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Abstract

In this project, nonlinear behavior of biomembrane are modeled as heterogeneous elas-

tic biological systems. In addition to the static behavior of the membranes, their dynamic

behavior are modeled to be able to investigate time-dependency of the variables of the

systems. Some of the available models are used and some new ones are developed to study

static and dynamic analysis of monolayer and bilayer membranes as well as circular axisym-

metric biomembranes. The presented models are developed based on the Euler-Bernoulli

constitutive law and employed to investigate buckling phenomena in the membranes as one

of the most important physical phenomena in biological environment.

Static and dynamic behavior of Buckling phenomenon in biological membranes are mod-

eled. The static model results in nonlinear ordinary differential equation for one-dimensional

approximation. In order to extend the model for circular membranes, the criteria of con-

stant length in one-dimensional membranes is changed to constant surface. Moreover,

tension-compression and bending springs are added to the model and employed to study

buckling of biomembranes. Similar to the procedure of obtaining the equations of static

large deformation of the membrane, the equations of motion of the membrane is obtained

using free body diagram of an infinitesimal element of the membrane and employing Euler-

Bernoulli constitutive law. Hence, nonlinear integro partial differential equations are ob-

tained t model the dynamic behavior of the membrane. All of the equations, including

static and dynamic ones, are changed to the dimensionless forms so that the results can be

considered general and can be employed to analyze different systems with different prop-

erties.

The nondimensional equations of each part of the project are solved using different itera-

tive and time-dependent schemes. The schemes are used to obtain the discretized forms

of the equations. The discretized equations of all nodes of the domain, with due attention

to the considered boundary conditions, are gathered in a matrix and the matrix solved to

obtain the solution of the variables at each node and time stage.

The solutions obtained for different problems investigated in this project are employed to
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illustrate variations of different dependent variables of the models with respect to the in-

dependent variables and parameters of the problems. As the important step to analyze the

problems, different results of the problems investigated in the project are verified using the

available information in literature. Membrane profile are obtained for different parameter

values and external forces in the stationary condition. In addition, variation of maximum

deflection and slope are studied with respect to the variation of different dimensionless

parameters of the system. As a verification of the solution, the incompressibility of bilayer

membrane is shown as well. Growth of different variables is shown with respect to time

employing the solution of dynamic modeling of the membrane. As one of the important

parts of this project, effects of heterogeneity on dynamic behavior of the membrane under

buckling is investigated. The heterogeneous region is considered to have different material

properties and it position is changed to also study the geometrical effects.
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Chapter 1

Introduction and Background

The purpose of this project is to present new modeling and (static and dynamic) analy-

sis procedure of monolayer and bilayer membranes in different conditions. The presented

models are based on theory of elasticity. Therefore, a brief review of some of the related

definition and problems in elasticity is primarily presented in this chapter. In addition,

because of the importance of membranes in biological environments and the existence of

some of their kinds just in these environments, it is helpful to know about the different

physiological systems. Membranes play important roles as coverage of cells and cell or-

ganelles. Hence, in the introductory part of this project cells and cell organelles as well as

characteristics of different kinds of membranes are briefly introduced. Therefore, we are

going to briefly describe the general roles of cells in a biological system. After present-

ing these sections about elasticity and biological environments and the roles of biological

membranes in these environments, some of the important articles and projects have been

done in the area of membrane analysis as well as cell mechanics are briefly reviewed.
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1.1 Theoretical background

In this section, a brief introduction to elasticity is presented to help us in understanding

the next sections dedicated for reviewing some articles about mechanical modeling of cells

and membranes. It can also help us to understand the modeling part of the project. Most

of the analysis of the biomembranes have been done by now are based on energy-based

methods and energy functions of the system which are described later. Because of the

new procedure used in this project to study the buckling of biomembranes using elasticity

theory, it seems necessary to review some of the related elasticity formulation and laws

here. It should be noted that the descriptions and formulations presented here are based

on the two important and well-known references in this area including Theory of Elasticity

by Landau and Lifshitz [36] and another book with same name by Timoshenko and Goodier

[67].

1.1.1 Elasticity

In order to introduce some basic laws and formulations in elasticity theorem, the basic

ideas and formulations of linear elasticity are presented as well as the ways to extend it to

more general concepts in nonlinear elasticity. In addition, some of the nonlinear laws and

formulations are presented separately. There are two primary variables in this theorem

including stress ans strain tensors defined as follows

Fi =
∂σij
∂xj

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

) (1.1)
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where Fi is the force per unit volume vector, σij is the stress tensor and uij is the strain

tensor. Now, using these definitions the following relations can be obtained

σxx =
E

(1 + ν) (1− 2ν)
[(1− ν)uxx + ν (uyy + uzz)]

σyy =
E

(1 + ν) (1− 2ν)
[(1− ν)uyy + ν (uxx + uzz)]

σzz =
E

(1 + ν) (1− 2ν)
[(1− ν)uzz + ν (uxx + uyy)]

σxy =
E

(1 + ν)
uxy, σxz =

E

(1 + ν)
uxz, σyz =

E

(1 + ν)
uyz

(1.2)

and conversely they can be written as

uxx =
1

E
[σxx − ν (σyy + σzz)]

uyy =
1

E
[σyy − ν (σxx + σzz)]

uzz =
1

E
[σzz − ν (σxx + σyy)]

uxy =
1 + σ

E
σxy, uxz =

1 + σ

E
σxz, uyz =

1 + σ

E
σyz

(1.3)

where the all equations are presented in Cartesian coordinates. Now, the equations of

equilibrium for isotropic solid bodies can be written as follows suing both stress and strain

tensorial terms

∂σik
∂xk

+ Fb = 0

E

2 (1 + σ)

∂2ui
∂x2k

+
E

2 (1 + σ) (1− 2σ)

∂2ul
∂xixl

+ Fb = 0

(1.4)

These general equations can be simplified in the two related problems (to our project)

including bending of plates and rods. In the case of small bending of the plate, we have

on both surfaces of the plate σxz = σyz = σzz = 0. Hence, the following equations can be

obtained using the general stress tensorial terms of Eq.(1.2).
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∂ux
∂z

= −∂uz
∂x

∂uy
∂z

= −∂uz
∂y

uzz = −σ (uxx + uyy)

(1− σ)

(1.5)

In the presented equations, uz can be replaced with sufficient accuracy by ζ (x, y) as the

vertical displacement of the pints located in the neutral surface. So we have

ux = −z ∂ζ
∂x
, uy = −z ∂ζ

∂y
(1.6)

Therefore, all the components of the strain tensor can be determined as follows

uxx = −z ∂
2ζ

∂x2
, uyy = −z ∂

2ζ

∂y2
, uxy = −z ∂2ζ

∂x∂y

uxz = uyz = 0, uzz =
σ

1− σ
s

(
∂2ζ

∂x2
+
∂2ζ

∂y2

) (1.7)

By employing the variational method [36] and some calculations, the following equation

can be obtained as the equation of equilibrium for a plate bent by external forces.

D∆2ζ − P = 0 (1.8)

where D is called the flexural or cylindrical rigidity, P represents external forces apply on

the plate and ∆ ≡ ∂2/∂x2 + ∂2/∂y2 is here the two dimensional Laplacian. The procedure

of obtaining the equations for some kinds of boundary conditions can be found in [36].

Some of the important formulations of small deflection of straight Euler-Bernoulli beam

are also presented here to help us become familiar with the foundations of the ideas used

in the mathematical procedures of this project. The different stress and strain tensorial
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elements should satisfy the following equations in equilibrium

uzz =
∂uz
∂z

=
x

ρ
,
∂ux
∂x

=
∂uy
∂y

= −νx
ρ

∂uz
∂x

+
∂ux
∂z

= 0,
∂ux
∂y

+
∂uy
∂x

= 0,
∂uy
∂z

+
∂uz
∂y

= 0

(1.9)

where ρ is the radius of curvature of the neutral surface.

In order to extend the presented equations for linear elasticity to the nonlinear one, we can

use two different methods. The first one is to use perturbation theorem and obtain higher

order equations using the fundamental ones. The second one, also used in this project, is

to write the equations basically without any assumption to simplify the problem.

1.2 From cells to organs

As the foundation of all functions and organisms on Earth, cells play an important role in

nature [58]. They are the smallest units of life and as biological systems consists of different

components. Cells can exist as solitary or as a unit of a multicellular organism. All of

multicellular organisms have four levels of organization: cells, tissues, organs, and systems

[58]. All of these systems have their own mechanical properties affects also the higher

levels. As an example, the elastic properties of cells determine the mechanical behavior

and characteristics of the related tissues. A brief information about these levels can help

us to understand different effects of each level on the related higher levels.

Tissues are constructed from groups of cells with similar structures and functions. They

can be categorized into four primary types including epithelial, connective, muscular, and

nervous [58]. These tissues are described briefly to show their role and differences:

• Epithelial tissues cover surfaces throughout the body and made up of special cells

for exchanging materials. ”Epithelial cells are joined together very tightly to form

epithelial sheets cover and line various organs” [58].They are boundaries of organs

separate them from their external environment. Because they are in the surface
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of the organs such as the interior of vascular system in our body, their mechanical

properties specially their resistance to shear and surface forces are so important.

• Connective tissues connect, support, and separate different organs of the body.

Instead of large numbers of cells, they have relatively few ones scattered throughout

a large environment of extracellular materials [58].

• Muscular tissues consist of cells and proteins to do their primary roles, contraction,

motion and force generation in different parts of the body [58]. They have more

strength with respect to the connective tissues because of their roles. They should

be able to resist the smooth or sudden contractions. In addition, they have this

ability to produce large forces depending on their volume and compactness [58].

• Nervous tissues consist of neurons specialized to support the nervous system’s

functions. Neurons are long and thin cells initiate and transmit electric pulses [58]

throughout the body to connect brain and organs of the body.

Organs are collections of two or more types of tissues organized to serve a common function

or functions [58]. Organs can also organized into organ systems to perform particular

functions required for survival of the whole body.

Now, let us explain cell components to be aware more about this primary unit of life on

Earth.

1.3 Cell components

Although individual cells are just small units in different levels of organization, they are

highly complicated entities and contain different components are introduces and briefly

described here. Living cells an be generally categorized into two general types [14]: eu-

karyotic cells, as units of higher organisms, and prokaryotic cells, such as bacteria. In order

to understand mechanical modelings of cells and their organelles, it is necessary to know
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the subsystems exist in cells. The basis structural elements are the same including mem-

branes (fluid sheets) enclose the cells and their compartments and networks of filaments

which maintain the cells shapes and help organize their contents.

• Membrane or cell wall envelopes the cell body and made of up lipids. The lipids

construct bilayer so that each layer has approximately 2nm thickness and the total

bilayer thickness is 4−5nm [4]. The lipid bilayers are interspersed by a heterogeneous

structure of globular proteins (Fig.(1.1))[66]. They are permeable covering of cells

and their organelles to separate them from their surrounding. In the next section,

different characteristics of biomembranes and their roles in the body are described.

The structural properties of the membrane are based on their specific role as coverage

of the cells. They play important roles as impermeable coverage to prevent freely

exchanging the interior contents of the cell with its environment. In addition, its

capability for self-assembly and repair are so important for the cells [4]. They are

so thin because their tensile strength is less important and usually the cytoskeleton

determines the strength of the cells [4]. It is described later in this chapter that

because of the special geometry and strength of the biological membranes, buckling

is an important effect happening in these systems.

• Cytoskeleton consists of long rod-shaped molecules [4] attached to one another and

to other organelles by connecting molecules that can adopt a remarkable range of

configurations (Fig.(1.1)). They also

– establish and maintain the shape of the cell

– allow the cell to move by changing the cell shape (the process of locomotion)

– provide mechanical strength and integrity

which affect strongly the mechanical properties and behavior of the cells [14, 4].

There are three types of filaments in cytoskeleton including actin filaments (7 −
9nm in diameter), intermediate filaments (10 nm in diameter), and microtubules (ap-

proximately 24 nm in diameter). The interaction between filaments has an important
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effect on mechanical behavior [4]. Because of the physical properties of each kind of

filaments, they have different mechanical roles in cells. As an example actin filaments

and microtubules mostly resist to tensions and compression, respectively. These dif-

ferences let the cells to move, change their shapes and play their role in the related

environment.

Most of the studies about the mechanical properties of the cells and organelles have

been dedicated to red blood cell [6, 9, 20] because of its special properties. They

navigate through narrow capillaries in animal bodies and need to undergo rapid,

reversible deformations. Therefore, its special cytoskeleton provides mechanical sta-

bility necessary to withstand the forces during in the circulatory environment.

The descriptions about other organelles of the eukaryotic cells and more details about

the mentioned organelles are provided in literature [66, 14, 68].

1.4 Biomembranes

Biological membranes act as envelopes to surround the cell separating its internal and

external environment. In addition, organelles have membranes as their boundaries which

provide surfaces for the localization of metabolic enzymes, transport proteins, receptors,

and various substrate [37]. In (1972), Singer and Nicholson proposed the fluid-mosaic model

for the biomembranes. Biological membranes are fluid bilayer mostly including lipids and

proteins. Although 50 percent of a biological membrane can be composed of proteins [1],

structure mostly determined by the self-assembly of lipids.

