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Abstract 

Combustion of fossil fuel produces air emissions including carbon dioxide, nitric oxide, and 

sulfur dioxide, which cause severe environment problems, in particular, global warming and 

environmental pollution. The discharge of the power plant is the primary source of carbon 

dioxide emission. For CO2 capture from existing plants, the post-combustion carbon capture 

is the most widely used technology because of the lower cost to retrofit the plant.  Chilled 

ammonia has been reported as an absorbent in post-combustion carbon capture, which shows 

low energy cost and high efficiency.  

Although carbon dioxide is usually captured after desulfurization and denitrification of the 

flue gas, such processes can hardly remove the entire sulfur dioxide. Sulfur dioxide is known 

to have a negative effect on carbon dioxide capture. 

In this study, the effect of sulfur dioxide on carbon dioxide mass transfer was investigated. 

Chilled ammonium water was used as absorbent. The experimental data confirms the 

negative effects of sulfur dioxide on carbon dioxide capture using chilled ammonia. The 

mass transfer of carbon dioxide decreased with increasing concentration of sulfur dioxide in 

the gas phase. Numerical modeling of mass transfer of carbon dioxide in the presence of 

sulfur dioxide was developed and validated experimentally to better understand the effect of 

sulfur dioxide on carbon dioxide absorption by aqueous ammonia. In this work, an assumed 

reaction plane was introduced to explain the sulfur dioxide effect on carbon dioxide mass 

transfer into aqueous ammonia.  For easiness of using the model to estimate the effect of 

sulfur dioxide, a general equation was also developed by fitting the numerical solutions. The 

concentration of carbon dioxide reacted with aqueous ammonia is lower than the equilibrium 

concentration of carbon dioxide in the gas-liquid interface. The main outcome was the 

quantification of the concentration of carbon dioxide in the reaction plane (𝐶𝑟)  as a function 

of partial pressure of SO2 in the gas phase (𝑆0) and equilibrium concentration of carbon 

dioxide in the liquid surface (𝐶0) with various aqueous ammonia concentration (𝐶𝑁𝐻3); this 

relationship is as follows:  

𝐶𝑟  =  (1 + (−2.92744 + 1.75 (1 − exp (−
𝐶𝑁𝐻3

0.6213
))) 𝑆0 × 10

−4 +  1.2525 × 10−8𝑆0
2)𝐶0  
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Chapter 1 Introduction 

1.1 Research Motivations 

CO2 is one of the major greenhouse gases. Excessive greenhouse gases in the atmosphere 

are believed to be responsible for various environmental problems like the continuous 

rise of sea level, the increasing number of ocean storms, floods, and others. Emissions 

from the fossil fuel powers plant are the primary source of carbon dioxide emissions1. 

Technologies for carbon dioxide capture from power plants include pre-combustion 

carbon capture, oxy-fuel combustion, and post-combustion carbon capture2. Because of 

the low cost of modifying existing facilities, the post-combustion carbon capture is the 

most widely used technology3. Among post-combustion capture techniques, solvent-

based technologies are the most mature technologies. 

However, one challenge to the absorption of CO2 is the deleterious effects of sulfur 

dioxide in the flue gas even after flue gas desulfurization (FGD) process4. As reported by 

Dhegihan5, the desulfurization efficiencies of absorption and adsorption are 90–98% and 

50–60% SO2 , respectively. For a typical coal-fired power plant of 300 MW using coal 

with 1.2% sulfur content, the flue gas stream from combustion chamber contains about 

300 ppm SO2 after wet desulfurization6. 

As an alternative to the conventional amine-based process, chilled ammonia process is a 

promising alternate post-combustion carbon capture process7. In particular, chilled 

ammonia process has a potential to address the high energy cost of carbon dioxide 

regeneration in traditional amine-based systems7. Such a process requires lowering the 

flue gas temperature to 0-20°C in order to maximize the absorption efficiency of CO2 

chilled by ammonia. Regeneration is accomplished by increasing the pressure and 

temperature downstream of the CO2 absorber. High-pressure CO2 vapor formed the 

pressurized stream. 
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The method shows lower energy consumption and low volatilization of ammonia. 

However, the effects of the sulfur dioxide need to be investigated. Qi et al. have studied 

the effects of SO2 on CO2 mass transfer with aqueous ammonia in the temperature range 

20-80°C using a falling film reactor. They did not consider low temperatures (0-20°C). 

The effects of sulfur dioxide on carbon dioxide capture by chilled ammonia need to be 

addressed.  

1.2 Research Objectives 

The main research objective of this thesis work is to understand the effects of sulfur 

dioxide on the mass transfer of carbon dioxide into aqueous chilled ammonia. To achieve 

this goal, the following tasks were completed. 

 Experimental studies of the effects of sulfur dioxide on mass transfer of carbon 

dioxide absorbed by chilled ammonia. 

 Mathematical modeling of the effects of sulfur dioxide on carbon dioxide 

absorption by chilled ammonia 

Finally, a general equation is proposed to quantify the effects of sulfur dioxide on mass 

transfer of carbon dioxide into chilled ammonia. 

1.3 Thesis Structure 

This thesis includes literature review, experimental section, mechanism, calculation, and 

modeling of simultaneous absorption of CO2 and SO2 with ammonia. 

In the first chapter, literature review, existing abatement technologies are reviewed 

through a comparative study of different carbon dioxide absorbents. Then the mechanism 

of absorption of carbon dioxide into aqueous ammonia was investigated systematically.  

In the third chapter, experimental setup, absorbent preparation, and experimental 

procedures are described in details.  
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In the fourth chapter, the mathematical model was developed. The reaction mechanism 

and mass transfer model were introduced in this chapter. Of particular importance is the 

calculation of the mass transfer coefficient of carbon dioxide absorbed by chilled 

ammonia. 

The fifth chapter presents the modeling of carbon dioxide absorption by ammonia in the 

presence of sulfur dioxide. Reaction and mass transfer models for the specific situation 

for carbon dioxide and sulfur dioxide absorbed simultaneously by aqueous ammonia was 

investigated. Both analytical and numerical solutions were considered. Finally, based on 

the simulation results, a general equation was proposed to predict the effects of sulfur 

dioxide on mass transfer of carbon dioxide into ammonia. 
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Chapter 2 Literature Review 

2.1 Carbon Dioxide Capture Technologies 

Although many research projects have been conducted related to carbon capture from 

flue gas, the costs of installation and operation are still high comparing to those without 

carbon capture processes8. It was reported that 70%-80% of the total cost of carbon 

capture is for the transport and storage system9. There are three primary technologies 

associated with the different combustion system, pre-combustion, oxy-combustion, and 

post-combustion carbon capture. 

2.1.1 Pre-combustion Carbon Capture 

In pre-combustion carbon capture, fossil fuels are gasified into hydrogen and carbon 

monoxide. CO is then converted into hydrogen and CO2 by the water-gas shift reaction, 

followed by CO2 capture, typically using physical adsorption-based processes. 

Partial oxidation is one of the primary reactions that converts solid fuels, like coal, to 

gaseous fuels through a fuel rich combustion process described in equation (R 2-1). This 

process converts most solid fuels to the products containing CO and H2. Because of the 

relatively low temperature of partial oxidation, it minimizes the formation of NOx, and 

the gaseous products are mainly CO and H2, which is called syngas. 

The chemical reaction of gasification process can be described as: 

 𝐶𝛼𝐻𝛽 +
1

𝜙
(𝛼 +

𝛽

4
)𝑂2 → [𝑥𝐶𝑂2 + (1 − 𝑥)𝐶𝑂] + [𝑦𝐻2𝑂 + (1 − 𝑦)𝐻2] + 𝑧𝑂2 (R 2-1) 

The syngas can be directly burned for energy production where CO is converted into CO2 

by oxidation. However, water–gas shift (WGS) is necessary to CO2 capture, where the 

CO produced from partial oxidation is converted into CO2, according to reaction  (R 2-2): 

 𝐶𝑂 + 𝐻2𝑂 → 𝐻2 + 𝐶𝑂2  (R 2-2) 
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2.1.2 Oxy-combustion Carbon Capture 

In oxyfuel combustion, oxygen instead of air is used as an oxidant. Such a process 

simplifies the subsequent separation of nitrogen molecules. Another advantage is a 

reduction of NOx in flue gas10. Because of the absence of nitrogen molecules in 

combustion, the major products of combustion are particulate matters, water, carbon 

dioxide and sulfur dioxide, if any.  

Conventional electrostatic precipitator and FGD process could remove particulates and 

SO2, respectively. The main drawback of this process is the large energy consumption 

associated with producing oxygen, resulting in an energy penalty of 7% compared with 

plants without oxyfuel combustion process11. Because of high SO2 concentration in the 

flue gas, corrosion is another problem. At present, the implement of full-scale oxyfuel-

fired power plants is still under research and development.  

2.1.3 Post-combustion Carbon Capture 

Post-combustion is a CO2 capture process for the power plants and industrial 

facilities. This process captures the post-combustion carbon dioxide, which is much 

different from pre-combustion and oxyfuel combustion because of a more complex mix 

of components in the post-combustion products. 

A typical flue gas contains 7-15% carbon dioxide, which is low for carbon 

dioxide capture by physical sorption12. The physical absorption is not as efficient as 

chemical absorption at such low CO2 concentrations. Thus, chemical absorption is the 

most suitable technology in this case. The disadvantage caused by the low partial 

pressure of carbon dioxide in post-combustion process is compensated by its low cost for 

retrofitting the facilities.  
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However, since the CO2 partial pressure in post-combustion flue gas is low (7-

15%), the major barrier is large parasitic load resulting in energy penalty and associated 

costs. The energy cost to concentrate carbon dioxide (above 95.5%) is a major challenge. 

A 32% to 65% increasing of electricity cost caused by post-combustion carbon capture 

was reported13. 

2.1.4 Absorption 

2.1.4.1 Physical absorption 

Physical absorption is a process using a solvent to absorb separate a gas from the carrier 

gas. Henry's law can describe the absorption process. Physical absorption is usually used 

for high carbon dioxide partial pressure gas which has a larger solubility for solvent than 

with low partial pressure gas. 

2.1.4.2 Chemical absorption 

The sorbents used in chemical absorption are usually liquid sorbents. Heating or 

depressurization can regenerate the liquid sorbents. Typically, amine-based sorbents, 

such as monoethanolamine(MEA) and diethanolamine (DEA)14, are used. MEA was 

found to be the most effective for carbon capture13. Piperazine and other solvents have 

attracted attention recently15. Though piperazine is more costly than MEA, it reacts with 

carbon dioxide much faster. Piperazine, as carbon dioxide absorbent, is still under 

development. Degradation of MEA is a major challenge to this process. Other challenges 

like equipment corrosion and degradation product nitramines, which are harmful to 

human are in the count too.  

Chilled ammonia process is an aqueous ammonia-based carbon capture technology. 

This process reduces the loss of sorbent by operating under low temperature to decrease 

the volatility of aqueous ammonia. Waste heat is used to regenerate the solvent and 

carbon dioxide. The major advantage of this process is low energy cost7 (2GJ/ton for 
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desorber compared with 3.7GJ/ton for MEA). Another advantage is less degradation 

comparing with amine-based absorption. 

2.1.5 Adsorption 

Different from absorption processes, adsorption processes use sorbent to adsorb carbon 

dioxide. The absorption efficiency is affected by interfacial surface area, selectivity and 

regeneration property. Activated carbon, zeolites, Rectisol, Selexol and calcium oxides 

are typical sorbents. The regeneration of carbon dioxide is much simpler than for 

absorption.  

Pressure swing adsorption (PSA) or temperature swing adsorption (TSA) can be 

employed to recover carbon dioxide. It was reported that PSA used in a power plant can 

achieve a carbon dioxide recovery efficiency of above 85%16. Carbon dioxide will adsorb 

on the sorbent with high pressure and desorb with low pressure. For TSA, carbon dioxide 

is adsorbed with low temperature and desorbed with high temperature. TSA usually takes 

a longer time to recover carbon dioxide than PSA. However, the purity of regenerated 

carbon dioxide (95%) is relatively higher than in the PSA process (80%). The cost of 

operating TSA was around 80-150 US dollars per ton carbon dioxide captured17.  

 

2.1.6 Chemical Looping Combustion 

During chemical looping combustion, a metal oxide instead of pure oxygen 

participates in the chemical reactions. This process consists of two reactors: one reactor 

where air oxidizes the reduced metal, and another reactor where the metal oxide reacts 

with the fuel to produce CO2 and H2O, as well as reduced metal, the latter being sent 

back to the first reactor. Those two reactors are typically interconnected fluidized bed 

reactors. The advantage of chemical looping combustion is the ease of separating carbon 

dioxide from water.  



 

 8 

The metal oxides have many variants. Metal oxides suitable for carbon capture 

include Fe2O3, NiO, CuO, and Mn2O3. Inert support materials can increase the 

performance. However, the inert material should be considered together with metal oxide 

type18. The quickly decreasing oxidation reaction rate due to the formation of the 

unreactive iron compound with increasing number of cycles is the main drawback of this 

technology19.  

2.1.7 Hydrate-based Separation 

Hydrate-based CO2 separation technology can also separate CO2 from flue gases.. 

The CO2 in a flue gas will combine preferentially with hydrate cages to be separated from 

other gases. One advantage of this technology is the low energy consumption 

(0.57kWh/kg CO2  comparing with 2.32kWh/kg CO2 for using ammine20). To increase 

CO2 capture efficiency decreasing the hydrate pressure is the alternative methods. One 

typical solvent for this technology is tetrahydrofuran (THF), which is water-miscible. 

THF is usually used as a thermodynamic promoter because it can form hydrate 

combination with water under a low temperature. The disadvantage of this technology is 

the requirement of high pressure during the formation of hydrate. From the economic 

point of view, the lower the pressure leads to lower the cost. Thus, this technology has 

not been commercialized21. 

Englezos et al.22 reported that THF decreases the hydrate formation pressure and 

thus, the pressure required for CO2 capture is decreased too, which reduces the energy 

penalty. The effects and mechanisms of the additive mixture on the hydrate phase 

equilibrium using the isochoric method have confirmed the effects of THF on hydrate 

formation.  The hydrate base CO2 separation technology is considered as one of the most 

promising CO2 separation technology in the long-term23. 
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2.1.8 Amine-based and Ammonia-based Chemical Absorption 

Typical chemical absorption sorbents are carbonate-based, aqueous ammonia-based, 

hydroxide based and amine-based sorbents. One of the most mature technologies is 

amine-based CO2 absorption but, as mentioned previously, this technology requires a 

large amount heat.  

One alternative to amine-based solvents is aqueous ammonia. There are two main 

variants of this technology, depending on the operating temperature. When operated at 

low temperatures (0-20°C) the process is called chilled ammonia process. The main 

advantage of the low-temperature process is the reduced volatility of ammonia, and a 

reduced gas volume. Thus, the cost of ammonia supplement and utility will drop. In the 

chilled ammonia process (0-10°C), the precipitation of carbamate compound will form. 

Another variant of the process is when operating in the temperature range of 20-40°C. 

Based on equilibrium calculations, Victor Darde7 showed that the chilled 

ammonia process allows for a significant reduction in energy consumption in the 

regeneration step compared to the energy consumption of the process using amines. 

2.2 Aqueous Ammonia-Based Chemical Absorption 

Ammonia-based chemical absorption can absorb not only CO2 but also other components 

in flue gases like SO2 and NO2. A by-product of this technology is ammonium salts, 

which can be used as a fertilizer. In a typical ammonia-based CO2 capture process, the 

flow of ammonia will contact with flue gas in a counter-flow fashion. The temperature of 

operation is as low as 0-20°C, and thus the flue gas must be cooled before entering the 

absorber. The low temperature not only allows high absorption capacity of ammonia but 

also decreases the amount of ammonia being volatilized. The downstream gas enters a 

water washer to absorb residues ammonia to reduce ammonia slip.  The CO2 will be 

regenerated with a temperature around 90°C.  To avoid ammonia volatilization, cold 

washer is also used in the regeneration process2. 
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A well-accepted overall reaction for CO2 capture by aqueous ammonia can be described 

as: 

 𝑁𝐻3 + 𝐶𝑂2 + 𝐻2𝑂 → 𝑁𝐻4𝐻𝐶𝑂3 (R 2-3) 

 

2.3 Knowledge Gap 

Like amine, aqueous ammonia is a liquid chemical sorbent, but aqueous ammonia 

technology has two key advantages. First, aqueous ammonia is less expensive than 

amines ($0.66/kg CO2 carrying capacity versus $8.4/kg. CO2), which lowers the chemical 

make-up costs24. Second, aqueous ammonia has a lower heat of reaction (613 kJ/kg) for 

regenerating the chemical sorbent (compared to 1934 kJ/kg for mono-ethanol amine). For 

a typical coal-fired power plant of 300MW using coal with 1.2% sulfur content, the flue 

gas stream contains about 300 ppm SO2 after wet desulfurization.6 The effect of the 

presence of SO2 for chilled ammonia CO2 capture has not been well reported in literature 

It is important to understand the effects of SO2 (6–300 ppm after wet desulfurization) on 

the performance of the CO2 absorption with aqueous ammonia absorbent. 

The mass transfer and kinetics of combined CO2 and SO2 absorption in aqueous NH3 

were investigated at various SO2 concentrations, temperatures and aqueous NH3 

concentrations in a wetted wall column by Qi et al.25. The SO2 absorption in the SO2 

instantaneous reaction region is considered to form a thin film with low active NH3 and 

high produced sulfite levels, which reduce the efficiency and kinetics of CO2 absorption. 

Their study was carried out at temperatures between 20 and 80°C, and thus not applicable 

for the chilled ammonia process.   

A. Effect of mass transfer coefficient of carbon dioxide absorbed by ammonia 

The sulfur dioxide downstream of a FGD process may have an effect on the carbon 

dioxide mass transfer when absorbed by aqueous ammonia. To quantify the effect of 
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sulfur dioxide on CO2 absorption, the study of volumetric liquid-phase mass transfer is 

necessary. Mass transfer coefficient varies with liquid-gas reactor, liquid load, and 

solvent concentration. 

B. The general method that can be used to estimate the sulfur dioxide effect on 

carbon dioxide mass transfer when absorbed by aqueous ammonia 

When simplifying the method to estimate the SO2 effects for the real-life problem, a 

mathematical model is needed for the ease of use. Further, a more general equation can 

be obtained by summarizing the mathematical model. The general equation will be a 

convenient method to predict the sulfur dioxide effect of carbon dioxide absorption by 

ammonia in flue gas treatment process. 
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Chapter 3 Experimental Section and Determination of Mass 

Transfer Coefficient 

3.1 Introduction 

Before estimating the effects of SO2 on mass transfer coefficient of carbon dioxide 

absorption by aqueous ammonia, it is necessary to study the mass transfer coefficient of 

carbon dioxide in aqueous ammonia. Similar experiments have been conducted by Qin et 

al.26 They used wetted falling wall reactor and determined the mass transfer coefficient of 

carbon dioxide absorbed by aqueous ammonia in a temperature range (20- 80°C). 

However, the low temperature (0-10°C) data is missing which is essential for chilled 

ammonia process.  

In this work, the experiments were carried out with a double stirring tank reactor as 

shown in Figure 3-1. The experimental set up for determining mass transfer coefficients 

of CO2 in aqueous ammonia, with or without the presence of SO2, is shown in Figure 3-1. 

The inlet gas from cylinders was mixed in the gas mixer. The flow rate of the stream 

from each cylinder was adjusted to obtain desired concentrations of the gas mixture 

(composed of N2, CO2 and SO2). Mass flow controllers (0-10SLPM, Cole-Parmer) were 

used to control and monitor the gas flow rates.  A gas mixer (1-800-STATICS, Koflo) 

was used to ensure the gases mixed well. The simulated flue gas could include SO2 for 

concentrations ranging from 0 to 4000 ppm and fed at 2 L/min. A three-way valve that 

could be switched between bypass and gas feed was placed downstream from the mixer. 
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N2 CO2

Data

Exhaust

Outlet 
Sample

Gas 
Valve

Pressure 
Gauge Three directional 

valve

FTIR
Water bath

Double 
Stirring Tank

SO2

98%H2SO4

Ice bath 
cooler

 

Figure 3-1. Experimental setup for the determination of mass transfer coefficient of CO2 

in aqueous ammonia 

 

The gas stream was fed to the double stirring tank trough the opening in the top of the 

double stirring tank. 500 ml of aqueous ammonia of desired concentration (and verified 

through titration method) was prepared. The pH values of the liquids were measured 

using a benchtop pH meter with an accuracy of ±0.01 (Model pH700 from Oakton 

Instruments). The prepared solution was then transferred to the customized double-stirred 

tank reactor, as illustrated in Figure 3-2. The stainless steel reactor was a vessel with an 

inner diameter of 99.7 mm and an outer water jacket with an inner diameter of 152.4 mm 

for temperature control. Four rectangular baffles that were 9.5 mm wide ensured a flat 
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surface during stirring. Both stirrers were paddle-type impellers. The gas-phase stirrer 

was a four-bladed impeller with straight, flat blades and a diameter of 54.0 mm, and the 

liquid-phase stirrer was an eight-bladed impeller with straight, flat blades and a diameter 

of 38.1 mm. The top and bottom shafts were driven by two mixers (Model RK-50705-00 

from IKA Works, Inc.). The speed of the mixer was set at 700 rpm for gas phase and 230 

rpm for the liquid phase. Two love-joy couplings were used to control vibration. The 

absorber was operated continuously about the gas phase and batch-wise with the liquid 

phase. The outlet gas from the double stirring tank was cooled through ice bath to remove 

the water vapor. If a significant amount of water vapor transferred to the Fourier 

transform infrared spectrometer (FTIR, MKS Instruments MultiGas Model 2030), it 

would not only affect the measuring accuracy but also could dirty the mirror in a gas cell 

in FTIR. As such, a concentrated sulfuric acid wash bottle containing 200 ml of 98% 

sulfuric acid was used as the reactor outlet gas before going to the FTIR.  

