224 

81 3.97 91.43 1.69 1.11 1.62 0.202 

96 5.60 92.56 0.99 1.66 1 0.221 

97 5.32 92.56 1.06 1.63 1.1 0.213 
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100 5.05 83.47 0.951 1.67 0.944 0.213 

101 4.59 83.47 1.05 1.69 1.04 0.216 

104 5.50 87.4 0.989 1.69 0.938 0.204 

105 4.69 87.4 1.24 1.27 1.5 0.197 

116 4.65 84.55 0.962 1.6 1 0.211 

120 5.80 87.88 0.893 1.6 0.799 0.222 

124 4.65 85.32 0.802 1.61 0.645 0.223 

125 4.29 85.32 0.826 1.7 0.681 0.201 

140 6.70 79.76 0.598 1.7 0.277 0.235 

144 5.30 70.2 0.507 1.79 0.137 0.235 

148 3.95 62.7 0.485 1.92 0.084 0.235 

164 4.00 55.17 0.342 1.96 0 0.24 

168 3.55 51.08 0.327 1.84 0 0.227 

172 0.60 38.4 0.336 1.88 0 0.243 

189 1.65 20.5 0.333 1.98 0 0.267 

194 1.05 13.82 0.322 1.88 0 0.265 

 

Related Amino-acid Data 

All the measurements for the amino acids have been expressed in mmol/L. 

 

Time 

(hours) 

MAb 

(mg/L) 
ASP GLU ASN SER GLN HIS GLY THR ALA ARG 

19 5.33 0.22 0.12 0.44 0.39 2.76 0.2 0.4 0.71 0.43 0.34 

23 6.90 0.21 0.11 0.41 0.38 2.66 0.19 0.36 0.7 0.45 0.32 

27 5.97 0.23 0.14 0.43 0.4 2.73 0.2 0.39 0.75 0.52 0.34 

43 8.46 0.2 0.17 0.4 0.36 1.97 0.18 0.37 0.69 0.82 0.31 
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47 9.31 0.2 0.19 0.41 0.37 1.84 0.18 0.39 0.71 0.97 0.31 

51 10.30 0.19 0.18 0.37 0.33 1.47 0.17 0.35 0.64 0.99 0.27 

52  0.19 0.18 0.37 0.33 1.54 0.16 0.35 0.66 0.98 0.27 

55 10.87 0.17 0.17 0.36 0.32 1.3 0.15 0.35 0.63 1.06 0.26 

56  0.2 0.15 0.39 0.35 2 0.17 0.36 0.69 0.83 0.29 

67 13.23 0.18 0.18 0.38 0.34 1.29 0.15 0.4 0.67 1.25 0.28 

68  0.19 0.15 0.37 0.33 1.55 0.17 0.36 0.65 1.02 0.28 

71 14.99 0.18 0.15 0.36 0.33 1.37 0.15 0.37 0.65 1.13 0.27 

72  0.19 0.16 0.4 0.35 1.49 0.16 0.4 0.69 1.21 0.3 

75 17.96 0.19 0.16 0.38 0.34 1.56 0.16 0.85 0.69 1.14 0.29 

76  0.2 0.16 0.4 0.35 1.64 0.19 0.39 0.7 1.12 0.29 

80 13.69 0.17 0.15 0.36 0.3 1.28 0.15 0.37 0.63 1.16 0.27 

81  0.18 0.12 0.36 0.31 1.76 0.15 0.39 0.64 0.86 0.28 

96 16.74 0.18 0.17 0.39 0.37 1.17 0.15 0.37 0.68 1.4 0.29 

97  0.18 0.17 0.38 0.37 1.32 0.15 0.37 0.69 1.32 0.29 

100 21.22 0.16 0.16 0.37 0.38 1.03 0.14 0.36 0.65 1.39 0.28 

101  0.17 0.16 0.37 0.37 1.09 0.15 0.39 0.65 1.36 0.28 

104 15.24 0.16 0.15 0.35 0.34 0.98 0.14 0.35 0.62 1.32 0.26 

105  0.17 0.12 0.36 0.34 1.5 0.15 0.36 0.64 1.03 0.28 

116 20.82 0.17 0.15 0.38 0.34 1.12 0.15 0.42 0.67 1.38 0.29 

120 21.12 0.17 0.16 0.38 0.34 0.97 0.18 0.41 0.66 1.45 0.28 

124 23.23 0.15 0.15 0.35 0.34 0.74 0.13 0.37 0.61 1.44 0.26 

125  0.16 0.15 0.34 0.34 0.76 0.13 0.37 0.61 1.43 0.26 

140 31.63 0.16 0.17 0.36 0.35 0.32 0.12 0.47 0.66 1.85 0.28 

144 32.17 0.15 0.17 0.32 0.32 0.16 0.11 0.53 0.64 1.92 0.27 

148 38.65 0.16 0.18 0.34 0.32 0.1 0.12 0.59 0.67 2.06 0.28 

164 44.55 0.13 0.16 0.26 0.21 0 0.09 0.62 0.57 1.87 0.23 

168 44.45 0.13 0.17 0.26 0.2 0 0.09 0.66 0.58 1.91 0.23 
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172 50.46 0.14 0.18 0.28 0.2 0 0.1 0.7 0.6 1.99 0.24 

189 53.27 0.15 0.2 0.28 0.19 0 0.1 0.8 0.64 2.14 0.26 

194 68.94 0.14 0.2 0.26 0.17 0 0.1 0.83 0.6 2.02 0.24 

 

Time 

(hours) 
TYR VAL MET TRP PHE ILE LEU LYS PRO 

19 0.33 0.67 0.17 0.1 0.35 0.63 0.64 0.71 0.31 

23 0.31 0.66 0.16 0.05 0.33 0.62 0.62 0.69 0.28 

27 0.34 0.69 0.17 0.05 0.35 0.64 0.63 0.55 0.23 

43 0.32 0.63 0.15 0.05 0.34 0.62 0.61 0.79 0.31 

47 0.33 0.65 0.15 0.05 0.34 0.62 0.6 0.76 0.31 

51 0.29 0.57 0.13 0.04 0.29 0.52 0.49 0.34 0.18 

52 0.29 0.58 0.13 0.03 0.29 0.51 0.47 0.29 0.24 

55 0.29 0.56 0.13 0.04 0.3 0.54 0.51 0.65 0.29 

56 0.31 0.64 0.15 0.04 0.33 0.62 0.6 0.71 0.3 

67 0.3 0.59 0.13 0.04 0.31 0.56 0.52 0.61 0.36 

68 0.3 0.59 0.13 0.04 0.3 0.56 0.53 0.45 0.22 

71 0.29 0.59 0.13 0.04 0.31 0.57 0.53 0.65 0.32 

72 0.31 0.62 0.14 0.04 0.32 0.59 0.55 0.64 0.35 

75 0.31 0.62 0.14 0.04 0.32 0.59 0.55 0.62 0.35 

76 0.31 0.63 0.14 0.04 0.33 0.61 0.57 0.49 0.23 

80 0.28 0.57 0.13 0.04 0.3 0.54 0.5 0.59 0.33 

81 0.28 0.58 0.14 0.04 0.29 0.55 0.52 0.53 0.3 

96 0.31 0.61 0.14 0.05 0.32 0.6 0.55 0.69 0.35 

97 0.31 0.62 0.14 0.04 0.32 0.59 0.54 0.61 0.37 

100 0.29 0.58 0.13 0.04 0.3 0.55 0.5 0.55 0.38 

101 0.29 0.58 0.13 0.04 0.29 0.54 0.49 0.29 0.28 

104 0.28 0.55 0.12 0.04 0.28 0.52 0.47 0.28 0.26 
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105 0.28 0.59 0.14 0.04 0.3 0.56 0.54 0.58 0.33 

116 0.3 0.61 0.14 0.04 0.31 0.59 0.54 0.64 0.39 

120 0.3 0.6 0.13 0.04 0.31 0.58 0.53 0.61 0.39 

124 0.27 0.55 0.12 0.04 0.28 0.52 0.47 0.51 0.36 

125 0.27 0.55 0.12 0.03 0.28 0.52 0.47 0.52 0.36 

140 0.29 0.58 0.13 0.04 0.3 0.56 0.49 0.54 0.51 

144 0.28 0.56 0.12 0.03 0.29 0.53 0.47 0.54 0.5 

148 0.3 0.59 0.13 0.04 0.31 0.57 0.5 0.64 0.55 

164 0.25 0.47 0.1 0.03 0.25 0.42 0.35 0.43 0.49 

168 0.25 0.48 0.1 0.02 0.25 0.41 0.35 0.44 0.52 

172 0.26 0.49 0.1 0.03 0.27 0.42 0.36 0.46 0.51 

189 0.28 0.51 0.11 0.03 0.28 0.42 0.36 0.51 0.61 

194 0.26 0.48 0.1 0.03 0.27 0.4 0.35 0.52 0.54 

 

Fed-batch Experiment-2 

 

Time 
(hours) 

Viable Cell Concentration 

( x 105 cells/mL) 
%Viability 

GLC 

(g/L) 

LAC 

(g/L) 

GLN 

(mmol/L) 

GLT 

(mmol/L) 

0 1.00 86.52 4 0.003 4 0.106 

1 0.75 75.95 3.99 0.323 3.95 0.309 

19 1.20 88.89 2.54 0.195 3.66 0.59 

23 1.18 78.33 3.64 0.682 2.33 0.189 

27 1.37 77.7 3.61 0.748 2.32 0.217 

43 3.28 82.91 2.88 1.36 1.81 0.246 

47 2.95 86.13 2.68 1.43 1.56 0.264 

51 4.65 91.18 2.69 1.6 1.41 0.295 

52 5.05 91.18 2.68 1.64 1.42 0.282 
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55 3.90 93.41 2.49 1.63 1.22 0.27 

