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Abstract

Novel theoretical formulations and efficient simulation methods for polarization-mode

dispersion (PMD) and polarization-dependent loss (PDL) that are directly applicable to

optical network design are developed. In particular, a formalism based upon the Magnus

expansion is advanced for the determination of the frequency evolution of the Mueller ma-

trix in terms of increasing orders of PMD and PDL. Several previous models of polarization

evolution are shown to be specializations of this more general formalism.

A least-squares algorithm that extracts PMD and PDL coefficients from repeated mea-

surements of the output Stokes vector of an optical system for a random set of input

polarization states is introduced and subsequently applied to the rapid experimental de-

termination of the probability density of the differential group delay of a fiber-squeezer

based PMD emulator. The applicability of Clifford algebra and Padé -approximant tech-

niques to the efficient simulation of the wavelength-dependence of PMD and PDL is also

discussed.
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Chapter 1

Introduction

An introduction to birefringence in single mode optical fiber is presented in Section 1.1.1.

Section 1.1.2 introduces the polarization mode dispersion (PMD) vector and its relation to

the principal states of polarization. This is followed by a review of polarization dependent

loss and the complex principal state vector.

1.1 Polarization Mode Dispersion

1.1.1 Birefringence in optical fibers

The ideal isotropic optical properties of single mode fiber are disturbed by random manu-

facturing defects and mechanical stresses applied along the length of the fiber core. These

effects establish preferential optical axes in the fiber, breaking the degeneracy and induc-

ing birefringence between the two polarized states of the fundamental fiber mode. Incident

polarized light resolved along each optical axis experiences modified waveguiding charac-

teristics, leading to a relative difference in propagation delay, i.e. a differential group delay

(DGD), between polarization modes [3, 18, 41, 45]. Though normally much smaller than

1
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chromatic dispersion (CD) effects, this polarization mode dispersion (PMD) effect can be-

come a major link-design concern in CD compensated systems operating at bit rates of 10

Gb/s and higher [3].

There are two origins of birefringence in optical fiber: variations of the fiber from

an ideal cylindrical geometry, and the presence of residual mechanical stress or strain in

the fiber core [3, 18, 63]. Geometric imperfections of the fiber are well approximated by

first-order perturbation techniques in the limit of weak core ellipticity [63,93], with prefer-

ential optical axes coincident with the major and minor axes of the elliptical cross-section.

Stress-induced birefringence, on the other hand, yields a linear increase in the dielectric

permittivity, with optical axes aligned with the principal directions of the mechanical per-

turbation [29, 99, 105, 106]. In each case, the two preferential optical axes denoted the

fast and slow transmission axes, with associated propagation constants βfast and βslow, are

distinguished by their respective transmission delays.

Variations in the core geometry, ~βc, transverse fiber stress, ~βs, due to thermal expansion

gradients or applied external pressure, and fiber twist, ~βt, each contribute linearly to the

total local birefringence, ~β, of the fiber [29, 82, 105, 106]. Deviations of the core from an

ideal cylindrical cross-section induce a birefringence with magnitude βc = |~βc| related to

the core ellipticity, e [29, 63,63,106],

βc ≈ 0.13e2

b
(2∆)3/2 (1.1)

independent of the optical frequency, ω, over the frequency range of normal fiber operation.

Here, as in Ref. [29], e =
√

1− b2/a2 with b and a the lengths of the major and minor axes,

respectively, ∆ the relative refractive index difference between core and cladding, while β̂c

aligns with the Stokes space representation of the minor axis. Transverse fiber stress instead

generates birefringence varying linearly with both the magnitude of the differential core

stress, σ, and optical frequency [29,105],

βs = n̄3|ρ44|ω
c

σ

Y
(1 +N), (1.2)
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for speed of light, c, with the orientation, β̂s, determined by the direction of maximum

compressive force. Material properties of silica glass enter Eq. (1.2) through Young’s

modulus, Y , Poisson’s ratio, N , the mean refractive index of core and cladding, n̄, and

one component of the elastooptic strain tensor, ρ44 [29]. Finally, a mechanical twist of the

fiber core imparts

βt ≈ −n̄2|ρ44|T, (1.3)

approximately independent of the optical frequency [29, 82, 106]. The orientation of ~βt is

specified by the product of the Poincaré sphere representation of left-hand circular polar-

ization, k̂, and the twist rate T , in units of rad/m, respectively, which in the case of the

latter, takes on positive and negative values for right- and left-oriented twists of the fiber.

Each of the ~βc, ~βs and ~βt contributions sum to yield the total local birefringence,

~β = ~βc + ~βs + ~βt, (1.4)

of the optical fiber.

1.1.2 The PMD vector

In this section, we derive a differential relationship between the Jones matrix, T(ω), and

the PMD of an optical system by considering the frequency evolution of the output electric

field Jones vector, |t(ω)〉 = e−iφ0(ω)T(ω)|s〉, for which the input, |s〉, is independent of

ω [45,59]. The group delay common to both polarization modes follows in this formulation

from the frequency dependence of the phase, φ0(ω), of the fiber transfer function [30],

though any overall attenuation and polarization dependent losses are neglected such that

T(ω) is unitary and takes the general form

T(ω) = exp

[
− i

2
ψ(ω) (n̂(ω) · ~σ)

]

= cos

(
ψ

2

)
σ0 − i sin

(
ψ

2

)
n̂ · ~σ (1.5)
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for ψ(ω), n̂(ω) a real scalar and unit vector, respectively [45]. A direct calculation estab-

lishes the central result of this section,

dT

dω
T−1 = − i

2
~Ω(ω) · ~σ, (1.6)

where

~Ω(ω) ≡ dψ

dω
n̂+ sin(ψ)

dn̂

dω
+ [1− cos(ψ)] n̂× dn̂

dω
(1.7)

is termed the PMD vector of the optical system [17,45,79].

That ~Ω characterizes the system’s polarization dependent delay is evident through a

further analysis of d|t〉/dω. Applying Eq. (1.6), we find for τ̄ ≡ dφ0/dω the common

propagation delay

d|t〉
dω

=

(
−idφ0

dω
σ0 +

dT

dω
T−1

)
|t〉

= −i
(
τ̄σ0 +

1

2
~Ω(ω) · ~σ

)
|t〉. (1.8)

Eq. (1.8) immediately implies the existence of two principal states of polarization (PSPs),

|p±〉, the Jones space eigenvectors of ~Ω · ~σ with corresponding eigenvalues ±|~Ω|, for which

d|p±〉
dω

= −i
[
τ̄ ± |~Ω|

2

]
|p±〉 (1.9)

Clearly the differential propagation time, τ , between incident polarized light coupled to

the |p±〉 Jones space PSPs is identical to |~Ω| [45]. Further, the Stokes space vector p̂± ≡
〈p±|~σ|p±〉, as demonstrated in Appendix A.1, satisfies p̂± = ±~Ω/|~Ω|; that is, the Stokes

space PSPs are anti-parallel and in the absence of PDL coincide with the direction of ~Ω.

We conclude

~Ω = τ p̂, (1.10)

where by convention p̂ ≡ p̂+ is the slow optical transmission axis of the fiber.

Expressed in terms of the 3×3 rotation matrix, R(ω), homomorphic to T(ω), Eq. (1.6)

has the equivalent Stokes space representation, c.f. Chapter 2,

dR

dω
R−1 = ~Ω(ω)×, (1.11)
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such that ~Ω effects an infinitesimal rotation of the output polarization Stokes vector, ~t ≡
〈t|~σ|t〉, according to d~t/dω = (dR/dω)R−1~t = ~Ω × ~t. Consequently, ~t precesses with

increasing optical frequency about p̂ at a rate determined by the differential group delay, τ ,

a property that is often employed in the experimental determination of the PMD vector [21,

32,47,52,77].

1.1.3 Longitudinal evolution of the PMD vector

The longitudinal dependence of the birefringence induces a stochastic evolution of the

PMD vector along the fiber length. We analyze this variation of ~Ω first under a finite

segment model of fiber birefringence and subsequently in the continuum limit. This first

approach leads to the concatenation rule for the addition of PMD vectors of bulk optical

devices [45]. The second method instead generates a differential equation relating the

longitudinal evolution of the PMD vector to the underlying fiber birefringence [37,80]. In

each case, the probability density functions of the DGD are discussed.

Over a length of fiber small with respect to the fiber’s decorrelation length, Lc, [37,66,

109] any perturbations of the core giving rise to localized birefringence can be considered

to act uniformly over the short segment [29]. In this limit, the DGD, τ , between the fast

and slow transmission axes

τ =
L

c

d

dk
(βfast − βslow) = L

d|~β|
dω

(1.12)

for wavenumber, k, increases linearly with segment length, L [37]. However, practical

optical transmission systems are much larger than the 1−10m decorrelation lengths typical

of standard single mode fiber and random fluctuations of the birefringence along the fiber

length must be considered [3]. Perhaps the most convenient model of these stochastic

variations involves a concatenation of Nseg randomly oriented birefringent segments, each

with L ¿ Lc, where coupling between polarization modes occurs only at the Nseg − 1

discrete segment junctions. In terms of the DGD, τ(m), and Stokes space slow axis, p̂(m), of
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the mth short segment, the fiber’s frequency domain Jones matrix, T(ω), becomes in this

model [22,26,66]

T(ω) ≡ T(Nseg)(ω) . . .T(2)(ω)T(1)(ω)

=

Nseg∏
m=1

T(m)(ω) (1.13)

where

T(m)(ω) = exp

[
− i

2
ωτ(m)(p̂(m) · ~σ)

]
(1.14)

and ~Ω(m) = τ(m)p̂(m) is the segment’s frequency-independent PMD vector.

The Jones matrix, T, of two concatenated fiber segments, or in general two birefringent

optical devices, with corresponding Jones matrices T(1), T(2), and PMD vectors ~Ω(1), ~Ω(2)

is according to Eq. (1.13) the product T = T(2)T(1). Associated with T is the PMD vector,

~Ω, related to ~Ω(1) and ~Ω(2) through an application of Eq. (1.6),

~Ω · ~σ ≡ 2i
dT

dω
T−1 = 2i

dT(2)

dω
T−1

(2) + 2iT(2)

[
dT(1)

dω
T−1

(1)

]
T−1

(2)

= ~Ω(2) · ~σ + T(2)

[
~Ω(1) · ~σ

]
T−1

(2)

= ~Ω(2) · ~σ +
[
R(2)

~Ω(1)

]
· ~σ

=
[
~Ω(2) + R(2)

~Ω(1)

]
· ~σ (1.15)

Here, we have employed Eq. (B.53) where R(2) is the 3×3 Stokes rotation matrix associated

with T(2), c.f. Appendix B.4. The PMD concatenation rule [45,59] in more general notation

follows immediately,

~Ωoutput = ~Ωsegment + Rsegment
~Ωinput (1.16)

indicating that the output PMD vector of a fiber segment, ~Ωoutput, is the sum of the

segment’s intrinsic PMD vector, ~Ωsegment, and the input PMD vector, ~Ωinput, rotated by

the segment’s Stokes matrix, Rsegment.

Applying Eq. (1.16) recursively to the birefringence model of Eq. (1.13), the fiber

exhibits the maximum possible delay τmax = τ(1) + τ(2) . . . + τ(Nseg) for co-parallel p̂(m),
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Figure 1.1: Illustration of p(τ |Nseg), Eq. (1.17) (solid line), and pmaxwell(τ), Eq. (1.19)

(dotted line), calculated for a concatenation of Nseg = 10 birefringent segments with τseg =

1 ps, and τavg equal to the mean of the calculated p(τ |Nseg) distribution, respectively. Both

curves are displayed as a function of the DGD, τ , normalized by Nsegτseg.

otherwise random fluctuations in the orientation of each fiber segment due to mechanical

perturbations cause ~Ωoutput to execute a random walk in Stokes space. If in this model all

segment PMD vectors are of equal length, τ(m) = τseg, with p̂(m) uniformly distributed on

the Poincaré sphere, the probability density of the fiber’s DGD, τ ≡ |~Ωoutput|, after Nseg

segments has the exact analytic form [54]

p(τ |Nseg) =
τ

2τ 2
seg(Nseg − 2)!

K∑
m=0

(−1)m

(
Nseg

m

)
(NsegRτ −m)(Nseg−2) (1.17)

with

Rτ ≡ 1

2

(
1− τ

τsegNseg

)
(1.18)

and K = floor(NsegRτ ). It follows [54] that the mean DGD of the concatenation, τavg ∝√
τ 2
(1) + τ 2

(2) + . . . τ 2
(Nseg) ∼ τseg

√
Nseg, displays a square-root dependence on the fiber length

in contradistinction to the linearity of Eq. (1.12) [37,39].
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We observe that Eq. (1.17) differs materially from the Maxwellian distribution,

pmaxwell(τ) =
32τ 2

π2τ 3
avg

exp

(
− 4τ 2

πτ 2
avg

)
, (1.19)

specified here in terms of the mean DGD, τavg, usually assumed for τ . In particular, the

probability of τ exceeding Nsegτseg, i.e. P (τ > Nsegτseg), in Eq. (1.17) is zero (though

Eq. (1.17) and Eq. (1.19) coincide as Nseg →∞ [54]). This point is exemplified in Fig. 1.1,

which displays p(τ |Nseg) (solid line) calculated for a concatenation of Nseg = 10 birefringent

segments each possessing τseg = 1 ps. The dotted line of this figure represents pmaxwell(τ)

with τavg equal to the mean of the calculated p(τ |Nseg) distribution. The behaviour in the

vicinity of Nsegτseg of each curve is apparent from the comparison against the normalized

τ/(Nsegτseg) parameter.

In the continuum limit, the longitudinal evolution of the PMD vector and by extension

the DGD, τ , is determined by

∂~Ω

∂z
=
∂~β

∂ω
+ ~β × ~Ω (1.20)

directly in terms of the underlying birefringence of the optical fiber. Viewed as a stochastic

differential equation for ~Ω, Eq. (1.20) facilitates the statistical analysis of PMD dynamics

and in particular rigorously establishes in the long fiber limit the Maxwellian probability

density, Eq. (1.19), for τ [35–37, 39, 78, 80]. Eq. (1.20) is perhaps most easily derived by

analyzing the evolution of the polarization Stokes vector ~t(ω, z) of the propagating electric

field. At each distance, z, ~t(ω, z) precesses about ~β(ω, z) at a rate equal to the magnitude

of the birefringence [45,53,80], such that

∂~t

∂z
= ~β(ω, z)× ~t (1.21)

Differentiating Eq. (1.21) with respect to ω and (∂~t/∂ω) = ~Ω(ω, z)× ~t, c.f. Eq. 1.11, with

respect to z yields

∂2~t

∂z∂ω
=

∂~β

∂ω
× ~t+ ~β × ∂~t

∂ω
=
∂~Ω

∂z
× ~t+ ~Ω× ∂~t

∂z
(1.22)
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or after simplification

∂~Ω

∂z
× ~t =

[
∂~β

∂ω
+ ~β × ~Ω

]
× ~t (1.23)

That Eq. (1.23) must hold for all polarizations, ~t, implies Eq. (1.20). Alternatively,

Eq. (1.20) can be derived from the PMD concatenation rule, Eq. (1.16), in the limit of

infinitesimal segment length, i.e. L→ 0 [45].

1.2 Polarization Dependent Loss

Optical communication systems often include components, notably fiber amplifiers, opti-

cal couplers and isolators, that may, unlike standard single mode fiber, possess significant

polarization dependent loss (PDL). Typically, these components are interspersed amongst

birefringent optical devices in a network, generating an interaction between PMD and PDL

that further complicates the frequency evolution of the state of polarization [40, 50, 51].

Accordingly, we introduce in this section a model of discretized PDL and discuss the mod-

ifications necessary to the formalism of Section 1.1 in light of PMD/PDL coupling. Two

important results follow from this analysis, 1) the PMD vector, Eq. (1.6), in the presence

of PDL is complex valued and 2) in general, the Jones space PSPs are not orthogonal [50].

In this latter case, an expression for the angle of PSP separation is presented in terms of

the real and imaginary components of the complex PMD vector.

Polarized light incident to an optical device with PDL experiences different frequency

independent attenuations, α1 and α2, along two orthogonal Jones space axes [40], an ob-

servation that immediately leads to the form of the component’s Jones matrix

L = U

[
e−α1 0

0 e−α2

]
U−1 = e−ᾱU

[
e−α/2 0

0 eα/2

]
U† (1.24)

Above, ᾱ = (α1 + α2)/2 and α = (α1 − α2) denote the mean and differential attenu-

ation between polarization modes, respectively, while the unitary U effects a similarity
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transformation prescribing the arbitrary orientation of the principal attenuation axes. The

equivalent exponential representation [50]

L = e−ᾱ exp

[
1

2
α(r̂ · ~σ)

]

= e−ᾱ
[
cosh

(α
2

)
σ0 + sinh

(α
2

)
(r̂ · ~σ)

]

≡ e−ᾱTpdl (1.25)

is often of more practical concern, however, as the most and least attenuated axes enter

explicitly in this formulation through the Stokes space unit vectors r̂ and −r̂, respectively.

In view of Eq. (1.25), the concatenated segment model, Eq. (1.13), becomes

T(ω) =

Nseg∏
m=1

Tpdl
(m) Tpmd

(m) (ω), (1.26)

Tpdl
(m) = exp

[
1

2
α(m)(r̂(m) · ~σ)

]

Tpmd
(m) (ω) = exp

[
− i

2
ωτ(m)(p̂(m) · ~σ)

]

for the differential polarization behaviour of optical systems with PMD and PDL.

The total PDL, αtot(ω), after Nseg concatenated segments is the ratio of the maximum

to minimum transmitted power over all input polarization states, defined in terms of the

eigenvalues, λi(ω), i = 1, 2, of T†(ω)T(ω) as [64]

αtot(ω) = 10

∣∣∣∣log10

[
λ1(ω)

λ2(ω)

]∣∣∣∣ (1.27)

1.2.1 PDL statistics

The optical system of Eq. (1.26) exhibits a maximum differential attenuation α(1)+α(2) . . .+

α(Nseg) otherwise randomized coupling between polarization modes causes αtot(ω) to explore

a characteristic probability density. As previous authors [64, 72] have shown, this prob-

ability density must in the limit Nseg → ∞ approach the Maxwellian distribution. We
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Figure 1.2: The pdf of the total PDL, αtot(ω0), for a concatenation of Nseg = 10, 25, 50

and 75 birefringent and lossy segments, Eq. (1.26), each possessing αdB = 0.32 dB. The

numerical pdf estimates, displayed as dashed lines, employed 3 multicanonical iterations

of 5× 105 samples, while the superimposed solid lines result from Eq. (1.28).



12

therefore anticipate that if in Eq. (1.26) α(m) = αseg, m = 1, . . . , Nseg, and r̂(m) is uni-

formly distributed on the Poincaré sphere, the probability density of the total differential

attenuation, αtot(ω), after Nseg segments is given by, c.f. Eq. (1.17),

p(αtot|Nseg) =
αtot

2α2
dB(Nseg − 2)!

K∑
m=0

(−1)m

(
Nseg

m

)
(NsegRα −m)(Nseg−2) (1.28)

with αdB ≡ αseg · 20/ ln 10,

Rα ≡ 1

2

(
1− αtot

αdBNseg

)
(1.29)

and K = floor(NsegRα). This result is confirmed in Fig. 1.2 which illustrates the pdf of

αtot(ω0) for a concatenation of Nseg = 10, 25, 50 and 75 birefringent and lossy segments

each possessing αdB = 0.32 dB, for τavg = 25 ps and ω0 the optical carrier. The dashed

lines of this figure correspond to numerically determined estimates of the pdf, in which our

multicanonical simulation [112], c.f. Chapter 7, employed 3 iterations of 5× 105 statistical

realizations of Eq. (1.26). The solid lines of Fig. 1.2 instead result from Eq. (1.28) as

applied to each value of Nseg. Clearly, the agreement with numerical simulation supports

the validity of the PDL pdf estimate, Eq. (1.28).

1.2.2 Principal states of polarization

We next analyze the frequency evolution of the output Stokes vector in the presence of

PMD and PDL, |t(ω)〉 = Ae−α0(ω)−iφ0(ω)T(ω)|s〉, for

A ≡ exp

[
−

Nseg∑
m=1

ᾱ(m)

]
, (1.30)

incorporating into the description a possibly frequency dependent attenuation, α0(ω), and

phase, φ0(ω), common to both polarization modes. The polarization sensitivity of

d|t〉
dω

=

[
−

(
dα0

dω
+ i

dφ0

dω

)
σ0 +

dT

dω
T−1

]
|t〉 (1.31)
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enters through (dT/dω)T−1, where unlike Section 1.1.2, T is non-unitary with det(T) = 1,

c.f. Eq. (1.26). Accordingly, we will demonstrate

dT

dω
T−1 = − i

2
~W · ~σ (1.32)

for some complex vector ~W by differentiating the trivial identity TT−1 = σ0. Denoting

T adj = T−1 the adjoint of T, d(TT adj)/dω = 0 and

dT

dω
T adj = −T

dT adj

dω
= −

[
dT

dω
T adj

] adj

(1.33)

In terms of the complex scalar and vector, v0 and ~v, respectively, the decompositions

(dT/dω)T adj = v0σ0 + ~v · ~σ, c.f. Eq. B.5, and [(dT/dω)T adj] adj = v0σ0 − ~v · ~σ when

combined with Eq. (1.33) immediately imply v0 ≡ 0. Consequently, (dT/dω)T adj = ~v · ~σ
and ~W ≡ 2i~v. In analogy with Section 1.1.2, ~W ≡ ~Ω + i~Λ, termed the complex principal

state vector, for real ~Ω and ~Λ characterizes the polarization frequency evolution of systems

with PMD and PDL [40,50,51].

The two Jones space PSPs, |p±〉, are in the presence of PDL eigenvectors of ~W · ~σ,

with corresponding complex eigenvalues ±χ = ±
√
~W · ~W ≡ ±(τ + iη). Here, the real and

imaginary components, τ and η, of χ specify in turn an effective DGD and a differential

attenuation slope (DAS) between the two fundamental polarization modes [40, 50, 51]. In

Stokes space, the PSPs

p̂± ≡ 〈p±|~σ|p±〉
= ± K

(
τ ~Ω + η~Λ± ~Ω× ~Λ

)
(1.34)

for K ≡ 2/(τ 2 + η2 + |~Ω|2 + |~Λ|2), see Appendix A.1, are not anti-parallel with

cos θpsp = p̂+ · p̂−
= K2

(
|~Ω× ~Λ|2 − |τ ~Ω + η~Λ|2

)
(1.35)

specifying the PSP angular separation.



14

80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

θ
 psp

 [deg.]

pd
f

 

 

Figure 1.3: The pdf of the angle, θpsp, between Stokes space PSPs, Eq. (1.35), for 1 dB

(solid line), 2 dB (dashed line) and 3 dB (dashed-dotted line) of mean PDL, αavg, in a

concatenation of 100 birefringent and lossy segments with mean DGD τavg = 25 ps.

Over 106 statistical realizations of Nseg = 100 concatenated segments, i.e.

T(ω) =
100∏
m=1

Tpdl
(m) Tpmd

(m) (ω) (1.36)

with r̂(m) and p̂(m) uniformly distributed on the Poincaré sphere, θpsp exhibits the charac-

teristic probability density illustrated in Fig. 1.3 for 1 dB (solid line), 2 dB (dashed line)

and 3 dB (dashed-dotted line) of mean PDL, αavg = 〈αtot(ω0)〉, respectively. The decrease

in the mean angle of PSP separation, 〈θpsp〉, for increasing values of αavg clearly evident in

Fig. 1.3 is examined further in Fig. 1.4a, which displays as ◦ markers 〈θpsp〉 as a function

of αavg, and in Fig. 1.4b, which instead shows the variation of the standard deviation of

PSP separation, σpsp. In both cases, the solid lines indicate optimal fits to linear functions.

Although deviations from linearity are apparent in Fig. 1.4b for large αavg, to a good de-

gree of precision we observe that 〈θpsp〉 decreases at the constant rate −7.5 deg/dB for

0 ≤ αavg ≤ 4 dB, with σpsp increasing by approximately 4.5 deg/dB.
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Figure 1.4: The variation of (a) the mean, 〈θpsp〉, and (b) the standard deviation, σpsp, of

θpsp, Eq. (1.35), as a function of the mean PDL, αavg, in a concatenation of 100 birefringent

and lossy segments displayed here with ◦ markers for τavg = 25 ps. Optimal fits to linear

functions are shown as solid lines.

1.3 Conclusions

We have discussed the physical origins of polarization mode dispersion in optical fibers and

have introduced the mathematical models of PMD and PDL necessary for the development

of later chapters. In particular, we have demonstrated that the Jones space principal states

of polarization are non-orthogonal in the presence of PDL [50]. Indeed, over a range of

mean PDL values relevant to optical network design the mean and standard deviation

of the angle of PSP separation were shown to vary linearly with the system’s average

differential attenuation. In subsequent chapters we will develop a formalism based upon

the Magnus expansion for analyzing the frequency dependence of the Jones or Mueller

matrix in the presence of PMD and PDL. This formalism is relevant to, for example,

numerical simulations of PMD and PDL induced pulse distortion, the design of joint PMD

and PDL compensation devices and further leads to novel procedures for determining the

PMD and PDL from measurements of the frequency dependent output Stokes vector.
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The outline of this work is as follows. In Chapter 2, we formulate a Mueller matrix

description of PMD and PDL in terms of the Magnus expansion. The accuracy of this

model is established in Chapter 3 to fourth order in optical frequency through experi-

ment and numerical simulation. Chapter 4 introduces Clifford algebraic techniques for the

geometrical analysis of polarization transformations and further establishes a connection

between PMD and PDL and the Lorentz transformation of the input state of polarization.