 

In a typical run, gas concentration from the reaction was continuously monitored by the 

FTIR. Once a stable concentraiton of carbon dioxide concentration is recorded for a 

Figure 3-2 Diagram of double stirring tank 
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period of time, the experiment was completed. The concentrations of ammonia water 

were titrated after the experiment.  

3.2 Validation of Simulated Flue Gas 

By using a mixing gas system, the accuracy of the concentration of the synthesized gas 

needs to be ensured, which was realized by analyzing the mixed gases using the FTIR. 

Desired carbon dioxide concentrations are between 2% to 15%, and desired 

concentrations of sulfur dioxide are between 0 and 4000 ppm. Table 3-1shows the 

calculating and reading values of gas concentrations. The cylinders of CO2 and SO2 used 

in this validation are 15% and 1%, except for the 3000 and 4000 ppm SO2. For those high 

concentrations of SO2, cylinders with 50% CO2 and 10% SO2 were used. The agreement 

between desired and measured values was less than 5%. Preliminary experiments show 

that a 10% variation in concentration of inlet carbon dioxide will have a slight effect 

(1%-5%) on the record of the concentration of carbon dioxide in the outlet stream. 

 

Table 3-1 Comparison between desired SO2 and CO2 concentrations of the simulated flue 

gas with the actual concentrations as measured by FTIR. 

Number SO2 

(ml/min) 

CO2 

(ml/min) 

N2 

(ml/min) 

Calculated SO2 

(ppm)  

Calculated CO2  Measured SO2  

(ppm)  

Measured CO2  

1 0 133 1866 0 1% 0 0.93% 

2 0 266 1766 0 2% 0 2.11% 

3 0 400 1600 0 3% 0 3.09% 

4 0 533 1466 0 4% 0 4.10% 
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5 100 266 1633 500 2% 511 2.09% 

6 200 266 1533 1000 2% 1049 2.10% 

7 300 266 1433 1500 2% 1540 2.13% 

8 400 266 1333 2000 2% 1960 2.12% 

9 60 80 1860 3000 2% 2981 2.11% 

10 80 80 1840 4000 2% 4034 2.08% 

 

3.3 An Example of FTIR Data 

An example of FTIR data is shown in Figure 3-3. The line in the graph indicates the 

change of concentration of carbon dioxide from the reactor outlet. The desired 

concentration of carbon dioxide was set before the gas is fed to the reactor (In the case of 

Figure 3-3, the desired concentration of carbon dioxide is 2%). After a stable 

concentration of carbon dioxide in the feed gas had been monitored (while bypassing the 

reactor), the gas was fed to the reactor. In Figure 3-3, the sharp decrease of concentration 

of carbon dioxide indicates the time when the feed gas mixture was directed to the reactor 

and was absorbed by ammonia. In this particular case, the reaction in the reactor reached 

steady state in about 60 seconds. The concentration of carbon dioxide in the outlet gas 

was calculated using average outlet concentration after reaching steady state. 
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Figure 3-3 An example of FTIR data 

3.4 Mass Transfer of CO2 into Aqueous Ammonia 

The mass transfer process with gas-liquid chemical absorption can be explained based on 

the two-film theory discussed in section 4.1. The rate of CO2 absorption into ammonia 

can be expressed, based on mass balance and the ideal gas law, as follows: 

 𝑃𝐶𝑂2𝑉 = 𝑛𝐶𝑂2𝑅𝑇 (3-1) 

where 𝑃𝐶𝑂2 is partial pressure of carbon dioxide, Pa 

V is volume of gas, L 

𝑛𝐶𝑂2 is mass amount of carbon dioxide, mol 

R is ideal gas constant, Pa L mol-1 K-1 

T is gas temperature, K 

The reaction during absorption of carbon dioxide in aqueous ammonia is typically second 

order25. In the case of the second order reactions, the determination of the enhancement 

factor can be rather complex. However, it is possible to apply conditions where the 

concentrations of the reactants are constant in the solution, which implies that the reactant 

ammonia is not considerably depleted at the gas-liquid interface. Under these conditions, 
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from the double film theory, the expression of the enhancement factor has been reported 

that the rate of CO2 absorption into ammonia can be calculated by the mass difference of 

inlet and outlet of CO2
27. The derivation of enhancement factor will be discussed in 

section 5.3. 

Based on the mass balance, the amount of carbon dioxide inducted to the reactor should 

be equal to the sum of the amount of carbon dioxide absorbed by absorbent and in the 

outlet stream. Thus, the mass balance can be expressed as follows: 

 

{

𝐹𝑙𝑢𝑥 𝑜𝑓 
𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒 
𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑖𝑛𝑡𝑜

 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑎𝑚𝑚𝑜𝑛𝑖𝑎 

} = {
𝐹𝑙𝑢𝑥 𝑜𝑓

 𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒
𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚

} − {
𝐹𝑙𝑢𝑥 𝑜𝑓 

𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒
 𝑖𝑛 𝑜𝑢𝑡𝑙𝑒𝑡 𝑠𝑡𝑟𝑒𝑎𝑚

} 
(3-2) 

The molar flux of CO2, 𝑁𝐶𝑂2, is the number of moles per unit time per unit area, 

generally: 

 𝑁𝐶𝑂2 =
𝑛

𝑆𝑡
 (3-3) 

Where: 𝑆 is area of surface of liquid phase, m2 

𝑡 is time of 𝑛 mol carbon dioxide to through the surface, s 

The number of moles of carbon dioxide can be calculated by equation (3-1): 

 
𝑛 =

𝑃𝐶𝑂2𝑉

𝑅𝑇
 

(3-4) 

The ratio of volume and time is known as volume flow rate 𝑄 which can be monitored by 

flow meter during experiment: 

 
𝑄 =

𝑉

𝑡
 

(3-5) 
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Substitute equations (3-4) and (3-5) to (3-3): 

 
𝑁𝐶𝑂2 =

𝑄

𝑅𝑇𝑆
𝑃𝐶𝑂2 (3-6) 

The flux of carbon dioxide in the reactor inlet stream,𝑁𝐶𝑂2,𝑖𝑛, can thus be determined 

knowing the inlet volume flow rate, 𝑄𝑖𝑛, and the partial pressure of carbon dioxide in 

inlet stream of the reactor, 𝑃𝐶𝑂2,𝑖𝑛 , which are determined from the experimental data.  

Substitute 𝑁𝐶𝑂2,𝑖𝑛, 𝑄𝑖𝑛 and 𝑃𝐶𝑂2,𝑖𝑛 into Eq. (3-5) and the flux of carbon dioxide in inlet 

stream can be determined as: 

 
𝑁𝐶𝑂2,𝑖𝑛 =

𝑄𝑖𝑛
𝑅𝑇𝑆

𝑃𝐶𝑂2,𝑖𝑛 
(3-7) 

Similarly, the molar flux of carbon dioxide in the reactor outlet stream, 𝑁𝐶𝑂2,𝑜𝑢𝑡, can be 

determined, using Eq. (3-8):  

 
𝑁𝐶𝑂2,𝑜𝑢𝑡 =

𝑄𝑜𝑢𝑡
𝑅𝑇𝑆

𝑃𝐶𝑂2,𝑜𝑢𝑡 
(3-8) 

 

The molar flux of carbon dioxide absorbed into aqueous ammonia (See Eq. 3-2) can be 

rewritten as: 

 𝑁𝐶𝑂2 = 𝑁𝐶𝑂2,𝑖𝑛 − 𝑁𝐶𝑂2,𝑜𝑢𝑡 (3-9) 

or 

 

𝑁𝐶𝑂2 =
𝑄𝑖𝑛
𝑅𝑇𝑆

𝑃𝐶𝑂2,𝑖𝑛 −
𝑄𝑜𝑢𝑡
𝑅𝑇𝑆

𝑃𝐶𝑂2,𝑜𝑢𝑡 
(3-10) 

The volumetric flow rate change caused by absorption of carbon dioxide and sulfur 

dioxide by ammonia is considered negligible because of the low concentrations of carbon 
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dioxide (2%) and sulfur dioxide (ppm level). Thus, the volumetric flow rate of inlet and 

outlet streams of reactor can be assumed the same: 

 𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 (3-11) 

Then, Eq. (3-10) becomes 

 
𝑁𝐶𝑂2 =

𝑄𝑖𝑛
𝑅𝑇𝑆

(𝑃𝐶𝑂2,𝑖𝑛 − 𝑃𝐶𝑂2,𝑜𝑢𝑡) 
(3-12) 

 

where 𝑁𝐶𝑂2 is mass transfer flux of carbon dioxide absorbed by aqueous ammonia, mol 

cm-2 s-1 

𝑃𝐶𝑂2,𝑖𝑛is partial press of carbon dioxide in the inlet stream of reactor, Pa 

𝑃𝐶𝑂2,𝑜𝑢𝑡is partial pressure of carbon dioxide in the outlet stream of reactor, Pa 

𝑄𝐶𝑂2 is volumetric flow rate of inlet gas, L s-1 

The experimental results of 𝑁𝐶𝑂2 calculated using equation (3-12) will be used to fit and  

validate the model. 

The value of 𝑁𝐶𝑂2 from experiment will be used to calculate the overall CO2 gas-phase 

mass transfer coefficient, 𝐾𝐺, which will be discussed in Chapter 4. The determined 𝑁𝐶𝑂2 

by experiment will be used to determine 𝐾𝐺 as shown in Equation (3-13): 

 
𝐾𝐺 = −

𝑁𝐶𝑂2
𝑃𝑔𝑏 − 𝑃𝑔𝑏

∗  (3-13) 

where 
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𝑃𝑔𝑏 is log mean average of gas bulk CO2 partial pressure, Pa. 

𝑃𝑔𝑏
∗  is gas-phase CO2 concentration that would be in equilibrium with the bulk liquid 

concentration, Pa. In this work in bulk aqueous ammonia concentration was assumed to 

be 0. 

The log mean average of operational gas bulk CO2 partial pressure 𝑃𝑔𝑏 can be calculated 

using Eq. 3-1428: 

 
𝑃𝑔𝑏 =

𝑃𝐶𝑂2,𝑖𝑛 − 𝑃𝐶𝑂2,𝑜𝑢𝑡

𝐿𝑛(𝑃𝐶𝑂2−𝑖𝑛/𝑃𝐶𝑂2−𝑜𝑢𝑡)
 

(3-14) 

The mass transfer coefficient of carbon dioxide can be written as equation (3-15): 

 
𝐾𝐺 =

𝐸𝑘𝐿
𝐻𝑐

 (3-15) 

The derivation of Eq. (3-15) and the explanation of enhancement factor 𝐸 will be 

introduced in section 5.3 

Substitute Eqs. (3-13) to (3-17) to have: 

 
𝑁𝐶𝑂2 =

𝐸𝑘𝐿
𝐻𝑐

(𝑃𝑔𝑏 − 𝑃𝑔𝑏
∗ ) (3-16) 

To find the enhancement factor 𝐸 in equation (3-16), a dimensionless parameter Hatta 

number 𝐻𝑎 that compares the rate of reaction in a liquid film to the rate of diffusion 

through the film can be used and is defined as29:  

 
𝐻𝑎 =

√𝑘𝑓𝐷𝑐

𝑘𝐿
 (3-17) 
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For the absorption of carbon dioxide into aqueous ammonia, the reaction is a pseudo-

first-order reaction. The above model can be applied. The pseudo-first-order reaction rate 

with respect to carbon dioxide is shown in equation (4-44). The derivation of Hatta 

number in this work is discussed in section 5.3 from Eqs. (5-16) to (5-25). 

 
𝐻𝑎 =

√𝑘𝑜𝑏𝑠𝐷𝐶𝑂2−𝑁𝐻3
𝑘𝐿

 (3-18) 

The molar flux of carbon dioxide absorbed in liquid phase 𝑁𝐶𝑂2 is derived in section 5.3, 

equation (5-23) to (5-37) and gives: 

 𝑁𝐶𝑂2 = 𝐶0𝑘𝐿𝐻𝑎 tanh𝐻𝑎 (3-19) 

The term 𝐻𝑎 tanh𝐻𝑎 is the enhancement factor𝐸: 

 𝐸 =  𝐻𝑎 tanh𝐻𝑎 (3-20) 

Hyperbolic tangent can be derived as: 

 
tanh𝐻𝑎 =

sinh𝐻𝑎

cosh𝐻𝑎
=
𝑒𝐻𝑎 + 𝑒−𝐻𝑎

𝑒𝐻𝑎 − 𝑒−𝐻𝑎
=
𝑒2𝐻𝑎 + 1

𝑒2𝐻𝑎 − 1
=
1 − 𝑒−2𝐻𝑎

1 + 𝑒−2𝐻𝑎
 

(3-21) 

For pseudo-first-order reactions, the Hatta number is much larger than 1, and thus the 

term 𝑒−2𝐻𝑎in equation (3-21) is negligible. Thus: 

 tanh𝐻𝑎 ≈ 1 (3-22) 

and so,  

 𝐸 = 𝐻 (3-23) 

Substituting equations (3-18) and (3-23) to (3-16), it comes: 
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𝑘𝑜𝑏𝑠 =

𝑁𝐶𝑂2
2 𝐻𝑐

2

𝑃𝑔𝑏𝐷𝐶𝑂2−𝑁𝐻3
 (3-24) 

   

The value of 𝑘𝑜𝑏𝑠 can be determined by substituting 𝑁𝐶𝑂2 in equation (3-24) . 𝑁𝐶𝑂2 is 

calculated using equation (3-12) from experimental data. 𝑃𝑔𝑏 is calculated by equation 

(3-14). The methods for calculating 𝐻𝑐 and 𝐷𝐶𝑂2−𝑁𝐻3 are shown in section 0. Then, the 

value of 𝑘𝑜𝑏𝑠 determined from experimental data can be used to determine Hatta number 

in equation (3-18). Thus, the value of enhancement factor 𝐸 is calculated using (3-23). 

The 𝑘𝑜𝑏𝑠 is representing the reaction rate between carbon dioxide and ammonia which 

derivation will be given in section 4.3 from equation (4-47) to (4-51).  The value of 𝑘𝑜𝑏𝑠 

will be used to calculated the pseudo-first-order reaction rate 𝑘𝑓1 shown in section 4.3 in 

equation (4-51) and (4-52).   
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Chapter 4 Model Development and Calculations 

The mass transfer rate of CO2 and SO2 from the gas phase to aqueous NH3 can be 

described by the two film model with pseudo-first-order reaction with respect to CO2. 

Caplow30 and Derks and Versteeg31 reported that the CO2 mass transfer in aqueous NH3 

is similar to that in the primary amine, which can be explained according to a pseudo-

first-order reaction mechanism. Based on the two-film theory, the NH3 concentration in 

the liquid film is expected to be little different from that in the bulk liquid, and there is 

little diffusion limitation when the reaction between CO2 and NH3 occurs.  

Correspondingly, Qin et al.26 reported that the CO2 mass transfer process in aqueous NH3 

is determined by the reaction rate, and explained this using a pseudo-first-order reaction 

mechanism by diffusion limitation and reaction rate between CO2 and NH3. The reaction 

kinetics of ammonia and SO2 was studied by Hikita32 which can be considered as an 

instantaneous reaction. 

The absorption of CO2 into an ammonia solution is a complex process that generates 

different products at various CO2 loadings and temperatures7. The most well known 

mechanism to explain the reaction between primary amine and CO2 is the zwitterion 

mechanism, which is described in details in the next section. 

4.1 Two Film Theory 

In this theory, film transport is governed essentially by molecular diffusion. Therefore, 

Fick's law describes flux through the film.  

 
𝐽 = −𝐷

𝜕𝐶

𝜕𝑋
 (4-1) 

Where: 

J is flux of C through the film. 
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X is length in direction the flux through 

C is the concentration of carbon dioxide. 

D is the diffusion coefficient of carbon dioxide in liquid phase 

If the thickness of the stagnant film is given by δ then the gradient can be approximated 

by 

 𝜕𝐶

𝜕𝑋
≈
𝐶𝑏 − 𝐶𝑖
0 − 𝛿

 (4-2) 

 

Where: 

𝐶𝑏is concentration in bulk  

𝐶𝑖is concentration at interface. 

𝛿 is thickness of stagnant film. 

At steady state if there are no reactions in the stagnant film there will be no accumulation 

in the film (Assume that D is constant) therefore the gradient must be linear and the 

approximation is appropriate. 

 
𝐽 = −𝐷

𝐶𝑏 − 𝐶𝑖
0 − 𝛿

 (4-3) 

 

To simplify calculations a mass transfer coefficient is usually defined for either the liquid 

or gas phase as kL or kG
28. 
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𝑘𝐿 =

𝐷𝐿
𝛿𝐿

 (4-4) 

 

Where 𝐷𝐿  𝑎𝑛𝑑𝛿𝐿 are diffusion coefficient and film thickness for liquid phase, 

respectively.  

kL is liquid-phase mass transfer coefficient s-1 

kG gas-phase mass transfer coefficient mol s-1 m-2 atm-1 

In the case of gas-liquid transfer, we have transfer considerations from both sides of the 

interface. We use the Lewis-Whitman33 two-film model as described below in Figure 4-1. 

 

X direction

 

Figure 4-1 The diagram of two-film model  

 

We can assume that equilibrium is attained at the interface 
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𝐶𝑙𝑖 =

𝑃𝑔𝑖

𝐻𝑐
 (4-5) 

Where: 

𝐻𝑐 is Henry’s constant for carbon dioxide, L pa mol-1  

𝐶𝑙𝑖 is equilibrium concentration of carbon dioxide in liquid interface, mol L-1 

𝑃𝑔𝑖 is partial pressure of carbon dioxide in gas interface, pa 

A steady-state flux balance through each film can now be performed. The fluxes are 

given by: 

 J = 𝑘𝐿(𝐶𝑙𝑏 − 𝐶𝑙𝑖) (4-6) 

 J = 𝑘𝐺(𝑃𝑔𝑖 − 𝑃𝑔𝑏) (4-7) 

 

𝑃𝑔𝑏 is partial pressure of carbon dioxide in gas bulk, pa 

If a reaction of transferred gas is taking place in the liquid phase, the enhancement factor 

𝐸 is applied. 𝐸 is the so-called enhancement factor (dimensionless) which is the ratio of 

the absorption rate with and without the reaction for the same concentration difference. 

The flux of liquid phase can be rewritten as: 

 J = 𝐸𝑘𝐿(𝐶𝑙𝑏 − 𝐶𝑙𝑖) (4-8) 

 

Concentrations at the interface cannot be measured. Thus, overall mass transfer 

coefficients are defined. These coefficients are based on the difference between the bulk 
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concentration in one phase and the concentration that would be in equilibrium with the 

bulk concentration in the other phase. 

Define: 

 J = 𝐾𝐿(𝐶𝑙𝑏 − 𝐶𝑙𝑏
∗ ) (4-9) 

 J = 𝐾𝐺(𝑃𝑔𝑏
∗ − 𝑃𝑔𝑏) (4-10) 

 
𝐶𝑙𝑏
∗ =

𝑃𝑔𝑏

𝐻𝑐
 

(4-11) 

 𝑃𝑔𝑏
∗ = 𝐶𝑙𝑏𝐻𝑐 (4-12) 

 

𝐾𝐿 is overall mass transfer coefficient based on liquid-phase concentration 

𝐾𝐺 is overall mass transfer coefficient based on gas-phase concentration. 

𝐶𝑙𝑏
∗  is liquid-phase concentration that would be in equilibrium with the bulk gas 

concentration 

𝑃𝑔𝑏
∗ is gas-phase concentration that would be in equilibrium with the bulk liquid 

concentration 

Expand the liquid-phase overall flux equation to include the interface liquid 

concentration. 

 J = 𝐾𝐿([𝐶𝑙𝑏 − 𝐶𝑙𝑖] + [𝐶𝑙𝑖 − 𝐶𝑙𝑏
∗ ]) (4-13) 

 

Then substitute 
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𝐶𝑙𝑖 =

𝑃𝑔𝑖

𝐻𝑐
 𝑎𝑛𝑑 𝐶𝑙𝑏

∗ =
𝑃𝑔𝑏

𝐻𝑐
 

(4-14) 

into equation (4-13) leading to: 

 J = 𝐾𝐿([𝐶𝑙𝑏 − 𝐶𝑙𝑖] + [𝑃𝑔𝑖 − 𝑃𝑔𝑏]/𝐻𝑐) (4-15) 

In the steady state, fluxes through all films must be equal. Let all these fluxes be equal to 

J. On an individual film basis: 

From eq (4-8): 𝐽

𝐸𝑘𝐿
= (𝐶𝑙𝑏 − 𝐶𝑙𝑖) 

(4-16) 

From eq (4-7): 𝐽

𝑘𝐺
= (𝑃𝑔𝑖 − 𝑃𝑔𝑏)  

(4-17) 

 

Then equation (4-15) becomes: 

 
J = 𝐾𝐿 (

𝐽

𝐸𝑘𝐿
+

𝐽

𝑘𝐺𝐻𝑐
) 

(4-18) 

 

Since all J’s are equal, equation (4-18) can be arranged to give: 

 1

𝐾𝐿
=

1

𝐸𝑘𝐿
+

1

𝑘𝐺𝐻𝑐
 

(4-19) 

 

A similar manipulation starting with the overall flux equation based on gas-phase 

concentration will give: 
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 1

𝐾𝐺
=
𝐻𝑐
𝐸𝑘𝐿

+
1

𝑘𝐺
 (4-20) 

 

Equations (4-19) and (4-20) can be viewed as "resistance" expressions where 
1

𝐾𝐺
 or 

1

𝐸𝐾𝐿
 

represent total resistance to mass transfer based on gas or liquid-phase concentration, 

respectively.  