56 2.59 93.41 2.12 1.28 1.33 0.237 

67 3.28 89.12 1.68 1.57 0.801 0.264 

68 3.32 89.12 1.66 1.63 0.761 0.245 

71 4.40 88 1.93 1.46 1.23 0.233 

72 4.16 88 1.45 1.56 0.691 0.246 

75 5.10 86.44 1.45 1.65 0.572 0.243 

76 4.95 86.44 1.33 1.44 0.69 0.229 

80 5.35 90.68 1.21 1.61 0.524 0.233 

81 3.96 90.68 1.13 1.14 0.779 0.2 

96 2.88 86.47 0.513 1.7 0.28 0.246 

97 2.73 86.47 0.328 1.67 0.317 0.235 

100 3.35 88.16 0.416 1.69 0.202 0.234 

101 3.43 88.16 0.425 1.77 0.205 0.231 

104 5.13 86.5 0.375 1.76 0.168 0.221 

105 4.63 86.5 0.508 1.33 0.477 0.186 

116 4.65 85.32 0.217 1.68 0.142 0.222 

120 4.15 82.18 0.146 1.66 0.087 0.212 

121 3.74 82.18 0.208 1.53 0.184 0.212 

124 4.75 84.82 0.14 1.59 0.096 0.214 

125 4.72 84.82 0.211 1.54 0.207 0.209 

140 5.33 81.54 0.025 1.54 0 0.235 

144 4.10 70.09 0.007 1.56 0 0.233 

148 3.80 71.7 0.011 1.7 0 0.244 

164 2.90 50 0 2.02 0 0.24 



 

 133 

168 2.25 37.5 0 1.6 0 0.276 

172 0.46 28.24 0.013 1.53 0 0.278 

189 0.50 9.35 0.013 1.63 0 0.297 

194 1.25 17.99 0.014 1.53 0 0.294 

 

Related Amino-acid Data 

All the measurements for the amino-acids have been expressed in mmol/L. 

 
Time 

(hours) 
MAb 

(mg/L) ASP GLU ASN SER GLN HIS GLY THR ALA ARG 

0            

1            

19 5.89 0.22 0.15 0.4 0.38 2.49 0.2 0.38 0.66 0.42 0.31 

23 7.78 0.2 0.13 0.39 0.36 2.53 0.18 0.48 0.67 0.45 0.32 

27 7.35 0.2 0.14 0.38 0.36 2.45 0.17 0.41 0.66 0.48 0.31 

43 9.95 0.18 0.19 0.37 0.34 1.82 0.16 0.41 0.64 0.81 0.29 

47 11.73 0.18 0.2 0.37 0.34 1.65 0.15 0.43 0.64 0.92 0.28 

51 13.88 0.18 0.21 0.37 0.33 1.48 0.15 0.41 0.64 1.01 0.28 

52  0.18 0.21 0.37 0.33 1.48 0.15 0.41 0.64 0.98 0.28 

55 14.07 0.18 0.21 0.36 0.32 1.28 0.15 0.41 0.63 1.06 0.28 

56  0.18 0.17 0.36 0.33 1.36 0.15 0.39 0.64 0.79 0.28 

67 17.38 0.18 0.2 0.37 0.31 0.88 0.14 0.44 0.64 1.12 0.29 

68  0.18 0.2 0.36 0.31 0.86 0.14 0.43 0.64 1.13 0.28 

71 15.57 0.2 0.22 0.41 0.35 0.81 0.16 0.49 0.72 1.35 0.31 

72  0.2 0.21 0.41 0.35 0.73 0.15 0.49 0.71 1.3 0.31 

75 16.34 0.21 0.21 0.43 0.37 0.85 0.16 0.5 0.75 1.23 0.33 
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76  0.2 0.21 0.41 0.36 0.85 0.15 0.49 0.72 1.23 0.31 

80 17.04 0.19 0.21 0.4 0.33 0.64 0.15 0.5 0.7 1.24 0.31 

81  0.24 0.19 0.44 0.38 1.04 0.18 0.52 0.79 0.97 0.35 

96 20.39 0.22 0.23 0.43 0.37 0.39 0.15 0.54 0.77 1.33 0.33 

97  0.22 0.24 0.45 0.39 0.44 0.16 0.57 0.81 1.36 0.35 

100 22.37 0.21 0.22 0.42 0.37 0.25 0.14 0.55 0.76 1.39 0.33 

101  0.18 0.2 0.38 0.34 0.24 0.13 0.5 0.69 1.23 0.3 

104 23.11 0.19 0.2 0.37 0.32 0.19 0.13 0.51 0.69 1.23 0.29 

105  0.2 0.16 0.38 0.32 0.5 0.15 0.47 0.68 0.94 0.3 

116 23.23 0.18 0.18 0.41 0.27 0.22 0.12 0.64 0.67 1.11 0.29 

120 24.88 0.19 0.2 0.38 0.29 0.1 0.13 0.54 0.7 1.2 0.3 

121  0.2 0.2 0.4 0.31 0.22 0.14 0.59 0.73 1.16 0.31 

124 26.97 0.19 0.2 0.38 0.3 0.12 0.13 0.54 0.7 1.17 0.3 

125  0.2 0.18 0.37 0.29 0.25 0.14 0.5 0.68 1.01 0.29 

140 32.95 0.18 0.18 0.33 0.23 0.01 0.12 0.55 0.64 1.09 0.26 

144 36.48 0.18 0.19 0.33 0.22 ND 0.12 0.66 0.69 1.26 0.28 

148 37.16 0.19 0.21 0.34 0.21 ND 0.12 0.73 0.72 1.34 0.3 

164 45.27 0.2 0.24 0.33 0.15 ND 0.13 0.85 0.74 1.42 0.3 

168 42.62 0.18 0.23 0.31 0.13 ND 0.11 0.79 0.69 1.33 0.28 

172 44.52 0.19 0.23 0.3 0.12 ND 0.12 0.76 0.67 1.29 0.27 

189 43.20 0.21 0.25 0.3 0.12 ND 0.15 0.78 0.72 1.33 0.29 

194 56.9 0.19 0.25 0.29 0.11 ND 0.12 0.83 0.7 1.37 0.29 
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Time 
(hours) TYR VAL MET TRP PHE ILE LEU LYS PRO 

0          

1          

19 0.32 0.65 0.18 0.05 0.34 0.61 0.62 0.69 0.33 

23 0.31 0.64 0.16 0.04 0.33 0.62 0.62 0.74 0.29 

27 0.31 0.64 0.15 0.03 0.33 0.61 0.62 0.75 0.29 

43 0.3 0.59 0.14 0.03 0.31 0.56 0.55 0.69 0.32 

47 0.29 0.58 0.14 0.03 0.31 0.55 0.53 0.67 0.33 

51 0.29 0.58 0.14 0.03 0.31 0.55 0.53 0.67 0.32 

52 0.29 0.58 0.14 0.03 0.3 0.55 0.53 0.66 0.32 

55 0.29 0.57 0.13 0.03 0.3 0.54 0.51 0.63 0.34 

56 0.29 0.6 0.14 0.03 0.31 0.59 0.58 0.69 0.32 

67 0.3 0.59 0.14 0.03 0.31 0.58 0.56 0.69 0.38 

68 0.29 0.6 0.14 0.02 0.31 0.58 0.55 0.67 0.39 

71 0.33 0.66 0.15 0.03 0.33 0.61 0.56 0.5 0.42 

72 0.33 0.66 0.15 0.04 0.35 0.65 0.61 0.74 0.48 

75 0.35 0.71 0.17 0.04 0.37 0.69 0.66 0.78 0.49 

76 0.33 0.66 0.15 0.03 0.34 0.64 0.61 0.72 0.46 

80 0.33 0.66 0.15 0.03 0.34 0.63 0.59 0.73 0.48 

81 0.36 0.75 0.18 0.04 0.38 0.72 0.7 0.8 0.45 

96 0.36 0.72 0.17 0.04 0.37 0.69 0.65 0.79 0.54 

97 0.37 0.75 0.18 0.04 0.39 0.72 0.68 0.83 0.55 

100 0.35 0.7 0.16 0.03 0.36 0.67 0.63 0.77 0.5 

101 0.31 0.63 0.14 0.03 0.32 0.59 0.55 0.63 0.49 
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104 0.31 0.63 0.14 0.03 0.32 0.6 0.55 0.66 0.48 

105 0.3 0.63 0.14 0.02 0.31 0.58 0.54 0.43 0.34 

116 0.31 0.61 0.14 0.02 0.31 0.58 0.55 0.67 0.44 

120 0.32 0.64 0.14 0.03 0.33 0.6 0.56 0.68 0.47 

121 0.33 0.66 0.15 0.03 0.33 0.62 0.58 0.7 0.47 

124 0.32 0.64 0.14 0.03 0.33 0.6 0.56 0.68 0.43 

125 0.31 0.64 0.15 0.03 0.32 0.6 0.56 0.65 0.43 

140 0.29 0.58 0.13 0.02 0.29 0.52 0.47 0.57 0.39 

144 0.31 0.6 0.13 0.02 0.3 0.52 0.47 0.39 0.34 

148 0.33 0.64 0.15 0.02 0.34 0.56 0.52 0.71 0.51 

164 0.33 0.62 0.14 0.02 0.34 0.51 0.48 0.71 0.51 

168 0.3 0.57 0.13 0.02 0.32 0.47 0.44 0.66 0.46 

172 0.29 0.56 0.13 0.02 0.3 0.43 0.39 0.24 0.31 

189 0.33 0.64 0.15 0.02 0.33 0.49 0.45 0.61 0.53 

194 0.31 0.57 0.13 0.02 0.32 0.45 0.42 0.65 0.49 

 

