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Abstract 

 

Changing land cover from prairie grasslands to intensive, primarily cereal agriculture, 

over the North American Great Plains since the mid-19
th

 century, has had a hydrological and 

climatological impact on that ecosystem (Pielke, Sr., et al., 2011). Agriculture has introduced 

timed harvest seasons, irrigation, and C3 photosynthesizing crops with poorer water efficiency 

than the grasses it replaced. All of these changes have been linked to exacerbated drought 

conditions and warmer temperatures; however, few studies have quantified this relationship at 

the continental scale. In order to evaluate the change imposed by this shift in land use and land 

cover, the observation based 20
th

 Century Reanalysis Project (20CR) was used to quantify the 

climatological differences in temperature and humidity between areas of natural prairie and 

agriculture over the 20
th

 century. An additional analysis used the Observation Minus Reanalysis 

(OMR) technique to isolate the surface climate signal found in the 20CR. We find indications 

that changing land cover had an impact on climate. However, using observation based data 

returned no evidence of a statistically significant change due to the small land use and land cover 

change (LULCC) signal within the larger climate noise. Therefore, an idealised modelling 

experiment was undertaken using the Geophysical Fluid Dynamics Laboratory (GFDL) AM2-

LM2 atmosphere-land model to remove these other influences. This experiment compared the 

results of two model simulations: one where the entirety of the prairie was preserved as grassland 

(GRASS), and another where the entire prairies had been converted into an agricultural area 

(AGRIC). Relative to GRASS, the AGRIC simulation has reduced surface albedo and root zone 

depth, and increased roughness length over the prairies, which collectively cause a significant 

summer drying. This occurs when the shallower rooting zone limited potential 

evapotranspiration (PET) forcing the additional energy created by turbulent mixing and a lower 
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surface albedo to warm the air, surpassing PET and reaching drier conditions faster. While not 

conclusive, the results presented in this thesis represent a step towards filling the gaps in 

understanding land-atmosphere interactions and connecting LULCC to climate. 
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Chapter 1: Introduction  

1.1  Background 

Oftentimes, the relationship between climate and agriculture is referenced by the 

influence that climate has on growing conditions and crop yields. However, it has been shown 

that the widespread shift in land cover, towards a more heavily cultivated planet, has also 

contributed to shifting climate (Pielke, Sr., et al., 2006). Current estimates suggest that 35-39% 

of all non-glaciated land, an area of approximately 4.9 billion hectares, has been converted from  

the natural land cover into agricultural fields and cultivated areas (Foley, et al., 2011; Pielke, Sr., 

et al., 2011). When evaluated from a global standpoint, the seemingly minor landscape 

alterations have been shown to have serious climatological and hydrological implications 

(Pielke, Sr., et al., 1998). Even at smaller spatial scales, many studies have demonstrated that 

land cover change has a significant impact on climate (Pielke, Sr., et al., 2006).The influence of 

anthropogenic change on climate is part of an area of research called Land Use and Land Cover 

Change (LULCC). The remainder of Chapter 1 will present an overview of the current available 

literature on LULCC and discuss the changes that have already occurred. The literature review 

will be specific to the North American Great Plains as this ecosystem will be the focus of this 

thesis. In Canada, the ecosystem is referred to as the Canadian Prairies, whereas in the United 

States, they are formally called the Great Plains. Both titles describe the same environment. For 

the purposes of this thesis, the term prairie(s) or North American Great Plains will be used to 

describe the entire area. 

 

1.1.1 The Prairies as a Natural Ecosystem 

Before Europeans came to settle in central North America during the mid 19
th

 century, 

the prairies were a major ecosystem that stretched from, north to south, the centre of Alberta and 
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Saskatchewan to northern Mexico and from, west to east, the foothills of the Rocky Mountains to 

Illinois (Figure 1.1). This area covers approximately 15% of the entire continent; roughly 300 

million hectares of land (Anderson, 2006; Pielke, Sr., et al., 2007). The prairies contain three 

primary hydroclimatologic zones as defined by the updated Koppen-Geiger climate classification 

scheme. In the northeast, the climate is described as cold, without a dry season, and with a 

variable hot and warm climate. The southeastern prairies are defined as a temperate region, 

without a true dry season but with hot summer temperatures. The entire western prairies, along 

the Rocky Mountains, is more climatically uniform as an arid, steppe environment with a cold 

climate where mean annual temperature is below 18 
o
C (Peel, Finlayson, & McMahon, 2007). 

This scheme uses observational data to categorize the planet’s climate zones based on three 

categories: primary climate, precipitation, and temperature. The distinction between each class 

within each category is based on quantitative boundaries (Rubel & Kettek, 2010; Peel, Finlayson, 

& McMahon, 2007). Generally, this presents the prairies as having a northwest-southeast 

temperature gradient (cooler in the northwest) and an east-west precipitation gradient (wetter in 

the east) (Luaenroth, Burke, & Gutmann, 1999).  
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Figure 1.1: Geographic extent of the North American prairies; with overlay showing the 

temperature and precipitation gradients. 

Note. Adapted from: Sieg, C. H., & Flather, C. H. (1999). Recent biodiversity patterns in the 

Great Plains: Implications for restoration and management. Great Plains Reserach, 9, 277-313.  

 

Within these regions are found the three main plant communities of the prairies. All three 

are built up of a variety of grass species and, in some places, smaller herbaceous shrubs (Weaver, 

1954). Each community is broadly defined by the height of the plant varieties found within, a 

variable determined exclusively by water supply. This includes water from precipitation, 

snowmelt, and runoff (Weaver, 1954). The three plant communities are: the tallgrass (true 

prairie) grasses, found in the easternmost prairies, short grass varieties found in the far western 

prairies, and the mixed-grass prairie which grows in the central region (Anderson, 2006). The 

grasses are all supported by deep and/or dense root systems which allow plants to access stored 

soil water resources (Weaver, 1954). Tallgrass prairie species are found where the greatest 

annual precipitation occurs (625-1200 mm/year), and can grow to between 1.8 and 2.4 m in 

height. In the dry west (300-400 mm/year), short grasses do not exceed 0.3-0.5 m in height. 

Mixed grasses prairies (400-500 mm/year) grow to between 0.8 and 1.2 m height (Anderson, 

2006). The location of different subspecies within each larger community is determined by their 

Drier 

Warmer 

Wetter 

Cooler 
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temperature tolerance.  Those plants with a higher heat tolerance migrated south and while more 

cold tolerant varieties are found in the northern region (Kebart & Anderson, 1987). Permanent 

groundwater reservoirs are present in the prairies, but they are found at too great a depth for the 

plant roots to access. The largest such reservoir is called the High Plains Aquifer and covers an 

area of over 45 million hectares across 8 states in the central prairie region (Figure 1.2) 

(Gutentag, et al., 1984). The aquifer has a mean saturated thickness of 60 m depth and a mean 

water table depth of 30 m (Strassberg, Scanlon, & Chambers, 2009). It is therefore almost 

completely isolated from the rooting zone of prairie grasses which has a depth range between 0.5 

and 7 m, where 7 m is an extreme anomaly (Anderson, 2006). The separation between the root 

zone and groundwater reservoirs means that groundwater recharge largely occurs after a 

precipitation event during the dormant season. The roots take up most of the water quickly 

during the growing season (Anderson, 2006). Parts of the prairies do experience annual snowfall, 

however only in certain areas. Expected annual snowfall is determined by external factors (e.g. 

El Nino Southern Oscillation (ENSO)) which will be further discussed in section 1.2.3 (Kunkel, 

et al., 2009). In general, the northern prairie experiences the bulk of snowfall, but the entire 

prairies receive less snow than areas along the same latitude in North America (Brown, Brasnett, 

& Robinson, 2010). Snowmelt feeds water to permanent surface rivers and prairie potholes, 

which are only found in the northern prairies, primarily in Canada (Fang, 2010). The High Plains 

region also contains wetlands, known as playas, which are important for groundwater recharge 

but receive water inputs from precipitation and overland sheet flow only (O’Connell, et al., 

2012). These small wetlands only cover approximately 6% of the southern portion of the aquifer 

(area within Texas and New Mexico), yet account for slightly less than 50% of groundwater 

recharge (Wood & Sanford, 1995). 
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Figure 1.2: Extent of the High Plains Aquifer outlined with areas of irrigated agriculture 

highlighted in blue based on available satellite data from 1992. The aquifer overlaps area from 8 

states: Wyoming (WY), South Dakota (SD), North Dakota (ND), Colorado (CO), Kansas (KS), 

Oklahoma (OK), Texas (TX), and New Mexico (NM). 

Note. Adapted from Strassberg, G., Scanlon, B. R., & Chambers, D. (2009). Evaluation of 

groundwater storage monitoring with the GRACE satellite: Case study of the High Plains 

aquifer, central United States. Water Resources Research, 45, 1-10. 