The chemical, biological, physical and mechanical aspects of biomembranes as one of the

important compartments in animal and human bodies have been investigated. Now, let us

describe briefly the chemical composition of the membranes before explaining their physical

and mechanical behavior and self-assembly procedures.
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Figure 1.1: (a)Schematic representation of lipid bilayer including protein and choles-

terol (The picture is licensed under the Creative Commons license and can be found at

http://www.functionalwellness.com/services/ cholesterol-management/); (b)Fluorescent

image of eukaryotic cytoskeleton; Nuclei are in blue, actin filaments in red and micro-

tubules in green (The picture is licensed under the Creative Commons license and can be

found at http:// en.wikipedia.org/wiki/Cytoskeleton).

Chemical composition of biomembranes

As the main structural components of biomembranes, details of phospholipids are presented

here. Two main building blocks of lipids are glycerol backbone and fatty acids [68]. Glycerol

is a small molecule contains three carbon and three hydroxyl groups (Fig.(1.2)). Different

properties of fatty acids such as existence of double bonds, length of the carbon chain and

being saturated or unsaturated are the most effective factors on determining the physical

and mechanical properties of the related lipid [68]. The brief descriptions presented about

lipids and their components can be helpful to understand the characteristics of different

membrane lipids in the biological point of view which is not the concern of this project.
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Figure 1.2: Schematic representation of glycerol (The picture is licensed under the Creative

Commons license and can be found at http://en.wikipedia.org/wiki/ Glycerol). The -OH

at each branch is connected to a carbon atom.

Physical properties and self assembly of biomembranes

The interaction of lipids with water is an important parameter determines the self-assembly

and physical behavior of biomembranes. All of the biological environments contain water

such as intracellular environments, blood, etc. In order to investigate the interaction with

water, their chemical components can be categorized into hydrophilic water-loving and hy-

drophobic or water-avoiding parts [68]. In phospholipid, there is a hydrophilic head group

(Phosphate) and hydrophobic tails (hydrocarbon chains). This dual nature of phospho-

lipids make them amphiphilic molecules [4].

In the interaction of oil an water, amphiphilic oil molecules arrange so that their hy-

drophilic head group has an interaction with water. On the other hand, their hydrophobic

tails try to embeds in the oil environment (Fig.(1.3)) [4]. If we have a boundary between

two areas of oil and water, the boundary lipid molecules can rearrange themselves so that

their head groups be in contact with water in the boundary and their hydrophobic tails

remain in the oily region, the phenomena happens when there is some oil in a glass of

water. However, there is a big difference in arranging lipid molecules to form biological

membranes because of existence of water on both sides of the boundary. As it is described

before, biomembranes are thin boundaries separate intracellular and extracellular environ-
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Figure 1.3: Schematic representation of bilayer sheet, liposome and micelle from top left

to top right. Different parts of phospholipid molecule are also shown in the bottom.

ments or their organelles from intracellular region. Hence, almost always there is water on

both sides of the biomembranes. Phospholipids can also form other structures such as mi-

celles and liposomes [68]. Different structures of phospholipids including micelles (spherical

monolayer membrane), liposomes (spherical bilayer membranes) and bilayer sheets which

construct outer coverage of cells and its organelles are presented in Fig.(1.3). The differ-

ences between the shapes and curvatures of the shown systems as the important structural

characteristics are based on the competition of the energy and entropic terms in free-energy

function described later. There is water in both sides of bilayer sheet. The interior and

exterior environments of liposomes are aqueous as well in contrast with micelles which

their interiors are oily. Liposomes and micelles can be used as vehicles in gene therapy to

deliver genes in the targeted cells [68]. Let us present the formation of different structures
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in wet environment based on the concentration of fatty acids in the system.

The hydrophobic tails of the phospholipids contains two branch of hydrocarbon chains. In

many biological phospholipids, one of the branches is saturated, all bonds are single, and

the other one has a C− C double bond [4]. The existence of this double bound results

in formation of different conformations. In biological layered structures, the single bond

chains (saturated one) tend to straighten out through steric interactions with its neighbors.

In contrast, there is a permanent kink in the other branch generated by the double bond,

make the dense packing of phospholipids more difficult and reduce the in-plane viscosity

of bilayer. As it is described, there is not only one lipid in the biomembranes and their

hydrocarbon chains can be different as a cause of diversity of the lipids as a structural

components of bilayers [4]. The chain lengths are mostly between 15 to 18 carbon atoms

which is based on lipid concentration and operating temperature of the cell. The range

of the membrane thicknesses is in nm which is much less than micron range for cell and

organelles dimensions. Each hydrocarbon chain has between 15− 18 carbon atoms and is

approximately 2 nm in length resulting in total bilayer thickness of 4 − 5 nm. The mean

cross-sectional area of a single chain is about 0.2 nm2, while the average surface area per

lipid is 4−7nm2 for most membrane lipids [44]. There are also proteins and carbohydrates

have different dimensions (lengths and area). The proteins of the bilayer membrane act

mostly as channels for transferring the materials between intracellular and extracellular en-

vironments. They are longer than thickness of the bilayer to be able to easily do their work

[4]. If we consider a pure lipid bilayer can be considered as a homogeneous membrane, these

proteins and carbohydrate change it to a heterogeneous system. These heterogeneities have

important effects on the physical and mechanical behavior of the membranes investigated

in this project.

Formation of structures like micelles is based on the competition between the two terms

defines free-energy F = U −TS [4]. Entropy is decreased in this process based on decreas-

ing the degrees of freedom of the system. Hence, it causes dispersion of the molecules. On

the other hands, the molecules prefers to directly interact with each other based on the

energy term. Therefore, there is a competition between these terms resulting in different
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structures in every condition.

As it is mentioned before, there are different shapes possible for biomembranes. Hence,

there should be a parameter to categorize the membranes. Let us consider a geometrical

parameter for this purpose as follows [4]

v∗ =
vhc
a0lhc

(1.10)

where vhc and lhc are volume and maximum chain length of single saturated hydrocarbon

chain, respectively, and a0 is the average surface area occupied by the head group of the

amphiphile.

Table 1.1: Range of v∗ for different biomembrane shapes [4].

Biological membrane shape Range of v∗

Spherical micelles v∗ ≤ 1/3

Cylindrical micelles 1.3 < v∗ ≤ 1/2

Bilayers 1/2 < v∗ ≤ 1

Inverted micelles 1 < v∗

Different possible structures of lipids are classified in Table 1.1 based on the range of

this parameter. These structures are also shown in Fig.(1.4). It is clearly shown that

the shapes are formed based on the ranges of the defined parameter v∗. Each of these

membrane have physical and mechanical properties of their own. Because of the importance

of compression and bending resistance and focus of this project on the buckling phenomena

in biomembranes, they are described here.

Similar to every macroscopic or microscopic membranes, different forces can be applied on

the biomembranes such as compression or tension (Fig.(1.5)). For the plate shown in this

figure, the in-plane elements of strain tensors can be written as [4]

uxx = uyy = σ (2/9KV + 1/6µ) (1.11)
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where KV and µ are the volume compression and shear modulus in three dimensions,

respectively [4]. In the presented relation, uxx and uyy are two dimensional strains defined

as deformation per initial length [67]. In addition, σ is the stress as the normal force to

the surface divided by the related surface [67]. It is also assumed that σxx = σyy = σ.

We can define a two-dimensional tension as τ = σt (t is the thickness of the considered

plate) in the case of two-dimensional deflection.Therefore, based on the definition of the

area compression modulus τ = KA (uxx + uyy), the following relation can be easily found

KA = tKV (4/9 +KV /3µ) (1.12)

Because of the possibility of measuring the surface tension of water + amphiphile interface

γ, it is useful to obtain a relation between area compression modulus KA and surface

tension. The energy of the system is [4]

E = 2γa0 + (γ/a) (a− a0)2 (1.13)

where a is the mean interface area occupied by an amphiphile and a0 is the value in

which the energy is minimized in equilibrium condition. Hence, the elastic energy density

can be written as γ [(a− a0) /a0]2 which is equal to KA/2. (uxx + uyy)
2 where uxx + uyy =

(a− a0) /a0. It can be concluded from these relations that for a monolayer membrane

KA = 2γ and for a bilayer membrane KA = 4γ.

Apparent values of KA for some pure lipid bilayers are presented in Table 1.2. These values

are obtained from the slope of stress-strain diagram of the different experimental techniques

used to obtain the mechanical and physical properties of the membranes. The presented

apparent moduli are different from the real values because of change in intramolecular

separation as well as fluctuations in the system can be found in details in [4].

Generally, amphiphile molecules resist to change their positions resulting in different

resistance of the system. In addition to compression or tension resistance is described

before, the biomembranes have bending resistance. It can be easily seen that when we
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Figure 1.4: Packing constraints experienced by a typical amphiphile in four aggregates.

By increasing a0lhc for the same volume, the structures change from spherical micelles (a);

to cylindrical micelles (b); to bilayers (c) and finally to inverted micelles (d).

Figure 1.5: In-plane tension to a uniform plane; σx and σy are extensional stresses in the

shown x and y directions, respectively.

want to bend a rod, more curvature of the system need more bending force and moment we

should apply on it. Therefore, the bending resistance of the systems have been developed

based on their curvatures. Any surface has two principle curvatures C1 = 1/R1 and

c2 = 1/R2 in three dimensions (Fig.(1.6)). By employing these principle curvatures, two

other curvatures can be defined [25] called mean curvature equal to C1/2 + C2/2 and

Gaussian curvature equal to C1C2. Thus, the energy density function F

F = (κb/2) . (1/R1 + 1/R2)
2 + κG/ (R1R2) (1.14)
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Table 1.2: Selected measurements of the apparent area compression modulus KA of lipid

bilayers and cell membranes [4].

Membrane T(c) Apparent KA (J/m2) Reference

diAPC 15 0.057± 0.014 Needham and Nunn, (1990)

18 0.135± 0.020 Evans and Rawicz, (1990)

21 0.183± 0.008 Rawics et al., (2000)

diGDG 23 0.160± 0.007 Evans and Rawicz, (1990)

diMPC 21 0.150± 0.014 Rawicz et al., (2000)

29 0.145± 0.010 Evans and Rawicz, (1990)

30 0.14 Koenig et al., (1997)

diOPC 21 0.237± 0.016 Rawicz et al., (2000)

red cell plasma

membrane

0.45 Evans and Waugh, (1997)

where κb and κG are bending rigidity and Gaussian bending rigidity, respectively. The mean

curvature is used to obtain bending energy. The Gaussian term is the difference between

the actual energy of the system and its bending energy. As two important examples, the

energy of two shells in the spherical with radius R and cylindrical with radius R and length

L shapes compared to a flat surface can be written as follows [4].

E = 4π (2κb + κG) sphere

E = πκbL/R cylinder
(1.15)

Bending rigidity for selected lipid bilayers and cell membranes are presented in Table

1.3.

Some of the physical and mechanical properties of biomembranes presented in this section.

In addition to these properties, there are some physical phenomenon such as buckling,

which is the concern of this project, investigated during the last decades because of their

importance. Buckling phenomenon and some of the scientific papers published about this
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Figure 1.6: Schematic representation of a surface with nonzero curvatures.

specific phenomenon in biological membranes are explained later. Before, going to describe

them, some mechanical modeling and analysis of whole cells are presented. Although

the computer technologies have been developed during the last decades, modeling and

simulation of cells including all of their organelles separately is not possible. The complexity

of this small unit is much higher than what we can imagine. Hence, the cell models have

been presented to model them as a whole. The compartments and organelles of the cell

body have been simulated or modeled as single systems like the analysis of the bilayer

membranes.

1.5 Cell mechanics

During the last decades, many scientists and engineers have investigated the mechanical

properties of different organs, tissues and cells in order to obtain sufficient results for char-

acterizing their behavior. By developing several techniques and instruments they started

to investigate micro scale components and their properties in addition to the macroscopic

ones. The cell as the building block of higher organisms took much more attention and

causes to develop a new interdisciplinary field named Cellular Mechanics.
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Table 1.3: Bending rigidity for selected lipid bilayers and cell membranes [4].

Membrane κb (×10−19) (kBT ) Reference

diAPC 0.44± 0.05 11 Evans and Rawicz, (1990)

diGDG 0.44± 0.03 11 Evans and Rawicz, (1990)

0.15− 0.4 Duwe et al., (1990)

0.2± 0.07 5 Mutz and Helfrich, (1990)

diMPC 0.56± 0.06 14 Evans and Rawicz, (1990)

1.15± 0.15 29 Duwe et al., (1990)

diMPE 0.7± 0.1 18 Mutz and Helfrich, (1990)

diOPC 0.85± 0.10 23 Evans and Rawicz, (1990)

SOPC 0.90± 0.06 23 Evans and Rawicz, (1990)

red blood cell 0.13− 0.3 3− 8 Brochard and Lennon, (1975)

plasma 1.3 32 Evans, (1983)

membrane 0.3− 0.7 8− 18 Duwe et al., (1990)

1.4− 4.3 35− 108 Peterson et al., (1992)

0.2± 0.05 5 Zilker et al., (1992)

Different mechanical properties of each cell can be affected by various factors such as ex-

istence of different kinds of external loads as well as diseases. In particular, cancer is a

disease can greatly influences cell mechanical properties [72]. As an example, cancer cells

are known to be 70 percent more compliant than benign cells. Recent studies of metastasis

have shown the significance of the mechanical properties involved in carcinogenesis [65].