A least-squares procedure based upon these Lorentz group properties for estimating the

Mueller matrix of a fiber from repeated measurements of the output Stokes vector at ad-

jacent optical frequencies is developed in Chapter 5 and is later applied to the high-speed

measurement of PMD in optical systems in Chapter 7. We discuss in Chapter 6 efficient

numerical techniques for estimating the frequency variation of the Jones matrix from its

value at a minimal number of equally spaced optical frequencies and finally apply these

methods to the determination of states with a worst case system penalty.



Chapter 2

Mueller Matrix Description of PMD

and PDL

We now derive a differential equation that relates the Mueller matrices of an optical system

at adjacent frequencies in the presence of PMD and PDL. We then demonstrate that

a solution of this equation based on the Magnus expansion yields a description of the

Mueller matrix in orders of the complex principal state vector that coincides with previously

reported results for systems without PDL.

2.1 Introduction

In this chapter, the frequency variation of the output polarization of an optical system is

parametrized in Stokes space in terms of the Taylor expansion coefficients of the complex

principal state vector about a specified central frequency. Previously, such a representation

has been only derived for the Jones matrices of optical systems with zero PDL, for which the

Jones matrix is unitary and therefore corresponds to a three-dimensional rotation matrix.

However, the relationship between the rotation angle and axis and the PMD vector is only

given through a differential equation, Eq. (1.7) [45]. Considerable effort has therefore been

17
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expended on inverting this relationship to express the 3 × 3 rotation matrix in terms of

the PMD vector [59]. Below, we extend these analyses to systems with both PMD and

PDL for which the transformation of polarization states in an optical system is described

by a 4 × 4 Mueller matrix. The resulting formalism is applicable to any optical system

described by a non-singular, frequency dependent Jones matrix.

Summarizing our main results, we demonstrate, to our knowledge for the first time,

in Section 2.2 that the Mueller matrix, M(ω), varies with frequency according to the

differential equation

dM

dω
M−1 =

[
0 ~ΛT

~Λ ~Ω×

]
, (2.1)

where the column vectors ~Ω and ~Λ are the real and imaginary components of the complex

principal state vector [50], respectively, and ~ΛT is the transpose of ~Λ. Next, in Section 2.3

we introduce the Magnus expansion, which provides an exponentiated series solution of

Eq. (2.1), that, when truncated to a finite number of terms, preserves the relevant group

properties of the exact solution [71, 75]. Applying this formalism yields the central result

of Section 2.4, which expresses the Mueller matrix as a Taylor series in quantities directly

related to the complex principal state vector. To third order in ∆ω we find

M(ω) = exp

[
0 ~aT

~a ~b×

]
M(ω0) (2.2)

~a = ~Λ0∆ω + ~Λ1
∆ω2

2!
+

(
~Λ2 − 1

2
~Ω0 × ~Λ1 − 1

2
~Λ0 × ~Ω1

)
∆ω3

3!
+ . . .

~b = ~Ω0∆ω + ~Ω1
∆ω2

2!
+

(
~Ω2 − 1

2
~Ω0 × ~Ω1 − 1

2
~Λ1 × ~Λ0

)
∆ω3

3!
+ . . .

In the above formula, ~Ωn and ~Λn are coefficients in the Taylor series expansions of ~Ω = ~Ω(ω)

and ~Λ = ~Λ(ω), where ω = ω0+∆ω, with ω0 the optical carrier frequency. The corresponding

Jones matrix representation is obtained through the relationship

T(ω) = exp

[
− i

2
(~b+ i~a) · ~σ

]
T(ω0), (2.3)
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where the vectors ~a and ~b are defined through Eq. (2.2). We then compare our results to

those of previous authors [59] for the case of zero PDL. Finally, in Section 2.5 we discuss

the application of the Mueller matrix formalism to the design of joint PMD and PDL

compensators along the lines of Refs. [115,118].

2.2 Theoretical background

As is well known, in a quasi-single mode optical system the input and output electric field

polarizations, represented by the Jones vectors |s〉 and |t(ω)〉, respectively, are related in

the presence of both PMD and PDL by |t(ω)〉 = T(ω)|s〉, where T(ω) denotes a complex

2 × 2 Jones matrix and |s〉 is frequency independent. The Jones matrix T describes not

only polarization evolution through the link, but also an overall, typically frequency, but

not polarization, dependent attenuation, α0, and phase, φ0. Accordingly, we can write T =

exp(−α0−iφ0)T
′, in which the determinant of T′ is unity [50]. As the common attenuation

and phase do not affect the physically interesting differential polarization behaviour, these

are omitted from our subsequent discussion. We further omit primes so that T′ is replaced

by T.

The transformation between the input and output Stokes vectors, s̃ and t̃(ω) is specified

by the 4 × 4 matrix equation t̃(ω) = M(ω)s̃. Further, if σ̃ signifies the Pauli spin vector

extended by the 2× 2 identity matrix,

σ̃ ≡ [σ0, ~σ]

= [σ0,σ1,σ2,σ3] (2.4)

and

σ0 =

[
1 0

0 1

]
σ1 =

[
1 0

0 −1

]

σ2 =

[
0 1

1 0

]
σ3 =

[
0 −i
i 0

]
, (2.5)
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the input and output four dimensional Stokes and Jones vectors satisfy [38] s̃ = 〈s|σ̃|s〉
and t̃ = 〈t|σ̃|t〉. The elements of the Mueller matrix M are similarly defined by mij =

Tr(σiTσjT
†)/2, i, j = 0, 1, 2, 3, and Tr(. . .) indicates the trace, see Appendix B.3.

An alternative formulation expresses the Mueller matrix as the Kronecker matrix prod-

uct [23]

M = A (T⊗T∗)A†, (2.6)

where the unitary matrix A equals

A =
1√
2




1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0




(2.7)

and ∗, † indicate complex and Hermitian conjugation, respectively. The Kronecker product

maps a M ×N matrix F and a P ×Q matrix G into a (MP )× (NQ) block matrix. For

example, for two 2× 2 complex matrices,

F⊗G =

[
f00 f01

f10 f11

]
⊗

[
g00 g01

g10 g11

]

=

[
f00G f01G

f10G f11G

]

=




f00g00 f00g01 f01g00 f01g01

f00g10 f00g11 f01g10 f01g11

f10g00 f10g01 f11g00 f11g01

f10g10 f10g11 f11g10 f11g11



. (2.8)

In general, the elements of C = F ⊗G are c(Pi+k),(Qj+l) = fijgkl, with i = 0, 1, . . . (M −
1), . . . , l = 0, 1, . . . , (Q− 1) [110].

Eq. (2.6) can be conveniently derived from the component representation of the Mueller
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matrix [4],

mij =
1

2
Tr(σiTσjT

†)

=
1

2
[σiT]mn[σjT

†]nm

=
1

2
[σi]mp(tpn)[σj]nq(tqm)†

=
1

2
[σi

∗]pm(tpn)(tmq)
∗[σj]nq, (2.9)

where m,n, p, q ∈ {0, 1}, i, j ∈ {0, 1, 2, 3}, repeated indices are implicitly summed and

we have applied σ†
i = σi. Since (tpn)(tmq)

∗ can be recast as a Kronecker matrix product

according to (T⊗T∗)2p+m,2n+q = (tpn)(tmq)
∗, the last line of Eq. (2.9) is identical to

mij =
1

2
[σ̃∗

i ]2p+m(T⊗T∗)2p+m,2n+q[σ̃j]2n+q, (2.10)

where σ̃i denotes the column vector formed from the elements of σi, i.e.,

σ̃0 =




1

0

0

1




σ̃1 =




1

0

0

−1




σ̃2 =




0

1

1

0




σ̃3 =




0

−i
i

0



. (2.11)

We now introduce the matrix aij = [σ̃∗
i ]j/

√
2 such that Eq. (2.10) can be written as

mij = ai,2p+m(T⊗T∗)2p+m,2n+qa
†
2n+q,j, or equivalently, M = A(T⊗T∗)A†.

Having recast the Mueller matrix as a Kronecker product we now examine the frequency

derivative, denoted through the subscript ω, of the output Jones vector |t〉ω = TωT
−1|t〉.

The Jones space operator TωT
−1 is a linear superposition of Pauli spin matrices [51],

dT

dω
T−1 = − i

2
~W (ω) · ~σ, (2.12)

in which the vector ~W (ω) ≡ ~Ω(ω) + i~Λ(ω) is termed the complex principal state [50]. To

derive ~W (ω) in terms of variables that characterize the Jones matrix T(ω), we first define
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T0 = T(ω0), λ =

√
|~β|2 − |~α|2 + 2i~β · ~α, and ŵ = (~β + i~α)/λ, for two real vectors ~β and

~α, such that

T(ω) = exp

[
− i

2
(~β + i~α) · ~σ

]
T0

=

[
cos

(
λ

2

)
σ0 − i sin

(
λ

2

)
(ŵ · ~σ)

]
T0. (2.13)

Here we have employed the Jones matrix representation of [10, 50], where the second

expression in Eq. (2.13) follows after expanding the exponential into a power series and

applying (ŵ · ~σ)2 = σ0. Further, since ŵω · ŵ = 0, TωT
−1 can be written as

TωT
−1 = − i

2
[λωŵ + sin(λ)ŵω + (1− cos(λ))ŵ × ŵω] · ~σ, (2.14)

which, comparing with Eq. (2.12), yields [45] ~W (ω) = λωŵ+sin(λ)ŵω+(1−cos(λ))ŵ×ŵω.
Our derivation and the resulting formulas for the dependence of the complex principal

state vector, ~W , on λ and ŵ can be applied so long as λ 6= 0, in which case an analogous

calculation with T = exp[~α · ~σ/2] exp[−i~β · ~σ/2] applies to all unit-determinant Jones

matrices [10].

We can similarly express the Mueller matrix operator MωM
−1 in terms of the real

vectors ~Ω and ~Λ. The derivative of the Mueller matrix M is calculated by differentiating

Eq. (2.6). From the property of the Kronecker matrix product (F ⊗G)−1 = F−1 ⊗G−1,

for nonsingular F and G, we note that M−1 = A
(
T−1 ⊗T∗−1

)
A†. Further, applying

(F⊗G)(M⊗N) = (FM)⊗ (GN), yields

MωM
−1 = A

[(
TωT

−1
)⊗ (

T∗T∗−1
)

+
(
TT−1

)⊗ (
T∗

ωT
∗−1

)]
A†

= − i
2
A

[
(~Ω · ~σ)⊗ σ0 − σ0 ⊗ (~Ω · ~σ)

∗]
A†

+
1

2
A

[
(~Λ · ~σ)⊗ σ0 + σ0 ⊗ (~Λ · ~σ)

∗]
A†. (2.15)
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Observing that

A(~a · ~σ)⊗ σ0A
† =

[
0 ~aT

~a i~a×

]

Aσ0 ⊗ (~a · ~σ)∗A† =

[
0 ~aT

~a −i~a×

]
, (2.16)

for any real vector ~a, we finally obtain

dM

dω
M−1 =

[
0 ~ΛT

~Λ ~Ω×

]
=




0 Λx Λy Λz

Λx 0 −Ωz Ωy

Λy Ωz 0 −Ωx

Λz −Ωy Ωx 0



. (2.17)

In the absence of PDL we recover the standard expression [45] RωR
−1 = ~Ω×, for some

3× 3 Stokes rotation matrix, R.

2.2.1 Normalized stokes vectors

Designating the four-dimensional output Stokes vector t̃ by t̃ =
(|~t|,~t), with ~t = 〈t|~σ|t〉,

the frequency derivative of t̃ follows from Eq. (2.17) in that

dt̃

dω
=

[
|~t|ω

|~t|ω t̂+ |~t|t̂ω

]

=

[
0 ~ΛT

~Λ ~Ω×

][
|~t|
~t

]

=

[
|~t|~Λ · t̂

~Λ|~t|+ |~t|~Ω× t̂

]
, (2.18)

where ~t = |~t|t̂. Substituting our expression for |~t|ω into t̂|~t|ω + |~t|t̂ω, we arrive at

t̂ω = ~Λ− t̂(~Λ · t̂) + ~Ω× t̂

= t̂× (~Λ× t̂) + ~Ω× t̂, (2.19)
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which is often derived directly from the equation of motion of the Stokes vector [32, 62]

t̂ = 〈t|~σ|t〉/〈t|t〉.

2.3 Magnus expansion

The variation of the Mueller matrix with frequency is described by Eq. (2.17), which we

write as
dM

dω
= H(ω)M, (2.20)

together with the 4 × 4 matrix initial condition M(ω0) = M0. Denoting the frequency

ordering operator by Fω, the solution can be expressed as the ω-ordered product [25,42]

M(ω) = Fω exp

[∫ ω

ω0

H(ω1)dω1

]
M0. (2.21)

While the ω-ordering is obviously superfluous for frequency-independent operators H, as is

the case if second and higher order PMD and PDL effects are absent, the general solution

is conveniently expressed through the Magnus expansion, see Appendix A.2 [43,71,75,111]

M(ω) = exp

[ ∞∑
n=1

Bn(ω)

]
M0, (2.22)

where

B1(ω) =

∫ ω

ω0

dω1H(ω1)

B2(ω) =
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2 [H(ω1),H(ω2)]

B3(ω) =
1

6

∫ ω

ω0

dω1

∫ ω1

ω0

dω2

∫ ω2

ω0

dω3

(
[H(ω1),

[H(ω2),H(ω3)]] + [[H(ω1),H(ω2)],H(ω3)]
)
, (2.23)

and [F,G] is the commutator of the matrices F and G. The coefficients Bn obey the

recurrence relation,

Bn(ω) =
n−1∑
j=1

bj
j!

∫ ω

ω0

dω1S
(j)
n (ω1), n ≥ 2 (2.24)
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in which bj denotes the j:th Bernoulli numbers [75] and

S(j)
n (ω) =

n−j∑
m=1

[
Bm(ω),S

(j−1)
n−m (ω)

]
, 2 ≤ j ≤ n− 1

S(1)
n (ω) = [Bn−1(ω),H(ω)] ,

S(n−1)
n (ω) =

{
B

(n−1)
1 (ω),H(ω)

}
.

(2.25)

Here
{
F(n),G

}
is the nested commutator

{
F(n),G

}
=

[
F,

{
F(n−1),G

}]
in which F appears

n times and
{
F(0),G

}
= G. The Magnus expansion can also be derived by expanding the

integrand of Eq. (2.21) into a Taylor series and reexponentiating the resulting terms [118].

2.4 Mueller matrix formalism

To construct the Mueller matrix M(ω) in Eq. (2.2) as the exponential of a power series in

∆ω, we perform a Taylor expansion of the vectors ~Λ(ω) and ~Ω(ω). Eq. (2.22) then generates

formulas for the frequency dependence of each Taylor order of the Mueller matrix M that

can be compared to those of previous authors. This procedure further leads to a simple

relationship between the Mueller and Jones matrix representations.

We first decompose the evolution operator H into Hermitian and anti-Hermitian com-

ponents. For convenience, we define the vector operators h and c by

H(ω) =

[
0 ~ΛT

~Λ ~Ω×

]

≡ h(~Λ) + c(~Ω) (2.26)

with

h(~Λ) =

[
0 ~ΛT

~Λ 0

]
c(~Ω) =

[
0 0

0 ~Ω×

]
. (2.27)
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Developing ~Λ(ω0 + ∆ω) and ~Ω(ω0 + ∆ω) in Eq. (2.23) in Taylor series yields for the first

term in the Magnus expansion

B1 = c(~Ω0∆ω + ~Ω1
∆ω2

2!
+ ~Ω2

∆ω3

3!
)

+ h(~Λ0∆ω + ~Λ1
∆ω2

2!
+ ~Λ2

∆ω3

3!
) +O(∆ω4). (2.28)

With the redefinition ωi → ωi − ω0, the second term contains the commutators

B2 =
1

2

∫ ∆ω

0

dω1

∫ ω1

0

dω2[c(~Ω0 + ~Ω1ω1) + h(~Λ0 + ~Λ1ω1),

c(~Ω0 + ~Ω1ω2) + h(~Λ0 + ~Λ1ω2)], (2.29)

in which we have retained contributions up to and including third order in ∆ω after inte-

gration. From Eq. (2.27) we obtain the commutator identities

[c(~u),h(~v)] = h(~u× ~v)
[c(~u), c(~v)] = c(~u× ~v)
[h(~u),h(~v)] = c(~v × ~u) (2.30)

for the 4 × 4 matrices that are generated when the operators h and c are applied to two

vectors ~u and ~v. Inserting the above formulas into Eq. (2.29) yields

B2 = −1

2

∆ω3

3!

{
c(~Ω0 × ~Ω1 + ~Λ1 × ~Λ0) + h(~Ω0 × ~Λ1 + ~Λ0 × ~Ω1)

}
+O(∆ω4). (2.31)

Finally, after substituting B1 and B2 into Eq. (2.22) we arrive at our central result, namely,

M(ω) = exp

[
0 ~aT

~a ~b×

]
M0 (2.32)

~a = ~Λ0∆ω + ~Λ1
∆ω2

2!
+

(
~Λ2 − 1

2
~Ω0 × ~Λ1 − 1

2
~Λ0 × ~Ω1

)
∆ω3

3!
+O(∆ω4)

~b = ~Ω0∆ω + ~Ω1
∆ω2

2!
+

(
~Ω2 − 1

2
~Ω0 × ~Ω1 − 1

2
~Λ1 × ~Λ0

)
∆ω3

3!
+O(∆ω4),
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which describes the frequency evolution of the Mueller matrix to third order in ∆ω. Higher

order corrections can be obtained from the recursion relation, Eq. (2.24), for the Magnus

coefficients.

To convert between the Mueller and Jones formalisms, we derive the Jones matrix

analog of Eq. (2.32) by noting that each Jones matrix of the form T = exp [K]T0, for a

2×2 complex matrix K, maps to a Mueller matrix M = exp
[
A(K⊗ σ0 + σ0 ⊗K∗)A†]M0

with A given by Eq. (2.7) [8]. Eq. (2.16) in conjunction with Eq. (2.32) then yields,

T(ω) = exp

[
− i

2
(~b+ i~a) · ~σ

]
T0, (2.33)

in which the vectors ~a and ~b are defined in Eq. (2.32).

2.4.1 Comparison with previous work

To verify that we can recover the results of previous authors we consider the case of zero

PDL. In terms of the 4× 4 matrix Nc related to the vectors ~a and ~b through

Nc =

[
0 (~a+ i~b)T

~a+ i~b −i(~a+ i~b)×

]
, (2.34)

and the complex variable η =

√
|~a|2 − |~b|2 + 2i~a ·~b, the exponentiated Mueller matrix,

Eq. (2.32), becomes

M(ω) = exp

[
0 ~aT

~a ~b×

]
M0 = (FcF

∗
c)M0 (2.35)

where

Fc ≡ exp

[
Nc

2

]
= cosh

(η
2

)
I4 +

1

η
sinh

(η
2

)
Nc (2.36)

and IN denotes the N × N identity matrix. To derive the above formulas, the exponent

of Eq. (2.35) is recast as (Nc + Nc
∗)/2, with [Nc,Nc

∗] = 0. Subsequently, the identities of

e.g. Ref. [46] are applied, in which exp(Nc/2) is expanded in a power series and the result

simplified according to N2
c = η2I4.
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If either |~a| or |~b| is zero, Eq. (2.35) can be simplified considerably. Setting ~a = aâ and

~b = bb̂, we find respectively

exp

[
0 0

0 ~b×

]
=

[
1 0

0 cos(b)I3 + sin(b)(b̂×) + (1− cos(b))b̂b̂T

]
(2.37)

exp

[
0 ~aT

~a 0

]
=

[
cosh(a) sinh(a)âT

sinh(a)â (cosh(a)− 1)ââT + I3

]
. (2.38)

As expected, the 3×3 submatrix in the lower right hand corner of Eq. (2.37) is identical to

exp(~b×), c.f. Appendix B.4. Next, in view of Eq. (2.37), the Mueller matrix of Eq. (2.32)

reduces to

M(ω) =


 1 0

0 exp
[(
~Ω0∆ω + ~Ω1

∆ω2

2!
+ (~Ω2 − 1

2
~Ω0 × ~Ω1)

∆ω3

3!

)
×

]

M0 (2.39)

for systems with zero PDL.

We now establish that our method reproduces the PMD vector identities of Refs. [45,59]

in the absence of PDL. These were obtained by repeatedly differentiating

~Ω =
dψ

dω
n̂+ sin(ψ)

dn̂

dω
+ (1− cos(ψ))n̂× dn̂

dω
, (2.40)

where ψ and n̂ can be determined from the 3×3 Stokes matrix through R(∆ω) = eψn̂×, and

then evaluating the result at the optical carrier frequency (ψ(∆ω = 0) = 0). This yields

an infinite series of relationships between derivatives of ψ and n̂ and the PMD vectors of

different orders. The first three of these are

~Ω0 = ψ1n̂0 =
d(ψn̂)

dω

∣∣∣
ω0

~Ω1 = ψ2n̂0 + 2ψ1n̂1 =
d2(ψn̂)

dω2

∣∣∣
ω0

~Ω2 = ψ3n̂0 + 3ψ2n̂1 + 3ψ1n̂2 + ψ2
1n̂0 × n̂1

=
d3(ψn̂)

dω3

∣∣∣
ω0

+ ψ2
1n̂0 × n̂1 (2.41)
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where An = dnA
dωn |ω0 . Note however that if the exponent of the Stokes matrix R = eψn̂× is

expanded in a power series to third order in frequency, the identities in Eq. (2.41), together

with ψ2
1n̂0 × n̂1 = 1

2
~Ω0 × ~Ω1, and

d3(ψn̂)

dω3

∣∣∣
ω0

= ~Ω2 − 1

2
~Ω0 × ~Ω1, (2.42)

lead to

R = exp

[(
~Ω0∆ω + ~Ω1

∆ω2

2!
+ (~Ω2 − 1

2
~Ω0 × ~Ω1)

∆ω3

3!

)
×

]
, (2.43)

in agreement with the 3 × 3 submatrix in the lower right hand corner of our Magnus

expansion result, Eq. (2.39).

2.5 Operator symmetrization

The Jones or Mueller matrices corresponding to PMD and PDL compensators can be

recast as products of exponential operators each of which corresponds to a realizable optical

component [31, 60]. Because these operators are non-commuting, however, they must be

properly symmeterized in order to maximize the compensation bandwidth [115,118].

Below, we will demonstrate that Eq. (2.32) together with the Baker-Campbell-Hausdorff

(BCH) identity [43],

eFeG = exp

[
F + G +

1

2
[F,G] +

1

12
[F, [F,G]] +

1

12
[G, [G,F]] + . . .

]
(2.44)

for two matrices F and G, enables the design of PMD-PDL compensators that invert the

frequency dependence of an arbitrary Mueller matrix to any desired order in ∆ω. For

example, to third order in ∆ω, the BCH identity can be employed to establish that the

five operator approximation

Mcomp = e−
1
2
N(3)∆ω

2

e−
1
2
N(2)∆ω

2

e−
1
2
N(1)∆ωe−N(0)∆ωe−

1
2
N(1)∆ω (2.45)
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with

N(0) =

[
0 0

0 ~Ω0×

]
N(1) =

[
0 ~ΛT

0

~Λ0 0

]

N(2) =

[
0 0

0 ~Ω1×

]
N(3) =

[
0 ~ΛT

1

~Λ1 0

] (2.46)

corresponds to the exact inverse of the frequency-dependent Mueller matrix to O(∆ω3).

That is, the above formalism yields a compensator Mueller matrix [115], Mcomp, that

compensates PMD and PDL to O(∆ω3).

The extension of the above formalism to higher-order compensators can be simply

achieved by writing Eq. (2.32) as

M(ω) = exp

[
H0∆ω + H1

∆ω2

2!
+ (H2 − 1

2
[H0,H1])

∆ω3

3!
+O(∆ω4)

]
M0. (2.47)

The quantity H(ω) is given by Eq. (2.26) while Hn = dnH
dωn |ω0 . To fourth order, we then

find for the inverse of the frequency-dependent Mueller matrix, after repeatedly applying

the BCH identity and comparing the results to the Magnus expansion, Eq. (2.47), see

Appendix A.3,

Mcomp = e−
1
6
H2∆ω3

e−
2
3
H0∆ωe−

1
2
H1∆ω2

e−
1
3
H0∆ω. (2.48)

Each operator in Eq. (2.48) can now be decomposed as in Eq. (2.45) into a product of

exponentials each of which corresponds to a n:th order PMD or PDL element.

The extension to higher order compensation is straightforward if tedious [43,44] as the

recursive form of the Magnus coefficients, Eq. (2.24), can be employed to approximate the

Mueller matrix as a product of exponential operators up to any specified order.

2.6 Conclusions

We have developed a general formalism for the Mueller matrix (dM/dω)M−1 in the pres-

ence of both PMD and PDL. Through the Magnus expansion we then obtained a recursive
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method for calculating successive orders of the frequency variation of the Mueller matrix.