SET-2 (associated with imaging) 

Batch Experiment-1  

 

Time 

(hours) 

Viable Cell 

Concentration 

( x 106 cells/mL) 

Dead Cell 

Concentration 

( x 106 cells/mL) 

Total Cell 

Concentration 

( x 106 cells/mL) 

%Viability 
GLC 

(mM) 

NH3 

(ppm) 

NH3 

(mM) 

0 0.3 0.05 0.35 85.71429    

22 0.55 0.02 0.57 96.49123  0.72 1.122353 

41.4 0.85 0.06 0.91 93.40659 16.2 1.14 1.777059 

48.25 1.08 0.07 1.15 93.91304 13.1 1.46 2.275882 
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64 1.89 0.07 1.96 96.42857 10.4 1.88 2.930588 

88 3.3 0.17 3.47 95.10086 8 2.41 3.756765 

94.75 2.78 0.2 2.98 93.28859 6.3 2.5 3.897059 

114 2.28 0.46 2.74 83.21168 4.3 2.65 4.130882 

121.4 3.19 0.17 3.36 94.94048 3.7 2.7 4.208824 

137 2.85 0.33 3.18 89.62264 2.2 2.76 4.302353 

144.7 2.72 0.36 3.08 88.31169 1.3 2.67 4.162059 

163.5 2.36 0.39 2.75 85.81818 0.9 2.8 4.364706 

172 1.95 0.38 2.33 83.69099 1 3.08 4.801176 

186.5 1.78 0.39 2.17 82.02765 LO 3.23 5.035 

206.8 1.25 0.37 1.62 77.16049 LO 3.48 5.424706 

238.75 0.61 0.32 0.93 65.5914 LO 3.71 5.783235 

263.25 0.42 0.35 0.77 54.54545 LO 3.92 6.110588 

289.1 0.22 0.34 0.56 39.28571 LO 4.27 6.656176 

331.7 0 0.45 0.45 0 LO 4.25 6.625 

 

Batch Experiment-2  

 

Time 

(hours) 

Viable Cell 

Concentration 

( x 106 cells/mL) 

Dead Cell 

Concentration 

( x 106 cells/mL) 

Total Cell 

Concentration 

( x 106 cells/mL) 

%Viability 
GLC 

(mM) 

NH3 

(ppm) 

NH3 

(mM) 

0 0.3 0.05 0.35 85.71429    

22 0.43 0.08 0.51 84.31373  0.594 0.925941 

41.4 0.92 0.05 0.97 94.84536 13.6 1.03 1.605588 

48.25 1.37 0.09 1.46 93.83562 12.9 1.38 2.151176 

64 2.47 0.17 2.64 93.56061 10.6 1.5 2.338235 
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88 2.84 0.13 2.97 95.6229 9.9 1.15 1.792647 

94.75 2.09 0.23 2.32 90.08621 7.7 1.24 1.932941 

114 2.14 0.25 2.39 89.53975 5.4 1.62 2.525294 

121.4 3.38 0.14 3.52 96.02273 4.4 1.71 2.665588 

137 2.4 0.4 2.8 85.71429 2.8 1.8 2.805882 

144.7 2.36 0.61 2.97 79.46128 2.3 1.91 2.977353 

163.5 2.17 0.62 2.79 77.77778 1.1 2.06 3.211176 

172 1.95 0.57 2.52 77.38095 0.6 2.08 3.242353 

186.5 1.76 0.41 2.17 81.10599 LO 2.16 3.367059 

206.8 1.38 0.6 1.98 69.69697 LO 2.35 3.663235 

238.75 1.07 0.57 1.64 65.2439 LO 2.64 4.115294 

263.25 0.76 0.72 1.48 51.35135 LO 2.9 4.520588 

289.1 0.85 0.77 1.62 52.46914 LO 3.13 4.879118 

331.7 0.42 0.68 1.1 38.18182 LO 3.43 5.346765 

 

Batch Experiment-3  

 

Time 

(hours) 

Viable Cell 

Concentration 

( x 106 cells/mL) 

Dead Cell 

Concentration 

( x 106 cells/mL) 

Total Cell 

Concentration 

( x 106 cells/mL) 

%Viability 
GLC 

(mM) 

NH3 

(ppm) 

NH3 

(mM) 

0 0.3 0.05 0.35 85.71429    

22 0.5 0.03 0.53 94.33962  0.717 1.117676 

41.4 0.81 0.05 0.86 94.18605 16.4 1.2 1.870588 

48.25 1.15 0.16 1.31 87.78626 12.1 1.31 2.042059 

64 1.51 0.11 1.62 93.20988 9.2 1.47 2.291471 

88 1.56 0.05 1.61 96.89441 7.1 1.59 2.478529 
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94.75 1.76 0.19 1.95 90.25641 6.6 1.69 2.634412 

114 1.44 0.33 1.77 81.35593 5.8 1.77 2.759118 

121.4 1.21 0.33 1.54 78.57143 5.8 1.87 2.915 

138.5 1.29 0.4 1.69 76.33136 5.5 1.93 3.008529 

146.3 1.3 0.43 1.73 75.14451 5.6 2.1 3.273529 

165.2 1.32 0.56 1.88 70.21277 5.1 2.3 3.585294 

173 1.31 0.66 1.97 66.49746 4.5 2.35 3.663235 

189.75 0.96 0.66 1.62 59.25926 4.2 2.42 3.772353 

209 0.69 0.87 1.56 44.23077 4 2.51 3.912647 

240.75 0.32 0.75 1.07 29.90654 3.1 2.62 4.084118 

265.5 0.3 1.1 1.4 21.42857 2.3 2.7 4.208824 

293.6 0.23 0.85 21 21.2963 2 2.81 4.380294 

333 0.19 0.84 18.4 18.4466 1.6 2.84 4.427059 

        

 

Batch Experiment-4  

 

Time 

(hours) 

Viable Cell 

Concentration 

( x 106 cells/mL) 

Dead Cell 

Concentration 

( x 106 cells/mL) 

Total Cell 

Concentration 

( x 106 cells/mL) 

%Viability 
GLC 

(mM) 

NH3 

(ppm) 

NH3 

(mM) 

0 0.3 0.05 0.35 85.71429    

22 0.46 0.04 0.5 92  0.748 1.166 

41.4 0.8 0.1 0.9 88.88889 14.2 1.29 2.010882 

48.25 1.33 0.09 1.42 93.66197 13.1 1.61 2.509706 

64 1.37 0.19 1.56 87.82051 9.1 1.69 2.634412 

88 1.39 0.16 1.55 89.67742 7.7 1.82 2.837059 
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94.75 2.37 0.28 2.65 89.43396 6.2 1.9 2.961765 

114 0.92 0.17 1.09 84.40367 6.2 2 3.117647 

121.4 1.48 0.19 1.67 88.62275 6.1 2.24 3.491765 

138.5 1.46 0.24 1.7 85.88235 5.2 2.3 3.585294 

146.3 1.47 0.5 1.97 74.61929 5 2.34 3.647647 

165.2 1.28 0.41 1.69 75.73964 4.2 2.46 3.834706 

173 1.17 0.39 1.56 75 4 2.5 3.897059 

189.75 1.2 0.42 1.62 74.07407 3.8 2.6 4.052941 

209 1.06 0.43 1.49 71.14094 3.3 2.66 4.146471 

240.75 0.78 0.53 1.31 59.54198 2.3 2.76 4.302353 

265.5 0.75 0.62 1.37 54.74453 1.7 2.86 4.458235 

293.6 0.75 0.56 57 57.25191 1.1 2.96 4.614118 

333 0.65 0.62 51.1 51.1811 LO 3.11 4.847941 
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Appendix B 
Calculated Results for Experiment Set-1 

Calculated R-values for Batch Experiment-1 (in mmol/109 cell hours): 

 
Metabolite Rexp Rpost Rfull 

Pyr 0 0 0 

AcCoA 0 0 0 

aKG 0 0 0 

SuCCoA 0 0 0 

FUM 0 0 0 

OAA 0 0 0 

Glc -0.26731323 -0.00918419 -0.11199362 

Lac 0.328126 0.00648532 0.12408664 

Ala 0.02545904 0.00585721 0.0136512 

Arg -0.00459109 0.00084063 -0.00132343 

Asp -0.0060134 0.00043947 -0.00237187 

Asn -0.00348374 -0.00220295 -0.00252385 

Cys 0 0 0 

Gln -0.06972616 0 -0.02718938 

Glu -0.00142231 -0.00040116 -0.00104844 

Gly -0.0019166 0.0067063 0.00311847 

His -0.00252123 0 -0.00100581 

Ile -0.00599654 -0.00193225 -0.00342958 

Leu -0.00844114 -0.00048008 -0.00352847 

Lys -0.00531528 0.00098747 -0.00135043 

Met -0.00266607 0.00039022 -0.00083956 
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Phe -0.00236796 0.00028164 -0.00075062 

Pro 0.00529764 0.00334811 0.00428066 

Ser -0.00184839 -7.3089E-19 -0.00067234 

Thr -0.00481256 0.00067186 -0.00151366 

Tyr -0.0024446 4.1605E-05 -0.00096518 

Val -0.00666095 -0.00072011 -0.00296679 

BioMass 0.58469819 0.0843572 0.27580246 

Mab 4.124E-09 6.5733E-10 2.4835E-09 

 
Calculated R-values for a Batch Experiment-2 were unavailable. 