Alterations in cellular deformability, observed at the single cell level, have been already

identified as a useful indicator of cancer-related changes [38]. Therefore, there is not still

a thoroughly acceptable mechanical model to characterize the behavior of cells even a spe-

cific kind of cells in every condition though there are several articles and defined projects

in this area.

The complexity of the structure of the cells cause they show nonlinear response to the
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external loads. In addition, adaptation of behavior of cells in different conditions results

in many problems for proposing a general model to characterize the mechanical behavior

of the cells. Two fundamentally different approaches have been explored: the up-bottom

approach in which a global model is proposed that reproduces some of the mechanical

features of the cell, and the bottom-up approach in which individual components of the

cell are modeled [70]. The first approach usually leads to continuum models, the second

to discrete models.

In general, the domain of solution includes both the cell(s) and an outer medium (sus-

pending fluid and ECM) which bears the outer boundary conditions. Different kinds of

surface forces are applied on the cells. Surface tension forces and elasticity used in some

models [27] have been accounted for forces applied by the outer part of the cytoskeleton,

close to the actual membrane. Interaction forces between the adhesion molecules are the

second kind of surface forces which coat the membrane and the cell environment. These

forces can be investigated using different equations and models such as stochastic binding

equations [34], kinetic equations [10] and averaged models, such as Van der Waals-type ad-

hesion potentials [64]. Cells mostly exhibit a viscoelastic behavior. Strongly cross-linked

structure of cytoskeleton determines the elastic part. The dissipating component giving

rise to viscous-like behaviors has a contribution from the flow of the cytosol along with and

through the cytoskeleton mesh-work. Rearrangement of cytoskeleton is another source of

dissipation whose cross-links have a lifetime of the order of 1 second [63].

1.5.1 Viscoelastic models of red blood cell

Adult humans have roughly 20−30 trillions red blood cells at any given time, comprising ap-

proximately one quarter of the total human body cell number. RBCs contain hemoglobin,

an iron-containing protein, which facilitate transportation of oxygen by reversibly binding

to this respiratory gas and greatly increasing its solubility in blood. Number of these cells

and their important roles in our body caused establish several studies about different me-

chanical properties of red blood cells in different conditions, the methods of measurements
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of these properties and the effects of external stimuli on the cells.

Theoretical models, which attempted to describe dynamic behavior of RBC, indicate such

behavior depends on membrane elastic properties, shear rate, and viscosities of the mem-

brane and internal/external fluids. RBC dynamics in capillary flow is characterized by a

transition from biconcave to parachute shapes as the flow rate is increased The transition

appears to be governed by the RBC membrane elastic and bending properties, as found in

[48]. To capture realistic behavior of RBCs, mechanical models have to include:

• Membrane viscoelasticity with a viscous contribution of the lipid bilayer and with an

elastic contribution of the spectrin network;

• Membrane bending resistance;

• Separate external/internal fluids with distinct viscosities.

In this section, some of the articles focused on mechanical properties of RBCs are presented

to show progress of technologies and mathematical models for this purpose.

Rand [56] used an approach called micropipette aspiration to characterize RBCs. In the

is technique, the stress required to rupture the red cell membrane could be measured. He

showed that the membrane can withstand a wide variety of tensions, up to a maximum of

20 dynes/m for short periods of time. He presented a temporal relation for tension in the

membrane and finally could proposed the following equation as viscoelastic model for the

cells (Fig.(1.7))

S = F

[
1

Y2
+

1

Y1

(
1− exp

(
Y1
η1
t

))
+

1

η2
t

]
(1.16)

One of the unique properties of red blood cells is its biconcave shape. Canham [6]

explained this special shape using the minimum energy of bending. On the basis of the

bending relation (based on the curvature of the surface ignoring other membrane forces),

the energy was determined for many surfaces of revolution having the same area and vol-

ume. The geometry and energy of the shape with least energy closely approximated the

bending energy and geometry of the actual red-cell profile with same area and volume.
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Figure 1.7: Mechanical model of the cell membrane used to describe the kinetics of the

membrane breakdown [56]; k1 and k2 are two springs and η1 and η2 are two dashpots in

the schematic model.

Jay (1973) [31] added some new information about the behavior of red blood cells in mi-

cropipette aspiration test and the limitations of this kind of testing. He investigated the

conditions in which the shapes of the cells are reversible. Jay showed that human red

cells can be drawn into cylindrical glass micropipettes of internal diameter approximately

2.0µm.

Jay and Canham presented another article at 1977 [32] together about the micropipette

aspiration of RBC. Measurements were made from 16mm film records that allowed the

determination of the cellular area and volume of the individual erythrocyte as they were

drawn into a 2.0µm pipette with negative pressure. Tozeren et al. [8] investigated dynamic

rheological properties of the cell membrane employing micropipette aspiration. They illus-

trated that the rheological properties of of the membrane can undergo dynamic changes

depending on the extent and duration of deformation, reflecting molecular rearrangement

in response to membrane strain. They used a generalization of Kelvin model (Evans and

Hochmuth [29]) to present the following viscoelastic stress-strain relation of the RBC mem-

brane

Tij = −pδij + 2µεij + 2ηvij (1.17)
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where Tij is membrane tension, (−p) is the pressure term due to constant surface area, µ

is the coefficient of elasticity, η is the coefficient of viscosity, and Vij is the components of

the rate of strain tensor.

A nonlinear viscoelastic relation was developed by Chien et al. [69] to describe the vis-

coelastic properties of erythrocyte membrane. The presented constitutive equation used

in the analysis of the time-dependent aspiration of an erythrocyte membrane into a mi-

cropipette. The inverse problem of obtaining the time dependency of the aspiration length

from a given relaxation function was also solved. Analytical results obtained were applied

to the experimental data of Chien et al. [8].

Suresh et al. [41] presented new experimental and computational results on shape evo-

lution, force-extension curves, elastic properties and viscoelastic response of human red

blood cells subjected to large elastic deformation using optical tweezers. They used differ-

ent mathematical models and verified them with experimental results. Following equations

were used in their modeling of cell membrane as incompressible solid [15, 16]

Ts = 2µγs =
µ

2

(
λ21 − λ22

)
Ts =

1

2
(T1 − T2) and γs =

1

2
(ε1 − ε2) =

1

2

(
λ21 − λ22

)
λ1λ2 = 1

(1.18)

where T1 and T2 are the in-plane principle membrane stresses, ε1 and ε2 are the in-plane

principle Green’s strains of the membrane, µ is the membrane shear modulus and γs is the

shear strain. The assumption of a constant area for the cell membrane is usually invoked,

as indicated in third relation of Eq.(1.18). They also used the formulation of strain energy

potential function presneted by Yeoh[75], which proposed as a modified one parameter

Neo-Hookean model (a hyperelastic model), as follows

U =
G0

2

(
λ21 + λ22 + λ23 − 3

)
+ C3

(
λ21 + λ22 + λ23 − 3

)3
(1.19)
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where the assumption of incompressibility was also taken into consideration. Here, G0 is

the initial value of bulk shear modulus, and λi (1− 3) are the principle stretches. The

incompressibility condition implies that λ1λ2λ3 = 1.

The value of the parameter C3 chose to be G0/30 which best matched the experimen-

tal data. Three-dimensional computational simulations of the loading response were also

performed by incorporating the viscoelastic term to the constitutive behavior of the cell

membrane by modifying Eq.(1.18) [9, 28] as

Ts =
µ

2

(
λ21 − λ−21

)
+ 2η

∂ lnλ1
∂t

(1.20)

where η is the coefficient of surface viscosity of the cell membrane, and µ is the in-plane

shear modulus of the membrane.

The first measurements of the complex modulus of the isolated red blood cell presented by

Turner et al. [55].

They computed elastic and frictional moduli g′ and g′′ using magnetic twisting filed.

The cell took under sinusoidal load and they used the approach of Fredberg and Stamenovic

[22] for sinusoidal analysis of a nonlinear system and defined the apparent complex elastic

moduli g∗ as

g∗ = g′ + g′′ (1.21)

where g′ and g′′ are the storage and loss moduli, respectively. The components of the

complex modulus were determined from the limits of Ts (t) − d (t) loop and the area, A,

bounded by the loop representing the energy dissipation per cycle or hysteresis. The phase

angle φ, stiffness g′, and loss modulus g′′ then become
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φ = sin−1
(

4A

π∆Ts∆d

)
g′ =

(
∆Ts
∆d

)
cosφ

g′′ =

(
∆Ts
∆d

)
sinφ =

4A

πω∆d2

(1.22)

Finally, mathematical modeling of cell rheology employing generalized Voight viscoelastic

solid model used by Fisseha and Katiyar [20] is presented as the most common model for

investigating the mechanical behavior of RBC. The generalization of an incompressible

Voight viscoelastic solid model can be written as follows

Tij = −pδij + T eij + T vij (1.23)

where T eij is the stress associated with an elastic component that can be expressed as

a function of strain, and T vij the stress associated with viscous fluid depend on rate of

deformation, −pδij is also the reaction stress due to incompressibility.

A general viscoelastic constitutive equation can be written using principle stresses. Hence,

the extension ratios in Cartesian coordinate can be written as follows

λ1 =
dy1
dx1

and λ2 =
dy2
dx2

(1.24)

where dx1 and dx2 are initial lengths and dy1 and dy2 are current lengths. The Green’s

strain tensor for large deformation is defined by

e11 =
1

2

(
λ21 − 1

)
, e22 =

1

2

(
λ22 − 1

)
, e12 = e21 = 0 (1.25)

Assuming the membrane is treated as 2D elastic continuum, the principal membrane ten-

sions Ti are expressed as

Ti =
1

λ1λ2
λi
∂W

∂λi
(i = 1, 2) (1.26)
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The membrane also can be assumed to behave like a Neo-Hookean solid material. The Neo-

Hooken model can be used to analyze nonlinear behavior of system under large deformation.

Therefore, strain energy function for a 2D membrane is given by [3]

W =
Gh

2

(
I1 + 2 +

1

I2 + 1

)
(1.27)

where G is the shear modulus of elasticity of the membrane and h is the thickness of the

membrane. The two-dimensional strain invariant I1 and I2 defined by Skalak et al. [61] as

I1 = λ21 + λ22 − 2 and I2 = λ21λ
2
2 − 1 (1.28)

The tensions T1 and T2 along the principle directions can be found as

T1 =
Gh

λ1λ2

(
λ21 −

1

(λ1λ2)
2

)
T2 =

Gh

λ1λ2

(
λ22 −

1

(λ1λ2)
2

) (1.29)

The procedure is summarized and just the final equations are presented. Hence, we have

T11 = −p+
Gh

λ1λ2

(
λ21 −

1

(λ1λ2)
2

)
+

2ηm
λ1

dλ1
dt

T22 = −p+
Gh

λ1λ2

(
λ22 −

1

(λ1λ2)
2

)
+

2ηm
λ2

dλ1
dt

(1.30)

In the case of uniaxial tension, T22 would be equal to zero and the other component can

be obtained as follows

T11 =− Gh

λ1λ2

(
λ22 −

1

(λ1λ2)
2

)
− 2ηm

λ2

dλ1
dt

+
Gh

λ1λ2

(
λ21 −

1

(λ1λ2)
2

)
+

2ηm
λ1

dλ1
dt

(1.31)
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During experience of the in-plane membrane deformation, the membrane area is constraint,

that is λ1λ2 = 1 (λ3 = 1), in this condition the in-plane shear modulus µ = Gh throughout

the entire deformation [26]. Therefore, the following equation can be obtained

T11 = µ

(
λ21 −

1

λ21

)
+

4ηm
λ1

dλ1
dt

(1.32)

where µ is the membrane shear elastic modulus and ηm is the membrane viscosity. The

values of these parameters for RBC membrane is presented in Table 1.4.

Table 1.4: Given and estimated values of the two parameters and rate of strain for RBC.

Parameter Given value Reference Estimated values

Shear elastic modulus µ 0.01dyn/cm [61] 0.012, 0.023dyn/cm

Membrane viscosity ηm 0.001dyn.s/cm [61] 0.0015, 0.0025dyn.s/cm

Rate of strain (Dλ1) 0.3s−1 [41] 0.2, 0.01s−1

1.6 Membrane analysis

In addition to the experiments done during the last decades, several theoretical and com-

putational models developed to analyze mechanical behavior of membrane. As one of

the initial efforts, Helfrich (1973) developed a mathematical modeling of membrane using

Hamiltonian (energy-based) method. He proposed the elasticity theory for the lipid bilay-

ers. In his article, it was discussed that the curvature elasticity is the only one can control

nonspherical shapes of the system. These theoretical and analytical investigations have

been continued presented later in this section. By developing computer technology and

computational techniques, different approach based on the simulation of the system have

been used to simulate the membranes. Atomistic molecular dynamics (MD) and coarse-

grained methods have been employed to model the systems. Although atomistic simula-

tions are more accurate, coarse-grained method can be used to simulate larger structures
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because they run faster than atomistic MD. Therefore, it can be concluded that two dif-

ferent approaches have been used including theoretical and mathematical modelings and

simulations to investigate behavior and properties of the membranes. Brief explanations

about some of these articles are presented in this section.

