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Abstract

A phenomenon as complex as protein folding requires a complex model to approximate it.

This thesis presents a bottom-up approach for building complex probabilistic models of protein

secondary structure by incorporating the multiple information sources which we call experts.

Expert opinions are represented by probability distributions over the set of possible structures.

Bayesian treatment of a group of experts results in a consensus opinion that combines the experts’

probability distributions using the operators of normalized product, quotient and exponentiation.

The expression of this consensus opinion simplifies to a product of the expert opinions with two

assumptions: (1) balanced training of experts, i.e., uniform prior probability over all structures,

and (2) conditional independence between expert opinions, given the structure.

This research also studies how Markov chains and hidden Markov models may be used to

represent expert opinion. Closure properties are proven, and construction algorithms are given

for product of hidden Markov models, and product, quotient and exponentiation of Markov chains.

Algorithms for extracting single-structure predictions from these models are also given.

Current product-of-experts approaches in machine learning are top-down modeling strategies

that assume expert independence, and require simultaneous training of all experts. This research

describes a bottom-up modeling strategy that can incorporate conditionally dependent experts,

and assumes separately trained experts.
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Chapter 1

Introduction

Proteins are an important part of molecular biology. They are large biological molecules with

complex structure. Protein molecules constitute much of the bulk of living organisms: enzymes,

hormones, and structural material. The genetic makeup of an organism is composed of thousands

of genes, most of which are protein-coding : they specify instructions for building proteins. To

understand the life processes of an organism, it is necessary to first know the functions of the pro-

teins produced by the organism. Proteins serve a great many functions in an organism, with some

proteins serving multiple functions. The function of a protein molecule in a given environment is

determined by its structure. Thus, to fully understand the function of a protein, it is necessary

to know the structure of the molecule.

1.1 An Introduction to Protein Structure

The structure of a protein molecule is described in three levels of detail: primary, secondary, and

tertiary.

1
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Figure 1.1: Detailed structure of the covalent bonds in a protein molecule. Three amino acid
residues are shown. Boundaries of amino acid residues lie along C′–N bonds. Small circles
represent hydrogen atoms. The exact structure of the R-group side-chains depends on the type
of amino acid.

1.1.1 Primary structure

The primary structure of proteins specifies the structure of covalent bonds1 in a protein molecule.

A protein molecule is a chain of amino acid residues, joined head-to-tail by covalent bonds. Amino

acid residues have one nitrogen atom at the head, a carbon atom in the middle (Cα), and a carbon

atom (C′) at the tail. Peptide bonds join amino acid residues together, linking the C′ atom (tail)

of one residue to the nitrogen atom (head) of the following residue. The Figure 1.1 illustrates the

covalent structure of a protein molecule in detail. Twenty common types of amino acid residues

exist. Each type is distinguished by the unique side chain of atoms (the R group) connected at

the α carbon. Figure 1.2 lists the twenty amino acids and their abbreviations, and illustrates each

R-group.

Assuming the N-Cα-C′ chain backbone, primary structure of a protein may thus be summarized

by its sequence of amino acid residues. The convention is to list the residues in head-to-tail order

(N-terminal to C′-terminal). The ith residue of a protein is the ith residue of the sequence listed

in conventional order. A protein with n residues is said to be of length n. A protein-coding gene

in an organism specifies the primary structure of a protein: nucleotide triplets (codons) specify

1A covalent bond joins two atoms by the sharing of electrons. It is the strongest kind of chemical bond.
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valine (V)

alanine (A)

glycine (G)

proline (P)

serine (S)

histidine (H)
arginine (R)

asparagine (N)

isoleucine (I)

threonine (T)

aspartic acid (D)
leucine (L)

tryptophan (W)

lysine (K)
cysteine (C)

glutamic acid (E) methionine (M)

tyrosine (Y)

glutamine (Q)

phenylalanine (F)

Figure 1.2: The names, abbreviations and R-groups of the twenty amino acids. Atoms are coloured
white for carbon, light gray for nitrogen, dark gray for oxygen and black for sulphur. Small atoms
are hydrogen. Bonds connecting R-groups to main-chain atoms are drawn in bold. Note that the
proline side chain joins the main chain at both Cα and N atoms, which are shown.
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Figure 1.3: The φ, ψ angles of an amino acid residue. The rotational freedom of these bonds gives
protein molecules flexibility.

individual amino acids; n consecutive codons spell out the sequence of n amino acid residues

which constitute a length-n protein.

1.1.2 Secondary and tertiary structure

Protein molecules are not rigid; both N–Cα and Cα–C′ bond angles can rotate in each residue

(excepting proline residues, whose N–Cα bond angle is fixed). These bond angles are called

Ramachandran angles , and by convention are denoted as φ for the N–Cα angle and ψ for the

Cα–C′ angle. Figure 1.3 illustrates the φ, ψ bond angles of a single residue. [1]

These φ and ψ angles give protein molecules great flexibility; by rotating segments of a protein

molecule along φ and ψ angles, virtually any shape, or conformation, can be achieved. In a solvent

environment, a protein will fold according to an energy cost which favours some conformations

over others. This energy cost depends on the number and type of weak interactions (hydrogen

bonds, ionic bonds, Van der Waals forces, dipole and hydrophobic) formed between pairs of

atoms in the protein and between atoms of the protein and atoms of the solvent. Proteins are
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typically designed by evolution to exist in a particular solvent environment, which we call their

native environment . In their native environment, proteins will quickly fold into a single, stable

conformation which is the global minimum Gibbs free energy over the space of conformations [2].

This conformation is called the native fold of the protein.

The tertiary structure of a protein refers to the three-dimensional shape of its native fold.

The gross tertiary structure of a protein is captured by the specification of the structure of its

backbone — the chain of N, Cα, and C′ atoms stretching from the N-terminal to the C′ terminal.

The structure of the backbone may be specified by the n (φ, ψ) angle pairs, or alternatively by

three-dimensional spatial coordinates of each atom in the chain. A full specification of the tertiary

structure of a protein requires the details of side-chain conformations, which can again be specified

either by bond angles or by atomic coordinates.

Between primary and tertiary structure is an intermediate level of structural description:

secondary structure. Secondary structure assigns segments of contiguous residues of a protein to

one of several conformational classes. These classes describe the participation of each amino acid

residue in local conformations of the chain. These local conformations are generally based on

patterns of hydrogen bonding between the main-chain nitrogen’s hydrogen atom and main-chain

oxygen atoms. Several different definitions of secondary structure exist. The most commonly-used

definition is that of Kabsch and Sander [3]. They define eight classes of secondary structure:

α helix: A helical arrangement of residues, 3.6 residues per turn, formed by hydrogen bonds

between the ith main-chain CO and the i+ 4th main-chain NH atoms. Kabsch and Sander

denote α-helical residues with the label H. An example α helix is illustrated in Figure 1.4.

π helix: Similar to the α helix, with 4.4 residues per turn and hydrogen bonds between the atoms

in the ith and i+ 5th residues. Kabsch and Sander denote π-helical residues with the label

I.

310 helix: Similar to the α helix, with hydrogen bonds between the atoms in the ith and i+3rd

residues. Kabsch and Sander denote 310-helical residues with the label G.

Isolated β bridge: A pattern of main-chain hydrogen bonds between a pair of three adjacent
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residues. Two kinds of bridges are possible between residues i− 1, i, i+ 1 and j − 1, j, j + 1

of a protein:

Parallel bridges have hydrogen bonds connecting the CO i− 1 to NH j and residues CO

j to NH i+ 1, or the residues CO j − 1 to NH i and CO i to NH j + 1.

Antiparallel bridges have hydrogen bonds connecting the residues CO i to NH j and

residues CO j to NH i, or the residues CO i− 1 to NH j+1 and CO j− 1 to NH i+1.

Kabsch and Sander denote the central residues in an isolated β strand with the label B.

Extended β strand: A set of two or more consecutive β bridges. A β sheet is formed by

multiple, adjacent β strands arranged in a plane and joined side-by-side by bridges. β sheets

resemble woven fabric: the backbones of the β strands are the warp, and hydrogen bonds

between strands form the woof. Strands linked by parallel bridges form parallel β sheets;

strands linked by antiparallel bridges form antiparallel β sheets. An example antiparallel

β sheet is illustrated in Figure 1.5. Kabsch and Sander denote β-strand residues with the

label E.

Turn: An n-turn at residue i in a protein occurs when a hydrogen bond links the CO atom of

residue i with the NH atom of residue i+ n. The value n may be any one of {3, 4, 5}. Thus
n-turns are fragments of 310, α, and π helices. An example turn is illustrated in Figure 1.5.

Kabsch and Sander denote isolated n turns with the label T .

Bend: A bend at residue i in a protein occurs when the angle between atoms Cαi−2, C
α
i , and Cαi+2

exceeds 70◦. Kabsch and Sander denote bends with the label S.

The eighth class of secondary structure, sometimes called coil or loop, is assigned to any con-

formation that does not fit into the above seven. Kabsch and Sander denote coils with a blank

symbol.

The most commonly-occurring structures are α helices, β strands, and coils. A simplified

secondary structure scheme reduces the classes to three:

1. Helices (G, H, I), denoted H.
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Figure 1.4: Example of an α helix, from sperm whale myoglobin (PDB ID 101M) [4]. The N-
terminus is on the left. Backbone atoms are shaded to emphasize the helical structure. Hydrogen
atoms are not shown. Dashed lines indicate hydrogen bonds.
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Figure 1.5: Example of an antiparallel β sheet, from the light chain of the anti-prion FAB 3F4
protein complex (PDB ID 1CR9) [5]. Three strands are shown. Note that the top and middle
strands are joined by a 3-turn. Backbone atoms are shaded. Some side chains and hydrogen
atoms are not shown. Dashed lines indicate hydrogen bonds.
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2. Strands (B, E), denoted E.

3. Coil (S, T , coil), denoted C.

A segment of secondary structure is a maximal series of consecutive residues sharing the same

secondary structure label. Thus the following secondary structure, taken from a fragment of

promyelocytic leukemia zinc finger protein (PDB ID 1BUO) [6], has five segments:

EEEEE︸ ︷︷ ︸
1

CC︸︷︷︸
2

EEEEE︸ ︷︷ ︸
3

C︸︷︷︸
4

HHHHHHH︸ ︷︷ ︸
5

.

1.2 The Protein Folding Problem

The Protein Folding Problem is that of determining the tertiary structure of a protein, given only

its amino acid sequence (primary structure). This problem arises often in biology, since genetic

sequences are relatively easy to read, and the translation from codons to protein sequence is

trivial. Biologists wishing to understand the function of a gene can therefore quickly obtain the

amino acid sequence that the gene encodes. Knowing the tertiary structure of a protein can help

determine its function.

The most direct method of determining the tertiary structure of a protein molecule is to observe

it experimentally. Two technologies are used: X-ray diffraction and nuclear magnetic resonance

(NMR). Both are complex and expensive, and each has unique drawbacks. X-ray diffraction is

very time consuming. The main challenge is in creating a crystal of the target protein. This is

not always possible, especially for proteins whose native environment is not an aqueous solution,

e.g., trans-membrane proteins. NMR techniques are limited to small proteins.

The difficulty of direct observation of protein structure has created an interest in protein struc-

ture prediction, and has led to the development of various methods. The most direct prediction

methods are theoretical, and attempt to find a structure having the global minimum potential

energy. One way of finding this minimum energy state is by molecular force-field simulation of the

physical process of folding. This approach involves modeling the interaction of each protein and

solvent atom in a system of many thousands of atoms, with time steps measured in thousandths
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of picoseconds, for a period of milliseconds to seconds. Current supercomputers are not powerful

enough to simulate protein folding more than a small fraction of the time required. It is estimated

that twenty years of steady increase in computer power remain before the smallest proteins can

be folded in a molecular dynamics simulation [7]. A second theoretical approach tries to find

the global minimum of the potential energy function analytically. The complexity of the energy

function and the number of parameters make this approach infeasible.

Machine learning methods have had more success at predicting protein secondary structure.

Some methods predict tertiary structure; others predict secondary structure. Apart from the

inherent difficulty of the problem, three major factors hinder the success of these methods.

1. Lack of sufficient data. The main source of data is the Protein Data Bank [8] (PDB), which

contains all known protein tertiary structures. As of 17 April 2001, the PDB holds 13027

experimentally-observed proteins. This is a small fraction of the set of all known protein

sequences.

2. Bias in the data. The proteins in the PDB are not representative of the set of all proteins.

Most protein families do not have a single member in the PDB, and many other families

are over-represented. As of 17 April 2001, there are 571 entries in the PDB which are some

form of hemoglobin, myoglobin, insulin or albumin.

3. Natural selection against highly stable structures. Biological organisms require their proteins

to be easily disassembled so that their components may be recycled once they have served

their function. As such, protein structures must be stable enough to function, but unsta-

ble enough to be disassembled when necessary. Nature therefore hides from us the prime

examples of well-folding proteins.

1.3 Protein Secondary Structure Prediction

Protein secondary structure prediction is also an important problem. It is necessary to know

the secondary structure before the tertiary structure can be predicted [1, p. 251]. Knowledge

of secondary structure, even predicted secondary structure, can improve the accuracy of certain
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tertiary structure prediction methods by 25% [9]. Another study reports a near-50% reduction

of root-mean-squared-deviation errors in tertiary structure prediction when constraints derived

from secondary structure predictions are incorporated [10]. Protein structure can also be used to

detect distant protein homology.

Protein secondary structure prediction is different than most machine learning classification

problems, in that no fixed-length records are involved, and the domain and range are huge (ex-

ponential in the length of the sequence). Predicting the structure of a length-n protein is not a

single classification problem: a prediction can be incorrect and yet be close, by some measure, to

the correct structure. Nor is it a series of n independent, single-residue classification problems:

the structure of each single residue depends on the structure of its neighbours and the rest of the

molecule.

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) meeting is

held biennially to assess the latest methods of protein secondary and tertiary structure prediction.

CASP 4, the last conference, was held in 2000. A variety of secondary structure prediction

methods, including the most successful of the CASP conferences and those of historical interest,

will be described in Chapter 2.