 

Calculated R-values for a Fed-batch Experiment-1 (in mmol/109 cell hours): 

 
Metabolite R1 R2 R3 R4 R5 R6 

Pyr 0 0 0 0 0 0 

AcCoA 0 0 0 0 0 0 

aKG 0 0 0 0 0 0 

SuCCoA 0 0 0 0 0 0 

FUM 0 0 0 0 0 0 

OAA 0 0 0 0 0 0 

Glc -0.91769036 -1.08065625 -0.52007489 -0.332668 -0.26518165 -0.54181663 

Lac 1.63726605 -0.29472443 0.69343319 0.44355733 1.52479448 0.85142614 

Ala 0.09513467 0.07073386 0.08737258 0.07318696 0.02386635 0.07523511 

Arg -0.00823733 -0.00884173 -0.0020803 -0.00665336 -0.01193317 0.00139324 

Asp -0.00485846 -0.01768347 -0.0041606 -0.00665336 -0.01789976 8.5705E-18 

Asn -0.00648865 -0.00884173 -0.0020803 -0.00665336 -0.02386635 0.00417973 

Cys 0 0 0 0 0 0 
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Gln -0.16787599 -0.17683466 -0.15602247 -0.37791084 -0.11336516 -0.08638105 

Glu 0.01153475 -0.00884173 0.0062409 7.014E-18 -0.00596659 0.00696621 

Gly -0.0016854 8.4354E-17 0.0083212 0.00665336 -0.01193317 -0.00278649 

His -0.00397651 -0.00884173 -0.0041606 -0.01330672 -0.02386635 4.2852E-18 

Ile -0.0130268 0.0265252 -0.0124818 0.00665336 -0.04176611 0.00696621 

Leu -0.01698807 0.03536693 -0.0166424 0 -0.04176611 0.00417973 

Lys -0.02052016 0.31830239 -0.020803 0.1330672 0.05966587 0.02229188 

Met -0.00510279 1.6871E-17 -0.0041606 8.4168E-18 -0.00596659 1.7141E-18 

Phe -0.0054271 0.00884173 -0.0041606 0.00665336 -0.01789976 0.00417973 

Pro -0.00432718 0.04420866 0.0124818 0.0665336 0.05966587 0.00696621 

Ser -0.0084569 -0.00884173 -0.0020803 0 -0.02983294 0.00835946 

Thr -0.0107647 -0.0265252 -0.0041606 -2.2445E-17 -0.04176611 0.00557297 

Tyr -0.00343409 4.4989E-17 -0.0020803 -0.00665336 -0.01789976 0.00417973 

Val -0.01406359 -0.01768347 -0.0104015 -3.9278E-17 -0.03579952 0.00417973 

BioMass 0.75198001 0.94557514 0.96057049 0.27769063 1.57379337 0.43905398 

Mab 4.3281E-09 2.5667E-09 3.0414E-09 5.7899E-09 -1.3819E-08 2.6698E-09 

 
Continued… 
 

Metabolites R7 R8 R9 R10 R11 R-average 

Pyr 0 0 0 0 0 0 

AcCoA 0 0 0 0 0 0 

aKG 0 0 0 0 0 0 

SuCCoA 0 0 0 0 0 0 

FUM 0 0 0 0 0 0 

OAA 0 0 0 0 0 0 

Glc -0.38929962 -0.22391073 -0.26149181 -0.15367506 -0.09637471 -0.4686465 
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Lac 0.28572449 -6.7998E-16 0.4238765 -5.037E-16 0.11558634 0.55653537 

Ala 0.04500161 -0.02642881 0.04711841 0.05095541 0.00807957 0.05421762 

Arg -0.0064288 -0.0132144 -0.00168588 0.00242645 -0.0027295 -0.00552553 

Asp -0.0128576 -0.0066072 -0.00162675 -3.4979E-18 -0.00132223 -0.00723472 

Asn -0.0064288 -0.0132144 -0.00017737 0.00242645 -0.00597122 -0.00611448 

Cys 0 0 0 0 0 0 

Gln -0.1002893 -0.06739346 -0.09302404 -0.04901426 -0.01523901 -0.13881112 

Glu -0.0064288 -0.0066072 0.00377126 0.00242645 0.00135471 0.00030953 

Gly -0.0064288 -0.02642881 0.00234427 0.01213224 0.01957028 -0.00198116 

His -0.0064288 -0.0066072 -0.00049537 -0.00121322 -0.00155117 -0.00688965 

Ile -0.0257152 -0.0132144 -0.00267662 0.0048529 -0.01148075 -0.00638833 

Leu -0.0257152 -0.0132144 -0.00607076 0.00242645 -0.01073261 -0.00784238 

Lys -0.03857281 -0.0066072 -0.00491699 0.00242645 -0.00620734 0.04443336 

Met -0.0064288 -0.0066072 -0.00200388 0.00121322 -0.00195994 -0.00290566 

Phe -0.0128576 -0.0066072 -0.00130875 0.00242645 -0.00251277 -0.00261597 

Pro 0.0064288 -0.0132144 0.00434815 0.01819836 0.00255338 0.02012899 

Ser 0.0064288 -0.01982161 2.1352E-17 0.00121322 -0.01183493 -0.0053032 

Thr -0.0257152 -0.01982161 -0.00186325 0.00606612 -0.00407509 -0.01189776 

Tyr -0.0128576 -0.0066072 -0.00017737 0.00242645 -0.00210344 -0.00431035 

Val -0.0257152 -0.01982161 -0.00299462 0.00363967 -0.00706258 -0.01186601 

BioMass 0.35874929 0.96782647 0.09698619 0.75481148 -0.17467905 0.71270371 

Mab 1.4212E-08 -1.9978E-08 5.2112E-09 6.4446E-09 1.2136E-08 1.0467E-09 
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Calculated R-values for a Fed-batch Experiment-2 (in mmol/109 cell hours): 

 
Metabolites R1 R2 R3 R4 R5 R6 

Pyr 0 0 0 0 0 0 

AcCoA 0 0 0 0 0 0 

aKG 0 0 0 0 0 0 

SuCCoA 0 0 0 0 0 0 

FUM 0 0 0 0 0 0 

OAA 0 0 0 0 0 0 

Glc -0.78348215 -0.73388552 -1.10577638 -0.3236246 -0.6681828 0.08112545 

Lac 1.45320187 1.05460311 1.05290927 0.91693635 1.21290882 0.41969614 

Ala 0.07718603 0.09823633 -0.06218514 0.00485437 0.07017544 -0.05890319 

Arg -0.00528226 0.00124962 0.01184338 -9.1047E-18 -0.00389864 -0.02426654 

Asp -0.00300282 8.3442E-18 0.00592169 -0.00485437 -0.00389864 -0.01248045 

Asn -0.00230171 0.00124962 0.01184338 -0.00485437 -0.00194932 -0.0321678 

Cys 0 0 0 0 0 0 

Gln -0.13191535 -0.16149418 -0.29397317 -0.08058252 -0.09727096 -0.05479145 

Glu 0.01100109 0.00877817 -0.00414666 -4.5524E-18 0.00779727 -0.01580252 

Gly -0.00507293 0.01295385 0.00592169 0.00485437 0.00389864 -0.02472945 

His -0.00378085 -0.00292606 0.00177503 -9.1047E-18 -0.00584795 -0.01145478 

Ile -0.0097865 -0.00292606 0.04027341 -0.00485437 -0.00584795 -0.04843323 

Leu -0.01346818 -0.00752855 0.05034176 -0.00970874 -0.00974659 -0.05254951 

Lys -0.01182092 -0.00335287 0.12320664 0.00485437 -0.00194932 -0.0698406 

Met -0.00230171 2.7814E-18 0.01184338 -9.1047E-18 -0.00194932 -0.01580252 

Phe -0.00365727 1.1126E-17 0.0201367 0 -0.00194932 -0.02805152 

Pro 0.0047688 0.01923278 0.03080166 0.00970874 0.01754386 -0.02623164 
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Ser -0.00421741 -0.00585211 0.01184338 -0.01456311 -0.00194932 -0.02838281 

Thr -0.00380312 6.6754E-17 0.0195401 -0.00970874 -0.00389864 -0.04820177 

Tyr -0.00298056 0.00124962 0.01184338 -9.1047E-18 -3.6635E-18 -0.02449799 

Val -0.00898621 -0.00124962 0.02960846 -1.8209E-17 -0.00584795 -0.04820177 

BioMass 0.92872045 0.50392085 1.07267435 0.15526114 -0.37273327 2.04348336 

Mab 5.8912E-09 5.4185E-09 2.8252E-09 1.8211E-09 3.9913E-09 5.6419E-09 

 
Continued… 
 

Metabolites R7 R8 R9 R10 R Average 

Pyr 0 0 0 0 0 

AcCoA 0 0 0 0 0 

aKG 0 0 0 0 0 

SuCCoA 0 0 0 0 0 

FUM 0 0 0 0 0 

OAA 0 0 0 0 0 

Glc -0.29830956 -0.29664529 -0.13709232 -0.00367211 -0.47398591 

Lac 0.58515701 0.52349169 -1.8797E-16 0.040834 0.80210047 

Ala 0.03685566 0.00785238 0.0106136 0.01502154 0.02052061 

Arg -0.00043848 -0.00785238 -0.0039801 0.00103861 -0.00362504 

Asp -0.00200779 -0.00785238 -0.0026534 0.00130199 -0.00342535 

Asn 0.00131545 -0.01570475 -0.0053068 -0.00326323 -0.00531959 

Cys 0 0 0 0 0 

Gln -0.05879136 -0.0691009 -0.02746269 0 -0.10837584 

Glu 0.00540027 1.9041E-17 -9.7899E-19 0.00554199 0.00144751 

Gly 0.01536999 -0.03926188 0.0066335 0.01847289 -0.00215914 

His -0.0035771 -0.00785238 -0.0026534 0.00074237 -0.00403528 
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Ile 0.00226165 -0.01570475 -0.0106136 -0.00684761 -0.00618127 