The mass transfer can be expressed in terms of driving potential and the corresponding 

resistance; 

 𝐶𝑙𝑏 − 𝐶𝑙𝑏
∗

𝑅
=
𝐶𝑙𝑏 − 𝐶𝑙𝑏

∗

𝑅𝐿 + 𝑅𝐺
 (4-21) 

 𝑅 = 𝑅𝐿 + 𝑅𝐺 
 

 

Where 𝑅, 𝑅𝐿and 𝑅𝐺  are overall resistance, liquid-phase resistance, and gas-phase 

resistance to mass transfer, respectively. 

 
𝑅 =

1

𝐾𝐺
, 𝑅𝐿 =

𝐻𝑐
𝐸𝑘𝐿

, 𝑅𝐺 =
1

𝑘𝐺
 

(4-22) 

 

Because of the low solubility of carbon dioxide in water, Henry’s law constant is high. 

The term 
𝐻𝑐

𝐸𝑘𝐿
 has high value. Then, the mass transfer resistance is primarily attributed to 

the liquid phase. The gas-phase mass transfer resistance is negligible: 

 𝑅 ≈ 𝑅𝐿  (4-23) 
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That is 1

𝐾𝐺
=
𝐻𝑐
𝐸𝑘𝐿

 
(4-24) 

Which gives 
𝐾𝐺 =

𝐸𝑘𝐿
𝐻𝑐

 
(4-25) 

Equation (4-25) will be used to calculate enhancement factor by determining 𝐾𝐺 

from experimental data, as shown in Appendix C- Experimental data. However, in this 

thesis work, the value of enhancement factor 𝐸 in the numerical calculation with Matlab 

code was calculated but not presented in the result section. The molar flux of carbon 

dioxide is used rather than enhancement factor in result presenting part.; Interested 

readers can use the data to calculate the value of 𝐸. 
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4.2 Zwitterion Mechanism 

Proposed by Caplow30, the zwitterion mechanism shows the zwitterion will be formed by 

CO2 and NH3 first (R 4-1)followed by deprotonation through transfer of proton to base 

(B) in solution (e.g. NH3 or H2O) (R 4-2)  

 1

1
2 3 3

f

b

k
CO NH NH COO

k


 


 

(R 4-1) 

 2

3 2

k f
NH COO B NH COO BH

   
   

(R 4-2) 

Because both of reaction(R 4-2) and reaction(R 4-1) are consuming carbon dioxide. 

The overall reaction rate for carbon dioxide is the sum of reaction(R 4-1) and (R 4-2) 

The forward reaction rate 𝑟+ for the formation of carbamate 𝑁𝐻3
+𝐶𝑂𝑂−is: 

 𝑟1 = 𝑘𝑓1[𝑁𝐻3][𝐶𝑂2] (4-26) 

The reaction (R 4-2), proton transfer reaction, is fast and thus it can be assumed that the 

product of the reaction (R 4-1) is consumed instantaneously. Also, the concentration of 

carbamate is very low and thus, the breakdown reaction of carbamate to carbon dioxide 

and ammonia is negligible. Therefore, the breakdown reaction rate of carbamate 𝑟− is 

determined from reaction (R 4-2): 

 𝑟2 = 𝑘𝑓2[𝑁𝐻3
+𝐶𝑂𝑂−][𝐵] (4-27) 

 

Because of the low solubility of carbon dioxide in aqueous ammonia, the concentration 

of carbon dioxide is small. The reaction is pseudo-first-order reaction, which is a fast 

reaction. The reaction can be considered to have reached equilibrium in this study. The 

equilibrium of formation of carbamate reaction (R 4-1) is: 
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 𝑟𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑟𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (4-28) 

 

 𝑘𝑓1[𝑁𝐻3][𝐶𝑂2] = 𝑘𝑏1[𝑁𝐻3
+𝐶𝑂𝑂−] (4-29) 

 

 [𝑁𝐻3][𝐶𝑂2]

[𝑁𝐻3
+𝐶𝑂𝑂−]

=
𝑘𝑏1
𝑘𝑓1

 
(4-30) 

 

 
[𝑁𝐻3

+𝐶𝑂𝑂−] =
[𝑁𝐻3][𝐶𝑂2]𝑘𝑓1

𝑘𝑏1
 

(4-31) 

 

The reaction rate of carbamate formation (4-26) can be rewritten as: 

 𝑟1
𝑘𝑓1

= [𝑁𝐻3][𝐶𝑂2] 
(4-32) 

 

 
𝑟1 =

[𝑁𝐻3][𝐶𝑂2]

1
𝑘𝑓1

 

(4-33) 

 

Substitute the equilibrium concentration of [𝑁𝐻3
+𝐶𝑂𝑂−] in equation (4-31) to break 

down reaction rate (4-27): 

 

 
𝑟2 = 𝑘𝑓2

[𝑁𝐻3][𝐶𝑂2]𝑘𝑓1

𝑘𝑏1
[𝐵] 

(4-34) 
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 𝑟2𝑘𝑏1
𝑘𝑓1𝑘𝑓2[𝐵]

= [𝑁𝐻3][𝐶𝑂2] 
(4-35) 

 

 
𝑟2 =

[𝑁𝐻3][𝐶𝑂2]

𝑘𝑏1
𝑘𝑓1𝑘𝑓2[𝐵]

 

(4-36) 

 

Because the carbon dioxide is consumed by both reactions of (R 4-1) and (R 4-2) and 

produced different productions so the total reaction rate is sum of formation (4-33) and 

break down reaction rate (4-36): 

 𝑟𝐶𝑂2−𝑁𝐻3 = 𝑟1 + 𝑟2 (4-37) 

 

 
𝑟1 + 𝑟2 =

[𝑁𝐻3][𝐶𝑂2]

1
𝑘𝑓1

+
[𝑁𝐻3][𝐶𝑂2]

𝑘𝑏1
𝑘𝑓1𝑘𝑓2[𝐵]

 

(4-38) 

 

 
=

[𝐶𝑂2][𝑁𝐻3]

1
𝑘𝑓1

+
𝑘𝑏1
𝑘𝑓1

1
𝑘𝑓2[𝐵]

 

(4-39) 

 

The overall reaction rate 𝑟𝐶𝑂2−𝑁𝐻3is then given by: 

 
𝑟𝐶𝑂2−𝑁𝐻3 =

[𝐶𝑂2][𝑁𝐻3]

1
𝑘𝑓1

+
𝑘𝑏1
𝑘𝑓1

1
𝑘𝑓2[𝐵]

 
(4-40) 
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When CO2 is absorbed in an unloaded NH3 solution, reactions (R 4-3) and (R 4-4) will 

contribute to the overall absorption rate at high pH values26. The reaction with 𝑂𝐻−ions 

leads to the formation of bicarbonate (R 4-3) and the carbon dioxide reacts with free 

ammonia molecules generates carbamate (R 4-1). The production of carbonic acid by 

CO2 and H2O is very slow(R 4-4) compared with reactions (R 4-3) and (R 4-2), and 

therefore, is negligible34. 

 

 
2 3

kOHCO OH HCO



 


 (R 4-3) 

 2
2 2 3

kH O
CO H O HCO H

 
 

 (R 4-4) 

 

That is to say, all the ammonia carbamate zwitterion compounds generated in reaction (R 

4-1) would be instantaneously consumed in reaction (R 4-2). Therefore, reaction (R 4-1) 

is the rate-determining step. The overall reaction was first order with respect to CO2 and 

NH3, respectively. 

4.3 Chemical Absorption SO2 by Aqueous Ammonia Mechanism   

When the sulfur dioxide is absorbed in ammonia hydroxide, the following two-step 

reactions will take place in the liquid phase35. 

 𝑆𝑂2 + 𝑁𝐻3 + 𝐻2𝑂 ⇌ 𝑁𝐻4
+ + 𝐻𝑆𝑂3

− (R 4-5) 

 𝐻𝑆𝑂3
− + 𝑁𝐻3 ⇌ 𝑁𝐻4

+ + 𝑆𝑂3
2− (R 4-6) 

 

Combining reactions (R 4-5) and (R 4-6) the overall reaction is: 

 𝑆𝑂2 + 2𝑁𝐻3 + 𝐻2𝑂 ⇌ 2𝑁𝐻4
+ + 𝑆𝑂3

2− (R 4-7) 
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Both of reactions, (R 4-5)and (R 4-6) are very fast and the reaction (R 4-7) may be 

considered as an instantaneous reaction. 

4.4 Correction of the Reaction Rate for Hydroxyl Ions 

Aqueous ammonia is a weak alkali solution. The hydroxyl ions will react with dissolved 

carbon dioxide in ammonia solution. The effect of hydroxyl ions was suggested to be 

considered by Pinsent36. The reaction rate of carbon dioxide absorbed by aqueous 

ammonia is determined by reactions (R 4-3) and (R 4-1) as shown in equation (4-41): 

 𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑟𝐶𝑂2−𝑁𝐻3 + 𝑘𝑂𝐻−[𝑂𝐻
−][𝐶𝑂2] + 𝑘𝐻2𝑂[𝐻2𝑂][𝐶𝑂2] (4-41) 

Where： 

 𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is overall reaction rate for CO2 absorption, mol L-1s-1 

𝑟𝐶𝑂2−𝑁𝐻3 is reaction rate of (R 4-1) and (R 4-2) represented by equation (4-40), mol L-1s-1 

The reaction rate constant of carbon dioxide an hydroxyl ions can be calculated by36: 

 
log(𝑘𝑂𝐻−) = 11.13 −

2530

𝑇
 (4-42) 

 

Where: T is temperature K. 

The reaction between carbon dioxide and water is slow compared with that of carbon 

dioxide reacting with ammonia and hydroxide ion. Therefore, the term of reaction 

between carbon dioxide and water is negligible. Equation (4-41) can be rewritten as: 

 𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑟𝐶𝑂2−𝑁𝐻3 + 𝑘𝑂𝐻−[𝑂𝐻
−][𝐶𝑂2] (4-43) 

Because the reaction (R 4-2) is proton transfer reaction, the reaction rate constant 𝑘𝑓2 is 

very large and the reactant B in this study, ammonia, is in excess, thus 𝑘𝑓2[𝐵] ≫
𝑘𝑏1

𝑘𝑓1
 36.  
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The term 
𝑘𝑏1

𝑘𝑓1

1

𝑘𝑓2[𝐵]
 in equation (4-40) is thus negligible and the equation (4-39) can be 

rewritten as: 

 
𝑟𝐶𝑂2−𝑁𝐻3 =

[𝐶𝑂2][𝑁𝐻3]

1
𝑘𝑓1

 

𝑟𝐶𝑂2−𝑁𝐻3 = 𝑘𝑓1[𝐶𝑂2][𝑁𝐻3] 

(4-44) 

(4-45) 

Substitute equation (4-45) to equation (4-43). The overall reaction rate of CO2 absorption 

can be rewritten as: 

 

 𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑘𝑓1[𝑁𝐻3][𝐶𝑂2] + 𝑘𝑂𝐻−[𝑂𝐻
−][𝐶𝑂2] (4-46) 

 

The overall reaction rate could be defined as: 

 𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑘𝑜𝑏𝑠[𝐶𝑂2] (4-47) 

 

Where 𝑘𝑜𝑏𝑠 is called the observed reaction rate constant with respect to CO2, s
-1.  

The observed reaction rate constant 𝑘𝑜𝑏𝑠 could be determined by 

 𝑘𝑜𝑏𝑠 =
𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙
[𝐶𝑂2]

 
(4-48) 

 𝑘𝑜𝑏𝑠 = 𝑘𝑓1[𝑁𝐻3] + 𝑘𝑂𝐻−[𝑂𝐻
−] (4-49) 

Where the first term in equation (4-49) is called apparent reaction rate, 𝑘𝑎𝑝𝑝: 

 𝑘𝑎𝑝𝑝 = 𝑘𝑓1[𝑁𝐻3] (4-50) 

Furthermore, the apparent pseudo-first-order reaction rate constant 𝑘𝑎𝑝𝑝 of the carbamate 

formation from NH3 and CO2 could be obtained by 
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 𝑘𝑎𝑝𝑝 = 𝑘𝑜𝑏𝑠 − 𝑘𝑂𝐻−[𝑂𝐻
−] (4-51) 

 

Where: 𝑘𝑎𝑝𝑝 is the apparent pseudo-first-order reaction rate constant of carbamate 

formation by NH3 and CO2 reaction, s-1 

The observed reaction rate constant with respect to carbon dioxide 𝑘𝑜𝑏𝑠 can be 

determined experimentally. The experimental data can be found in Appendix C- 

Experimental data. Details about the determination of kobs from experimental data are 

given in section 3.4. 

After, the apparent reaction constant 𝑘𝑎𝑝𝑝 is determined by equation (4-51). Thus, the 

second order reaction rate constant 𝑘𝑓1 of carbamate formation can then be calculated by 

 
𝑘𝑓1 =

𝑘𝑎𝑝𝑝

[𝑁𝐻3]
 (4-52) 

This equation will be used to determine the reaction constant of carbon dioxide and 

ammonia reaction in the numerical calculations in section 5.3. The results of 

𝑘𝑓1determined experimentally in this work is similar to those in the work of Yu37 who 

was using similar reactor and conditions, showing the reliability of the experimental data 

of this work.  
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Chapter 5 Modeling of Simultaneous Absorption of SO2 and CO2 

in NH3 

5.1 Simultaneous Absorption of Two Gases in Ammonia 

In this work, the presence of sulfur dioxide in carbon dioxide will cause both gases to 

absorb in aqueous ammonia. In the present case, as mentioned in the previous chapter, 

the absorption of SO2 is considered instantaneous. Therefore, the case considered here is 

that of simultaneous absorption of two gases in reactive liquid, one gas reacting 

instantaneously with a reactive species in a liquid medium. Another common example of 

this situation is the absorption of a gas mixture of hydrogen sulfide and carbon dioxide in 

alkanol ammonia solutions, which is quite similar to the system of study here. Therefore, 

the method can be applied for this study. This problem has been analyzed with the film 

theory by Ramachandran38. 

Gas absorption reaction between dissolved gases A and B and liquid-phase regent C has 

been investigated by Hikita39 and Goettler40. The problem of simultaneous absorption of 

two gases A and B into a liquid containing reactant C can be represented by the following 

reactions: 

 C + 𝜈𝐴𝐴 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (R 5-1) 

 S + 𝜈𝐵𝐴 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (R 5-2) 

 

Where C, S and A are carbon dioxide, sulfur dioxide and aqueous ammonia in this study. 

Stoichiometry coefficients of reactant A in reactions (R 5-1) and (R 5-2) are 𝜈𝐴 and 𝜈𝐵, 

respectively. In this study, the values of 𝜈𝐴 and 𝜈𝐵 are 1 and 2 (See reactions (R 4-1) and 

(R 4-7)). The above reaction can be rewritten as: 

 𝐶𝑂2 +𝑁𝐻3 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (R 5-3) 
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 𝑆𝑂2 + 2𝑁𝐻3 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (R 5-4) 

 

Reaction (5-3) is the reaction between carbon dioxide and ammonia, which is pseudo-

first-order reaction, and reaction (R 5-4) is the reaction between sulfur dioxide and 

ammonia, which is an instantaneous reaction.  

5.2 Reaction Plane Model 

The reaction between sulfur dioxide and ammonia is instantaneous reaction. Thus, the 

reaction occurs at a reaction plane35.  

When aqueous ammonia absorbs the sulfur dioxide, the following two-step reaction is 

taking place on the liquid side41.  

 SO2 + NH3 + 𝐻2𝑂 ⇌ 𝑁𝐻4
+ + 𝐻𝑆𝑂3

− (R 5-5) 

 𝐻𝑆𝑂3
− + NH3 ⇄ 𝑁𝐻4

+ + 𝑆𝑂3
2− (R 5-6) 

The values of equilibrium constants for reactions (R 5-5) and (R 5-6) are 3.1×107 and 

1.1×102, respectively, at 25°C and infinite dilution35. Reaction (R 5-5) is considered as 

very fast, and reaction (R 5-6), which is a proton transfer reaction, is even much faster 

than reaction (R 5-5)35. Both reactions are thus considered as instantaneous reactions. 

Because both reactions (R 5-5) and (R 5-6) have very large equilibrium constants, the 

coexistence of the liquid-phase reactant NH3 with SO2 or the intermediate product 𝐻𝑆𝑂3
− 

may be considered impossible.  

 
𝐾1 =

[𝑁𝐻4
+][𝐻𝑆𝑂3

−]

[SO2][NH3]
 (5-1) 

 

 
𝐾2 =

[𝑁𝐻4
+][𝑆𝑂3

2−]

[𝐻𝑆𝑂3
−][NH3]

 (5-2) 
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Thus, the only species that can coexist with NH3 are the final products of the reaction 

𝑆𝑂3
2− and 𝑁𝐻4

+. However, in this two-step reaction, the ratio of equilibrium constant of 

the two reactions are: 

 𝐾1
𝐾2
=

[𝐻𝑆𝑂3
−]2

[SO2][𝑆𝑂3
2−]

= 2.8 × 105 
(5-3) 

 

The ratio of equilibrium constant is the equilibrium constant for reaction: 

 𝑆𝑂2 + 𝑆𝑂3
2− ⇌ 2𝐻𝑆𝑂3

− (R 5-7) 

 

Thus coexisting of 𝑆𝑂2 and 𝑆𝑂3
2− can be considered as negligible because of a large 

equilibrium constant (5-3) and fast reaction of reactions (R 5-5) and (R 5-6). The species 

that could coexist with are the final products 𝑁𝐻4
+ and 𝑆𝑂3

2−. In this case, a three film 

theory is used to describe the mass transfer model; the two film theory is not suitable for 

this situation because there are two reactive regions in the liquid side film (one region for 

reaction with SO2 and the other for reaction with CO2). 

Based on the case of sulfur dioxide and ammonia reaction, the diagram of concentration 

distribution of species in the liquid phase of simultaneous absorption of CO2 and SO2 in 
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NH3 is shown in Figure 5-1  
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Figure 5-1Diagram of concentration distribution of species in liquid phase 

In Figure 5-1, 𝑥𝑟 is the distance from the interface to reaction plane. 𝑥𝑓 is the thickness of 

the stagnate film, 𝐶0 and 𝑆0 are equilibrium concentrations of carbon dioxide and sulfur 

dioxide calculated by Henry’s law at the interface. 𝐴0 is the concentration of ammonia in 

the bulk liquid. 𝐶𝑟 is the concentration of carbon dioxide in the reaction plane. Because of 

the absence of ammonia in the Region I, the reaction between carbon dioxide and 

ammonia in Region I will not take place. Thus, the carbon dioxide will only have 

diffusion in Region I, which can be described by Fick’s first law: 
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𝑁𝐶𝑂2 = −𝐷𝐶𝑂2

𝑑𝐶𝐶𝑂2
𝑑𝑥

 (5-4) 

Where 𝑁𝐶𝑂2 is molar mass flux of carbon dioxide  

𝐷𝐶𝑂2  is the diffusion coefficient of carbon dioxide in aqueous ammonia, which can be 

calculated using (5-98) and (5-99) 

𝐶𝐶𝑂2 is the concentration of carbon dioxide 

𝑥 is the position, the dimension of which is length, 𝑥𝑟 is the distance from interface to 

reaction plane. 𝑥𝑓 is thickness of the stagnant film 

In Region II, the ammonia is present. In that case, the reaction between ammonia and 

carbon dioxide will take place in Region II. Because of the absence of sulfur dioxide in 

Region II, there is no sulfur dioxide in Region II, the reaction between ammonia and 

sulfur dioxide will not happen in Region II. Since the sulfur dioxide diffuses only in 

Region I, the distance between the reaction plane and the interface is related to the 

equilibrium concentration of sulfur dioxide at the interface, which is related to the 

concentration of sulfur dioxide concentration in the gas phase. Thus, an increase in sulfur 

dioxide concentration in the bulk gas will increase the distance it takes to diffuse to the 

reaction plane. Besides, the reaction between sulfur dioxide and ammonia is rapid, and it 

can be assumed that there is no diffusion of ammonia (
𝑑𝐶𝑁𝐻3

𝑑𝑥
= 0) near the reaction plane 

(𝑥 = 𝑥𝑟
+, 𝑥𝑟

−). 

The distance from the interface to the reaction plane has an effect on carbon dioxide 

absorption. Because of the distance from the interface to the reaction plane is changing 

with sulfur dioxide concentration in the bulk gas, the carbon dioxide concentration in 

reaction plane 𝐶𝑟 is changing.  
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When the reaction between sulfur dioxide and the liquid-phase reactant ammonia is 

simultaneous, this reaction occurs at the reaction plane, where the concentrations of 

sulfur dioxide and ammonia are assumed zero. The mass flux of sulfur dioxide diffused 

to the reaction plane is twice that of the mass flux of ammonia (1 mole sulfur dioxide 

reacts with 2 mole ammonia according to reactions (R 5-5) and (R 5-6) .Thus, the relation 

of mass flux of sulfur dioxide and ammonia near the reaction plane is: 

 −𝑣𝐵𝐷𝑆𝑂2 (
𝑑𝐶𝑆𝑂2
𝑑𝑥

) = 𝐷𝑁𝐻3(
𝑑𝐶𝑁𝐻3
𝑑𝑥

) (5-5) 

 

Carbon dioxide diffuses beyond the reaction plane and reacts with ammonia in the region 

between the reaction plane and the bulk aqueous ammonia. 