1.3.1 Evaluation of secondary structure prediction

The practical impossibility of making a perfect prediction on a whole sequence necessitates the

use of fine-grained accuracy measures for evaluating predictions. There are two common measures

for evaluating the accuracy of protein structure predictions: Q3 and Sov [11]. Both are similarity

measures that map a (predicted, actual) pair of structures to a percentage score.

The Q3 score compares both strings on a residue by residue basis; the Sov score compares both

strings segment by segment. The simplest and most common is the Q3 measure. The Q3 measure

indicates the percentage of correct assignments, residue by residue, of three states of secondary

structure: helix, β strand, and coil.

For biologists, who are often interested in the tertiary structure and the biological function of

proteins, the Q3 score can be an inadequate measure of the accuracy of a prediction method. It is
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often the number of secondary structure segments and their approximate lengths and positions in

a protein that are important. Critics of Q3 point to myoglobin, a protein with 70% of its residues

wound into eight α helices. A prediction of a single α helix spanning the whole myoglobin sequence

— an absurd prediction — would therefore have a Q3 score of 70%.

The Sov [11] measure avoids the problems of Q3. It measures accuracy by counting predicted

and observed segments, and measuring their overlap. The Sov score is computed by summing

over segments of secondary structure instead of individual residues. As with the residue-by-

residue measures, Sov can measure the accuracy of predicting a single secondary structure class,

or the accuracy of an entire prediction consisting of several classes of secondary structure.

1.4 Overview of Research

The central problem addressed by this thesis is the problem of probabilistically modeling protein

secondary structure using a pool of experts. My research has focussed on several sub-problems:

• How can we model the multi-expert resolution problem?

• How can we characterize the classes of probability models that can efficiently represent

expert opinions (probability distributions)?

• How do you make predictions and combine expert opinions when the opinions are represented

by hidden Markov models and Markov chains?

Chapter 2 surveys the some of the work on protein secondary structure prediction, probabilistic

modeling, and multi-expert resolution, and places the work of this thesis in those fields. Chapter 3

introduces an approach to modeling secondary structure by combining the opinions of multiple

experts, expressed as probability distributions, into a single consensus probability distribution.

Finally, Chapter 4 looks in detail at the classes of probability distributions generated by hidden

Markov models and Markov chains, and shows how they are suited for building the kinds of models

proposed in the previous chapter.



Chapter 2

Related Work

This thesis explores the intersection of three domains: protein secondary structure prediction,

probabilistic sequence modeling, and multi-expert opinion resolution. This chapter will discuss

research from these areas that relate to the work of this thesis, with an emphasis on protein

secondary structure prediction methods.

2.1 Protein Secondary Structure Prediction

Most protein secondary structure prediction methods presented in the literature are machine

learning methods. Their concern is with the acquisition and curation of training data, with

training methods, and with the trained models that result. They are methods for converting

training data into models. In contrast, the emphasis in this research is on combining existing

models into a single, more complex and accurate model. This thesis describes a framework

for protein secondary structure prediction rather than a particular method. More generally, it

describes a framework for probabilistic modeling of any kind of sequence. Despite this difference,

there is considerable room for comparison.

13
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2.1.1 Overview of protein secondary structure prediction

There are two fundamental approaches to protein secondary structure prediction: homology mod-

eling (fold recognition) and ab initio methods. Both are machine learning methods, typically mak-

ing use of a database of proteins with experimentally determined structures. Homology modeling

methods attempt to find a protein in their database that is homologous to the target protein, and

use the structure of the homolog as the prediction for the target. Thus homology modeling meth-

ods are essentially nearest neighbour methods, where evolutionary distance or sequence similarity

measures serve as the distance measure.

The challenge in homology modeling lies in identifying the homolog with known structure,

and then aligning the target sequence with that of the homolog. For more distant homologs, the

target sequence is compared and aligned directly with protein structures, and the technique is

called fold recognition, or protein threading .

The approach works because proteins with homologous sequences tend to have high structural

similarity. Homology modeling methods yield highly accurate predictions when a homolog can

be found. However, Schneider and Sander report that less than 20% of all known proteins are

homologous to at least one protein with known structure (cited in [12]).

Ab initio methods are a more diverse class of prediction methods, encompassing all methods

that do not rely on knowledge about the structure of a homolog of the target protein to make

their predictions. These methods may instead rely on physico-chemical knowledge, or informa-

tion extracted from a database of solved protein structures. Most machine learning methods of

secondary structure prediction fall under this category.

Local methods

Benner et al. [13] have noted that homology modeling methods may also be distinguished from ab

initio methods by the underlying assumptions they make on the relative importance of local and

non-local effects. Homology modeling methods compare entire sequences, placing less importance

on local similarities or dissimilarities. Thus they assume that non-local effects dominate. Most ab

initio methods make predictions in a piecewise manner, and consider only the local neighbourhood
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when making predictions on part of the sequence. Thus they assume that local effects dominate.

Ab initio methods that incorporate sequence family profile information (see Section 2.1.2 below)

are an exception.

The framework described in this thesis can incorporate experts from any of the above cate-

gories: homology-modeling or ab initio, local or non-local. The origin of the experts’ knowledge is

inconsequential to the method. It is therefore possible to combine experts from many categories,

creating a hybrid prediction method.

2.1.2 Important ideas in ab initio prediction

Some of the best methods incorporate several common ideas that solve a particular problem or

improve secondary structure accuracy and quality.

Piecewise prediction

Traditional machine learning methods assume a domain of fixed-size records. These methods

are not directly applicable to protein secondary structure prediction, because both the domain

(amino acid sequences) and range (structure strings) of the problem are variable-length. Prediction

methods that are based on these record-based machine learning methods must therefore reduce

the problem to one or more fixed-size pieces.

Most prediction methods in this category use a sliding-window strategy to accomplish this

reduction: the prediction problem on a target sequence of length n is divided into n classification

problems, one per residue. The input to the classifier of the ith residue is si−k · · · si+k, the window
of 2k + 1 consecutive amino acids drawn from the target sequence s and centered on residue i.

A special end-of-sequence symbol is added to ΣAA so that windows may be centered on residues

close to the endpoints of the target sequence. To predict the whole sequence, the input window is

centered over the first residue, and the output of the classifier is recorded. The remaining residues

are classified in turn by sliding the input window one residue to the right, until the last residue is

classified and the prediction is complete. Methods that use the sliding window strategy include

the classic Chou and Fasman method [14, 15], the Levin et al. [16] method, and the neural network
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methods such as Qian and Sejnowski [17], PHD [18], and PSIPRED [19].

The sliding-window strategy is a clear example of the local effects assumption at work. The

predicted structure of a single residue is determined solely by a local neighbourhood of amino

acids surrounding it. Residues outside of the window cannot affect the prediction.

Sophisticated prediction methods that use a sliding window strategy will usually also incorpo-

rate a second prediction phase which repairs inconsistencies produced by the prediction obtained

from the sliding window phase. The neural network methods previously cited are principal exam-

ples.

Balanced training

Machine learning models require a training set of proteins with known secondary structure. Choos-

ing a prior distribution P (X), the distribution of secondary structures in this training set, is a

difficult issue. There is no precise definition of the distribution of proteins occurring in Nature.

However, it is clear that the distribution of proteins in the Protein Data Bank is not representative

of the distribution of proteins in Nature: entire protein families are missing from the PDB, and

some individual proteins have multiple entries. Neither the distribution of proteins in Nature,

however defined, nor the distribution of proteins in the PDB is the same as the distribution of

proteins whose structures are being predicted by prediction tools today. This last distribution is

impossible to determine.

Balanced training prevents imbalance in trained models of protein secondary structure by

imposing a uniform probability distribution (prior) on the structure data. While a machine

learning model of protein secondary structure trained on a database with non-uniform distribution

of structures may score better on a test set with a similar distribution, balanced training ensures

a better overall accuracy of the model when the distribution of the test set is unknown [20].

The theory developed in chapter 3 is simplified by the assumption of a uniform prior (bal-

anced experts); see the corollary to Theorem 3.2.3. However, the same theory reveals how an

expert opinion (probability distribution) trained on an unbalanced training set may be balanced

retroactively; it also shows how to create a balanced model from a set of unbalanced experts.
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Sequence family profiles

Prediction accuracy is improved by incorporating sequence family profile information, such as

that obtained from a multiple sequence alignment. Rost and Sander observed an increase of six

percentage points in the Q3 accuracy of their neural network method when including a profile of

the amino acid frequencies occurring in the column of the multiple sequence alignment of each

residue of the target sequence [20]. Further improvements lead to the PHD method [18], which

supplements the profile with global sequence information. Two types of information are present

in multiple sequence alignments that can help predictions: a profile of the frequency of amino

acids that occur in each column, and a profile of the insertion/deletion points of the consensus

sequence.

Protein secondary structure prediction methods that incorporate multiple sequence alignment

information into their predictions include PHDsec [18], PSIPRED [19], and PREDATOR [21].

Neural network methods

Many successful protein secondary structure prediction methods use neural networks. Qian and

Sejnowski [17] were the first to use neural networks for ab initio protein secondary structure

prediction; their work was based on a speech generation method co-developed by one of the

authors.

Neural networks assume a fixed-size input and output; thus, they may only be used for piece-

wise prediction. Qian and Sejnowski developed a two-stage, sliding-window method to achieve

piecewise prediction. The first stage employed a sliding-window strategy with window size 13 or

17. The output layer classified the central residue in the window, and consisted of three units,

one per secondary structure class.

The accuracy of the raw prediction of the first stage was improved in the second stage by

cascading the first-stage outputs into the inputs of a second stage neural network. A sliding-

window technique was again used. Outputs of the first-stage network taken from 13 consecutive

predictions were fed into a second network as inputs. This second network then produced a final

structural classification of the central residue.
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The two-stage, cascaded-inputs strategy of Qian and Sejnowski shares some elements with the

modeling technique developed in this thesis.

• The neural network of the first stage may be interpreted as a protein secondary structure

expert. The difference is that this expert is a function e : Σ1
AA3→ R

3. Its input is a window

of amino acids si−6 · · · si+6 rather than a variable-length sequence s. Its output is a triple

of reals, which may be loosely interpreted as a probability distribution over the possible

structures of the ith residue, though the three values are not constrained to sum to one.

The output makes no prediction on the structure of adjacent residues or other regions of

the target. This is equivalent to assigning the background probability distribution to the

rest of the target.

• The neural network of the first stage is used to produce n expert opinions.

• These opinions were then combined in the second stage. The key difference between the

method of this thesis and the Qian and Sejnowski method is that they employ a neural

network to combine expert opinions; conversely, the opinions are combined by taking their

product. Their method of combining expert opinions is learned from data, whereas the

method of combination in this thesis was determined analytically (see Chapter 3).

Other neural network methods that followed, e.g., [18], employed the same strategies intro-

duced by Qian and Sejnowski (sliding window, cascading inputs).

2.1.3 Disadvantages of single-structure prediction

Protein folding is a complex, but essentially deterministic process. If we use S to represent the

set of possible amino acid sequences, and X to represent the set of possible protein secondary

structures, the folding process is represented by a function f : S → X mapping amino acid

sequences in S to structures in X .

Typical protein secondary structure prediction methods reflect this determinism by providing

a single predicted structure, representing their best guess of the true secondary structure of the

target molecule, given the amino acid sequence. Yet this single guess rarely matches the observed
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structure exactly. (In the CASP 3 competition, where multiple teams competed to predict the

secondary structure of multiple proteins, the mean Q3 score of predictions per protein ranged

from 37.5% to 95.5% [22].) Thus, all predictions of protein structure contain uncertainty. The

single structure produced by a prediction method is chosen by the method on some basis, either

to maximize the probability of a perfect prediction, or to maximize the expected similarity of the

prediction with the correct structure. These goals are not identical, and are discussed further in

Section 3.1.1. The main disadvantage, then, of a single-sequence prediction is that the goal of

the predictor may not be the same goal as the user of the prediction method. Thus it is better

to reveal the uncertainty of a prediction than to keep it hidden. A complete description of the

uncertainty of a prediction is given by a probability distribution P (X) over possible structures

x ∈ X .

Some sophisticated prediction methods do include a coarse measure of uncertainty in their

predictions, such as the reliability index of Rost and Sander’s PHD method [23]. Their reliability

index gives an integer score from 0 to 9 for each residue, indicating the degree of certainty that

the predicted structure at that residue is the correct structure. Residue-by-residue reliability

indices of this form fall short of a complete description of the uncertainty of the prediction in

three respects:

1. The reliability score is coarse-grained.

2. The relative probabilities of the non-predicted structure classes for each residue are not

given.

3. The conditional probabilities are unspecified.

Prediction methods that use probabilistic models calculate the full probability distribution.

The hidden Markov model prediction methods of Asai et al. [24] and Bystroff et al. (HMM-

STR) [25] are examples. Probabilistic modeling methods such as Asai et al. and HMMSTR are

especially important to this thesis, because they can serve as experts; see Theorem 4.2.4.
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2.2 Probabilistic Sequence Modeling

The field of probabilistic sequence modeling spans several domains, from speech recognition to

biological sequence analysis. Some sequence data is continuous, time-series data, such as acoustic

signals used in speech recognition. Other sequence data, principally biological sequence data,

is discrete, spatially-oriented sequence data. Examples include genetic sequences, amino acid

sequences, and protein secondary structure.

The principal tool of probabilistic sequence modeling is the hidden Markov model (HMM).

Hidden Markov models are powerful tools for probabilistic analysis of biological sequences. Their

use spread to the field of bioinformatics after successful application in the field of speech recogni-

tion.

HMMs are used to solve many of the principal problems in bioinformatics:

1. Gene finding.

2. Phylogenetic tree reconstruction: tree HMMs.

3. Sequence alignments: profile HMMs (multiple sequence alignments), e.g., [26], pair HMMs

(pairwise alignments).