1.6.1 Simulation

Since 1950s, simulations have developed grown by developing algorithms, computational

methods and computer technologies [11]. If we consider two aspects of Science including

observation and comprehension, the importance of simulation can be understood. Simu-

lations can be play an important role to validate theories. In addition to experiments as

traditional methods of observation, simulation can be considered as computer experiments

to prepare results when an experimental probe is out of reach [11]. Simulations can be

predictive and lots of phenomena have been predicted based on simulations. Simulations

are the thord paradigm of research together with theory and experiments. These tech-

niques can be employed as a comprehensive tools instead of theories. In some problems,

obtaining an analytical or mathematical modeling is not possible and simulations can be

used to prepare accurate results to be compared with experimental ones resulting in com-

prehension of the experiments. Here, some of the articles used the simulation techniques

to investigate the mechanical and physical behavior and characteristics of membranes are

presented.

Meshless model which is based on particle-based method have been used in several studies

[59, 50, 49]. Shiba and Noguchi [59] employed two types of meshless membrane models

based on the different curvature potentials. Meshless membrane model was used which

posses only translational degrees of freedom and form quasi-two-dimensional structure.

The meshless spin membrane model was also employed in which orientational degrees of

freedom are also taken into consideration. The modeled membrane were simulated with

Brownian dynamics in NV T ensembles (constant number of molecules N , volume V , and

temperature T ) [59, 50, 47]. The Monte Carlo (MC) simulations have been also employed

27



in some articles [49]. Coarse-grained model were used several times for large-scale simula-

tions of membrane and sheets [47, 71]. The schematic representation of the model used by

Vliegenthart [71] is shown in Fig.(1.8). In addition, coarse-grained simulations have been

compared with analytical and atomistic MD simulations by Deserno et al. [30].

Different mechanical and physical properties of membranes and sheets have been also inves-

tigated using simulations. Shiba and Noguchi [59] used spin membrane model to estimate

spontaneous curvature C0 and the bending rigidity κ. In addition, they estimated C0 based

on the shape of the membrane strip by employing second-order moving least squares fit

[49]. The estimation is also done in the work of Otter [51]. The elastic modulus and area

compressibility was investigated in the paper and the effects of undulations on system size

was taken into consideration.

Figure 1.8: Schematic representation of the computer experiments (The picture is taken

from [71]. Reproduced with permission from Nature). Left: By applying a force F normal

to the surface of the sphere its radius decreases from R0 to its final radius Rf . Right:

Microscopic detail of the triangulated surface model of a two-dimensional sheet (The details

are available in [71]).

Different results about stress-strain relation and diagrams are available [51] can be

used to obtain different variables in the system. The equilibrium areas per amphiphilic

calculated as the roots of polynomials fitted through the stress-strain data [51]. Proper-
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ties of fluid membranes were also investigated by Noguchi [47]. The surface tension of a

flat membrane has been presented in his paper. Dependency of membrane properties on

parameter values were investigated for a tensionless membrane. Membrane elasticity was

also investigated by Noguchi and Gompper [49]. They studied equilibrium properties of

self-assembled membrane such as bending rigidity, line and surface tensions.

Noguchi and Gompper [50] investigated formation of disklike micelles and vesicles. They

concluded that the self-assembly consists of three process: (i) the particle assembly into

discoidal clusters, (ii) the discoidal clusters aggregate into larger clusters, and (iii) the large

disks close and form vesicles. They also observed that the average cluster size grows faster

than what is observed in simulation whet there is hydrodynamic interaction. It not only

affects the time scale but also the membrane shape during closure. Noguchi investigated

self-assembly of lipids in another paper [47]. The differences between the procedure and

the conditions of forming droplets and vesicles were described.

As important phenomena in biomembranes, buckling and crumpling of the membranes

have been investigated several times in different conditions and for different applications

[46, 30, 71, 24, 51]. The buckled monolayer membrane is illustrated in Fig.(1.9) to show

the discussed phenomenon. Because of small ratio of membrane thickness to its other

dimensions, which is one of the primary geometrical properties of membrane, buckling

and crumpling are among the important phenomena have been considered several times

[51, 71]. In addition, there are different variables parameters such as surface tension which

are some important in the considered environment and should be known in this phenom-

ena. Buckling and collapse of lipid monolayer membranes were investigated [2]. Moreover,

the collapse of the monolayer membrane initiated by buckling was shown. It was also

shown that buckling of monolayers followed by their folding into bilayers to release the

stress of bending deformation. The possibility of vesicle formation by transforming bilayer

folds in the energetic point of view and the macroscopic properties affect this procedure

was investigated in the paper. Otter [51] investigated the buckling phenomenon in lipid

bilayers with neglecting undulations. The effects of thermal undulations and fluctuations

have been also investigated [59, 49]. In addition, the transient behavior of the membranes

29



investigated about buckling phenomenon [24].

Figure 1.9: Buckled monolayer membrane using atomic simulation (Figure courtesy of Bin

Liu, SoftSimu Group, University of Waterloo.).

1.6.2 Analytical investigations

The analytical modeling of lipid biomembranes using elasticity theory was proposed by

Helfrich [25] in 1973. He used elasticity theory to define Hamiltonian and energy func-

tion to obtain an analytical modeling of the membrane. Nonlinear elasticity and stress

functions were used to develop the model. It was shown that curvature is the only elas-

ticity controlling nonspherical shape for closed bilayer films. The stresses in a closed lipid
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membrane were investigated employing Helfrich Hamiltonian [7]. They investigated the

response of the Hamiltonian to surface deformations. They considered the case of a sur-

face dominated by surface tension in a soap bubble to illustrated their ideas. Rotations

and torque were also taken into consideration. In addition, they shown that their model

is well-established particularly when the membrane geometry possesses some degree of

spatial symmetry. Domokos et al. [12] also investigated uplifted heavy elastic strip using

Hamiltonian in the global equilibrium condition. The model can be used to the membranes

based on the similar geometries. They used dimensionless variables to generalize the both

the model and the obtained results. Moreover, the breaking of the symmetry of the system

was investigated in details.

The Hamiltonians and energy functions used to obtain the final modeling of the system

resulted in elliptic functions in some articles such as the work of Noguchi [46] also used

to verify some of the results of the project for in-equilibrium membrane profiles under

buckling. In addition, some of the functions has been solved using perturbation theory by

Witten et al [77]. The mechanical buckling instabilities of a rigid film was investigated. As

an example, the large deformations of the system can be obtained using expansion of the

equations based on small deformation in perturbation analysis.

Several analytical studies have been dedicated to investigate buckling phenomenon [46, 30,

42, 53]. Noguchi [46] investigated anisotropic surface tension of buckled lipid membranes.

The energy function of the monolayer membrane in one-dimensional approximation was

derived based on the bending of the membrane. It was assumed that the length of the

buckled membrane is constant as a criteria in the model. Noguchi used the derived el-

liptic functions as the solution of the membrane profile to obtain the surface tension in

the monolayer membrane. In addition, interaction of between buckled membrane in a

system include multiple membranes was investigated in his paper. Buckling of Langmuir

monolayer was also investigated [42]. It was shown that a surfactant monolayer may have

a instability similar to the buckling instability of a beam in one-dimension or a plate in

two-dimensions if it goes under compression. Deserno et al. [30] presented an analytical

solution of buckling of the lipid membrane. The elliptic functions were employed to ob-
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tain the solution and the membrane profile after buckling. The solutions also obtained in

the presence of undulations in the system. It was shown that the fluctuations result in

shrinkage of the membrane and affect the membrane profile and other results presented

in the paper [30]. Buckling transitions were investigated in spherical shells by Nelson et

al. [39]. They used the model to characterize the virus shape and its behavior in the

considered conditions. Topological defects on the curved surfaces were also studied as

an important parameter in the problem. The spherical membranes were also modeled by

Chen et al. [76]. The modeled system (core/shell structure) was solved employing finite

element method (FEM). The undulating topology also was taken into consideration. The

modeled membrane can be used as promising model of natural fruits in the considered con-

ditions. Zhang and Witten [77] studied supported monolayer on a fluid film. The problem

was solved to obtain the behavior of the considered membrane in buckling phenomenon.

They also investigated fluctuations in the membrane and second-order buckling transition.

Fluctuations and Goldstone modes (Fig.(1.10)) of fluid membrane tubules were studied by

Fournier and Galatola [21]. The Goldstone mode can defined as a long-wavelength fluc-

tuation of the corresponding order parameter which break the symmetry of the system.

It can also be defined as low energy excitation. If the microscopic Hamiltonian has full

rotational symmetry, we expect that a uniform rotation costs no energy and as rotation

which is slowly varying in space to cost very little energy.

There are some other articles solved buckling and large deformation of beams and mem-

branes using other methods and numerical procedures [33, 23, 74]. There are some papers

solved the buckling phenomenon using FEM packages such as Abaqus [33]. Taheri et al.

[33] solved the dynamic plastic buckling of a slender beam. They considered that axial

impact load applies to the beam. The dynamic buckling criterion was also studied in the

paper. Sensitivity analysis can be so useful

to consider the effects of different parameters and conditions on the system was done

by Taheri et al. [33]. Moreover, dynamic pulse buckling of composite shells investigated

by Fatt et al.. [23] They considered the shells to be under external blast. The effects of

different parameters on dynamic behavior of the problem was also studied. As a different
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Figure 1.10: Goldstone modes (m = 1). From top to bottom n = 1, n = 2 and n = 3. (The

picture is taken from [21]. Reproduced with permission from American Physical Society).

approach, the dynamic large deflection of a cantilever beam was studied using dynamic of

infinitesimal elements of the whole beam by Xiet al.[74]. The model was solved using finite

difference method and verified by the results of Abaqus as a FEM package.

In the next section the mathematical and numerical procedure used to solve different

problems, statics and dynamics of monolayer membrane and static analysis of bilayer

membrane, of this project are presented.
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Chapter 2

Methods

In this section, mathematical models and numerical approaches used to solve different

problems investigated in this projects are presented. The models are based on elasticity

of the systems. The continuum equations of the problems are obtained and using equi-

librium or dynamics of the infinitesimal elements. In order to solve the obtained highly

nonlinear differential equations, finite difference schemes are employed. The details of the

mathematical and numerical procedures are described in this section.

2.1 Mathematical modeling

Static and dynamic analysis of large deflection of thin heterogeneous membranes are ob-

tained to be able to investigate transient and in equilibrium behavior of the buckling

phenomena in biomembranes. The large deflection theory has been used and some new

formulas are presented to be able to obtain the results of the problems for both small

and large deformations. It should be noted that all of the equations are changed to the

non-dimensional forms as more general formulas can be used to investigate different sys-

tems. The general formulas presented in this section help us to obtain the results of both

homogeneous and heterogeneous membranes. Therefore, these general models can be used
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to illustrate the effects of different parameters such as stiffness of the membrane on its

bucking and its large deformation behavior.

2.1.1 Static analysis of membrane

One-dimensional buckling analysis of the thin membrane is modeled using straight Euler-

Bernoulli beam in this article. The presented model is considered to be general to be able

to employ it in the large deflection analysis. Buckling of the membrane can be considered

as a large deflection problem not a small one. It is based on the existence of large defor-

mation and curvature in the membrane.

In this section, equilibrium equations of large deflection of a one-dimensional thin mem-

brane is presented. Some of the important geometrical and physical properties of the

considered membrane are presented in Fig.(2.1). It should be noted that the presented

model for static analysis of monolayer membrane is based on the modeling part of the

work done by Maleki et al [40]. In this figure, length of the the considered element ds,

the curvature of the element R, Horizontal and vertical forces Fx and Fy, bending moment

M and slope of the membrane at the considered position θ (s) are clearly shown. In addi-

tion, following geometrical relations can be used to obtain the system of equations of the

problem

dx = ds cos (θ)

dy = ds sin (θ)
(2.1)

where ds is the length of the element. Two dimensional equilibrium equations of the

membrane can be written as follows in order to obtain suitable relations between the

momentum M and the internal forces∑
Fx = 0⇒ dFx

ds
= 0⇒ Fx = cte.∑

Fy = 0⇒ dFy
ds

+ ω(s) = 0⇒ Fy = −
(∫

ω(s)ds−
∫
ω(s)ds|s=L

)
∑

M = 0⇒ dM

ds
= Fy cos θ + Fx sin θ

(2.2)
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where M is the internal bending moment and Fx and Fy are horizontal and vertical internal

forces, respectively. In addition, the constitutive equation of Euler-Bernoulli beam can be

written as follows

M

EI
=

1

R
=
dθ

ds
⇒M = EI

dθ

ds
(2.3)

as the fourth equation required to solve the obtained system of equations.

Figure 2.1: A schematic model of an element of the membrane.

Therefore, the following nonlinear differential equation can be obtained using Eqs.(2.2)

and (2.3).

d

ds

[
EI

dθ

ds

]
+ cos θ

(∫
ω(s)ds−

∫
ω(s)ds|s=L

)
− Fx sin θ = 0 (2.4)

In order to have a general solution, it is necessary to rewrite Eq.(2.4) in the non-dimensional

form as follows

d

ds∗

[
λ(s∗)

dθ∗

ds∗

]
+ cos θ∗

(∫
ω∗(s∗)ds−

∫
ω∗(s∗)ds∗|s∗=1

)
− F ∗x sin θ∗ = 0 (2.5)

which is obtained using the following non-dimensional parameters

s∗ =
s

L
; ω∗(s∗) =

ω(s)

ωmax

; λ(s∗) =
EI(s)

ωmaxL3
; F ∗x =

Fx
ωmaxL

(2.6)
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where L is the half length of the membrane and ωmax is the maximum amount of dis-

tributed load applied on it.