 

1.1.2 Palaeoclimatological Evolution of the Prairies 

The origins of this ecosystem are found approximately 7.5 million years ago during the 

Miocene-Pliocene transition (Axelrod, 1985; Eronen, et al., 2012). At this point, the 

palaeoclimatological record shows a worldwide trend towards greater aridity and declining CO2 

concentrations as the planet cooled and the Antarctic Ice Sheet expanded. Grasslands began to 

flourish around the world as forests retreated (Anderson, 2006; Ehleringer, Cerling, & Helliker, 

1997). Additionally, the Miocene was a period of increasing seasonality. Anderson (2006), has 

referred to this as a monsoon climate over North America. It is hypothesized that all of these 

factors led to the dominance of grassland species. The desiccated biomass during the dry season 

provided fuel for substantial fires, which kept trees or larger vegetation from retaking grasslands 

(Keeley & Rundel, 2005). Fires would have also been started by lightning strikes at the 



6 
 

beginning of the dry season (Anderson, 2006). Herbivory by grazing mammals also contributed 

to a lesser extent by keeping vegetation short and holding back encroaching forests (Axelrod, 

1985). All of these changes are found within the plant and animal fossil record (Anderson, 2006; 

Keeley & Rundel, 2005). By the Pliocene, temperatures had begun to cool and by the transition 

to the Pleistocene epoch, approximately 1.8 million years ago, the Northern Hemisphere was 

under a period of glaciation (Lyle, et al., 2008). During this period, the number of grazing 

species increased (Anderson, 2006). From the end of the last glaciations until the present day, 

precipitation decreased and the prairies took the form that it is found in now, a large, dry, 

grassland area surrounded by forests (Axelrod, 1985).  

 

1.1.3 History of Agricultural Development 

Any substantial human impact in North America is the product of less than 300 years of 

development, largely by European settlers. In that time, the vast majority of the grasslands have 

been taken over for cropland and pastures (Ramankutty & Foley, 1999). Pre-European 

Aboriginal settlements were present, however their extremely small scale excludes them from 

this discussion. During the middle of the 19
th

 century, both the Canadian and American 

governments began to focus on pushing their influence further west into the centre of the 

continent. Two acts were created, the Canadian Dominion Lands Act of 1872 and the American 

Homestead Act of 1862. These promised pioneers large farming properties, among other things, 

as long as they could settle the land (Sieg & Flather, 1999). These acts were brought about at the 

same time that both national rail networks were undergoing similar massive western expansions. 

This even further opened the west to farming, allowing goods to be transported much quicker 

(Schafer & Holland, 2009). For the next century, prairie agriculture boomed and land was 

quickly converted, replacing huge portions of the natural grassland. The conversion was so 
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expansive that, depending on the province or state, between 82 and 99% of all tallgrass prairie, 

30-99% of all mixed grass prairie, and between 20 and 86% of all shortgrass prairie had been 

replaced by the mid-1990s (Samson & Knopf, 1994). The mass conversion continued, and by 

2003,approximately 70% of the entire prairies, across all three plant groups, had been converted 

for agricultural purposes.   (Samson, Knopf, & Ostlie, 2004). What replaced the grasses were 

largely cereal crops such as corn, maize, wheat, soybean, and barley (Leff, Ramankutty, & 

Foley, 2004).  

Unfortunately, the prairie climate and limited available water made it impossible to 

sustain these types of crops without intervention. The first farmers relied almost completely on 

aboveground sources of water, precipitation, and snowmelt (Rosenberg, et al., 1999). However, 

these practices soon proved unsustainable. The crops have greater water needs and relying on 

natural sources of water made farmers extremely susceptible to droughts, which are a regular 

occurrence on the prairies. By putting the prairies under greater than normal water stress, the 

drought, which occurred during the 1930s was exacerbated, leading to the Dust Bowl period that 

devastated the entire agricultural industry (Cook, et al., 2007). The interactions between 

agriculture and drought will be further discussed in section 1.2.2. Recognizing a need for a 

change in practices, North American farmers became more reliant on irrigation, which draws 

water from deep groundwater reservoirs to supplement the greater water needs of the introduced 

crop species. One particular area, the High Plains region in the centre of the American prairies, is 

the largest irrigated area in the entire United States (Scanlon, et al., 2007). In 2000, irrigation 

accounted for approximately 97% of the roughly 24 km
3
 of water taken up from the High Plains 

Aquifer (Strassberg, Scanlon, & Chambers, 2009). The heavy irrigation is an unsustainable 

practice. Rodell & Famiglietti (2002) found that by 1980, approximately 205 km
3
 of water had 
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been removed by farmers. The height of the water table was found to have dropped significantly; 

in some places more than 30 m due to irrigation demands. In Canada, this did not occur as 

drastically. There is much more available surface water due to the damming of major rivers and 

the spring snowmelt. As of 1991, groundwater only accounted for 4% of all water usage in 

Canada (Gan, 2000). From surface water sources, there has been a loss of 50-75% of all prairie 

wetlands in Canada (Fang, et al., 2010) and rivers have been severely modified to conform to 

agricultural needs throughout the prairies. Tile drainage and channel widening and straightening 

have increased the rate of flow and have made surface water resources more polluted and have 

increased sediment loads in streams. Additionally, the heavy dependence on groundwater has 

meant that some surface water sources are being cut off from groundwater discharge as the water 

table sinks, and remain dry during the summer (Dodds, et al., 2004; McGee, Boon, & van 

Meerveld, 2012).  

 

1.2  Literature Review 

The following section will describe the changesthat have been brought about as a result 

of the agricultural conversion of the prairie grasslands. The differences between the natural 

prairie, as described in section 1.1, and the agricultural environment that replaced it are the result 

of the physiological differences in the plant species found within each land cover type. These 

changes influenced the hydrological and climatological cycles, effectively reshaping the 

ecosystem over a period of approximately 100 years. 

 

1.2.1 Biological Differences 

The most important change that occurs as a direct result of LULCC is the type of 

vegetation. As natural grasslands, the prairies were dominated largely by grasses that were part 

of the C4 photosynthesizing plant variety. What distinguishes C4 from the more primitive C3 
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plant variety are the temperature conditions and the photosynthetic efficiency of light use. C4 

plants are better adapted to arid and/or semiarid conditions and as a result are able to 

photosynthesize at greater rates under hotter conditions (Still, et al., 2003; Pearcy, et al., 1981). 

Growing season daytime temperatures should be above 30
o
C, assuming adequate water 

availability for C4 plants to dominate the prairies (Anderson, 2006). Because C3 species are 

generally able to survive a wider range of temperatures, they are generally more common around 

the world (Teeri & Stowe, 1976).  Conversely, the most common prairie crops are predominantly 

C3 plants (Still, et al., 2003). Corn is the exception. Having been originally cultivated in tropical 

Mesoamerica, as opposed to Europe and Asia, it is a C4 plant and is therefore naturally more 

adapted to the prairies (Wilkes, 2004). Within the context of this thesis, the most important 

difference between the two varieties (C3 and C4) is their water efficiency (Still, et al., 2003). The 

C4 varieties are better adapted to retaining and conserving water within the plant, allowing them 

to survive the hotter temperatures. The C3 grasses have greater water requirements to prosper 

and they use water less efficiently, losing more to the atmosphere (Anderson, 2006; Teeri & 

Stowe, 1976). 

The poorer water efficiency is combined with a significantly different root structure, 

which further limits crops access to naturally available water sources. Left to grow to full 

sensecense, these crops would develop a very similar root profile to the natural grasses. Both 

categories of plants develop a maximum rooting depth of slightly deeper than 2 m (2.1±0.2 m for 

crops and 2.6±0.2 m for temperate grasslands measured in the central prairies) (Canadell, et al., 

1996). The 7 m depth discussed in Anderson (2006) in section 1.1.1, is an extreme outlier in a 

sample which yielded a mean depth of 2.36 m with a standard error of 0.24 m. Schenk & Jackson 

(2002a) found that root depth (of natural vegetation) is controlled largely by mean annual 
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precipitation. As a result, vegetation in drier areas, like the prairies, has the shallowest rooting 

depths. However, the lateral spread of roots tends to be greater in such environments. Such a 

development allows plants to take advantage of near surface soil moisture over a larger area. 

Moreover, there is less competition and crowding, giving each plant more space to expand 

laterally (Schenk & Jackson, 2002a). The relationship between precipitation and root depth is so 

strong that the percentage of roots at depth can be tracked logarithmically against an aridity 

gradient moving from wet to dry (Schenk & Jackson, 2002b). This applies to both C3 and C4 

varieties of grasses and demonstrates the importance of water infiltration into the soil. Specific 

changes to the hydrology on the prairies, and subsequently precipitation and infiltration will be 

discussed in the next section.  