4. Sequence similarity scoring: profile HMMs.

5. Protein secondary structure prediction, e.g., Asai et al. [24], HMMSTR [25]

Hidden Markov models are stochastic sequence generators. They generate strings x according

to a probability distribution P (x). To generate a sequence, a hidden Markov model moves through

a hidden sequence of internal states that affect the generated sequence. The joint probability of

generating a sequence x while traversing a hidden state path π is denoted P (x, π). The power of

HMMs lies in their ability to ascribe meaning to these hidden states. Predictions are made by

inferring the hidden state sequence that generated the string, P (π | x). Probabilistic inference on

the posterior P (π | x) is called decoding.
The common factor in all the applications listed above is the use of HMMs as experts in each

problem domain. Predictions (expert opinions) are obtained from these HMMs via decoding.
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Chapter 4 studies the use of HMMs as representations of expert opinions, not experts. Thus

decoding is not an issue in this research, though it is briefly addressed in Section 4.2.4. The

connection between HMMs used as experts and HMMs used as expert opinions is made by The-

orem 4.2.4.

2.3 The Multi-expert Resolution Problem

This thesis addresses the multi-expert resolution problem: faced with k expert opinions, expressed

as probability distributions P1, P2, . . . , Pk over a space of events X , what is the consensus opinion

P∗? This problem of combining expert opinions has been studied by many. Their work is surveyed

by Genest and Zidek [27], among others. Genest and Zidek identify two main approaches to the

problem: linear opinion pools (mixtures of experts) and logarithmic opinion pools (products of

experts).

A linear opinion pool, otherwise known as a mixture or sum of experts, combines the expert

opinions linearly:

P∗(x) ∝
k∑
i=1

wiPi(x),

where the wi values are weights representing the subjective quality of each expert opinion Pi. P∗

is thus a weighted mean. The implicit assumption when using a linear opinion pool is that one

expert is the correct expert; when normalized so that
∑

wi = 1, the weights wi represent the

probability that expert opinion Pi is the correct opinion. A second assumption is that the expert

opinions are not calibrated (see Definition 3.2.1). The machine learning field refers to methods

for generating linear opinion pools as ensemble methods.

A logarithmic opinion pool, otherwise known as an independent opinion pool [28] or a product

of experts, combines the expert opinions by taking their product:

P∗(x) ∝
k∏
i=1

Pi(x).
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A generalization of this formula introduces exponential weights to each expert:

P∗(x) ∝
k∏
i=1

(Pi(x))
wi .

Morris [29, 30, 31] has shown that this multiplicative method of expert opinion combination is

appropriate when the expert opinions are conditionally independent on x, and when the working

model is that of a Bayesian decision maker with a prior opinion P (x) who consults these k experts,

and updates his or her belief in the outcome x based on these opinions. This model is discussed

further in Section 3.2.3, where the product of experts approach is used to combine expert opinions

on protein structure.

2.3.1 Modeling complex processes with products of experts

Section 3.3.1 describes a strategy for modeling complex processes using products of experts.

Hinton has developed a similar strategy, with applications to handwriting recognition and image

recognition [32]. Hinton’s work differs from this research on several points:

• Top-down versus bottom-up. Hinton assumes the complex process is the result of the product

of several experts. His technique divides the process in top-down fashion into multiple sub-

processes, each represented by an expert. The entire model, consisting of the product of

the sub-models, is trained at once on the training data. Parameters of the sub-models are

estimated using Gibbs sampling [33].

This research creates complex models in a bottom-up fashion by assembling simpler, sepa-

rately-trained models and then computing their product.

• Independence assumptions. Hinton assumes his experts are conditionally independent. This

research allows for conditionally dependent models.

• Emphasis on decoding. Hinton makes predictions by decoding his models, i.e., inferring

from his models the hidden state π that produced the observed data x, using a posterior

probability distribution P (Π = π | X = x). Thus Hinton is taking products of experts,
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whereas this research studies products of expert opinions.

2.3.2 Product of hidden Markov models

Chapter 4 studies the use of hidden Markov models to represent expert opinion. Theorem 4.2.2

shows that the product of hidden Markov models is also a hidden Markov model. HMMs created

by the construction in the proof of that theorem are distributed-state models that resemble Zoubin

and Gharamani’s Factorial HMMs [34] and Brand’s Coupled HMMs [35, 36].



Chapter 3

Probabilistic Modeling with

Experts

3.1 Probabilistic Treatment of Protein Structure

This chapter discusses a method for dealing with experts, considered here as generators of prob-

ability distributions that represent our uncertainty about the secondary structure of a protein.

Nature provides a protein folding function, f : S → X , that maps protein primary structure

(S = Σ∗
AA, strings over the amino acid alphabet) to protein secondary structure (X = Σ∗

SS ,

strings over the alphabet of secondary structure classes). Because secondary structure is a label-

ing of each residue in an amino acid sequence, f maps length-n amino acid sequences (Sn = ΣnAA)

to equal-length secondary structure strings (Xn = ΣnSS ). The function f is unknown, and is at

the heart of our uncertainty. We may represent this uncertainty as a formal probability space

(Ω,F , P ), where

Ω is the sample space. It is the set of all possible values of f , i.e., all mappings

{ω : S → X | ∀n ∈ N>0, s ∈ Sn =⇒ ω(s) ∈ Xn}.

24



CHAPTER 3. PROBABILISTIC MODELING WITH EXPERTS 25

F is the set of events. Elementary events are subsets of Ω of the form {ω ∈ Ω | ω(s) = x}, for
every x ∈ Xn and for some fixed target sequence s of length n. In other words, we are only

concerned with the structure of the target, and do not distinguish between elements of Ω

that assign the same structure to the target.

P is a probability measure (distribution) on the measurable space (Ω,F).

We introduce the random variable X : Ω→ Xn to represent the structure of the target protein.

X is a mapping from the sample space to length-n structures, defined as X(ω) = ω(s). The event

X = x, for any x ∈ X , is the event that the target protein has structure x. It is the same as the

elementary event {ω ∈ Ω | ω(s) = x} ∈ F . Thus P (X = x) is the probability that the target

protein has structure x.

We also introduce the random variable Xi : Ω → ΣSS , for i ∈ {1, . . . , n}, to represent the

structure of the ith residue of the target. If ω(s) = x, then Xi(ω) = xi.

A probability distribution P (X) over structures x ∈ X partitions X into two disjoint subsets:

possible and impossible structures. This is equivalent to a definition of a formal language. A

language L ⊆ X is defined by its characteristic function χL : X → {0, 1}:

χL(x) =



1 if x ∈ L,

0 otherwise.

A probability distribution P (X) is a mapping X → [0, 1], and thus serves as a generalized char-

acteristic function.

Definition 3.1.1. The language of probability distribution P (X), denoted L(P ), is the set of

strings in X with positive probability:

L(P ) = {x ∈ X | P (X = x) > 0}.
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3.1.1 Using a probability distribution for prediction

A probability distribution P (X) over X or Xn represents a vast amount of information. There

are several interesting questions we may answer with the help of the distribution. The most

fundamental question is what probability is assigned to a particular structure: P (X = x). A

second question, asked when a single prediction is required, asks what is the best or most likely

structure. “Best” will have different meanings, depending on the goals of the prediction. A

third question asks for representative structures from the distribution, i.e., randomly choose a

structure (or k structures) from the distribution P (X). A fourth question asks for the expected

value E[g(X)] of some function g. The function g could, for example, count the number of helix

segments in the structure, or calculate the percentage of the structure in coil conformation.

How a probability distribution is used to make a single prediction, i.e., to choose the “best”

structure, depends on the purpose of the prediction. P (X = x) is the probability that any single

prediction x is the correct structure. Thus the structure with maximal probability,

x∗ = argmax
x∈Xn

P (X = x),

is the structure to choose if a single structure is desired and the predictor wishes to maximize the

chance of making a correct prediction.

This is not always the case, because a simple correct/incorrect judgment of a prediction is

often too severe. Intuitively, two predictions may be incorrect, but one may resemble the actual

structure more closely than the other. This concept of similarity between structures has been

formalized; two common distance metrics for comparing strings are the edit distance and Hamming

distance metrics. For protein secondary structures, the Sov [11] and Q3 measures are used. (Q3 is

equivalent to Hamming distance.) Often, the predictor wishes to minimize the expected distance

between the prediction and the actual structure. Thus the predictor will choose the structure x̂,

where

x̂ = argmin
x∈X

∑
x′∈Xn

P (X = x′)d(x, x′)
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and d(x, x′) is the distance measure.

Of the two standard measures of prediction accuracy, Q3 is the simplest, and is the easiest

measure for which to compute the structure which maximizes expected similarity. Unlike Sov,

Q3 considers the structure of each residue separately: Q3(x, x′) = 1
n

∑n
i=1[xi = x′

i]. Thus the

predicted structure of each residue may be chosen independently so as to maximize its expected

contribution to the Q3 score:

x̂i = argmax
σ∈ΣSS

1
n

∑
x′∈Xn

P (X = x′)[σ = x′
i]

= argmax
σ∈ΣSS

P (Xi = σ).

The structures x∗ and x̂ may very well not be the same. Indeed, x̂ may even be an impossible

structure, i.e., P (X = x̂) = 0. By the same token, x∗
i may not be the most likely structure of

the ith residue, for any i. This distinction between x∗ and x̂ has parallel in the English language.

If X were the set of words made of the 26 letters of the Roman alphabet, and if P (X) were the

distribution of those words in English text, then we would have x∗ = the, yet x̂i �= h. In other

words, the word the occurs more frequently than any other word in English text, yet “h” is not

the most commonly occurring second letter in English words.1

The remainder of this chapter describes a framework for modeling protein secondary structure

in terms of probability distributions.

3.2 Experts

Here we introduce the concept of experts. An expert is a representation of incomplete knowledge

about the folding function f ; it is a function mapping sequences to probability distributions over

the structure space. If e is an expert, the value p = e(s) is a probability distribution, where

p(x) gives the expert’s subjective assessment of the probability that s has structure x, given e’s

1If we consider the assembled texts of the four Thomas Hardy novels Jude the Obscure, The Mayor of Caster-
bridge, Return of the Native, and Tess of the d’Urbervilles, A Pure Woman to be a representative sample of the
English language, the most commonly occurring second letter of words is o.
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knowledge of f . It is an expert opinion, a measure of the expert’s uncertainty about the structure

of s.2

We will assume that expert opinions are reasonable, in the sense that expressions of certainty

must be correct. In other words, if an expert opinion assigns a zero probability to structure x, i.e.,

p(x) = 0, then we must have f(s) �= x. This condition prevents the situation where two expert

opinions cannot be reconciled because the intersection of their languages is null.

Morris’s concept of calibration [30] is a stronger condition:

Definition 3.2.1 (Calibration). An expert opinion p = e(s) is calibrated if

P (X = x | e(s)) = p(X = x),

i.e., given no other information, our subjective belief in the structure X is the same as expressed

by the expert.

3.2.1 Sources of expert information

Probabilistic information about protein secondary structure can be obtained from many sources.

Any information about protein structure in general, or specifically about the structure of the

target protein may be represented by an expert and used for prediction. We may distinguish

between two types of expert: those that know the length of the target protein and those that

do not. Experts knowing the length of the target amino acid sequence s also know the length of

the secondary structure string. Thus their opinions are distributions over the space X|s| = Σ|s|
SS .

Experts ignorant of the length of the target yield opinions with distributions over the whole space

X = Σ∗
SS .

2Although p = e(s) represents an expert’s uncertainty about the structure of s, the expert may not be confident
of this assessment: the expert may be uncertain about its uncertainty. This double-uncertainty would exist in a
machine-learning model with a small training set, with confidence intervals associated with each p(X = x) value.
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Sequence length

An expert knowing nothing more than the length (n) of the target sequence will assign uniform

probability to all structures in Xn, and zero probability to all structures in X \ Xn.

Amino-acid-sequence patterns

Certain amino-acid-sequence patterns have been discovered whose occurrence in an amino-acid

sequence correlates strongly with specific protein structure [37, 25]. If enough occurrences of

these patterns are found in a protein-structure database, a pattern-based expert may infer the

distribution of secondary structures for proteins matching the pattern. Experts based on amino-

acid-sequence patterns are rational experts (see Section 3.2.2).

Protein family profiles

Evolution tends to preserve helices and beta strands; thus evolutionary events such as insertion or

deletion of residues in proteins tend to occur in the coil regions. Sophisticated protein secondary

structure prediction methods (e.g., [18]) exploit this information by determining the evolutionary

family of the target protein and then computing the optimum alignment of the target protein

with the family. Regions in the alignment where insertions and deletions are common indicate

regions where the coil conformation occurs with high probability.

A family profile expert exploits this information, assigning higher probabilities to structures

with coil segments in the insertion/deletion regions and helix and strand segments in the unbroken

regions.

Structure grammars

An expert modeling secondary structure as a formal language may employ a grammar to disqualify

impossible structures. Simple grammars can enforce relatively low-level constraints, such as the

minimum lengths of helices and strands. More sophisticated grammars can enforce higher-level

aspects of protein structure, such as the requirement that beta strands be part of a beta sheet.
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The following grammar generates secondary structure strings, and imposes two constraints:

first, that helix, sheet, and coil segments have minimum lengths 3, 1, and 1, respectively; second,

that strings must start and end with a coil segment.

S→ CS′C

S′ → HHHAS′ | BS′ | CS′ | Λ

A→ HA | Λ

B→ EB | Λ

C→ CC | Λ.

If we call that grammar G, the language specified by it is denoted by L(G). A grammar-based

structure expert would assign p(x) = 0 if x �∈ L(G), and p(x) > 0 otherwise.

Physico-chemical models

An expert may form an opinion on the protein structure based on a physical model of the folding

protein. Although an accurate atomic-scale simulation of the folding process is not feasible with

current computing resources, a simplified simulation experiment may indicate areas in the amino

acid chain with strong preference for or aversion to certain secondary structures.

Physical observation

An expert based on incomplete observation of the target protein’s structure may be able to exclude

some structures or favour others. A low-resolution X-ray crystallography experiment can reveal

the structure of some regions of a protein but not others. NMR studies of proteins can also be a

source of structural constraints. An expert based on these incomplete observations would give a

uniform probability to those hypothetical structures matching the observed details of the actual

structure, and give zero probability to all other structures.