In order to obtain the behavior of the homogeneous and heterogeneous membranes, Eq.(2.5)

should be solved in the general form. The numerical procedure used to solve the problem

is described in the next section.

In addition to the one-dimensional analysis of thin membrane, two dimensional analysis of

the symmetric circular membrane is presented. In the case of one-dimensional membrane,

the criteria of constant length equivalent to incompressibility of the membrane is used. In

order to investigate circular membrane, because of considering two-dimensional behavior

of the system, the criteria of constant area are used to obtain the solution. It is obvious

that in the case of two dimensional problem in cylindrical coordinate which is our concern,

we should have two equations in r− z and φ− r planes. However, because of assuming the

circular symmetry, all of the variables and parameters do not depend on φ. Therefore, the

equation of the equilibrium of the symmetric circular membrane can be written same as

Eq.(2.5) in the non-dimensional form with just one important modification. The modifi-

cation is based on the criteria of constant area. Let us consider a circular membrane with

radius L0. If we consider a point in the membrane in the distance R from the center, and

this point goes to another position after buckling in distance r from the centerline, we will

have the following relation as incompressibility equation

ds′

ds
=
R

r
(2.7)

where ds and ds′ are the initial and final elemental lengths of the membrane at that

position, respectively. In the Numerical procedure section, it is completely described that

how we can use this relation to solve the equation with the considered criteria.

2.1.2 Static analysis of bilayer membrane

One of the important physical systems in the biological context is bilayer membrane as the

covering of different cell type and their organelles such as mitochondria. They include two
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layers (mostly constructed by lipids) each has similar behavior to monolayer membrane

investigated in the previous part of this chapter. One thing causes the analysis of the

bilayer membrane much more complicated than the monolayer one is the incompressibility

of the bilayer membrane.

Although the static model for analysis of membrane is presented in the section 1.1.1, in

the case of bilayer membrane some modifications are required based on the incompress-

ibility restriction. If we use just the presented static model of monolayer membrane, by

increasing the deflection of the membrane, the layers will come near or even go through

each other. Therefore, some modifications should be considered to satisfy the constraint

of incompressibility of the bilayer membrane. In molecular dynamic simulation, different

forces and momentum should be considered to simulate the system. There are coulomb

and van der Waals forces can be considered as two extensional forces, e.g. they apply forces

along centerline of the considered particles. In addition, there is a momentum to hold the

bond angles. With due attention to these forces and momentum in molecular dynamic

simulation, the inspired bilayer model is presented in this section to be able to presented

a promising method of analysis of bilayer membrane without the computational costs of

MD simulations.

In order to apply the modifications, two springs are considered between the nodes of the

discretized domain described in the next section (Fig.(2.2)). The presented extensional

spring is a linear spring obeys Hook’s law or linear stress-strain constitutive law σ = Eε.

On the other hand the considered bending spring is a nonlinear one which the following

equation is considered as its constitutive law

M =| δφ |2 δφ3/4 (2.8)

Therefore, the bilayer membrane is modeled using the differential equation of the mono-

layer membrane (Eq.(2.5)) and solved for each layer. Moreover, the linear extension-

compression and nonlinear bending springs are used in order to satisfy the incompressibility

criteria of the bilayer membrane.
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Figure 2.2: Schematic models of the springs considered between the nodes of the layers

of the bilayer membrane (1 and 2 represent the first and second layers and i is the node

number).

2.1.3 Dynamic analysis of membrane

In order to model the transient buckling behavior of half thin membrane, the equations of

the previous part should be changed to include acceleration terms. Therefore, Fig.(2.1) can

be considered also as free body diagram of the dynamic problem. The geometrical equations

(Eq.(2.1)) is still true and the equilibrium equations (Eq.(2.9)) should be changed to the

following equations of motion of the membrane.∑
Fx = max ⇒

∂Fx
∂s

= ρ
∂2x

∂t2∑
Fy = may ⇒ −

∂Fy
∂s
− ω(s) = ρ

∂2y

∂t2∑
M = Jα− ρds ∂

∂t

(
y
∂x

∂t
− x∂y

∂t

)
⇒∂M

∂s
− Fx sin (θ)− Fy cos (θ) = Jθ̈ − ρ ∂

∂t

(
y
∂x

∂t
− x∂y

∂t

)
(2.9)

where ρ is linear mass density of the membrane, J is its moment of inertia and α is angular

acceleration. The presented equations can be changed using the geometrical relations of
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Eq.(2.1) to the following ones

∂Fx
∂s

= ρ
∂2

∂t2

∫
cos (θ) ds

−∂Fy
∂s
− ω (s) = ρ

∂2

∂t2

∫
sin(θ)ds

∂M

∂s
− Fx sin (θ)− Fy cos (θ) = Jθ̈

− ρ ∂
∂t

(∫
sin (θ) ds

∂

∂t

∫
cos (θ) ds

)
− ρ ∂

∂t

(∫
cos (θ) ds

∂

∂t

∫
sin (θ) ds

)
(2.10)

Therefore, the equations of motion of the membrane after applying the temporal derivatives

can be written as follows

∂Fx
∂s

= ρ

∫
(−θ̈ sin θ − θ̇2 cos θ)ds

−∂Fy
∂s
− ω (s) = ρ

∫ (
θ̈ cos θ − θ̇2 sin θ

)
ds

∂M

∂s
− Fx sin (θ)− Fy cos (θ) = Jθ̈

− ρ
(∫

sin (θ) ds

∫ (
−θ̈ sin θ − θ̇2 cos θ

)
ds

)
− ρ

(∫
cos (θ) ds

∫ (
θ̈ cos θ − θ̇2 sin θ

)
ds

)
(2.11)
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which can be changed to the following equations by taking derivative from both sides of

the two first equations

∂2Fx
∂s2

= ρ
(
−θ̈ sin θ − θ̇2 cos θ

)
−∂

2Fy
∂s2

− ∂ω (s)

∂s
= ρ

(
θ̈ cos θ − θ̇2 sin θ

)
∂M

∂s
− Fx sin (θ)− Fy cos (θ) = Jθ̈

− ρ
(∫

sin(θ)ds

∫ (
−θ̈ sin θ − θ̇2 cos θ

)
ds

)
− ρ

(∫
cos(θ)ds

∫ (
θ̈ cos θ − θ̇2 sin θ

)
ds

)
(2.12)

The obtained equation should be changed to the non-dimensional form to be able to gen-

eralize the solution for different materials and geometries. The non-dimensional forms of

the Eq.(2.12) can be written as

∂2Fx
∂s2

= ρ∗
(
−θ̈ sin θ − θ̇2 cos θ

)
−∂

2Fy
∂s2

− ∂ω (s)

∂s
= ρ∗

(
θ̈ cos θ − θ̇2 sin θ

)
∂

∂s

(
λ
∂θ

∂s

)
− Fx sin (θ)− Fy cos (θ) = J∗θ̈

− ρ∗
(∫

sin (θ) ds

∫ (
−θ̈ sin θ − θ̇2 cos θ

)
ds

)
− ρ∗

(∫
cos (θ) ds

∫ (
θ̈ cos θ − θ̇2 sin θ

)
ds

)
(2.13)

where ρ∗ = ρL/ωT 2 and J∗ = J/ωT 2L are the dimensionless density and moment of

inertia, respectively and all temporal derivatives are changed to the dimensionless form

using T as the time necessary for system to be reached to the steady state. The obtained

nonlinear integrodifferential equations of dynamic large deflection of membrane are solved

employing finite difference schemes described in the next section.

After obtaining some results and comparing them with available ones in literature, it found
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that the presented model need some modification. In the case of dynamic analysis, dissipa-

tion of the system should be considered in the presented model. In any natural or artificial

system, there is energy dissipation affects the dynamic behavior of that system. These

energy dissipations are taken into considerations as modifications of the presented model

(Eq.(2.13)) so that a bending dissipation and transverse deflection dissipation terms are

considered in the system. The bending dissipation is modeled using the bending damping

C and the transverse deflection dissipation is modeled using the dimensionless parame-

ter D. The considered bending dissipation affects the behavior of the system as Cθ̇. It

is considered as a dissipation force in the presented model. In addition, the transverse

dissipation applies Dẏ as another dissipation force. These forces cause the system grows

smoothly from its initial state to the final one. This smoothness is different for every sys-

tem which its value can be set as suitable one to properly models the dynamic behavior of

that system.
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Chapter 3

Numerical procedure

In order to obtain the solution of the different models presented in the previous section

including static 1D and 2D static analysis of thin membrane and dynamic large deflection

of one-dimensional membrane, the suitable finite difference scheme is used in each case.

The employed approaches are described in this section to clarify the numerical procedure

of the solution.

3.1 Static analysis of membrane

The obtained nonlinear differential equation of the problem (Eq.(2.5)) is solved using the

finite difference scheme as described in this section. On the basis of steady state condition of

the problem, iterative method is used to solve the obtained discretized equation (Eq.(3.1))

in a considered mesh-grid of the one-dimensional domain. The discretized form of the

Eq.(2.5) can be written as follows

λn+1
i+1

dθ
ds

n+1

i+1
− λn+1

i−1
dθ
ds

n+1

i−1

2δs
+ cos θni

(∫
ω∗ (s∗) ds−

∫
ω∗ (s∗) ds∗|s∗=1

)
i

− F ∗x sin θni = 0

(3.1)
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where dθ/ds|mk is the second order central derivative of θ at node k and iteration m. In

Eq.(3.1), δs represents grid size and i and n are node and iteration numbers, respectively.

This equation can be rewritten as the following equation in the case of constant λ (homo-

geneous membrane)

λ
θn+1
i+1 − 2θn+1

i + θn+1
i−1

δs2
+ cos θni

(∫
ω∗ (s∗) ds−

∫
ω∗ (s∗) ds∗|s∗=1

)
i

− F ∗x sin θni = 0

(3.2)

The system of equations obtained using the discretized differential equation written at

each node (Eq.(3.1))can be written in the matrix form. The matrix form then is solve at

each iteration. It should be noted that the obtained equations are based on the distributed

vertical loads applied on the membrane. If we want to solve the problem for applied vertical

concentrated load, the equations will be the same and just there will be a concentrated

load in one point of the discretized domain.

Because of the symmetry of the considered domain, half of the membrane is solved using

the wall boundary conditions θ = 0 at the left side of the domain and middle of the

membrane. In addition, it can be easily concluded that no boundary force in y-direction

should be considered in the case of no external vertical load.

3.2 Static analysis of bilayer membrane

It is described in the modeling section that the differential equations of the monolayer

membrane can be considered as in-equilibrium equations of each layer of the bilayer mem-

brane. Therefore, the iterative procedure described for the numerical analysis of the static

monolayer membrane problem can be also employed to solve this problem. It should just

be noted that the presented modifications in the modeling part cause some differences

in the procedure of obtaining the system of equations of the domain. As it is shown in

Fig.(2.2), there are two springs attached to each node in every membrane. The extension-

compression spring is considered between node i of the two layers. The bending spring is
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also attached between node i of one layer and nodes i − 1 and i + 1 of the other one as

shown in Fig.(2.2).

3.3 Dynamic analysis of membrane

In order to investigate time-dependent behavior of the membrane, system of nonlinear

partial differential equations (Eq.(2.13)) should be solved using a suitable numerical ap-

proach. The time-dependent finite difference scheme is chosen to solve the problem. The

approach is based on the implicit time-dependent FDM. In this approach, the equations

are discretized as follows to obtain a discrete PDE including the variables at different nodes

and time-stages so that the nonlinear PDEs change to a linear finite difference equation.

(
∂2Fx
∂s2

)n+1

i

= ρ

[
−θ̈ni sin (θni )− θn+1

i − θni
δt

θ̇ni cos (θni )

]
−
(
∂2Fy
∂s2

)n+1

i

−
(
∂ω (s)

∂s

)n+1

i

= ρ

[
θ̈ni cos (θni )− θn+1

i − θni
δt

θ̇ni sin (θni )

]
λn+1
i+1

∂θ
∂s

n+1

i+1
− λn+1

i−1
∂θ
∂s

n+1

i−1

2δs
− Fx|n+1

i sin (θ) |ni−Fy|n+1
i cos (θ) |ni =

− ρ
(∫

sin (θni ) ds

∫ [
−θ̈ni sin (θni )− θn+1

i − θni
δt

θ̇ni cos (θni )

]
ds

)
− ρ

(∫
cos (θni ) ds

∫ [
θ̈ni cos (θni )− θn+1

i − θni
δt

θ̇ni sin (θni )

]
ds

)
(3.3)
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where

θ̈ni =
θn+1
i − 2θni + θn−1i

δt2(
∂2Fx
∂s2

)n+1

i

=
Fx|n+1

i+1−2Fx|n+1
i +Fx|n+1

i−1

δs2(
∂2Fy
∂s2

)n+1

i

=
Fy|n+1

i+1−2Fy|n+1
i +Fy|n+1

i−1

δs2(
∂ω(s)

∂s

)n+1

i

=
ωn+1
i+1 − ωn+1

i−1

2δs

(3.4)

As it is mentioned, these equations are linearized form of the original nonlinear PDEs (Eq.