When discussing root depth and lateral spread in cropped fields, harvest practices play an 

important role in controlling root development. The structured growing season, where the fields 

are left bare until the crops are planted (Pielke, Sr., et al., 2007) and the harvesting of crops 

inhibit full root development. A controlled experiment carried out in Missouri found that: 90% of 

winter wheat, 84% of soybean, and 91% of corn root biomass was found within the top 0-20 cm 

of the soil after harvest (Buyanovsky & Wagner, 1986). The differences in root physiology and 

water efficiency (C3 crops) have meant that crops in the prairies are extremely restricted in 

access to water sources. These distinctions help to explain why the pre-irrigation drought seasons 

were so severe when compared against prairie droughts from the same time. By providing 

irrigation, farmers were able to overcome the limitation of C3 water use efficiency with 

previously inaccessible groundwater. Overall, this increased the total amount of available surface 

water, Subsequently, the potential evapotranspiration rate (PET) is increased, increasing the 

potential flux of water from the biosphere to the atmosphere. Calculating the change to the actual 
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evapotranspiration rate (AET), the flux of water within the maximum potential rate is difficult 

given the large scale of the study areas as well as the variety of different grass species within the 

prairies. 

From aboveground there are a few biological differences between the prairies grasses and 

the replacing crop species.  Prairie crops tend to be taller than the grasses, increasing their 

roughness length, and therefore modifying the aerodynamic resistance which carries an influence 

on the flux of water to the atmosphere. Furthermore, the crops have a greater leaf area index 

(LAI) than the grasses which will also increase the PET. All of these changes are made more 

drastic if the fields are irrigated (Pielke, Sr., et al., 2007).  

 

1.2.2 Hydrological and Climatological Changes 

The combination of the new vegetation and the impact that it has had on water fluxes 

between the soil, plants, and atmosphere has a compounding impact on the larger hydrological 

and climatological patterns. Through the use of several environmental proxies, it has become 

possible to plot the past 1200 year hydrological history of the western prairies (Figure 1.3) 

(Cook, et al., 2004). What these records have revealed is that droughts are an expected, cyclical 

event on the prairies. However, it has also revealed that events known as ‘megadroughts’ also 

occur. This historical proxy record helps to contextualize 20
th

 and 21
st
 century droughts. These 

are periods of extended and extreme drought, more severe than any recorded in modern times. 

The most intense ‘megadrought’ example occurred in the mid-10
th

 century and lasted for 23 

years. The closest modern facsimile to this was the drought of 2002, which displayed a similar 

pattern of high aridity in the west. This drought however, only lasted for one year. The earlier 

droughts (pre-20
th

 century) were found to have occurred during a time when aridity and solar 

irradiance were both higher than they are today (Cook, et al., 2007).  
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Figure 1.3: Historical drought record for the Western United States, including the prairies, 

beginning in 800 B.C.E. 

Note. Adapted from Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., Stahle, D. W. 

(2004). Long-term aridity changes in the Western United States. Science, 306, 1015-1018. 

 

 The Dust Bowl was the worst drought in North America since 1700. The year 1934, the 

driest year of that drought, was the driest single year since 1580. One change that separates this 

period from the previous 500 years, is the introduction of agriculture. This event is even more 

surprising in the drought record because the decades leading into the 1930s, were above average 

years in the Palmer Drought Severity Index (PDSI) (Fye, Stahle, & Cook, 2003). The PDSI is a 

very commonly used drought index, which is used to track meteorological and hydrological 

droughts (when precipitation is reduced and when that reduction has an impact on surface and/or 

subsurface water sources) (Heim, Jr., 2002). It does this by estimating a given year’s supply and 

demand for water using antecedent precipitation and temperature (Mishra & Singh, 2010). 

Drought is also influenced by sea surface temperatures (SST), specifically the variations in the 

Pacific Decadal Oscillation (PDO) and ENSO, which influence soil moisture, particularly in the 

American prairies (Mo & Schemm, 2007) (section 1.2.3). However, the influence of agriculture 

should be emphasized, particularly in the prairies where Dirmeyer, et al. (2013) found that 

climate in the prairies has a significant influence on atmospheric conditions.  
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From a climatological perspective, the largest change between the original grassland and 

agriculture not related to biological functions is plant albedo. In general, crops and grasses (all 

varieties) have a very similar range of albedo (Oke, 1987). Agricultural fields however have 

periods where bare soil is exposed both before the growing season and after the harvest periods. 

In the natural grasslands, growth begins as soon as the snow melts and continues until it returns. 

This gives the grasslands a higher albedo during the snow free period (Pielke, Sr., et al., 2007). 

Few studies have conducted more in-depth intra-annual analysis of albedo variability between 

the two land cover types. Song (1999) however conducted a field scale experiment that found 

that under natural grassland conditions, prairie albedo decreases in a linear pattern between 

spring and early winter, meaning they get darker as they mature in a highly predicable way. A 

maize and a winter wheat field in Kansas were also observed. After the crops began to develop a 

canopy, covering the bare soil, it was found that maize albedo increased as the field reached 

senescence. Winter wheat followed a more similar pattern to the grassland, decreasing steadily 

until harvest. However, the decrease occurred at a much slower rate. Both crop types did have an 

average lower albedo than the grasslands case (Song, 1999). These results cannot be directly 

extrapolated onto the whole prairies. For example, Wang & Davidson (2007) found that 

summertime albedo for grasslands in Saskatchewan had very little inter-monthly variability. 

Nevertheless, in general, it can be stated that the shift in land cover results in a slight decrease in 

albedo overall. In the southern prairies, this difference is further emphasized because the 

growing season is long enough to allow for multiple crop rotations, creating multiple periods of 

bare soil throughout the year (Zhang, 2012). 

The implication of this modification to albedo is found in the calculation of net radiation. 

There is an increase in energy available at the surface which has an influence on convective 
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activity within the planetary boundary layer (Mahmood, Leaper, & Quintanar, 2011). By 

modifying the PBL, introducing agriculture also influences cumulus convective precipitation 

(Pielke, Sr., 2001). The land cover change has made temperatures warmer at the surface. When 

combined with the biological changes (LAI, roughness length, and PET) that facilitate changes 

to the water flux, agriculture on the prairies has been shown to increase convective activity 

(Pielke, Sr., 2001; Mahmood, Leaper, & Quintanar, 2011). Given the same potential storm 

conditions, Pielke, Sr., (2001) found that a mixed natural and cropped area produced 

thunderstorms while the completely natural control area only produced cumulus clouds with no 

activity (Pielke, Sr., 2001).  

 

1.2.3 Remote Influences on Prairie Climate 

Land cover has an impact on prairie climate patterns (Pielke, Sr., et al., 2011). However, 

the prairies are a massive ecosystem that crosses approximately 35 degrees of latitude. As such, 

there are many other forces that control aspects of the overarching climatology. There is a body 

of research that has investigated how external climate patterns, such as teleconnections, have 

influenced the prairies. These patterns are both continental and synoptic (i.e. global) in scale. All 

of the vegetative and climatic changes described in sections 1.2.1 and 1.2.2 have been shaped by 

three large air masses: the Polar, Gulf, and Mountain Pacific masses. The influence of the masses 

is seen in the temperature and precipitation gradients across the continent (Anderson, 2006). The 

Gulf Mass moves northwesterly into the eastern prairies, bringing humidity and causing a higher 

volume of precipitation and convective storms. This effect fades as the Gulf Mass runs into the 

Pacific Mass, moving east over the Rocky Mountains, which produces the drier and warmer 

climate in the western prairies. The temperature gradient is controlled by the Polar Mass which 

brings cool air and snowfall from the Arctic, into the Canadian region. The mixing area in the 
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centre of the continent produces the mixed grass species (Anderson, 2006; Kebart & Anderson, 

1987). On an even larger scale, is the climate forcing exerted by SST, which has been frequently 

linked to climate variability and moisture advection on and into the western continental United 

States (Cook, et al., 2004; Hu & Huang, 2009). The reverse relationship, how LULCC may be 

impacting these large teleconnection patterns, has not been explored in the literature. (Pielke, Sr., 

et al., 2011). Different phases of the ENSO cycle have been linked, by multiple sources, to 

variability in precipitation, a connection which is modified by the seasons. The connection is 

further modified by other lower-frequency signals, such as the PDO which occurs generally in 

correlation with ENSO (Hu & Huang, 2009; McCabe, et al., 2008). Both can have an individual 

impact, however, when both ENSO and PDO are in the same phase with El Nino and a warm 

PDO (La Nina and a cool PDO), there is an anomalous increase in soil moisture (decrease). This 

is not as strong when each teleconnection is in the opposite phase (Hu & Huang, 2009). In the 

northern prairies, ENSO also carries implications for extreme snowfall events. During an El 

Nino event, when the northern prairies are experiencing anomalously high temperatures, the 

probability of extreme events is depressed. However, the influence of teleconnections cannot be 

taken in isolation, particularly during the 20
th

 century (Kunkel, et al., 2009). Climate change has 

played a role in increasing temperatures and modifying soil moisture as well. 