The mass balance using film theory with chemical reaction and boundary conditions is 

described in the following 

The mass balance of carbon dioxide over a thickness ∆𝑥 of liquid phase, S of surface 

is: 

 𝑁𝐶𝑂2|𝑥𝑆 − 𝑁𝐶𝑂2|𝑥+∆𝑥𝑆 − 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3𝑆∆𝑥 = 0 (5-6) 

 𝑑𝑁𝐶𝑂2
𝑑𝑧

+ 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3 = 0 
(5-7) 

 
𝑁𝐶𝑂2 = −𝐷CO2

𝑑𝐶𝐶𝑂2
𝑑𝑥

 
(5-8) 

Combining the last two equations gives: 

 𝐷CO2
𝑑2𝐶𝐶𝑂2
𝑑𝑥2

= 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3
 (5-9) 

The mass balance for sulfur dioxide and ammonia can be derived similarly and gives: 
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𝐷𝑆𝑂2

𝑑2𝐶𝑆𝑂2
𝑑𝑥2

= 𝑘𝑆𝑂2𝐶𝑆𝑂2𝐶𝑁𝐻3   
 

(5-10) 

 
𝐷𝑁𝐻3

𝑑2𝐶𝑁𝐻3
𝑑𝑥2

= 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3 + 2𝑘𝑆𝑂2𝐶𝑆𝑂2𝐶𝑁𝐻3   
 

(5-11) 

Where the reaction constant 𝑘𝐶𝑂2 can be calculated by equation (4-52)  

The derivation for the enhancement factor of carbon dioxide absorbed by ammonia is 

based on the work of Hikita39, as shown in Appendix B.  

However, the derivation in the derivation in Hikita’s article cannot be approached by the 

derivation shown in Appendix B- Analytical solution of mass transfer of CO2 in 

ammonia. The reason is the different assumption with linearized concentration profile of 

carbon dioxide in region 𝑥𝑟 < 𝑥 < 𝑥𝑓. The article derived the following equation by 

assuming linearized concentration profile of carbon dioxide in region𝑥𝑟 < 𝑥 < 𝑥𝑓: 

 
A = (

𝑑𝐴

𝑑𝑥
)
𝑥=𝑥𝑟

(𝑥 − 𝑥𝑟) + 𝐴𝑟 = (𝐴𝑟 − 𝐴𝑖)
𝑥

𝑥𝑟
+ 𝐴𝑖 

(5-12) 

This indicated that the equation is only true when x=𝑥𝑟 so that this equation can’t be used 

to solve other equations with x≠𝑥𝑟. In that case, the analytical solution is difficult for this 

complicated reaction situation. Thus, equations (5-9) to (5-11) have to be solved 

numerically, as shown in section 5.3. 

 

5.3 Numerical Calculation 

The equations describing diffusion and reaction between the interface at x=0 and the film 

boundary condition at 𝑥 = 𝑥𝑓 were discussed above from equations (5-4) to (5-8). The 

diffusion with chemical reaction of carbon dioxide and sulfur dioxide in aqueous 

ammonia are shown in equations (5-9) and (5-10) 
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The boundary conditions are shown in equations (5-13) to (5-15): 

x=0 𝐶𝐶𝑂2=𝐶0, 𝐶𝑆𝑂2 = 𝑆0 (5-13) 

x=𝑥𝑟 𝐶𝐶𝑂2 = 𝐶𝑟,  𝐶𝑆𝑂2 = 0,  𝐶𝑁𝐻3 = 0,  -2𝐷CO2 (
𝑑𝐶𝑆𝑂2

𝑑𝑥
) = 𝐷𝐶𝑂2(

𝑑𝐶𝑁𝐻3

𝑑𝑥
) (5-14) 

x=𝑥𝑓 𝑑𝐶𝐶𝑂2

𝑑𝑥
= 0, 𝐶𝐶𝑂2=0, 𝐶𝑆𝑂2 = 0, 𝐶𝑁𝐻3 = 𝐴0  (5-15) 

Because the reaction between sulfur dioxide and ammonia is instantaneous, so the 

reaction constant 𝑘𝑆𝑂2is considered infinite. 

Dimensionless forms were used to simplify the numerical solution: 

Both sides of equation (5-12) were divided by 𝐷𝐶𝑂2𝐶0𝐴0(
1

𝑥𝑓
) 2 which leads to: 

 
𝑑2
𝐶𝐶𝑂2
𝐶0

𝑑(
𝑥
𝑥𝑓
)2
=
𝐴0𝑘𝐶𝑂2𝑥𝑓

2

D𝐶𝑂2

𝐶𝐶𝑂2
𝐶0

𝐶𝑁𝐻3
𝐴0

 

(5-16) 

Define the following dimensionless parameters: 

 𝑐 =
𝐶𝐶𝑂2

𝐶0
, 𝑎 =

𝐶𝑁𝐻3

𝐴0
, 𝜉 =

𝑥

𝑥𝑓
, 𝐻𝑎2 =

𝑘𝐶𝑂2𝐴0𝑥𝑓
2

D𝐶𝑂2
 

(5-17) 

This yields the following dimensionless equation: 

 𝑑2𝑐

𝑑𝜉2
= 𝐻𝑎2𝑐a (5-18) 

The dimensionless parameter 𝐻𝑎 in equation (5-18) is called the Hatta number: 

 

𝐻𝑎 = 𝑥𝑓√
𝑘𝐶𝑂2𝐴0

D𝐶𝑂2
 (5-19) 
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Recall equation: 

 
𝑘𝐿 =

𝐷𝐿
𝛿𝐿

 (5-20) 

The thickness of the liquid film 𝛿𝐿 is equal to 𝑥𝑓, which was discussed in section 5.2, and 

the diffusion coefficient 𝐷𝐿 is the diffusion coefficient of carbon dioxide in aqueous 

ammonia D𝐶𝑂2  , which is related to the overall mass transfer coefficient through equation 

5-23.: 

 
𝑘𝐿 =

D𝐶𝑂2
𝑥𝑓

 (5-21) 

Substitute equation (5-21) to eliminate 𝑥𝑓 in equation (5-19): 

 
𝐻𝑎 =

√𝑘𝐶𝑂2D𝐶𝑂2𝐴0

𝑘𝐿
 

(5-22) 

In Chapter 4 the reaction between carbon dioxide and ammonia is considered as pseudo-

first-order reaction with respect to carbon dioxide for the determination of the 

enhancement factor from experimental data, and where the concentration of ammonia is 

assumed unchanged. Then, Equation (5-10) becomes: 

 
D𝐶𝑂2−𝑁𝐻3

𝑑2𝐶𝐶𝑂2
𝑑𝑥2

= 𝑘𝐶𝑂2𝐶𝐶𝑂2 
(5-23) 

 

The Hatta number of this pseudo-first-order reaction can be derived by a similar process 

from equation (5-16) to (5-22) and gives: 

 𝑑2𝑐

𝑑𝜉2
= 𝐻𝑎2𝑐 (5-24) 
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𝐻𝑎 =

√𝑘𝐶𝑂2D𝐶𝑂2
𝑘𝐿

 (5-25) 

The general solution of equation (5-24)  is: 

 𝑐 = 𝐶1 cosh𝐻𝑎𝜉 + 𝐶2 sinh𝐻𝑎𝜉 (5-26) 

 

Apply the boundary condition c=1, 𝜉 = 0 shown in (5-44) : 

 1 = 𝐶1 cosh𝐻𝑎 ∗ 0 + 𝐶2 sinh𝐻𝑎 ∗ 0 
(5-27) 

 1 = 𝐶1 
(5-28) 

Take derivation on both sides of equation (5-26) and apply the other boundary condition 

𝑑𝑐

𝑑𝜉
= 0, 𝜉 = 1 in (5-44): 

 𝑑𝑐

𝑑𝜉
= 𝐻𝑎𝐶1 sinh𝐻𝑎𝜉 + 𝐻𝑎𝐶2 cosh𝐻𝑎𝜉 (5-29) 

 0 = 𝐶1 sinh𝐻𝑎 + 𝐶2 cosh𝐻𝑎 
(5-30) 

 0 = sinh𝐻𝑎 + 𝐶2 cosh𝐻𝑎 
(5-31) 

 
𝐶2 = −

sinh𝐻𝑎

cosh𝐻𝑎
 (5-32) 

Apply (5-28) and (5-32) to equation(5-26) to have: 

 
𝑐 =

cosh𝐻𝑎 cosh𝐻𝑎𝜉 − sinh𝐻𝑎 sinh𝐻𝑎𝜉

cosh𝐻𝑎
=
cosh[𝐻𝑎(1 − 𝜉)]

cosh𝐻𝑎
 

(5-33) 

 

Reverting to the original notation for 𝑐: 
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 𝐶𝐶𝑂2
𝐶0

=
cosh[𝐻𝑎(1 − 𝜉)]

cosh𝐻𝑎
 (5-34) 

The concentration profile can thus be obtained by equation (5-34). The molar flux 𝑁𝐶𝑂2 

can be found by applying equation (5-47) to (5-4): 

 

𝑁𝐶𝑂2 = −D𝐶𝑂2
𝑑𝐶𝐶𝑂2
𝑑𝑥

=
𝑑
𝐶0cosh[𝐻𝑎(1 − 𝜉)]

cosh𝐻𝑎
 

𝑑𝑥
 

(5-35) 

 
𝑁𝐶𝑂2 = 𝐶0

𝐷𝐶𝑂2
𝑥𝑓

𝐻𝑎 tanh𝐻𝑎 
(5-36) 

The equation (5-36) will not be used in numerical calculation in this work but shows the 

derivative process of equation (3-19) used in section 3.4.Thus the flux calculated here is 

at x=𝑥𝑓. Applying equation (5-21) to (5-36) and obtains the expression of the mass flux 

of carbon dioxide as a function of the Hatta number:  

 𝑁𝐶𝑂2 = 𝐶0𝑘𝐿𝐻𝑎 tanh𝐻𝑎 (5-37) 

 

Similarly, Equation (5-10) was converted to a dimensionless form by dividing by 

D𝑆𝑂2−𝑁𝐻3𝑆0𝐴0(
1

𝑥𝑓
) 2: 

 
𝑑2
𝐶𝑆𝑂2
𝑆0

𝑑(
𝑥
𝑥𝑓
)2
=
𝐴0𝑘𝑆𝑂2𝑥𝑓

2

𝐷𝑆𝑂2

𝐶𝑆𝑂2
𝑆0

𝐶𝑁𝐻3
𝐴0

 

(5-38) 

Multiplying both sides by 
𝐷𝑆𝑂2

𝐷𝐶𝑂2
 and multiplying the right side by 

𝑘𝐶𝑂2

𝑘𝐶𝑂2
 yields: 

 
𝐷𝑆𝑂2
𝐷𝐶𝑂2

𝑑2
𝐶𝑆𝑂2
𝑆0

𝑑(
𝑥
𝑥𝑓
)2
=
𝑘𝑆𝑂2
𝑘𝐶𝑂2

𝐴0𝑘𝐶𝑂2𝑥𝑓
2

𝐷𝐶𝑂2

𝐶𝑆𝑂2
𝑆0

𝐶𝑁𝐻3
𝐴0

 

(5-39) 

Given the dimensionless parameters: 
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 𝑟𝑆𝑂2 =
D𝑆𝑂2

D𝐶𝑂2
, 𝑝 =

𝑘𝑆𝑂2

𝑘𝐶𝑂2
, 𝑠 =

𝐶𝑆𝑂2

𝑆0
 (5-40) 

 

The equation converted to the following dimensionless form: 

 
𝑟𝑆𝑂2 (

𝑑2𝑠

𝑑𝜉2
) = 𝑝𝐻𝑎2𝑠𝑎 

(5-41) 

Equation (5-11) was converted to a dimensionless form in a similar way to obtain: 

 
𝑟𝑁𝐻3 (

𝑑2𝑎

𝑑𝜉2
) = 𝐻𝑎2(𝑚𝐶𝑐𝑎 + 𝑝𝑚𝑆𝑠𝑎) 

(5-42) 

   

Where: 

 
𝑟𝑁𝐻3 =

𝐷𝑁𝐻3
𝐷𝐶𝑂2

 (5-43) 

With dimensionless boundary conditions  

 
𝑐(0) = 1        𝑐(1) = 0      

𝑑𝑐

𝑑(1)
= 0      (5-44) 

 𝑠(0) = 1           𝑠(1) = 0 (5-45) 

 𝑑𝑎

𝑑𝜉
(0) = 0             𝑎(1) = 1 (5-46) 

Where: 

 𝑐 =
𝐶𝐶𝑂2

𝐶0
, 𝑠 =

𝐶𝑆𝑂2

𝑆0
, 𝑎 =

𝐶𝑁𝐻3

𝐴0
 𝑝 =

𝑘𝑆𝑂2

𝑘𝐶𝑂2
 (5-47) 

 𝑚𝑐 =
𝑣𝐶𝐶0

𝐴0
,  𝑚𝑠 =

𝑣𝑆𝑆0

𝐴0
, 𝜉 =

𝑥

𝑥𝐿
, 𝐻𝑎2 =

𝑘𝐶𝐴0𝑥𝐿
2

𝐷𝐶𝑂2
=
𝑘𝐶𝐴0𝐷𝐶𝑂2

𝑘𝐿
2  

(5-48) 
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 𝑟𝑠 =
𝐷𝑆𝑂2

𝐷𝐶𝑂2
, 𝑟𝐴 =

𝐷𝑁𝐻3

𝐷𝐶𝑂2
 (5-49) 

As discussed in section 5.2 there is a reaction plane in this model because of the infinitely 

fast reaction between sulfur dioxide and ammonia. Thus, 𝑝 is infinite. Rearranging 

equation (5-41) : 

 
lim
𝑝→∞

𝑠𝑎 = lim
𝑝→∞

(
𝑟𝑆

𝐻𝑎2𝑝
) (
𝑑2𝑠

𝑑𝜉2
) = 0 

(5-50) 

 Which suggests the existence of a reaction plane at 𝜉 = 𝜉∗ so that: 

 A=0 at 0 ≤ 𝜉 ≤ 𝜉∗ (5-51) 

 S=0 at 𝜉∗ ≤ 𝜉 ≤ 1 (5-52) 

In Region I there is no reaction of carbon dioxide, According to Fick’s law(5-4) the 

concentration profiles are linear so that the reaction factor for carbon dioxide, 𝐸𝐶, can be 

calculated by equations (B-9) to (B-12)  in Appendix B with dimensionless forms as 

follows: 

 
𝐸𝐶 =

𝑑𝑐

𝑑𝜉
 (5-53) 

 
𝐸𝐶 =

(1 − 𝑐∗)

𝜉∗
 (5-54) 

The reaction factor for sulfur dioxide 𝐸𝑆 is: 

 
𝐸𝑆 =

1

𝜉∗
 (5-55) 

Where: 
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 𝑐∗ = 𝑐(𝜉∗) (5-56) 

There is no reaction between sulfur dioxide and ammonia in the region 𝜉∗ ≤ 𝜉 ≤ 1 so 

equation (5-42) becomes: 

 
𝑟𝐴 (

𝑑2𝑎

𝑑𝜉2
) = 𝐻𝑎2𝑚𝐶𝑐𝑎 (5-57) 

Subject equation (5-18) to the above equation with boundary conditions: 

 𝑐(𝜉∗) = 𝑐∗, 𝑐(1) = 0 (5-58) 

 𝑎(𝜉∗) = 0, 𝑎(1) = 1 (5-59) 

We have: 

 𝑟𝐴
𝑚𝐶
(
𝑑2𝑎

𝑑𝜉2
) =

𝑑2𝑐

𝑑𝜉2
 (5-60) 

 𝑟𝐴
𝑚𝐶
(
𝑑2𝑎

𝑑𝜉2
) −

𝑑2𝑐

𝑑𝜉2
= 0 (5-61) 

 
∫[

𝑟𝐴
𝑚𝐶
(
𝑑2𝑎

𝑑𝜉2
) −

𝑑2𝑐

𝑑𝜉2
] = 0 (5-62) 

 𝑟𝐴
𝑚𝐶
(
𝑑𝑎

𝑑𝜉
) −

𝑑𝑐

𝑑𝜉
= 𝐶1 (5-63) 

 
∫[

𝑟𝐴
𝑚𝐶
(
𝑑𝑎

𝑑𝜉
) −

𝑑𝑐

𝑑𝜉
] = ∫𝐶1 (5-64) 

 𝑟𝐴
𝑚𝐶
𝑎 − 𝑐 = 𝐶1𝜉 + 𝐶2 (5-65) 

Apply the boundary condition (5-58) and (5-59) to equation (5-65): 
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 −𝑐∗ = 𝑐1𝜉
∗ + 𝑐2 (5-66) 

 𝑟𝐴
𝑚𝐶

= 𝑐1 + 𝑐2 (5-67) 

 

(5-66) - (5-67): 

 −𝑐∗ −
𝑟𝐴
𝑚𝐶

= 𝑐1(𝜉
∗ − 1) (5-68) 

 

𝑐1 = −
𝑐∗ +

𝑟𝐴
𝑚𝐶

𝜉∗ − 1
 (5-69) 

Multiply both sides of equation (5-67) with 𝜉∗: 

 𝑟𝐴
𝑚𝐶
𝜉∗ = 𝑐1𝜉

∗ + 𝑐2𝜉
∗ (5-70) 

(5-70)-(5-67): 

 𝑟𝐴
𝑚𝐶
𝜉∗ + 𝑐∗ = 𝑐2𝜉

∗ − 𝑐2 = 𝑐2(𝜉
∗ − 1) (5-71) 

 

𝑐2 =

𝑟𝐴
𝑚𝐶
𝜉∗ + 𝑐∗

𝜉∗ − 1
 

(5-72) 

Replace the 𝑐1, 𝑐2 in equation (5-65) with their expression in equations (5-69) and (5-69): 

 
𝑟𝐴
𝑚𝐶
𝑎 − 𝑐 = −

𝑐∗ +
𝑟𝐴
𝑚𝐶

𝜉∗ − 1
𝜉 +

𝑟𝐴
𝑚𝐶
𝜉∗ + 𝑐∗

𝜉∗ − 1
 

(5-73) 

Multiply by 𝑚𝐶: 
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𝑟𝐴𝑎 −𝑚𝐶𝑐 = −

𝑚𝐶𝑐
∗ + 𝑟𝐴

𝜉∗ − 1
𝜉 +

𝑟𝐴𝜉
∗ +𝑚𝐶𝑐

∗

𝜉∗ − 1
 

(5-74) 

 
𝑟𝐴𝑎 −𝑚𝐶𝑐 =

𝑟𝐴𝜉
∗ +𝑚𝐶𝑐

∗ − (𝑚𝐶𝑐
∗ + 𝑟𝐴)𝜉

𝜉∗ − 1
 

(5-75) 

Because of no reaction between carbon dioxide and ammonia in the Region I (Figure 

5-1), the distribution of concentration of carbon dioxide is linear respect to the dimension 

of  , thus: 

 𝑑𝑐

𝑑𝜉
=

𝑑𝑐

𝑑𝜉(0)
= −

1 − 𝑐∗

𝜉∗
 (5-76) 

Moreover, 
𝑑𝑐

𝑑𝜉
 is continuous across the reaction plane.  