(2.13)). The obtained equations for each node and time stage should be gather together to

construct a system of equations can be written in the matrix form. The obtained matrix

form of the discretized equations for the whole domain at time stage n + 1 can be solved

to obtain the matrix of coefficients and vector of variables including θ at all nodes of

the domain. Therefore, instead of solving a static equation iteratively like the one for

equilibrium analysis of membrane, the equations are solved at time stages to obtain the

time-dependency of the behavior of the membrane.

3.4 Convergence, grid-independence and verification

of the solution

In order to ensure about trustfulness of our modeling and numerical procedure, it is nec-

essary to investigate the convergence of the numerical solution as well as obtain a grid size

in the grid-independent region of the solution. The convergence of the solution is shown

in Fig.(4.1) for different values of applied loads using norm defined as

N∞ = max|θN − θN−1| (3.5)
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where N is the number of nodes used to obtain the solution in the considered domain. It

is obviously shown that N = 300 is enough to be considered as iteration numbers in all

cases.

The difference of maximum values of θ for two grid-sizes max (θNx)−max (θNx−1) in which

Nx is the number of nodes is illustrated in Fig.(4.2). It is observed in this figure that this

difference decreases by decreasing the gird-size. As 1/δx grows, the oscillations are damped

and all diagrams presented for different applied loads converge to a minimum limit. The

solution after this grid-size shown in Fig.(4.2) is grid-independent. Therefore, 1/δx = 450

is chosen in all cases to ensure about the grid-independency of the solution. In the next

section, effects of changing different parameters are investigated on the membrane profile,

maximum deflection, etc.
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Chapter 4

Results and discussion

In this section, the results of the different problems investigated in this project are pre-

sented. The illustrated results are investigated and different aspects of the diagrams are

explained in details. The descriptions are organized similar to the order of the results to

simplify the comparison of the results of the problems in different conditions and using

different parameter values. Although the diagrams of the different problems are com-

pared to each other because of their relation, the explanations are categorized based on

the considered problem to help us presenting different aspects of the considered problems

separately.

4.1 Static analysis of membrane

The grid-independency and convergence of the solution should be considered as the first

steps of the procedure of the solution to be sure about the trustfulness of the considered

numerical procedure, time intervals and iteration numbers. In Fig.(4.1), convergence of

the solution is shown using the iteration number N . It is obvious that all of the solutions

considered for different applied horizontal loads are converged for iteration numbers more

than N = 300 chosen in the numerical procedure. In addition, it is illustrated that there is
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pick in all of the diagrams which is based on the behavior of the buckling phenomena. In

the buckling phenomena, there is a sudden change of the shape of the system cause these

kinds of convergence behavior. It should be noted that the solution converges faster for

lower load values. In addition to the convergence, the grid-independency of the solution

for the considered membrane under different applied loads are illustrated in Fig.(4.2). It is

shown that by decreasing the grid size which is equivalent to increasing 1/δx the considered

variable decreases to reach a region can be considered as grid-independent. In this problem,

1/δx is chosen based on Fig.(4.2) to obtain the grid-independent results. It should be noted

that the variation of the considered variable with respect to 1/δx is oscillatory and the

amplitudes of the oscillations decreases by increasing the values of the variable. Moreover,

the considered variable is less depends on the grid-size for smaller applied loads.

In addition to the grid-independency and convergence of the solution, the obtained solution

should be verified using the available results in the literature [46]. It is based on the

fact that in mathematical point of view, we can obtain a converged and grid-independent

solution based on a false physical model or a model with some deficiencies. Hence, the

results should be compared to the results obtained employing different models and methods

in the literature. Therefore, buckling of the membranes with half lengths L = 2/3 and

L = 4/3 are presented in Figs.(4.3) and (4.4), respectively. The profiles have two regions

including two opposite curvatures and the slope is zero at the left boundary and middle

of the membrane. The curvature of the diagrams of Fig.(4.4 is larger than the other ones

because of the higher value of applied load in that case. The result are verified with results

of Noguchi [46] which are based on the following equations of the buckled profiles of the

membrane (the procedure of obtaining these equations are described in the mentioned

reference)

x = 2bE [am (s/b, k) , k]− s

y = 2kbcn (s/b, k)
(4.1)

where E (a, k), am (a, k) and cn (a, k) are the elliptic integral of the second kind, Jacobi

amplitude and Jacobi elliptic function, respectively. In addition, s is the arc length and k
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can be determined using the following equation

L

4b
= K (k) (4.2)

It is clearly shown that the profiles of the membranes obtained using continuum model of

this project and energy method of Noguchi [46] are coincide with each other. Henceforth, he

continuum model can be used to obtain different results and investigate different behaviors

of the membrane.

In order to investigate the buckling behavior of the membrane, membrane profiles obtained

based on the different applied loads have primary importance. These profiles, shown in

Figs.(4.5) and (4.6), clarify the behavior of the membrane in this specific phenomenon.

Effects of the applied loads on the membrane profiles of the membranes with half lengths

L = 2/3 and L = 4/3 are presented in these figures. The range of the applied loads are

different for the membranes with different lengths which is based on the both physical

behavior and dimensionless parameters of the system. The deflection of the membrane

and its curvature increases by increasing the value of the applied load which is clarified

in these figures. In addition, it seems that dependency of the maximum deflection cannot

be considered as linear and its variation decreases by increasing the applied load. In

order to clarify this dependency, maximum deflection and slope of the membrane profile

for a membrane with length L = 1 is shown in Fig.(4.7). On the basis of the presented

diagrams, maximum slope reach in liner dependent region while maximum deflection goes

to reach a maximum value. Therefore, maximum deflection has a limit which is based on

the conditions of the system and criteria of constant length.

In addition to the presented result based on the homogeneous membrane with λ = 1.0, it

has worth to present some results related to a heterogeneous membrane. We are capable of

presenting such kinds of results because of the general model (Eq.(2.5)) presented in this

project. In order to show the effects of heterogeneity on the buckling of the membrane, a

small part with length lh = 1/5 is considered with different stiffness λ in the membrane.

As one of the important variables of the system, variations of the maximum deflections of

the membrane with respect to the starting position of the heterogeneous parts are shown
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in Figs.(4.8) and (4.9) for the two membranes with heterogeneous stiffness λh = 0.5 and

λh = 2.0. The membranes are considered to be under different applied loads. It is obviously

shown that this heterogeneity has important effects on the buckling of the membrane. It can

be concluded using the diagrams of Figs.(4.8) and (4.9) that there is an extremum region

in the diagrams located at a = 0.4 corresponding to the existence of the heterogeneous

part in the middle of the half membrane. It is based on the fact that the critical region of

the half membrane is located in its middle part. We are solved the equation of the system

to obtain θ as the primary dependent variable of the system. Hence, if we control its

maximum value, we can affect the buckling or any other large deflection phenomena in the

most effective way. In the case of softer heterogeneous part shown in Fig.(4.8), existence

of the heterogeneity cause increasing the maximum deflection of the membrane while it

has opposite effect if the harder one is considered in the system (Fig.(4.9)). Moreover, to

show the effect of the stiffness of the heterogeneous part on the maximum deflection of the

membrane, this dependency is illustrated in Fig.(4.10) for the half membrane with L = 1

and under different applied buckling loads. It is shown that by increasing the applied load,

effect of heterogeneity on the maximum deflection decreases.

One of the criteria of the membrane analysis is constant length in the one-dimensional

case. This criteria causes some restrictions such as a limit for maximum deflection of the

membrane which is clarified before. In order to have a more realistic result, another model

is also presented which is based on the symmetric circular system membrane. In this case

the criteria of constant length changes to constant area which is more comparable to the

natural systems. The profiles of the membrane with two half lengths L = 2/3 and L = 4/3

are presented in Figs.(4.11) and (4.12), respectively. It is illustrated in theses figures that

the deflection of the membrane increases by increasing the applied load. However, it is

not similar to the behavior of the one-dimensional membrane. In this case, Lx decreases

much less than the increased value of Ly. The differences of the behavior of the circular

and one-dimensional membrane are clarified in Fig.(4.13). It is shown that increasing the

applied load causes increasing the maximum deflection and slope while results in decreasing

Lx. The most important difference of this system with the one-dimensional membrane
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can be clarified by comparison of this diagrams and the ones presented in Fig.(4.7). By

employing the circular model, the restriction of maximum deflection is omitted. In addition,

it is shown that Lx decreases as a linear function of the applied compression. It should

be noted that variation of Ly is faster than Lx resulting in increasing the length of the

circular membrane in side-wise view. In addition to the results of the homogeneous circular

membrane, effects of heterogeneity is investigated (Fig.(4.14)). It is based on existence of

the heterogeneous part in the middle of the half membrane shown as the most effective

position. It is shown in Fig.(4.14) that increasing the stiffness of this small part causes

decreasing the maximum deflection and slope of the membrane. Variation of maximum

deflection is faster than slope of the membrane which is based on their physical definitions.

These variations are nonlinear and do not approach to any limit or linear part.

4.2 Static analysis of bilayer membrane

Bilayer membranes play an important role in the nature specifically as outer layer of the Eu-

karyotic cells and their organelles. One of the physical phenomenon should be investigated

about this coverages is buckling. As it is described in the case of monolayer membrane,

applying a horizontal load may cause buckling. In the molecular point of view, this forces

are based on the concentration of energy in a specific area. In other words, the molecules

exist in a region prefer to buckle to minimize the energy of the system.

In order to show the buckling phenomenon in the bilayer membrane, the membrane pro-

files after buckling are presented in Figs.(4.15) and (4.16). In these figures, the profiles

are shown for two different buckling loads applied to the same bilayer membrane resulting

in different profiles. The profile of the Fig.(4.15) is based on Px = 41 which is less than

the applied load related to profile of Fig.(4.16). Hence, the deflections of the layers of the

membrane in the case of Fig.(4.15) are smaller than the other one. It should be noted

that because of the considered modifications with respect to the monolayer model, the

deflection of each layer is different from deflection of the monolayer membrane with same
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properties and under the equal buckling load.

The model of the monolayer membrane is modified to be used in analysis of bilayer mem-

branes. Because of the importance of the bilayer membranes in micro scale, the modifica-

tion is applied based on the molecular point of view. Thermal undulations have important

effects on the system in the molecular scale [4] while can be neglected in the macroscopic

level. The modified model is based on the description of Deserno et al. [30] Thermal un-

dulations exist and affect the stresses, because fluctuation induced corrugations shrink the

projected surface area and thus contract the membrane. This contraction can be modeled

in another point of view. If we consider constant length criteria similar to the mono-

layer analysis, this shrinkage effect can be take into consideration by stress hardening

of the membrane affect the variables of the system approximately same as the thermal

undulation in the molecular point of view. Therefore, using the stress hardening model

λ = λ0 (σx/σx0)
n the modified model of the bilayer membrane is obtained. It should be

noted that the bilayer membrane profiles of Figs.(4.15) and (4.16) are also obtained using

the modified model.

The explained modified model is used to verify the presented solution by employing the

results of Deserno et al. [30]. The verified results presented in Figs. (4.17) and (4.18)

include variations of energy of the system and buckling load with respect to the dimen-

sionless parameter γ = (L0 − Lx) /L0. It is illustrated in these figures that the results of

continuum model of this project is approximately coincide with the energy-based results

of [30]. Therefore, it can be concluded that the obtained model can be used as a promising

model of the bilayer buckling phenomenon.

In addition to the verification of the results shown in Figs.(4.17) and (4.18), the incom-

pressibility of the bilayer membrane is also investigated and the diagrams for the different

applied buckling loads are presented in Fig.(4.19). Another variable is defined as incom-

pressibility error (d0 − d) /d0 where d0 and d are he distances of the two similar nodes in

the layers of the membrane, respectively. As it is shown in Fig.(4.19), the incompressibility

error is so small which can be considered as strength of the presented model of the bilayer

membrane.
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4.3 Dynamic analysis of membrane

In addition to the static analysis of membrane, time dependency of the considered phe-

nomenon has special worth. In any system in different scales, micro or macro, dynamic

modeling is so important and also complex with respect to static analysis. By employing

dynamic analysis, variations of different variables of the system can be investigated with

respect to time. These variations which can be linear or nonlinear are helpful not only

to understand the natural or artificial systems but also to design or fabricate new ones

properly.

As the first step, the presented mathematical modeling and numerical analysis is verified

using the result of [74] about time variation of maximum deflection of a cantilever beam

under a transverse step load (Fig.(4.20)). It is obvious that the presented model is well

defined and its result for the cantilever beam problem has just a little difference with the

result of [74]. In this case the concentrated load is applied vertically to the end of the

beam and its dimensionless value is considered to be Fy = 0.5 to be compatible with the

considered system of [74]. In addition, the dimensionless material parameters are chosen

as λ = 1, ρ = 1, J = 0.1, C = 6.3 and D = 0.1. Henceforth, all of the diagrams are

obtained base on these parameter values unless another values are mentioned in each case.