Circular dichroism experiments can quickly determine the proportions of helices, β strands and

coils that constitute a target protein’s secondary structure [38]. An expert based on a circular
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B H1 H2 E· · · HnH

Figure 3.1: An expert opinion asserting that the target has nH helix residues, implemented by a
probabilistic automaton. The automaton uses the states Hi to count the number of helix residues
in the structure. (See Chapter 4.)

dichroism experiment revealing secondary structure proportions cH , cE and cC would give the

highest probability to those structures having secondary structure content in those proportions,

and very low probability to hypothetical structures with significantly different proportions. Fig-

ure 3.1 shows how an automaton such as a hidden Markov model (see Section 4.2) could represent

an expert opinion asserting that the structure must have exactly nH helix residues.

3.2.2 Rational experts

Earlier, we discussed amino acid sequence patterns as a source of information for protein secondary

structure experts. A sequence pattern π defines a partitioning of the sequence space into two

subsets, or languages: L and its complement, L̄. All sequences in the sequence space matching

π are members of L; all others are members of L̄. More generally, we can partition the sequence

space into an arbitrary number of disjoint subsets L1, L2, . . . , Lk. We will now focus on a definition

for experts whose opinions are based on how they partition the sequence space. We call these

experts rational experts.

The incomplete information about f is represented in a rational expert as follows. A rational

expert partitions Sn into some finite number k of disjoint languages (subsets): Sn = L1∪L2∪· · ·∪
Lk. For each subset Li, the expert keeps a probability distribution pi(x), which is the distribution

of secondary structures of the sequences in that subset. In other words, pi(x) is the probability

that f(s) = x given that s ∈ Li. The result of query e(s) on expert e is simply the probability

distribution pi kept by e, where s ∈ Li.

Rational experts are ideal versions of certain kinds of machine-learning models, such as decision
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trees and k-nearest neighbours, that partition their domain into disjoint subsets, and that treat

all elements within a subset identically. Rational experts are ideal because their training data

for each opinion e(s ∈ Li) is complete, i.e., all of Li, as opposed to a small sample from Li.

Studying the properties of rational experts may yield insights which may also be applicable to

these machine-learning models.

Theorem 3.2.1. The opinions of rational experts are calibrated.

Proof. Let p = e(s) be the opinion of a rational expert e. If we are given opinion p and no other

information about the structure of s, we know only that there is some subset Ls ⊆ S such that

s ∈ Ls, and for every x ∈ Xn, there is some number cx of sequences in Ls with structure x such

that cx/ |Ls| = p(x). Thus the probability that f(s) = x is same as the probability of drawing a

protein at random from Ls and observing structure x:

P (X = x | e(s)) = cx
|Ls| = p(x).

For example, if we had ΣAA = {a, b}, then S3 would contain eight sequences:

S3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}.
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Let ΣSS = {H,E,C} and f be defined as follows.

s f(s)

aaa HHH

aab HHH

aba EEC

abb EEC

baa EEE

bab CCC

bba CCC

bbb HHH

Finally, let e be a rational expert that partitions S3 into two subsets: L1 = {aaa, aab, aba, abb, baa}
and L2 = {bab, bba, bbb}. Then the probability distributions kept by e are obtained from the

definitions of f , L1, and L2:

x p1(x) p2(x)

HHH 2/5 1/3

EEC 2/5 0

EEE 1/5 0

CCC 0 2/3

If we choose a particular sequence from S3, say aaa, the difference between folding function

f and expert e becomes clear. f(aaa) = HHH is a deterministic assignment of structure to se-

quence. In contrast, e(aaa) = {p(HHH) = 2/5, p(EEC) = 2/5, p(EEE) = 1/5} is a probabilistic

assignment of structure to sequence.

Note that an expert cannot distinguish between sequences which fall into the same subset of

the partition of Sn. The individual values of f(s), for each s ∈ Li are blurred together into a

single probability distribution. It is this blurring which makes an expert’s knowledge about f

incomplete.
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Two further examples of experts are the boundary cases. The first boundary case is the all-

generalizing expert, e◦. Its partition of Sn is the null partition, which does not divide Sn. (So

k = 1 and L1 = Sn.) For any s ∈ Sn, p◦ = e◦(s) yields the probability distribution of structures

across all of Sn. Thus it does not distinguish any sequences at all, in the sense that its output is

independent of s. Using the above definition of f(s), we would have

x p◦(x)

HHH 3/8

EEC 1/4

EEE 1/8

CCC 1/4.

The second boundary case is the all-specializing expert, e•. It partitions Sn such that every

element is in its own subset; each subset Li is a singleton set {si}. So p• = e•(s) yields the

probability distribution where p•(x) = 1 for x = f(s), and 0 elsewhere. If we had f(aaa) = HHH,

and p• = e•(aaa), then we would have p•(HHH) = 1. Thus e• represents complete knowledge of

f , and is the only expert whose opinions have zero uncertainty.

3.2.3 Combining expert opinions

Experts are used to predict protein secondary structure. When an expert eA is queried for its

opinion on target sequence s, the result is pA = eA(s), a probability distribution. Considering

only the opinion given by eA, and assuming that eA(s) is a calibrated opinion, the probability that

f(s) = x, for any structure x, is pA(x). In other words, P (f(s) = x | eA) = pA(x). Prediction

then proceeds as required, according to Section 3.1.1.

When more than one expert’s opinion is considered, the situation becomes more complicated.

If, in addition to querying eA for its opinion on s, we also query expert eB , then we have two

expert opinions to work with: eA(s) and eB(s). What then is P (f(x) | eA, eB)? This is the

problem of combining expert opinions.

The problem of combining expert opinions has been studied in the statistical literature. Vari-



CHAPTER 3. PROBABILISTIC MODELING WITH EXPERTS 35

ations of this problem, and approaches to their solutions are reviewed by Genest and Zidek [27].

We will apply Bayesian methods to illuminate this problem. Following Morris [29], we regard

the voicing of an expert opinion as an event. This allows us to introduce the notions of the

probability of a particular opinion, and the conditional dependence or independence of a set of

expert opinions, given a structure.

We begin by distinguishing between conditionally dependent and independent expert opinions.

Before querying eA or eB on the structure, all we know is P (X), the prior probability distri-

bution, equivalent to the background distribution of structures of Sn. (Note that P (X) = e◦(s),

the result of querying the all-generalizing rational expert on the structure of s.) In this state, we

can assign a probability distribution P (pA) over the set of opinions that may be voiced by expert

eA. This is the prior probability of opinion eA(s).

If we are then given the actual structure of s, our evaluation of the probability of hearing

opinion pA from eA may change. We write this posterior probability as P (pA | X = x). (Intu-

itively, if we trust our expert eA, and we know that f(s) = x, for some specific structure x, we

will expect eA(s) to give high probability to x.) Similarly, the posterior probability of an opinion

pB voiced by eB is P (pA | X = x). The notion of conditional independence of eA(s) and eB(s) is

determined by the value of the joint posterior probability, P (pA, pB | X = x):

Definition 3.2.2. Let e1, e2, . . . , ek be a set of k experts. The set of expert opinions p1 =

e1(s), p2 = e2(s), . . . , pk = ek(s) are conditionally independent, given f(s) = x, if

P (p1, p2, . . . , pk | X = x) =
k∏
i=1

P (pi | X = x).

Observation 3.2.2. Let eC be an expert with constant opinion pC (i.e., ∀s, eC(s) = pC ; examples

include the all-generalizing expert e◦, and structure-grammar-based experts). Let and e1 be any

other expert. Then the expert opinions eC(s) and e1(s) are conditionally independent, given any

structure x.

This is true because the event eC(s) = pC is the certain event, i.e., P (eC(s) = pC) = 1.

The following theorem is based on Morris’s Bayesian analysis of expert opinions [29].
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Theorem 3.2.3 (Product of Conditionally Independent Expert Opinions). Let s be an

amino acid sequence with a prior probability distribution P (X = x) on the structure of s. Let

e1(s), e2(s), . . . , ek(s) be the opinions of k experts on the structure of s. Then if this set of

expert opinions is conditionally independent, given X = x, the posterior probability P (X = x |
e1(s), . . . , ek(s)) of the structure of s is a product of the expert opinions:

P (X = x | e1(s), . . . , ek(s)) ∝
∏k
i=1 P (x | ei(s))

(P (X = x))k−1
. (3.1)

Proof. According to Bayes’s3 Theorem,

P (X = x | e1(s), . . . , ek(s)) =
P (e1(s), . . . , ek(s) | X = x)P (X = x)

P (e1(s), . . . , ek(s))

∝ P (e1(s), . . . , ek(s) | X = x)P (X = x).

Now we develop the P (e1(s), . . . , ek(s) | X = x) term of the right-hand side:

P (e1(s), . . . , ek(s) | X = x) =
k∏
i=1

P (ei(s) | ei+1(s), . . . , ek(s),X = x),

=
k∏
i=1

P (ei(s) | X = x)

which is due the independence requirement.

Using Bayes’s Theorem again,

P (ei(s) | X = x) =
P (X = x | ei(s))P (ei(s))

P (X = x)
.

Thus

P (e1(s), . . . , ek(s) | X = x) =
k∏
i=1

P (X = x | ei(s))P (ei(s))
P (X = x)

.

3Though often written Bayes’ in the literature, correct English usage requires the extra s. Strunk and White:
“Form the possessive singular of nouns by adding ’s. Follow this rule whatever the final consonant.” [39, Rule 1,
p. 1]
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Finally, we substitute this result into our original equation, obtaining

P (X = x | e1(s), . . . , ek(s)) ∝
(
k∏
i=1

P (X = x | ei(s))P (ei(s))
P (X = x)

)
P (X = x)

∝
∏k
i=1 P (X = x | ei(s))
(P (X = x))k−1

,

which is the desired result.

Corollary 3.2.4. If the prior distribution P (X = x) is uniform, the posterior probability is

proportional to the product of the expert opinions.

P (X = x | e1(s), . . . , ek(s)) ∝
k∏
i=1

P (X = x | ei(s)) (3.2)

The distribution described by Equation (3.1) can be written

P (X | e1(s), . . . , ek(s)) =

(
k⊗
i=1

(
P (X | ei(s))� P (X)

))⊗ P (X), (3.3)

where ⊗ is the normalized product operator and � is the normalized quotient operator, both

defined below.

Definition 3.2.3 (Normalized Product). The normalized product of k probability distribu-

tions p1(X), p2(X), . . . , pk(X) is denoted
⊗k
i=1 pi(X) (or p1(X)⊗ p2(X) when k = 2), and is the

probability distribution p∗(X) proportional to the product of the first k distributions:

p∗(X = x) ∝
k∏
i=1

pi(X = x) (3.4)

=
∏k
i=1 pi(X = x)∑

x′∈X
∏k
i=1 pi(X = x)

. (3.5)

Definition 3.2.4 (Normalized Quotient). The normalized quotient of probability distributions

p1(X) and p2(X) is denoted p1(X) � p2(X), and is the probability distribution p∗(X) defined as
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follows.

p∗(X = x) ∝



0 if p2(X = x) = 0,

p1(X = x)/p2(X = x) otherwise

=



0 if p2(X = x) = 0,

p1(X=x)/p2(X=x)∑
{x′∈X|p1(X=x)>0} p1(X=x′)/p2(X=x′) otherwise

.

The normalized product of distributions p1(X), . . . , pk(X) is undefined if the intersection of

their languages is null. The normalized quotient of p1(X) and p2(X) is undefined if the language

of p1 is not a subset of the language of p2.

The result of Equation (3.3) is well-defined: the terms of the normalized product are calibrated

expert opinions, thus the intersection of their languages is non-null; the divisor of the normalized

quotient is the prior distribution, whose language must be a superset of that of any other expert.

Note that the language of the normalized product of a set of probability distributions is the

intersection of the languages of the probability distributions. We will sometimes refer to the

normalized product operator as the conjunction operator, due to its correspondence to the AND

operator in formal logic.

Conditionally dependent experts

In the case where our expert opinions are not conditionally independent, Theorem 3.2.3 does not

apply, and the analysis becomes more difficult [29, 28]. We may, however, derive a similar result

for a certain case of expert dependence. In general, for the conditionally dependent case, we have

P (e1(s), e2(s), . . . , ek(s) | X = x) �=
k∏
i=1

P (ei(s) | X = x).

We now consider the case where there exists an exponent γ such that

P (e1(s), e2(s), . . . , ek(s) | X = x) ∝
(
k∏
i=1

P (ei(s) | X = x)

)γ
.
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Now, as in the proof of Theorem 3.2.3, we apply Bayes’s rule to obtain

P (X = x | e1(s), . . . , ek(s)) =
P (e1(s), . . . , ek(s) | X = x)P (X = x)

P (e1(s), . . . , ek(s))

=

(∏k
i=1 P (ei(s) | X = x)

)γ
P (X = x)

P (e1(s), . . . , ek(s))
,

which, after a second application of Bayes’s rule,

=

(∏k
i=1 P (X=x|ei(s))P (ei(s))

P (X=x)

)γ
P (X = x)

P (e1(s), . . . , ek(s))

∝
(
k∏
i=1

P (X = x | ei(s)γ
)

P (X = x)1−kγ .

Note that this result is the same as Equation (3.1), except for the use of the exponent γ. When

γ = 1, the expert opinions are conditionally independent, and the results are identical. We have

thus derived a generalization of Theorem 3.2.3:

Theorem 3.2.5 (Product of Expert Opinions). Let s be an amino acid sequence with a prior

probability distribution P (X = x) on the structure of s. Let e1(s), e2(s), . . . , ek(s) be the opinions

of k experts on the structure of s. If there exists an exponent γ, a measure of the conditional

independence of these expert opinions, such that

P (e1(s), e2(s), . . . , ek(s) | X = x) =

(
k∏
i=1

P (ei(s) | X = x)

)γ
,

then the posterior probability P (X = x | e1(s), . . . , ek(s)) of the structure of s is a product the

prior distribution and powers of the expert opinions:

P (X = x | e1(s), . . . , ek(s)) ∝
(
k∏
i=1

P (X = x | ei(s)γ
)

P (X = x)1−kγ . (3.6)

A similar corollary applies here as in the conditional-independence case:

Corollary 3.2.6. If the prior distribution P (X = x) is uniform, the posterior probability is
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proportional to the product of the powers of the expert opinions.