Because of the reaction between ammonia and sulfur dioxide is complete, the molar flux 

of sulfur dioxide diffused to reaction plane: 𝑁𝑆 = 𝐷𝑆𝑂2
𝑑𝐶𝑆𝑂2

𝑑𝑥(𝑥𝑟−)
 is equal to the negative 

molar flux of ammonia diffused to the reaction plane: 𝑁𝐴 = 𝐷𝑁𝐻3
𝑑𝐴

𝑑𝑥(𝑥𝑟+)
 The mass 

balance at the reaction plane can be written as: 

 −𝑁𝑆
𝑥𝑟
−
= 𝑁𝐴

𝑥𝑟
+
 (5-77) 

 

−𝐷𝑆𝑂2𝑆0

𝑑
𝐶𝑆𝑂2
𝑆0

𝑑𝑥(𝑥𝑟−)
= 𝐷𝑁𝐻3𝐴0

𝑑
𝐶𝑁𝐻3
𝐴0

𝑑𝑥(𝑥𝑟+)
 

(5-78) 

 

−
𝐷𝑆𝑂2
𝐷𝐶𝑂2

𝑆0

𝑑
𝐶𝑆𝑂2
𝑆0

𝑑𝑥(𝑥𝑟−)
=
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝐴0

𝑑
𝐶𝑁𝐻3
𝐴0

𝑑𝑥(𝑥𝑟+)
 

(5-79) 
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𝐷𝑆𝑂2
𝐷𝐶𝑂2

𝑆0
𝐴0

𝑑
𝐶𝑆𝑂2
𝑆0

𝑑
𝑥
𝑥𝐿
, (𝑥𝑟−)

=
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝑑
𝐶𝑁𝐻3
𝐴0

𝑑
𝑥
𝑥𝐿
, (𝑥𝑟+)

 

(5-80) 

Apply equations (5-47) to (5-49) to convert the above equation (5-80) to dimensionless 

form: 

 
𝑟𝐴

𝑑𝐴

𝑑𝜉(𝜉∗+)
= −𝑟𝑠𝑚𝑠

𝑑𝑠

𝑑𝜉(𝜉∗−)
 

(5-81) 

The concentration of sulfur dioxide distribution in Region I is linear so the derivative of 

sulfur dioxide concentration is the slope of the concentration:  

 
𝑟𝐴

𝑑𝐴

𝑑𝜉(𝜉∗+)
= −𝑟𝑠𝑚𝑠

𝑑𝑠

𝑑𝜉(𝜉∗−)
=
𝑟𝑠𝑚𝑠
𝜉∗

 
(5-82) 

  

Differentiating equation (5-75): 

 
𝑚𝐶

𝑑𝑐

𝑑𝜉
− 𝑟𝐴

𝑑𝑎

𝑑𝜉
=
−(𝑚𝐶𝑐

∗ + 𝑟𝐴)

1 − 𝜉∗
 

(5-83) 

Apply equation (5-76) and (5-81) to eliminate the differentiation equation (5-83): 

 
𝑚𝐶
𝑐∗ − 1

𝜉∗
−
𝑟𝑆𝑚𝑆
𝜉∗

= −
𝑚𝐶𝑐

∗ + 𝑟𝐴
1 − 𝜉∗

 
(5-84) 

 𝑚𝐶(𝑐
∗ − 1)(1 − 𝜉∗) − 𝑟𝑆𝑚𝑆(1 − 𝜉

∗) = −𝑚𝐶𝑐
∗ − 𝑟𝐴 (5-85) 

 𝑚𝐶(𝑐
∗ − 𝑐∗𝜉∗ − 1 + 𝜉∗) − 𝑟𝑆𝑚𝑆(1 − 𝜉

∗)

= −𝑚𝐶𝑐
∗ − 𝑟𝐴 

(5-86) 



 

 56 

 𝑚𝐶𝑐
∗ = 𝑚𝐶 + 𝑟𝑆𝑚𝑆 − (𝑚𝐶 + 𝑟𝑆𝑚𝑆 + 𝑟𝐴)𝜉

∗ (5-87) 

Equation (5-87) shows the relation between 𝑐∗and 𝜉∗. The numerical solution can be 

obtained by giving input value of continuous value to 𝑚𝐶 in equations (5-18) and 

enhancement factor 𝐸𝐶 in (5-53) and check if the solution is satisfying the boundary 

conditions (5-58) and (5-59). The value of enhancement factor without chemical reaction 

𝐸𝐶 is compared with the value of enhancement factor with chemical reaction, E, 

calculated with Matlab. Because of the consistent concentration distribution of carbon 

dioxide near the reaction plane, the value of enhancement factor without chemical 

reaction 𝐸𝐶 and the value of enhancement factor with chemical reaction E is equal. The 

value of 𝐻𝑎 is calculated by solving the boundary value problem with the input value of 

𝜉∗from 0 to 1. Thus, the relation between 𝐻𝑎 and 𝜉∗ can be found. Further, with 

experimental data, the value of 𝐻𝑎 could be determined thus, the 𝜉∗can be calculated. 

Once  𝜉∗is known, the concentration profile in Region 2, as well as the flux of CO2 can 

be calculated, which in turn can be used to predict the experimental data. 
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The boundary value problem was solved numerically with Matlab. The process of solving 

the boundary value problem is shown in Figure 5-2: 

 

 

Figure 5-2 Numerical calculation process 

Input diferential equations for Region 2:

𝑑2𝑐

𝑑𝜉2
= 𝐻𝑎2𝑐𝑎

𝑟𝐴
𝑑2𝑎

𝑑𝜉2
= 𝐻𝑎2𝑚𝐶𝑐𝑎

Input value of Ha,𝑟𝑐 and 𝑚𝐴, for example, 5mol/L NH3, 500ppm 
SO2,2%CO2, 0°C the values are: 𝐻𝑎2=381, 𝑟𝐴=0.2648,𝑚𝐶=0.0013

Input boundary conditions:

𝐶 𝜉∗ = 𝐶∗, 𝐶 1 = 0

𝑑𝐴

𝑑𝜉
𝜉∗ = 0, 𝐴 1 = 1

Guess values of 𝜉∗ which should be between 0 and 1. 𝐶∗ is calculated for a given value 
of 𝜉∗. 𝑟𝑆 𝑎𝑛𝑑 𝑚𝑠𝑎𝑟𝑒 calculated, for example, 5mol/L NH3, 500ppm SO2, 2%CO2, 0°C the 
values are : 𝑟𝑆= 0.224, 𝑚𝑠=4.05×10-4

The result will give concentration profile of C and A, 
and derivative of C. If the result satisfies boundary 

condition 𝐶′ 0 = −
1−𝐶∗

𝜉∗
, the value of 𝜉∗ is the 

solution for the equations. If the result dose not 
satisfy the boundary condition another guess value of 
𝜉∗ will be tried.
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The enhancement factor E calculated by the numerical method will be used to calculate 

the mass flux of the carbon dioxide absorbed by ammonia.  

The mass flux of carbon dioxide absorbed into liquid phase can be calculated by: 

 
𝑁𝐶𝑂2 = −𝐷𝐶𝑂2

𝑑𝐶𝐶𝑂2
𝑑𝑥

 (5-88) 

The thickness 𝑥𝑓 of film can be found by definition: 

 
𝑘𝐿 =

𝐷𝐶𝑂2−𝑁𝐻3
𝑥𝑓

 (5-89) 

Dimensionless concentration of carbon dioxide: 

 
𝐶 =

𝐶𝐶𝑂2
𝐶0

 (5-90) 

The derivative of dimensionless concentration of carbon dioxide is as follows: 

 

𝑑𝐶

𝑑ξ
=

𝑑
𝐶𝐶𝑂2

𝐶𝐶𝑂2−𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑑
𝑥
𝑥𝑓

=
𝑑𝐶𝐶𝑂2
𝑑𝑥

𝑥𝑓

𝐶𝐶𝑂2−𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
 

(5-91) 

 𝑑𝐶𝐶𝑂2
𝑑𝑥

=
𝑑𝐶

𝑑ξ

𝐶𝐶𝑂2−𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑥𝑓
=
𝑑𝐶

𝑑ξ

𝐶𝐶𝑂2−𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷𝐶𝑂2−𝑁𝐻3
 𝑘𝐿

 

(5-92) 

Substitute equation (5-92) into equation (5-88) to eliminate 
𝑑𝐶𝐶𝑂2

𝑑𝑥
 : 

 
𝑁𝐶𝑂2 = −𝐷𝐶𝑂2−𝑁𝐻3

𝑑𝐶

𝑑ξ

𝐶𝐶𝑂2−𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝐷𝐶𝑂2−𝑁𝐻3
 𝑘𝐿

 

(5-93) 

 

The calculation of the diffusion coefficient and other physicochemical properties has 

been discussed in section 5.4. Thus, the numerically calculated molar flux of carbon 
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dioxide absorbed by ammonia 𝑁𝐶𝑂2 can be calculated. The Matlab code can be found in 

Appendix A- Matlab code for Various Calculations.  

The mass flux of carbon dioxide absorbed by ammonia in the presence of sulfur dioxide 

𝑁𝐶𝑂2 calculated in this section will be used to compare with the mass flux from Appendix 

C- Experimental data. The results are presented in Figure 6-1 in section 6.1. 

To predict the mass transfer with sulfur dioxide presenting in carbon dioxide absorption 

in experimental data, a simplified calculation of  the mass flux of carbon dioxide 

absorbed by ammonia in Region II in Figure 5-1, carbon dioxide concentration in 𝑥 = 𝑥𝑟 

with assumption that the carbon dioxide concentration in bulk ammonia is 0 can be used. 

Because the carbon dioxide have chemical reaction with ammonia only in Region II in 

Figure 5-1 the mass flux can be calculated by equation (4-8). The ratio of mass flux 

determined by experiment without sulfur dioxide 𝑁𝐶𝑂2 and with sulfur dioxide 𝑁𝐶𝑂2,𝑆𝑂2 is 

as follows: 

 𝑁𝐶𝑂2,𝑆𝑂2
𝑁𝐶𝑂2

=
𝐸𝑘𝐿(𝐶𝑙𝑏 − 𝐶𝑟)

𝐸𝑘𝐿(𝐶𝑙𝑏 − 𝐶0)
 (5-94) 

The concentration of carbon dioxide in bulk liquid can be considered as 0 since all carbon 

dioxide will reacts with ammonia. The equation (5-94) becomes: 

 𝑁𝐶𝑂2,𝑆𝑂2
𝑁𝐶𝑂2

=
𝐶𝑟
𝐶0

 (5-95) 

 
𝑁𝐶𝑂2,𝑆𝑂2 =

𝐶𝑟𝑁𝐶𝑂2
𝐶0

 (5-96) 

Thus, to predict the experimental determined mass flux of carbon dioxide absorbed into 

aqueous ammonia with sulfur dioxide presenting, the equation (5-96) can be used. The 

ratio of carbon dioxide concentration in different condition 
𝐶𝑟

𝐶0
 can be calculated with a 

simplified model (6-6) which will be discussed in section 6.2. The value of mass flux 
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determined by experiment without sulfur dioxide 𝑁𝐶𝑂2can be determined experimentally. 

The overall mass transfer coefficient can be determined similarly: 

 𝐾𝐺−𝐶𝑂2,𝑆𝑂2
𝐾𝐺

=
𝑁𝐶𝑂2,𝑆𝑂2(𝑃𝑔𝑏

∗ − 𝑃𝑔𝑏)

𝑁𝐶𝑂2(𝑃𝑔𝑏
∗ − 𝑃𝑔𝑏)

=
𝑁𝐶𝑂2,𝑆𝑂2
𝑁𝐶𝑂2

=
𝐶𝑟
𝐶0

 (5-97) 

The equation (5-97) will be used to compare the numerical model in this work with 

other’s results, which will be shown in section 6.2. 

5.4 Physicochemical Properties 

The diffusivities of CO2 and SO2 in aqueous ammonia solutions is correlated with its 

viscosity by the modified Stokes-Einstein equation as follows31: 

 

 
𝐷𝐶𝑂2 = 𝐷𝐶𝑂2−𝐻2𝑂 (

𝜇𝐻2𝑂

𝜇𝑁𝐻3
)
0.8

 
(5-98) 

 
𝐷𝑆𝑂2 = 𝐷𝑆𝑂2−𝐻2𝑂 (

𝜇𝐻2𝑂

𝜇𝑁𝐻3
)
0.8

 
(5-99) 

 

The diffusivity of NH3 in water can be well predicted by the Wilke-Chang equation42 

 
𝐷𝑁𝐻3 = 7.4 × 10

−8(𝛾𝑀𝐻2𝑂)
0.5

𝑇

𝜇𝐻2𝑂𝑉𝑏
0.6 

(5-100) 

 

Where 

𝐷𝐶𝑂2−𝐻2𝑂is liquid-phase diffusivity of dissolved carbon dioxide in water, m2 s-1 

𝐷𝑆𝑂2−𝐻2𝑂is liquid-phase diffusivity of dissolved sulfur dioxide in water, m2 s-1 

M: molecular weight of solvent. 
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𝛾: association parameter 

𝜇𝐻2𝑂: Viscosity of water, Pa s 

𝜇𝑁𝐻3: viscosity of ammonia, Pa s 

𝑉𝑏: molar volume of solute at its normal boiling temperature, cm3 mol-1 

T: temperature, K. 

The viscosity of an aqueous ammonia solution depends on the concentration of NH3 and 

temperature, and can be estimated by the following correlation43: 

 
𝜇𝑁𝐻3 = (0.67 + 0.78𝑥𝑁𝐻3) × 10

−6𝑒
17900
𝑅𝑇  

(5-101) 

 

The mole fraction of NH3 in water 𝑥𝑁𝐻3 can be calculated by the relationship between 

molar concentration and mole fraction of ammonia as proposed by Jennings44. 

 𝐶𝑁𝐻3 = −30.36𝑥𝑁𝐻3
2 + 72.3𝑥𝑁𝐻3 − 0.806 (5-102) 

 

The diffusivity of CO2 in water is studied by Geert45. The value of diffusivity of CO2 in 

water 𝐷𝐶𝑂2−𝐻2𝑂 is corrected to 1.6×10-9 m2 s-1 and SO2 in water 𝐷𝑆𝑂2−𝐻2𝑂 is 2.3×10-9 m2 

s-1 under temperature 280K. Because the experiment is done with temperature around 

273K, the above values of diffusivity are reasonable to be used.42 

As the dimensions of the reactor in this study were almost the same as those in Sada’s 

works46, 47 and stirring speeds for both phases were close to theirs, their empirical 

correlations for gas-liquid mass transfer coefficients were employed. Firstly, the liquid-
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phase mass transfer coefficient of carbon dioxide and the gas-phase mass transfer 

coefficient are correlated with corresponding stirring speed as: 

 𝑘𝐿,𝐶𝑂2−𝐻2𝑂 = 9.41 × 10
−7𝑛𝐿

0.65 (5-103) 

Where 

 𝑘𝐿,𝐶𝑂2−𝐻2𝑂 is liquid-phase mass transfer coefficient of carbon dioxide in water m s-1 

𝑛𝐿 is liquid-phase stirring speed 𝑛𝐿, rpm 

The temperature dependence of Henry’s constant can be calculated by: 

 
𝐻𝑐 = 𝐻𝑐

⊖ × exp (
∆𝑠𝑜𝑙𝑣𝐻

𝑅
(
1

𝑇
−
1

𝑇⊖
)) (5-104) 

Where ∆𝑠𝑜𝑙𝑣𝐻 is enthalpy of solution,  

𝐻𝑐
⊖

 is Henry’s law constant of carbon dioxide refer to standard conditions (T=298.15K) 

𝑇⊖ =298.15K 

The values of enthalpy of solution can be found in Sander’s study48. 

By applying the physicochemical properties to the equations in section 5.3, the results of 

the numerical model can be found. The results of numerical model and the comparison 

between the experimental data and numerical model will be discussed in Chapter 6.  
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Chapter 6 Results and Discussion 

6.1 Effects of SO2 Concentration on CO2 Mass Transfer 

Figure 6-1 shows the result of the experiment of the SO2 effect on CO2 absorption with 

aqueous ammonia. The result shows the negative effect of sulfur dioxide on CO2 

absorption by aqueous ammonia. The mass flux of CO2 absorbed by ammonia is 

decreasing with increasing the concentration of sulfur dioxide in the gas phase with 

ammonia concentration from 1mol/L to 6 mol/L. The mass flux of CO2 absorbed by 

1mol/L ammonia solution dropped from 1.21 × 10−10 mol cm-2 s-1 to 0.66 × 10−10 mol 

cm-2 s-1. The figure shows that when the concentration of ammonia is 6 mol/l the 

decreasing of mass flux of CO2 is slightly slower (mass flux dropped from 2.59 × 10−10 

mol cm-2 s-1 to  2.07 × 10−10 mol cm-2 s-1 ) than that it is absorbed by 1 𝑚𝑜𝑙 ∙ 𝐿−1 

ammonia. The decreasing in mass flux of CO2 caused by the presence of SO2 is not 

affected much by the concentration of ammonia. The experimentally determined mass 

transfer coefficients shown in Appendix C- Experimental data are in same order of 

magnitude as those in Qin et al. work25. However, the temperature range in the 

experiments of Qi’s work was 20 to 80 °C, which is higher for chilled ammonia process 

(0-20°C). Thus, one needs to be aware of the temperature differences when comparing 

the mass transfer coefficients obtained from Qi’s work and those obtained in the present 

work. In Qi’s work, the relation between the effects of sulfur dioxide on carbon dioxide 

mass transfer and the temperature is not stated. In this work, the effects of sulfur dioxide 

on mass transfer of carbon dioxide not depend much on temperature (at least in 

temperature range 0-80 °C). The dash lines in Figure 6-1 are results performed by the 

numerical model. The numerical model fits well with the experimental data. The 

numerical model represents well the decreasing in the mass flux of carbon dioxide 

absorbed by ammonia when the sulfur dioxide concentration in the gas stream is 

increased. The numerical model can be used to estimate the effects of sulfur dioxide on 

carbon dioxide.  
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Figure 6-1 Experimental data and numerical calculation results of sulfur dioxide effect on 

carbon dioxide mass flux 

6.2 General Equation by Fitting the Numerical Solution 

In the absence of SO2, only Region II would exist. Region I is due to the presence of SO2 

where SO2 reacts instantaneously with NH3, thus forming a gradient of concentration in a 

region where water is presenting but not NH3 (See Figure 5-1). As mentioned previously, 

the main effect of SO2 is thus to affect the thickness of Region II, which in turn affects 

the concentration of CO2 at the reaction interface. Indeed, the carbon dioxide 

concentration at the reaction interface will decrease as the thickness of Region I 

increasing. Because of the complexity of calculation of the concentration profiles of SO2 
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and CO2, e.g. if one want to perform a process simulation of the entire system, this 

section attempts to derive a simpler, but accurate relationship for estimating the carbon 

dioxide mass flux in the presence sulfur dioxide. The fitting of the numerical model was 

created by polynomial fitting using Origin, as shown in Figure 6-2. Polynomial fitting of 

sulfur dioxide concentration and concentration of carbon dioxide in reaction plane can be 

used to estimate the mass flux of carbon dioxide absorbed by ammonia when the 

ammonia concentrations are 1, 2.5, 5, 6 𝑚𝑜𝑙 ∙ 𝐿−1. The equation and 𝑅2 values are shown 

in Table 6-1. The 𝑅2 values are between 0.986 and 0.998. 

However, the estimation of carbon dioxide flux with theffects of sulfur dioxide for 

various ammonia concentrations (1, 2.5, 5, and 6 𝑚𝑜𝑙 ∙ 𝐿−1) is limited. A more general 

equation is required. Thus, effect of ammonia concentration on carbon dioxide 

concentration at the reaction plane 𝐶𝑟𝑤𝑎𝑠 plotted, as shown in Figure 6-3. The ammonia 

concentration does not seem to have much effect on the way CO2 decreases when 

increasing SO2 concentrations. Except for the lowest NH3 concentration, the profile of 

CO2 dimensionless concentration at the reaction plane is weakly affected by NH3 

concentration. The carbon dioxide concentration in the reaction plane was calculated 

using the numerical program shown in Appendix A- Matlab code for Various 

Calculations. 

The concentration of carbon dioxide in the reaction plane 𝐶𝑟 shown in Figure 5-1 can be 

predicted byfunction 𝑓(𝑆0)as the ratio of 𝐶𝑟 and 𝐶0: 

 𝐶𝑟 = 𝑓(𝑆0)𝐶0 (6-1) 
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The function of 𝑆0, 𝑓(𝑆0)is given by polynomial regressionby each line shown in Figure 

6-3 which were calculated by equation (6-1). The values of 𝑅2 for these four different 

ammonia concentrations are ranging from 0.990 to 0.999. A summary of  

Figure 6-2 Polynomial fitting of numerical calculation results 

parameters of optimal fitting are shown in Table 6-2. To calculate the mass flux of carbon 

dioxide with equation (3-19), 𝐶𝑟 will be used instead of 𝐶0 in equation (6-1)as 

Table 6-1 Summary of optimal fitting parameters for numerical results of mass flux of 

CO2 absorbed into ammonia 

Equation  𝑁𝐶𝑂2= Intercept + 𝐵1𝑆0 + 𝐵2𝑥𝑆0
2 (6-2) 

 

Plot 1 𝑚𝑜𝑙 ∙ 𝐿−1 2.5 𝑚𝑜𝑙 ∙ 𝐿−1 5 𝑚𝑜𝑙 ∙ 𝐿−1 6 𝑚𝑜𝑙 ∙ 𝐿−1 

Intercept 1.106563 1.87769 2.41198 2.61756 
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𝐵1 -1.27E-04× 10−4 -2.03× 10−4 -2.82× 10−4 -2.90× 10−4 

𝐵2 1.61× 10−8 1.894× 10−8- 3.239× 10−8 3.470× 10−8 

Adj.R-Square 0.98604 0.99892 0.99619 0.995 

Figure 6-3 Dimensionless concentration of CO2 in reaction plane 

carbon dioxide concentration that will react with ammonia. Figure 6-3 shows a negative 

effect of ammonia concentration on sulfur dioxide effect on mass transfer of carbon 

dioxide absorbed by ammonia.  
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Table 6-2 The Summary of optimal fitting parameters for numerical results of 

dimensionless concentration of CO2 in reaction plane 

Equation  𝑓(𝑆0) = Intercept + 𝐵1𝑆0 + 𝐵2𝑆0
2 (6-3) 

 

plot 1 𝑚𝑜𝑙 ∙ 𝐿−1 2.5 𝑚𝑜𝑙 ∙ 𝐿−1 5 𝑚𝑜𝑙 ∙ 𝐿−1 6 𝑚𝑜𝑙 ∙ 𝐿−1 

Intercept 1 1 1 1 

𝐵1 -1.52× 10−4 -1.221 × 10−4 -1.20110−4 -1.17× 10−4 

𝐵2 1.45× 10−8 1.46× 10−8 1.00× 10−8 1.64× 10−8 

Adj.R-Square 0.99542 0.99971 0.9962 0.995 

The parameter 𝐵1 in Table 6-2 is decreasing when increasing the ammonia solution 

concentration. The difference of calculated values of dimensionless carbon dioxide in 

Figure 6-3 mainly depend on the values of 𝐵1 because the absolute values of 𝐵1𝑆0 are 

larger than 𝐵2𝑆0
2
. Others parameters like 𝐵2 and intercepts in Table 6-2 are not found to 

change significantly with ammonia concentration. Thus, the parameter 𝐵1 can be 

described by a function of concentration of ammonia solution. A nonlinear curve fit was 

performed by using Origin, and the 𝐵1 as function of ammonia concentration is shown in 

Figure 6-4:  
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Figure 6-4 𝐵1 value as function of ammonia concentration 

The equation of the fitting of ammonia concentration and 𝐵1 in Figure 6-4 is shown in 

equation (6-4). The R-square for this fitting is 0.94057. 