Leu 0.00270013 -0.01570475 -0.0119403 -0.00542729 -0.00751164 

Lys 0.03879422 -0.01570475 -0.0106136 0.00240902 0.00595257 

Met 7.1749E-18 -0.00785238 -0.0026534 0.00015848 -0.00207955 

Phe 0.00226165 -1.7921E-17 -0.0039801 0.00170518 -0.00169332 

Pro 0.01908555 -0.0314095 -0.0053068 0.00644461 0.00424372 

Ser -0.00558489 -0.00785238 -0.0079602 -0.0107842 -0.00716876 

Thr 0.00182317 -0.02355713 -0.0053068 0.0028836 -0.00812366 

Tyr 0.00270013 -0.00785238 -0.0026534 0.00061375 -0.00246569 

Val 0.00025386 -0.01570475 -0.0079602 -0.00102881 -0.00645424 

BioMass -0.05527199 1.5199253 0.23791102 -0.16405454 0.67043236 

Mab 1.3585E-09 8.3533E-09 4.9765E-09 8.8458E-09 4.4753E-09 

 
Calculated Average Flux Values for Batch Experiment 1and 2: 

 

Flux Serial Number Exponential Post-exponential Overall Average 

j1 0.32051 2.35E-02 0.172007 

j2 0.1606 0.049514 0.105057 

j3 0.17153 0.053174 0.112352 

j4 0.22796 0.06031 0.144135 

j5 0.23433 0.062859 0.148595 

j6 0.23536 0.062901 0.149131 

j7 0.059652 0.0097467 0.034699 

j8 0.50516 1.71E-04 0.252665 

j9 0.000034119 3.97E-09 1.71E-05 
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j10 0.00047431 5.12E-12 0.000237 

j11 7.1924E-08 3.61E-05 1.81E-05 

j12 0.000092423 3.32E-07 4.64E-05 

j13 0.00099849 1.91E-05 0.000509 

j14 0.0021201 7.28E-04 0.001424 

j15 0.001672 9.16E-08 0.000836 

j16 0.0017275 0.0017975 0.001763 

j17 0.00082258 1.94E-07 0.000411 

j18 0.0015946 0.00058961 0.001092 

j19 0.0012031 2.39E-05 0.000614 

j20 0.00089793 1.95E-03 0.001424 

j21 0.0013824 8.29E-11 0.000691 

j22 0.009163 2.67E-03 0.005919 

j23 0.060203 8.02E-03 0.034112 

j24 0.056414 5.64E-03 0.031027 

j25 0.0077077 1.20E-04 0.003914 

j26 0.0097928 2.43E-10 0.004896 

j27 0.040995 0.0071029 0.024049 

j28 0.0042103 2.75E-08 0.002105 

j29 0.000001654 1.68E-05 9.21E-06 

j30 0.0060156 3.39E-11 0.003008 

j31 0.54561 8.41E-02 0.314867 

j32 3.7025E-08 8.97E-13 1.85E-08 
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Calculated Average Flux Values for Fed-batch Experiment 1and 2: 

 

Flux Serial Number Exponential Post-exponential Overall Average 

j1 0.410662646 0.094383485 0.252523 

j2 0.328097561 0.165048363 0.246573 

j3 0.370968232 0.188169262 0.279569 

j4 0.463434922 0.209142859 0.336289 

j5 0.492940796 0.21703174 0.354986 

j6 0.503836484 0.218014949 0.360926 

j7 0.130015436 0.029872373 0.079944 

j8 0.595659567 0.039084743 0.317372 

j9 0.000118698 3.4262E-06 6.11E-05 

j10 0.000347825 3.53203E-10 0.000174 

j11 0.004400219 0.00576053 0.00508 

j12 0.003965813 0.000496962 0.002231 

j13 0.008532288 0.000951559 0.004742 

j14 0.007477653 0.002089812 0.004784 

j15 0.008935302 0.000467968 0.004702 

j16 0.007083523 0.004711025 0.005897 
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j17 0.003640182 0.000584008 0.002112 

j18 0.004154661 0.00424648 0.004201 

j19 0.00310045 0.001875909 0.002488 

j20 0.006086514 0.003664704 0.004876 

j21 0.003742772 0.00062041 0.002182 

j22 0.014824928 0.003763127 0.009294 

j23 0.083039743 0.017780533 0.05041 

j24 0.07743353 0.014471262 0.045952 

j25 0.012304046 0.005342362 0.008823 

j26 0.022636932 1.01842E-07 0.011319 

j27 0.05566465 0.020315552 0.03799 

j28 0.004822266 1.84138E-08 0.002411 

j29 0.002193692 2.0545E-05 0.001107 

j30 0.019378491 1.13792E-07 0.009689 

j31 0.597395705 0.162979337 0.380188 

j32 3.53801E-06 1.62832E-07 1.85E-06 
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Values of a-coefficients: 

 

 Batch Exponential Fed-Batch Exponential 

a1 0.159293 0.275055 

a2 0.01666 0.031789 

a3 0.002791 0.02178 

a4 0.010118 0.025652 

a5 0.038617 0.101629 

a6 0.035737 0.097108 

a7 0.587604 0.718849 

a8 0.004079 9.92E-04 

a9 4.15E-05 4.71E-04 

 

 Batch Post-exponential Fed-Batch Post-exponential 

a1 0.001277 0.062592 

a2 0.0023 0.002917 

a3 2.24E-15 4.01E-12 

a4 0.001655 3.58E-04 

a5 0.001914 0.018823 

a6 2.23E-15 0.016492 

a7 0.084084 3.46E-12 

a8 5.16-04 0.012079 

a9 2.22E-15 9.98E-04 
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Appendix C 
MATLAB Codes 

Predictions for Dynamic Model- Batch and Fed-batch Mode- Main File: 
clear all 
%run data file for DYNAMIC MODEL of METABOLITES for EXPS. 
%xdata1 = Experiment 250-3 
%xdata2 = Experiment 1000-2 
%xdata3 = Experiment 7(3) 
%xdata4 = Experiment 7(4) 
%xdata5 = Experiment 7(1) 
global X 
global xp 
global swittch 
global a 
load a8%a8 for batch and a12 for fedbatch 
    a= aExA 
  
load xxxdata 
xdatae = xdata5; 
XvData = xdatae(:,33); 
DataTime = xdatae(:,1); 
start = min(DataTime); 
fin = max(DataTime); 
ttt = (min(DataTime):0.5: max(DataTime)); 
XX = interp1 (DataTime, XvData, ttt); 
  
batch=0;%0 for Batch , 3 for Exp(3), 4 for Exp7(4) 
x10f(:,1) =xdatae(:,9);         %GLC 
x10f(:,2) =xdatae(:,17);        %GLN 
x10f(:,3) =xdatae(:,10);        %LAC 
x10f(:,4) =xdatae(:,11);        %AMM. 
x10f(:,5) =xdatae(:,18)*10;     %GLU 
x10f(:,6) =xdatae(:,15);        %ASN 
x10f(:,7) =xdatae(:,14);        %ASP 
x10f(:,8) =xdatae(:,12);        %ALA 
x10f(:,9) =xdatae(:,26);        %PRO 
x10f(:,10)=xdatae(:,31);        %BIOMASS 
x10f(:,11)=xdatae(:,32)*1E6;    %MAb 
  
%load initial values 
x10(1) =xdatae(1,9); 
x10(2) =xdatae(1,17); 
x10(3) =xdatae(1,10); 
x10(4) =xdatae(1,11); 
x10(5) =xdatae(1,18)*10; 
x10(6) =xdatae(1,15); 
x10(7) =xdatae(1,14); 
x10(8) =xdatae(1,12); 
x10(9) =xdatae(1,26); 
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x10(10)=xdatae(1,31); 
x10(11)=xdatae(1,32)*1E6; 
Y(1,:)=x10; % x10 is the initial value vector 
  
%number of iterations 
mn = (fin-start)*2 
for i=1:mn 
    i; 
 time = start + (i-1)/2; 
 
%switch to post-exponential phase 
if time>=76 %for both 7(3) and 7(4)=140, 250-3:72, 1000-2:75, 7(1):76 
   a = aPos; 
end 
   
 ooo(i)=i; 
 X = XX(i); 
 [t,x01]=ode23('Testing_a_b_function',[i i+1],x10); 
    
 A1=[t,x01]; 
 [a1,b1]=size(A1); 
     
if batch==3 %Exp7(3), Dilutions are initiated in total 0.5 hrs before 
diluted point 
   batch 
     if time==51 
       for u = 1:11 
           node=2; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilutio 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
          
       end 
   elseif time==55 
       for u = 1:11 
           node=4; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==56 
       for u = 1:11 
           node=5; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==71 
       for u = 1:11 
           node=8; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
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           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==75 
       for u = 1:11 
           node=10; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==80 
       for u = 1:11 
           node=11; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution; 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==96 
       for u = 1:11 
           node=13; dist=DataTime(node+1)-DataTime(node) ;%node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==100 
       for u = 1:11 
           node=16; dist=DataTime(node+1)-DataTime(node) %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)) 
       end 
   elseif time==104 
       for u = 1:11 
           node=17; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==120 
       for u = 1:11 
           node=20; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   else 
       x10=x01(a1,:); 
   end 
  
elseif batch==4 %Exp7(4), Dilutions  are initiated in total 0.5 hrs before 
diluted point 
    if time==43 
        for u = 1:11 
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           node=2; 
           dist=DataTime(node+1)-DataTime(node);%node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
    elseif time==54 
        for u = 1:11 
           node=5; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==71 
        for u = 1:11 
           node=8; 
           dist=DataTime(node+1)-DataTime(node) ;%node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==75 
        for u = 1:11 
           node=12; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==80 
        for u = 1:11 
           node=14; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
        end 
   elseif time==96 
        for u = 1:11 
           node=16; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end     
   elseif time==104 
        for u = 1:11 
           node=20; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
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       end 
   elseif time==120 
        for u = 1:11 
           node=23; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
        end 
    elseif time==124 
        for u = 1:11 
           node=25; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
  
  else 
       x10=x01(a1,:); 
       t10=A1(a1,1); 
   end 
 else % for Batch Experiments without Dilution 
 x10=x01(a1,:); 
 end      
   