P (X = x | e1(s), . . . , ek(s)) ∝
k∏
i=1

P (X = x | ei(s))γ . (3.7)

The prior distribution also vanishes from the posterior distribution in the degenerate case of

maximum conditional dependence:

Corollary 3.2.7. If the expert opinions are conditionally dependent to the point where γ = 1/k,

the posterior probability is proportional to the geometric mean of the expert opinions:

P (X = x | e1(s), . . . , ek(s)) ∝
(
k∏
i=1

P (X = x | ei(s))
)1/k

.

Essentially, the exponent γ measures the degree of conditional dependence between expert

opinions, with γ = 1 in the conditionally independent case, and γ = 1/k in the degenerate case.

(Note that γ may not be restricted to the interval [1/k, 1].)

The distribution expressed in Equation (3.6) can be written

P (X | e1(s), . . . , ek(s)) =

(
k⊗
i=1

(P (X | ei(s))� P (X)) ↑ γ
)
⊗ P (X), (3.8)

with ⊗ and � as defined previously, and where ↑ is the normalized exponentiation operator,

defined below.

Definition 3.2.5 (Normalized Exponentiation). The normalized exponentiation of probabil-

ity distribution p(X), with exponent γ ≥ 0, is denoted p(X) ↑ γ. It is defined to be

p(X = x) ↑ γ ∝ (p(X = x))γ

=
(p(X = x))γ∑

x′ ∈ X (p(X = x′))γ
.

Observation 3.2.8. For any probability distribution p(X) and real number γ > 0, the language

of p(X) is equal to the language of (p(X) ↑ γ).
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Information-theoretic justification

Kapur and Kesavan [40] offer some information-theoretic insight into Corollary 3.2.7 (the case

where γ = 1/k — high conditional dependence between expert opinions). Simply stated, they

show that the probability distribution most similar to each of a set of expert opinions is the

distribution obtained from the normalized geometric mean of the expert opinions.

The measure of similarity used in Kapur and Kesavan’s argument is D(p : p′), the Kullback-

Leibler measure. It is a standard information-theoretic measure of directed divergence, or cross-

entropy. Informally, it measures the distance or difference from probability distribution p(X) to

p′(X). It is defined as:

D(p : p′) =
∑
x∈X

p(x) ln
p(x)
p′(x)

.

The Kullback-Leibler measure has the property that D(p : p′) = 0 if and only if p = p′. It is an

asymmetric measure, and thus not a true distance metric.

Kapur and Kesavan’s argument is as follows. Let p1, p2, . . . , pk be opinions on the structure

of s obtained from our k experts, i.e., probability distributions over Xn. For any probability

distribution p, the mean distance from p to our expert opinions is

k∑
i=1

1
k
D(p : pi).

More generally, a weighted average of the distances from p to our expert opinions is

k∑
i=1

λiD(p : pi), (3.9)

where each λi is a weight and
∑k
i=1 λi = 1.

The probability distribution p∗ which minimizes the average divergence from itself to the
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expert opinions is

p∗(X) = argmin
p(X)

k∑
i=1

λiD(p : pi),

which reduces to

p∗(x) =
∏k
i=1(pi(X = x))λi∑

x′∈X
∏k
i=1(pi(X = x′))λi

,

which confirms Corollary 3.2.7. Intuitively, in the extreme case of conditional dependence where

we have k copies of the same expert and all opinions pi(X) are identical, the geometric mean is

also identical: p∗(X) = pi(X).

Note that the directed divergence measure used here is D(p : pi), as opposed to D(pi : p).

This direction (p→ pi) is chosen according to Kullback’s minimum cross-entropy principle, which,

for cross-entropy minimization problems, requires the divergence be measured from the variable

probability distribution to the fixed distribution [41]. (If the direction of the divergence measure

in Equation (3.9) were reversed, i.e., D(pi : p), the resulting minimal-KL-distance probability

distribution p∗ would simply be the weighted arithmetic mean of the expert opinions: p∗(x) =∑k
i=1 λipi(x).)

3.2.4 Balanced experts

Balanced training is a means of improving the overall accuracy of protein secondary structure

models [20]. If the prior distribution of protein structure, P (X), is uniform, experts trained on

data from this distribution are automatically balanced. The corollary to Theorem 3.2.3 shows

how balanced training simplifies the calculation of the combined expert opinion.

When the prior probability distribution is non-uniform, it appears in Equation (3.1). We offer

this interpretation of its appearance: if we re-write the equation as

P (X = x | e1(s), . . . , ek(s)) ∝ P (X = x)
m∏
i=1

P (x | ei(s))
P (X = x)

,
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we see that the quotient P (x | ei(s))/P (X = x) removes the bias of the prior before the expert is

combined with the others. The initial P (X = x) term then restores the bias. The interpretation,

then, is that the quotient P (x | ei(s))/P (X = x) balances the expert. Thus we have a means of

balancing an expert opinion after it has been trained on biased data.

The same method of removing the bias from an expert also applies to the final probability

distribution P (X = x | e1(s), . . . , ek(s)), itself an expert opinion: dividing the distribution by the

prior balances the distribution:

P (X = x | e1(s), . . . , ek(s))� P (X = x) = ⊗mi=1 (P (x | ei(s))� P (X = x)) .

3.3 Summary

3.3.1 Product of experts as a modeling technique

The theory introduced in this chapter suggests a strategy for creating complex models of protein

secondary structure using a bottom-up, modular modeling approach:

1. Choose a prior probability distribution P (X) representing the background distribution of

protein structures. Carefully consider balanced training issues (Section 3.2.4).

2. Collect as much information as possible about the target protein. Section 3.2.1 lists some

possible sources. Represent each unit of information as an expert opinion.

3. Assess the conditional (in)dependence of each expert opinion.

4. Combine the assembled expert opinions using Equations (3.1), (3.6), or (3.2). If the expert

opinions are conditionally dependent, but the exponent γ is not known, a conservative

estimate is γ = 1/k.

This step and the previous step may be repeated in an iterative fashion with a few experts

at a time, so that the consensus opinion is obtained from a hierarchical assembly of the

expert opinions.



CHAPTER 3. PROBABILISTIC MODELING WITH EXPERTS 44

5. Make a prediction: choose an appropriate structure from Xn based on the resulting proba-

bility distribution P∗(X) and the goals of the prediction (Section 3.1.1).

3.3.2 Choosing probabilistic models to represent expert opinion

Probability distributions can be represented in different ways. For distributions over a large

sample space such as Xn, it is not feasible to represent the distribution as a table of (x, P (x))

pairs. Concise representations of probability distributions are obtained with probabilistic models

such as hidden Markov models and Markov chains.

In order to usefully represent expert opinions, a class C of probabilistic models must satisfy

several conditions.

• Equations (3.3) and (3.8) require that C be closed under normalized product.

• If the expert opinions are conditionally dependent, Equation (3.8) requires that C be closed

under normalized exponentiation.

• If the prior probability distribution is non-uniform, Equations (3.3) and (3.8) require that

C be closed under normalized quotient.

Additionally, depending on the goals of the prediction, algorithms may be required to compute

the following values from members of C.

• p(X = x)

• x∗ = argmaxx∈Xn
p(X = x)

• p(Xi = σ),

• random samples from p(X)

Although Chapter 4 will discuss the closure of product, quotient and exponentiation for specific

classes of probability distributions, one closure property applies in general:

Observation 3.3.1. Any class of probability distributions that is closed under conjunction is also

closed under normalized integer exponentiation, for positive integers.
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Proof. By induction. The base case is p1 = p. For any i > 1, pi = p⊗ pi−1.

In the next chapter, we will study the effectiveness of Markov chains and hidden Markov

models as representations of expert opinions.

3.4 Future Work

Two unsolved problems are apparent in this chapter, which correspond to steps 3 and 4 of the

strategy summarized in Section 3.3.1. The first is the problem of assessing conditional depen-

dence or independence between expert opinions. The second is the problem, for the conditionally

dependent case, of determining whether an exponent γ exists, and if so, estimating its value. The

second problem encompasses the first problem, in that γ = 1 for the independent case.

Reasoning about these two problems should be simpler if we restrict ourselves to a particular

class of experts, e.g., rational experts. Consider the case where we have two rational experts, e1

and e2, that partition the sequence space such that the target s falls in subsets L1 and L2 of Sn,
respectively. The conditional independence of e1(s) and e2(s) depends on the magnitudes |L1|,
|L2|, |L1 ∩ L2|, and |Sn|.



Chapter 4

Using Markov Models to

Represent Expert Opinion

The previous chapter developed a framework for probabilistic modeling of protein secondary

structure by combining the opinions of experts. These opinions, represented by probability distri-

butions, are combined using the operations of normalized product, quotient and exponentiation.

The resulting probability distribution is used to make predictions by obtaining the probabilities

P (X = x), P (Xi = a), and argmaxx∈X P (X = x) from the underlying probability distribution

P (X).

When the sample space is very large, it becomes infeasible to explicitly represent probabil-

ity distributions in a naive fashion such as a table. Probabilistic models are a compact way

of representing probability distributions over large sample spaces. This chapter investigates the

consequences of modeling sequences by products of experts when we limit our probability distri-

butions to those that can be represented by certain classes of probabilistic models. In particular,

two related classes of probabilistic models are studied: Markov chains and hidden Markov models.

To be suitable for the products of experts modeling technique, these model classes must be closed

under the specified operations, and efficient algorithms must exist to extract predictions from

them. As we shall demonstrate, both classes are closed under normalized product. Markov chains

46
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are also closed under normalized quotient and exponentiation. The closure of HMMs under nor-

malized quotient and exponentiation is conjectured. Methods are described for creating conjoined

and exponentiated models. In addition, algorithms for computing the required probabilities that

avoid explicit enumeration of the sequence space are given.

The probabilistic models in this chapter are all generative models. Generative models are

abstract machines that operate by a stochastic process. They are not functions that compute

particular probabilities in the distribution. The way they specify probability distributions is

indirect: generative models can be executed . A single execution of a generative model produces a

single string. The string is said to be emitted , or generated by the model. This string is created by

a stochastic mechanism, arranged so that every string x is generated with probability P (X = x).

The generated string is sometimes referred to as the observed string, in contrast to the hidden

inner workings of the model that produced the string.

4.1 Markov Chains

A Markov chain is a generative model. It is a probabilistic state machine with a special begin

state and a special end state. Execution of a Markov chain proceeds as a series of random state

transitions, beginning in the begin state and ending in the end state. At any step in its execution,

the Markov chain is in a particular state. The state that the Markov chain will be in at the

next step is chosen randomly, according to a probability that is conditional on the current state.

The string generated by the execution of a Markov chain is the sequence of states that it visited

between the begin and end states.

Since the strings generated by a Markov chain are composed of symbols representing states of

the machine, we will sometimes refer to the state set of a Markov chain as its alphabet . Therefore

we speak interchangeably of states q ∈ Q and output symbols σ ∈ Σ. Conceptually, the Markov

chain emits the name of the current state after every state transition.

Definition 4.1.1 (Markov chains). Formally, a Markov chain is specified by a quadruple M =

(Q,B, E , A), where Q is a finite set of states (the alphabet), B and E are the begin and end states,
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0.26
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Figure 4.1: Example of a Markov chain.

and A is the transition probability table. Elements aqr of A indicate the probability of making a

transition from state q to state r, for q ∈ Q ∪ {B}, r ∈ Q ∪ {E}.

Markov chains always begin their execution at time t0 in state B. During execution, at time ti

and in state q, a Markov chain will randomly choose the state it will be in at time ti+1 according to

the probability aqr. Execution ends as soon as the Markov chain makes a transition to state E . The
sequence generated by the execution of a Markov chain is the sequence of states π = π1π2 . . . πn,

also called the state path where πi is the state of the Markov chain at time ti, B is the state of the

Markov chain at time t0 and E is the state of the Markov chain at time tn+1. Thus the probability

of Markov chain generating string x of length n is

P (x) = aBx1

(
n−1∏
i=1

axixi+1

)
axnE , (4.1)

which, when we let x0 = B and xn+1 = E , simplifies to
∏n
i=0 axixi+1 .

An example Markov chain is illustrated in Figure 4.1. Call this Markov chain M . Then

M = (Q,B, E , A), where the state set Q = {H,E,C} and the transition probability matrix is as
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follows:

A =

H E C E
B
H

E

C




0 0 1 0

0.89 0.004 0.106 0

0.01 0.73 0.26 0

0.08 0.12 0.79 0.01




This Markov chain generates strings over the alphabet {H,E,C}. The zeroes in the transition

probability matrix force all strings generated by M to have length at least one, and to begin and

end with a C. A regular expression1 describing the language of M (the set of strings that M can

generate with non-zero probability) is thus C ((H + E)∗C)∗.

We can use Equation (4.1) above to calculate the probability with which M generates strings.

For example, the probability of generating the string CEEC is

P (X = CEEC |M) = aBC · aCE · aEE · aEC · aCE

= 1× 0.12× 0.73× 0.26× 0.01

= 0.00022776.

4.1.1 Probabilistic queries

Computing the most probable sequence

The problem of computing a string with maximal probability of being generated by M , x∗ =

argmaxx∈Q∗ P (X = x |M), is essentially the shortest path problem from graph theory. We may

regard a Markov chain as a weighted, directed graph, whose vertex set is Q, and whose edge set is

all state transitions with non-zero probability. Weights on edges (q, r) are the negative logarithms

of the transition probabilities, − ln aqr. Then x∗ is the sequence of states contained in the shortest

path from B to E .
1Using the notation + for union and ∗ for Kleene closure.
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Dijkstra’s algorithm solves the shortest path problem, and thus may be used to compute x∗.

The running time of the simplest implementation of this algorithm is O(|Q|2).
The algorithm is given below. Set S ⊆ Q ∪ {B, E} is the set of examined states, prob(q) is

the maximal probability of walking a path from B to q, and prev(q) is the preceding state in that

path.