So far, only natural remote influences have been discussed. These two processes have 

been acting on the prairies for a very long time. Anthropogenic climate change however, also has 

a remote influence on prairie climate. The Intergovernmental Panel on Climate Change (IPCC) 

(2007) Fourth Assessment Report demonstrated that global mean temperatures have been 

increasing, and are expected to continue increasing into the future due to rising concentrations of 

greenhouse gases in the atmosphere. On the prairies, the increase in carbon dioxide (CO2) is 
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expected to increase temperatures. Moisture availability is expected to decrease in the south as 

arid conditions expand, but increase in the north, creating a more humid environment (Polley, et 

al., 2013). The CO2 concentration has increased 37% since 1750 to 379 ppm globally (IPCC, 

2007). While it is driving changes to climate, it is increasing biomass in semi-arid grasslands, 

despite soil moisture limitations (Morgan, et al., 2011). Where there is snow, snowpack volume 

is expected to decrease and melt times are expected to begin earlier. Precipitation is expected to 

generally decrease with a greater proportion of rain falling as part of extreme convective events 

(Polley, et al., 2013). 

is expected to counter rising temperatures over semi-arid grasslands. CO2 increases have 

been shown to increase aboveground biomass, but suppress transpiration, and subsequently 

improve water use efficiency, reducing water loss through transpiration. However, this was 

found to benefit C4 grass varieties over C3 species (Morgan, et al., 2011). This means that the 

remaining natural grasslands may actually benefit in the short term from climate change. 

Agriculture will likely suffer more under hotter temperatures, placing more emphasis on 

irrigation in future. Additionally, any increase in water use efficiency would be erased, 

irrespective of plant functional type, due to a period of sustained drought which would quickly 

consume the excess soil moisture (Morgan, et al., 2011). The future of prairie agriculture in 

North America is therefore at risk of sustained droughts under more water stressed conditions 

due to irrigation, while supporting ill-adapted crop species.  

 

1.3  Motivation 

Based on the content of the literature review, it can be stated that the literature has 

reached a consensus that the shifting of land use and land cover (either natural or anthropogenic) 

can have an impact on climate (Pielke, Sr., 2005). There are a large number of studies which 



17 
 

have examined this phenomenon, primarily from one of two perspectives. The first is a global 

perspective, wherein a model is used to evaluate changes in net radiation and surface albedo over 

areas which have historically undergone some form of land cover alteration. The results of these 

studies are generally averaged over the entire planet as in Matthews, et al. (2003). The second 

perspective is a much more regional or local approach. These studies typically look at 

microclimatological and/or ecohydrological changes within a given area. They either compare 

contemporary sites under different vegetation regimes or are longitudinal studies that track 

changes in a location as it undergoes a change in land cover, as in Adegoke, Pielke, Sr., & 

Carleton (2005). Studies from both of these perspectives use  a mixture of modelling tools and 

observational data to complete their analysis. The first methodology is extremely broad in scope 

and the results cannot provide any insight into the impact of change on a specific ecosystem. The 

second overcomes this limitation; however, such small scale studies rarely evaluate ecosystems 

in their entirety. This thesis bridges the two spatial scales and seeks to explain how agricultural 

development in the North American prairies has specifically influenced the short term and long 

term climatology of the entire prairie ecosystem. The prairies in particular were selected for this 

study site because the transition from the natural prairie grasses to extensive croplands occurred 

so quickly. Since 1700, no other part of the world has undergone such an extensive transition to 

cultivated lands (Ramankutty & Foley, 1999).The historical nearness of this event has therefore 

made it possible to find records of the pre-existing climate. These factors, and the geographic 

size and relative vegetative uniformity of the prairies, make the ecosystem a good testing site for 

evaluating the climatic impacts of agriculture on a large scale. 

 

 



18 
 

 

1.4  Objective 

It is hypothesized, based on the presented literature, that the shift in land cover over the 

North American prairies has had a recognizable impact on the climatology over the same region. 

The objective of this research is to explain how agricultural development may create these 

changes and to illustrate the importance of including land use and land cover change in future 

discussions of anthropogenic climate change. Both in-situ observational and modelled data will 

be used to test this hypothesis.  

 

1.5  Structure 

This document contains five chapters. The first chapter outlines the body of research 

which has been conducted so far on the interaction between agricultural development and 

climate, with a particular focus on outcomes in the North American Prairies. This chapter places 

these changes within their proper historical context and explains both internal and external forces 

which control prairie climate. Additionally, this chapter describes the motivation and objectives 

of this particular study. Chapter 2 describes each of the data, methodologies, and models used to 

test the hypothesis of this thesis. Chapter 3 outlines the first study conducted in this thesis. This 

study uses available historical land cover and climate data to compare changes in climate across 

the 20
th

 century. Chapter 4 outlines the second study, which was done in a modelled 

environment. This methodology used a comparison of one year’s modelled climate under two 

distinct land cover types (agriculture and grassland) over North America in order to evaluate the 

instantaneous differences in the radiation balance and the water cycle caused directly by the 

change in land cover. The final chapter, Chapter 5,  summarizes the results of the two studies and 

proposes possible future research directions.  
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Chapter 2: Data and Methods 

2.1  Data Descriptions 

This chapter will present the data and methodologies that were used in generating the 

results that will be presented in Chapters 3 and 4. These chapters present two different methods 

to answer the question of how the introduction of agriculture has changed prairie climate. 

Chapter 3 uses observation based historical datasets to present the long term changes that have 

actually been observed on the prairies. In Chapter 4, a coupled atmospheric and land model is 

used to simulate the differences in climate between the two land cover types (natural prairie 

grasslands and agriculture) over the period of one full year. Comparing the differences over one 

year ensures that the entire growing season is presented in the results and any residual effects 

that the change in land cover may have on winter (snow volume) can also be demonstrated. 

In the first method, the observation analysis used the 20
th

 century portion of the Global 

Potential Vegetation Dataset from Ramankutty & Foley (1999) to  identify areas within the 

prairies that are both heavily cultivated, to represent the human induced perturbation (PERT), 

and remain largely natural, to act as a control area (CTRL). This process will be further 

elaborated on in the following sections (2.3.1). These areas were then used to mask out the 

climate data at the beginning and end of the 20
th

 century. The climate data within the CTRL and 

PERT areas were then averaged over the two prairie regions at both the beginning and end of the 

20
th

 century for the purposes of comparison. Three different climate datasets were used in this 

first experiment. They were the 20
th

 Century Reanalysis Project, which is a global dataset of 

tropospheric climate variability that uses only surface pressure reports to generate reanalysis 

climate data between 1871 and 2001 (Compo, et al., 2011). The second two are temperature 

datasets, which are created based on actual in-situ observations. The first is the CRUTEM4 

temperature anomaly data from the Climate Research Unit (CRU) at the University of East 
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Anglia (Jones, et al., 2012). The second is from the University of Delaware and is described in 

Matsuura & Willmott (2009). Each dataset will be further described in sections 2.1.1 - 2.1.3. 

In the second method used in this thesis, the modelling experiment used the Geophysical 

Fluid Dynamics Laboratory (GFDL) coupled global atmosphere and land model (AM2-LM2). 

The model was run for a control scenario (GRASS) wherein the prairies were covered 

exclusively by a predefined grassland land cover type. A second perturbation scenario (AGRIC) 

was run where the grasslands were replaced by a globally generic agriculture land cover type. 

This change was limited to only those cells classified as grassland within North America. Other 

grassland areas around the world remained grasslands in the perturbation simulation. The two 

land cover types were distinguished from each other by the depth scale of the root distribution, 

the root biomass areal density, the roughness length, and the potential range of albedo under 

snow-free condition. All of these changes took place within the land model component. The 

atmosphere model was left unperturbed under the AGRIC scenario. The GRASS scenario results 

were then subtracted from the AGRIC scenario results (AGRIC-GRASS). The resulting plots 

demonstrated the changes to the environment caused by only changing the land cover type. 

Chapter 4 presents the monthly mean hydroclimatological conditions for the GRASS scenario 

and the response.Both experiments were conducted in a LINUX operating system using the C-

shell command programming language. The analysis was completed using CDO (Climate Data 

Operators) and plots and maps were generated using NCL (NCAR Command Language) 

developed by the National Centre for Atmospheric Research and Microsoft Excel.  

 

2.1.1 Global Potential Vegetation Dataset 

The Global Potential Vegetation Dataset (GPVD) is comprised of two components 

(Ramankutty & Foley, 1999). The first is a global static map of natural vegetation cover. This 
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map is intended as a tool to contextualize agricultural development. It shows which ecosystems 

are under agricultural pressure. Natural vegetation was characterized differently over areas 

dominated by human activity from those regions where human land use influences dominate. In 

the first case, vegetation type was determined for each cell based on a classification scheme with 

15 separate vegetation type classes. Only upland vegetation types (non-wetland areas) were 

included (Ramankutty & Foley, 1999). This scheme is a reclassification of the DISCover land 

cover classification from the Olson Global Ecosystem framework (Ramankutty & Foley, 1999). 