   %*********************all outputs are positive*************** 
   for j=1:11 
       if x10(j)<0 
           x10(j)=0; 
       end 
   end 
    
      
   Y(i+1,:)=x10; 
   Ydif(i+1,:)=xp; 
   
  
end 
  
save Y1308F Y Ydif 
  
%Plot of the model prediction and the measured data 
  
length=fin; 
  
%ttt=tttt 
  
figure(1) 
subplot(2,3,1) 
scatter (DataTime,XvData,6,'ko','filled') 
hold on 
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xlabel('time(hour)'); 
ylabel('Xv(xE06/mL)'); 
axis([start length min(XX) max(XX)]) 
  
subplot(2,3,2) 
F = Y(:,1); 
E = xdatae(:,9); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('GLC(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,3) 
F = Y(:,2); 
E = xdatae(:,17); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('GLN(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,4) 
F = Y(:,3); 
E = xdatae(:,10); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('LAC(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,5) 
F = Y(:,10); 
E = xdatae(:,31); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('Biomass(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,6) 
F = Y(:,11)*1E-6; %Mab goes in with 1E6 the value, to get a reasonable a-
coefficient during the QP 
E = xdatae(:,32); 
plot(ttt,F,'-k') 
hold on 
%scatter(DataTime,E,6,'go','filled') 
xlabel('time(hour)'); 
ylabel('MAb(mM)') 



 

 158 

axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
figure(2) 
subplot(2,3,1)  
F = Y(:,8); 
E = xdatae(:,12); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('ALA(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,2) 
F = Y(:,9); 
E = xdatae(:,26); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('PRO(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,3) 
F = Y(:,7); 
E = xdatae(:,14); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('ASP(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,4) 
F = Y(:,6); 
E = xdatae(:,15); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('ASN(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,5) 
F = Y(:,5)*0.1; 
E = xdatae(:,18); 
plot(ttt,F,'-k') 
hold on 
scatter(DataTime,E,6,'ko','filled') 
xlabel('time(hour)'); 
ylabel('GLU(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
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subplot(2,3,6) 
F = Y(:,4); 
plot(ttt,F,'-k') 
hold on 
xlabel('time(hour)'); 
ylabel('NH3(mM)') 
axis([start length min(F) max(F)]) 
  
 
Sub-routine for the Dynamic Model: 
  
function xp=DynamicModel(t,x) 
%a-coefficients are calculated from averages of Exp7(3) and Exp 250-3 
  
global X 
global xp 
global swittch 
global a 
  
 
if batch==0 

kG=4;kQ=0.03; 
kU=0.01;kS=0.02;kF=0.05; 

end 
if batch>0 

kG=0.5;kQ=0.5; 
kU=0.01;kS=0.12;kF=0.05; 

end 
 
G=x(1);Q=x(2);L=x(3);N=x(4);U=x(5);S=x(6);F=x(7);B=x(8);P=x(9);M=x(10);A=x
(11); 
%G-Glucose; Q-GLutamine; L-Lactate; N-Ammonia; U-GlutamicAcid; 
%S-Asparagine; F-Aspartic Acid; B-Alanine; P-Proline; M-Biomass; A-MAb 
%*********************** 
load KK 
 
%reaction rates 
r(1)=a(1)*G*X/(kG+G); 
r(2)=a(2)*G*U*X/((kG+G)*(kU+U)); 
r(3)=a(3)*G*U*X/((kG+G)*(kU+U)); 
r(4)=a(4)*U*X/(kU+U); 
r(5)=a(5)*S*X/(kS+S); 
r(6)=a(6)*Q*F*X/((kQ+Q)*(kF+F)); 
r(7)=a(7)*X*Q/(kQ+Q); 
r(8)=a(8)*X*Q/(kQ+Q); 
r(9)=a(9)*Q*X/(kQ+Q); 
 
r=r'; 
jay = size(r); 
K1; 
xp=K1*r; 
xp=xp; 
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Prediction for Integrated Model- Batch and Fedbatch Mode: 
 
clear all 
%run data file for INTEGRATED MODEL of METABOLITES for BATCH & FED-BATCH 
EXPS. 
%xdata1 = Experiment 250-3 
%xdata2 = Experiment 1000-2 
%xdata33 = Experiment 7(3) 
%xdata4 = Experiment 7(4) 
%xdata5 = Experiment 7(1) 
global xp 
global X 
global batch 
global a 
load a8 %for batch and early fed-batch before feeding 
    a= aExA; 
 
% load experimental data 
load xxxdata 
  
%fix xdata and batch no. manually 
xdata = xdata5; 
batch=0;%0 for Batch , 3 for Exp(3), 4 for Exp7(4) 
 
DataTime = xdata(:,1); 
ttt=DataTime'; 
start = min(DataTime); 
fin = max(DataTime); 
  
x10f(:,2) =xdata(:,9);                             %Glucose 
x10f(:,3) =xdata(:,17);                            %Glutamine 
x10f(:,4) =xdata(:,10);                            %Lactate 
x10f(:,5) =xdata(:,11);                            %Ammonia 
x10f(:,6) =xdata(:,18)*10;                         %Glutamic Acid 
x10f(:,7) =xdata(:,15);                            %ASN 
x10f(:,8) =xdata(:,14);                            %ASP 
x10f(:,9) =xdata(:,12);                            %Alanine 
x10f(:,10) =xdata(:,26);                           %Prolin 
x10f(:,11)=xdata(:,31);                            %Biomass 
x10f(:,12)=xdata(:,32)*1E6;                        %MAb 
x10f(:,1)=xdata(:,33);                             %Xv 
x10f(:,13)=xdata(:,34);                            %Xd 
jack=size(x10f); 
  
%load initial values 
 
x10(2) =xdata(1,9);                          %Glc 
x10(3) =xdata(1,17);                         %Gln 
x10(4) =xdata(1,10);                         %Lac 
x10(5) =xdata(1,11);                         %Amm 
x10(6) =xdata(1,18)*10;                      %Glu 
x10(7) =xdata(1,15);                         %ASN 
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x10(8) =xdata(1,14);                         %ASP 
x10(9) =xdata(1,12);                         %Ala 
x10(10) =xdata(1,26);                        %Pro 
x10(11)=xdata(1,31);                         %Biomass 
x10(12)=xdata(1,32)*1E6;                     %MAb 
x10(1)=xdata(1,33) ;                         %Xv 
x10(13)=xdata(1,34);                         %Xd 
Y1(1,:)=x10; % x10 is the initial value vector 
Y(1,:)=x10; 
eli=size(Y1) 
  
%switch to post-exponential phase 
if batch==0 %for batch experiments 
   mn = (fin-start); 
   ttt = (min(DataTime):1: max(DataTime)); 
 for i=1:mn 
    i; 
 time = start + (i-1)/2; 
 if time>=76 %fix switch for 250-3=80, 7(1)=76 
   a = aPos; 
end 
  
 [t,x01]=ode23('Testing_a_function',[i i+1],x10); 
 A1=[t,x01]; 
 [a1,b1]=size(A1); 
 x10=x01(a1,:); 
 t10=A1(a1,1); 
   for j=1:12 
       if x10(j)<0 
           x10(j)=0; 
       end 
   end 
    
   Y(i+1,:)=x10; 
   T(i+1,:)=t10; 
end  
end 
 
if batch>0 
 %number of iterations 
 mn = (fin-start)*2; 
 ttt = (min(DataTime):0.5: max(DataTime)); 
 for i=1:mn 
    i; 
 time = start + (i-1)/2; 
 
%switch to fed-batch a-values 
 if time>47 %51 for 7(3) and 47 for 7(4) 
    load a12 
    a= aExA; 
 end 
 
%switch to post-exponential phase 
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 if time>=140 %switch for 7(3)=140, for 7(4)=140 
    load a12 
    a = aPos; 
 end 
 [t,x01]=ode23('Testing_a_function',[i i+1],x10); 
 A1=[t,x01]; 
 [a1,b1]=size(A1); 
  
 if batch==3 %Exp7(3), Dilutions are initiated in total 0.5 hrs before 
diluted point 
   if time==51 
       for u = 1:12 
           node=2; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
        end 
   elseif time==55 
       for u = 1:12 
           node=4; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==56 
       for u = 1:12 
           node=5; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==71 
       for u = 1:12 
           node=8; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==72 
       for u = 1:12 
           node=9; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
       elseif time==75 
       for u = 1:12 
           node=10; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
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       end 
   elseif time==80 
       for u = 1:12 
           node=11; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==96 
       for u = 1:12 
           node=13; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==100 
       for u = 1:12 
           node=16; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u);+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==104 
       for u = 1:12 
           node=17; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==120 
       for u = 1:12 
           node=20; dist=DataTime(node+1)-DataTime(node); %node=Number of 
Data Node before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   else 
       x10=x01(a1,:); 
       t10=A1(a1,1); 
   end 
  
elseif batch==4 %Exp7(4), Dilutions  are initiated in total 0.5 hrs before 
diluted point 
        if time==43 
        for u = 1:12 
           node=2; 
           dist=DataTime(node+1)-DataTime(node);%node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
    elseif time==54 
        for u = 1:11 
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           node=5; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==71 
        for u = 1:11 
           node=8; 
           dist=DataTime(node+1)-DataTime(node) ;%node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==75 
        for u = 1:11 
           node=12; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==80 
        for u = 1:11 
           node=14; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
        end 
   elseif time==96 
        for u = 1:11 
           node=16; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end     
   elseif time==104 
        for u = 1:11 
           node=20; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
       end 
   elseif time==120 
        for u = 1:11 
           node=23; 
           dist=DataTime(node+1)-DataTime(node); %node=Number of Data Node 
before Dilution 
           v=i+1-2*dist; 
           x10(u)=Y(v,u)+(x10f(node+1,u)-x10f(node,u)); 
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       end 
   else 
       x10=x01(a1,:); 
       t10=A1(a1,1); 
   end 
 else % for Batch Experiments without Dilution 
 x10=x01(a1,:); 
 end   
  %*********************all outputs are positive*************** 
  
   for j=1:12 
       if x10(j)<0 
           x10(j)=0; 
       end 
   end 
    
   Y(i+1,:)=x10; 
   T(i+1,:)=t10; 
end 
end  
save Y1308F Y  
jane=size(Y); 
jane=Y(1,:); 
 