 
𝐵1 = (−2.92744 + 1.75 ∗ (1 − exp (−

𝐶𝑁𝐻3
0.6213

))) × 104 (6-4) 

Substitute 𝑓(𝐶𝑆𝑂2
𝑔𝑏
) in equation (6-1) with equation (6-3) to have: 

 𝐶𝑟 = (1 + 𝐵1𝑆0  +  𝐵2𝑆0
2)𝐶0 (6-5) 

Substitute 𝐵1in equation (6-5) with equation (6-4) and average value of intercept and 𝐵2 

in Table 6-2  to have the general expression of effect of sulfur dioxide on carbon dioxide 

concentration in reaction plane, which described in section 5.2: 
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𝐶𝑟  =  (1 + (−2.92744 + 1.75 ∗ (1 − exp (−

𝐶𝑁𝐻3
0.6213

))) 𝑆0 × 10
−4 +  1.2525 × 10−8𝑆0

2)𝐶0 (6-6) 

The model was used to compare the results using the “general” equation with Qi’s work, 

using equation (5-97). The results are shown in Figure 6-5. The model fits the result of 

Qi’s work well except at high SO2 concentrations and higher temperatures. The 

experimental conditions in Qi’s work were different from those in this work (most 

notably the temperature). 

 

Figure 6-5 Comparison of mass transfer coefficients to the work of Qi. 

Nonetheless, it is remarkable to see that the correlation in this work, which was 

developed at a temperature of 0C, represents well experimental data generated by 



 

 71 

another group and for temperatures up to 60C and for SO2 concentrations up to 

4000ppm (at 60C, the fit is good up to SO2 concentration of  2000 ppm). Thus, with 

equation (6-6), the molar mass flux of carbon dioxide absorbed by aqueous ammonia 

with sulfur dioxide presenting can be calculated by using the concentration of carbon 

dioxide in reaction plane (𝐶𝑟) instead of concentration in the interface (𝐶0) in equation 

(3-19). All the results from the experiment and modeling give a conclusion in general that 

the sulfur dioxide have negative effects on carbon dioxide mass transfer into aqueous 

ammonia and the effects of sulfur dioxide can be quantified with the model presented in 

this work.  
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Chapter 7 Conclusions and Recommendations 

From an industrial implication point of view, the closer the value of 𝐶0 to 𝐶𝑟 the higher 

the flux of carbon dioxide will be captured by aqueous ammonia. Thus, the sulfur dioxide 

needs to be removed before the carbon dioxide capture process when using aqueous 

ammonia as absorbent. However, there are still residues sulfur dioxide after FGD process 

to proceed to carbon dioxide capture; the flue gas will proceed to desulfurize before the 

carbon dioxide capture. The higher concentration of aqueous ammonia used to capture 

carbon dioxide the less the sulfur dioxide negative effects on carbon dioxide mass 

transfer which can be seen from the equation (6-6) either. The increasing of 

concentration of aqueous ammonia (𝐶𝑁𝐻3) will lead to the increasing of the coefficient of 

𝐶0 to 𝐶𝑟. While the increasing concentration of aqueous ammonia may also increase the 

volatilization, which may cause increasing of FGD equipment cost49 either. The equation 

(6-6) can be used to quantify the change of carbon flux absorbed into aqueous ammonia 

caused by sulfur dioxide concentration and ammonia concentration change. Thus, the 

overall benefit of larger carbon dioxide capture flux by increasing ammonia 

concentration and FGD equipment can be estimated. The optimized carbon dioxide 

capture operation condition can be predicted, and the balance point of the energy and 

material cost between the larger carbon capture capacity and larger cost to maintain high 

concentration ammonia absorbent and high-efficiency FGD equipment can be found. 

There are also some limits to this model. The temperature of the experiment in this work 

is around 0°C.  

Because the model is fitted to experimental data, the mass flux measured under the 

certain temperature will limit the use of the model from other temperature that the model 

will have more when predicting the problem with temperature much different from 

0°C,even Henry’s constant can be corrected by equation (5-104). Although there are 
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much kinetic and mass transfer research on carbon dioxide capture with aqueous 

ammonia2, 25, 30, 31, they were performed without the sulfur dioxide existing. The effects of 

sulfur dioxide on carbon dioxide capture by aqueous ammonia is novel research area, 

there are not much available studies to compare with. This work not only filled up the 

blank of quantity study of sulfur dioxide effects on carbon dioxide capture using chilled 

ammonia process but also introduced a model to the study of sulfur dioxide effects on 

carbon dioxide capture with aqueous ammonia. The model can be used in the similar 

study that related with flue gases effect on carbon dioxide capture either, like the effect of 

sulfur dioxide and nitric oxide.  While the research on temperature effect is relatively 

important in future work. Because of volatilization of ammonia varies with temperature50, 

a system study of both temperature and sulfur dioxide effect will bring this model closer 

to real-word problems. This model can be optimized in future study to predict not only 

sulfur dioxide and ammonia concentration but also nitric oxide, temperature and even the 

volatilization of aqueous ammonia effects. 
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A. Appendix A- Matlab code for Various Calculations 

A. Viscosity of water 

function viscosity_H2O 

vW_0=1.18*10.^-6*exp(16400/(8.314*273)) 

vW_10=1.18*10.^-6*exp(16400/(8.314*283)) 

vW_20=1.18*10.^-6*exp(16400/(8.314*293)) 

vW_0=vpa(vW_0,10) 

vW_10=vpa(vW_10,10) 

vW_20=vpa(vW_20,10) 

 

 

B. Diffusion coefficient of carbon dioxide in ammonia solution calculation: 

 

function diffuCN 

global M x y x1 x2 x5 x6 DCN 

x=[0:0.0001:0.2] 

y=-29.208*x.^2+72.392*x-0.8041 

M=1 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x1=x(Frac1) 
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M=2.5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x2=x(Frac1) 

M=5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x5=x(Frac1) 

M=6 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x6=x(Frac1) 

global v_1_0 v_2_0 v_5_0 v_6_0 v_1_10 v_2_10 v_5_10 v_6_10 v_1_20 v_2_20 

v_5_20 v_6_20 

v_1_0=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/273) 

v_2_0=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/273) 

v_5_0=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/273) 

v_6_0=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/273) 

v_1_10=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/283) 

v_2_10=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/283) 
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v_5_10=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/283) 

v_6_10=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/283) 

v_1_20=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/293) 

v_2_20=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/293) 

v_5_20=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/293) 

v_6_20=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/293) 

v_1_0=vpa(v_1_0,10) 

v_2_0=vpa(v_2_0,10) 

v_5_0=vpa(v_5_0,10) 

v_6_0=vpa(v_6_0,10) 

v_1_10=vpa(v_1_10,10) 

v_2_10=vpa(v_2_10,10) 

v_5_10=vpa(v_5_10,10) 

v_6_10=vpa(v_6_10,10) 

v_1_20=vpa(v_1_20,10) 

v_2_20=vpa(v_2_20,10) 

v_5_20=vpa(v_5_20,10) 

v_6_20=vpa(v_6_20,10) 

global vW_0 vW_10 vW_20 

vW_0=1.18*10.^-6*exp(16400/(8.314*273)) 

vW_10=1.18*10.^-6*exp(16400/(8.314*283)) 

vW_20=1.18*10.^-6*exp(16400/(8.314*293)) 

vW_0=vpa(vW_0,10) 

vW_10=vpa(vW_10,10) 

vW_20=vpa(vW_20,10) 
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diffCN_1_0=1.6*10.^-9*(vW_0/v_1_0).^0.8; 

diffCN_2_0=1.6*10.^-9*(vW_0/v_2_0).^0.8; 

diffCN_5_0=1.6*10.^-9*(vW_0/v_5_0).^0.8; 

diffCN_6_0=1.6*10.^-9*(vW_0/v_6_0).^0.8; 

diffCN_1_10=1.6*10.^-9*(vW_10/v_1_10).^0.8; 

diffCN_2_10=1.6*10.^-9*(vW_10/v_2_10).^0.8; 

diffCN_5_10=1.6*10.^-9*(vW_10/v_5_10).^0.8; 

diffCN_6_10=1.6*10.^-9*(vW_10/v_6_10).^0.8; 

diffCN_1_20=1.6*10.^-9*(vW_20/v_1_20).^0.8; 

diffCN_2_20=1.6*10.^-9*(vW_20/v_2_20).^0.8; 

diffCN_5_20=1.6*10.^-9*(vW_20/v_5_20).^0.8; 

diffCN_6_20=1.6*10.^-9*(vW_20/v_6_20).^0.8; 

DCN=[ 

diffCN_1_0 

diffCN_2_0 

diffCN_5_0 

diffCN_6_0 

diffCN_1_10 

diffCN_2_10 

diffCN_5_10 

diffCN_6_10 

diffCN_1_20 

diffCN_2_20 

diffCN_5_20 

diffCN_6_20] 
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DCN 

 

C. Diffusion coefficient of sulfur dioxide in ammonia solution calculation: 

function DiffuSN 

global M x y x1 x2 x5 x6 DSN 

x=[0:0.0001:0.2] 

y=-29.208*x.^2+72.392*x-0.8041 

M=1 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x1=x(Frac1) 

M=2.5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x2=x(Frac1) 

M=5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x5=x(Frac1) 
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M=6 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x6=x(Frac1) 

global v_1_0 v_2_0 v_5_0 v_6_0 v_1_10 v_2_10 v_5_10 v_6_10 v_1_20 v_2_20 

v_5_20 v_6_20 

v_1_0=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/273) 

v_2_0=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/273) 

v_5_0=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/273) 

v_6_0=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/273) 

v_1_10=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/283) 

v_2_10=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/283) 

v_5_10=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/283) 

v_6_10=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/283) 

v_1_20=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/293) 

v_2_20=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/293) 

v_5_20=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/293) 

v_6_20=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/293) 

v_1_0=vpa(v_1_0,10) 

v_2_0=vpa(v_2_0,10) 

v_5_0=vpa(v_5_0,10) 

v_6_0=vpa(v_6_0,10) 

v_1_10=vpa(v_1_10,10) 

v_2_10=vpa(v_2_10,10) 
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v_5_10=vpa(v_5_10,10) 

v_6_10=vpa(v_6_10,10) 

v_1_20=vpa(v_1_20,10) 

v_2_20=vpa(v_2_20,10) 

v_5_20=vpa(v_5_20,10) 

v_6_20=vpa(v_6_20,10) 

global vW_0 vW_10 vW_20 

vW_0=1.18*10.^-6*exp(16400/(8.314*273)) 

vW_10=1.18*10.^-6*exp(16400/(8.314*283)) 

vW_20=1.18*10.^-6*exp(16400/(8.314*293)) 

vW_0=vpa(vW_0,10) 

vW_10=vpa(vW_10,10) 

vW_20=vpa(vW_20,10) 

diffSN_1_0=2.32*10.^-9*(vW_0/v_1_0).^0.8; 

diffSN_2_0=2.32*10.^-9*(vW_0/v_2_0).^0.8; 

diffSN_5_0=2.32*10.^-9*(vW_0/v_5_0).^0.8; 

diffSN_6_0=2.32*10.^-9*(vW_0/v_6_0).^0.8; 

diffSN_1_10=2.32*10.^-9*(vW_10/v_1_10).^0.8; 

diffSN_2_10=2.32*10.^-9*(vW_10/v_2_10).^0.8; 

diffSN_5_10=2.32*10.^-9*(vW_10/v_5_10).^0.8; 

diffSN_6_10=2.32*10.^-9*(vW_10/v_6_10).^0.8; 

diffSN_1_20=2.32*10.^-9*(vW_20/v_1_20).^0.8; 

diffSN_2_20=2.32*10.^-9*(vW_20/v_2_20).^0.8; 

diffSN_5_20=2.32*10.^-9*(vW_20/v_5_20).^0.8; 

diffSN_6_20=2.32*10.^-9*(vW_20/v_6_20).^0.8; 
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DSN=[ 

diffSN_1_0 

diffSN_2_0 

diffSN_5_0 

diffSN_6_0 

diffSN_1_10 

diffSN_2_10 

diffSN_5_10 

diffSN_6_10 

diffSN_1_20 

diffSN_2_20 

diffSN_5_20 

diffSN_6_20] 

DSN 

Fraction . 

D. Viscosity of ammonia water 

function viscosity_NH 

syms M x y x1 x2 x5 x6 

x=[0:0.0001:0.2] 

y=-29.208*x.^2+72.392*x-0.8041 

M=1 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 
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x1=x(Frac1) 

M=2.5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x2=x(Frac1) 

M=5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x5=x(Frac1) 

M=6 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x6=x(Frac1) 

 

v_1_0=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/273) 

v_2_0=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/273) 

v_5_0=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/273) 

v_6_0=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/273) 

v_1_10=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/283) 
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v_2_10=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/283) 

v_5_10=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/283) 

v_6_10=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/283) 

v_1_20=(0.67+0.78*x1)*10.^-6*exp(17900/8.314/293) 

v_2_20=(0.67+0.78*x2)*10.^-6*exp(17900/8.314/293) 

v_5_20=(0.67+0.78*x5)*10.^-6*exp(17900/8.314/293) 

v_6_20=(0.67+0.78*x6)*10.^-6*exp(17900/8.314/293) 

v_1_0=vpa(v_1_0,10) 

v_2_0=vpa(v_2_0,10) 

v_5_0=vpa(v_5_0,10) 

v_6_0=vpa(v_6_0,10) 

v_1_10=vpa(v_1_10,10) 

v_2_10=vpa(v_2_10,10) 

v_5_10=vpa(v_5_10,10) 

v_6_10=vpa(v_6_10,10) 

v_1_20=vpa(v_1_20,10) 

v_2_20=vpa(v_2_20,10) 

v_5_20=vpa(v_5_20,10) 

v_6_20=vpa(v_6_20,10) 

 

 

 

E. Diffusion coefficient of ammonia in water: 

function diffunw 

global M x y x1 x2 x5 x6 DNW 
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x=[0:0.0001:0.2] 

y=-29.208*x.^2+72.392*x-0.8041 

M=1 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x1=x(Frac1) 

M=2.5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x2=x(Frac1) 

M=5 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 

x5=x(Frac1) 

M=6 

tmp = abs(y-M) 

[idx idx]= min(tmp) 

closest=y(idx) 

Frac1= find(y==closest) 
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x6=x(Frac1) 

 

diffNW_1_0=(1.65+2.74*x1)*10.^-6*exp(-16600/8.314/273) 

diffNW_1_10=(1.65+2.74*x1)*10.^-6*exp(-16600/8.314/283) 

diffNW_1_20=(1.65+2.74*x1)*10.^-6*exp(-16600/8.314/293) 

diffNW_2_0=(1.65+2.74*x2)*10.^-6*exp(-16600/8.314/273) 

diffNW_2_10=(1.65+2.74*x2)*10.^-6*exp(-16600/8.314/283) 

diffNW_2_20=(1.65+2.74*x2)*10.^-6*exp(-16600/8.314/293) 

diffNW_5_0=(1.65+2.74*x5)*10.^-6*exp(-16600/8.314/273) 

diffNW_5_10=(1.65+2.74*x5)*10.^-6*exp(-16600/8.314/283) 

diffNW_5_20=(1.65+2.74*x5)*10.^-6*exp(-16600/8.314/293) 

diffNW_6_0=(1.65+2.74*x6)*10.^-6*exp(-16600/8.314/273) 

diffNW_6_10=(1.65+2.74*x6)*10.^-6*exp(-16600/8.314/283) 

diffNW_6_20=(1.65+2.74*x6)*10.^-6*exp(-16600/8.314/293) 

DNW=[ 

diffNW_1_0 

diffNW_2_0 

diffNW_5_0 

diffNW_6_0 

diffNW_1_10 

diffNW_2_10 

diffNW_5_10 

diffNW_6_10 

diffNW_1_20 

diffNW_2_20 
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diffNW_5_20 

diffNW_6_20] 

 

 

F. Enhancement factor calculation 

function reaction=Enhance(n) 

global m q  EnhanceFactor 

t = 1.0 ; 

[ m , q ] = calculate_these ( t ) ; 

nmesh = 21;  

nplot = nmesh ;  

x = linspace (0, 1, nmesh ) ; 

solinit =bvpinit ( x , @guess );  

sol = bvp4c (@odes, @bcs, solinit); 

y = deval(sol, x)  

y(1,:);  

y(3,:);  

EnhanceFactor = y(2,1); 

EnhanceFactor 

Hatta=m; 

  

function yinit = guess (x) 

global m q bi_gas 

y1= exp(-m*x); 

y2= 0. * y1; 
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yinit = [y1 

y2 

y2 

y2] ;  

function dydx = odes ( x, y ) 

6 

global m q bi_gas 

dydx = [ y(2) 

(m^2 * y(1)* y(3) ) 

y(4) 

(m)^2 * y(1)* y(3)/q ] ; 

function res = bcs ( ya , yb) 

global n i 

i=1-0.001*n+0.001; 

res = [ (ya(1)-i) 

(ya(4)) 

(yb(1) ) 

(yb(3) -1) ] ; 

function [ m , q  ] = calculate_these ( t ) 

global DCN DNW CNH3 kL CCO2 MNH3 

da =DCN(MNH3,1); 

k2= 0.8; 

db = DNW(MNH3,1) ; 

astar =CCO2 ; 

msq = da.*k2.*CNH3./kL.^2; 
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m = msq.^(0.5); 

db = DNW(MNH3,1); 

z = 1. ; 

q = db .* CNH3 ./ ( z .* da.* astar ); 

  

  

 

G. Iteration calculation for enhancement factor for various 
ammonia and sulfur dioxide concentration 

 

 

 

a. NH3= 6M 

global SOin EnhanceFactor yr1s ydiffcabsmin mC_1 CNH3 kL kLCN T CO2 n 

  

n=1 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

property 

reaction 

Emat=EnhanceFactor 

SOin=[500];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 
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T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

Eslo=yr1s(ydiffcabsmin) 

SOin=[1000];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[1500];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2000];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2500];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 
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T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3000];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3500];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[4000];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

  

NCO2=-Emat.*kL.*CCO2*10.^(-4)%mol cm-2 s-1 

NCO2=NCO2.*10^7% 10-7 cm-2 s-1 
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function reaction=Enhance(n) 

% program calculates the concentration profiles for gas A 

% and liquid reactant B in the film. 

% 11-1-03 P. A. Ramachandran 

global m q  EnhanceFactor 

% The dimensionless parameters are calculated in a separate function. 

% m = Hatta number, q = q parameter, bi_Gas = Biot number for gas. 

t = 1.0 ; % a dummy parameter 

[ m , q ] = calculate_these ( t ) ; 

% numerical solution. 

nmesh = 21; % intial mesh 

nplot = nmesh ; % meshes for plotting the result. 

% solution block. 

x = linspace (0, 1, nmesh ) ; 

solinit =bvpinit ( x , @guess ); % trial solution generated by guess 

function 

sol = bvp4c (@odes, @bcs, solinit); % bvp solved, 

y = deval(sol, x) ; 

y(1,:); % concentration profiles displayed 

y(3,:); % concentration profile of B 

EnhanceFactor = y(2,1); 

EnhanceFactor 

Hatta=m; 

  

%______________________________________________________ 
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function yinit = guess (x) 

global m q bi_gas 

y1= exp(-m*x); 

y2= 0. * y1; 

yinit = [y1 

y2 

y2 

y2] ; % some arbitrary guess values here 

%------------------------------------------------------- 

function dydx = odes ( x, y ) 

6 

global m q bi_gas 

dydx = [ y(2) 

(m^2 * y(1)* y(3) ) 

y(4) 

(m)^2 * y(1)* y(3)/q ] ; 

%----------------------------------------------------------- 

function res = bcs ( ya , yb) 

global n i 

i=1-0.001*n+0.001; 

% This is set up for na gas film resistance. 

res = [ (ya(1)-i) 

(ya(4)) 

(yb(1) ) 

(yb(3) -1) ] ; 
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%_______________________________________________________________ 

function [ m , q  ] = calculate_these ( t ) 

global DCN DNW CNH3 kL CCO2 MNH3 

da =DCN(MNH3,1); 

k2= 0.8; 

db = DNW(MNH3,1) ; 

astar =CCO2 ; 

msq = da.*k2.*CNH3./kL.^2; 

m = msq.^(0.5); 

db = DNW(MNH3,1); 

z = 1. ; 

q = db .* CNH3 ./ ( z .* da.* astar ); 

  

  

 

 

 

 

global DSN DCN DNW xr1 yr1 yr1s xr yr ypi EnhanceFactor i n SOin 

ydiffcabsmin CCO2 CNH3 kL kLCN T CO2 MNH3 

diffuNW; 

diffuCN; 

DiffuSN; 

rS=DSN./DCN; 
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rA=DNW./DCN; 

SOin=SOin*1.2/1000; 

mS_n=2*SOin(1,1)/1000; 

mS_n=vpa(mS_n,10); 

klCW=9.41*10^(-7)*230^0.65; 

kLCN=klCW*(1./rA).^0.66; 

if CNH3==2500 

    MNH3=2 

else 

    MNH3=CNH3/1000 

end 

kL=kLCN(MNH3,1) 

HCO2=2.4*10^-2*exp(2400*(1./T-1/298.15));%adjusted by temp 

PCO2=CO2*0.01*101325/1000; 

CCO2=PCO2*HCO2*1000/101325*1000; 

mC=CCO2/CNH3 

xr=[0:0.000001:0.4]; 

yr=1+rS(1,1)*mS_n./mC-(1+rS(1,1)*mS_n./mC+rA(1,1)./mC)*xr; 

k=find( yr>0 & yr<1); 

yr1=yr(k) 

xr1=vpa(xr(k),10); 

ypi=1-yr1 

ypi=-ypi' 

xr1=xr1' 

size(ypi) 
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size(xr1) 

ypi=ypi./xr1 

reaction; 

ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<50) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

while min(ydiffcabs)>0.001 

    n=n+1 

    reaction 

    ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<50) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

    if n>5000 

        break 

    end 

end 

ydiffcabsmin=find(ydiffcabs==min(ydiffcabs)) 
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yr1s(ydiffcabsmin) 

EnhanceFactor 

ypi(ypiabsmin(ydiffcabsmin)) 

i 

Erro=min(ydiffcabs)% 

 

 

b. NH3= 5M 

global SOin EnhanceFactor yr1s ydiffcabsmin mC_1 CNH3 kL kLCN T CO2 n 

  

n=1 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

property 

reaction 

Emat=EnhanceFactor 

SOin=[500];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

Eslo=yr1s(ydiffcabsmin) 
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SOin=[1000];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[1500];%ppm 

CNH3=6000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2000];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2500];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3000];%ppm 
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CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3500];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[4000];%ppm 

CNH3=5000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

  

NCO2=-Emat.*kL.*CCO2*10.^(-4)%mol cm-2 s-1 

NCO2=NCO2.*10^7% 10-7 cm-2 s-1 

 

function reaction=Enhance(n) 

% program calculates the concentration profiles for gas A 

% and liquid reactant B in the film. 
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% 11-1-03 P. A. Ramachandran 

global m q  EnhanceFactor 

% The dimensionless parameters are calculated in a separate function. 