As it is mentioned, time variation of different variables of any system should be consid-

ered as their important characteristics. In the buckling phenomenon of the considered

monolayer membrane, maximum deflections for the system are primarily important and

their time dependency are illustrated in Figs.(4.21) and (4.22) for two lengths and different

buckling loads applied on the membrane. It is obviously shown that there is an impor-

tant difference between these diagrams and the diagram of the cantilever problem based

on transverse load. The variation of maximum deflection of the membrane in the beam

problem is approximately linear in the beginning part of the diagram (Fig.(4.20)) while

the diagrams of Figs.(4.21) and (4.22) related to the buckling problem has a delay in th

starting point of deflection. In the case of transverse load, the applied load and direction

of deflection are the same resulting in the shown behavior of the system. On the other
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hand, in the buckling problem they are not in the same direction and the membrane should

slowly deflect to reach a threshold which cause the bending moment of the applied load

affect the deflection of the membrane and the rapid variation region starts. Because of

the described buckling behavior, there are approximately two curvature in the ymax− time

diagrams including the positive one in the beginning part of the rapid growth region and

the negative one at the end of the region. Moreover, the effects of the length and the

applied buckling loads are illustrated in these diagrams. It is shown that by increasing the

applied load, ymax increases similar to the steady sate model while the time required for

the system to reach its steady state value decreases. It is also shown that the growth of

the maximum deflection is faster for the smaller membrane and the starting point of the

rapid growth regions of the diagrams of Fig.(4.22) correspond to shorter times.

In order to clarify the effects of the applied buckling load and dimensionless stiffness on

the time variation of the buckling of the membrane, Tsteady as the time required for the

system to reach its steady state versus Px and λ are presented in Figs.(4.23) and (4.24),

respectively. As it is described before, Tsteady decreases by increasing the applied buckling

load. The load dependency of steady state time is not linear and the variations decreases

by increasing the applied load (Fig.(4.23)). Moreover, the effects of λ on the steady state

time is shown in Fig.(4.24). This dependency is also nonlinear. The dimensionless Tsteady

grows by increasing the stiffness and there is no limit for this parameter. It seems that by

increasing the stiffness, it grows so that reaches a limit where the steady state time can be

considered as infinity, e.g. there is no buckling.

Bode diagrams are among the useful ones in order to investigate dynamic behavior of a

system. We used this helpful diagram to show the behavior of the system in frequency

domain (Fig.(4.25)). It is shown that there is a jump in the frequency 100rad/s and the

system is stable before this point. In addition, in the frequency greater than 100rad/s the

system has a jump to reach to another region and grows smoothly in that region. This

specific behavior is also based on the behavior of the system in buckling phenomenon. It

should be noted that the magnitude and phase difference are shown in dB and deg units

which are usual in presenting Bode diagrams.

55



As a more complicated and interesting problem, dynamic buckling of the heterogeneous

membrane is also solved and the results are presented here. The heterogeneity can exist in

a membrane like the proteins or other molecules exist in lipid bilayers. Hence, by investi-

gating this problem, we can go one step further in investigating a more realistic problem.

The heterogeneity of the system can be defined based on different material properties of

the system. In all of the results presented in this part, a small region lh = 0.2 with a

different value of one of the properties of the system such as dimensionless stiffness λ is

put in the domain. Some of the results are based on the effects of changing the position of

this part and the other ones related to the different behavior of the system by considering

this small region in the critical location in the domain.

The effects of existence of the small heterogeneous region with different λ, as an important

material property of the system, on the steady state time of the buckling phenomenon are

illustrated in Figs.(4.26) and (4.27). It is clearly shown that there is a extremum in the

diagrams located at the middle of the diagram. It means that the most important position

of the heterogeneous region with different λ is the middle of the membrane. As it is shown

in Fig.(4.26), existence of the heterogeneous part with λ = 10/9 which is less than the

stiffness of the whole membrane causes increasing Tsteady and the maximum is happened

when it is located at the middle of the membrane. It is also shown that it is more effective

for larger applied buckling loads. The existence of a softer heterogeneous part is also shown

in Fig.(4.27). The effect is opposite to the harder part and causes decreasing the time.

Similar to the diagrams of Fig.(4.26), there is a extermum in every diagram which located

in the middle of the interval. Therefore, similar to the heterogeneous static results, it can

be concluded that middle of the membrane is the most critical region for existence of the

heterogeneous part in the system. In the static model, its effects on maximum deflection

and in this case its effects on steady state time are investigated. In order to obtain the

effects of the stiffness of this heterogeneous region on the membrane, the diagram of Tsteady

versus λh is obtained (Fig.(4.28)). In this diagram, the heterogeneous part is located in the

critical region, e.g. middle of the membrane, and its stiffness values are changed between

0.8 and 1.2. As it is shown in this figure, increasing the stiffness of the heterogeneous part
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corresponds to increasing the steady state time of the buckling of the membrane. It can be

also concluded that the dependency of the Tsteady on λh can be approximately considered

as linear.

The other properties of the membrane are just appeared in the dynamic analysis and re-

lated to the dynamic behavior of the membrane. As the next step, the effects of existence of

a heterogeneous part with different ρ as one of these dynamic parameters are investigated.

The diagrams of Tsteady versus position of the beginning of the heterogeneous part a are

shown in Fig.(4.29). In these diagrams, density of the heterogeneous part is considered to

be ρh = 2ρ. In addition, similar diagrams for a heterogeneous part with ρh = 0.5ρ are illus-

trated in Fig.(4.30). In both figures, the extermum of the diagram is located in a different

position than the one obtained for heterogeneous part with different λ. The extermum

is in a = 0.34. The profiles of Figs.(4.5) and (4.6) clarify the reason. There is a region

in the buckling profiles can be considered approximately linear centered by the middle of

the membrane. If we consider an average, a = 0.28 is the start of this small region and

can be considered as the critical point for dynamic parameter ρ. In order to clarify the

effects of ρh on the dynamic behavior of the membrane, Tsteady versus ρh is presented in

Fig.(4.31). It is shown that even it affects the behavior of the system (linearly) its effect is

so small. The variation of Tsteady in this diagram clarify small effect of this parameter on

the dynamic behavior of the system.

In addition to ρh, the effects of bending damping Ch is also taken into consideration. Fig-

ures (4.32) and (4.33) show variation of steady state time of the buckling of the membrane

with respect to the start point of the heterogeneous part. In Fig.(4.32), Ch is considered to

be half of the bending damping of the membrane and it is considered to be two time C for

the diagrams presented in Fig.(4.33). It is clearly shown in these diagrams that the critical

point is located at the middle of the membrane in this case. Increasing the applied load

causes increasing Tsteady as illustrated before. On the basis of the presented figures it can be

easily concluded that the system reaches to the steady state condition at the highest time

stages if they consist of heterogeneous part with larger bending damping. This behavior is

also shown in Fig.(4.34) determining the dependency of Tsteady on bending damping of the
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system. This behavior is based on the definition of damping which dissipate the energy

of the system. It causes the system to change from the initial configuration smoothly to

the final configuration. It is also can be seen that bending damping has a big effect on

the variation of the steady state time and can easily change the dynamic behavior of the

membrane.

As the last parameter, different values of Dh are chosen to investigate the effects of this

parameter as the heterogeneity of the system. In Figs.(4.35) and(4.36), variations of steady

state time with respect to the start point of the heterogeneous region are illustrated for the

membrane under different buckling loads. Similar to the heterogeneous membrane include

the heterogeneity of density, the extremums of the diagrams are located at the same point

a = 0.28. This point represent the maximum values and minimum values of Tsteady in

diagrams of Fig.(4.35) in which Dh = 0.5D and Fig.(4.36) in which Dh = 2D, respectively.

The effect of the different values of Dh on the dynamic behavior of the system is shown

in Fig.(4.37) which clarify the importance of this parameter. It is shown that by small

changes of this parameter, steady state time vary in a large range.
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Figure 4.1: N∞ versus number of iterations for different applied loads on a membrane with

half length L = 2/3.
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Figure 4.2: Variation of difference of maximum slope based on two considered δx in a

sequence with respect to 1/δx.
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Figure 4.3: Comparison of the presented solution and energy-based solution [46] for L =

2/3.
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Figure 4.4: Comparison of the presented solution and energy-based solution [46] for L =

4/3.
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Figure 4.5: Membrane profiles after buckling for different applied loads and L = 2/3.
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Figure 4.6: Membrane profiles after buckling for different applied loads and L = 4/3.
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Figure 4.7: Variation of ymax and θmaxwith respect to applied load for a membrane with

half length L = 1.
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Figure 4.8: Variation of ymax with respect to the position of the small softer part (lh = 1/5)

of the heterogenuous membrane (L = 1) under different horizontal loads.
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Figure 4.9: Variation of ymax with respect to the position of the small stiffened part

(lh = 1/5) of the heterogenuous membrane (L = 1) under different horizontal loads.
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Figure 4.10: ymax versus λ for a heterogenuous membrane, heterogeneity located at the

middle, with half length L = 1 under different horizontal loads.
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Figure 4.11: profiles of circular membrane after buckling for different applied loads and

L = 2/3.
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Figure 4.12: profiles of circular membrane after buckling for different applied loads and

L = 4/3.
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Figure 4.13: Variations of θmax, xmax and ymax with respect to Px.
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Figure 4.14: Variations of ymax and θmax with respect to non-dimensional stiffness of the

middle part of the membrane with length lh = 1/5.
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Figure 4.15: Profiles of the layers of the bilayer membrane with half length L = 1/2 and

under applied load Px = 41.
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Figure 4.16: Profiles of the layers of the bilayer membrane with half length L = 1/2 and

under applied load Px = 47.
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Figure 4.17: Energy of the bilayer mambrane versus γ using both continuum method of

this project and energy method of [30].
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Figure 4.18: Variation of Fx applied to the bilayer membrane with half length L = 1/2

with respect to γ using both continuum method of this project and energy method of [30].
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Figure 4.19: Relative incompressibility error in the bilayer membrane with half length

L = 1/2 under different applied buckling loads.
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Figure 4.20: Variation of ymax with respec to time for a cantilever beam subjected to a

step loading as verification of the dynamic model [74].
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Figure 4.21: Variation of maximum deflection with respect to time for the monolayer

membrane with half length L = 4/3 under different applied buckling loads.
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Figure 4.22: Variation of maximum deflection with respect to time for the monolayer

membrane with half length L = 2/3 under different applied buckling loads.
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Figure 4.23: Tsteady versus applied horizontal load Px for the memrane with half length

L = 1.
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Figure 4.24: Tsteady versus dimensionless stiffness λ for the memrane with half length L = 1.
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Figure 4.25: Bode diagram of the monolayer membrane with half length L = 1. Magnitude

(dB) and phase (deg) of ymax with respect to frequency of the system (rad/s)
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Figure 4.26: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with λh = 10/9 and lh = 0.2.
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Figure 4.27: Variation of Tsteady with respect ot the beginning position of the heterogeneous

part with λh = 9/10 and lh = 0.2.
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Figure 4.28: Tsteady versus heterogeneous stiffeness λh for the heterogeneous part located

in the middle of the considered half membrane.
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Figure 4.29: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with ρh = 2ρ and lh = 0.2.
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Figure 4.30: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with ρh = 0.5ρ and lh = 0.2.
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Figure 4.31: Tsteady versus heterogeneous density ρh for the heterogeneous part located in

a = 0.34 of the considered half membrane.
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Figure 4.32: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with Ch = 0.5C and lh = 0.2.
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Figure 4.33: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with Ch = 2C and lh = 0.2.

76



0 2 4 6 8 10 12
30

35

40

45

50

55

60

65

C
h

T
st

ea
dy

Figure 4.34: Tsteady versus heterogeneous density Ch for the heterogeneous part located in

a = 0.4 of the considered half membrane.
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Figure 4.35: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with Dh = 0.5D and lh = 0.2.
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Figure 4.36: Variation of Tsteady of the membrane with half length L = 1 with respect to

the beginning position of the heterogeneous part with Dh = 2D and lh = 0.2.
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Figure 4.37: Tsteady versus heterogeneous density Dh for the heterogeneous part located in

a = 0.34 of the considered half membrane.
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Chapter 5

Conclusion

Different analytical models are presented in this project to model the biomembranes as

elastic domains. The Euler-Bernoulli constitutive law is used to obtain different models

including one-dimensional and circular monolayer membrane as well as bilayer membranes

in the steady state conditions. The dynamic behavior of the monolayer membrane is mod-

eled as well. The dimensionless equations of the investigated problems including nonlinear

ordinary and integro partial differential equations are obtained let us to present more gen-

eral results can be used to study different biomembranes with different properties and

dimensions. The equations are discretized using different finite difference schemes. The

matrix forms of the discretized equations are then solved to obtain the solution of each

problem.

Different solutions obtained employing the presented models and using the described nu-

merical methods are used to show the behavior of the membranes in buckling phenomenon.

As one of the most important physical phenomenon studied so much during the last

decades, the presented models and solution procedures can be considered as new approaches

to investigated it for homogeneous and heterogeneous domains.

As the primary step, convergence and grid-independency of the numerical procedure is

presented to be sure about the employed procedure. It should be mentioned that the re-
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sults of each problems is verified using the available results in the literature. Buckling of

one-dimensional and axisymmetric membranes are studied as the two well-known problems

in the steady state condition. The profiles of the membrane under different concentrated

buckling load are shown. Moreover, the dependency of the maximum deformation and

slope of the membrane as two important parameters are illustrated. The effects of exis-

tence of a small heterogeneous region in the system is studied and the critical location is

obtained in each case. The effects of the properties of this small region is investigated as

well.