%Plot of the model prediction and the measured data 
  
length=fin; 
  
figure(1) 
subplot(2,3,1) 
F = Y(:,1); 
E = x10f(:,1); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('Xv(xE06/mL)'); 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,2) 
F = Y(:,2); 
E = xdata(:,9); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('GLC(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,3) 
F = Y(:,3); 
E = xdata(:,17); 
plot(ttt,F,'k-') 
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hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('GLN(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,4) 
F = Y(:,4); 
E = xdata(:,10); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('LAC(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,5) 
F = Y(:,13); 
E = x10f(:,13); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('Xd(xE06/mL)'); 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,6) 
F = Y(:,12)*1E-6; %Mab goes in with 1E6 the value, to get a reasonable a-
coeffcient during the QP 
E = xdata(:,32); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('MAb(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
  
figure (2) 
  
subplot(2,3,1) 
F = Y(:,11); 
E = xdata(:,31); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('Biomass(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,2) 
F = Y(:,9); 
E = xdata(:,12); 
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plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('ALA(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,3) 
F = Y(:,10); 
E = xdata(:,26); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('PRO(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,4) 
F = Y(:,7); 
E = xdata(:,15); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('ASN(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,5) 
F = Y(:,8); 
E = xdata(:,14); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('ASP(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
subplot(2,3,6) 
F = Y(:,6)*0.1; 
E = xdata(:,18); 
plot(ttt,F,'k-') 
hold on 
plot(DataTime,E,'k.') 
xlabel('time(hour)'); 
ylabel('GLU(mM)') 
axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
  
figure(3) 
F = Y(:,5); 
plot(ttt,F,'k-') 
hold on 
xlabel('time(hour)'); 
ylabel('NH3(mM)') 
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axis([start length min(min(F),min(E)) max(max(F),max(E))]) 
 
Sub-routine for the Integrated Model: 
 
function xp=Testing_a_function(t,x) 
%a-coefficients are calculated from averages of Exp7(3) and Exp 250-3 
  
global batch 
global xp 
global a 
t=t; 
a(1); 
  
if batch==0 
   kg=0.04;%0.05; 0.04 for fb; 0.04 for batch 
   kd=0.001; 
   kG=4;kQ=0.03; 
   kU=0.01;kS=0.02;kF=0.05; 
end 
 
if batch>0 
    kG=4;kQ=0.05; 
    kU=0.01;kS=0.12;kF=0.05; 
    if t<=47 
    kg=0.04; 
    kd=0.001; 
    else 
    kg=0.04; 
    kd=0.0001; 
    end 
end 
 
kgQ=0.05; 
kdQ=0.43; 
 
X=x(1);G=x(2);Q=x(3);L=x(4);N=x(5);U=x(6);S=x(7);F=x(8);B=x(9);P=x(10);M=x
(11);A=x(12); 
%G-Glucose; Q-GLutamine; L-Lactate; N-Ammonia; U-GlutamicAcid; 
%S-Asparagine; F-Aspartic Acid; B-Alanine; P-Proline; M-Biomass; A-MAb;  
%X=Viable cells; *********************** 
load KK 
  
%reaction rates 
r(1)=a(1)*G*X/(kG+G); 
r(2)=a(2)*G*U*X/((kG+G)*(kU+U)); 
r(3)=a(3)*G*U*X/((kG+G)*(kU+U)); 
r(4)=a(4)*U*X/(kU+U); 
r(5)=a(5)*S*X/(kS+S); 
r(6)=a(6)*Q*F*X/((kQ+Q)*(kF+F)); 
r(7)=a(7)*X*Q/(kQ+Q); 
r(8)=a(8)*X*Q/(kQ+Q); 
r(9)=a(9)*Q*X/(kQ+Q); 
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r=r'; 
size(r); 
xp(2:12,:)=K1*r; 
 
Xv=(kg*X*Q/(Q+0.05))-(kd*X*L/(Q+0.43)); %rate equation for viable cells  
Xd=(kd*X*L/(Q+0.43)); %rate equation for dead cells 
 
xp(1)=Xv;  
xp(13)=Xd; 
size(K1);%size of K1 is 11X9 
size(xp);% size of xp excl Xd is 12X1 
xp=xp; 
size(xp); 
 
 
Optimization for Biomass Model 

Main File for Optimizing kg and kd in Biomass Model : 
 

% MAIN PROGRAM FOR FED-BATCH EXPERIMENT: 2EQN 
clear all; 
lb = [0.0001;0.001]; 
ub =[0.05;0.3]; 
[paramt]=fmincon(@(k)...fedb_whole7_2(k),[0.001;;0.2],[],[],[],[],lb,ub,[]
,...optimset('TolFun',1e-01,'Display','iter')) 
 
 
Sub-routine for Optimizing kg and kd- Fedbatch Mode: 
 
% clear all; 
%Experiment 7(2) 2EQN 2TERM 
function ss = fedb_deathonly(k) 
global tspan  
% k 
k = [0.0004;0.4303]; 
kd = k(1); 
a4 = k(2); 
ZZ0 = 0.237; 
tspan = [27; 43]; 
[t1,X1] = ode23s(@ode_fedb_deathonly,tspan,ZZ0,[],kd,a4); 
YY1 = X1(max(size(X1))); 
ZZ1 = 0.812*X1(max(size(X1)),:);%after 43 
  
tspan = [43; 47; 51]; 
[t2,X2] = ode23s(@ode_fedb_deathonly,tspan,ZZ1,[],kd,a4); 
b2 = max(size(X2)); 
YY2 = X2(2:max(size(X2))); 
ZZ2 = (0.865)*X2(max(size(X2)),:);%after 51 
  
tspan = [51; 52; 55]; 
[t3,X3] = ode23s(@ode_fedb_deathonly,tspan,ZZ2,[],kd,a4); 
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b3 = max(size(X3)); 
YY3 = X3(2:max(size(X2))); 
ZZ3 = X3(b3);%after 55 
  
tspan = [55; 56; 67]; 
[t4,X4] = ode23s(@ode_fedb_deathonly,tspan,ZZ3,[],kd,a4); 
b4 = max(size(X4)); 
YY4 = X4(2:b4); 
ZZ4 = 0.88*X4(b4);%after 67 
  
tspan = [67; 68; 71]; 
[t5,X5] = ode23s(@ode_fedb_deathonly,tspan,ZZ4,[],kd,a4); 
b5 = max(size(X5)); 
YY5 = X5(2:b5); 
ZZ5 = 0.874*X5(b5);%after 71 
  
tspan = [71; 72; 75]; 
[t6,X6] = ode23s(@ode_fedb_deathonly,tspan,ZZ5,[],kd,a4); 
b6 = max(size(X6)); 
YY6 = X6(2:b6); 
ZZ6 = 0.774*X6(b6);%after 75 
  
tspan = [75; 76; 80]; 
[t7,X7] = ode23s(@ode_fedb_deathonly,tspan,ZZ6,[],kd,a4); 
b7 = max(size(X7)); 
YY7 = X7(2:b7); 
ZZ7 = 0.794*X7(b7);%after 80 
  
tspan = [80; 81; 96]; 
[t8,X8] = ode23s(@ode_fedb_deathonly,tspan,ZZ7,[],kd,a4); 
b8 = max(size(X8)); 
YY8 = X8(2:b8); 
ZZ8 = 0.884*X8(b8); 
  
tspan = [96; 97; 100]; 
[t9,X9] = ode23s(@ode_fedb_deathonly,tspan,ZZ8,[],kd,a4); 
b9 = max(size(X9)); 
YY9 = X9(2:b9); 
ZZ9 = 0.88*X9(b9);%after 100 
  
tspan = [100; 101]; 
[t10,X10] = ode23s(@ode_fedb_deathonly,tspan,ZZ9,[],kd,a4); 
b10 = max(size(X10)); 
YY10 = X10(b10); 
ZZ10 = 0.87*X10(b10);%after 101 
  
tspan = [101; 104]; 
[t11,X11] = ode23s(@ode_fedb_deathonly,tspan,ZZ10,[],kd,a4); 
b11 = max(size(X11)); 
YY11 = X11(b11); 
ZZ11 = 0.78*X11(b11);%after 104 
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tspan = [104; 105; 116]; 
[t12,X12] = ode23s(@ode_fedb_deathonly,tspan,ZZ11,[],kd,a4); 
b12 = max(size(X12)); 
YY12 = X12(2:b12); 
ZZ12 = 0.925*X12(b12); 
  
tspan = [116; 120; 124]; 
[t13,X13] = ode23s(@ode_fedb_deathonly,tspan,ZZ12,[],kd,a4); 
b13 = max(size(X13)); 
YY13 = X13(2:b13); 
ZZ13 = 0.87*X13(b13);%after 124 
  
tspan = [124; 140; 144]; 
[t14,X14] = ode23s(@ode_fedb_deathonly,tspan,ZZ13,[],kd,a4); 
b14 = max(size(X14)); 
YY14 = X13(2:b14); 
ZZ14 = X14(b14); %after 144 
  
tspan = [144; 148; 164]; 
[t15,X15] = ode23s(@ode_fedb_deathonly,tspan,ZZ14,[],kd,a4); 
b15 = max(size(X15)); 
YY15 = X15(2:b15); 
ZZ15 = X15(b15); %after 164 
  
tspan = [164; 168; 172; 189; 194]; 
[t16,X16] = ode23s(@ode_fedb_deathonly,tspan,ZZ15,[],kd,a4); 
b16 = max(size(X16)); 
YY16 = X16(2:b16); 
ZZ16 = X16(b16); 
  