Finally, operator symmetrization yielded PMD/PDL compensators that counteract the ef-

fects of PMD and PDL with increased accuracy. While we have in this chapter restricted

our attention to joint PMD and PDL compensation, our formalism is equally relevant to,

for example, numerical simulations of PMD and PDL induced pulse distortion and further

leads to novel procedures for determining the PMD and PDL from measurements of the

frequency dependent output Stokes vector. In Chapter 3, we therefore implement these

results both numerically and experimentally, and establish the accuracy of the procedure

to at least fourth order in optical frequency.



Chapter 3

The Magnus Expansion for PMD and

PDL

This chapter reviews a solution method for the Magnus expansion of the differential equa-

tion for the frequency dependence of the Mueller matrix in the presence of polarization

mode dispersion (PMD) and polarization dependent loss (PDL). The solution is then com-

pared with the results of previous authors and its accuracy is established to fourth order

in frequency.

3.1 Introduction

If an optical fiber is approximated by a large number of constant birefringent segments, the

light polarization in each segment precesses around the axis of the segment’s polarization

mode dispersion vector at a rate determined by the magnitude of the differential group

delay, c.f. Section 1.1.2. The resultant polarization vector therefore varies rapidly with

frequency. In Stokes space in the absence of PDL, the frequency dependence of the rotation

angle and axis can be obtained by solving Eq. (1.11) for the 3× 3 rotation matrix relating

the input and output Stokes vectors [45]. While equations have previously been derived

32
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for this rotation matrix in terms of PMD vectors of increasing order [59], we here present

a more general analysis of the 4× 4 Mueller matrix transformation for systems with both

PMD and PDL. Our approach is a generalization of the formalism of Chapter 2 in that we

establish the equivalence between results generated from the Magnus expansion solution of

the underlying differential equation and those given by earlier models of systems without

PDL [45,48,59,88].

This chapter is organized as follows. First, we review our solution of the differential

equation for the frequency dependence of the Mueller matrix based upon the Magnus

expansion [50, 88]. We then demonstrate that our procedure agrees with a generalized

version of the method of Refs. [45,59] to at least third order in frequency, and also establish

the equivalence of our results to the power series expansions of Ref. [48]. We finally discuss

the applicability of our technique in both numerical and experimental contexts.

3.2 Mueller matrix formalism

In an optical system characterized by two orthogonally polarized guided modes with differ-

ent group velocities and losses (PMD and PDL), the Jones vectors of the output and the

frequency-independent input electric field polarizations, |t(ω)〉 and |s〉, are related through

a complex 2 × 2 Jones matrix according to |t(ω)〉 = T(ω)|s〉. (As we are interested only

in the difference between the attenuation and phase of the two polarizations, we normalize

det(T) = 1 [50]). Analogously, the 4 component input and output Stokes vectors given by

s̃ = 〈s|σ̃|s〉 and t̃ = 〈t|σ̃|t〉 satisfy t̃(ω) = M(ω)s̃ where σ̃ = (σ0, ~σ), and σ0, ~σ denote

the 2 × 2 identity matrix and the Pauli spin matrices, respectively. The Mueller matrix,

M, can be written in component form as Mij = 1
2
Tr(σiTσjT

†) for i, j ∈ {0, 1, 2, 3} or

alternatively, as the Kronecker matrix product

M = A (T⊗T∗)A† (3.1)
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in which the unitary matrix A equals

1√
2




1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0



, (3.2)

and ∗, †, indicate complex and Hermitian conjugation, respectively [23].

In the presence of both PMD and PDL, the Jones matrix TωT
−1 = −i( ~W · ~σ)/2, in

which the subscript ω indicates differentiation with respect to the frequency variable, is a

linear superposition of the Pauli spin matrices [50,51], where ~W = ~Ω + i~Λ for real vectors

~Ω and ~Λ, c.f. Sec. 2.2. Introducing the notation H(ω) for the evolution operator, the

analogous Mueller matrix expression H(ω) = MωM
−1 can be derived from the Kronecker

product form of Eq. (3.1) [88]. This yields

H(ω) =
dM

dω
M−1 =

[
0 ~ΛT

~Λ ~Ω×

]
(3.3)

in which the 4× 4 transfer matrix H is expressed in block matrix form.

The frequency dependence of the Mueller matrix can now be efficiently computed from

Eq. (3.3) with the Magnus expansion, which provides a general solution of the form [71,75]

M(ω) = exp

[ ∞∑
n=1

Bn(ω)

]
M(ω0). (3.4)
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Denoting commutators with brackets, the first four expansion coefficients are then [76]

B1(ω) =

∫ ω

ω0

dω1H(ω1)

B2(ω) =
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2 [H(ω1),H(ω2)] , (3.5)

B3(ω) =
1

6

∫ ω

ω0

dω1

∫ ω1

ω0

dω2

∫ ω2

ω0

dω3

(
[H(ω1), [H(ω2),H(ω3)]]

+ [[H(ω1),H(ω2)] ,H(ω3)]
)
,

B4(ω) =
1

12

∫ ω

ω0

dω1

∫ ω1

ω0

dω2

∫ ω2

ω0

dω3

∫ ω3

ω0

dω4

(
[H(ω1), [[H(ω2),H(ω3)],H(ω4)]]

+ [[H(ω1), [H(ω2),H(ω3)]],H(ω4)] + [[H(ω1),H(ω2)], [H(ω3),H(ω4)]]
)

where [H(ω1),H(ω2)] represents the matrix commutator of H(ω1) and H(ω2). Further,

each Bn is related to the coefficients B1,B2, . . . ,B(n−1) through recursion relations [75].

Expanding H(ω) into a Taylor series about the optical carrier, ω0, and evaluating the

coefficients B1, . . . ,B4 immediately leads to our central result, which to fifth order in the

deviation, ∆ω, of the optical frequency from ω0 is

M(ω) = eN(∆ω)M(ω0) (3.6)

with

N(∆ω) = H0∆ω + H1
∆ω2

2!

+ (H2 − 1

2
[H0,H1])

∆ω3

3!

+ (H3 − [H0,H2])
∆ω4

4!
(3.7)

+
(
H4 − [H1,H2]− 3

2
[H0,H3] +

1

6
[H0, [H0,H2]]

+
1

2
[H1, [H1,H0]] +

1

6
[H0, [H0, [H0,H1]]]

)∆ω5

5!
+ O(∆ω6).
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In the above equations, the subscript n denotes dn

dωn |ω0 . Corrections of order greater than

6 can similarly be calculated from the recursive form of the Magnus coefficients.

Alternatively, Eq. (3.3) can be employed to derive an expression for the Mueller matrix

directly in terms of the vectors ~Ω and ~Λ. To fourth order, this yields

M(ω) = exp

[
0 ~aT

~a ~b×

]
M(ω0). (3.8)

Here ~a and ~b designate

~a = ~Λ0∆ω + ~Λ1
∆ω2

2!

+ (~Λ2 − 1

2
~Ω0 × ~Λ1 − 1

2
~Λ0 × ~Ω1)

∆ω3

3!
(3.9)

+ (~Λ3 − ~Ω0 × ~Λ2 − ~Λ0 × ~Ω2)
∆ω4

4!
+O(∆ω5)

and

~b = ~Ω0∆ω + ~Ω1
∆ω2

2!

+ (~Ω2 − 1

2
~Ω0 × ~Ω1 − 1

2
~Λ1 × ~Λ0)

∆ω3

3!
(3.10)

+ (~Ω3 − ~Ω0 × ~Ω2 − ~Λ2 × ~Λ0)
∆ω4

4!
+O(∆ω5).

The equivalent Jones matrix representation then follows from Eq. (3.1) [8], namely,

T(ω) = exp

[
− i

2
(~b+ i~a) · ~σ

]
T(ω0). (3.11)

3.3 Alternate Mueller matrix derivation

To demonstrate that the results of Eq. (3.6) and Refs. [45, 59] coincide, we generalize

the procedure first advanced in Ref. [88] by including PDL. In this method, ~W (ω) is

first expressed in terms of variables that characterize the Jones matrix T(ω). Employing
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the Jones matrix representation of Ref. [50], we write λ =

√
|~β|2 − |~α|2 + 2i~β · ~α, and

ŵ = (~β + i~α)/λ, for two real vectors ~β and ~α, such that

T(ω) = exp

[
− i

2
(~β + i~α) · ~σ

]
T(ω0) (3.12)

=

[
cos

(
λ

2

)
σ0 − i sin

(
λ

2

)
(ŵ · ~σ)

]
T(ω0).

Here we have replaced the exponential by its power series and applied (ŵ · ~σ)2 = σ0.

Further, ŵω · ŵ = 0, so that TωT
−1 can be expanded as

dT

dω
T−1 = − i

2

[
dλ

dω
ŵ + sin(λ)

dŵ

dω
+ (1− cos(λ))ŵ × dŵ

dω

]
· ~σ, (3.13)

and consequently ~W (ω) = λωŵ + sin(λ)ŵω + (1− cos(λ))ŵ × ŵω [45,84,88]. We can now,

as in Ref. [59], differentiate ~W (ω) M times and then set ω = ω0, at which λ(ω0) = 0. In

this manner we find the derivatives of λ and ŵ in terms of different orders of the complex

principal state vector. For M = 0, 1 and 2,

~W0 = λ1ŵ0 =
d(λŵ)

dω
|ω0

~W1 = λ2ŵ0 + 2λ1ŵ1 =
d2(λŵ)

dω2
|ω0 (3.14)

~W2 = λ3ŵ0 + 3λ2ŵ1 + 3λ1ŵ2 + λ2
1ŵ0 × ŵ1

=
d3(λŵ)

dω3
|ω0 +

1

2
~W0 × ~W1,

where as before An ≡ (dnA/dωn) |ω0 . Taylor expanding the exponent of the Jones matrix,

Eq. (3.12), to O(∆ω3) and inserting the identities of Eq. (3.14), we have

~β + i~α = ~W0∆ω + ~W1
∆ω2

2!
(3.15)

+ ( ~W2 − 1

2
~W0 × ~W1)

∆ω3

3!
+O(∆ω4)

Since ~W = ~Ω + i~Λ, we obtain the Jones space result T(ω) = exp
[
− i

2
(~b+ i~a) · ~σ

]
T(ω0),

in which ~a and ~b are obtained by truncating Eq. (3.9) and Eq. (3.10) to third order in ∆ω.

The Mueller matrix version of Eq. (3.8) is then recovered by applying Eq. (3.1).
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While the procedure above yields the same results as Section 3.2 to all orders of ∆ω,

repeatedly differentiating ~W (ω) to form the power series analog of Eq. (3.15) becomes

increasingly difficult for fourth and higher-order terms. The Magnus expansion, on the

other hand, directly expresses the Mueller matrix in terms of the relevant quantities ~Ωn

and ~Λn to arbitrary order.

3.4 Power series expansion

In Ref. [48], a series expansion for the frequency-dependent Jones matrix for systems

affected by PMD was introduced and evaluated to fourth-order in ∆ω. In this section we

demonstrate the equivalence of this procedure to an analogous expansion of the matrix

exponential presented in Eq. (3.11).

Specializing to the case of zero PDL, and setting ~b = bb̂ with ~Λ = 0, the Jones matrix

of Eq. (3.11) reduces to

U ≡ T(ω)T(ω0)
−1

= exp

[
− i

2
(~b · ~σ)

]
(3.16)

= cos

(
b

2

)
σ0 − i sin

(
b

2

)
(b̂ · ~σ).

We now construct the vector, ~u, and scalar, u0, components of the Stokes vector formed

from the elements of the Jones matrix, U, according to

u0 = <(U00) = cos
(
b
2

)

~u = −



=(U00)

=(U01)

<(U01)


 = sin

(
b
2

)
b̂.

(3.17)

The second equality in each expression can be derived from a comparison with Eq. (3.16).

In terms of the unit vector p̂ ≡ ~Ω0/|~Ω0|, we find after expanding the quantities u0 and ~u,
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in a power series, c.f. Eq. (3.10), and identifying terms of equal orders in ∆ω

u0 = 1− |~Ω0|2 ∆ω2

8
− ~Ω0 · ~Ω1

∆ω3

8

+

(
1

16
|~Ω0|4 − 3

4
|~Ω1|2 − ~Ω0 · ~Ω2

)
∆ω4

24
+ . . .

p̂ · ~u = |~Ω0|∆ω
2

+ p̂ · ~Ω1
∆ω2

4

+ (p̂ · ~Ω2 − 1

4
|~Ω0|3)∆ω

3

12
(3.18)

+ (p̂ · ~Ω3 − 3

2
|~Ω0|~Ω0 · ~Ω1)

∆ω4

48
+ . . .

~u⊥ ≡ ~u− (p̂ · ~u)p̂
= ~Ω1⊥

∆ω2

4
+ (~Ω2⊥ − 1

2
~Ω0 × ~Ω1⊥)

∆ω3

12

+ (~Ω3⊥ − ~Ω0 × ~Ω2 − 1

2
|~Ω0|2~Ω1⊥)

∆ω4

48
+ . . .

In the above equations, ~Ωn⊥ = ~Ωn − (p̂ · ~Ωn)p̂. If we set ~τ = ~Ω/2, Eqs. (3.18) reproduce

the results of Ref. [48], indicating that the Magnus expansion result, Eq. (3.11), correctly

characterizes the higher-order phase delays of the cross-coupled principal state of polariza-

tion (PSP) components [48]. However, the power series expansion of Eqs. (3.18) does not

preserve the unitary group property of the Jones matrix, Eq. (3.16), reducing the accuracy

of the procedure as compared to Eq. (3.11).

3.5 Results

We now demonstrate the accuracy of the Magnus expansion by computing the average,

〈ε〉, and standard deviation, σε, of the relative error

ε =
‖Uest −Uact‖

‖Uact‖ × 100%, (3.19)

in which U = T(ω)T(ω0)
−1 and ‖...‖ is identified with the Frobenius matrix norm, as

a function of ∆ω. In the above formula, the estimated Jones matrix, Uest, results from
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Figure 3.1: The average relative error, 〈ε〉, for 5, 000 fiber realizations, as a function of the

normalized frequency deviation, 〈τ〉∆ω/(2π), for a mean DGD 〈τ〉. Dashed lines - power

series expansion, Eq. (3.18), solid lines - Magnus expansion, Eq. (3.11). The first to fourth

order results are indicated by ×, ?, ◦ and no markers, respectively.
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Figure 3.2: Same as Fig. 3.1, except for the standard deviation of the relative error, σε.
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Figure 3.3: The simulated probability density function (pdf) of the relative error, χ, as-

sociated with the Taylor coefficients N1, N2, and N3 for 2.5 × 105 fiber realizations with

30.0 ps and 10.0 dB mean PDL. The solid, dashed and dotted lines represent the relative

error of N1, N2, and N3, respectively.
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either the Magnus expansion of Eq. (3.11) with zero PDL, or, for comparison purposes, the

power series of Eqs. (3.18). The “actual” Jones matrix, Uact, instead corresponds to the

Jones matrix evaluated numerically at ∆ω. We model an optical fiber link with a mean

DGD 〈τ〉 = 25 ps by a set of 100 randomly oriented, linearly birefringent, polarization-

maintaining (PM) fiber segments. The vectors ~Ωn are obtained by finite differencing the

resulting Jones matrix.

Fig. 3.1 depicts the average relative error, 〈ε〉, for 5, 000 fiber realizations, as a function

of the normalized frequency deviation, 〈τ〉∆ω/(2π) (the curves are then independent of

〈τ〉). Analogous results for the standard deviation of the relative error, σε, are shown in

Fig. 3.2. The solid and dashed lines in Fig. 3.1 and Fig. 3.2 were calculated with the

Magnus Eq. (3.11) and power series expansions Eq. (3.18), while ×, ?, and ◦ and no

markers indicate the first to fourth order results in ∆ω, respectively. Clearly, the Magnus

expansion, Eq. (3.11), yields more accurate results for the Jones matrix than the explicit

power series of Eq. (3.18) when the optical frequency differs substantially from the center

frequency.

We next verify our procedure in the presence of both PMD and PDL through experiment

and numerical simulation for the first three orders n = 1, 2, 3 in ∆ω.

In our experiment, the Jones matrix T(ω) was first determined over a 4 nm range in

0.1 nm steps. We employed an HP 81689A tunable laser source continuously calibrated

with an Ando AQ6140 wavelength meter, and measured the Jones matrix from the output

of an HP 8509B polarimeter. The device under test (DUT) consisted of three sections of

PM fiber interleaved with two adjustable PDL elements, producing a net PDL in the range

of 0 dB to 2 dB as recorded by the HP 8509B.

Next, a Jones to Mueller matrix conversion is performed through Eq. (3.1), and the ma-

trix exponent at each frequency is extracted according to N(ωm−ω0) = ln(M(ωm)M(ω0)
−1),

in which m = 1, 2, . . . ,M and M denotes the number of measured frequencies. We then

derive the Taylor series coefficients Nn from a polynomial least square fit of N(∆ω). For

the purpose of comparison, we estimate Nn from the analytic expression, Eq. (3.7), in
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Table 3.1: Measured relative error χ (%).

DGD 2.2 ps 2.3 ps 3.9 ps 9.0 ps 6.8 ps 10.0 ps

PDL 0.3 dB 1.0 dB 2.0 dB 0.3 dB 0.9 dB 2.3 dB

N1 0.21 0.33 0.54 0.41 0.48 0.69

N2 4.3 4.5 6.3 4.8 6.0 7.3

N3 6.8 9.7 17.4 19.0 14.4 −

which the quantities ~Ωn and ~Λn are obtained by finite-differencing the measured Jones

matrices, T(ωm), according to ~W · ~σ = 2iTωT
−1. Denoting the estimates of Nn from the

two procedures by N
(1)
n and N

(2)
n , respectively, we calculate the relative error χ as

χ =
‖N(2)

n −N
(1)
n ‖

‖N(1)
n ‖

× 100%. (3.20)

Table 3.1 displays the error, χ, for several system configurations, arranged according

to the measured DGD and PDL at the center frequency. While wavelength drift and other

systematic errors in many cases precluded the accurate determination of N3, for a 0.1

nm wavelength step size, the error in N1 and N2 does not exceed 8% for PDL ≤ 2 dB.

Accordingly, although we examined only a small number of single system realizations, the

data clearly indicates that the measured frequency dependence of the Mueller matrix coin-

cides with that predicted from Eq. (3.6) to second order and is consistent with theoretical

predictions to third order.

Finally, to verify if the above measurements are characteristic of the optical fiber be-

havior, we calculate the probability density functions associated with the error, χ, for each

coefficient Nn, n = 1, 2, 3 [85]. Here, our calculation employs 100 randomly oriented,

linearly birefringent and lossy elements to simulate a fiber with a mean DGD of 30.0 ps

and an artificially large mean PDL of 10.0 dB, which is chosen to generate physically in-

teresting “worst case” values for ~Λn. After 2.5 × 105 fiber realizations, c.f. Fig. 3.3, the

observed mean values of χ are found to be 3.1× 10−5%, 1.7× 10−4%, and 3.2× 10−4% for

Nn, n = 1, 2, 3, respectively. The worst case, χ ≈ 10−2.5% ≈ 3.2 × 10−3%, occurs for N3,
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indicating that for these conditions the accuracy of the Magnus expansion approximation,

Eq. (3.6), to third order in ∆ω, exceeds 4 digits.

3.6 Conclusions

We have employed the Magnus expansion to model the frequency dependence of the Mueller

matrix in birefringent systems affected by both PMD and PDL and further verified that

our formalism reproduces previous power-series expansion techniques. However, although

any Mueller or Jones matrix model obtained by solving the underlying differential equa-

tion in frequency will agree with our formalism, the Magnus expansion explicitly preserves

the underlying symmetries of the Mueller matrix [86, 87] and further yields physically

realizable operator expansions that facilitate the design of joint PMD and PDL compen-

sators [88,115,118]. In addition, other models [31,118], can be directly obtained from the

Magnus expansion through application of the Baker-Campbell-Hausdorff identity [42, 88].

Unfortunately, while the numerical computations can be performed to any desired order of

accuracy, the experimental determination of third and higher order PMD vectors requires

a level of precision that appears to be beyond our present capabilities. However, improved

data analysis techniques, may enable such measurements.



Chapter 4

A Clifford Algebra Analysis of PMD

and PDL

We overview Clifford algebra and its application to polarization mode dispersion (PMD)

and polarization dependent loss (PDL). We demonstrate that the Jones matrix corresponds

to a Lorentz transformation in this algebra and obtain its frequency dependent evolution

through the Magnus expansion. We also comment on the application of Clifford algebra

methods to partially polarized light.

4.1 Introduction

Despite the frequency with which Jones and Stokes matrices are employed in the analysis

of optical polarization effects, several recent papers have considered alternate algebraic

approaches to describing polarization mode dispersion (PMD) and polarization depen-

dent loss (PDL) in single mode fibers. In particular, quaternions obey a multiplication

rule that follow the algebra of the Pauli spin matrices and therefore the Jones matrices

(or their SO+(1, 3) Mueller matrix covering group) in a particularly transparent fashion.

46
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Quaternions, however, constitute only a single, four-dimensional, “subalgebra” of a Clif-

ford algebra that extends this construct to vectors of arbitrary dimension. Mathematical

objects that are isomorphic to complex numbers, linear algebra, and quaternions can be

similarly modeled in the Clifford algebra formalism, and can then be rapidly manipulated

with a transparent geometric interpretation.

Below we first overview the Clifford algebra formalism [9, 27, 49]. We demonstrate the

equivalence between the Clifford product in three-dimensional space and physical rota-

tions. We also show that optical elements that are affected by PMD and PDL but which

preserve the coherence of the optical field are described by Lorentz transformations in the

Clifford algebra formulation. We obtain a particularly simple form of the Magnus expan-

sion solution [71, 75, 88, 118] for the frequency dependence of the polarization evolution in

the Clifford algebra formulation and finally discuss the manner in which Clifford algebra

techniques can be employed to reduce the abstraction and the computational requirements

of problems involving partial polarization.

4.2 Summary of Clifford algebra

In anN -dimensional space,RN , spanned by orthogonal unit vectors {ê1, ê2, . . . êN}, Clifford

algebra is based upon an associative, but non-commutative, vector multiplication satisfying

two fundamental identities [9, 11,49]

êiêi = |êi|2 = 1,

êiêj = −êj êi. (4.1)

Specializing to three-dimensions for simplicity, Eq. (4.1) implies ~a2 = |~a|2 for the vector

~a = a1ê1 + a2ê2 + a3ê3. The products êiêj, form three distinct “bivectors”. These differ

from vectors since (êiêj)
2 = −êi(êj êj)êi = −1. The single “trivector” êiêj êk is unchanged

in sign under a cyclic permutation of its indices, while (êiêj êk)
2 = −1.
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Scalars, vectors, bivectors and trivectors comprise a basis for a new vector space C`3,
such that we can create ”multivector” objects as the linear combination

p̌ = p0 + p1ê1 + p2ê2 + p3ê3

+ p4ê1ê2 + p5ê1ê3 + p6ê2ê3 + p7ê1ê2ê3, (4.2)

with real coefficients pn. The vector space R3 is therefore a subspace of C`3. Since the

trivector ê1ê2ê3 both commutes with all other basis elements and satisfies (ê1ê2ê3)
2 = −1,

it is often denoted by the suggestive label I ≡ ê1ê2ê3 and is termed a pseudoscalar. Indeed,

the multivectors p̌ = p0 + p7I are isomorphic to standard complex numbers.

Multiplication of two multivectors ǎ and b̌ is expressed in terms of their “Clifford

product”

ǎb̌ = ǎ · b̌+ ǎ ∧ b̌, (4.3)

which is decomposed into the symmetric “inner” product, ǎ · b̌ = (ǎb̌ + b̌ǎ)/2, and an

anti-symmetric “outer” product, ǎ ∧ b̌ = (ǎb̌ − b̌ǎ)/2. As an example, if ~a and ~b are the

vectors ~a = a1ê1 + a2ê2 + a3ê3 and ~b = b1ê1 + b2ê2 + b3ê3, their product is found through

repeated application of Eq. (4.1) to be

~a~b = (a1b1 + a2b2 + a3b3)

+ (a1b2 − a2b1)ê1ê2

+ (a1b3 − a3b1)ê1ê3

+ (a2b3 − a3b2)ê2ê3, (4.4)

with an analogous expression for ~b~a. Accordingly, we observe that the inner product,

(~a~b + ~b~a)/2, coincides with the standard vector dot product. The antisymmetric outer

product instead corresponds to the expression

~a ∧~b =
1

2
(~a~b−~b~a)

= (a1b2 − a2b1)ê1ê2

+ (a1b3 − a3b1)ê1ê3

+ (a2b3 − a3b2)ê2ê3 (4.5)
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and is therefore a bivector. Since, however, ê1ê2 = (ê1ê2ê3)ê3 = Iê3, while ê1ê3 = −Iê2
and ê2ê3 = Iê1, the above outer product is related in three-dimensions to the standard

cross-product through

~a ∧~b = I~a×~b, (4.6)

such that

~a~b = ~a ·~b+ I~a×~b. (4.7)

Hence the magnitude of the bivector ~a ∧~b equals the area of the parallelogram formed by

~a and ~b. This bivector is often associated with the ~a,~b plane. Comparing Eq. (4.7) with

quaternion multiplication [55] we additionally observe that linear combinations of scalars

and bivectors of the form ǎ = a0−~aI generate an algebra isomorphic to that of quaternions.