DISCover is a satellite based dataset that uses a finer resolution than the 5 min resolution that the 

GPVD was built on. The second case, where human land use dominates within a cell, the natural 

vegetation was determined by the potential vegetation dataset described in Haxeltine & Prentice 

(1996). Potential vegetation refers to the natural vegetation type that would exist within a cell 

before human activity. Human land use was considered dominant within a cell if it passes either 

of the following conditions:  when crop cover (calculated in the second component) in 1992 

accounted for >50% of the cell, or the dominant vegetation type (of all 15 DISCover classes) 

accounted for <20% of the entire cell area (Ramankutty & Foley, 1999). 

 The second component of the GPVD is a series of global annual maps between 1700 and 

1992, which was created based on a global cropland extent map produced for 1992 by 

Ramankutty & Foley (1998). A second version of this dataset displays changes in pasture lands 

over the same time period. Pasture connotes land used for livestock. That map compiled the 

cropland classes from the DISCover classification scheme against available cropland inventory 

data for 1992 on a 5 minute longitude and latitude resolution grid. Each cell is assigned a crop 

coverage value which, for the purposes of this thesis, will be referred to as Cf (crop fraction). The 

Cf value represents the fractional area of the cell that is covered by croplands. Using 1992 as 
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initial conditions, a land cover change model was used to backcast the historical Cf values for 

each cell. The maps are set on a 0.5 degree resolution latitude by longitude grid. An updated 

version of the original dataset was used, which includes the years 1993-2007. An inventory was 

collected of historical croplands directly from the Food and Agriculture Organization (FAO) of 

the United Nations  at the national level. Information for large nations, including Canada and the 

United States were supplemented by subnational records for the purpose of imposing constraints 

on the land cover change model (Ramankutty & Foley, 1998; Ramankutty & Foley, 1999).  

 

2.1.2 20
th

 Century Reanalysis Project 

Climate reanalysis is a method used to interpolate synoptic scale weather by using the 

weighted mean of available meteorological observations and a first guess, 56 member ensemble, 

result from a numerical weather prediction (NWP) model (Compo, et al., 2011). First guess 

refers to the model output, which backcasts weather under observed boundary conditions. The 

20
th

 Century Reanalysis Project (20CR) specifically, uses the 2008 National Centres for 

Environmental Prediction (NCEP) Global Forecast System as its NWP and treats interpolated 

monthly sea-surface temperatures and sea-ice concentration as boundary conditions. The only 

meteorological observations included in this reanalysis product are surface pressure and sea-level 

pressure reports. Historically, these three observations have been consistently taken since the end 

of the 19
th

 century. Data was assimilated using the multivariate Ensemble Kalman Filter data 

assimilations system (Compo, et al., 2011). The ensemble refers to the number of times that the 

NWP was run. The 56 runs were averaged to produce the final climate data product. The final 

product of the 20CR contains global tropospheric climate variability data generated between 

1871 and 2008 at a 2 degree spatial resolution with data available at 6-hourly intervals (Compo, 

et al., 2011).  
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There are inherent errors in this type of climate data. Over time, data assimilation 

techniques, observation networks, and NWP models all change. This introduces sources of error, 

which will be discussed in more detail in Chapter 3. This makes it difficult to create consistent 

reanalysis products, particularly ones which have a long historical reach. This is somewhat 

overcome in 20CR by the retroactive standardization of each source of error however, as 

Ferguson & Villarini (2012), demonstrates, there are still errors in the final product. This study 

tested the 20CR for inter-annual homogeneity in the central United States. The study found a 

change in all variables between 1940 and 1950 which was not substantiated by the Climate 

Research Unit (CRU) version 3.1 records for the same period. Due to the newness of the 20CR 

product (published in 2011), relatively few such studies have been carried out on this particular 

product. Ferguson & Villarini (2012) is also the only critique that directly addresses the study 

area of this thesis.  

 

2.1.3 Observation Data 

Two separate in-situ climate observation datasets were used in the observation analysis. 

The CRUTEM4 is a 5 degree latitude by longitude resolution dataset of air temperature (over 

land) and sea surface temperatures (over the oceans) monthly anomalies based on a climatology 

taken between 1961 and 1999. The CRUTEM4 dataset was created using monthly temperature 

station data from 4842 separate stations around the world. The climate anomaly method was 

used to reduce the bias that can be introduced by varying densities of observation stations. The 

dataset includes information from January of 1850 until the present (Jones, et al., 2012). The 

second dataset is the Terrestrial Air Temperature: 1900-2008 Gridded Monthly Time Series. This 

dataset was created at the University of Delaware. It uses three spatial interpolation methods to 

create a 0.5 degree latitude by longitude resolution grid of monthly average air temperature. Grid 
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cells without available monthly air temperature data were determined based on neighbouring 

cells. This means that even at the beginning of the 20
th

 century, this series provides a full planet 

resolution, despite the issues associated with station network densities beinglow during that 

period (Matsuura & Wilmott, 2009). The two separate datasets were used because each dataset 

was created using a different methodology and because the University of Delaware dataset 

presents an interpolated global map for the entire century. 

 

 

2.2  Model Description 

2.2.1 Coupled Atmosphere and Land Model v.2.1 

All of the results presented in Chapter 4 of this thesis are the product of the GFDL 

(Geophysical Fluid Dynamics Laboratory) coupled atmosphere and land model (AM2-LM2) 

(Anderson, et al., 2004). The land model used is a modified version of the Land Dynamics model 

(LaD), first published in Milly & Shmakin (2002a). The global model is divided into individual 

cells and the hydrologic and radiation cycles are calculated separately for each cell. LM2 

primarily moves water between three major reservoirs (root zone, groundwater and the 

snowpack) based on a series of strictly defined linear pathways (Milly & Shmakin, 2002a). There 

are 18 distinct soil layers which store energy as sensible heat. Latent heat is stored within the 

snowpack layer and glaciers but not in the surface soil. The original LaD model did not account 

for soil latent heat, so temperature changes in the root zone reservoir are ignored and soil water is 

not allowed to freeze (Milly & Shmakin, 2002a; Anderson, et al., 2004). After being integrated 

into the AM2 model, every soil grid cell is assigned 300 kg/m
3
 of ‘freezable water’ which is 

never integrated into the larger hydrologic cycle. The movement of water through the full 

hydrologic cycle for unglaciated cells will be described in full in the next section (2.2.2).  
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To simulate the differences to the energy and water cycling found under different land 

cover and soil types, the LaD model prescribed a set of defining variables for each land cover 

and soil type. Land cover type was defined by: snow free surface albedo, roughness length, non-

water-stressed bulk stomatal resistance, rooting depth of vegetation, and snow masking depth. 

Snow masking depth takes into account that a different critical mass of snow is required to cover 

vegetation of different heights before the albedo of an area can increase (Milly & Shmakin, 

2002a). Soil type is determined by the prescribed variables: available water content, ground heat 

capacity, and thermal diffusivity (Milly & Shmakin, 2002a). 

The net radiation is calculated by: 

                  
          (2.1), 

where    is the incoming solar radiation,    is the atmospheric radiation,   represents the 

Stephen-Boltzmann constant, and   
  is the surface temperature. The emissivity of the planet is 

taken as a global constant. Albedo is calculated as the weighted mean of snow free (  ) and 

deep-snow albedo (  ): 

                      (2.2), 

where:             
           (2.3). 

In the second equation,   
  is the snow masking depth and    is the water balance of the 

snowpack. The deep snow albedo is a function of temperature and ranges between 0.45 and 0.6 

over nonglaciated cells (Milly & Shmakin, 2002a).x 

On its own, the AM2 atmospheric model uses a gridpoint dynamical core in association 

with the staggered Arakawa B grid with a resolution of 2
o
 latitude x 2.5

o
 longitude. The 

atmosphere is divided into 24 distinct vertical layers with the top of the model set at 40 km. The 

first nine layers are within the bottom 1.5 km of the atmosphere, ensuring a fine resolution within 
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the boundary layer (Anderson, et al., 2004). Radiation is set on a diurnal cycle and calculated on 

a 3 hour basis. The model also contains a fully prognostic cloud scheme which contributes to the 

calculated aerosol concentrations and vertical diffusion of temperature throughout the vertical 

axis. Additionally, the cloud scheme helps in the determination of convection patterns and in 

distinguishing deep and shallow convective patterns. The model differs over time based on a 

gravity wave scheme (winds) and advective patterns. The calculation of precipitation in the AM2 

has the biggest influence on LM2 and the results presented below. This is a part of the 

convection parameterization. For deep convection areas, 0.975 is the fraction of water which is 

condensed in cumulus clouds and eventually becomes precipitation. Deep convection dissipates 

at 500 hPa. Under shallow convection, that fraction is 0.5 and it dissipates below 800 hPa 

(Anderson, et al., 2004). The remaining water then becomes a source of condensate for cloud 

formation. Convective precipitation can be re-evaporated, however since evaporation from water 

bodies is not included in the LM2, it will not be changed directly by an altered land cover.   