% m = Hatta number, q = q parameter, bi_Gas = Biot number for gas. 

t = 1.0 ; % a dummy parameter 

[ m , q ] = calculate_these ( t ) ; 

% numerical solution. 

nmesh = 21; % intial mesh 

nplot = nmesh ; % meshes for plotting the result. 

% solution block. 

x = linspace (0, 1, nmesh ) ; 

solinit =bvpinit ( x , @guess ); % trial solution generated by guess 

function 

sol = bvp4c (@odes, @bcs, solinit); % bvp solved, 

y = deval(sol, x) ; 

y(1,:); % concentration profiles displayed 

y(3,:); % concentration profile of B 

EnhanceFactor = y(2,1); 

EnhanceFactor 

Hatta=m; 

  

%______________________________________________________ 

function yinit = guess (x) 

global m q bi_gas 

y1= exp(-m*x); 
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y2= 0. * y1; 

yinit = [y1 

y2 

y2 

y2] ; % some arbitrary guess values here 

%------------------------------------------------------- 

function dydx = odes ( x, y ) 

6 

global m q bi_gas 

dydx = [ y(2) 

(m^2 * y(1)* y(3) ) 

y(4) 

(m)^2 * y(1)* y(3)/q ] ; 

%----------------------------------------------------------- 

function res = bcs ( ya , yb) 

global n i 

i=1-0.001*n+0.001; 

% This is set up for na gas film resistance. 

res = [ (ya(1)-i) 

(ya(4)) 

(yb(1) ) 

(yb(3) -1) ] ; 

%_______________________________________________________________ 

function [ m , q  ] = calculate_these ( t ) 

global DCN DNW CNH3 kL CCO2 MNH3 
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da =DCN(MNH3,1); 

k2= 0.8; 

db = DNW(MNH3,1) ; 

astar =CCO2 ; 

msq = da.*k2.*CNH3./kL.^2; 

m = msq.^(0.5); 

db = DNW(MNH3,1); 

z = 1. ; 

q = db .* CNH3 ./ ( z .* da.* astar ); 

  

  

 

 

 

 

global DSN DCN DNW xr1 yr1 yr1s xr yr ypi EnhanceFactor i n SOin 

ydiffcabsmin CCO2 CNH3 kL kLCN T CO2 MNH3 

diffuNW; 

diffuCN; 

DiffuSN; 

rS=DSN./DCN; 

rA=DNW./DCN; 

SOin=SOin*1.2/1000; 

mS_n=2*SOin(1,1)/1000; 
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mS_n=vpa(mS_n,10); 

klCW=9.41*10^(-7)*230^0.65; 

kLCN=klCW*(1./rA).^0.66; 

if CNH3==2500 

    MNH3=2 

else 

    MNH3=CNH3/1000 

end 

kL=kLCN(MNH3,1) 

HCO2=2.4*10^-2*exp(2400*(1./T-1/298.15));%adjusted by temp 

PCO2=CO2*0.01*101325/1000; 

CCO2=PCO2*HCO2*1000/101325*1000; 

mC=CCO2/CNH3 

xr=[0:0.000001:0.4]; 

yr=1+rS(1,1)*mS_n./mC-(1+rS(1,1)*mS_n./mC+rA(1,1)./mC)*xr; 

k=find( yr>0 & yr<1); 

yr1=yr(k) 

xr1=vpa(xr(k),10); 

ypi=1-yr1 

ypi=-ypi' 

xr1=xr1' 

size(ypi) 

size(xr1) 

ypi=ypi./xr1 

reaction; 
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ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<40) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

while min(ydiffcabs)>0.001 

    n=n+1 

    reaction 

    ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<40) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

    if n>5000 

        break 

    end 

end 

ydiffcabsmin=find(ydiffcabs==min(ydiffcabs)) 

yr1s(ydiffcabsmin) 

EnhanceFactor 

ypi(ypiabsmin(ydiffcabsmin)) 
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i 

Erro=min(ydiffcabs)% 

c. NH3= 2.5M 

global SOin EnhanceFactor yr1s ydiffcabsmin mC_1 CNH3 kL kLCN T CO2 n 

  

n=1 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

property 

reaction 

Emat=EnhanceFactor 

SOin=[500];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

Eslo=yr1s(ydiffcabsmin) 

SOin=[1000];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 
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SOin=[1500];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2000];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2500];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3000];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3500];%ppm 
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CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[4000];%ppm 

CNH3=2500%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

  

NCO2=-Emat.*kL.*CCO2*10.^(-4)%mol cm-2 s-1 

NCO2=NCO2.*10^7% 10-7 cm-2 s-1 

 

function reaction=Enhance(n) 

% program calculates the concentration profiles for gas A 

% and liquid reactant B in the film. 

% 11-1-03 P. A. Ramachandran 

global m q  EnhanceFactor 

% The dimensionless parameters are calculated in a separate function. 

% m = Hatta number, q = q parameter, bi_Gas = Biot number for gas. 

t = 1.0 ; % a dummy parameter 

[ m , q ] = calculate_these ( t ) ; 



 

 111 

% numerical solution. 

nmesh = 21; % intial mesh 

nplot = nmesh ; % meshes for plotting the result. 

% solution block. 

x = linspace (0, 1, nmesh ) ; 

solinit =bvpinit ( x , @guess ); % trial solution generated by guess 

function 

sol = bvp4c (@odes, @bcs, solinit); % bvp solved, 

y = deval(sol, x) ; 

y(1,:); % concentration profiles displayed 

y(3,:); % concentration profile of B 

EnhanceFactor = y(2,1); 

EnhanceFactor 

Hatta=m; 

  

%______________________________________________________ 

function yinit = guess (x) 

global m q bi_gas 

y1= exp(-m*x); 

y2= 0. * y1; 

yinit = [y1 

y2 

y2 

y2] ; % some arbitrary guess values here 

%------------------------------------------------------- 
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function dydx = odes ( x, y ) 

6 

global m q bi_gas 

dydx = [ y(2) 

(m^2 * y(1)* y(3) ) 

y(4) 

(m)^2 * y(1)* y(3)/q ] ; 

%----------------------------------------------------------- 

function res = bcs ( ya , yb) 

global n i 

i=1-0.001*n+0.001; 

% This is set up for na gas film resistance. 

res = [ (ya(1)-i) 

(ya(4)) 

(yb(1) ) 

(yb(3) -1) ] ; 

%_______________________________________________________________ 

function [ m , q  ] = calculate_these ( t ) 

global DCN DNW CNH3 kL CCO2 MNH3 

da =DCN(MNH3,1); 

k2= 0.8; 

db = DNW(MNH3,1) ; 

astar =CCO2 ; 

msq = da.*k2.*CNH3./kL.^2; 

m = msq.^(0.5); 
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db = DNW(MNH3,1); 

z = 1. ; 

q = db .* CNH3 ./ ( z .* da.* astar ); 

  

  

 

global DSN DCN DNW xr1 yr1 yr1s xr yr ypi EnhanceFactor i n SOin 

ydiffcabsmin CCO2 CNH3 kL kLCN T CO2 MNH3 

diffuNW; 

diffuCN; 

DiffuSN; 

rS=DSN./DCN; 

rA=DNW./DCN; 

SOin=SOin*1.2/1000; 

mS_n=2*SOin(1,1)/1000; 

mS_n=vpa(mS_n,10); 

klCW=9.41*10^(-7)*230^0.65; 

kLCN=klCW*(1./rA).^0.66; 

if CNH3==2500 

    MNH3=2 

else 

    MNH3=CNH3/1000 

end 

kL=kLCN(MNH3,1) 

HCO2=2.6*10^-2*exp(2400*(1./T-1/298.15));%adjusted by temp 
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PCO2=CO2*0.01*101325/1000; 

CCO2=PCO2*HCO2*1000/101325*1000; 

mC=CCO2/CNH3 

xr=[0:0.0000001:0.4]; 

yr=1+rS(1,1)*mS_n./mC-(1+rS(1,1)*mS_n./mC+rA(1,1)./mC)*xr; 

k=find( yr>0 & yr<1); 

yr1=yr(k) 

xr1=vpa(xr(k),10); 

ypi=1-yr1 

ypi=-ypi' 

xr1=xr1' 

size(ypi) 

size(xr1) 

ypi=ypi./xr1 

reaction; 

ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<18) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

while min(ydiffcabs)>0.01 

    n=n+1 

    reaction 
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    ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<18) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

    if n>5000 

        break 

    end 

end 

ydiffcabsmin=find(ydiffcabs==min(ydiffcabs)) 

yr1s(ydiffcabsmin) 

EnhanceFactor 

ypi(ypiabsmin(ydiffcabsmin)) 

i 

Erro=min(ydiffcabs)% 

 
 

 

d. NH3= 1M 

global SOin EnhanceFactor yr1s ydiffcabsmin mC_1 CNH3 kL kLCN T CO2 n 

  

n=1 

CNH3=1000%mol/m3 

CO2=2.0 
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T=273 

property 

reaction 

Emat=EnhanceFactor 

SOin=[500];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

Eslo=yr1s(ydiffcabsmin) 

SOin=[1000];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[1500];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2000];%ppm 

CNH3=1000%mol/m3 
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CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[2500];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3000];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[3500];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 

T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

SOin=[4000];%ppm 

CNH3=1000%mol/m3 

CO2=2.0 
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T=273 

Tryy1 

Emat=[Emat;EnhanceFactor] 

  

NCO2=-Emat.*kL.*CCO2*10.^(-4)%mol cm-2 s-1 

NCO2=NCO2.*10^7% 10-7 cm-2 s-1 

 

function reaction=Enhance(n) 

% program calculates the concentration profiles for gas A 

% and liquid reactant B in the film. 

% 11-1-03 P. A. Ramachandran 

global m q  EnhanceFactor 

% The dimensionless parameters are calculated in a separate function. 

% m = Hatta number, q = q parameter, bi_Gas = Biot number for gas. 

t = 1.0 ; % a dummy parameter 

[ m , q ] = calculate_these ( t ) ; 

% numerical solution. 

nmesh = 21; % intial mesh 

nplot = nmesh ; % meshes for plotting the result. 

% solution block. 

x = linspace (0, 1, nmesh ) ; 

solinit =bvpinit ( x , @guess ); % trial solution generated by guess 

function 

sol = bvp4c (@odes, @bcs, solinit); % bvp solved, 

y = deval(sol, x) ; 
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y(1,:); % concentration profiles displayed 

y(3,:); % concentration profile of B 

EnhanceFactor = y(2,1); 

EnhanceFactor 

Hatta=m; 

  

%______________________________________________________ 

function yinit = guess (x) 

global m q bi_gas 

y1= exp(-m*x); 

y2= 0. * y1; 

yinit = [y1 

y2 

y2 

y2] ; % some arbitrary guess values here 

%------------------------------------------------------- 

function dydx = odes ( x, y ) 

6 

global m q bi_gas 

dydx = [ y(2) 

(m^2 * y(1)* y(3) ) 

y(4) 

(m)^2 * y(1)* y(3)/q ] ; 

%----------------------------------------------------------- 

function res = bcs ( ya , yb) 
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global n i 

i=1-0.001*n+0.001; 

% This is set up for na gas film resistance. 

res = [ (ya(1)-i) 

(ya(4)) 

(yb(1) ) 

(yb(3) -1) ] ; 

%_______________________________________________________________ 

function [ m , q  ] = calculate_these ( t ) 

global DCN DNW CNH3 kL CCO2 MNH3 

da =DCN(MNH3,1); 

k2= 0.8; 

db = DNW(MNH3,1) ; 

astar =CCO2 ; 

msq = da.*k2.*CNH3./kL.^2; 

m = msq.^(0.5); 

db = DNW(MNH3,1); 

z = 1. ; 

q = db .* CNH3 ./ ( z .* da.* astar ); 
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global DSN DCN DNW xr1 yr1 yr1s xr yr ypi EnhanceFactor i n SOin 

ydiffcabsmin CCO2 CNH3 kL kLCN T CO2 MNH3 

diffuNW; 

diffuCN; 

DiffuSN; 

rS=DSN./DCN; 

rA=DNW./DCN; 

SOin=SOin*1.2/1000; 

mS_n=2*SOin(1,1)/1000; 

mS_n=vpa(mS_n,10); 

klCW=9.41*10^(-7)*230^0.65; 

kLCN=klCW*(1./rA).^0.66; 

if CNH3==2500 

    MNH3=2 

else 

    MNH3=CNH3/1000 

end 

kL=kLCN(MNH3,1) 

HCO2=2.4*10^-2*exp(2400*(1./T-1/298.15));%adjusted by temp 

PCO2=CO2*0.01*101325/1000; 

CCO2=PCO2*HCO2*1000/101325*1000; 

mC=CCO2/CNH3 

xr=[0:0.000001:0.4]; 

yr=1+rS(1,1)*mS_n./mC-(1+rS(1,1)*mS_n./mC+rA(1,1)./mC)*xr; 
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k=find( yr>0 & yr<1); 

yr1=yr(k) 

xr1=vpa(xr(k),10); 

ypi=1-yr1 

ypi=-ypi' 

xr1=xr1' 

size(ypi) 

size(xr1) 

ypi=ypi./xr1 

reaction; 

ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<50) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 

min(ydiffcabs) 

  

while min(ydiffcabs)>0.001 

    n=n+1 

    reaction 

    ypiabs=abs(ypi-EnhanceFactor) 

ypiabsmin=find(ypiabs<50) 

ypi(ypiabsmin) 

yr1s=yr1(ypiabsmin) 

ydiffcabs=abs(yr1s-i) 
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min(ydiffcabs) 

  

    if n>5000 

        break 

    end 

end 

ydiffcabsmin=find(ydiffcabs==min(ydiffcabs)) 

yr1s(ydiffcabsmin) 

EnhanceFactor 

ypi(ypiabsmin(ydiffcabsmin)) 

i 

Erro=min(ydiffcabs)% 

 

  



 

 124 

 

B. Appendix B- Analytical solution of mass transfer of CO2 in 

ammonia 

According to the model shown in Figure 5-1, there is no reaction in Region I. Thus, the right 

side of (5-9) to (5-11) is replaced by 0 

 
𝐷CO2

𝑑2𝐶𝐶𝑂2
𝑑𝑥2

= 0  (0 < x < 𝑥𝑟) 
(B-1) 

 
𝐷𝑆𝑂2

𝑑2𝐶𝑆𝑂2
𝑑𝑥2

= 0(0 < x < 𝑥𝑟) 
(B-2) 

 
𝐷𝑁𝐻3

𝑑2𝐶𝑁𝐻3
𝑑𝑥2

= 0  (0 < x < 𝑥𝑟) 
(B-3) 

 
𝐷CO2

𝑑2𝐶𝐶𝑂2
𝑑𝑥2

= 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3   (𝑥𝑟 < x < 𝑥𝑓) 
(B-4) 

 
𝐷𝑁𝐻3

𝑑2𝐶𝑁𝐻3
𝑑𝑥2

= 𝑘𝐶𝑂2𝐶𝐶𝑂2𝐶𝑁𝐻3   (𝑥𝑟 < x < 𝑥𝑓) 
(B-5) 

 

The boundary conditions are: 

x=0 𝐶𝐶𝑂2=𝐶0, 𝐶𝑆𝑂2 = 𝑆0 (B-6) 

x=𝑥𝑟 𝐶𝐶𝑂2 = 𝐶𝑟,  𝐶𝑆𝑂2 = 0,  𝐶𝑁𝐻3 = 0, −𝑣𝐵𝐷𝑆𝑂2 (
𝑑𝐶𝑆𝑂2
𝑑𝑥

) = 𝐷𝑁𝐻3(
𝑑𝐶𝑁𝐻3
𝑑𝑥
) (B-7) 

x=𝑥𝑓  𝐶𝐶𝑂2=0, 𝐶𝑆𝑂2 = 0, 𝐶𝑁𝐻3 = 𝐴0 (B-8) 
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The enhancement factor E for carbon dioxide mass transfer, defined as the ratio of molar flux 

with the chemical reaction to that obtained without the chemical reaction, are as follows: 

Mass flux without 

chemical reaction 
𝐽𝐶𝑂2−𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = −𝐷𝐶𝑂2

𝑑𝐶𝐶𝑂2
𝑑𝑥

 
(B-9) 

Mass flux with 

chemical reaction 
𝐽𝐶𝑂2−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐷𝐶𝑂2

𝐶0 − 0

𝑥𝑓
 

(B-10) 

 
𝐸𝐶𝑂2 =

𝐽𝐶𝑂2−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝐽𝐶𝑂2−𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
 

(B-11) 

 

 

𝐸𝐶𝑂2 = −
𝑑 (
𝐶𝐶𝑂2
𝐶0
)

𝑑 (
𝑥
𝑥𝑓
)

 

(B-12) 

The reaction of CO2 in alkaline system has been classified into a first-order fast reaction with 

respect to  CO2 and SO2 into instantaneous reactions2, 35. Because the equation (B-1) to (B-5) 

are nonlinear and cannot be solved analytically, approximate analytical solution was obtained 

by assuming the concentration of carbon dioxide in region 𝑥𝑟 < x < 𝑥𝑓is linear. In Hikita’s 

work39, the equation was reduced to a form can be solved analytically as follows: 

To obtain the relation between carbon dioxide and ammonia, combine equations (B-4) and 

(B-5): 

 
𝐷𝐶𝑂2

𝑑2𝐶𝐶𝑂2
𝑑𝑥2

− 𝐷𝑁𝐻3
𝑑2𝐶𝑁𝐻3
𝑑𝑥2

= 0 
(B-13) 

 



 

 126 

Integrating the equation: 

 
𝐷𝐶𝑂2

𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝐷𝑁𝐻3
𝑑𝐶𝑁𝐻3
𝑑𝑥

= 𝑐1 
(B-14) 

 𝐷𝐶𝑂2𝐶𝐶𝑂2 − 𝐷𝑁𝐻3𝐶𝑁𝐻3 = 𝑐1𝑥 + 𝑐2 (B-15) 

 

Using boundary conditions (B-7)and (B-8) : 

x = 𝑥𝑟: 𝐶𝐶𝑂2 = 𝐶𝑟, 𝐶𝑁𝐻3 = 0 (B-16) 

x = 𝑥𝑓: 𝐶𝐶𝑂2 = 0, 𝐶𝑁𝐻3 = 𝐴0 (B-17) 

We have: 

 𝐷𝐶𝑂2𝐶𝑟 = 𝑐1𝑥𝑟 + 𝑐2 (B-18) 

 
−
𝐷𝑁𝐻3
𝑣
𝐴0 = 𝑐1𝑥𝑓 + 𝑐2 

(B-19) 

 

(B-18) - (B-19): 

 
𝐷𝐶𝑂2𝐶𝑟 +

𝐷𝑁𝐻3
𝑣
𝐴0 = 𝑐1(𝑥𝑟 − 𝑥𝑓) (B-20) 

 

𝑐1 =
𝐷𝐶𝑂2𝐶𝑟 +

𝐷𝑁𝐻3
𝑣 𝐴0

(𝑥𝑟 − 𝑥𝑓)
 

(B-21) 

Both sides of equation  (B-18) divided by 𝑥𝑟 : 
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 𝐷𝐶𝑂2𝐶𝑟

𝑥𝑟
= 𝑐1 +

𝑐2
𝑥𝑟

 (B-22) 

Both sides of equation (B-19) divided by𝑥𝑓: 