If the bivectors êiêj are recast as products of vectors with the pseudoscalar, I, multi-

vectors in C`3 can be written in the form p̌ = p + ~p, where p and ~p are ”pseudocomplex”

quantities; that is, expressions of the form ζ+ξI where ζ and ξ are real scalars and vectors,

respectively. The spatial inversion and the Hermitian conjugate of p̌ are then defined as

¯̌p = p− ~p (4.8)

and

p̌† = p∗ + ~p∗, (4.9)

with (ζ + ξI)∗ = ζ − ξI. The inverse of a multivector then takes the form

p̌−1 = ¯̌p/(p̌ ¯̌p) (4.10)

enabling division by a multivector quantity. The Clifford algebra of three dimensional

space, C`3, naturally represents four dimensional spacetime since the Minkowski spacetime

metric is represented by the Clifford product p̌ ¯̌p, which yields the pseudocomplex scalar

p2 − ~p2.

We now establish the relationship between the exponential operator in Clifford algebra

and physical rotations. Rotations of the vector ~v by an angle θ about the axis n̂ are effected
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in Clifford algebra by the symmetric product [27]

~v′ = Ř~vŘ†, (4.11)

where

Ř = exp

(
−I θ

2
n̂

)
= cos

(
θ

2

)
− I sin

(
θ

2

)
n̂ (4.12)

is itself a multivector, satisfying Ř ¯̌R = 1. The second expression for Ř in Eq. (4.12) is

formed by expanding the exponential in power series and applying n̂2 = 1. Finally, we

note that the symmetric rotation of Eq. (4.11) remains valid for all multivectors, that is,

when ~v → p̌.

Substituting ~b + I~a for θn̂, for real three-vectors ~b and ~a, leads to a representation of

Ř in terms of the Lorentz transformation [9]

Ř = exp

[
−I

2
(~b+ I~a)

]

= cos

(
λ

2

)
− I sin

(
λ

2

)
w̌, (4.13)

where λ =
√
~b2 − ~a2 + 2I~a ·~b and w̌ = (~b + I~a)/λ. Such a form preserves the property

Ř ¯̌R = 1, as well as the norm of the transformed vector p̌′ = Řp̌Ř†, i.e. p̌ ¯̌p = p̌′ ¯̌p′, and

therefore the Minkowski metric.

4.3 PMD and PDL

In a single-mode optical waveguide supporting two (possibly quasi-)orthogonal modes, the

Jones vectors of the output and the frequency-independent input electric field polarizations,

|t(ω)〉 and |s〉, are related through a complex 2×2 Jones matrix with unit determinant such

that |t(ω)〉 = T(ω)|s〉. The coherency matrix, formed by the ensemble average of |s〉〈s|,
describes the statistics of a stochastically varying electric field. It consequently transforms

according to

|t〉〈t| = T|s〉〈s|T†, (4.14)
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which is identical in form to Eq. (4.11). Observing that a Jones matrix T with det(T) = 1

can be expressed in terms of two vectors ~a and ~b according to T = exp
[
− i

2
(~b+ i~a) · ~σ

]
,

where ~σ represents the Pauli spin vector, we identify Eq. (4.14) as the Jones matrix rep-

resentation of a Clifford algebra Lorentz transformation.

In the case of a frequency dependent Lorentz transformation Ť (ω) resulting from PMD

and PDL in an optical system, the Clifford algebra analog of the Jones space operator

TωT
−1 is Ťω

¯̌T . Upon substituting Ť into Ťω
¯̌T , we find

dŤ

dω
¯̌T = −I

2

[
dλ

dω
w̌ + sin(λ)

dw̌

dω
+ I(1− cos(λ))

dw̌

dω
w̌

]
, (4.15)

where λ and w̌ are given by Eq. (4.13) [45]. The quantity within square brackets is

itself a multivector, which can be further decomposed into real and imaginary components

according to

W̌ ≡ ~Ω + I~Λ

=
dλ

dω
w̌ + sin(λ)

dw̌

dω
+ I (1− cos(λ))

dw̌

dω
w̌. (4.16)

The quantity W̌ is then the Clifford algebra representation of the complex principal state

vector [50].

To obtain the transformation Ť in terms of the real three-vectors ~Ω and ~Λ, we observe

that the frequency derivative, denoted below through the subscript ω, of Ť always satisfies

dŤ

dω
=

(
dŤ

dω
¯̌T

)
Ť = Ȟ(ω)Ť , (4.17)

where Ť ¯̌T = 1 identically, and Ȟ(ω) = − I
2
(~Ω + I~Λ). Ť (ω) is then obtained as the product

Ť (ω) = Fω exp

[∫ ω

ω0

Ȟ(ω1)dω1

]
Ť (ω0), (4.18)

in which Fω denotes the frequency ordering operator [42]. A more convenient representation

of the general solution is provided by the Magnus expansion [71,75], namely

Ť (ω) = exp

[ ∞∑
n=1

B̌n(ω)

]
Ť (ω0). (4.19)
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The first two Magnus expansion coefficients are

B̌1(ω) =

∫ ω

ω0

dω1Ȟ(ω1)

B̌2(ω) =
1

2

∫ ω

ω0

∫ ω1

ω0

dω2dω1

[
Ȟ(ω1), Ȟ(ω2)

]
, (4.20)

in which square brackets denote commutation, and B̌n for n > 2 are related to those of

lower order through recursion relations [75]. Taylor expanding the vectors ~Ω and ~Λ in

Eq. (4.20) to third order in ∆ω, and directly evaluating the Magnus coefficients, we find

B̌1 =
1

2
(~Λ0∆ω + ~Λ1

∆ω2

2!
+ ~Λ2

∆ω3

3!
)

− I

2
(~Ω0∆ω + ~Ω1

∆ω2

2!
+ ~Ω2

∆ω3

3!
) +O(∆ω4)

B̌2 =
1

4

∆ω3

3!
(~Λ1 ∧ ~Λ0 + ~Ω0 ∧ ~Ω1

+ I~Λ0 ∧ ~Ω1 + I~Ω0 ∧ ~Λ1) +O(∆ω4). (4.21)

Here, we have applied the commutator relation [~a,~b] = ~a~b − ~b~a = 2~a ∧ ~b, and employed

subscripts to denote frequency derivatives, i.e. An = (dnA/dωn) |ω0 [88]. The Lorentz

transformation Ť is generated to third order in frequency once the above expansion coeffi-

cients are inserted into Eq. (4.19), and the wedge product is replaced by the cross-product

according to ~a ∧~b = I~a×~b, yielding

Ť = exp

[
−I

2
(~b+ I~a)

]

~a = ~Λ0∆ω + ~Λ1
∆ω2

2!

+

(
~Λ2 − 1

2
~Λ0 × ~Ω1 − 1

2
~Ω0 × ~Λ1

)
∆ω3

3!
+O(∆ω4)

~b = ~Ω0∆ω + ~Ω1
∆ω2

2!

+

(
~Ω2 − 1

2
~Ω0 × ~Ω1 − 1

2
~Λ1 × ~Λ0

)
∆ω3

3!
+O(∆ω4). (4.22)
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When two fibers described by the individual transformations Ť(1) and Ť(2) are con-

catenated, the composite transformation is given by the product Ť = Ť(2)Ť(1); while the

corresponding multivectors Ȟ satisfy

dŤ

dω
¯̌T = Ȟ(2) + Ť(2)Ȟ(1)

¯̌T(2). (4.23)

The last term in the above equation does not transform in the same manner as Eq. (4.14)

under Ť , but rather as the product ť¯̌s, i.e. ť′ ¯̌s′ = (Ť ťŤ †)( ¯̌T † ¯̌s ¯̌T ) = Ť (ť¯̌s) ¯̌T , consistent with

the properties of Lorentz transformations. From the invariance of scalars under Lorentz

transformations, the real and imaginary components of the scalar quantity Ȟ2
(1), namely

~Ω2
(1) − ~Λ2

(1) and ~Ω(1) · ~Λ(1), are similarly unchanged in Eq. (4.23).

Another application of Clifford algebra in optics that is directly relevant to PMD is the

description of the polarization coherency matrix. While a full analysis of this topic exceeds

the scope of this chapter, the essential aspects of the theory are summarized below. The

formalism can then be immediately adapted to the propagation of partially polarized light

such as that occurring in PMD measurements performed by illuminating a single mode

fiber with a LED or white light source.

We first represent the coherency matrix

|s〉〈s| = 1

2
(s0σ0 + ~s · ~σ) (4.24)

as a linear combination of the 2 × 2 identity matrix, σ0, and the Pauli spin matrices,

~σ with coefficients given by the real valued Stokes parameters, s0 and ~s. The Stokes

parameters comprise a 4 component Lorentz vector, which can be assembled into a real-

valued multivector š = s0 + ~s. Propagation through a birefringent and lossy media is

described by the transformation

ť = Ť šŤ † (4.25)

in which ť = t0 +~t. The Clifford representation of the Jones matrix for a system with both

PMD and PDL is, in analogy with Eq. (4.13), Ť = exp
[
− I

2
(~b+ I~a)

]
. Partial polarization

is described by replacing š in the above formulas by the expression s0 + (1− f)~s, in which
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f represents the fraction of depolarized light [11]. A linear polarizer in the n̂ direction and

a square-law power detector then correspond to the operators (1 + n̂)/2, and (š + ¯̌s)/2

respectively [11]. Numerous additional transformations of partially polarized states can be

similarly represented and manipulated with Clifford algebraic methods, providing a further

compelling benefit of the formalism.

4.4 Conclusions

We have demonstrated that Clifford algebra provides a framework for the description of

polarization evolution in single-mode optical fibers in the presence of PMD and PDL. In

particular, the Lorentz transformation that relates the Stokes vectors at the input and

output of the system can be compactly expressed as a Clifford algebra product. Since

these transformations are easily manipulated, numerous physical results can be derived

in a straightforward fashion. Further, the method can be simply extended to partially

polarized and partially coherent light.



Chapter 5

A Least-Squares Analysis of the

Mueller Matrix

In a single-mode fiber excited by light with a fixed polarization state, the output polariza-

tions obtained at two different optical frequencies are related by a Mueller matrix. We now

examine least-squares procedures for estimating this matrix from repeated measurements

of the output Stokes vector for a random set of input polarization states. We then apply

these methods to the determination of polarization mode dispersion and polarization de-

pendent loss in an optical fiber. We find that a relatively simple formalism leads to results

that are comparable to those of far more involved techniques.

5.1 Introduction

The Mueller matrix, M(ω), of a linear single-mode optical fiber represents the linear

transformation between the polarizations of the incoming and outgoing light expressed

in Stokes space. Associated with M(ω) is the difference transformation, M1(ω1 − ω0) =

M(ω1)M(ω0)
−1, that relates the output polarizations at the optical frequencies ω0 and ω1

55
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for a fixed input polarization. If the fiber is excited by a random set of input polariza-

tions [77] and the output Stokes vectors are measured at ω1 and ω0 for each polarization

in this set, M1(ω1 − ω0), and subsequently the polarization-mode dispersion (PMD) and

polarization-dependent loss (PDL) coefficients can be estimated. In this chapter, we exam-

ine three computational methods for determining M1 from these measurements; namely,

(1) an adaptation of Ref. [104] in which the Lorentz group properties satisfied by M1 are

incorporated into a least-squares formulation through Lagrange multipliers, (2) a novel

simplified procedure in which the solution to the least-squares problem is factored into the

product of two matrices, one of which possesses the correct Lorentz group symmetries, and

(3) the numerical optimization procedure of Refs. [58] and [57]. A numerical study reveals

that the second approach yields results that are nearly as accurate as those obtained with

numerical optimization.

If an optical system is excited by a field described by a frequency independent input

Jones vector |s〉, the associated outgoing field vector, |t(ω)〉, is given by |t(ω)〉 = T(ω)|s〉
where the matrix T is normalized such that det(T) = 1, since we consider only the differ-

ential attenuation and phase [50]. The corresponding relationship between the input and

output Stokes vectors s̃ = 〈s|σ̃|s〉 and t̃ = 〈t|σ̃|t〉 is t̃(ω) = M(ω)s̃, in which σ̃ = (σ0, ~σ),

and σ0, ~σ represent the 2 × 2 identity matrix and the Pauli spin vector [45]. Denoting

complex and Hermitian conjugation by ∗ and †, respectively, the Mueller matrix can be

written as the Kronecker product M = A (T⊗T∗)A† for the unitary matrix

A =
1√
2




1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0



. (5.1)

From this representation of the Mueller matrix, we can establish through direct calculation

that M is orthogonal with respect to the Minkowski metric tensor [65]; that is, M+M = I,

with M+ = gMTg, I the 4×4 identity matrix and g = diag(−1, 1, 1, 1), c.f. Appendix B.3.

The Jones matrix, T(ω), satisfies the differential identity (dT/dω)T−1 = −i ~W · ~σ/2
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where ~W = ~Ω + i~Λ, with ~Ω and ~Λ real vectors, is termed the complex principal state. [50]

Evaluating (dM/dω)M−1 from the Kronecker product form of the Mueller matrix yields

the corresponding differential equation [88]

dM

dω
M−1 = H(ω) =

[
0 ~ΛT

~Λ ~Ω×

]
(5.2)

for the frequency evolution of M. A general solution of Eq. (5.2) is provided by the Magnus

expansion, Eq. (3.4) [42, 71,75], which yields to third order in ∆ω

M(ω) = eN(∆ω)M(ω0) (5.3)

where N(∆ω) = H0∆ω + H1
∆ω2

2!
+ (H2 − 1

2
[H0,H1])

∆ω3

3!
, and the subscript n denotes

(dn/dωn) |ω0 . Alternatively, Eq. (5.2) describes the Mueller matrix directly in terms of the

vectors ~Ωn and ~Λn, c.f. Eq. (3.8).

5.2 Least-squares formulation

If the output Stokes vector of a fiber is measured for several input polarizations at the

frequencies ω0 and ω1, the most general relationship between the two sets of values takes

the form [28,73,94]

Y1 = M1Y0

Y1 =
[
t̃(1)(ω1), t̃(2)(ω1), . . . , t̃(N)(ω1)

]
,

Y0 =
[
t̃(1)(ω0), t̃(2)(ω0), . . . , t̃(N)(ω0)

]
. (5.4)

In the above formula, t̃(n)(ω) represents the output Stokes vector for the nth input polar-

ization state so that Y1 and Y0 are 4 × N matrices. The matrix M1 is then given by

M1 = M(ω1)M(ω0)
−1 = exp [N(∆ω)]; c.f. Eq. (5.3). Since the exact algebraic solution

for M1 that minimizes the least-squares error (‖Y1 −M1Y0‖)2 subject to the constraint
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M+
1 M1 = I, to our knowledge, does not yet exist, we instead investigate two approxi-

mate solution methods and the numerical optimization procedure of Refs. [58] and [57] (to

simplify the mathematics, ‖. . .‖ is identified with the Frobenius matrix norm).

Our first procedure, advanced in Ref. [104], employs the least-squares estimate

M1 = UgVg. (5.5)

As demonstrated in Ref. [89], the matrices U and V can always be expressed in terms

of Y1Y
T
0 through a Minkowski space singular value decomposition (SVD) that factors

Y1Y
T
0 = UDV such that U−1 = U+, V−1 = V+, and D is diagonal. Algorithms for

computing U, D and V are presented in Ref. [104]. However, Eq. (5.5) does not minimize

the true error (‖Y1 −M1Y0‖)2, but rather a cost function that preserves certain symme-

tries associated with the Lorentz group [104]. As shown below numerically, this leads to a

certain degree of inaccuracy in Eq. (5.5).

The second procedure follows from the unconstrained least-squares solution, MLS =

Y1Y
T
0 (Y0Y

T
0 )−1, of Eqs (5.4) for which, in our case, M+

LSMLS 6= I. To ensure that the

Mueller matrix possesses the required symmetries, we decompose MLS into the product of

a matrix S1 that is symmetric with respect to the Minkowski metric tensor, i.e., S+
1 = S1,

and a second, orthogonal, component M−1
1 = M+

1 , such that

MLS = M1S1 (5.6)

with

S1 = (M+
LSMLS)

1
2

M1 = MLS(M
+
LSMLS)

− 1
2 . (5.7)

The order of the factorization in Eq. (5.6) affects the value of S1 but leaves M1 invariant;

that is, MLS = M1S1 = S′1M1 in which S′1 6= S1. Accordingly, in this procedure M1 is

associated with the optimum Mueller matrix of Eqs. (5.4).
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An alternative algorithm, proposed in Refs. [58] and [57], minimizes the error through

constrained optimization of the least-squares cost function

‖Y1 −M1Y0‖2 − Tr(L(M+
1 M1 − I)), (5.8)

with respect to M1, where the elements of the matrix L are Lagrange multipliers that

implement the constraint M+
1 M1 = I. The above equation for M1 is then minimized

iteratively.

The PMD and PDL coefficients ~Ωm and ~Λm can be determined from any of the methods

above after finite-differencing N(∆ω) = ln (M1). This yields an estimate for the mth

derivative of the evolution operator, denoted here by Hest
m , from Eq. (5.3) [52]. The step

size between adjacent frequencies, ∆ω = ω1 − ω0, however, must be sufficiently small that

the matrix logarithm is confined to its principal branch. We employ a five-point finite

difference approximation to the derivative operator to obtain Hest
0 and Hest

1 from least-

squares estimates of M1 at the frequencies ω0 ±∆ω and ω0 ± 2∆ω.

5.3 Numerical results

We now compare numerically our least-squares estimate of Hest
m for a varying number of

Stokes vector measurements, N . Our fiber model consists of a sequence of 100 randomly

oriented linearly birefringent but lossy segments selected such that the mean PMD and PDL

of the link is 15.0 ps and 3.0 dB, respectively. The matrices Y1 and Y0 are constructed

from the output polarizations obtained from N random, numerically generated input states

after adding additive Gaussian noise to Y1 with a standard deviation of either 1.0% or

3.0% of |t̃(ω0)|. It should be noted, however, that standard polarization measurements

exhibit a far smaller measurement error than indicated by these values.

In Figs. 5.1 and 5.2 we display the variation of both the average, 〈ε〉, and the standard

deviation, σε, of the relative error,

ε =
‖Hest

0 −H0‖
‖H0‖ × 100%, (5.9)



60

50 100 150 200
0

2

4

6

8

10

 N

<
 ε

 >
 (

%
)

Figure 5.1: Average relative error, 〈ε〉, as a function of the number of Stokes vector mea-

surements, N . The +, × and ◦ markers denote 〈ε〉 calculated using Eqs. (5.5), (5.6) and

(5.8), respectively. Dashed lines - results for 1.0% additive noise, markers only - 3.0%

additive noise.
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Figure 5.2: As in Fig. 5.1 but for the standard deviation of the relative error, σε
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Figure 5.3: Histograms of (top) |~Λ0| (circles), and |~Ω0| (crosses), and (bottom) |~Λ1| (circles),
and |~Ω1| (crosses) estimated from the least-squares algorithm of Eq. (5.6).
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as a function of the number, N , of sampled Stokes vectors. Each statistical average,

〈. . .〉, is performed over 20, 000 fiber realizations. The exact result, H0, is evaluated by

finite differencing the numerically determined Mueller matrix. The values of Hest
0 obtained

from Eq. (5.5), Eq. (5.6) and the minimization of Eq. (5.8), in which the finite differences

were performed with a 0.05nm wavelength step size, are denoted by +, × and ◦ markers.

Further, the dashed curves, isolated markers and solid curves were obtained at numerical

noise levels of 1.0%, 3.0% and 0%, respectively. In the last case, for all the least-squares

algorithms considered here the average and standard deviation of the relative error depend

only on the frequency step size and are independent of the number of input polarizations

per measurement. While all curves, as expected from statistical arguments, converge as

〈ε〉 ∼ 1/
√
N , the average relative error of our simplified procedure, Eq. (5.6), is comparable

to that of the explicit minimization method of Eq. (5.8).

Finally, we analyze the probability density functions of the PMD and PDL, obtained

from our simplified algorithm, Eq. (5.6). Each simulated measurement consists of 50

numerically sampled output Stokes vector evaluations for a wavelength step size of 0.05nm,

together with 1.0% additive numerical noise. After 20, 000 iterations, we obtain the top

graph of Fig. 5.3 for the magnitudes of the first order vectors, |~Λ0| (circles) and |~Ω0|
(crosses). The solid curves in the figure were instead generated by finite differencing the

exact Mueller matrix of Eq. (5.3). The second graph in Fig. 5.3 presents the corresponding

results for the second order vectors |~Λ1|, and |~Ω1|. Clearly, the agreement with theory

further confirms the accuracy of our least-squares estimation procedure.

5.4 Conclusions

In conclusion, we have examined several methods for estimating the Mueller matrix trans-

formation between the output field polarizations at adjacent optical frequencies for a fixed

input polarization direction from repeated measurements of output Stokes vectors. A

simple computational method proved highly accurate and stable against simulated mea-
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surement error. In particular, for our PMD and PDL values, the resulting estimate of the

first-order complex principal state vector for measurements of ≈ 50 output polarization

samples yielded an accuracy of < 3% even in the presence of 3% additive Gaussian noise.

Since these measurements can be performed with fast, repeatable polarization rotators such

as multi-stage lithium niobate devices coupled to high-speed polarimeters, such techniques

can be readily implemented experimentally and are applicable to general optical systems

as well.



Chapter 6

Efficient Jones Matrix Expansions

Next, we estimate the frequency-dependence of the Jones matrix of an optical fiber from

its values at several discrete optical frequencies and illustrate our procedures through

calculations of high-order polarization-mode dispersion in optical fibers.

6.1 Introduction

To simulate quantities such as the optical pulse distortion in an optical communication

channel, the Jones matrix is typically evaluated at many different frequencies within the

signal bandwidth, leading to large evaluation times when performing statistical averages

over channel configurations. We here introduce methods for decreasing the number of

required evaluation points for a given level of accuracy. Our procedures yield up to an

order of magnitude reduction in computation time in studies of optical pulse distortion

compared to standard techniques based on fiber emulators.

Our first procedure simultaneously interpolates both the Jones matrix and the polarization-

mode dispersion (PMD) vector of the optical fiber from their calculated or measured values

at several discrete optical frequencies through a unitary matrix representation [24, 56, 97].
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A second set of methods instead expand the Jones matrix around the carrier frequency

in either a Taylor or Chebyshev series or a Padé approximant [81, 115, 116]. We find that

the bandwidth of the Chebyshev series and the Padé approximant increases linearly as

additional expansion orders are included, unlike that of the Taylor series expression which

displays a square-root dependence on the order number [20, 59]. For a given frequency

spacing between input data points, the error of our simplified Jones matrix interpolation

procedure is found to be comparable to that of a high-order Taylor expansion.

6.2 Numerical Techniques

The unitary Jones matrix of an optical fiber, T(ω), and the output PMD vector, ~Ω(ω) ·
~σ = 2i(dT/dω)T−1, with ~σ the Pauli spin vector, are normally measured or calculated

at Nω frequencies ωn = ω0 + nδ, around the optical carrier, ω0, for any multiple n of

the fundamental frequency offset δ that enters into our subsequent expressions. We here

construct a unitary Jones matrix, U(ω), that optimally interpolates between the discrete

data values T(n) ≡ T(ωn) and ~Ω(n) ≡ ~Ω(ωn). While, for simplicity, this paper only considers

uniformly spaced ωn, our results can be immediately generalized to unequal frequency

separations.

Our first procedure evaluates two additional Jones matrices

A(n) = exp

[
−iδ

6
~Ω(n) · ~σ

]
T(n)

B(n) = exp

[
iδ

6
~Ω(n+1) · ~σ

]
T(n+1) (6.1)

in each frequency interval [ωn, ωn+1] [56]. In the case of zero polarization-dependent loss

(PDL), the interpolating Jones matrix, U(ω), is given by

U(ω) ≡ [
T(n+1)B

−1
(n)

]β3(t) [
B(n)A

−1
(n)

]β2(t) [
A(n)T

−1
(n)

]β1(t)
T(n) (6.2)
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with

β1(t) = 1− (1− t)3

β2(t) = t2(3− 2t)

β3(t) = t3, (6.3)

for t = (ω − ωn)/δ and ωn ≤ ω ≤ ωn+1 such that 0 ≤ t ≤ 1, see Appendix C.4. A similar

interpolation of the input PMD vectors [59] can be performed by reversing the order of

Eqs. (6.1) and (6.2), and replacing ~Ω by ~Ωinput.

Since U(ω) is represented as the product of unitary matrices in Eq. (6.2), its unitarity

is guaranteed [24, 97]. Further, by substitution U(ωn) ≡ T(n) and U(ωn+1) = T(n+1),

confirming that Eq. (6.2) interpolates the discrete Jones matrix data, while evaluating

dU/dω similarly yields the input values ~Ω(n). That is, if the unitary matrix exp[−iψ(n̂ ·
~σ)/2] is denoted by F with ψ and n̂ a constant scalar and unit vector, respectively, then

for any function f(t),
dFf(t)

dt
=

(
df

dt

)
(lnF)Ff(t) (6.4)

while

Ff(t) = exp

[
− i

2
ψf(t)(n̂ · ~σ)

]
(6.5)

Here lnF ≡ −iψ(n̂ ·~σ)/2 [24]. Accordingly, differentiating U(ω) yields, as required [24,56],

[
dU

dω
U−1

]∣∣∣∣
ωn

= − i
2
~Ω(n) · ~σ (6.6)

and [
dU

dω
U−1

]∣∣∣∣
ωn+1

= − i
2
~Ω(n+1) · ~σ (6.7)

An alternative method is obtained from the observation that the accuracy of the Taylor

series expansion of the Jones matrix T(ω0 + ∆ω) =
∑N

k=0 Tk∆ω
k, with

Tk ≡ 1

k!

dkT(ω)

dωk

∣∣∣∣
ω0

(6.8)
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at large ∆ω is considerably less than that of the [Q,M ]-Padé approximant [81,116]

N∑

k=0

Tk∆ω
k =

[
Q∑
q=0

Jq∆ω
q

][
I +

M∑
m=1

Km∆ωm

]−1

(6.9)

For Q+M ≤ N , the coefficients Jq and Km are the solutions of a linear system of Q+M+1

equations involving the Tk. These can be generated by equating equal orders of ∆ω after

multiplying both sides of Eq. (6.9) by the denominator of the Padé approximant [81]. This

yields 


K1

...