Initialization

for each q ∈ Q ∪ {E}:

prob(q)← 0

prev(q)← ∅

prob(B)← 1

S ← ∅
S̄ ← Q ∪ {B, E}

Iteration

while E �∈ S:

q ← argmaxq′∈S̄ prob(q′)

S ← S ∪ {q}
S̄ ← S̄ \ {q}
for each r ∈ {r′ ∈ S̄ | aqr > 0}:

if prob(q) · aqr > prob(r) then

prev(r)← q

prob(r)← prob(q) · aqr

Termination

q ← E
x∗ ← Λ

until prev(q) = B:

x∗ ← x∗q
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Computing the probability of the structure of a single residue

Section 3.1.1 in the previous chapter explained that using the value x̂ as a prediction maximizes

the expected Q3 score. The elements x̂i are defined as

x̂i = argmax
σ∈ΣSS

P (Xi = σ),

which means that we require the ability to compute the probability of the structure of a single

residue, P (Xi = σ |M).

We introduce the random variable Π to represent the state path walked by a Markov chain

during an execution. We also introduce the random variable Πi to represent the ith element of Π.

Since the generated string of a Markov chain is the state path that it walks, the random variables

Π and X are identical, as are Πi and Xi. Thus P (Xi = σ |M) = P (Πi = q |M).

The probabilities P (Πi = q | M) for all q ∈ Q and for all i ∈ [1..k] (k arbitrary) may be

computed in k steps with the following dynamic programming algorithm:

Initialization

P (Π0 = B |M)← 1

for each q ∈ Q, q �= B:

P (Π0 = q |M)← 0

Iteration

for i← 1, . . . , k:

for each r ∈ Q:

P (Πi = r |M)←∑
q∈Q P (Πi−1 = q |M) · aqr

The same probabilities may be computed by taking successive powers of probability matrix

A. Values aqr of A = A1 indicate the probability of being in state r when the previous state was

q. Values a′qr of A
′ = Ai indicate the probability of being in state r when the ith last state was q.
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Thus a′Br is the probability that Πi = r. (We assume here that A is a full |Q ∪ {B, E}|×|Q ∪ {B, E}|
matrix.)

4.1.2 Operations on Markov chains

Product of Markov chains

LetM1 = (Q,B, E , A1) andM2 = (Q,B, E , A2) be two Markov chains generating strings with prob-

ability distributions P (X | M1) and P (X | M2). We are interested in creating a third Markov

chain, M∗ = (Q,B, E , A∗), such that it generates strings with a probability distribution propor-

tional to the product of the first two. For ease of discussion, we speak in terms of proportionality.

The actual probability of M∗ generating a string x is equal to the product of P (X = x |M1) and

P (X = x |M2), times a normalizing constant such that the resulting probabilities sum to one. In

other words, we want

P (X = x |M∗) ∝ P (X = x |M1) · P (X = x |M2)

=
P (X = x |M1) · P (X = x |M2)∑

x′∈Q∗ P (X = x′ |M1) · P (X = x′ |M2)
.

This is the same probability distribution as is obtained by a generative model containing M1

and M2, and that generates strings by repeatedly running M1 and M2 in parallel until both

machines emit the same word x, at which point the model also emits x. It is the distribution over

words x given that M1 and M2 have both generated the same word.

This distribution can be described by a Markov chain. In other words, there exists a tran-

sition probability matrix A∗ such that M∗ = (Q,B, E , A∗) generates strings according to that

distribution. Consider a situation where M1 and M2 are executing synchronously, and both

are in some same state q ∈ Q ∪ {B, E}. We ignore any previous states. Then we define D(q)

to be the probability that M1 and M2 will generate the same suffix, i.e., M1 and M2 will

continue to make transitions to identical states until both simultaneously end in state E . So

D(E) = 1 and D(B) =
∑
x∈Q∗ P (X | M1)P (X | M2), and more generally, for q ∈ Q ∪ {B},

D(q) =
∑
r∈Q a1

qra
2
qrD(r). (We use the notation a1

qr to indicate elements of A1, and a2
qr to
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indicate elements of A2.) A∗ can now be defined in terms of A1, A2, and the D values.

Theorem 4.1.1. Let M1 = (Q,B, E , A1) and M2 = (Q,B, E , A2) be Markov chains generating

strings according to the probability distributions P (X |M1) and P (X |M2). Let A∗ be a transition

probability matrix whose elements are defined thus:

a∗qr =
a1
qra

2
qrD(r)∑

r′∈Q∪{E} a
1
qr′a

2
qr′D(r′)

.

Then the Markov chain M∗ = (Q,B, E , A∗) generates strings according to the probability distribu-

tion which is the normalized product of P (X |M1) and P (X |M2).

Proof. Consider any string x ∈ Q∗. Let its length be n. Then

P (X = x | Q∗) = a∗Bx1

(
n−1∏
i=1

a∗xixi+1

)
a∗xnE

=
a1
Bx1a

2
Bx1D(x1)∑

r∈Q∪{E} a
1
Bra

2
BrD(r)

(
n−1∏
i=1

a1
xixi+1

a2
xixi+1

D(xi+1)∑
r∈Q∪{E} a1

xira
2
xirD(r)

)

· a1
xnEa

2
xnED(E)∑

r∈Q∪{E} a1
xnra

2
xnrD(r)

=
P (X = x |M1)P (X = x |M2)

∏n
i=1 D(xi)

D(B)∏n
i=1 D(xi)

=
P (X = x |M1)P (X = x |M2)∑

x′∈Q∗ P (X = x′ |M1)P (X = x′ |M2)
,

which is the desired result.

The recursive definitions of the D values form a system of |Q|+ 1 unknowns in |Q|+ 1 linear

equations, and can therefore be solved by Gaussian elimination.

Exponentiation of a Markov chain

Let M = (Q,B, E , A) be a Markov chain which generates strings according to a probability distri-

bution P (X |M). We are interested in creating a Markov chain M∗ = (Q,B, E , A∗) that generates

strings x with probability proportional to some power (P (X = x |M))γ . We can construct M∗

using a similar technique to that used above for products.
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As above, we define a set of values D(q) in terms of a system of linear equations. Let D(E) = 1,

and D(q) =
∑
r∈Q∪{E} a

γ
qrD(r) for q ∈ Q ∪ {B}. Now we define A∗ in terms of A and the D

values:

a∗qr =
aγqrD(r)∑

r′∈Q∪{E} a
γ
qr′D(r′)

.

Consider any string x ∈ Q∗. Let its length be n. Then

P (X = x | Q∗) = a∗Bx1

(
n−1∏
i=1

a∗xixi+1

)
a∗xnE

=
aγBx1D(x1)∑

r∈Q∪{E} a
γ
BrD(r)

(
n−1∏
i=1

aγxixi+1
D(xi+1)∑

r∈Q∪{E} a
γ
xirD(r)

)
aγxnED(E)∑

r∈Q∪{E} a
γ
xnrD(r)

=
(P (X = x |M))γ

∏n
i=1 D(xi)

D(B)∏n
i=1 D(xi)

=
(P (X = x |M))γ∑

x′∈Q∗(P (X = x′ |M))γ
,

which is the desired result.

Quotient of Markov chains

The quotient operator for Markov chains is required if the prior is represented by a Markov

chain. The operator can be implemented in terms of exponentiation, where the exponent is −1.
Section 4.1.2 gives a construction algorithm for powers of Markov chains. This construction, for

exponent γ = −1, is well-defined for any Markov chain whose transition probabilities satisfy the

constraint aqr �= 0, for all q ∈ Q ∪ {B} and r ∈ Q ∪ {E}. In other words, quotient is well-defined

for those Markov chains which generate every string with non-zero probability. For such Markov

chains, M1 �M2 = M1 ⊗M−1
2 .

4.1.3 Generating fixed-length strings with Markov chains

Ordinary Markov chains are more suitable for representing probability distributions over X rather

than Xn. In order to represent a probability distribution over Xn, a generative model must assign
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a zero probability to strings of length other than n. For Markov chains, this is only possible if

n ≤ |Q|, and if the model assigns a zero probability to any word containing duplicate symbols:

otherwise, there must exist a loop in the state-transition topology, which implies that some strings

of arbitrary length are generated with non-zero probability.

Inhomogeneous Markov chains avoid these restrictions. Inhomogeneous Markov chains are

Markov chains with k transition probability matrices A1, . . . , Ak instead of one. While walking

a state path π, an inhomogeneous Markov chain chooses state πi with probability aimodk
πi−1πi

. In

other words, the first state is chosen according to the probabilities in matrix A1, the second state

is chosen according to the probabilities in matrix A2, and the ith state is chosen according to

the probabilities in matrix Aimodk. Thus inhomogeneous Markov chains are useful for modeling

periodic regularities in a sequence, such as in nucleotide (genetic) sequences, where k = 3 [42].

To model length-n sequences, we choose k = n, and set the probabilities of A1 to a1
qr = 0 and

a1
qE = 1, for all q ∈ Q (but not B) and all r ∈ Q. This forces the Markov chain to stop executing

after the nth symbol is generated.

4.2 Hidden Markov Models

A hidden Markov model (HMM) is a generative model that adds an extra layer of randomness to

a Markov chain. A HMM is composed of two components: a Markov chain and a set of emission

probability distributions. Unlike a Markov chain, the output of a HMM is not a sequence of

states. A HMM has an output alphabet that is separate from its state set. Execution of a HMM

proceeds as in the simpler Markov chain, except that every time a state transition occurs, a

symbol from the output alphabet is emitted. This symbol is chosen randomly, according to a

distribution conditional on the current state. Several states may emit the same symbol from the

output alphabet, and so the state sequence of a HMM’s execution cannot be directly determined

from the output of that execution. Thus a HMM hides the execution details of its Markov chain

from the observer.
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Definition 4.2.1 (Hidden Markov Models). Formally, a HMM M is denoted by 6-tuple

M = (Q,Σ,B, E , A,E),

where (Q,B, E , A) are the components of a Markov chain, Σ is the output alphabet, and E is the

emission probability matrix. Elements eq(σ) of E give the probability of emitting symbol σ ∈ Σ

while in state q ∈ Q.

To generate a string x = x1x2 . . . xL, M walks a path π = π0π1 . . . πL+1 through its state set,

from the distinguished begin state π0 = B to the distinguished end state πL+1 = E . From state

πi, the next state πi+1 in the state path is chosen with probability aπiπi+1 . At each state πi except

B and E , M emits symbol xi from its alphabet, chosen with probability eπi
(xi). Because M does

not emit symbols in states B and E , they are called silent states.

When the state path (of length n) walked by a HMM M is known, the probability that it

generates a string x of the same length is simply the product of the emission probabilities of each

state:

P (X = x|Π = π,M) =
n∏
i=1

eπi
(xi).

(As for Markov chains, the random variable Π represents the state path walked by the HMM.

Note, however, that unlike Markov chains, the random variable X is distinct from Π.)

When the state path walked by the M is unknown, the probability of M generating x is the

probability that it generates x by any path. Thus the overall probability of generating x is the

sum of the joint probabilities of emitting x and walking path π, for all possible π:

P (X = x |M) =
∑
π∈Qn

P (x, π |M)

=
∑
π∈Qn

P (π |M)P (x | π,M)

=
∑
π∈Qn

aBπ1

(
n−1∏
i=1

aπiπi+1

)
aπnE

n∏
i=1

eπi
(xi).

(4.2)
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q

H : 0.4
E : 0.2
C : 0.4

H : 0.2
E : 0.3
C : 0.5

r

E

0.3

0.7

0.6 0.25

0.050.5

0.5 0.1

B

Figure 4.2: Example hidden Markov Model. Emission probabilities are indicated in each non-silent
state.

An example HMM is shown in Figure 4.2. Call this HMM M . Then M = (Q,Σ,B, E , A,E),

where the state set is Q = {q1, q2}, the alphabet is Σ = {H,E,C}, and the transition and emission

probability matrices are as follows:

A =

q r E
B
q

r



0.5 0.5 0

0.7 0.25 0.05

0.6 0.3 0.1




E =

q r

H

E

C



0.4 0.2

0.2 0.3

0.4 0.5




Th zero aBE transition probability forces the state paths walked by M to have length at least

one (M cannot walk the null path). Thus M cannot generate the empty string. All other state

paths are possible. In addition, since all emission probabilities are non-zero, all strings other than

the empty string are possible. A regular expression describing the language of M is therefore

(H +E+C)(H +E+C)∗. The absence of zeroes in the emission probability matrix implies that

any state can emit any symbol from the alphabet. Thus M may generate any string of length n

while walking any length-n state path.
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We can use Equation (4.2) above to calculate the probability with which M generates strings.

For example, the probability of generating the string HHH is

P (X = HHH |M) =
∑

π∈{qqq,qqr,...,rrr}
aBπ1

(
2∏
i=1

aπiπi+1

)
aπ3E

(
3∏
i=1

eπi
(xi)

)

= (0.01225× 0.064) + (0.00875× 0.032) + (0.00375× 0.032)

+ (0.00375× 0.016) + (0.0105× 0.032) + (0.0075× 0.016)

+ (0.0045× 0.016) + (0.0045× 0.008)

= 0.001808.

The value of P (X = x | M) may be calculated without explicit enumeration of all possible

paths. This calculation is performed efficiently by the forward algorithm, a standard dynamic

programming algorithm for HMMs:

Initialization

for each q ∈ Q:

f1(q)← aBqeq(x1)

Iteration

for i← 2, . . . , n:

for each r ∈ Q:

fi(r)←
∑
q∈Q fi−1(q)aqrer(xi)

Termination

fn+1(E)←
∑
q∈Q fn(q)aqE

P (X = x |M) = fn+1(E)

To illustrate the working of this algorithm, we will now use this algorithm to calculate P (X =

HHH | M) on our example HMM M . The first step is the initialization step, which computes
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the following values:

f1(q) = aBqeq(H) = 0.5× 0.4 = 0.2

f1(r) = aBrer(H) = 0.5× 0.2 = 0.1.

Next is the iteration step. For iteration i = 2, we compute

f2(q) = f1(q)aqqeq(H) + f1(r)arqeq(H) = (0.2× 0.7× 0.4) + (0.1× 0.6× 0.4) = 0.08

f2(r) = f1(q)aqrer(H) + f1(r)arrer(H) = (0.2× 0.25× 0.2) + (0.1× 0.3× 0.2) = 0.016.

For iteration i = 3, we compute

f3(q) = f2(q)aqqeq(H) + f2(r)arqeq(H) = (0.08× 0.7× 0.4) + (0.016× 0.6× 0.4) = 0.02624

f3(r) = f2(q)aqrer(H) + f2(r)arrer(H) = (0.08× 0.25× 0.2) + (0.016× 0.3× 0.2) = 0.00496.