 

2.2.2 Hydrologic Cycle within LM v.2.1 

Water cycling within the GFDL model is based upon a very simplistic set of pathways. 

Each cell within the model is treated as an individual entity and there is no transfer of water 

between cells at any stage of the water cycle (Milly & Shmakin, 2002a). The only time that 

water can be moved to a different location is when it is stored in the atmosphere (Anderson, et 

al., 2004). The entire series of pathways is shown in Figure 2.1. Once water has been transpired 

out of a cell in the land model, the atmosphere model (AM2) contains a mechanism for lateral 

movement of water stored in the atmosphere (Anderson, et al., 2004). In the land model, water 

enters the cell as precipitation (both as rain and as snow), where it is immediately sent to the root 

zone (Milly & Shmakin, 2002a).  
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Figure 2.1: Pathways of water within the LM2 component of AM2-LM2.  

 

The total water balance equation does not include a separate surface and root zone water 

component. Instead, they are combined as a root zone term. 

                      (2.4), 

where   is the water storage in the snow pack on the ground,   is the root zone storage,   is 

storage as groundwater, and    is the water stored within glaciers (Milly & Shmakin, 2002a). 

Root zone water does not contribute to evaporation directly (Milly & Shmakin, 2002b). Instead, 

the land model completely excludes evaporation from soil or intercepted stores and all water that 

moves to the atmosphere does so through a ‘big leaf’ transpiration model (Milly & Shmakin, 

2002a). The model still refers to this term as evaporation. Evaporation is controlled by the non-

water-stressed bulk stomatal resistance, a prescribed variable in the original LaD model, 

aerodynamic resistance,  as well as a field capacity term determined by the land cover type 

(Milly & Shmakin, 2002b). When the LaD model was restructured into the LM2, there was a 

discrepancy between the expected and actual rate of evaporation based on the amount of 

precipitation being created, and the radiation balance, in the AM2 (Anderson, et al., 2004). In 

order to close this gap, the prescribed stomatal resistance was reduced by a factor of 5, thereby 

increasing the rate of transpiration (Anderson, et al., 2004). This effectively replaced the 
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evaporation rate. Therefore, once precipitation reached the root zone, the movement of water is 

controlled by a series of strict pathways and residence times. Root zone water is the balance 

between precipitation, snowmelt, evaporation, and discharge to the groundwater reservoir (Milly 

& Shmakin, 2002a), expressed as: 

   

  
                     (2.5), 

where PR is incoming precipitation and snow that moves directly into the root zone, MS is the 

rate of snowpack melt, ER is the rate of evaporation, and D is the rate of drainage from the root 

zone (Milly & Shmakin, 2002a). Precipitation is not calculated by the LM2 model. It is 

calculated in the AM2 component of the model and is controlled by atmospheric processes 

including cloud cover and convective energy (Anderson, et al., 2004). The evaporation 

component in this case excludes evaporation from open water bodies. It is a parameterized 

variable which is a function of the ratio of the density of air (ρ) to the combined force of 

aerodynamic resistance    and stomatal resistance     (prescribed) (Milly, 1992). In other words, 

the balance between the atmosphere’s ability to absorb moisture and the resistance factors 

working against transpiration (Milly & Shmakin, 2002a): 

    
  

     
                 

  

      
             (2.6), 

where    represents the density of air,        is the mixing ratio of water vapour assuming 

completely saturated conditions, and    represents the mixing ratio at a given height. The second 

half of the statement is a mixing ratio for water vapour given a surface temperature assuming a 

minimum of water availability (Milly & Shmakin, 2002a). Field capacity is expressed as   
  as it 

is the maximum possible value of root zone water storage (  ). It is calculated as the product of 

the available water capacity (AWC) which is pre-determined based on the soil type, and the root 

depth (  ), which is a function of the vegetation type (Milly & Shmakin, 2002a): 
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                  (2.7). 

Within this study therefore, the shift in land cover type will have an impact on the storage of root 

zone water. Because the root zone is shallower in the agricultural type, making the field capacity 

smaller, the residence time of water in that particular reservoir will be reduced. If the field 

capacity is being exceeded faster than    can remove soil water, the excess is drained to the 

groundwater reservoir. However, until this condition is met (     
  , discharge does not 

occur and the water remains in the root zone (Milly & Shmakin, 2002a). This prevents the root 

zone reservoir from drying completely.  

Once water has been moved to the groundwater reservoir, it is kept there for a prescribed 

residence time (τ) before being converted to outflow and sent out of the reservoir. Milly & 

Wetherald (2002), explain the process by which the residence time is derived. This paper 

quantifies the factors that influence the variability of discharge from river basins on a monthly 

time scale. The calculated residence time is then applied to every cell within each of the river 

basins (Milly & Shmakin, 2002a). The rate of discharge is then modified to account for water 

reservoirs (i.e., groundwater and surface water). Unfortunately, this model is strongly based on 

observational data inputs for calculating variability in precipitation and discharge anomalies 

(Milly & Wetherald, 2002). This limits the area (i.e. cells) where residence time can be 

calculated to the few river basins with sufficient data, which are described in Milly & Dunne 

(2002). In total, this dataset only provides a distinct residence time for 175 large river basins 

around the world (Milly & Dunne, 2002). In all other instances, a generalized residence time of 

30 days was used (Milly & Shmakin, 2002a). The 30 day residence time was utilized in 

approximately 95.5% of all cells in the global map. Once the groundwater has exceeded its 

residence time, it is converted into runoff and sent back to the surface (Anderson, et al., 2004). 
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Runoff is treated as basin discharge and is calculated in the model on a basin scale (Milly & 

Shmakin, 2002b). 

 

2.3  Study and Model Experiment Designs 

2.3.1 Reanalysis Study 

The first study used the GPVD and 20CR to track changes in climate and land cover 

across the 20
th

 century. The purpose of this study was to compare temperature at 850 hPa in 

Kelvin, atmospheric water vapour content (WVC) in kg/m
2
, and convective available potential 

energy (CAPE) in J/kg over PERT areas against the CTRL areas which have remained as 

grasslands. These three climate variables were selected for comparison because the literature has 

shown that these variables change as a direct result of the shift in land cover. The first two 

variables have been shown within the literature to have been modified due to the biological 

differences between the natural grasses and crops and the introduction of irrigation which has 

increased the amount of water available to evapotranspiration (Pielke, Sr., et al., 2007). Changes 

to CAPE are more secondary. It has been directly linked to the available atmospheric moisture 

and temperature (Oke, 1987).  As such, increases in these variables through LULCC have more 

recently been linked to increases in CAPE and, subsequently, convective storms (Pielke, Sr., et 

al., 2007; Raddatz & Hanesiak, 2008).  

To measure changes over time, these variables were compared at the beginning and end 

of the century. To do this, first, the prairie area was isolated from the global GPVD annual maps 

by masking out all cells which, in the static ground cover type map, were not classified as either 

grasslands/steppe or savannah. Then, all landmasses outside of 119
o
W – 92

o
W; 30

o
N – 77

o
N and 

all areas with an elevation greater than 1300 m above sea level were also masked out. This left 

only those cells within North America which could be considered, assuming the complete 
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absence of human activity, prairie (Figure 2.3). The elevation restriction was imposed to remove 

the adjacent Rocky Mountain ecosystem, which has its own unique climate (Peel, Finlayson, & 

McMahon, 2007). The final modification to the GPVD dataset was to average the Cf values 

(percentage of cell covered by agriculture) of the annual maps over the first twenty years (1900-

1919) and last twenty years (1980-1999) (Figure 2.3). The 1900-1919 map was then divided into 

two subsets: one where Cf ≥ 75% and one where Cf ≤ 25%. The first category defines the PERT 

areas and the second defines the CTRL cells.  

 

 
Figure 2.2: Average percentage agricultural cell coverage (Cf) of the Global Potential Vegetation 

Dataset (GVPD) for the first and last 20 years of the 20th century. A Cf value of 1 represents a 

completely agricultural cell; a Cf value of 0 represents a cell which is has no agricultural 

coverage. 
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Figure 2.3: Outline of Cf subset areas used to delineate natural (CTRL) and cropped (PERT) 

areas. The <=25% (CTRL) and >=75% (PERT) areas represent the percentile limits for cells to 

be categorized as one category or another. The white area shows those cells which fit into neither 

category. 