%tspan=[tspan1;tspan2(2:b2);tspan3(2:b3);tspan4(2:b4);tspan5(2:b5);tspan6(
2:b6);tspan7(2:b7);tspan8(2:b8);tspan9(2:b9);tspan10(2);tspan11(2);tspan12
(2:b12);tspan13(2:b13);tspan14(2:b14);tspan15(2:b15);tspan16(2:b16)]; 
X=ZZ0;YY1;YY2;YY3;YY4;YY5;YY6;YY7;YY8;YY9;YY10;YY11;YY12;YY13;YY14;YY15;YY
16]; 
t = [ 27; 43; 47; 51; 52; 55; 56; 67; 68; 71; 72; 75;76; 80; 81; 96; 97; 
100; 101; 104; 105; 116; 120; 124; 140; 144; 148; 164; 168; 172; 189; 194 
];%time 
% Xv = [1.41, 2.8, 4.75, 4, 3.7, 4, 6.23 4, 3.65, 7.20, 6.44, 5.05, 4.10, 
5, 3.97, 6.55, 5.96, 5.70, 5.12, 5.1, 4.06, 4.9, 6.45, 6.05, 6.15, 7.10, 
6.25, 4.05, 2.65, 0.85, 1.50, 1.05]';%viable cell concentration 
Xd = [0.237, 0.5238, 0.5248, 0.5998, 0.548, 0.4999, 0.7787, 0.85, 0.7758, 
0.4997, 0.4470, 0.5, 0.406, 0.35 0.2778, 0.7497, 0.6821, 0.8002, 0.7188, 
0.6002, 0.4778, 0.6, 1.05, 0.9996, 2.05, 2.4997, 1.95, 5.5, 5, 1.1748, 
5.9, 8.3 ]';%dead cell concentration 
size(Xd); 
ss = sum((X-Xd).^2) 
  
 
Sub-routine called to the MAT file above- Fed-batch Mode: 
 
%... for experiment 7(2): 2 EQN 2 TERM after correlation 
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function dX = ode_fedb_deathonly(t,X,kd,a4) 
global tspan  
a5 = 1; 
  
%time = 27 to 43 hrs 
if tspan(1) == 27 
Glnp = -0.03375*t+3.21125; 
Lacp = (1000/90)*(0.038125*t-0.29); 
te = [27;43]; 
Xv = [1.41;2.8]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
dX; 
t; 
Xe; 
end 
%time = 43 to 51 hrs 
if tspan(1) == 43 
Glnp = -0.065*t+4.555; 
Lacp = (1000/90)*(0.025*t+0.275); 
te = [43;51]; 
Xv = [2.8;4]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 51 to 55 
if tspan(1) == 51 
Glnp = -0.065*t+4.555+0.11; 
Lacp = (1000/90)*(0.025*t+0.275-0.05); 
te = [52; 55]; 
Xv = [3.7;4]; 
Xe = interp1(te,Xv,t,'linear','extrap'); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 55 to 67 hrs 
if tspan(1) == 55 
Glnp = -0.065*t+4.555+0.7; 
Lacp = (1000/90)*(0.025*t+0.275-0.4); 
te = [55;75]; 
Xv = [4;5.05]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
t; 
end 
%time = 67 to 71 
if tspan(1) == 67  
Glnp = -0.065*t+4.555+0.8; 
Lacp = (1000/90)*(0.025*t+0.275-0.5); 
te = [67;71]; 
Xv = [4;7.2]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
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%time = 71 to 75 
if tspan(1) == 71  
Glnp = -0.065*t+4.555+1.2; 
Lacp = (1000/90)*(0.025*t+0.275-0.7); 
te = [55;75]; 
Xv = [4;5.05]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 75 to 80 
if tspan(1) == 75 
Glnp = -0.065*t+4.555+1.6; 
Lacp = (1000/90)*(0.025*t+0.275-0.9); 
te = [76; 80]; 
Xv = [4.1;5]; 
Xe = interp1(te,Xv,t,'linear','extrap'); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 80 to 96 
if tspan(1) == 80 
Glnp = -0.065*t+4.555+2.2; 
Lacp = (1000/90)*(0.03933*t-2.086); 
te = [81; 96]; 
Xv = [3.97;6.55]; 
Xe = interp1(te,Xv,t,'linear','extrap'); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 96 to 100 
if tspan(1) == 96 
Glnp = -0.065*t+4.555+2.8; 
Lacp = (1000/90)*(0.03933*t-2.086-0.2); 
te = [96; 97; 100]; 
Xv = [6.55;5.96;5.70]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 100 to 101 
if tspan(1) == 100 
Glnp = -0.065*t+4.555+3; 
Lacp = (1000/90)*(0.03933*t-2.086-0.4); 
te = [100; 101]; 
Xv = [5.70;5.12]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 101 to 104 
if tspan(1) == 101 
Glnp = -0.065*t+4.555+3; 
Lacp = (1000/90)*(0.03933*t-2.086-0.4); 
te = [101; 104]; 
Xv = [5.12;5.10]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
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end 
%time = 104 to 116 
if tspan(1) == 104 
Glnp = -0.05*t+4.555+2.1; 
Lacp = (1000/90)*(0.03933*t-2.086-0.85); 
te = [104; 105; 116]; 
Xv = [5.10;4.06;4.90]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 116 to 124 
if tspan(1) == 116 
Glnp = -0.05*t+4.555+2.1; 
Lacp = (1000/90)*(0.01875*t-0.625); 
te = [116;124]; 
Xv = [4.90;6.05]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 124 to 144 
if tspan(1) == 124 
Glnp = (-0.023*t+3.3658); 
Lacp = (1000/90)*(0.00625*t+0.895); 
te = [124;144]; 
Xv = [6.05;7.10]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
end 
%time = 144 to 164 
if tspan(1) == 144 
Glnp = (-0.003*t+0.5); 
Lacp = (1000/90)*(0.00625*t+0.895); 
te = [144; 148; 164]; 
Xv = [7.1;6.25;4.05]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
dX; 
end 
%time = 164 to 194 
if tspan(1) == 164 
Glnp = 0; 
Lacp = (1000/90)*(0.00625*t+0.895); 
te = [164;189; 194]; 
Xv = [4.05;1.5;1.05]; 
Xe = interp1(te,Xv,t); 
dX = Xe*kd*(Lacp)*a5/(Glnp+a4); 
dX; 
end 
 
Sub-routine for Optimizing kg and kd- Batch Mode : 
 
% clear all; 
%Experiment 250(3) 2EQN 2TERM 
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function ss = b250_3_lin(k) 
global tspan 
k=[0.0004;0.43]; 
% k = [0.05;0.05]; 
kg = 0.05; 
a1 = 0.05; 
ZZ0 = [1.5,0.258]; 
tspan = [22;49;75;96;121;144;166]; 
[t1,X] = ode23s(@odeb250_3_lin,tspan,ZZ0,[],kg,a1,k); 
  
size(t1) 
size(X) 
  
t=[22,49,75,96,121,144,166]'; 
Xv = [1.6,7.8,10.5,8.8,6.1,2.3,1.6]'; 
Xd = [0.258,1.504,0.826,5.582,13.111,15.793,14.951]'; 
size(t) 
size(Xv) 
size(Xd) 
ss = sum((X(:,2)-Xd).^2); 
% ss = sum((X(:,1)-Xv).^2) + sum((X(:,2)-Xd).^2); 
xlabel('Time(in hrs)') 
hold on 
ylabel('Cell conc. (in 10^5cells/mL)') 
plot(t,Xv,'-r*') 
plot(t,Xd,'-r*') 
plot(t,X(:,1),'g.-') 
plot(t,X(:,2),'g.-') 
hold off 
 
Sub-routine called to the MAT file above- Batch Mode: 
 
%... for experiment 250(3): 2 EQN 2 TERM after correlation 
function dX = odeb250_3_lin(t,X,kg,a1,k) 
global tspan 
kd = k(1); 
a2 = k(2); 
dX = zeros(2,1); 
t;   %i= i+1; 
te = [22,49,75,96,121,144,166]; 
Ge = [2.83,0.92,0,0,0,0,0]; 
Le = (1000/90)*[0.44,1.41,1.68,1.64,1.63,1.66,1.77]; 
Glnp = interp1(te,Ge,t); 
Lacp = interp1(te,Le,t); 
dX(1) = kg*X(1)*(Glnp/(Glnp+a1)) -  kd*X(1)*Lacp/(Glnp+a2); 
dX(2) =  kd*X(1)*Lacp/(Glnp+a2); 
  
 

 

. 
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