KM


 = −




C11 . . . C1M

...
...

CM1 . . . CMM




−1 


TQ+1

...

TQ+M


 (6.10)

The elements of the block matrix C are 2 × 2 matrices given for n,m ∈ [1, . . . ,M ] by

Cnm ≡ TQ+n−m if Q+ n−m ≥ 0 and by the 2× 2 null matrix 0 otherwise. Additionally,

J0 = T0 while




J1

...

JQ


 =




T1

...

TQ


 +




D11 . . . D1M

...
...

DQ1 . . . DQM







K1

...

KM


 (6.11)

in which Dqm ≡ Tq−m and Dqm = 0 for q ≥ m and q < m, respectively, with q ∈ [1, . . . , Q],

m ∈ [1, . . . ,M ].

A third procedure evaluates the Jones matrix, T(ω), at the zeros

ω(k) = ω0 + ∆ω cos
[ π

2N
(2k + 1)

]
(6.12)

k = 0, . . . , N − 1, of the N th order Chebyshev polynomial of the first kind in the interval

|ω − ω0| ≤ ∆ω. Chebyshev series expansion coefficients are then derived from standard

orthogonality conditions yielding the approximation [115]

T(ω) ≈ −1

2
N0 +

N−1∑
j=0

NjTj

(
ω − ω0

∆ω

)
(6.13)
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with

Nj =
2

N

N−1∑

k=0

T(ω(k)) cos

(
πj

2N
(2k + 1)

)
(6.14)

Here j = 0, . . . , N − 1, and Tj(x) denotes the Chebyshev polynomial of the first kind of

order j with −1 ≤ x ≤ 1 [81].

To implement our procedures numerically, c.f. Sec. 6.3, we here introduce exact for-

mulas for the derivatives of the Jones matrix, Tk, associated with an Nseg section fiber

emulator. We start with the recursive expression for the Jones matrix after m linearly

birefringent sections, T(m)(ω) = [R(m)]ω T(m−1)(ω), where R(m) ≡ exp
[−iτ (m)(n̂(m) · ~σ)/2

]

and [R(m)]ω = exp
[−iωτ (m)(n̂(m) ·~σ)/2

]
, in which the differential group delay (DGD) of the

mth section, τ (m), and the unit vector n̂(m) are both independent of the optical frequency

ω. For each k = 0, . . . , N we differentiate T(m)(ω), with m = 1, . . . , Nseg, k times, apply

d[R(m)]ω

dω
= [lnR(m)][R(m)]ω, (6.15)

and finally eliminate terms of the form [R(m)]ω
[
dk−1T(m−1)/dωk−1

]
by substituting for

T
(m)
k−1. With the initial conditions T

(0)
0 = I and T

(0)
k≥1 = 0 this yields, c.f. Appendix A.4,

T
(m)
k = [R(m)]ω0 T

(m−1)
k −

k∑
q=1

1

q!
[− lnR(m)]q T

(m)
k−q (6.16)

Accordingly, we can conveniently obtain T
(m)
k without first determining k − 1 derivatives

of the PMD vector. Note that if this method is instead applied to the PMD concatenation

rule [59] in which the PMD vector τ (m)n̂(m) of the mth segment is taken as frequency-

independent, we generate exact recursive formulas for kth order PMD vectors.

6.3 Numerical Results

We now compare the procedures of Sec. 6.2 through an analysis of an Nseg = 100 section

fiber emulator with an overall mean DGD, τavg = 20 ps, so that τ (m) = τavg
√

3π/8Nseg =
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Figure 6.1: The pdf of the normalized bandwidth, ∆ν = τavg∆ωα/2π, where εα(∆ωα) =

εmax = 2% for each configuration, α = 1, 2, . . . , (Nα = 5×105), of a Nseg = 100 fiber emula-

tor as calculated with the fourth order Chebyshev (×), and Taylor series (+) expansions as

well as the [2, 2]-Padé approximant (◦) and the interpolation procedure of Eq. (6.2) (solid

line).
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Figure 6.2: The minimum value, ∆νmin, of ∆ν that limits the maximum recorded error,

Eq. (6.17), < 2% for 99.99% of the randomly generated samples graphed as a function

of expansion order, N . The ×, + and ◦ markers represent Chebyshev, Taylor and Padé

approximant expansions, respectively, while the horizontal dashed line represents ∆νmin

from Fig. 6.1, of Eq. (6.2). The 4 markers correspond to the ∆νmin obtained if the Taylor

series error is limited to < 2% instead for 95% of the samples. The superimposed solid

lines are optimized linear and square-root function approximations.
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2.17 ps for each m = 1, . . . , Nseg while the n̂(m) are chosen from a uniform statistical

distribution over the Poincaré sphere. The maximum error, εα(∆ω), between the estimated,

Test(ω), and exact Jones matrices, T(ω), over the frequency interval 0 ≤ ω − ω0 ≤ ∆ω is

given for each realization, α, of the emulator by

εα(∆ω) = max
0≤ω−ω0≤∆ω

[‖Test(ω)−T(ω)‖
‖T(ω)‖

]
· 100%, (6.17)

where ‖T‖ ≡
√

Tr (T†T) is the Frobenius matrix norm, † represents Hermitian conjugation

and Tr(. . .) indicates a trace. Next, for each α = 1, 2, . . . , (Nα = 5 × 105) a bisection

method [81] is employed to determine the bandwidth, ∆ωα, such that εα(∆ωα) = εmax

for a maximum specified error, εmax. The results of Nα such calculations for each of the

numerical techniques of Sec. 6.2 yield corresponding estimates of the probability density

function (pdf) of ∆ωα. The advantage of such an approach as opposed to, e.g. calculation

of the system penalty function, Q, is that Eq. (6.17) is independent of a specific hardware

implementation and therefore provides an unambiguous measure of the relative accuracy

of our procedures.

Our results are typified by the pdf of ∆ωα for εmax = 2% as a function of the normalized

frequency ∆ν = τavg∆ωα/2π as displayed in Fig. 6.1. In this figure Test is approximated

by a fourth order Chebyshev polynomial (×), a fourth order Taylor expansion (+), a

[2, 2]-Padé approximant (◦), and the interpolation method of Eq. (6.2) (solid line) for

which δ → ∆ω is the spacing between adjacent frequency values. Clearly Eq. (6.2), the

[2, 2]-Padé approximant and the fourth order Chebyshev series significantly increase the

frequency range over which the Jones matrix can be accurately estimated compared to the

fourth order Taylor series procedure.

Next, to determine the dependence of the range of accuracy of each of the methods of

Sec. 6.2 on the expansion order N , for N = 1, 2, . . . , 20, we determine as in the calculation

of Fig. 6.1 the normalized frequency, ∆νmin, such that the probability of ∆ν exceeding

∆νmin, P (∆ν ≥ ∆νmin), is 99.99%. Fig. 6.2 then displays the variation of ∆νmin with

N in which the ◦, + and × markers indicate the Padé approximant, Taylor series and
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Chebyshev expansions, respectively, while the horizontal dashed line corresponds to ∆νmin

from Fig. 6.1 with the Jones matrix interpolation of Eq. (6.2). Here we have employed a

Padé approximant with Q = M = N/2 for even N and Q = (N −1)/2 and M = (N +1)/2

for odd N (our results were found to be relatively independent of the values chosen for Q

and M = N −Q).

Although ∆ν < ∆νmin with a probability 1−P (∆ν ≥ ∆νmin), the qualitative behavior

of the variation of ∆νmin with expansion order, N , is independent of P (∆ν ≥ ∆νmin).

To illustrate, the 4 markers of Fig. 6.2 represent the Taylor series expansion method

results with ∆νmin instead determined by P (∆ν ≥ ∆νmin) = 95%. Despite our inability

to determine a universal value of ∆νmin such that ∆ν ≥ ∆νmin for all possible emulator

realizations, the rapid decrease of the pdf near ∆ν ≈ 0.15 in Fig. 6.1, indicates that a

small reduction in ∆νmin substantially decreases the probability that the estimation error

exceeds εmax.

Further, we note from the solid lines in Fig. 6.2, which are optimal fits to linear and

square-root functions, that ∆νmin increases as ∼√N for the Taylor series expansion [20],

but varies instead linearly with N for both the Chebyshev expansion and Padé approximant

up to N = 20 (although deviations from linearity are evident in the Padé approximant

results for large N). The error associated with the Taylor series additionally exceeds that

of the Padé approximant for N ≥ 4. Further, the ∆νmin corresponding to Eq. (6.2) is

comparable to that of a sixth order Taylor series, fifth order Chebyshev or a [2, 3]-Padé

approximant. Accordingly, Eq. (6.2) provides a highly accurate method for estimating the

frequency dependence of the Jones matrix from the values of the Jones matrix and the

PMD vector at discrete optical frequencies.

It should be noted as well that many other expansion and interpolation techniques exist

that could also be successfully employed in specific contexts. These include most notably

the Padé -Chebyshev [116], the natural cubic spline [81] and quaternion spline [97] interpo-

lation procedures. However, for the numerical example of this paper, the Padé -Chebyshev

expansion, which results from an expansion in Chebyshev polynomials of the first kind
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as in Eq. (6.9), provided only minor improvement over the standard Chebyshev method

of Sec. 6.2 at the cost of significant additional computational complexity. Natural cubic

spline interpolation, which separately interpolates the two complex values that uniquely

specify the unitary matrix T(ω) [81], similarly yielded an error comparable to that of the

third order Taylor series and therefore would be relevant when the Jones matrix inputs are

only available at discrete optical frequencies. Finally, while Ref. [97] provides algorithms

for interpolating unit-quaternions, the error in our example exceeds that obtained even

with standard cubic spline procedures.

6.4 Conclusions

While the frequency behavior of the Jones matrix is normally characterized by PMD co-

efficients, other parameterizations can be preferable in the presence of large high-order

PMD. For example, we demonstrated above that the bandwidth of the Padé approximant

varies linearly with expansion order, unlike the square-root dependence of the standard

PMD expansion. We also presented a highly-accurate quaternion procedure [24, 56] that

interpolates the Jones matrix from its values together with the corresponding PMD vectors

at a given discrete set of optical frequencies. The increased numerical accuracy and pro-

gramming simplicity afforded by such methods should yield improved simulation methods

for high bit-rate single or multiple channel optical systems.



Chapter 7

Alignment Methods for Biased

Multicanonical Sampling

The efficiency of the multicanonical procedure can be significantly improved by applying

an additional bias to the numerically generated sample space. However, results obtained by

biasing in different sampling regions cannot in general be accurately combined since their

relative normalization coefficients are not known precisely. In this chapter, we demon-

strate that for overlapping biasing regions a simple iterative procedure can be employed to

determine the required coefficients.

7.1 Introduction

Communication system studies normally involve the estimation of small error probabili-

ties that are associated with physically unlikely system configurations. Numerical system

simulations have therefore recently employed the multicanonical method [15, 112–114] to

increase the likelihood of physically interesting sampling events. In our initial studies

of the pdf of the differential group delay (DGD) of an optical fiber [37, 45, 54] we found

75
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that multicanonical procedures reduced the number of samples required to predict or mea-

sure the low-probability region of the pdf by orders of magnitude. However, the increase

in computational efficiency, while large, can still be insufficient for experimental applica-

tions [69, 70], in which orders of magnitude fewer system configurations can be sampled

compared to numerical simulations. Accordingly several improvements to multicanonical

sampling have been proposed [68, 117], including biased multicanonical approaches that

concentrate the statistical samples into restricted regions of the space of system observ-

ables. With appropriate bias functions, we performed measurements of the pdf of the DGD

to an unparalleled level of precision with standard equipment [69].

However, if our method is applied repeatedly to the same problem but with the sample

space biased in different regions, the associated histograms cannot be combined to predict

the global system behavior since their relative normalization is undetermined. Here we

present a procedure for calculating the required normalization constants when the sam-

pling regions of successive biased multicanonical iterations (or separate multicanonical

calculations) overlap. In particular, the relative normalization constants are obtained from

an iterative procedure in which the converged solution minimizes the mean square error

(MSE) of the pdf estimate in the overlapping regions. Our method yields a substantial

increase in computational efficiency with modest additional programming effort.

Methods similar to ours have been previously applied to the Monte Carlo method and

to the canonical distribution [5] generated by the Metropolis algorithm. These include

successive umbrella sampling [102, 103, 108], bridge sampling [12], importance sampling

and the weighted histogram analysis method (WHAM) of Refs. [33,61,101]. However, the

procedure of this chapter is, to our knowledge, the first implementation of such techniques

to the multicanonical ensemble [13, 14,100,117].
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7.2 Multicanonical sampling

The multicanonical method is an iterative, biased statistical sampling method that presup-

poses a complete absence of prior information about the system properties. The procedure

generates the value of any function of system variables, p′( ~E), weighted by its probability

of occurrence which is collectively denoted by p( ~E). The ~E(~α) are a vector of NE system

observables that are dependent on Nα stochastic parameters, ~α. In the calculations of this

chapter, the observables correspond to the DGD of an optical fiber system, the randomly

varying parameters, ~α are the angles of various polarization controllers [69, 70], and p( ~E)

is the pdf associated with finding the system in a given state of the observable. However,

it should be emphasized that the choice of these quantities is effectively arbitrary (in the

more general case, which is discussed and illustrated in detail in Ref. [117], the histograms

below must be updated by a different value than unity).

To implement the multicanonical method, the physically relevant region of the output

values (solution space) ~E is divided into N histogram bins with volume ∆V centered at

~Ei with i = 1, 2, . . . N . A histogram that here corresponds to the current estimate of the

(unnormalized) pdf, which we denote p0, and a second histogram, H1( ~E), that stores tem-

porary values, are first set to unity, consistent with an absence of prior information. We

then generate a set of random system variables, ~αcur, and compute the associated observ-

ables ~Ecur. A transition is then generated from ~αnew = ~αcur + ∆~α where ∆~α represents a

small random perturbation (which can be chosen from an effectively arbitrary probability

distribution, as verified in Ref. [117]), leading to new observables ~Enew. This transition

is accepted with probability min
[
1, p( ~Ecur)/p( ~Enew)

]
, in which case the system variables

~αcur are replaced by ~αnew; otherwise a self-transition occurs and ~αnew is set to ~αcur for the

following step [112]. In either case, the value of the histogram bin H1( ~E) corresponding to

the updated ~Ecur is incremented. After Ns transitions, a new, rebiased, estimate of p ≡ p1

is generated from p1( ~E) = cp0( ~E)H1( ~E), where the normalization constant c is normally

chosen according to the criterion that p1 corresponds to a probability distribution. While

this procedure initially leads to the Monte Carlo result, in the subsequent iteration, p0( ~E)
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is replaced by p1( ~E) and the above steps are repeated. The acceptance rule then increases

the sampling probability of states with small p( ~E) in such a manner that the resulting

histogram becomes increasingly independent of ~E as the calculation progresses.

7.3 Biased multicanonical sampling

Biasing methods increase the multicanonical sampling probability in a limited region Rk

of the system observables. One procedure multiplies the current estimate of p( ~E) by a

bias enhancement function F ( ~E) that is constant within Rk, and rapidly increases away

from this region, i.e. p̃m−1( ~E) = pm−1( ~E)F ( ~E) at the beginning of each iteration [68].

The resulting modified transition rule augments the probability of transitions into Rk;

however, at the end of the iteration loop, an unbiased estimate of p is recovered from

pm( ~E) = p̃m−1( ~E)Hm( ~E) as in the importance sampling technique. In the one-dimensional

calculations of this chapter, ~E corresponds to a single variable E while in the nth multi-

canonical iteration we employ

F (E) =





exp
[

1
2σ2 (E − EL

n)2
]
, E < EL

n

exp
[

1
2σ2 (E − ER

n )2
]
, E > ER

n

1, EL
n ≤ E ≤ ER

n

(7.1)

in which EL
n and ER

n are the left and right limits of the region over which F (E) is constant.

If the relative normalization is known, we can combine the estimates, p̂i( ~E), i =

1, . . . , (m− 1), of p( ~E), obtained from either m− 1 successive iterations or the converged

results of m− 1 biased multicanonical calculations with different bias functions, Fi( ~E), for

which the corresponding regions Ri differ. For example, according to the standard impor-

tance sampling prescription, the result in the kth histogram bin is obtained by weighing

each contribution according to the relative number of samples, Hi( ~Ek), in this bin; that
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is [107,117]

p( ~Ek) =

m−1∑
i=1

Hi( ~Ek)p̂i( ~Ek)

m−1∑
i=1

Hi( ~Ek)

. (7.2)

Unfortunately, the relative normalization of the individual histograms is generally un-

determined unless the biasing is sufficiently weak that all calculations yield acceptable

estimates of the large-amplitude regions of the pdf. However, if the regions Ri and Ri−1

partially overlap, the respective pdfs p̂i and p̂i−1, differ in the common region by at most a

normalization constant if statistical fluctuations are neglected. Below, we present a slight

modification of the procedure of Refs. [33, 61, 101]. The resulting algorithm determines

the ratio of the unknown normalization constants by minimizing the mean squared error

(MSE) of the pdf estimate.

We accordingly consider a slightly more general expression,

p̂( ~Ek) =
m−1∑
i=1

Aiwi( ~Ek)p̂i( ~Ek) (7.3)

for the pdf estimate at the start of the mth multicanonical iteration, formed by the weighted

sum
m−1∑
i=1

wi( ~Ek) = 1 (7.4)

of m− 1 biased estimates, p̂i( ~Ek), for all k. The normalization constant, Ai, is defined by

pi( ~E) =

{
p( ~E)/Ai, ~E ∈ Ri

0, otherwise
(7.5)

in which p( ~E) and pi( ~E) are the exact and the biased pdf:s, respectively. That is, Ai

denotes the integral of p( ~E) over the ith biasing region, Ri. The optimal weight functions
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can therefore be determined by minimizing the MSE [96] of p̂( ~Ek),

MSE{p̂( ~Ek)} ≡ E{[p̂( ~Ek)− p( ~Ek)
]2}

=
m−1∑
i=1

A2
iw

2
i ( ~Ek)Var{p̂i( ~Ek)}

+
[
E{p̂( ~Ek)} − p( ~Ek)

]2
, (7.6)

with respect to wi( ~Ek) while simultaneously imposing the normalization condition of

Eq. (7.4) [2,61,101,107]. Here E{. . .} and Var{. . .} represent the expectation and variance

over a large number of multicanonical simulations.

To minimize Eq. (7.6), the constraint of Eq. (7.4) is introduced through a Lagrange

multiplier, λ, and each partial derivative of

f̂( ~Ek) = MSE{p̂( ~Ek)} − λ

{
m−1∑
i=1

wi( ~Ek)− 1

}
, (7.7)

with respect to wj is subsequently equated to zero. This yields for the optimum weight

functions

wi( ~Ek) =
I

(k)
i /

[
A2
iVar{p̂i( ~Ek)}

]
m−1∑
j=1

I
(k)
j /

[
A2
jVar{p̂j( ~Ek)}

]
(7.8)

The expression I
(k)
i is zero if p̂i( ~Ek) = 0 and one otherwise, which ensures that the pdf

estimate is correctly weighted in the absence of histogram samples.

The variance appearing in Eq. (7.8) is given in terms of the ni samples recorded in Hi

by [34,96,101]

Var{p̂i( ~Ek)} =
1

ni∆V
gi( ~Ek)pi( ~Ek). (7.9)

Here gi( ~Ek) should incorporate the covariance between successive samples in the kth his-

togram bin during the ith multicanonical iteration [101]. For simplicity, however, we ap-

proximate gi( ~Ek) by a constant for all i [101], and further replace pi( ~Ek) → p( ~Ek)/Ai
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according to Eq. (7.5). This yields the approximation

p̂( ~Ek) ≈

m−1∑
i=1

nip̂i( ~Ek)

m−1∑
j=1

I
(k)
j nj/Aj

. (7.10)

We proceed as in Refs. [61,101] by observing that

An =

∫

Rn

p( ~E)d ~E ≈
∑

{kn| ~Ekn∈Rn}
p̂( ~Ekn)∆V. (7.11)

Applying Eq. (7.10) then yields

An ∝
∑

{kn| ~Ekn∈Rn}

m−1∑
i=1

nip̂i( ~Ekn)

m−1∑
j=1

I
(kn)
j nj/Aj

. (7.12)

To solve the above expression, all normalization constants An are initialized to unity and

then inserted into Eq. (7.12), which provides new estimates of the An. The procedure is

then iterated until the relative change in An is less than a specified value, c.f. Appendix C.6.

To avoid numerical divergences, An is typically replaced with cAn after each iteration. In

our calculations, the constant c is determined from the condition that the components of

the pdf p̂, Eq. (7.10), sum to unity.

If the intersection of Rn−1 and Rn is disjoint from any other biasing region for every

n, the converged An/An−1 equals the ratio of the sums of the histogram values within the

overlapping region. If, on the other hand, more than one successive biasing region overlaps,

the full iterative solution of Eq. (7.12) is required.

The number of iterations can be considerably reduced if the initial estimates for An in

Eq. (7.12) are chosen to minimize the vertical offset between p̂n−1 and p̂n. That is, if A
(0)
n
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represents the initial value of An, we minimize the weighted least-squares error [5] with

weighting constants wlsk , namely,

N∑

k=1

wlsk
[
p̂n−1( ~Ek)− xnp̂n( ~Ek)

]2
, (7.13)

with respect to xn ≡ A
(0)
n /A

(0)
n−1, n = 2, . . . , (m− 1). This yields

A
(0)
n

A
(0)
n−1

=

N∑

k=1

wlsk p̂n−1( ~Ek)p̂n( ~Ek)

N∑

k=1

wlsk
[
p̂n( ~Ek)

]2

. (7.14)

Similarly, A
(0)
n can be recursively determined from Eq. (7.14) after setting A

(0)
1 = 1. The

choice of weights, wlsk , is not unique; in our calculations, however, we set wlsk to the product

(Hn( ~Ek)− 1)(Hn−1( ~Ek)− 1) (recall that all histogram bins are initialized to unity).

Accordingly, to determine the pdf of a observable, E, we first compute a Monte Carlo

estimate of the pdf, p̂1, and select as the initial biasing region an interval centered on the

last point, E0, in the calculation for which ten or more samples have been recorded. This

criterion reflects the empirical observation that with our computational parameters, these

points are normally surrounded by a region of histogram bins that contain at least one

sample. The width of the biasing range, ∆E, is then selected for every iteration according

to

∆E = 2
Emax − E0

1 + 2γ(NI − 1)
. (7.15)

where Emax and NI denote the maximum value of interest of the system observable and

the number of biased multicanonical iterations, respectively and γ is the fraction of the

window width by which the biasing range is shifted to the right for each multicanonical

iteration, i.e.

EL
n = E0 + ∆E

[
(n− 1)γ − 1/2

]

ER
n = E0 + ∆E

[
(n− 1)γ + 1/2

]
(7.16)
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for n = 1, . . . , NI . That is, γ = 0.75 corresponds to a 25% overlap of the new biasing

region with the previous region. Employing Ns samples and F (E) given by Eq. (7.1),

a biased multicanonical histogram, H2 is calculated as in Sec. 7.2 leading to a new pdf

estimate p̂2. The ratio of the normalization constants A1 and A2 for this first iteration

is then determined through Eq. (7.12), after which the updated pdf is computed from

Eq. (7.10). The biasing region is then shifted to the right according to Eq. (7.16) and

the procedure repeated such that the unnormalized pdf estimates p̂1, . . . , p̂m−1, after m−1

biased multicanonical iterations are combined in an analogous fashion to yield the improved

pdf estimate for the mth iteration.

Note that our method differs substantially from, for example, umbrella sampling, in

which intermediate results are only combined at the end of the calculation. Further, as

noted in [67], our approach enables regions of state space with physically interesting prop-

erties to be located and examined dynamically by positioning the biasing region according

to the results of previous iterations.

7.4 Numerical results

Before establishing the experimental significance of our formalism, we first demonstrate

its accuracy through numerical simulations. These will analyze the established test case

for which the system output variable E ≡ τ(~α) is the DGD, τ , of a simulated optical

fiber emulator. In the calculations of this chapter, the emulator consists of Nsec = 100

sections of randomly oriented, polarization maintaining (PM) fiber [26]. The DGD of a

single fiber section, τsec, is determined by the requirement that the average DGD τavg =

τsec
√

8Nsec/3π = 25 ps. The system parameters, ~α, then correspond to the coupling angles

between the PM fiber segments [112]. Our calculations further employ ten 2× 104-sample

iterations with γ = 0.3. Events are recorded in 100 equal size histogram bins in the interval

0 < τ/τavg < 10.