 

The cells designated as either CTRL or PERT for 1900-1919 maintained that definition 

for the 1980-1999 map. This ensured that when comparing the three climate variables between 

perturbed and natural cells across time, there was no change in the spatial extent of cropland. The 

only change would be in the Cf value over time. The final step was to average the climate data 

from the 20CR over the four different maps (perturbed and control from 1900-1919 and from 

1980-1999). The results were then entered into a factorial experiment (Figure 2.4) and change 

was calculated for both subsets over time (the results from the beginning of the century were 

subtracted from the results from the end) and the difference between the two subsets was 

calculated at both points in time. Plots that show the mean annual variability of all three climate 

variables were also created for all three of the climate variables in order to more fully describe 

the long term trends across time. Statistical significance was calculated by taking the mean 

temperature, WVC, and CAPE conditions over both the CTRL and PERT areas at both time 
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periods across the 20CR ensemble. Then, the results, which will be discussed in the next chapter, 

were considered statistically significant if the change (over time or between land cover types) 

was greater than two standard deviations of the calculated field area mean. 

 

 
Figure 2.4: Factorial experiment design. The arrows represent the two directions in which change 

was evaluated; between the two land cover types and across time. 

 

2.3.2 Observation Minus Reanalysis Variation 

Observation Minus Reanalysis (OMR) is a tool which was subsequently used to refine 

the results produced using the 20CR and GVPD.  OMR was first described in Kalnay & Cai 

(2003) as a method to remove the troposphere level climate influence from observation data. A 

tropospheric reanalysis dataset (i.e. 20CR) is subtracted from the observation data. The resulting 

dataset contains information between the in-situ network locations and is more accurate to 

conditions within the planetary boundary layer (PBL) (Kalnay, et al., 2006). The OMR variation 

was used because the results generated using the 20CR alone will not strongly reflect any 

changes to climate created by the change in land cover. Available literature has shown that the 

changes which occur as a result of LULCC are found primarily within the PBL. There may be 

secondary impacts on higher atmospheric processes, however these are less significant (Findell, 

et al., 2009). It was found that when the OMR method was applied, it became possible to observe 

the effects of agricultural development and to identify urban heat islands (Kalnay & Cai, 

2003).Additionally, the reanalysis data can help overcome biases introduced into surface 

observation datasets by changing observation collection methods and in-situ station placements. 

Since 2003, this method has been applied to several different projects, primarily in China and the 

United States (Kalnay, et al., 2006; Fall, et al., 2010). Using this method, only temperature was 
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examined. This was done primarily because temperature data from the beginning of the century 

is more commonly available than other forms of climate data (Compo, et al., 2011). Secondarily, 

any changes to surface temperature act as a good initial indicator of LULCC in the prairies 

(Dirmeyer, 2013). 

The two temperature observation datasets (i.e. CRUTEM4 and University of Delaware) 

were used in the OMR variation separately. In order to make the two datasets comparable, the 

University of Delaware data was converted into an anomaly dataset using the same climatology 

(1961-1999) that was used in Jones, et al. (2012) for the CRUTEM4 data. 

In this experiment, statistical significance was calculated exactly the same way as in the 

reanalysis experiment. Significance was taken as a change greater than two standard deviations 

of the mean temperature anomaly value for each 20 year period.  

 

2.3.3 Model Experiment 

The OMR variation of the reanalysis study is able to better isolate the influence of 

LULCC on climate from the climate variability of the 20
th

 century. However, the results still 

cannot be used to conclusively quantify only climate impact of agriculture. Therefore, this study 

is an extension of that line of investigation, which will rely on a modeled environment using the 

AM2-LM2 climate model from the GFDL. The purpose of this study is to evaluate the change in 

climate when the entire prairie region is converted into an agricultural zone. This method will 

remove the influence of climate change and climate variability. It will also remove the historical 

spatial biases which are inherent in the observation data and which limited the reanalysis and 

OMR studies. The reanalysis study was focused primarily on a few key climatic variables. 

However, using a model environment, it becomes possible to evaluate changes to the hydrologic 

cycle as a whole, as well as the changes to PBL climate through changes in net radiation. There 
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are two main ways that agriculture has impacted the water balance. The first is the introduction 

of new vegetation types, which impact the transfer of water between the ground and the 

boundary layer. The second is the use of irrigation techniques to supplement water shortages 

with groundwater drawn to the surface. By using this model environment to generate a uniform 

change across the entire study area, this study will demonstrate only the influences of the first 

change. The second change is beyond the scope of the present study and remains an opportunity 

for future research. 

The first step of this study was to run a control scenario. This scenario assumed a 

completely natural environment where the entire area of the prairies was defined by the 

grasslands land cover type (GRASS). The model was run for a 12 month period beginning in 

December and ending in November of the following year. The scenario was simulated 97 times, 

each under different initial conditions. This created a large enough ensemble from which to draw 

a statistically significant set of mean conditions. The results of this ensemble were used to 

generate a picture of the expected energy balance and water cycle across one full year. The first 

month was discarded from the analysis due to the potential influence of a ‘spin up’ period. The 

initial conditions of each ensemble member may have artificially influenced the climate 

conditions before the model reached a stable state for the rest of the year (Annamalai, Okajima, 

& Watanambe, 2007; Fletcher & Kushner, 2010).  

The second step of this study was to use the GRASS scenario results as a baseline dataset 

from which the significance of converting grasslands to agriculture could be evaluated.  In the 

perturbation scenario (AGRIC), any cell within North America classified as grassland in the land 

cover map, was re-designated as an agricultural cell. Within the LM2, agriculture is one of the 

ten land cover types. However, it is not included in the original land cover map which designated 
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each cell as one of the other nine ‘natural’ land cover types (Milly & Shmakin, 2002a). No other 

modification was carried out in the AGRIC scenario. The agriculture type does not represent any 

particular crop type explicitly. In comparison with the grasslands definition, agriculture differs in 

half of the ten prescribed variables. The depth of roots is slightly shallower in the agriculture 

definition (0.25 m) than the grasslands (0.26 m). The root biomass areal density is however much 

less dense in the agriculture definition with only 0.15 kg/m
2
 compared to 1.4 kg/m

2
 in the 

grasslands. The third difference is in the roughness length of the vegetation types which is 0.4 m 

in the agricultural definition and 0.07 m in the grasslands definition. The snow free (summer-

time) albedo is strictly defined for both land cover types and is slightly greater for the grassland 

cover type (0.18) than the agricultural type (0.16) (Milly & Shmakin, 2002a). 

In general, all of these changes indicate that the grassland land cover type has a slightly 

deeper rooting system with a larger and denser root network, however the above ground portion 

of the grasses are substantially shorter. The albedo difference indicates a lighter plant colour, 

lending itself to a greater reflectivity. All of these differences agree with the observed differences 

between prairie grasses and prairie crops found in the literature (Steyaert & Knox, 2008). 

Moreover, based on the given parameters, the agricultural type closely represents wheat, an 

appropriate crop type for the North American prairies (Dorman & Sellers, 1989).  

Once the AGRIC ensemble had been created, the ensemble mean of the GRASS scenario 

was subtracted from the ensemble mean of the AGRIC scenario. The residual results were then 

plotted alongside the control results. Statistical significance of the change between the two land 

cover types was evaluated using a Student’s T-test; a p value threshold of ≤ 0.05 was 

implemented. The results were displayed in two different formats. A set of control and response 

plots were created that represent the monthly mean values of each relevant variable. The second 
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format was as a set of maps that show seasonal changes in the residual data. For the plots, if any 

month demonstrated a statistically significant change, it was identified on the residual plots by a 

larger marker placed either below or on top of the monthly average values. Using the same 

Student’s T-test statistical test, an overlay was created wherein any cells that display a significant 

change were covered by a stippled pattern.  
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Chapter 3: Reanalysis and Observation Studies 

This chapter discusses the results produced by both the basic reanalysis experiment and 

the Observation Minus Reanalysis variation. Both of these studies rely on observational data, 

collected and created at different scales and with different methodologies. The purpose of using 

this type of data was to evaluate if the relationship between LULCC and climate could be 

observed at the whole ecosystem scale within the available climate record. 

 

3.1  Reanalysis Method Results 

The change in land cover represented by Figure 2.2 is the product of a steady increase in 

agriculture over the 20
th

 century (Figure 3.1). The difference in Cf between the CTRL and PERT 

remained very stable over the entire period. The mean of ΔCf ≈53% between a range from 45-

56%. This clear difference in the GVPD allows the two different land cover types to be 

compared directly since neither area displays a disproportionate increase in Cf. While the CTRL 

area does increase to a maximum Cf of 20.4% by 1990, challenging the definition of CTRL cells 

as “natural prairie”, the increase in the PERT Cf mean that the comparison can still be made 

across areas of a similar spread of agricultural coverage.  