This ends the iteration step. Last is the termination step. We compute

f4(E) = f3(q)aqE + f3(r)arE = (0.02624× 0.05) + (0.00496× 0.1) = 0.001808.

The final answer is P (X = x | M) = f4(E) = 0.001808, which is the same result we obtained in

the direct calculation of P (X = x |M).

4.2.1 Non-terminal silent states

The canonical form of HMMs allows for exactly two silent states: the begin and end states.

However, many formulations of HMMs in the literature allow for silent states other than the

begin and end states. These nonterminal silent states do not increase the power of HMMs, since

for every HMM with extra silent states, there exists an equivalent HMM with none. Consider a

HMM M = (Q,Σ,B, E , A,E), with nonterminal silent state set S ⊂ Q. M may be modified to
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produce an equivalent HMM M ′ without nonterminal silent states:

M ′ = (Q− S,Σ,B, E , A′, E),

where

a′qr =
∑

π∈{q}S∗{r}

|π|−1∏
i=0

aπiπi+1 .

In other words, each transition probability aqr is replaced by the sum of the probabilities of all

paths from state q to state r having only silent states in between. Figure 4.3(a) shows an example

HMM with a silent state. Figure 4.3(b) shows the equivalent HMM after silent states have been

removed.

4.2.2 Probabilistic queries

Computing the most probable sequence

Computing the most probable generated string x∗ generated by a HMM is more difficult than the

most probable sequence for Markov chains, since every string can be generated by multiple (or

indeed all) state paths through the HMM.

A related problem is the Most Probable Labeling problem for HMMs. The Most Probable

Labeling problem is a posterior decoding problem (these are discussed further in Section 4.2.4).

We are given a HMM M , a string x, and a labeling function g : Q→ Σg which maps states in M

to labels in Σg. The labeling of an entire state path π is simply the concatenation of the labels of

each state in the path: g(π) = g(π1)g(π2) · · · . The Most Probable Labeling problem asks, given

that HMM M generated string x, what is the most probable labeling g(π) of the unknown state

path π that M walked while generating x?

The two problems are related as follows:

Theorem 4.2.1. The Most Probable Generated String problem, for fixed string length, and the

Most Probable Labeling problem are equivalent. That is, each problem reduces to the other.
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(a)

(b)

aBq2 aq2q4

aBq2aq2q3 aq3q4aq4E

aq1q2aq2q4aq4EaBq2aq2q4aq4q5

aBq2aq2q4aq4E

aq4E

aBq1
aq5E

aBq1

aq1q2
aq2q3 aq4q5

aq5E

aq1q3 aq3q5

aq1q3 + aq1q2aq2q3 aq3q5 + aq3q4aq4q5

aq1q2aq2q4aq4q5

aq3q4

q1 q3 q5

E

EB

q5q3q1

q4q2

B

Figure 4.3: Eliminating silent states from a HMM. An example HMM is shown (a) with non-
terminal silent states q2 and q4, and (b) after elimination of these states. Transition probabilities
in (b) are written in terms of the original probabilities in (a). Note the increased probability of
the transitions drawn with thick lines, and the new transitions drawn with dashed lines.
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Proof. We will first reduce the Most Probable Generated String problem to the Most Prob-

able Labeling problem. Let M = (Q,Σ,B, E , A,E) be a HMM. First, create HMM M ′ =

(Q′,Σ,B, E , A′, E′) from M , where

Q′ = Q× Σ

a′(q,σ1)(r,σ2)
= aqrer(σ2)

e′(q,σ)(σ) = 1, e′(q,σ)(σ
′ �= σ) = 0.

Then M ′ generates strings with the same probability as M . (The only difference is that for every

state q ∈ Q in M , there are |Σ| corresponding states in M ′ — one per symbol in the alphabet.

M ′ decides which symbol it will next emit before making the transition to the next state; M does

not.)

Next, create HMM M ′′ from M ′ by reducing the alphabet to a single symbol: {ς}. Let each

non-silent state (q, σ) in M ′′ emit symbol ς with probability one. Now create a labeling function

g : Q′ → Σ, defined as g((q, σ)) = σ.

Finally, solve the Most Probable Labeling problem for HMM M ′′, string ςn, and labeling

function g. The most probable labeling y∗ ∈ Σn of M ′′ is the most probable string x∗ of length

n generated by M . This completes the first reduction.

We will now reduce the Most Probable Labeling problem to the Most Probable Generated

String problem. This reduction requires the construction in the proof of Theorem 4.2.4, presented

below in Section 4.2.4. Let M be a HMM, x be a string, and g be a labeling function. Let the

posterior probability of M walking a path π, given a generated string x, be P (Π = π | X = x,M).

First, use the construction in the proof of Theorem 4.2.4 to create a HMM M ′ from M such

that it generates state paths from M with probability P (Π = π | X = x,M).

Next, from M ′, create a HMM M ′′ that emits label symbols g(q) instead of state names q.

Now solve the Most Probable Generated String problem for HMM M ′′. The most probable string

x∗ generated by M ′′ is the most probable labeling y∗ of state paths walked by M . This completes

the second reduction.
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Krogh asserts that “there is no exact algorithm for finding the most probable labeling” of

a HMM, and offers an algorithm that approximates the solution [43]. Since there is no exact

algorithm for finding the most probable labeling of a HMM, there cannot be an exact algorithm

for finding the most probable generated sequence of a HMM.

Consequently, HMMs are not suitable expert opinions for modeling protein secondary structure

when the goal of prediction is to maximize the chance of making a perfect prediction, unless an

approximation is acceptable.

Computing the probability of the structure of a single residue

To determine the probability P (Xi = σ | M), we first need to calculate P (Πi = q | M), for all

states q ∈ Q, since any state may potentially emit the symbol σ at position i in the generated

word. Thus, the first step is to use the algorithm described in Section 4.1.1 to compute P (Πi |M).

Then it remains to calculate

P (Xi = σ |M) =
∑
q∈Q

P (Πi = q |M) · eq(σ).

4.2.3 Operations on hidden Markov models

Product of hidden Markov models

LetM1 = (Q1,Σ,B1, E1, A1, E1) andM2 = (Q2,Σ,B2, E2, A2, E2) be two HMMs generating strings

with probability distributions P (X = x |M1) and P (X = x |M2). We are interested in creating a

third HMM, M∗ = (Q∗,Σ,B∗, E∗, A∗, E∗), such that it generates strings with a probability distri-

bution proportional to the product of the first two, i.e., the normalized product, or conjunction,

of P (X | M1) and P (X | M2). We will call a HMM that generates strings according to this

distribution a conjoined HMM.

As when we studied the products of Markov chains, it is helpful to keep in mind the idea of

two machines running in parallel, synchronously.

To model the simultaneous generation of the same sequence by both M1 and M2, a conjoined

HMM keeps track of the current state of both machines. If Q1 and Q2 are the state sets of M1 and
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M2, the state set of the conjoined HMM is set of all pairs (q1 ∈ Q1, q2 ∈ Q2), i.e. the Cartesian

product Q1×Q2. Since M1 and M2 are constrained to generate the same sequence, the start state

of the conjoined HMM is the pair (B1,B2) and the end state is the pair (E1, E2). Any states visited

in between the start and end state by the conjoined HMM are pairs of non-terminal, non-silent

states from Q1 and Q2.

Let (q1, q2) be such a state. When the conjoined HMM emits a symbol σ ∈ Σ in that state, it

models the simultaneous emission of σ by M1 in state q1 and M2 in state q2. The probability that

both M1 in state q1 and M2 in state q2 emit the same symbol σ ∈ Σ is simply the product of their

emission probabilities: e1
q1(σ)e

2
q2(σ). However, since both machines are constrained to generate

the same string, we condition the emission of a on the event that both machines simultaneously

emit any same symbol. Thus we write

e∗(q1,q2)(σ) =
e1
q1(σ)e

2
q2(σ)

d(q1, q2)
,

where d(q1, q2) =
∑
σ′∈Σ e1

q1(σ
′)e2
q2(σ

′), the probability that M1 in state q1 and M2 in state q2

emit the same symbol.

Definition 4.2.2. Consider the situation where M1 and M2 are executing synchronously, and

are currently in states q1 ∈ Q1 and q2 ∈ Q2, respectively. We ignore any emissions made by M1

or M2 prior to their current states. Then D(q1, q2) is the probability that M1 and M2 will both

generate the same suffix and will both reach their end states at the same time step, i.e., both will

emit the same symbol after every state transition until they both make transitions to their end

states.

Note that D(E1, E2) = 1, since in that case M1 and M2 will each generate Λ (the empty word)

with probability 1. For all other pairs, D(q1, q2) can be expressed recursively:

D(q1, q2) = d(q1, q2)
∑

r1∈Q1∪{B1}
r2∈Q2∪{B2}

a1
q1r1a

2
q2r2D(r1, r2),

where we extend the definition of d to include d(B1,B2) = 1. Then the D values form a system
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of |Q1| · |Q2| unknowns in as many linear equations in the general case, solvable by Gaussian

elimination. In the case where the state transition graphs of M1 and M2 are acyclic, the D(q1, q2)

values can be solved more efficiently in breadth-first-search order, beginning with (E1, E2) and

tracing backwards along the transition arcs.

Now we can formally define HMM conjunction.

Definition 4.2.3. Let M1 = (Q1,Σ,B1, E1, A1, E1) and M2 = (Q2,Σ,B2, E2, A2, E2) be two hid-

den Markov models. Then the conjoined HMM, M∗ = M1 ⊗M2 is defined as

M∗ = (Q∗,Σ,B∗, E∗, A∗, E∗),

where Q∗ = Q1 ×Q2, B∗ = (B1,B2), E∗ = (E1, E2), and the elements of A∗ and E∗ are

a∗(q1,q2)(r1,r2) =
a1
q1r1a

2
q2r2D(r1, r2)∑

(r′1,r
′
2)∈Q∗

a1
q1r′1

a2
q2r′2

D(r′1, r
′
2)

=



a1
B1r1

a2
B2r2

D(r1,r2)∑
x′ P1(x′)P2(x′)

when (q1, q2) = (B1,B2),

d(q1, q2)a1
q1r1a

2
q2r2

D(r1,r2)
D(q1,q2)

otherwise.

e∗(q1,q2)(b) =
e1
q1(b)e

2
q2(b)

d(q1, q2)
.

Theorem 4.2.2. Let M1 and M2 be hidden Markov models generating strings over Σ with prob-

ability distributions P1(x) = P (X = x | M1) and P2(x) = P (X = x | M2), respectively.

Let M∗ = M1 ⊗ M2 with probability distribution P∗(x) = P (X = x | M∗). Then P∗(x) ∝
P1(x) · P2(x) =

P1(x)P2(x)∑
x′∈Σ∗ P1(x′)·P2(x′)

.
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Proof. Let L = |x|.

P∗(x) =
∑
π

P∗(x, π)

=
∑

π∈{B∗}QL∗ {E∗}
a∗B∗π1

L∏
i=1

e∗πi
(xi)a∗πiπi+1

=
∑

ρ∈{B1}QL
1 {E1}

τ∈{B2}QL
2 {E2}

a1
B1ρ1

a2
B2τ1

D(ρi, τi)∑
x′ P1(x′)P2(x′)

L∏
i=1

e1
ρi
(xi)e2

τi(xi)
d(ρi, τi)

a1
ρiρi+1

a2
τiτi+1

d(ρi, τi)
D(ρi+1, τi+1)

D(ρi, τi)

=
∑

ρ∈{B1}QL
1 {E1}

τ∈{B2}QL
2 {E2}

P1(x, ρ)P2(x, τ)D(E1, E2)∑
x′ P1(x′)P2(x′)

=
P1(x)P2(x)∑
x′ P1(x′)P2(x′)

Theorem 4.2.3. Let p1(X) and p2(X) be probability distributions generated by two HMMs, M1

and M2, whose state sets have size m and n, respectively. Then the worst-case minimum size of

a HMM M∗ generating the probability distribution p∗(X) = p1(X)⊗ p2(X) is exactly mn states.

Proof. Let N be the worst-case minimum size of M∗. If we use the construction algorithm for

conjoined HMMs to create M∗, it will have exactly mn states; thus the N ≤ mn. We need to

show there exist cases where N = mn. The following is such a case.

Let m, n be relatively prime. Let M1 be a HMM with m states that generates exactly those

strings whose length is a multiple of m (see Figure 4.4).

Let M2 be a HMM with n states that generates exactly those strings whose length is a multiple

of n (see Figure 4.5).

Then M∗ is a HMM with mn states that generates exactly those strings whose length is a

multiple of mn (see Figure 4.6).

Further, M∗ has the fewest number of states of any HMM that generates p∗. This is true

because the shortest path from B to E in any HMM is the length of the shortest string that the

HMM can generate. Any HMM M ′ with fewer than mn states can generate a string with length
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B qm Eq2 · · ·q1

Figure 4.4: A HMM generating strings whose lengths are multiples of m.

B qn Eq2 · · ·q1

Figure 4.5: A HMM generating strings whose lengths are multiples of n.

· · ·

· · ·

...
...

· · ·

B

q2,2

q1,n

E

...

q2,1

q1,2q1,1

q2,n

qm−1,n

qm,nqm,n−1qm,2qm,1

Figure 4.6: A HMM generating strings whose lengths are multiples of mn.
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< mn; thus L(M ′) �= L(M∗).

Therefore there exist cases where N = mn, and so the worst-case minimum size of M∗ is

mn.

Exponentiation of a hidden Markov model

It is unknown whether HMMs are closed under exponentiation. We conjecture that for any HMM

M and exponent γ > 0, there exists an HMM M ′ with the same topology as M such that

P (X = x | M ′) = P (X = x | M) ↑ γ. In other words, we conjecture that the class of probability

distributions generated by HMMs is closed under positive, normalized exponentiation, and further,

that exponentiation of a HMM does not increase the state set size.

In absence of a method for computing the exponentiation of a hidden Markov model, HMMs

are not suitable for representing expert opinions which are conditionally dependent on other expert

opinions (represented as HMMs or otherwise).