We first display the rate of convergence afforded by Eq. (7.12) in Fig. 7.1, which displays
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Figure 7.1: The maximum relative error, Eq. (7.17), for the initial estimate of the nor-

malization constants of Eq. (7.14) (solid line) and for the iterated results A
(0)
n = 1, n =

1, . . . , NI for these constants (dotted line). Results are illustrated for a 100 segment fiber

emulator with τavg = 25 ps and 10 biased multicanonical iterations with 2× 104 points per

iteration with γ = 0.3.
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Figure 7.2: The pdf, Eq. (7.10), obtained from the calculation of Fig. 7.1 after joining
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(dotted-line) iterations of Eq. (7.12), The solid line is the exact result of Eq. (1.17) [54].

The normalization constants are here initialized to A
(0)
n = 1, n = 1, . . . , NI .
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Figure 7.3: (a) The biased pdf estimate p̂2 before (circles) and after (dashed line) combi-

nation with the initial Monte Carlo estimate p̂1 (solid line) according to Eq. (7.10) with

γ = 0.3. (b) Analogous results for the second biasing iteration in which p̂1, p̂2 and p̂3

(crosses) are combined according to Eq. (7.10) (solid line). The vertical lines indicate the

biasing region.
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Figure 7.4: The pdf of the DGD of a 100 section fiber emulator calculated with fifty 5×104-

sample iterations with the iterative biased multicanonical method (dashed-dotted line) and

the standard multicanonical procedure (◦) together with the analytic result (solid line).
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the maximum relative error

ε = max
n

[
A

(i)
n − A

(i−1)
n

A
(i−1)
n

]
× 100% (7.17)

of the normalization constants, after the ith iteration, i = 2, 3, . . . , 50000. The initial

estimates A
(0)
n = 1 yield the dotted line in Fig. 7.1, while the initial estimates of Eq. (7.14)

instead yield the solid line in the figure. The combined pdf estimates obtained from

Eq. (7.10) after 1 (+), 2000 (◦) and 20, 000 (dotted line) iterations of Eq. (7.12) for the

case in which all An were initialized to unity are presented in Fig. 7.2.

Next, in Fig. 7.3 we illustrate the combination of piecewise biased estimates of the pdf.

The solid curve in the top graph of Fig. 7.3 is the initial pdf estimate, p̂1 obtained from

a Monte Carlo simulation, while the subsequent biased estimates, p̂2, before and after the

application of Eq. (7.12) are indicated by circular markers and dashed lines, respectively.

The quantity p̂2 is displayed only within region of constant bias, as the histogram values

outside this region does not affect the updated pdf estimate in our procedure. The second

graph in Fig. 7.3 depicts the corresponding results for the second iteration for which the

dotted line is now generated by combining the three results p̂1, p̂2 and p̂3 according to

Eq. (7.10).

After fifty 5× 104-sample iterations with γ = 0.25, we generate the dashed-dotted line

in Fig. 7.4 with our biased multicanonical method, while the solid line in the figure is

the analytic result, Eq. (1.17) [54]. The result of the standard multicanonical procedure

with fifteen 1.67 × 105-sample iterations, which was found empirically to yield near ideal

results for the pdf in the low-probability tail region, is shown with ◦ markers in Fig. 7.4.

Evidently, even without careful optimization of the computational parameters, our biased

multicanonical method yields a considerable increase in computational efficiency compared

to the standard multicanonical procedure with the same number of samples.
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Figure 7.5: The biased multicanonical experimental setup.

7.5 Experimental measurements

To demonstrate that our procedure can be applied experimentally, we measured the pdf of

the DGD, τ , of an 8 stage optical fiber emulator following the procedure of Ref. [69]. The

experimental setup, c.f. Fig. 7.5, employed eight General Photonics PolaRITE II three axis

polarization controllers separated by unequal length PM fibers. As in Sec. 7.4, E ≡ τ(~α)

represents the relevant system observable, namely the DGD, while ~α, corresponds to the 24

input voltages applied to the 8 polarization controllers. The DGD of the fiber emulator was

measured by applying the Jones matrix eigenanalysis (JME) procedure to the output of an

HP 8509B polarization analyzer combined with a Tunics PRI tunable laser [47]. The mean

and maximum DGD for the system are approximately 11.7 ps and 37.4 ps, respectively.

In our experiment, the Jones matrix was measured at two wavelengths displaced by

0.1nm by cycling an EO-Space 8-stage polarization controller through 5 random input

polarization states and reading the corresponding output Stokes vectors from the analog

outputs of the HP 8509B with a National Instruments PCI-6221 input card. The Jones

matrix was computed from the output values according to the least-squares method of

Refs. [86] and [94], at a rate five times faster than the native HP 8509B JME measure-
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Figure 7.6: The experimentally determined pdf of the DGD of an 8 section fiber emulator

for 45, 000 samples measured with the piecewise biased multicanonical method (circles) and

the standard Monte Carlo procedure (crosses). The solid line indicates the corresponding

numerical results for three 5×105 sample iterations in the standard multicanonical method.
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ment algorithms, although further improvements could be attained with relatively minor

component modifications.

Employing 10, 000 Monte Carlo measurements followed by seven, 5, 000-sample biased

multicanonical iterations with γ = 0.5, the piecewise procedure of Sec. 7.3 yielded the ◦
markers in Fig. 7.6 for the measured pdf of the DGD, τ , of the fiber emulator. For com-

parison, the points marked + in the figure were generated with a standard 45, 000-point

Monte Carlo measurement. Finally, the solid line of Fig. 7.6 indicates the simulated pdf

for three 5× 105-sample iterations of the standard multicanonical algorithm in which the

DGD for each PM fiber segment corresponded to the values measured in the experimental

setup. Although the number of multicanonical iterations and sampling events were chosen

to produce probabilities of occurrence comparable to the experimental results, the agree-

ment between the calculated and experimentally determined pdfs is still notable [26, 37].

Evidently, our aligned piecewise biasing procedure computes the low probability regions of

the pdf with considerably greater efficiency than the standard multicanonical method.

7.6 Conclusions

We have employed an iterative method to combine the intermediate results of strongly bi-

ased multicanonical calculations. Our procedure can be immediately adapted to any biasing

formalism, as for example, directly calculating other quantities than the pdf [114], raising

the intermediate pdf or histogram variable to a power (power method), dynamically bias-

ing in multidimensional space to locate regions with physically interesting properties [67]

and employing highly confining bias functions to strictly limit the statistical events to a

small region of parameter space (barrier method) [117]. Since in each case, the sampling

region is limited to a far smaller region of parameter space than in standard multicanonical

calculations, considerable increases in computational efficiency are possible, especially in

high-dimensional problems, which is of great significance in experimental applications.



Chapter 8

Multicanonical Analyses of System

Penalties

We finally employ biased multicanonical sampling to generate system configurations with

specific probabilities of eye-closure either before or after compensation (equalization). In

an optical communications context, such states can be analyzed by their PMD coefficients.

We find that the PMD coefficients of states with equal eye-closure probabilities vary sig-

nificantly for different compensator structures, an observation which has implications for

system characterization.

8.1 Introduction

In communications theory, the properties of system configurations with specified eye-

closure penalties must often be examined. However, the probability of such configurations

can be very low; further, the penalty may depend on numerous system parameters. For

our model 10 Gb/s optical communication system application these include the modula-

tion format, mean differential group delay (DGD), and presence of optical or electrical

PMD compensation [6, 19, 98]. In this chapter, we however demonstrate that the biased
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multicanonical method [83,117] provides an efficient means of sampling states with a given

penalty metric that can then be characterized in terms of a few significant global system

variables, here the lowest-order PMD coefficients.

The organization of this chapter is as follows. First, we review our formulation of

PMD compensation in terms of products of non-commuting exponential operators in the

special case of zero polarization-dependent loss (PDL). We also introduce an eye-closure

penalty metric for a simplified optical system model. Biased multicanonical sampling

is then employed to sample emulator configurations with approximately equal eye-closure

penalties at a low probability of occurrence. The density of these configurations is analyzed

in terms of the first, second and third order PMD coefficients after optical compensation.

8.2 Compensator Jones matrix

The frequency-dependence of the Jones matrix, T(ω), of an optical fiber with zero PDL is

described by the differential equation [dT(ω)/dω]T(ω)−1 = −i~Ω(ω) · ~σ/2 in which ~Ω(ω)

is a real three-component vector and ω denotes the optical frequency [59]. A convenient

form of the solution to the above equation in terms of Taylor orders of ~Ω(ω) is given by the

Magnus expansion, which to third order in the frequency deviation, ∆ω = ω − ω0, from

the optical carrier frequency, ω0, yields

T(ω)T(ω0)
−1 = exp

[
− i

2

(
~Ω0∆ω + ~Ω1

∆ω2

2!
(8.1)

+
(
~Ω2 − 1

2
~Ω0 × ~Ω1

)∆ω3

3!
+ . . .

)
· ~σ

]
.

in which ~Ωn ≡
(
dn~Ω/dωn

)|ω0 [88]. Truncating the series in the exponential yields an

expression that can be expressed as a product of non-commuting exponential operators,

although the exponentials must be properly ordered to preserve the level of accuracy in

∆ω [118]. The inverse of each of these exponential operators can, at least in principle,

be implemented experimentally as a particular compensator element. In this manner, we
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obtain expressions for the Jones matrices of the form T
(n)
C (ω) = C(n)(∆ω)T(ω) that yield

a minimum residual polarization dependence after nth order PMD compensation. To first,

second and third order, respectively, these are [60, 88,118]

C(1)(∆ω) = exp
[i∆ω

2
~Ω0 · ~σ

]
, (8.2)

C(2)(∆ω) = exp
[i∆ω

4
~Ω0 · ~σ

]
exp

[i∆ω2

4
~Ω1 · ~σ

]

exp
[i∆ω

4
~Ω0 · ~σ

]
, (8.3)

C(3)(∆ω) = exp
[i∆ω3

12
~Ω2 · ~σ

]
exp

[i∆ω
3

~Ω0 · ~σ
]

exp
[i∆ω2

4
~Ω1 · ~σ

]
exp

[i∆ω
6

~Ω0 · ~σ
]

(8.4)

Unfortunately, however, because the PMD coefficients are obtained through a Taylor ex-

pansion the third order compensator of Eq. (8.4) yields improved performance compared

to Eq. (8.3), for ∆ω smaller than a certain correlation frequency, while for larger fre-

quency deviations the error in the third-order result tends to increase rapidly, degrading

the eye-closure penalty [112].

8.3 Numerical results

We now calculate the joint conditional probability P (|~Ω0|, |~Ω1|, |~Ω2| |∆qwc), that the com-

munication system will display certain values of the first-, second- and third-order PMD

vector magnitudes. However, we restrict our attention to states with a given “worst-case”

value of the eye-closure penalty, ∆qwc; that is, system configurations for which the proba-

bility density of an eye-closure is 10−5 and, in particular, demonstrate that this quantity

can be efficiently determined with biased multicanonical sampling [83,117].

We accordingly model T(ω) of an optical communication system with a mean DGD,

τavg, as a concatenation of Nsec = 100 polarization-maintaining fiber sections, each of

which possesses a DGD τsec = τavg
√

3π/8Nsec. Then, for each emulator realization, the
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Figure 8.1: Probability density function of the eye-closure penalty for τavg = 30 ps without

compensation (solid line), and after the compensators described by the Jones matrices of

Eq. (8.2) (◦), Eq. (8.3) (×), and Eq. (8.4) (+).
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Figure 8.2: Simulation configuration.

propagation through the fiber of a 10 Gb/s non-return to zero (NRZ) x-polarized optical

waveform, obtained by sampling a 32 bit pseudo-random bit sequence (PRBS) at T/16,

is simulated. Optical PMD compensation is then included through the Jones matrices

of Eqs. (8.2)-(8.4) in which the ~Ωn are obtained by finite-differencing the numerically

determined T(ω). The resulting output pulse was filtered with a raised-cosine filter with

a roll-off factor of 1.0 and detected with a simulated square-law detector as depicted in

Fig. 8.2.

The eye-closure penalty, ∆q = log10(qb2b/qout), where qout and qb2b respectively denote

the minimum eye opening at the output of the emulator and for a back-to-back transmit-

ter/receiver pair, was then estimated for each fiber realization with an inner-eye measure

algorithm based on the minimum vertical eye opening within a 20 ps jitter window centered

on the optimum sampling phase [95, 98]. This window interval approximately reproduces

the penalty resulting from timing phase jitter in the clock recovery circuit.

To simulate the pdf of the eye-closure penalty we adapted the biased multicanonical

technique of Refs. [83, 117]. Here we first subdivided the [0, 3] dB range of eye-closure

penalty into 10 overlapping regions, R1,R2 . . .R10, such that adjacent biasing regions

overlap by 30%. We denote the left and right boundaries of the mth region by ∆qL
m and

∆qR
m. In the mth multicanonical iteration (m = 1, . . . , 10), an auxiliary bias function

is applied that is constant within Rm and increases exponentially away from the region
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boundaries [83, 117]. While the resulting modified multicanonical transition rule [16] sub-

stantially augments the probability of transitions into the biasing region ∆qL
m ≤ ∆q ≤ ∆qR

m,

an unbiased estimate of the pdf is subsequently recovered by multiplying the previous pdf

estimate by the histogram of visited states [117]. However since the relative normalization

of the results obtained in different biasing regions is undetermined, we determine the full

pdf by iteratively minimizing the mean squared variance of a linear combination of the

individual distributions [83].

Accordingly, we first generated 5 × 104 fiber realizations biased within Rm for each

biased multicanonical iteration, m. Once an Rm was obtained such that included events

contribute to the eye closure penalty with a probability density after compensation of

10−5, the bias function was narrowed to concentrate the final set of 105 samples within the

restricted region ∆q ∈ ∆qwc ± 0.002 dB.

In Fig. 8.1 we display the pdf of the eye-closure penalty for an optical fiber characterized

by τavg = 30 ps, followed by PMD compensation corresponding to Eq. (8.2) (◦ markers),

Eq. (8.3) (× markers), Eq. (8.4) (+ markers) as well as without PMD compensation (solid

line). That third order compensation, Eq. (8.4), yields a greater eye-closure penalty than

second order compensation, Eq. (8.3), at low-probabilities of occurrence indicates that

these events are associated with large PMD values for which the third order compen-

sator considerably augments fourth and higher order effects that dominate the eye-closure

penalty at large frequency offsets.

Next, Figs. 8.3-8.5 displays histograms for the joint marginal distribution,

P (|~Ω0|, |~Ω1|, |~Ω2| |∆qwc), obtained from the iso-penalty ensemble of emulator states for each

of the compensators of (Fig. 8.3) Eq. (8.2), (Fig. 8.4) Eq. (8.3) and (Fig. 8.5) Eq. (8.4). Here

we normalize the first- (PMD), second- (SOPMD) and third-order (TOPMD) PMD with

respect to τavg and employ 503 bins within the region bounded by the planes in Figs. 8.3-8.5.

The subplots of this figure display the projections of the three dimensional histogram onto

the PMD/SOPMD, PMD/TOPMD and SOPMD/TOPMD surfaces. Diagrams analogous

to Figs. 8.3-8.5 for Ωn,x, Ωn,y, and Ωn,z, the x, y and z components of ~Ωn, displayed in the
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Figure 8.3: Projections of the histogram of the states of our system model that contribute to

the eye-closure penalty with a 10−5 probability density after the compensation of Eq. (8.2)

onto normalized (a) PMD/SOPMD, (b) PMD/TOPMD and (c) SOPMD/TOPMD planes.
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Figure 8.4: Same as Fig. 8.4 except for the compensator Jones matrix of Eq. (8.3).
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Figure 8.5: Same as Fig. 8.4 except for the compensator Jones matrix of Eq. (8.4).
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planes bounded by the x, y and z axes similarly yield the most probable orientation of ~Ωn

relative to the input state of polarization.

Clearly, the worst-case states before compensation result from localized regions of this

PMD variable space. However, a central result of this chapter is that the geometry and

location of these regions depend significantly on the PMD compensator structure. As well,

the properties vary with the mean DGD of the fiber emulator, although only a single value of

τavg is examined here for space reasons. Therefore, the most probable system configuration

at a given error probability cannot be identified with a single set of values of the system

observables that can be applied across different PMD compensators and mean DGD values.

However, for a given compensator structure, knowledge of the location of the most probable

state could enable rapid numerical simulation and experimental characterization of system

performance.

8.4 Conclusions

We have demonstrated that the biased multicanonical technique [83,117] can be employed

to generate ensembles of fiber emulator states with equal eye-closure penalty after opti-

cal PMD compensation. Our calculations indicate that large system penalties result from

restricted regions of the space of all system configurations, that we have visualized by

projecting each iso-penalty emulator ensemble onto a low-dimensional space of system ob-

servables. In certain cases, dimensional reduction techniques such as linear or non-linear

principal component analysis [1], could be employed to further delineate the geometrical

structure of these regions. Significantly, the location of the worst-case states for PMD

compensated systems depends on the compensation technique. Knowledge of the posi-

tion of the worst case state for an uncompensated system cannot therefore be employed

to estimate the performance of a particular compensator. Despite this, the agreement be-

tween our theoretical predictions and experimental measurements could be used to analyze

compensator performance.



Chapter 9

Conclusions

We have developed a general formalism for the Mueller matrix, (dM/dω)M−1, in the

presence of both PMD and PDL. Our approach yields recursive methods based on the

Magnus expansion for evaluating successive orders of the frequency variation of the Mueller

matrix, M(ω). Although the results of previous authors [31, 48, 118] can be derived from

our formalism through application of the Baker-Campbell-Hausdorff identity, the Magnus

expansion explicitly preserves the underlying symmetries of the Mueller matrix and further

yields physically realizable operator expansions that facilitate the design of novel joint PMD

and PDL compensators.

Next, we reformulated the Lorentz transformation relating the input and output Stokes

vectors of an optical system with PMD and PDL with Clifford algebra. Several methods

for estimating the Mueller matrix linking the output field polarizations at adjacent opti-

cal frequencies that preserved this Lorentz group symmetry were then investigated and a

simple computational method proved highly accurate and stable against simulated mea-

surement error. When implemented experimentally with a fast multi-stage lithium niobate

polarization rotator coupled to a high-speed polarimeter, significant improvements in ex-

perimental accuracy and an order of magnitude reduction in experimental run-time were

realized.
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While the frequency behaviour of the Jones matrix has typically been characterized by

the PMD and PDL coefficients, we demonstrated that other parameterizations are more

desirable when higher-order effects are significant. In this context, we presented a highly-

accurate quaternion interpolation procedure that can be employed to interpolate the Jones

matrix from its values together with the corresponding PMD vectors for a given set of

optical frequencies. The increased numerical accuracy and programming efficiency afforded

by our method should facilitate improved “all-order” PMD/PDL simulation methods for

high bit-rate single or multiple channel optical systems.

Finally, we demonstrated that biased multicanonical sampling [83,117] can be employed

to generate ensembles of fiber emulator states with equal eye-closure penalty after optical

PMD compensation. Restricted regions of the space of all system configurations were

found to induce large system penalties. This result may have implications in the design

and testing of optical compensation devices.



Appendix A

PMD/PDL Frequency Evolution

A.1 Principal states of polarization for systems with

PMD and PDL

We first derive the Stokes space principal states of polarization (PSPs) for systems with

nonzero PMD and PDL, providing a simplified alternative to the methods of Ref. [50]. In

terms of the Jones matrix, T(ω), c.f. Chapter 2,

dT

dω
T−1 = − i

2
~W · ~σ (A.1)

where ~W (ω) = ~Ω(ω) + i~Λ(ω), with ~Ω, ~Λ real vectors. The Jones space PSP, |p〉, by

definition must satisfy the eigenvalue equation

dT

dω
T−1|p〉 = − i

2
χ|p〉 (A.2)

where χ = ±
√
~W · ~W = ±

√
|~Ω|2 − |~Λ|2 + 2i~Ω · ~Λ are complex eigenvalues of ~W · ~σ. The

Stokes space PSP p̂ = 〈p|~σ|p〉 can therefore be expressed after multiplication by |χ|2 as

|χ|2p̂ = 〈p|χ∗~σχ|p〉
= 〈p|( ~W · ~σ)†~σ( ~W · ~σ)|p〉
= 〈p|( ~W ∗ · ~σ)~σ( ~W · ~σ)|p〉 (A.3)
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since by Eqs. (A.1)-(A.2), ( ~W · ~σ)|p〉 = χ|p〉. Inserting Eq. (B.15) into Eq. (A.3) yields

|χ|2p̂ = ~W 〈p|( ~W ∗ · ~σ)|p〉+ ~W ∗〈p|( ~W · ~σ)|p〉
− | ~W |2〈p|~σ|p〉 − i( ~W ∗ × ~W )〈p|σ0|p〉 (A.4)

or, after applying the ( ~W · ~σ)|p〉 = χ|p〉 eigenvalue relation,

(| ~W |2 + |χ|2)p̂ = ~Wχ∗ + ~W ∗χ+ i( ~W × ~W ∗) (A.5)

Decomposing into real and imaginary components χ = τ + iη and ~W = ~Ω + i~Λ generates

our central result

p̂± = ± 2

|χ|2 + | ~W |2
(
τ ~Ω + η~Λ± ~Ω× ~Λ

)
(A.6)

where ± correspond to the positive and negative eigenvalues, χ = ±
√
~W · ~W , respectively.

In the absence of PDL, ~W → ~Ω, and p̂± = ±~Ω/|~Ω| as expected.

A.2 The Magnus and Dyson series

The frequency evolution of the Mueller matrix, M(ω), is described by the differential

equation, c.f. Chapter 2,
dM

dω
= H(ω)M (A.7)

with

H(ω) ≡
[

0 ~ΛT

~Λ ~Ω×

]
(A.8)

Here, ~Ω, ~Λ represent the real and imaginary components of the complex principal state

vector, respectively [50,88]. The solution for M can be found by integrating Eq. (A.7),

M(ω) = M(ω0) +

∫ ω

ω0

dω1H(ω1)M(ω1) (A.9)

so that

M(ω1) = M(ω0) +

∫ ω1

ω0

dω2H(ω2)M(ω2) (A.10)



106

Eq. (A.9) can now be rewritten as the Dyson series solution [71,75,90,118]

M(ω) =

[
I4 +

∫ ω

ω0

dω1H(ω1) +

∫ ω

ω0

dω1

∫ ω1

ω0

dω2H(ω1)H(ω2) + . . .

]
M(ω0)

≡ [I4 + J1 + J2 + J3 + J4 + . . .]M(ω0) (A.11)

with I4 the 4× 4 identity matrix and

Jn(ω) ≡
∫ ω

ω0

dω1

∫ ω1

ω0

dω2 · · ·
∫ ωn−1

ω0

dωnH(ω1)H(ω2) · · ·H(ωn) (A.12)

The Magnus expansion, on the other hand, presupposes a solution of Eq. (A.7) of the

general form

M(ω) = eB1+B2+B3+B4...M(ω0) (A.13)

Expanding the matrix exponential in power series and equating to Eq. (A.11) by grouping

common orders of H we find [90–92]

B1 = J1 (A.14)

B2 = J2 − J2
1

2
(A.15)

B3 = J3 − 1

2
(J1J2 + J2J1) +

J3
1

3
(A.16)

B4 = J4 − 1

2
(J1J3 + J3J1 + J2J2)

+
1

3
(J1J1J2 + J1J2J1 + J2J1J1)− J4

1

4
(A.17)

with an analogous pattern for higher-order Bn [90]. Rewriting each Magnus coefficient

directly in terms of H generates as required the equations of Chapter 2. In the case of B2,

for example, we have by Eq. (A.15)

B2 =

∫ ω

ω0

dω1

∫ ω1

ω0

dω2H(ω1)H(ω2)− 1

2

∫ ω

ω0

dω1

∫ ω

ω0

dω2H(ω1)H(ω2)

=
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2H(ω1)H(ω2)− 1

2

∫ ω

ω0

dω1

∫ ω

ω1

dω2H(ω1)H(ω2)

=
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2H(ω1)H(ω2)− 1

2

∫ ω

ω0

dω2

∫ ω2

ω0

dω1H(ω1)H(ω2)

=
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2 [H(ω1),H(ω2)] (A.18)
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where in the third expression the order of ω1 and ω2 integration was interchanged, while

in the fourth ω1 and ω2 are integration variables.

A.3 Exponential operator expansions of the Mueller

matrix

The frequency evolution of the Mueller matrix, as demonstrated in Chapter 3, is given by

the Magnus expansion, which to fifth order in the frequency deviation, ∆ω, relative to the

optical carrier, ω0, is

M(ω)M(ω0)
−1 = eN(∆ω)

N(∆ω) = H0∆ω + H1
∆ω2

2!

+ (H2 − 1

2
[H0,H1])

∆ω3

3!

+ (H3 − [H0,H2])
∆ω4

4!
(A.19)

+
(
H4 − [H1,H2]− 3

2
[H0,H3]

+
1

6
[H0, [H0,H2]] +

1

2
[H1, [H1,H0]]

+
1

6
[H0, [H0, [H0,H1]]]

)∆ω5

5!
+O(∆ω6).

In the above expressions, Hn = (dnH/dωn)|ω0 , while [. . .] denotes matrix commutation.

To express Eq. (A.19) as the product of exponential operators, we first write the desired

form of the solution

M(ω)M(ω0)
−1 = eA0H0∆ωeA1H1∆ω2

eA2H0∆ωeA3H2∆ω3

. . . (A.20)

with An unknown coefficients. Repeated application of the BCH identity

exp[F] exp[G] = exp
{
F + G +

1

2
[F,G] +

1

12
[F, [F,G]] +

1

12
[G, [G,F]]

− 1

48
[F, [G, [F,G]]] +

1

48
[G, [F, [G,F]]] + . . .