The static analysis of bilayer membrane is also presented as more complicated problem

because of the incompressibility criteria between the layers. The profiles of the membrane

and the effects of stiffness of the layers are investigated. In addition, the incompressibility

of the system is studied and it is clearly shown that the obtained solution can be consid-

ered as an accurate and promising tool to investigate the buckling phenomenon in bilayer

membranes.

As the last problem of the project, dynamic behavior of the homogeneous and hetero-

geneous biomembrane is investigated. The variations of different variables of the model

with respect to time are shown. The membrane starts to deflect rapidly in specific time

stage. This stage can be changed based the applied load and properties of the membrane.

The effects of the dimensionless parameters such as bending dissipation of the system on

the behavior of the membrane is well studied. Moreover, effects of existence of different

heterogeneous regions with different properties are clarified as well as the dependency of

the behavior of the system on the position of the small heterogeneous regions.

It can be concluded that the presented models, numerical procedure can be considered

as promising tools to investigate the static and dynamic behavior of homogeneous and

heterogeneous monolayer and bilayer membranes.
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Chapter 6

Outlook

The importance and abilities of the presented models are well clarified throughout the

project. Because of the flexibility of the presented approaches, they can be extended to

become more realistic step by step. The effects of membrane thickness and heterogeneity

in the transverse direction can be studied. In addition, the presented methods can be

developed to study two and three dimensional systems with more complicated geometries.

The slip of the layers of the bilayer membranes can be added to the models as well. These

extensions can be helpful to obtain more general models can be used to investigate the real

biological membranes without any simplification analytically.
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Appendix A

Modeling of biomembrane using

energy method

The mathematical modeling of the membrane based on the energy method [30] is presented

here. The procedure described here are based on the mathematical modeling of [30] and

just some missing parts are added to clarify the procedure. This model is based on the

analysis of the membrane behavior using the energy of the system. In the case of bending

of a membrane, the energy function include two terms based on bending and Gaussian

curvatures [4]. Hence, the energy functional can be written as follows

ε [S] =

∫
S

dA

[
1

2
κ (K −K0)

2 + κ̄KG

]
(A-1)

where

K = c1 + c2, KG = c1c2 (A-2)

One the basis of the considered assumption about one-dimensional membrane, the fol-

lowing relations can be written for the principle curvatures of the membrane after deflection

c1 =
dθ

ds
, c2 = 0 (A-3)
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In order to present similar equations to [30], ψ is used as the slope of the membrane at

each section instead of θ. On of the curvatures is equal to zero c2 = 0, there is no Gaussian

term in the energy functional in the considered system. Now, we can write the energy

functional using ψ as the variable of the system and its derivatives as follows

ε [S] =

∫
S

dA

[
1

2
κψ̇2 + fx

[
cosψ − Lx

L

]]
(A-4)

where fx is the Lagrange multiplier and should be used to ensure that the horizontal length

of the membrane is fixed to be equal to Lx. It should be noted that this parameter play

the same role as px in the continuum model of this project. The boundary conditions of

the membrane is considered to be ψ (0) = ψ (L).

The obtained energy functional Eq. (A−1) can be put in the functional variation procedure

as follows

z =
1

2
κψ̇2 + fx

[
cosψ − Lx

L

]
,
∂z
∂ψ
− d

ds

∂z
∂ψ̇

= 0

⇒ −fx sinψ − d

ds

(
kψ̇
)

= 0⇒ kψ̈ + fx sinψ = 0

(A-5)

Therefore, ψ (s) satisfies the Euler-Lagrange differential equation

ψ̈ + λ−2 sinψ = 0, λ2 =
κ

fx
(A-6)

If we multiply ψ̇ on both sides of the Eq. (A − 6), the following equations can be easily

obtained

ψ̇ψ̈ + λ−2ψ̇ sinψ = 0⇒ d

ds

(
1

2
ψ̇2 − λ−2 cosψ

)
= 0 (A-7)

resulting in the following relation

1

2
ψ̇2 − λ−2 cosψ = const. (A-8)

It is obvious that within the average plane we can consider ψ̇ = 0to simplify Eq. (A− 8)

as follows

1

2
ψ̇2 − λ−2 cosψ = −λ−2 cosψi

⇒ ψ̇ = λ−1
√

2 (cosψ − cosψi)
(A-9)
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Now, we can substitute the obtained relation for ψ̇ (Eq.(A-9)) into Eq. (A-4) to simplified

this equation as follows

ε [S] =

∫
S

dA

[
1

2
κλ−2 (2 cosψ − 2 cosψi) + fx

[
cosψ − Lx

L

]]
⇒ ε [S] =

∫
S

dA

[
fx (cosψ − cosψi) + fx

[
cosψ − Lx

L

]]
⇒ ε [S] = Ly [fxLx − fxL cosψi]⇒ ε [S] = Lyfx [Lx − L cosψi]

⇒ ε [S] = fxA (2m− γ)

(A-10)

where A = LLy is the total area of the membrane and γ = L−Lx
L

is the dimensionless

compressive strain. In addition, m is a trigonometric function can be obtained as follows

Lx − L cosψi = L

(
2m− 1 +

Lx
L

)
⇒ Lx − L cosψi = 2mL− L+ Lx

⇒ 2m = 1− cosψi ⇒ 2m = 1−
(

1− 2 sin2 ψi
2

)
⇒ m = sin2 ψi

2

(A-11)

Moreover, the differential equation (Eq. (A-9)) can be written to the integral form in the

well-known elliptic integral of the first kind as follows

√
cosψ − cosψi =

√
1− 2 sin2 ψ

2
− cosψi

=

√
(1− cosψi)− 2 sin2 ψ

2

= sin
ψi
2

√
1− 1

sin2 ψi
2

sin2 ψ

2

and using ψ̇ = λ−1
√

2 (cosψ − cosψi)

⇒ 1

sin ψi
2

∫
dψ√

1− 1

sin2 ψi
2

sin2 ψ
2

=
√

2λ−1
∫
ds

(A-12)

Therefore, we can easily obtain the following equation using ψ (s = 0) = 0

s

λ
= F

[
arcsin

(
m−1/2 sin

ψ

2

)
,m

]
(A-13)
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resulting in the angle as a function of arc length

ψ (s) = 2 arcsin
[√

m sn
[ s
λ
,m
]]

(A-14)

In addition, we can obtain the following relations for the x (s) and z (s)

x (s) =

∫
ds cosψ (s)⇒ x (s) = 2λE

[
am
[ s
λ
,m
]
,m
]
− s

z (s) =

∫
ds sinψ (s)⇒ z (s) = 2λ

√
m
(

1− cn
[ s
λ
,m
]) (A-15)

There are still two unknowns in the obtained equations including the characteristic length

λ and the elliptic parameter m should be obtained to be able to solve the problem com-

pletely.There are two constraint in the system can be used to obtain eliminate these vari-

ables:

• ψ (s) must have period L

• ”When s has increased by L, x must have increased by Lx”

For the first constraint, we can write the following equations

ψ

(
L

4

)
= ψi, using Eq.(A− 14)⇒ L

4λ
= F

[π
2
,m
]

= K [m] (A-16)

The second constraint also results in the following equations

Lx
4

= x

(
L

4

)
, using Eq.(A− 15)⇒ Lx = 8λE [m]− L (A-17)

On the basis of the Eqs. (A-16) and (A-17), we have

γi =
L− Lx
L

= 2

(
1− E [m]

K [m]

)
(A-18)

If we expand the elliptic parameter m with respect to γ as m (γ) =
∑

i aiγ
i where the

coefficients ai can be obtained as follows using Eq. (A-18)

ai =
1

i!
lim
m→0

∂i−1

∂mi−1

[
2

m

(
1− E [m]

K [m]

)]−i
(A-19)
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Another method is used in [30] which is mentioned as a faster method. It is based on

inserting the expanded form of m to Eq. (A-18) resulting in the following relation for this

parameter

m (γ) = γ − 1

8
γ2 − 1

32
γ3 − 11

1024
γ4... (A-20)

It should be noted that ψ̇max = ψ̇ (0) = 2
√
m
λ

as one of the important parameters of the

problem.

The variables ψ, x and z are obtained based on the known parameters of the problem.

Now, it is helpful to substitute these functions to obtain fx as Lagrange multiplier and ε

as follows

fx = κ

(
2π

L

)2 [
1 +

1

2
γ +

9

32
γ2 +

21

128
γ3...

]
ε = κ (2π)2

L2
y

A

∑
i

biγ
i+1

i+ 1

(A-21)

”For any realistic membrane with a finite area compression modulus KA the jump into

nonzero stress at nonzero infinitesimal strain is unrealistic, since initially it is energetically

favorable for the membrane to simply reduce the area per lipid; only later will it switch to

a curved state beyond the buckling stress of κ (2π/L)2.[30]”

Because of verification of the results using also the stress in the membrane, it is necessary

to express also the stress-strain functions. Deserno et al. [30] used orthonormal coordinates

(l, t,n). If we cut the membrane at every point, there is a tangential direction called t and

the other tangential direction which is perpendicular to the cut called l. n is the normal

direction in the surface of the membrane. If we consider f as a force per unit length along

the considered cut in the membrane, we have

f =

[
1

2
κ
(
K2
⊥ −K2

‖
)
−
∑]

l

+ κ
[
K⊥‖

(
K⊥ +K‖

)]
t

− κ (5⊥K)n

(A-22)

where, K⊥ and K‖ are the local curvatures perpendicular and parallel to the cut, re-

spectively, K⊥‖ is the off-diagonal element of the local curvature tensor, and 5⊥ is the
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directional surface derivative along l. Now, if we cut the membrane along the direction

perpendicular to the plane, we have K‖ = K⊥‖ = 0 and K⊥ = −ψ̇. Therefore, Eq. (A-22)

cna be simplified as follows

f =

[
1

2
κψ̇2 −

∑]
l + κψ̈n (A-23)

We can also obtain the compression stress along the x− direction as follows

fx = f .x =

[
1

2
κψ̇2 −

∑]
cosψ − κψ̈ sinψ (A-24)

By employing the Euler-Lagrange equation, we can easily find that∑
= −fx cosψi (A-25)

Henceforth, we want to add the effects of undulations to the presented energy-based model

using the procedure described in [30]. The undulations cause wrinkling the buckled mem-

brane. In order to model this behavior as well as shrinkage of the membrane based on the

fluctuations, the differences between L corrected by using undulations and L0 should be

accounted in the stress function fx. The stress-free one-dimensionally varying nearly-flat

shape h (s) of the membrane can be expanded in a Fourier series as follows

h (x) =
∑
q

hqe
iqx with q ∈ 2π

L
Z and h−q = h∗q (A-26)

and its energy is given by

ε [h] = Ly

∫ L

0

dx

[
1

2
κ [h′′ (x)]

2

]
(A-27)

In order to obtain
〈
hqh

∗
q

〉
, necessary for the rest of the procedure, it is required to go one

step back. Energy of a membrane under both bending and tension τ can be written as [4]

E =

(
1

2

)(
A2

4π2

)∫
dq
(
τq2 + κbq

4
)
h (q)h∗ (q) (A-28)
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In order to go further, let us consider the one-dimensional harmonic oscillator which its

energy is governed by E (x) = kspx
2/2 (ksp is spring constant) and its thermal average is

〈E〉 = ksp
〈x2〉

2
=

(
ksp
2

) ∫ x2 exp
(
− E
kBT

)
dx∫

exp
(
− E
kBT

)
dx

(A-29)

Hence, by integrating this equation we can ind that 〈x2〉 = kBT/ksp and 〈E〉 = kBT/2.

It should be noted that the factor
∫
dq is a sum over oscillator modes, with one mode

per (2π2) /A in q−space, each with an energy (A/2) (τq2 + κbq
4)h (q)h∗ (q). Now, if we

consider the average energy of an individual mode is equal to kBT/2, we obtain

〈h (q)h∗ (q)〉 =
kBT

A. (τq2 + kbq4)
(A-30)

which in our case becomes 〈
hqh

∗
q′

〉
=

kBT

LyLκq4
δqq′ (A-31)

Therefore, the total arc length can be obtained as

〈L0〉
L

= 1 +
1

2L

∫ L

0

dx
〈

[h′ (x)]
2
〉

= 1 +
1

2

∑
q

q2
〈
|hq|2

〉
≈ 1 +

L

2π

∫ ∞
L/2π

dqfrackBTLyLκq
2 =: 1 + δ

(A-32)

where the correction is defined as

δ =
kBTL

(2π)2 κLy
(A-33)

Hence, the following relation can be easily obtained to linear order in δ

〈L0〉−2 = L−2
[
1− 2δ +O

(
δ2
)]

γi0 = γi + iγi−1 (1− γ) δ +O
(
δ2
)
.

(A-34)

Finally, we can obtain the following correction for the stress by substituting the corrections

into Eq. (A-21) resulting in the following relation

δFx = Lyδfx = −3kBT

2L

∞∑
i=0

diγ
i

= −3kBT

2L

[
1 +

5

8
γ +

27

64
γ2 +

295

1024
γ3...

] (A-35)
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Therefore, the fluctuation correction compared to the ground state result can be written

in the lowest order as follows

|δFx
Fx
|∼ 3

8π2

(
L

Ly

)(
kBT

κ

)
(A-36)
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