Quotient of a hidden Markov model

It is unknown whether HMMs are closed under quotient.

In absence of a method for computing the quotient of a hidden Markov model, HMMs are not

suitable for representing the prior distribution P (X) (see Equation(3.8)). A Markov chain may

be used instead.

4.2.4 Posterior probabilities of hidden Markov models

Posterior decoding

During the execution of a hidden Markov model, it generates two sequences: the state path π,

generated by a Markov process, and the observed or emitted sequence x, based on the state path.

So the outcome of the execution of a hidden Markov model is a joint event, described by two

random variables, Π representing the state path and X representing the emitted sequence. The

probability distribution over both is the joint probability distribution p(Π = π,X = x). However,
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the state path is ordinarily kept hidden (hence the name hidden Markov model). Thus, ordinarily,

we speak only of the marginal probability distribution p(X = x), and call x the generated sequence.

However, when the observed sequence is known and we wish to obtain information about the

state path, we are dealing with the posterior distribution p(Π | X = x). Answering probabilistic

queries concerning the posterior distribution is called decoding in the speech recognition literature,

and is the central use of HMMs in computational biology [42].

When HMMs are used for posterior decoding, the states of the HMM are meaningful. In

speech recognition, the states represent phonemes of words; the symbols in the emitted sequence

represent the perceived sounds. The perceived sounds are decoded in order to determine their

meaning — the phonemes of the words the speaker intended to convey. Likewise, in the protein

secondary structure prediction experiments of Asai et al. [24], the states represent units of sec-

ondary structure; the symbols in the emitted sequence represent the amino acids of the protein.

The amino acid sequence is decoded in order to determine its meaning, in a sense — the secondary

structure into which the sequence folds.

Posterior decoding can take several different forms. The simplest form of posterior decoding

is determining the most likely state path walked by the HMM in order to generate x. A second

posterior decoding problem is that of determining the most likely state at a particular point πi in

the state path walked by the HMM in order to generate x.

A variation of these two decoding problems is when it is not the states themselves which are

important, but rather a label G(q) applied to states q of the HMM. For example, in the Asai

et al. experiments [24], the various states were labeled to indicate whether they represent helix,

sheet, turn or coil structures. A global labeling G(π) of a state path π = π1π2 . . . πn is the

concatenation of the labels of each of the states in the path: G(π) = G(π1)G(π2) · · ·G(πn). When

states are labeled, we are dealing with the posterior probability distribution over global labels of

state paths, p (G(Π) | x). The equivalent problem to that of determining the most likely state

path is the problem of determining the most likely global labeling of state paths.

Dynamic programming algorithms exist that solve most of these posterior decoding problems.

One exception is the Most Probable Labeling problem, which, as mentioned in Section 4.2.2, has



CHAPTER 4. USING MARKOV MODELS TO REPRESENT EXPERT OPINION 70

no exact solution. Most commonly used is the Viterbi algorithm, which computes the most likely

state path [42].

Obtaining expert opinions from posterior probabilities

In this research, we use HMMs strictly as representations of (prior) probability distributions, i.e.,

as representations of expert opinions. As such, we are not concerned with the hidden states of

HMMs, or with decoding the state paths walked by these machines. Our concern is only in the

probability distributions represented by the models.

However, it is interesting to note that such posterior decoding problems can be turned into

equivalent probability queries on another HMM. That is, for any HMM M with state set Q and a

given sequence x emitted from M , there exists a HMM M ′ with alphabet Q which generates the

state paths of M ′ as its emitted sequences. The decoding problem on M may then be rephrased

as an equivalent probability query on M ′.

Theorem 4.2.4. Let M be a hidden Markov model with state set Q. Let x be a string generated

by M , and let p(Π | x) be the posterior probability distribution of state paths walked by M to

generate x. Then there exists a HMM M ′ whose alphabet is Q and that generates emitted strings

π with probability p′(π) the same as the posterior distribution p(Π = π | x) of M .

Proof. To prove this theorem, we show how to construct the HMMM ′. LetM = (Q,Σ,B, E , A,E)

and n = |x|. Create a HMM Mx with deterministic state transitions and emissions that generates

the string x with probability one, i.e., a chain with n states whose ith state always emits xi:

exi (σ) =



1 for σ = xi

0 otherwise.

Now create a HMMM∗ by conjoiningM andMx: M∗ = M⊗Mx, according to Definition 4.2.3.

(Label the n states of Mx with the integers 1, 2, . . . , n.) The result is a HMM with |Q| · n non-

terminal states. States of M∗ are of the form (qi, j) ∈ Q×[1..n]. Because of the deterministic state

transitions of Mx, the state set of M∗ can be partitioned into n subsets, where the jth subset is of
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...

· · ·

...
...

· · ·

· · ·

(q1, 1)

(q2, n)

(qk, n)

(q1, n)

(q2, 2)

(qk, 2)

(q1, 2)

(q2, 1)

(qk, 1)

B E

Figure 4.7: A HMM resulting from the conjunction of a HMM (with states q1, q2, . . . , qk) with a
HMM with chain topology (with states 1, 2, . . . , n). Note how the transitions divide the state set
into n subsets.

the form (qi, j). All transitions from the begin state lead to the first subset. All transitions from

states in the jth subset lead to the j + 1st subset. All transitions from states in the nth subset

lead to the end state. Because the deterministic emissions of Mx, all states in the jth subset emit

the symbol xj with probability one. The topology of M∗ is illustrated in Figure 4.7.

Like Mx, M∗ can only generate one word, x. Like M , however, M∗ can walk any one of many

possible state paths while generating x. A state path qi1qi2 . . . qin walked by M while generating

x corresponds to the state path (qi1 , 1)(qi2 , 2) . . . (qin , n) walked by M∗. Further, the posterior

probabilities of walking corresponding paths in M and M∗ are the same, i.e., p(π | x) = p∗(π∗ | x),
where p∗(π∗ | x) is the posterior probability that M∗ walks path π∗, given that it generated

sequence x. However, since p∗(x) = 1, the posterior probability of M∗ walking path π∗ is the

same as the prior probability of walking π∗: p∗(π∗ | x) = p∗(Π∗ = π∗).

Now create a HMM M ′ by modifying M∗ so that instead of emitting xj in state (qi, j), it emits
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the state qi of M that would have emitted xj . Formally, M ′ = (Q′,Σ′,B′, E ′, A′, E′), where

Q′ = Q× [1..n] (same as M∗) (4.3)

Σ′ = Q (i.e., the symbols emitted by M ′ are the states of M) (4.4)

A′ = A∗, (same as M∗) (4.5)

e′(qi,j)(q) =



1 if q = qi

0 otherwise.
(4.6)

Now M ′ generates the possible state paths of M as its observed sequences. Further, M ′ emits

sequences π ∈ Q∗ with probability p′(X ′ = π) equal to p(Π = π | X = x), the posterior probability

distribution of M .

4.3 Future Work

The question of the closure of hidden Markov models under normalized quotient and exponen-

tiation operations is unsolved. Future work should resolve these closure properties, and provide

construction algorithms for those operations which are closed.

Another direction for future work is the study of more complex probabilistic models as repre-

sentations of expert opinion. There exist classes of probabilistic models which mirror the Chomsky

hierarchy of formal language classes. Hidden Markov models correspond to the class of regular

languages. The next step up in the hierarchy is the set of stochastic context-free grammars

(SCFGs), corresponding to Chomsky’s context-free languages. However, it is immediately appar-

ent that SCFGs are not suitable representations of expert opinion:

Theorem 4.3.1. The class of stochastic context-free grammars is not closed under normalized

product.

Proof. The class of context-free languages is not closed under intersection. This is a well-known

result; the classic counterexample is the pair of context-free languages L1 = {aibicj | i > 0, j > 0}
and L2 = {aibjcj | i > 0, j > 0}. The normalized product of two probability distributions is the
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probabilistic equivalent of the intersection of two languages: L(p1 ⊗ p2) = L(p1) ∩ L(p2). Thus

the SCFGs cannot be closed under normalized product.



Bibliography

[1] Carl Branden and John Tooze. Introduction to Protein Structure. Garland Publishing, New

York, 1991.

[2] Christian B. Anfinsen. Principles that govern the folding of protein chains. Journal of

Molecular Biology, 181(4096):223–230, 1973.

[3] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: Pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers, 22:2577–2637, 1983.

[4] Robert D. Smith. Correlations between Bound N-Alkyl Isocyanide Orientations and Pathways

for Ligand Binding in Recombinant Myoglobins. PhD thesis, Rice University, 1999. Source

molecule for my example of an alpha helix. PDB ID 101M.

[5] Z.F. Kanyo, K.M. Pan, R.A. Williamson, D.R. Burton, S.B. Prusiner, R.J. Fletterick, and

F.E. Cohen. Antibody binding defines a structure for an epitope that participates in the

prpc→prpsc conformational change. Journal of Molecular Biology, 293(4):855–863, 1999.

Source molecule for my example of an antiparallel beta sheet. PDB ID 1CR9.

[6] K.F. Ahmad, C.K. Engel, and G.G. Prive. Crystal structure of the btb domain from plzf.

Proceedings of the National Academy of Sciences of the United States of America, 95:12123–,

1998.

[7] Hue Sun Chan and Ken A. Dill. The protein folding problem. Physics Today, pages 24–32,

February 1993.

74



BIBLIOGRAPHY 75

[8] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,

and P.E. Bourne. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

[9] Daniel Fischer and David Eisenberg. Protein fold recognition using sequence-derived predic-

tions. Protein Science, 5(5):947–955, May 1996.

[10] Cheng Che Chen, Jaswinder Pal Singh, and Russ B. Altman. Using imperfect secondary

structure predictions to improve molecular structure computations. Bioinformatics, 15(1):53–

65, 1999.
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List of Notation

[a = b] One if a = b, zero otherwise.

Λ The empty word.

S The set of all possible amino acid sequences.

ΣAA The alphabet of twenty amino acids.

ΣSS The alphabet of protein secondary structure classes {H,E,C}.

Σ An alphabet.

Σ∗ The Kleene closure of Σ,
⋃∞
i=0 Σ

i, i.e., the set of all words of length zero or greater

made from symbols in Σ.

σ A symbol in the alphabet Σ.

X The set of all possible secondary structures of a protein. Equivalent to Σ∗
SS .

Xn The set of all possible secondary structures of a length-n protein. Equivalent to ΣnSS .

x A sequence representing an assignment of secondary structure to a protein; an ele-

ment of X = Σ∗
SS .

xi The ith element of x, representing the secondary structure of the ith residue of a

protein; an element of Σ.

p, p′, pi Probability distributions over the set of protein secondary structure assignments, Σ∗.
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p(X = x), p(x) The probability that the target protein has secondary structure x.

X A random variable representing the actual secondary structure of a protein.

A The transition probability matrix of a Markov chain or hidden Markov model. Ele-

ments of A are denoted aqr.

aqr An element in the transition probability matrix of a Markov chain or hidden Markov

model. Represents the probability of making a transition from state q ∈ Q to state

r ∈ Q.

B The begin state of a Markov chain or hidden Markov model.

E The emissions probability table of a hidden Markov model. Elements of E are

denoted eq(σ).

eq(σ) An element in the emissions probability table E of a hidden Markov model. Repre-

sents the probability of emitting symbol σ while in state q.

E The end state of a Markov chain or hidden Markov model.

Π A random variable representing the state path walked by a Markov chain or hidden

Markov model.

Πi A random variable representing the ith state in a state path walked by a Markov

chain or hidden Markov model.

π A particular state path of a Markov chain or hidden Markov model; an element of

{B}Q∗{E}.

πi The ith state of a state path walked by a Markov chain or hidden Markov model; an

element of Q.

Q The set of states of a Markov chain or hidden Markov model, excluding the begin

and end states.
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Q∗ The Kleene closure of Q,
⋃∞
i=0 Q

i, i.e., the set of all non-terminal state paths of length

zero or greater that a Markov chain or hidden Markov model can walk between B
and E .

q, r An element of Q; a state in a Markov chain or hidden Markov model.



Glossary

alphabet A set of symbols used to construct words (strings, sequences).

backbone The chain of N–Cα–C′ atoms and the covalent bonds that join them in a protein.

conformation Three-dimensional structure.

conjoined A generative model created from two or more other models, such that the proba-

bility distribution represented by the first model is the normalized product of the

probability distributions of the others.

decoding The process of inferring, from the generated string, the hidden state path that a

generative model walked in order to generate that string.

emission A string generated by a generative model, or a single symbol from that string.

execution The process by which a generative model generates a string. A single execution

generates a single string.

expert A representation of incomplete knowledge about the folding function. A function

that maps protein amino acid sequences to probability distributions over secondary

structure.

expert opinion A probability distribution over secondary structure, representing an expert’s

incomplete knowledge about the structure of a specific protein.
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generative model A representation of a probability distribution as an abstract, stochastic ma-

chine.

native environment The environment in which a protein exists, functions, and adopts its native

conformation. Several variables define a protein’s native environment: solvent (e.g.,

water), temperature, pH, salinity, etc.

native fold The preferred tertiary structure of a protein molecule in a particular solvent, gen-

erally considered to be the conformation minimizing the free energy of the molecule

in the solvent.

observed string A string generated by a generative model.

protein-coding A gene that encodes the primary structure of a protein.

Protein Folding Problem The problem of determining the tertiary structure of a protein molecule

given only its amino acid sequence.

Ramachandran angles The pair of angles, denoted (φ, ψ), that define the backbone conformation

of a single amino acid residue. φ measures the angle of rotation of the N–Cα bond;

ψ measures the angle of rotation of the Cα–C′ bond.

rational expert A calibrated expert whose knowledge of the folding function is based on a par-

tition of the sequence space.

secondary structure The classification of the local conformation of a protein molecule, usually

into one of three groups: α helix, β strand, coil.

segment A maximal series of amino acid residues sharing the same secondary structure.

silent state A state in a hidden Markov model that does not emit symbols.

state path The sequence of states walked by a stochastic finite-state machine such as a Markov

chain or a hidden Markov model.

tertiary structure The three-dimensional conformation of a protein molecule.
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threading A method of solving the Protein Folding Problem by searching among a set of solved

protein structures for the structure which best matches the target sequence.