}
(A.21)
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for two matrices F and G generates to O(∆ω4)

M(ω)M(ω0)
−1 = exp

[
(A0 + A2)H0∆ω + A1H1∆ω

2

+
1

2
A1(A0 − A2)[H0,H1]∆ω

3 + A3H2∆ω
3
]

(A.22)

Comparing this expression with the Magnus solution, Eq. (A.19), yields the system of

equations for the coefficients, An,

A1 = 1
2

A3 = 1
6

A0 + A2 = 1
1
2
A1(A0 − A2) = − 1

12

(A.23)

Solving Eqs. (A.23),

A0 =
1

3
, A1 =

1

2
, A2 =

2

3
, A3 =

1

6
(A.24)

and

M(ω)M(ω0)
−1 = e

1
3
H0∆ωe

1
2
H1∆ω2

e
2
3
H0∆ωe

1
6
H2∆ω3

. . . (A.25)

We observe that the number of exponential operators in Eq. (A.20) must be sufficient to

enable the cancellation of high-order commutators generated by the BCH identity.

A.4 Higher-order PMD vectors in the concatenated

segment model

In this appendix, we derive the exact recursion relation for the higher-order PMD vectors

in a cascade of Nseg randomly oriented, linearly birefringent segments characterized by the

Jones matrix T(ω) = T(Nseg)(ω) · · ·T(2)(ω)T(1)(ω), where m = 1, . . . , Nseg, and

T(m)(ω) = exp

[
− i

2
ω

(
~τ(m) · ~σ

)]
(A.26)

Here we have assumed that the DGD, τ(m), and slow axis, p̂(m), of the mth segment are

both independent of optical frequency, ω, such that ~τ(m) ≡ τ(m)p̂(m) is the segment’s PMD

vector. Each ~τ(m) further satisfies
(
dR(m)/dω

)
R−1

(m) = ~τ(m)×, where

R(m)(ω) = exp[ω~τ(m)×] (A.27)
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is the Stokes rotation matrix associated with Eq. (A.26) (see Appendix B.4). The total

PMD vector after m such segments, ~Ω(m)(ω), can be obtained from the recursion rela-

tion [45]
~Ω(m)(ω) = ~τ(m) + R(m)(ω)~Ω(m−1)(ω) (A.28)

Differentiating Eq. (A.28) yields

d~Ω(m)

dω
=

(
dR(m)

dω
R−1

(m)

) (
R(m)

~Ω(m−1)

)
+ R(m)

d~Ω(m−1)

dω

=
(
~τ(m)×

) (
~Ω(m) − ~τ(m)

)
+ R(m)

d~Ω(m−1)

dω

=
(
~τ(m)×

)
~Ω(m) + R(m)

d~Ω(m−1)

dω
(A.29)

and

d2~Ω(m)

dω2
= (~τ(m)×)

d~Ω(m)

dω
+

(
dR(m)

dω
R−1

(m)

) (
R(m)

d~Ω(m−1)

dω

)
+ R(m)

d2~Ω(m−1)

dω2

= (~τ(m)×)
d~Ω(m)

dω
+

(
~τ(m)×

)
(

d~Ω(m)

dω
− (~τ(m)×)~Ω(m)

)
+ R(m)

d2~Ω(m−1)

dω2

= 2(~τ(m)×)
d~Ω(m)

dω
− (~τ(m)×)2~Ω(m) + R(m)

d2~Ω(m−1)

dω2
(A.30)

Continuing this procedure generates for the nth derivative, n ≥ 1, after m birefringent

segments,
dn~Ω(m)

dωn
= R(m)

dn~Ω(m−1)

dωn
−

n∑

k=1

(
n

k

)
(−~τ(m)×)k

dn−k~Ω(m)

dωn−k
(A.31)

with the initial condition ~Ω(0) ≡ 0. While seemingly complex, Eq. (A.31) has a straight-

forward numerical implementation in i.e. Matlab, c.f. Appendix C.3. The algorithm is as

follows: with m = 1, ~Ω(1) = ~τ(1), and dn~Ω(1)/dω
n = 0 for all n ≥ 1. For m = 2, we calculate

sequentially each ~Ω(2), d~Ω(2)/dω, d2~Ω(2)/dω
2, . . . , dn~Ω(2)/dω

n from repeated application of

Eq. (A.31). Once all the dn~Ω(2)/dω
n are determined, we calculate in order ~Ω(3), d~Ω(3)/dω,

d2~Ω(3)/dω
2, . . . , dn~Ω(3)/dω

n. These steps are then performed Nseg times.

Appendix C.2 presents a similar algorithm for evaluating derivatives of the Jones ma-

trix.
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A.5 Rotating PMD vector approximation

Ref. [74] presents a model of the Jones matrix in which higher-order frequency variation is

attributed to a rotation of the PMD vector in the equatorial plane of the Poincaré sphere.

In this appendix we establish a generalized result describing the rotation of the PMD

vector with constant angular velocity about an arbitrary Stokes space axis. The resulting,

simplified Jones matrix is applicable to systems in which polarization-induced chromatic

dispersion (PCD) is negligible relative to PSP depolarization.

To proceed, we assume that the PMD vector, τ p̂, rotates with constant angular velocity,

k, in Stokes space about the unit vector û,

~Ω(ω) ≡ ekωû×τ p̂ (A.32)

or equivalently in Jones space, c.f. Eq. (B.53),

~Ω(ω) · ~σ = e−
iω
2
kû·~σ(τ p̂ · ~σ)e

iω
2
kû·~σ (A.33)

Accordingly, we seek the Jones matrix, T(ω), satisfying the matrix differential equation [45,

88]
dT

dω
T−1 = − i

2
~Ω · ~σ = − i

2
e−

iω
2
kû·~σ(τ p̂ · ~σ)e

iω
2
kû·~σ (A.34)

Eq. (A.34) has an exact solution of the form T(ω) = X(ω)Y(ω) for which X(ω) ≡
exp [−iωkû · ~σ/2] [7]. This is established by inserting T = XY into Eq. (A.34),

dT

dω
T−1 = − i

2
k(û · ~σ) + X

dY

dω
Y−1X−1 ≡ − i

2
X(τ p̂ · ~σ)X−1 (A.35)

or

dY

dω
Y−1 =

i

2
kX−1(û · ~σ)X− i

2
τ(p̂ · ~σ)

=
i

2
k(û · ~σ)− i

2
τ(p̂ · ~σ) (A.36)

in which we have employed [X, (û · ~σ)] = 0 to derive the final expression. Since p̂, û, k and

τ are assumed to be frequency independent, we can integrate Eq. (A.36), yielding

Y(ω) = e−
iω
2

(τ p̂−kû)·~σ (A.37)

The exact Jones matrix solution to the differential equation, Eq. (A.34), is then simply

T(ω) = e−
iω
2
kû·~σe−

iω
2

(τ p̂−kû)·~σ (A.38)



Appendix B

Matrix Identities

B.1 Properties of the Pauli spin vector

The following identities, established through direct calculation, are valid for an arbitrary

polarization Jones vector, |t〉, real vectors ~a = (ax, ay, az) and ~b = (bx, by, bz), with the

corresponding four-vectors ã and b̃ defined according to ã = (|~a|,~a) and b̃ = (|~b|,~b), respec-

tively [8, 38,45,50,59,88].

σ0 =

[
1 0

0 1

]
σ1 =

[
1 0

0 −1

]

σ2 =

[
0 1

1 0

]
σ3 =

[
0 −i
i 0

]
, (B.1)

~σ ≡ (σ1,σ2,σ3) (B.2)

σ̃ ≡ (σ0,σ1,σ2,σ3) (B.3)

The matrices σn, n = 0, 1, 2, 3, satisfy the orthogonality relation, for δnm the Kronecker

delta,

Tr(σnσm) = 2δnm (B.4)

Consequently, σn form an orthogonal basis for the space of 2×2 matrices. Accordingly, an

arbitrary Jones matrix T can be written in terms of the complex numbers, tn, n = 0, 1, 2, 3,

111
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as

T = t0σ0 + t1σ1 + t2σ2 + t3σ3 (B.5)

with tn = Tr(σnT)/2 [45].

B.1.1 Dot product identities

~a · ~σ ≡ (ax, ay, az) · (σ1,σ2,σ3)

= axσ1 + ayσ2 + azσ3

=

[
ax ay − iaz

ay + iaz −ax

]
(B.6)

ã · σ̃ ≡ (|~a|, ax, ay, az) · (σ0,σ1,σ2,σ3)

= |~a|σ0 + axσ1 + ayσ2 + azσ3

=

[ |~a|+ ax ay − iaz
ay + iaz |~a| − ax

]
(B.7)

(~a · ~σ)2 = |~a|2σ0 (B.8)

(~a · ~σ)(~b · ~σ) = (~a ·~b)σ0 + i(~a×~b) · ~σ (B.9)

(~b · ~σ)(~a · ~σ)(~b · ~σ) =
[
2(~a ·~b)~b− |~b|2~a

]
· ~σ (B.10)

[
(~a · ~σ), (~b · ~σ)

]
= 2i(~a×~b) · ~σ (B.11)

In the following, ~w = ~a+ i~b is a complex three-dimensional vector and |~w|2 ≡ ~w∗ · ~w.

(~w · ~σ)† = ~w∗ · ~σ (B.12)

~σ(~w · ~σ) = ~wσ0 + i~w × ~σ (B.13)

(~w∗ · ~σ)~σ = ~w∗σ0 − i~w∗ × ~σ (B.14)

(~w∗ · ~σ)~σ(~w · ~σ) = ~w(~w∗ · ~σ) + ~w∗(~w · ~σ)− |~w|2~σ − i(~w∗ × ~w)σ0 (B.15)

Eq. (B.15) represents the three 2× 2 matrices, with ~w = (wx, wy, wz),

(~w∗ · ~σ)σ1(~w · ~σ) = wx(~w
∗ · ~σ) + w∗x(~w · ~σ)− |~w|2σ1 − i(~w∗ × ~w)xσ0

(~w∗ · ~σ)σ2(~w · ~σ) = wy(~w
∗ · ~σ) + w∗y(~w · ~σ)− |~w|2σ2 − i(~w∗ × ~w)yσ0

(~w∗ · ~σ)σ3(~w · ~σ) = wz(~w
∗ · ~σ) + w∗z(~w · ~σ)− |~w|2σ3 − i(~w∗ × ~w)zσ0
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B.1.2 Jones and Stokes vectors

|t〉 =

[
tx
ty

]
(B.16)

〈t| =
[
t∗x, t

∗
y

]
(B.17)

~t ≡ 〈t|~σ|t〉 ≡


〈t|σ1|t〉
〈t|σ2|t〉
〈t|σ3|t〉


 =




|tx|2 − |ty|2
txt

∗
y + t∗xty

i(txt
∗
y − t∗xty)


 (B.18)

t̃ ≡ 〈t|σ̃|t〉 ≡




〈t|σ0|t〉
〈t|σ1|t〉
〈t|σ2|t〉
〈t|σ3|t〉


 =




|tx|2 + |ty|2
|tx|2 − |ty|2
txt

∗
y + t∗xty

i(txt
∗
y − t∗xty)


 (B.19)

〈t|t〉 = |~t| (B.20)

|t〉〈t| =

[ |tx|2 txt
∗
y

t∗xty |ty|2
]

=
1

2
(t̃ · σ̃) (B.21)

〈t|(~a · ~σ)|t〉 = ~a · ~t (B.22)

〈t|(~a× ~σ)|t〉 ≡


〈t|(ayσ3 − azσ2)|t〉
〈t|(azσ1 − axσ3)|t〉
〈t|(axσ2 − ayσ1)|t〉


 = ~a× ~t (B.23)

B.2 The Kronecker product

If F and G are 2× 2 Jones matrices with components fij and gij, i, j = 0, 1, respectively,

the explicit form of the Kronecker product is, c.f. Chapter 2,

F⊗G =

[
f00 f01

f10 f11

]
⊗

[
g00 g01

g10 g11

]

=

[
f00G f01G

f10G f11G

]

=




f00g00 f00g01 f01g00 f01g01

f00g10 f00g11 f01g10 f01g11

f10g00 f10g01 f11g00 f11g01

f10g10 f10g11 f11g10 f11g11


 . (B.24)
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Representing NX ×NX and NY ×NY square matrices by X and Y, we have

(X⊗Y)(J⊗K) = (XJ)⊗ (YK) (B.25)

(X⊗Y)−1 = X−1 ⊗Y−1 (B.26)

Tr(X⊗Y) = Tr(X)Tr(Y) (B.27)

det(X⊗Y) = (detX)NY (detY)NX (B.28)

(X⊗Y)n = (Xn)⊗ (Yn) (B.29)

Above, J and K are matrices with dimensions NX × NJ and NY × NK , respectively.

Further, denoting the N ×N identity matrix as IN ,

~a× ≡



0 −az ay
az 0 −ax
−ay ax 0


 (B.30)

[
0 ~aT

~a ~b×

]
≡




0 ax ay az
ax 0 −bz by
ay bz 0 −bx
az −by bx 0


 (B.31)

A ≡ 1√
2




1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


 (B.32)

detA = − detA† = i (B.33)

AA† = I4 (B.34)

A((~a · ~σ)⊗ σ0)A
† =

[
0 ~aT

~a i~a×
]

(B.35)

A(σ0 ⊗ (~a · ~σ)∗)A† =

[
0 ~aT

~a −i~a×
]

(B.36)

A(~a · ~σ)⊗ (~b · ~σ)∗A† =

[
~a ·~b −i(~a×~b)T

i(~a×~b) ~a~bT +~b~aT − (~a ·~b)I3

]
(B.37)
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B.3 The Mueller matrix

B.3.1 Relation to the Jones matrix

Let T be a complex 2× 2 Jones matrix such that the input and output Jones vectors, |s〉
and |t〉, respectively, are related through |t〉 = T|s〉. The 4 × 1 Stokes vector, t̃, is given

by, c.f. Eq. (B.19),

t̃ ≡ 〈t|σ̃|t〉 = 〈s|T†σ̃T|s〉 (B.38)

Noting that T†σiT is Hermitian for each i = 0, 1, 2, 3, the components mij in the expansion

T†σiT ≡ mi0σ0 +mi1σ1 +mi2σ2 +mi3σ3 are real, so that




T†σ0T

T†σ1T

T†σ2T

T†σ3T


 =




m00σ0 +m01σ1 +m02σ2 +m03σ3

m10σ0 +m11σ1 +m12σ2 +m13σ3

m20σ0 +m21σ1 +m22σ2 +m23σ3

m30σ0 +m31σ1 +m32σ2 +m33σ3


 (B.39)

From Eq. (B.4) [45,50] we have

mij =
1

2
Tr(σjT

†σiT)

=
1

2
Tr(σiTσjT

†) (B.40)

The equivalence between Eq. (B.40) and the Kronecker product M = A(T ⊗ T∗)A†, for

M a 4× 4 matrix with components mij, i, j = 0, 1, 2, 3, was established in Chapter 2.

In terms of the Mueller matrix, M, Eq. (B.39) reduces to T†σ̃T ≡ Mσ̃. Inserting

this expression into Eq. (B.38), we obtain as a result of the linearity of Eq. (B.39), t̃ =

〈s|Mσ̃|s〉 = M〈s|σ̃|s〉 = Ms̃, that is, if the input and output Jones vectors are related

through |t〉 = T|s〉, the corresponding input and output Stokes vectors are given by t̃ =

Ms̃ [18,45].
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B.3.2 General properties

If K is an arbitrary 2× 2 complex matrix [8],

mij =
1

2
Tr(σiTσjT

†) ⇐⇒ M = A(T⊗T∗)A† (B.41)

T = exp[K] ⇐⇒ M = exp
[
A(K⊗ σ0 + σ0 ⊗K∗)A†] (B.42)

T = exp

[
− i

2
(~b+ i~a) · ~σ

]
⇐⇒ M = exp

[
0 ~aT

~a ~b×

]
(B.43)

g ≡




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 (B.44)

detM = | detT|4 (B.45)

gMTgM = I4

√
detM (B.46)

√
detM =

1

2
Tr(MTgM) (B.47)

M−1 = 2gMTg/Tr(MTgM) (B.48)

For partially polarized light, with s̃ = (s0, ~s) and s0 6= |~s|, s̃Tgs̃ = |~s|2 − s2
0 transforms as,

c.f. Eq. (B.46),

t̃Tgt̃ = s̃T(MTgM)s̃

=
√

detM
(
s̃Tgs̃

)
(B.49)

and is therefore invariant if detM = 1.

B.3.3 Coherency matrix transformations

Let t̃ = 〈t|σ̃|t〉 be the 4 × 1 Stokes vector corresponding to the Jones vector |t〉 = T|s〉.
Defining the coherency matrix [18] as |t〉〈t|, we have through Eq. (B.21)

|t〉〈t| = T|s〉〈s|T† =
1

2
T(s̃ · σ̃)T† (B.50)
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Alternatively, from Sec. B.3.1,

|t〉〈t| = 1

2
(t̃ · σ̃) =

1

2
(Ms̃) · σ̃ (B.51)

which implies

T(s̃ · σ̃)T† = (Ms̃) · σ̃ (B.52)

Specializing to the case of unitary T, a similar derivation yields

T(~s · ~σ)T† = (R~s) · ~σ (B.53)

The Stokes rotation matrix, R, is the 3 × 3 submatrix in the lower right-hand corner of

M, c.f. Appendix B.4.

B.4 Representations of unitary Jones matrices

Consider a unitary 2× 2 complex matrix, U, satisfying detU ≡ 1. Defining † and ∗ to be

Hermitian and complex conjugation, respectively, the unitary condition U†U = σ0 implies

that U can be written

U =

[
α −β∗
β α∗

]
(B.54)

The complex elements α and β, satisfying detU = |α|2 + |β|2 ≡ 1, can be further decom-

posed into real and imaginary components, α = u+ iv and β = x+ iy, so that

U =

[
u+ iv −x+ iy

x+ iy u− iv

]

= u

[
1 0

0 1

]
+ iv

[
1 0

0 −1

]
+ iy

[
0 1

1 0

]
− ix

[
0 −i
i 0

]

≡ uσ0 + ivσ1 + iyσ2 − ixσ3 (B.55)

Defining ~r ≡ (−v,−y, x), Eq. (B.55) reduces to

U = uσ0 + ivσ1 + iyσ2 − ixσ3

= uσ0 − i(~r · ~σ)

= uσ0 − ir(r̂ · ~σ) (B.56)
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with r =
√
v2 + y2 + x2, and r̂ = ~r/r. Writing tan(ψ/2) ≡ r/u then yields

U = cos

(
ψ

2

)
σ0 − i sin

(
ψ

2

)
(r̂ · ~σ) (B.57)

=

[
1− 1

2!

(
ψ

2

)2

+
1

4!

(
ψ

2

)4

− . . .

]
σ0

− i

[(
ψ

2

)
− 1

3!

(
ψ

2

)3

+
1

5!

(
ψ

2

)5

− . . .

]
(r̂ · ~σ)

or, upon rearranging terms according to Eq. (B.8),

U = σ0 − iψ

2
(r̂ · ~σ) +

1

2!

(
− iψ

2

)2

(r̂ · ~σ)2

+
1

3!

(
−iψ

2

)3

(r̂ · ~σ)3 +
1

4!

(
−iψ

2

)4

(r̂ · ~σ)4 + . . .

≡ exp

[
− i

2
ψ(r̂ · ~σ)

]
(B.58)

Observe that the eigenvalues and Stokes space eigenvectors of U enter Eq. (B.58) explicitly

through exp(±iψ/2) and ±r̂, respectively.

The Mueller matrix, Eq. (B.43), for unitary U, is specified by its lower right-hand 3×3

submatrix, denoted here by R,

U = e−
i
2
ψ(r̂·~σ) ⇐⇒ R = eψr̂× (B.59)

Expanding R = exp[ψr̂×] in power series and applying (r̂×)2 = r̂r̂T − I3 yields [45]

eψr̂× = cos(ψ)I3 + [1− cos(ψ)]r̂r̂T + sin(ψ)r̂× (B.60)

Further, Eq. (B.60) implies

Tr(R) = 1 + 2 cos(ψ) (B.61)

R−RT = 2 sin(ψ)(r̂×) (B.62)

Eqs. (B.61)-(B.62) specify ψ and r̂ if R is known from experimental measurement or

numerical simulation.



Appendix C

MATLAB Function Implementation

C.1 Mueller matrix SVD in Minkowski space

%−−
% MinkowskiSVD :
% Returns the s i n gu l a r va lue decomposi t ion o f the
% Muel ler matrix M in Minkowski space . More
% s p e c i f i c a l l y , a t output , M i s decomposed accord ing to :
% M = USV
% Where gUTgU = I
% gVTgV = I
% S = diagona l matrix
% g = diag(−1, 1, 1, 1)
% The ba s i c a l gor i thm i s adapted from :
% D. Tweed , ‘ ‘ Est imat ing r i g i d motions v ia the conformal model
% of Eucl idean space ’ ’ , Proc . In tern .
% Conf . on Patt . Rec . , v o l . 2 , pp . 171−174, 2004
%−−
function [U, S ,V] = MinkowskiSVD(M)
g = diag ([−1 1 1 1 ] ) ;
[E,D] = eig ( g ∗ t ranspose (M) ∗ g ∗ M) ;
Ep = E ∗ ( g ∗ t ranspose (E) ∗ g ∗ E)ˆ( −0 .5 ) ;
N = g ∗ t ranspose (Ep) ∗ g ∗ M ∗ Ep ;
Q = N ∗ Dˆ( −0 .5) ;
U = Ep ∗ Q;
S = Dˆ ( 0 . 5 ) ;

119
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V = g ∗ t ranspose (Ep) ∗ g ;
return ;

C.2 Exact evaluation of Jones matrix derivatives

%−−
% EmulateJonesMatrix :
% Expands the Jones matrix o f an Nsec f i b e r emulator in
% the Taylor s e r i e s T(ω) =

∑N
n=0 Tn∆ωn

% where Tn ≡ 1
n!

dnT
dωn .

% Input Var iab l e s :
% rotAx i s = 3×Nsec matrix . Each column conta ins a un i t
% vec to r uni formly d i s t r i b u t e d on the Poincare sphere
% ( see RandomUnitVector )
% dgd = 1×Nsec array con ta in ing the
% d i f f e r e n t i a l group de lay o f each emulator segment [ ns ] .
% norder = Order o f the Taylor expansion .
% w0 = Opt i ca l c a r r i e r f requency [ Grad/ s ]
% Output Var iab l e s :
% T = 2× 2× (1 + norder) matrix .
% T( : , : , 1 ) = T0

% T( : , : , 2 ) = T1

% T( : , : , 3 ) = T2

%
...

%−−
function [T] = EmulateJonesMatrix ( rotAxis , dgd , norder , w0)
% Use fu l cons tan t s
I = eye ( 2 , 2 ) ;
Z22 = zeros ( 2 , 2 ) ;
c = cos ( 0 . 5 .∗ dgd .∗ w0 ) ;
i s = i .∗ sin ( 0 . 5 .∗ dgd .∗ w0 ) ;

% Recur s i v e l y c a l c u l a t e a l l Jones matrix d e r i v a t i v e s
T = zeros (2 ,2 ,1 + norder ) ;
T( : , : , 1 ) = I ;

% Loop over emulator segments
for s eg Ix = 1 : length ( rotAxi s ) ;

% This segment ’ s Jones matrix
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M = VecDotPauli ( rotAxis ( : , s eg Ix ) ) ; % M = n̂ · ~σ
U = c ( seg Ix )∗ I − i s ( s eg Ix ) ∗ M; % U = exp [−iω0τ(n̂ · ~σ)/2]
M = 0.5 ∗ i ∗ dgd ( seg Ix ) ∗ M; % M = iτ n̂ · ~σ/2

% Implements d e r i v a t i v e recur s ion r e l a t i o n
T( : , : , 1 ) = U ∗ T( : , : , 1 ) ; % Jones matrix at ω0

for n = 1 : norder ;
S = Z22 ;
for k = 1 : n ; S = S − binomial (n , k )∗Mˆk∗T( : , : , 1 + n−k ) ; end ;
T( : , : , 1 + n) = S + U∗T( : , : , 1 + n ) ; % nth d e r i v a t i v e

end
end
for n = 2 : norder

T( : , : , 1 + n) = T( : , : , 1 + n) / f a c t o r i a l (n ) ;
end
return

C.3 Exact evaluation of PMD vector derivatives

%−−
% EmulatePMDVector :
% Same as EmulateJonesMatrix , excep t t h a t t h i s
% func t i on e va l u a t e s a l l orders o f the PMD vec to r
% at the c a r r i e r f requency .
% The PMD vec to r i s de f ined as ~Ω(ω) · ~σ ≡ 2idTdωT−1

% The nth order PMD vec to r i s de f i ned as ~Ωn ≡ dn~Ω(ω)
dωn

% Input Var iab l e s :
% Same as EmulateJonesMatrix
% Output Var iab l e s :
% PMD = 3× (1 + norder) matrix . The nth order
% PMD vec to r has un i t s o f [ns]n .
% PMD( : , 1 ) = ~Ω0

% PMD( : , 2 ) = ~Ω1

% PMD( : , 3 ) = ~Ω2

%
...