 −𝐷𝑁𝐻3𝐶0

𝑥𝑓
= 𝑐1 +

𝑐2
𝑥𝑓

 (B-23) 

(B-22) - (B-23): 

 𝐷𝐶𝑂2𝐶𝑟

𝑥𝑟
+
𝐷𝑁𝐻3𝐴0

𝑥𝑓
=
𝑐2
𝑥𝑟
−
𝑐2
𝑥𝑓

 (B-24) 

 

𝑐2 =

𝐷𝐶𝑂2𝐶𝑟
𝑥𝑟

+
𝐷𝑁𝐻3𝐴0
𝑥𝑓

1
𝑥𝑟
−
1
𝑥𝑓

 

(B-25) 

 
𝑐2 =

𝐷𝐶𝑂2𝐶𝑟𝑥𝑓 +𝐷𝑁𝐻3𝐴0𝑥𝑟

𝑥𝑓 − 𝑥𝑟
 

(B-26) 

Replace the 𝑐1and 𝑐2in (B-19) with equations (B-21) and (B-26): 

 
𝐷𝐶𝑂2𝐶𝐶𝑂2 − 𝐷𝑁𝐻3𝐶𝑁𝐻3 =

𝐷𝐶𝑂2𝐶𝑟 + 𝐷𝑁𝐻3𝐴0

𝑥𝑟 − 𝑥𝑓
𝑥 +

𝐷𝐶𝑂2𝐶𝑟𝑥𝑓 + 𝐷𝑁𝐻3𝐴0𝑥𝑟

𝑥𝑓 − 𝑥𝑟
 

(B-27) 

 

 (𝐷𝐶𝑂2𝐶𝐶𝑂2 − 𝐷𝑁𝐻3𝐶𝑁𝐻3)(𝑥𝑟 − 𝑥𝑓) = 𝐷𝐶𝑂2𝐶𝑟 + 𝐷𝑁𝐻3𝐴0)𝑥 − 𝐷𝐶𝑂2𝐶𝑟𝑥𝑓 − 𝐷𝑁𝐻3𝐴0𝑥𝑟 (B-28) 

 𝐷𝐶𝑂2𝐶𝐶𝑂2𝑥𝑟 − 𝐷𝐶𝑂2𝐶𝐶𝑂2𝑥𝑓 − 𝐷𝑁𝐻3𝐶𝑁𝐻3𝑥𝑟 + 𝐷𝑁𝐻3𝐶𝑁𝐻3𝑥𝑓 = 𝐷𝐶𝑂2𝐶𝑟𝑥 + 𝐷𝑁𝐻3𝐴0𝑥 − 𝐷𝐶𝑂2𝐶𝑟𝑥𝑓 − 𝐷𝑁𝐻3𝐴0𝑥𝑟 (B-29) 

Both sides of equation (5-24) divided by 𝐷𝐶𝑂2: 
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 𝐶𝐶𝑂2𝑥𝑟 − 𝐶𝐶𝑂2𝑥𝑓 −
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝐶𝑁𝐻3𝑥𝑟 +
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝐶𝑁𝐻3𝑥𝑓 = 𝐶𝑟𝑥 +
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝐴0𝑥 − 𝐶𝑟𝑥𝑓 −
𝐷𝑁𝐻3
𝐷𝐶𝑂2

𝐴0𝑥𝑟  (B-30) 

 

Define
𝐷𝑁𝐻3

𝐷𝐶𝑂2
= 𝑟𝑐: 

 𝐶𝐶𝑂2𝑥𝑟 − 𝐶𝐶𝑂2𝑥𝑓 − 𝐶𝑁𝐻3𝑥𝑟𝑟𝑐 + 𝐶𝑁𝐻3𝑥𝑓𝑟𝑐 = 𝐶𝑟𝑥 + 𝐶0𝑥𝑟𝑐 − 𝐶𝑟𝑥𝑓 − 𝐴0𝑥𝑟𝑟𝑐 (B-31) 

Both sides of equation (B-31) divided by 𝑥𝑓: 

 𝐶𝐶𝑂2𝑥𝑟

𝑥𝑓
− 𝐶𝐶𝑂2 −

𝐶𝑁𝐻3𝑥𝑟𝑟𝑐

𝑣𝑥𝑓
+ 𝐶𝑁𝐻3𝑟𝑐 =

𝐶𝑟𝑥

𝑥𝑓
+
𝐴0𝑥𝑟𝑐
𝑥𝑓

− 𝐶𝑟 −
𝐴0𝑥𝑟𝑟𝑐
𝑥𝑓

 
(B-32) 

 

Assume that the concentration profile of carbon dioxide in the region 0 < 𝑥 < 𝑥𝑓 is linear and 

can be approximated by: 

 
𝐶𝐶𝑂2 =

𝑑𝐶𝐶𝑂2
𝑑𝑥

(𝑥 − 𝑥𝑟) + 𝐶𝑟 
(B-33) 

 
𝐶𝐶𝑂2 =

𝐶0
𝑥𝑓
(𝑥 − 𝑥𝑟) + 𝐶𝑟 

(B-34) 

 𝑥

𝑥𝑓
= 1 −

𝐶𝐶𝑂2
𝐶0

 
(B-35) 

Put equation (B-35) to (B-32) to replace 
𝑥

𝑥𝑓
: 

 𝐶𝐶𝑂2𝑥𝑟

𝑥𝑓
− 𝐶𝐶𝑂2 −

𝐶𝑁𝐻3𝑥𝑟𝑟𝑐

𝑥𝑓
+ 𝐶𝑁𝐻3𝑟𝑐 = 𝐶𝑟(1 −

𝐶𝐶𝑂2
𝐶0

) + 𝐴0𝑟𝑐(1 −
𝐶𝐶𝑂2
𝐶0

) − 𝐶𝑟 −
𝐴0𝑥𝑟𝑟𝑐
𝑥𝑓

 (B-36) 
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 𝐶𝐶𝑂2𝑥𝑟

𝑥𝑓
− 𝐶𝐶𝑂2 −

𝐶𝑁𝐻3𝑥𝑟𝑟𝑐

𝑥𝑓
+ 𝐶𝑁𝐻3𝑟𝑐 = −

𝐶𝑟𝐶𝐶𝑂2
𝐶0

+ 𝐴0𝑟𝑐 −
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

−
𝐴0𝑥𝑟𝑟𝑐
𝑥𝑓

 
(B-37) 

 

Define 
𝑥𝑟

𝑥𝑓
= 𝑧 

 𝐶𝐶𝑂2𝑧 − 𝐶𝐶𝑂2 − 𝐶𝑁𝐻3𝑧𝑟𝑐 + 𝐶𝑁𝐻3𝑟𝑐 = −
𝐶𝑟𝐶𝐶𝑂2
𝐶0

+ 𝐶0𝑟𝑐 −
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

− 𝐴0z𝑟𝑐  (B-38) 

 𝐶𝐶𝑂2𝑧 − 𝐶𝐶𝑂2 + 𝐶𝑁𝐻3(𝑟𝑐 − 𝑧𝑟𝑐)

= −
𝐶𝑟𝐶𝐶𝑂2
𝐶0

+ 𝐴0𝑟𝑐 −
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

− 𝐴0z𝑟𝑐 

(B-39) 

 
𝐶𝑁𝐻3(𝑟𝑐− 𝑧𝑟𝑐) = 𝐶𝐶𝑂2 −𝐶𝐶𝑂2𝑧 −

𝐶𝑟𝐶𝐶𝑂2
𝐶0

+𝐴0𝑟𝑐−
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

−𝐴0z𝑟𝑐 
(B-40) 

 
𝐶𝑁𝐻3(𝑟𝑐−𝑧𝑟𝑐) = 𝐶𝐶𝑂2 −𝐶𝐶𝑂2𝑧 −

𝐶𝑟𝐶𝐶𝑂2
𝐶0

+𝐶0𝑟𝑐−
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

−𝐴0z𝑟𝑐 
(B-41) 

 

𝐶𝑁𝐻3 =
𝐶𝐶𝑂2 −𝐶𝐶𝑂2𝑧−

𝐶𝑟𝐶𝐶𝑂2
𝐶0

+𝐴0𝑟𝑐−
𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

−𝐴0z𝑟𝑐

𝑟𝑐(1− 𝑧)
 

(B-42) 

Define 
𝐴0

𝐶0
= 𝑞𝑐 

 

𝐶𝑁𝐻3 =

𝐶𝐶𝑂2𝐴0
𝑞𝑐𝐶0

−
𝐶𝐶𝑂2𝑧𝐴0
𝑞𝑐𝐶0

−
𝐶𝑟𝐶𝐶𝑂2𝐴0

𝑞𝑐𝐶0
2 +𝐴0𝑟𝑐−

𝐴0𝑟𝑐𝐶𝐶𝑂2
𝐶0

−𝐴0z𝑟𝑐

𝑟𝑐(1− 𝑧)
 

(B-43) 

 

𝐶𝑁𝐻3 =

𝐴0(
𝐶𝐶𝑂2
𝑞𝑐𝐶0

−
𝐶𝐶𝑂2𝑧
𝑞𝑐𝐶0

−
𝐶𝑟𝐶𝐶𝑂2
𝑞𝑐𝐶0

2 + 𝑟𝑐−
𝑟𝑐𝐶𝐶𝑂2
𝐶0

− z𝑟𝑐)

𝑟𝑐(1− 𝑧)
 

(B-44) 
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𝐶𝑁𝐻3 = 𝐴0
(𝐶𝐶𝑂2 −𝐶𝐶𝑂2𝑧 −

𝐶𝑟𝐶𝐶𝑂2
𝐶0

−𝐶𝐶𝑂2𝑟𝑐𝑞𝑐)

𝑞𝑐𝐶0𝑟𝑐(1− 𝑧)
+𝐴0 

(B-45) 

 

𝐶𝑁𝐻3 = 𝐴0𝐶𝐶𝑂2

(1 − 𝑧− 𝐶𝑟
𝐶0
−𝑟𝑐𝑞𝑐)

𝑞𝑐𝐶0𝑟𝑐(1− 𝑧)
+𝐴0 

(B-46) 

 

𝐶𝑁𝐻3 = 𝐴0𝐶𝐶𝑂2

(

 
1

𝑞𝑐𝐶0𝑟𝑐(1− 𝑧) (1−
𝐶𝑟
𝐶0
)

−
𝑧

𝑞𝑐𝐶0𝑟𝑐(1− 𝑧)
−

1
𝐶0(1 − 𝑧)

)

 +𝐴0 

(B-47) 

 
𝐶𝑁𝐻3 = 𝐴0(

𝐶𝐶𝑂2 − 𝐶𝐶𝑂2𝑧 +
𝐶𝐶𝑂2𝐶𝑟𝑧
𝐶0

− 𝐶𝐶𝑂2𝑞𝑐𝑟𝑐 +
𝑞𝑐𝑟𝑐𝐶𝑟𝐶𝐶𝑂2

𝐶0
+ 𝑞𝑐𝐶0𝑟𝑐 − 𝑞𝑐𝑟𝑐𝐶𝑟 − 𝑞𝑐𝑟𝑐𝐶0𝑧 + 𝑞𝑐𝑟𝑐𝐶𝑟𝑧

𝑞𝑐𝐶0𝑟𝑐(1 − 𝑧) (1 −
𝐶𝑟
𝐶0
)

) 

(B-48) 

𝑥𝑟

𝑥𝑓
 can be obtained as follows: 

In boundary condition (B-7): 

 
−𝑣𝐵𝐷𝑆𝑂2 (

𝑑𝐶𝑆𝑂2
𝑑𝑥

) = 𝐷𝑁𝐻3(
𝑑𝐶𝑁𝐻3
𝑑𝑥

) 
(B-49) 

Apply equations (B-14)and (B-21) to eliminate 𝐷𝑁𝐻3(
𝑑𝐶𝑁𝐻3

𝑑𝑥
): 

 
−𝑣𝐵𝐷𝑆𝑂2 (

𝑑𝐶𝑆𝑂2
𝑑𝑥

) = 𝐷𝐶𝑂2
𝑑𝐶𝐶𝑂2
𝑑𝑥

−
𝐷𝐶𝑂2𝐶𝑟 + 𝐷𝑁𝐻3𝐴0

(𝑥𝑟 − 𝑥𝑓)
 

(B-50) 

 

Applying boundary conditions (B-6)and (B-7)to equation (B-2): 

 
𝐶𝑆𝑂2 = −

𝑆0
𝑥𝑟
𝑥 + 𝑆0 (B-51) 
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 𝑑𝐶𝑆𝑂2
𝑑𝑥

= −
𝑆0
𝑥𝑟

 
(B-52) 

Apply (B-52) to (B-50) and substitute stoichiometric coefficient 2 and 1 for 𝑣𝐵 and𝑣𝐴: 

 
2𝐷𝑆𝑂2

𝑆0
𝑥𝑟
= 𝐶𝐶𝑂2

𝑑𝐶𝐶𝑂2
𝑑𝑥

−
𝐷𝐶𝑂2𝐶𝑟 + 𝐷𝑁𝐻3𝐴0

(𝑥𝑟 − 𝑥𝑓)
 

(B-53) 

 2𝐷𝑆𝑂2𝑆0 − 2𝐷𝑆𝑂2
𝑥𝑓

𝑥𝑟
𝑆0 = 𝐷𝐶𝑂21𝑥𝑟

𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝐷𝐶𝑂21𝑥𝑓
𝑑𝐶𝐶𝑂2
𝑑𝑥

− 1𝐷𝐶𝑂2  𝐶𝑟 + 𝐷𝑁𝐻3𝐴0 (B-54) 

Both sides of equation (B-54) divided by𝐷𝐶𝑂2: 

 2𝐷𝑆𝑂2𝑆0

𝐷𝐶𝑂2
− 2𝐷𝑆𝑂2

𝑥𝑓𝑆0

𝑥𝑟𝐷𝐶𝑂2
= 𝑥𝑟

𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝑥𝑓
𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝐶𝑟 +
𝐷𝑁𝐻3𝐴0

𝐷𝐶𝑂2
 

(B-55) 

Define
𝐷𝑆𝑂2

𝐷𝐶𝑂2

= 𝑟𝐵,  
𝐷𝑁𝐻3

𝐷𝐶𝑂2

= 𝑟𝑐: 

 
2𝑟𝐵𝐵𝑖 − 𝑣𝐵

𝑥𝑓𝑟𝐵𝑆0

𝑥𝑟
= 𝑣𝐴𝑥𝑟

𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝑣𝐴𝑥𝑓
𝑑𝐶𝐶𝑂2
𝑑𝑥

− 𝑣𝐴𝐴𝑟 + 𝑟𝑐𝐶0 
(B-56) 

Both sides of equation (B-56) divided by 𝐶0: 

 𝑣𝐵𝑟𝐵𝑆0
𝐶0

− 𝑣𝐵
𝑥𝑓𝑟𝐵

𝑥𝑟𝐶0
𝑆0 =

𝑥𝑟𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝑥𝑓𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝐶𝑟
𝐶0
+
𝑟𝑐𝐴0
𝐶0

 
(B-57) 

Define  
2𝑆0

𝐶0
= 𝑞𝐵: 

 
𝑞𝐵𝑟𝐵 − 𝑞𝐵

𝑥𝑓𝑟𝐵

𝑥𝑟
=
𝑥𝑟𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝑥𝑓𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝐶𝑟
𝐶0
+
𝑟𝑐𝐴0
𝐶0

 
(B-58) 

Define 
𝐴0

𝐶0
= 𝑞𝑐 
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𝑞𝐵𝑟𝐵 − 𝑞𝐵

𝑥𝑓𝑟𝐵

𝑥𝑟
=
𝑥𝑟𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝑥𝑓𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝐶𝑟
𝐶0
+ 𝑞𝑐𝑟𝑐 

(B-59) 

 
𝑞𝐵𝑟𝐵 − 𝑞𝐵

𝑥𝑓𝑟𝐵

𝑥𝑟
=
𝑥𝑟
𝑥𝑓

𝑥𝑓𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝑥𝑓𝑑𝐶𝐶𝑂2
𝐶0𝑑𝑥

−
𝐶𝑟
𝐶0
+ 𝑞𝑐𝑟𝑐 

(B-60) 

Substitute (B-12) to (B-60): 

 
𝑞𝐵𝑟𝐵 − 𝑞𝐵

𝑥𝑓𝑟𝐵

𝑥𝑟
=
𝑥𝑟
𝑥𝑓
𝐸𝐶𝑂2 − 𝐸𝐶𝑂2 −

𝐶𝑟
𝐶0
+ 𝑞𝑐𝑟𝑐 

(B-61) 

Assume that the concentration profile of carbon dioxide in the region 𝑥𝑟 < 𝑥 < 𝑥𝑓 is linear and 

can be approximated by: 

 
𝐶𝐶𝑂2 =

𝑑𝐶𝐶𝑂2
𝑑𝑥

(𝑥 − 𝑥𝑟) + 𝐴𝑟 
(B-62) 

 
𝐶𝐶𝑂2 =

𝐶0
𝑥𝑓
(𝑥 − 𝑥𝑟) + 𝐴𝑟 

(B-63) 

 
𝐶𝐶𝑂2 =

𝐶0𝑥

𝑥𝑓
−
𝐶0𝑥𝑟
𝑥𝑓

+ 𝐴𝑟  
(B-64) 

Applying boundary condition (B-8) and have: 

 𝑥

𝑥𝑓
= 1 −

𝐶𝐶𝑂2
𝐶0

 
(B-65) 

 𝑞𝐵𝑟𝐵 − 𝑞𝐵
𝑥𝑓𝑟𝐵

𝑥𝑟
=
𝑥𝑟
𝑥𝑓
𝐸𝐶𝑂2 − 𝐸𝐶𝑂2 − 1 −

𝑥𝑟
𝑥𝑓
+ 𝑞𝑐𝑟𝑐 (B-66) 

 
𝐸𝐶𝑂2 =

[1 + 𝑟𝐵𝑞𝐵 + 𝑟𝐶𝑞𝑐 − (1 + 𝑟𝑏𝑞𝐵)𝐸𝐶𝑂2]𝛾𝜂

(1 + 𝑟𝐶𝑞𝐶 − 𝛽𝐴) tanh 𝛾𝜂
 

(B-67) 

Where γ and η are dimensionless parameters and defined as: 
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γ = (
𝑘𝐶0

𝐷𝐶𝑂2
)

1

2

δ 

(B-68) 

 
η =

1 + 𝑟𝐶𝑞𝐶 − 𝐸𝐶𝑂2
1 + 𝑟𝐵𝑞𝐵 + 𝑟𝐶𝑞𝐶 − 𝐸𝐶𝑂2

× (
1 + 𝑟𝐵𝑞𝐵 + 𝑟𝐶𝑞𝐶 − (1 + 𝑟𝐵𝑞𝐵)𝐸𝐶𝑂2

3𝑟𝐶𝑞𝑐𝐸𝐶𝑂2
)
1
2 

(B-69) 

The enhancement factor for B is related with 𝛽𝐴 by following equation: 

 
𝐸𝑆𝑂2 =

1 + 𝑟𝐵𝑞𝐵 + 𝑟𝐶𝑞𝑐 − 𝐸𝐶𝑂2
𝑟𝐵𝑞𝐵

 
(B-70) 
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C. Appendix C- Experimental data 

𝐶𝐶𝑂2 (ppm) 𝐶𝑁𝐻3(mol ∙ L−1) 𝑁𝐶𝑂2 × 10
7  

(mol cm-2s-1) 

𝐾𝐺 × 10
10  

(mol pa-1 c m-2s-1) 

𝑘𝑜𝑏𝑠 × 10
3 (s-1) 𝑘𝑓1(m3mol-1 s-1) 

0 6 2.6649 2.164766777 7.461440026 1.243573338 

0 5 2.48534 2.209224501 7.765376975 1.553075395 

0 2.5 1.95443 1.329899391 2.816034676 1.12641387 

0 1 1.21869 0.735383574 0.860734981 0.860734981 

500 1 1.11996 0.618776901 0.608964988 0.608964988 

500 2.5 1.70174 1.082693843 1.866430222 0.746572089 

500 5 1.74146 1.48383183 3.503097357 0.700619471 

500 6 1.7597 1.627903116 4.219466401 0.7032444 
 

1000 1 0.606629 0.308940818 0.151801031 0.151801031 

1000 2.5 1.14812 0.63541653 0.642626486 0.257050595 

1000 5 1.93427 1.239782976 2.446430831 0.489286166 

1000 6 1.96371 1.302224924 2.698080159 0.449680026 

1500 1 0.736749 0.380921225 0.230862389 0.230862389 

1500 2.5 1.44421 0.823143583 1.078037913 0.431215165 

1500 5 2.02438 1.288369994 2.640973507 0.528194701 

1500 6 2.1613 1.409501074 3.163233466 0.527205578 

2000 1 0.731293 0.378779059 0.228189711 0.228189711 

2000 2.5 1.24481 0.682441972 0.740452065 0.296180826 

2000 5 1.84849 1.134885705 2.049962212 0.409992442 

2000 6 2.13263 1.408177651 3.157296146 0.526216024 

3000 5 1.7312 1.039081268 1.718464779 0.343692956 

3000 1 0.692656 0.357487378 0.203257024 0.203257024 

3000 2.5 1.15987 0.627300569 0.625628975 0.25025159 

3000 6 2.10089 1.377485257 3.02116429 0.503527382 

4000 5 1.67203 0.992512729 1.567883444 0.313576689 

4000 1 0.666015 0.34240283 0.186465645 0.186465645 

4000 2.5 1.11241 0.597165039 0.566962376 0.22678495 

4000 6 2.07995 1.357499796 2.934134178 0.489022363 

 

 