%−−
function [PMD] = EmulatePMDVector ( rotAxis , dgd , norder , w0)
% Use fu l cons tan t s
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Z31 = zeros ( 3 , 1 ) ;

% I n i t i a l i z e recur s ion
PMD = zeros (3 , 1+norder ) ;

% Loop over a l l segments
for s eg Ix = 1 : length ( rotAxi s ) ;

segpmd = dgd ( seg Ix ) .∗ rotAxi s ( : , s eg Ix ) ; % Segment PMD vec to r : τ n̂
M = MatrixCross(−segpmd ) ; % M = −τ n̂×
R = StokesRotat ion (w0 .∗ dgd ( seg Ix ) , rotAxis ( : , s eg Ix ) ) ; % R = exp[ω0τ n̂×]

% Recursion f o r PMD vec t o r s
PMD( : , 1 ) = segpmd + R∗PMD( : , 1 ) ; % Fi r s t order PMD
for n = 1 : norder

S = Z31 ;
for k = 1 : n ; S = S − binomial (n , k )∗Mˆk∗PMD( : , 1 + n−k ) ; end ;
PMD( : , 1 + n) = S + R∗PMD( : , 1 + n ) ;

end
end
return

C.4 Jones matrix interpolation

%−−
% EqualSpacedPMD :
% Eva lua tes the Jones matrix and PMD vec to r at a s e r i e s
% of Ngrid o p t i c a l f r e q u enc i e s e q u a l l y spaced by δ .
% Input Var iab l e s :
% rotAx i s = 3×Nsec matrix . Each column conta ins a un i t
% vec to r uni formly d i s t r i b u t e d on the Poincare sphere
% ( see RandomUnitVector )
% dgd = Nsec × 1 array con ta in ing the DGD of each emulator segment [ ns ] .
% w0 = Opt i ca l c a r r i e r f requency [ Grad ] .
% wgrid = Ngrid × 1 array o f e q u a l l y spaced o p t i c a l f r e qu en c i e s [ Grad ] .
% Output Var iab l e s :
% T = 2× 2×Ngrid array o f Jones matr ices .
% T( : , : , 1 ) = T(ω0)
% T( : , : , 2 ) = T(ω0 + δ)
% T( : , : , 3 ) = T(ω0 + 2δ)



123

%
...

% PMD = 3×Ngrid array o f PMD vec t o r s .
% PMD( : , 1 ) = ~Ω(ω0)
% PMD( : , 2 ) = ~Ω(ω0 + δ)
% PMD( : , 3 ) = ~Ω(ω0 + 2δ)

%
...

%−−
function [T, PMD] = EqualSpacedPMD( rotAxis , dgd , w0 , wgrid )
Ngrid = length ( wgrid ) ;
T = zeros (2 , 2 , Ngrid ) ;
PMD = zeros (3 , Ngrid ) ;
for n=1:Ngrid

% U( : , : , 1 ) = T
% U( : , : , 2 ) = dT/dω
U = EmulateJonesMatrix ( rotAxis , dgd , 1 , w0 + wgrid (n ) ) ;
T( : , : , n ) = U( : , : , 1 ) ;
[ notused , PMD( : , n ) ] = PauliDecomp (2∗ i ∗U( : , : , 2 ) ∗ inv (U( : , : , 1 ) ) ) ;

end
return

%−−
% CalcInterpParam :
% Eva lua tes the i n t e r p o l a t i n g Jones matr ices

% A(n) = exp
[
− iδ

6
~Ω(n) · ~σ

]
T(n) and B(n) = exp

[
iδ
6
~Ω(n+1) · ~σ

]
T(n+1)

% in each f requency i n t e r v a l [wgridn, wgridn+1] , n = 1, . . . (Ngrid − 1) .
% Takes as input T(ω) and ~Ω(ω) as c a l c u l a t e d by EqualSpacedPMD .
% Input Var iab l e s :
% wgrid = Ngrid × 1 array o f e q u a l l y spaced o p t i c a l f r e qu en c i e s [ Grad ] .
% T = 2× 2×Ngrid array o f Jones matr ices .
% PMD = 3×Ngrid array o f PMD vec t o r s .
% Output Var iab l e s :
% InterpParam = Matlab c e l l array wi th 4 en t r i e s , n = 1, . . . , (Ngrid − 1)
% InterpParam {1} ( : , : , n) = T(n+1)B

−1
(n)

% InterpParam {2} ( : , : , n) = B(n)A
−1
(n)

% InterpParam {3} ( : , : , n) = A(n)T
−1
(n)

% InterpParam {4} ( : , : , n) = T(n)

%−−
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function [ InterpParam ] = CalcInterpParam ( wgrid , T, PMD) ;
Ngrid = length ( wgrid ) ;
InterpParam {1} = zeros (2 , 2 , Ngrid ) ;
InterpParam {2} = zeros (2 , 2 , Ngrid ) ;
InterpParam {3} = zeros (2 , 2 , Ngrid ) ;
InterpParam {4} = zeros (2 , 2 , Ngrid ) ;
d e l t a = wgrid (2 ) − wgrid ( 1 ) ; % Assume equa l spac ing [ Grad ]
for n = 1 : ( Ngrid−1)

A = expm(− i .∗ de l t a . / 6 . ∗ VecDotPauli (PMD( : , n ) ) ) ∗ T( : , : , n ) ;
B = expm( i .∗ de l t a . / 6 . ∗ VecDotPauli (PMD( : , n+1)))∗T( : , : , n+1);
InterpParam { 1 } ( : , : , n ) = T( : , : , n+1) ∗ inv (B) ;
InterpParam { 2 } ( : , : , n ) = B ∗ inv (A) ;
InterpParam { 3 } ( : , : , n ) = A ∗ inv (T( : , : , n ) ) ;
InterpParam { 4 } ( : , : , n ) = T( : , : , n ) ;

end
return

%−−
% JonesInterp :
% In t e r p o l a t e s between Jones matr ices and PMD vec t o r s
% recorded at a s e r i e s o f f r e qu enc i e s e q u a l l y spaced by δ .
% Use o f t h i s f unc t i on :
% (1) For each emulator r e a l i z a t i o n c a l l EqualSpacedPMD
% to eva l ua t e the Jones matrix and PMD vec to r at a number
% of e q u a l l y spaced o p t i c a l f r e q u enc i e s .
% (2) Ca l l CalcInterpParam once to e va l ua t e i n t e r p o l a t i o n overhead .
% (3) Ca l l JonesInterp to i n t e r p o l a t e the Jones matrix at any
% de s i r ed number o f in t e rmed ia t e f r e qu enc i e s ω .
% Input Var iab l e s :
% wgrid = Ngrid × 1 array o f e q u a l l y spaced o p t i c a l f r e qu en c i e s [ Grad ] .
% InterpParam = Output o f CalcInterpParam .
% w = Ninterp × 1 array o f in t e rmed ia t e o p t i c a l f r e q u enc i e s [ Grad ] .
% Output Var iab l e s :
% Tinterp = 2× 2×Ninterp array o f Jones matr ices
% i n t e r p o l a t e d at each wn , n = 1, . . . , Ninterp .
%−−
function [ Tinterp ] = Jones Interp ( wgrid , InterpParam , w)
Ninterp = length (w) ;
Tinterp = zeros (2 , 2 , Ninterp ) ;
for n = 1 : Ninterp
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% Bracket wgrid ( k l o ) ≤ wn ≤ wgrid ( kh i )
k lo = max( find ( wgrid < w(n ) ) ) ;
i f ( isempty ( k lo ) ) ; k lo = 1 ; end ;
khi = klo + 1 ;
i f ( khi > length ( wgrid ) )

Tinterp ( : , : , n ) = InterpParam { 4 } ( : , : , end ) ;
else

% In t e r p o l a t e
t = (w(n) − wgrid ( k lo ) ) / ( wgrid ( khi ) − wgrid ( k lo ) ) ;% 0 ≤ t ≤ 1
b1 = 1 − (1 − t ) ˆ 3 ;
b2 = t ˆ2 ∗ (3 − 2∗ t ) ;
b3 = t ˆ3 ;
Tinterp ( : , : , n ) = InterpParam { 1 } ( : , : , k lo )ˆ b3 ∗ . . .

InterpParam { 2 } ( : , : , k lo )ˆ b2 ∗ . . .
InterpParam { 3 } ( : , : , k lo )ˆ b1 ∗ . . .
InterpParam { 4 } ( : , : , k lo ) ;

end
end
return

C.5 Jones matrix Padé approximant

%−−
% JonesPade :
% Rearranges the 2× 2×N array
% of Taylor s e r i e s c o e f f i c i e n t s as c a l c u l a t e d
% by EmulateJonesMatrix in t o the corresponding
% s e r i e s c o e f f i c i e n t s f o r the [Q,M]−Pade approximant :

%
N∑

n=0

Tn∆ωn =




Q∑

q=0

Fq∆ωq




[
I +

M∑

m=1

Gm∆ωm
]−1

% Note t ha t t h i s implementat ion r e qu i r e s Q+M ≤ N .
% Input Var iab l e s :
% T = 2× 2×N array o f Taylor c o e f f i c i e n t s
% as re turned by the func t i on EmulateJonesMatrix
% Q, M = Pos i t i v e i n t e g e r s s a t i s f y i n g Q+M ≤ N
% Output Var iab l e s :
% F = 2× 2× (Q+ 1) array o f Pade s e r i e s c o e f f i c i e n t s
% G = 2× 2×M array o f Pade s e r i e s c o e f f i c i e n t s
%−−−
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function [ F , G] = JonesPade (T, Q, M)
[ r , c ,N] = s ize (T) ;

% Ca l cu l a t e r equ i r ed b l o c k matr ices
TG = zeros (2∗M, 2 ) ; % M × 1 b l o c k matrix used to c a l c u l a t e G
C = zeros (2∗M, 2∗M) ; % M ×M b l o c k matrix
for k = 1 :M

TG( (2∗k−1):2∗k , : ) = T( : , : , 1 + Q+k ) ;
for n = 1 :min(M, Q+k)

C( (2∗k−1):2∗k , (2∗n−1):2∗n ) = T( : , : , 1 + Q+k−n ) ;
end

end
TF = zeros (2∗Q, 2 ) ; % Q× 1 b l o c k matrix used to c a l c u l a t e F
D = zeros (2∗Q, 2∗M) ; % Q×M b l o c k matrix
for k = 1 :Q

TF( (2∗k−1):2∗k , : ) = T( : , : , 1 + k ) ;
for n = 1 :min(M, k )

D( (2∗k−1):2∗k , (2∗n−1):2∗n ) = T( : , : , 1 + k−n ) ;
end

end
% Ca l cu l a t e F and G c o e f f i c i e n t s in b l o c k matrix form
G = −inv (C) ∗ TG;
F1 = TF + D ∗ G;

% Rearrange b l o c k matr ices in t o arrays o f 2× 2 matr ices
F1 = reshape ( t ranspose (F1 ) , 2 , 2 , Q) ;
G = reshape ( t ranspose (G) , 2 , 2 , M) ;
F = zeros (2 , 2 , Q+1);
F ( : , : , 1 ) = T( : , : , 1 ) ;
for k = 1 :Q

F( : , : , 1 + k ) = transpose (F1 ( : , : , k ) ) ;
end
for k = 1 :M

G( : , : , k ) = transpose (G( : , : , k ) ) ;
end
return

%−−
% JonesPadeEval :
% Eva lua tes the Jones matrix Pade approximant
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% Tpade ≡



Q∑

q=0

Fq∆ωq




[
I +

M∑

m=1

Gm∆ωm
]−1

% at s p e c i f i e d va l u e s o f ∆ω .
% Input Var iab l e s :
% Takes as input F and G as re turned by JonesPade .
% F = 2× 2× (Q+ 1) array o f Pade s e r i e s c o e f f i c i e n t s
% G = 2× 2×M array o f Pade s e r i e s c o e f f i c i e n t s
% de l taw = ∆ω = N∆ω × 1 array o f f requency d e v i a t i on s
% r e l a t i v e to the o p t i c a l c a r r i e r [ Grad ] .
% Output Var iab l e s :
% Tpade = 2× 2×N∆ω array o f Jones matr ices
% ca l c u l a t e d at each ∆ωi , i = 1, . . . , N∆ω .
%−−−
function [ Tpade ] = JonesPadeEval (F , G, deltaw )
[ r , c ,Q] = s ize (F ) ;
[ r , c ,M] = s ize (G) ;
Ndelta = length ( deltaw ) ;
Tpade = zeros (2 , 2 , Ndelta ) ;
for wix = 1 : Ndelta

SUM1 = F ( : , : , 1 ) ;
for q = 1 : (Q−1)

SUM1 = SUM1 + F( : , : , 1 + q ) .∗ deltaw ( wix ) . ˆ q ;
end
SUM2 = eye ( 2 , 2 ) ;
for m = 1 :M

SUM2 = SUM2 + G( : , : ,m) .∗ deltaw ( wix ) . ˆm;
end
Tpade ( : , : , wix ) = SUM1 ∗ inv (SUM2) ;

end
return

C.6 Optimum biased multicanonical normalization

%−−
% Normal i za t ionFactors :
% Given N es t ima t e s o f a PDF wi th in ove r l app ing
% b i a s i n g reg ions , t h i s rou t ine i t e r a t i v e l y s o l v e s
% fo r the norma l i za t ion cons tan t s minimizing
% the mean square error (MSE) o f the combined



128

% PDF es t imate .
% Let nbins = number o f his togram b ins
% nbias = number o f b i a s i n g reg i ons
%
% Input v a r i a b l e s :
% x = (nbins× 1) array
% Contains the midpoint o f each his togram bin .
% h = (nbins× nbias) matrix
% The n : th column of h corresponds to the his togram
% as c a l c u l a t e d f o r the n : th b i a s i n g reg ion .
% The f i r s t column of h i s the Monte Carlo PDF es t imate .
%
% Output v a r i a b l e s :
% combinedPDF = (nbins× 1) array
% Contains the optimum MSE es t imate o f the
% PDF a f t e r combining a l l nb ias b i a s ed e s t ima t e s .
% A = (nbias× 1) array
% Array o f the converged norma l i za t ion f a c t o r s
%−−
function [ combinedPDF , A] = Normal i zat ionFactors (x , h )
maxIter = 5e4 ; % Avoid i n f i n i t e loop
i t e rTo l = 1e−3; % Stop when error reaches t h i s va lue

% I n i t i a l i z a t i o n
dx = x (2) − x ( 1 ) ; % Assume uniform bin width
[ nbins , nb ias ] = s ize (h ) ;
p = zeros ( s ize (h ) ) ;
I = zeros ( s ize (h ) ) ;
N = zeros ( nbias , 1 ) ;
A = zeros ( nbias , 1 ) ;
for n = 1 : nbias

p ( : , n ) = h ( : , n ) . / sum(h ( : , n ) ) . / dx ; % PDF es t imate
I ( : , n ) = h ( : , n ) > 0 ; % One i f his togram bin > 0
k{n} = find ( I ( : , n ) ) ; % Ind i c e s f o r his togram bin > 0
N(n) = sum(h ( : , n ) ) ; % Number o f his togram samples

end

% I n i t i a l i z e the norma l i za t ion f a c t o r s
% by minimizing the v e r t i c a l o f f s e t between
% adjacen t PDF es t ima t e s
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A(1) = 1 ;
for n = 2 : nbias

A(n) = A(n−1) .∗ sum(p(k{n} , n−1) .∗ p(k{n} , n ) ) . / . . .
sum(p(k{n} , n ) .∗ p(k{n} , n ) ) ;

end

% I t e r a t i v e s o l u t i o n f o r norma l i za t ion f a c t o r s .
Aprev = A;
for i t e r I x = 1 : maxIter

% Combined es t imate o f the PDF
combinedPDF = sum(p∗diag (N) , 2) . / sum( I ∗diag (N. /A) , 2 ) ;

% In t e g r a t e combined PDF over n : th b i a s i n g reg ion
for n = 1 : nbias ; A(n) = sum( combinedPDF(k{n}) ) ; end ;
A = A ./ sum( combinedPDF ) ; % Ensures PDF sums to one

% Check f o r convergence
i f (max(abs ( (A−Aprev ) . / Aprev )∗100) < i t e rTo l ) ; break ; end ;
Aprev = A;

end
return

C.7 General polarization functionality

%−−
% binomia l :
% Input :
% n , k = Po s i t i v e i n t e g e r s s a t i f y i n g 0 ≤ k ≤ n
% Output :

% Binomial c o e f f i c i e n t
(
n
k

)
= n!

k!(n−k)! = n
k · n−1

k−1 · · · n−k+1
1

%−−
function [ y ] = binomial (n , k )
i f ( k <= 0 | k > n) y = 1 ;
else y = prod ( ( ( n−k+1):n) . / ( 1 : k ) ) ;
end
return

%−−
% JonesRotat ion :
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% Input :
% rotAng le = ψ = Sca lar r o t a t i on ang l e .
% rotAx i s = r̂ = 3× 1 Stokes space un i t v e c t o r .
% Output :

% U = U = exp [−iψ(r̂ · ~σ)/2] = cos
(
ψ
2

)
σ0 − i sin

(
ψ
2

)
(r̂ · ~σ)

%−−
function [U] = JonesRotat ion ( rotAngle , rotAxis )
rotAxi s = rotAxis . / sqrt ( t ranspose ( rotAxi s )∗ rotAxis ) ; % Ensure |r̂| = 1
U = cos ( 0 . 5∗ rotAngle )∗eye ( 2 , 2 ) . . .

− i ∗ sin ( 0 . 5∗ rotAngle )∗VecDotPauli ( rotAxis ) ;
return

%−−
% JonesToMueller :
% Input :
% T = T = Arb i t rary 2× 2 complex Jones matrix .
% Output :
% M = M ≡ A(T⊗T∗)A† = 4× 4 rea l−va lued Muel ler matrix .
%−−
function [M] = JonesToMueller (T)
A = 1/ sqrt (2 ) ∗ [ 1 0 0 1 ; 1 0 0 −1; 0 1 1 0 ; 0 i − i 0 ] ;
M = A ∗ kron (T, conj (T) ) ∗ c t ranspose (A) ;
return

%−−
% JonesToStokes :
% Input :
% j v = |s〉 = 2× 1 complex Jones vec t o r .
% Output :
% sv = ~s ≡ 〈s|~σ|s〉 = 3× 1 r e a l S tokes v ec t o r
%−−
function [ sv ] = JonesToStokes ( jv )
sv = zeros ( 3 , 1 ) ;
j v t = ct ranspose ( jv ) ;
sv (1 ) = jv t ∗ [ 1 , 0 ; 0 , −1] ∗ jv ;
sv (2 ) = jv t ∗ [ 0 , 1 ; 1 , 0 ] ∗ jv ;
sv (3 ) = jv t ∗ [ 0 , − i ; i , 0 ] ∗ jv ;
return
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%−−
% MatrixCross :
% Input :
% svec = ~s = 3× 1 Stokes vec t o r .
% Output :
% sc ro s s = (~s×) = 3× 3 Stokes matrix
%−−
function [ s c r o s s ] = MatrixCross ( svec )
s c r o s s = [ 0 , −svec ( 3 ) , svec ( 2 ) ; . . .

svec ( 3 ) , 0 , −svec ( 1 ) ; . . .
−svec ( 2 ) , svec ( 1 ) , 0 ] ;

return

%−−
% MinkowskiPolarDecomp :
% Input :
% M = M = Arb i t rary 4× 4 Muel ler matrix
% Output :
% H = H = 4× 4 symmetric Muel ler matrix . Can be complex .
% U = U = 4× 4 or thogona l Muel ler matrix . Can be complex .
% Algorithm :
% Decomposes M accord ing to M ≡ HU
% such t ha t H = gHTg and UTgU = g
% for g = diag(−1, 1, 1, 1) the Minkowski metr ic .
%−−
function [H,U] = MinkowskiPolarDecomp (M)
g = diag ([−1 , 1 , 1 , 1 ] ) ;
H = (M∗g∗ t ranspose (M)∗ g ) ˆ 0 . 5 ;
U = inv (H)∗M;
return

%−−
% PauliDecomp :
% Input :
% T = T = Arb i t rary 2× 2 complex Jones matrix
% Output
% t0 = t0 = Tr(T)/2
% tvec = ~t ≡ (t1, t2, t3) where ti = Tr(σiT)/2 . Complex 3× 1 vec to r
% Algorithm :
% Decomposes T i n t o t0 and ~t = (t1, t2, t3)



132

% s a t i s f y i n g T ≡ t0σ0 + ~t · ~σ = t0σ0 + t1σ1 + t2σ2 + t3σ3 .
% This decomposi t ion e x i s t s f o r a l l 2× 2 complex matr ices .
%−−
function [ t0 , tvec ] = PauliDecomp (T)
tvec = zeros ( 3 , 1 ) ;
t0 = 0 .5 ∗ (T(1 , 1 ) + T( 2 , 2 ) ) ;
tvec (1 ) = 0 .5 ∗ (T(1 , 1 ) − T( 2 , 2 ) ) ;
tvec (2 ) = 0 .5 ∗ (T(1 , 2 ) + T( 2 , 1 ) ) ;
tvec (3 ) = 0 .5 ∗ i ∗ (T(1 , 2 ) − T( 2 , 1 ) ) ;
return

%−−
% PolarDecomp :
% Input :
% T = T = N ×N complex−va lued matrix .
% Output :
% H = H = Hermitian N ×N complex−va lued matrix .
% U = U = Unitary N ×N complex−va lued matrix .
% Algorithm :
% Decomposes T accord ing to T ≡ HU
% such t ha t H = H† and UU† = IN
% for IN the N ×N i d e n t i t y matrix .
%−−
function [H,U] = PolarDecomp (T)
H = (T∗ c t ranspose (T) ) ˆ 0 . 5 ;
U = inv (H) ∗ T;
return

%−−
% RandomUnitVector :
% Input :
% N = Number o f random uni t v e c t o r s to c a l c u l a t e
% Output :
% un i t v e c s = 3×N rea l−va lued matrix . Each column of ” un i t v e c s ”
% i s a unit−vec to r uni formly d i s t r i b u t e d on the Poincare sphere .
% Note :
% This rou t ine genera t e s the r o t a t i on axes r e qu i r ed
% in the f unc t i on s EmulateJonesMatrix and EmulatePMDVector .
%−−
function [ un i tvec s ] = RandomUnitVector (N)
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z = 2 .∗ rand (1 , N) − 1 ; % Uniform z ∈ [−1, 1]
t = 2 .∗ pi .∗ rand (1 , N) ; % Uniform ang le t ∈ [0, 2π]
r = sqrt (1 − z .∗ z ) ;
un i tvec s = [ r .∗ cos ( t ) ; r .∗ sin ( t ) ; z ] ;
return

%−−
% StokesRota t ion :
% Input :
% rotAng le = ψ = Sca lar r o t a t i on ang l e . Real va lued .
% rotAx i s = r̂ = 3× 1 Stokes space un i t v e c t o r . Real va lued .
% Output :
% R = R = exp [ψn̂×] = cosψI + (1− cosψ)n̂n̂T + sinψ(n̂×)
%−−
function [R] = StokesRotat ion ( rotAngle , rotAxis )
c = cos ( rotAngle ) ;
R = c ∗ eye ( 3 , 3 ) + . . .

(1−c ) ∗ rotAxis ∗ t ranspose ( rotAxis ) + . . .
sin ( rotAngle ) ∗ MatrixCross ( rotAxi s ) ;

return

%−−
% StokesToJones :
% Input :
% sv = ~s = 3× 1 r e a l S tokes UNIT vec to r
% Output :
% j v = |s〉 = 2× 1 complex Jones vec t o r .
% Algorithm :
% So l v e s the d e f i n i n g e i g enva l u e equat ion (~s · ~σ)|s〉 = |s〉
% for the Jones vec to r |s〉 . As implemented t h i s
% func t i on assumes |~s| = 1 .
%−−
function [ jv ] = StokesToJones ( sv )
sv = sv . / sqrt (dot ( sv , sv ) ) ; % Ensure |~s| = 1
i f ( sv (1 ) == 1) % Handles the case where ~s = (1, 0, 0)

jv = [ 1 ; 0 ] ;
else

jv = [ 1 ; (1− sv ( 1 ) ) . / ( sv (2)− i ∗ sv ( 3 ) ) ] ;
jv = jv . / sqrt ( c t ranspose ( jv )∗ jv ) ;

end
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return

%−−
% UnitaryDecomp :
% Input :
% U = U = 2× 2 UNITARY Jones matrix
% Output :
% rotAng le = ψ = rea l−va lued s c a l a r r o t a t i on ang l e
% rotAx i s = r̂ = rea l−va lued 3× 1 un i t v e c t o r .
% Algorithm :
% Decomposes the un i ta ry matrix U i n t o a rea l−va lued
% ro t a t i on angle , ψ , and ro t a t i on axis , r̂ ,
% such t ha t U ≡ exp[−iψ(r̂ · ~σ)/2] .
% As implemented , t h i s f unc t i on assumes UU† ≡ σ0

%−−
function [ rotAngle , rotAxi s ] = UnitaryDecomp (U)
[ rotAngle , rotAxis ] = PauliDecomp (U) ;
rotAngle = −real ( 2 . 0∗ acos ( rotAngle ) ) ;
rotAxi s = real(− i .∗ rotAxis . / sqrt (dot ( rotAxis , rotAxis ) ) ) ;
return

%−−
% VecDotPauli :
% Input :
% svec = ~s = 3× 1 Stokes space vec t o r .
% Output :
% U = U = ~s · ~σ
%−−
function [U] = VecDotPauli ( svec )
U = [ svec ( 1 ) , svec (2 ) − i ∗ svec ( 3 ) ; . . .

svec (2 ) + i ∗ svec ( 3 ) , −svec ( 1 ) ] ;
return
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