 
Figure 3.1: Annual change in Cf from 1900-1999. 
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As discussed in the previous chapter, the temperature, atmospheric water vapour content 

(WVC), and the convective available potential energy (CAPE) were the three climate variables 

analysed using the reanalysis method. CAPE is a measure of the available energy to a rising air 

parcel. This variable is influenced by available latent heat in the boundary layer. As the vertical 

flux of moisture increased, measured by a shrinking Bowen ratio (amount of sensible heat 

relative to latent heat (β = QH/QLE)), CAPE increases. Larger CAPE values have been connected 

in the literature to convective cloud development and subsequently, convective storms (Raddatz, 

2005). This section will discuss first the difference in the two twenty year periods (1900-1919 

and 1980-1999) and will then present the average annual results in order to discuss any trends or 

anomalous periods that are not explained by the first analysis.  

 It was found that at the beginning of the century, temperatures, measured in degrees 

Kelvin, were 2.5
o
K cooler over PERT areas compared to the CTRL (Figure 3.2). At the end, both 

CTRL and PERT had cooled, although not significantly (CTRL = 0.35
o
K; PERT = 0.65

o
K). The 

PERT had cooled slightly more than the CTRL, increasing the difference to 2.8
o
 cooler 

temperatures in PERT for 1980-1999.  

 

 
Figure 3.2: Left: Temperature in 

o
K for each land cover area for both time periods, including the 

difference between each area at the beginning and end of the 20
th

 century as well as the 

difference in each area over time. Right: The plotted mean value with statistical significance 

represented as two standard deviations from the areal mean. 
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 The atmospheric water vapour content, measured in Kg/m
2
, was shown to be greater in 

the PERT than the CTRL in the 1900-1919 time period by 3.35Kg/m
2
 (Figure 3.3). Over time, 

both CTRL and PERT increase, however the change in CTRL (0.58 Kg/m
2
) is approximately 

four times larger than in the PERT (0.12 Kg/m
2
). By the end of the century, the difference 

between PERT and CTRL has decreased to 2.88 Kg/m
2
. The change between the CTRL and 

PERT areas over time and the changes between the two land cover types at both time periods 

was not found to be statistically significant. Neither was the change in WVC from the beginning 

to the end of the century found to be significant. 

 

 
Figure 3.3: Atmospheric water vapour content in Kg/m

2
 represented as described in Figure 3.2. 

 

Finally, the total convective available potential energy was also found to be greater over 

the PERT areas at the beginning of the century by 70.85 J/Kg (Figure 3.4). The CAPE over the 

CTRL area increased from 191.31 to 215.55 J/Kg (Δ +24.24 J/Kg) by the 1980-1999 time 

period. In this time, the PERT CAPE actually decreased by 7.57 J/Kg reducing the difference 

between both areas by 55%. However, the change in PERT over time was found to not be 

statistically significant within the two twenty year periods. 
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Figure 3.4: Convective available potential energy in J/Kg represented as described in Figure 3.2. 

 

The results of this study indicate that as temperatures have cooled over the entire prairie 

region, total WVC has slightly increased, and CAPE has become more uniform over the 20
th

 

century. However, none of these changes were found to be significant. Nevertheless, the results 

partially reflect the expected outcomes of LULCC found in the literature. The decreasing 

temperature however, is occurring despite the lower albedo of crop species and cultivated fields 

and the early century desertification, which was occurring under agriculture. Later irrigation may 

have overcome this process by the 1980-1999 period; and irrigation appears to be represented in 

the WVC increase as the literature has demonstrated that irrigation does increase PET. The 

change in CAPE only occurred in the CTRL area. The increased rate of convection may have 

been caused by the increasing WVC without an increase in temperature because CAPE has been 

shown to be more sensitive to variability in humidity instead of temperature (Riemann-Campe, 

Fraedrich, & Lunkeit, 2009). This does not explain why no change occurred over the PERT area, 

which experienced the same increase in Cf.  

The calculated two standard deviations of the mean over each land cover area are so large 

that presenting the first and last 20 year periods for each variable does not sufficiently describe 

the long term 20
th

 century trends. Therefore, these three variables are also presented as mean 

annual plots wherein the inter-annual variability is clearly presented. These plots make it 
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apparent that the differences in the land cover characteristics between the CTRL and PERT cases 

cannot completely explain the trends being presented in the 20CR.The maximum and minimum 

ensemble member annual values were also included in the annual plots to show the degree of 

internal variability with the 20CR ensemble for each climate variable. Temperature (Figure 3.5) 

shows that there was a mid-century (1930s and 1940s) increase in temperature over both land 

cover areas. Temperature then decreases until the 1980s when it begins to increase slowly again. 

These times match the two major periods during the 20
th

 century where drought was significant 

(Cook, et al., 2007). With temperature, the CTRL and PERT areas experience extremely similar 

inter-annual variation which indicates that both areas are likely being influenced by the same 

forces. There is very little variation within the ensemble for temperature. 

 

 
Figure 3.5: Mean annual temperature in 

o
K for CTRL and PERT land cover areas. The paler lines 

above and below CTRL and PERT represent the maximum and minimum values from within the 

20CR ensemble. 

 

Atmospheric water vapour content acts very differently. The WVC over both areas 

follows a similar trend; however the PERT areas show a much larger variance as well as greater 

volume for the entire century (Figure 3.6). This plot shows that the increase in WVC found in 

Figure 3.3 over time is likely not related to the introduction of irrigation. Between CTRL and 

PERT if introducing irrigation in the 1940s had a substantive role in WVC, there would be a 
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noticeable increase in the gap between both land cover areas. Like temperature, WVC has very 

variation between the 56 ensemble members. There is the most disagreement in the beginning of 

the century (until around 1940). The changes and variation to CAPE  are more obvious between 

the CTRL and PERT (Figure 3.7); PERT has a greater variance. The PERT line in this figure 

explains why the decrease in PERT CAPE found in Figure 3.4 was not statistically significant. It 

appears to be more related to the smaller variance in the last twenty years from year to year than 

to a decrease. This becomes more prominent with the inclusion of the full ensemble range which 

shows an overlapping trend between CTRL and PERT for most of the century. 

 

 
Figure 3.6: Mean annual atmospheric water vapour content in Kg/m

2
 represented as described in 

Figure 3.5. 

 

 
Figure 3.7: Mean annual convective available potential energy in J/Kg represented as described 

in Figure 3.5. 
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In comparing climate data over areas of concentrated natural prairie grasslands and 

agriculture, there are factors that make it difficult to conclusively correlate the observed changes 

from Figures 3.2 - 3.7 with the different land cover types. The disparity between the CTRL and 

PERT in both the WVC and CAPE annual plots may have been caused by the distance between 

the two study areas (Figure 2.3). The vast majority of the cells in the CTRL case are found in the 

western extent of the prairies while the PERT cells are found in the far eastern corner. Because 

they are each in a separate climatic region of the prairies, particularly because the regions are 

defined by available water and precipitation, it is likely that environmental factors outside of 

LULCC are causing much of the differences in the long term trends of both variables. If the 

change in land cover demonstrated in Figure 3.1 was the only variable influencing the changes in 

any of these three variables, the annual changes would be much more linear. One of the other 

potential, non-LULCC sources of the variance displayed in all three of these climate variables is 

natural variability. It is possible that the inter-annual variability would have occurred to some 

degree regardless of land cover.  

Other limitations on the use of this methodology include the reanalysis dataset (20CR), 

which represents tropospheric climatological conditions, furthering the difficulty in relating 

changes observed by the study to changes which the literature has shown LULCC is imposing on 

boundary layer climate (Pielke, Sr., et al., 1998). For example, this particular reanalysis product 

has generated temperature conditions at 850 hPa (Compo, et al., 2011). This is an isobaric height 

that persists approximately 1-1.5 km above sea level. Any influence that land cover may have on 

climate will be found within the boundary layer, which is found within the first 1 km of the 

atmosphere (Oke, 1987). Moreover, as discussed in the literature review, the PDO and the ENSO 

both have large modifying impacts on the long term climate of central North America (Mo & 
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Schemm, 2007; Wittrock & Ripley, 1999). The following three map series (Figures 3.8 – 3.10) 

display the seasonal mean plots for all three climate variables. These plots were made by taking 

the seasonal mean over the entire 20
th

 century and then taking the mean of all 56 ensemble 

members for each season. These plots show that it is much more likely that the results in Figures 

3.2 - 3.7 are being influenced by changes in 20
th

 century tropospheric circulation patterns.  

 

 
Figure 3.8: 20

th
 century seasonal mean temperatures in 

o
K. Plots are limited to 20

o
N-90

o
N in the 

Western hemisphere. 
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Figure 3.9: 20

th
 century seasonal mean atmospheric water vapour content in Kg/m

2
 represented 

as described in Figure 3.8. 

 

 
Figure 3.10: 20

th
 century seasonal mean convective available potential energy in J/Kg 

represented as described in Figure 3.8. 

 

Beyond the noted limitations in using only reanalysis data to evaluate the small change in 

climate caused by LULCC, there are sources of error that persist in reanalysis products that can 

influence their overall accuracy. On the spatial scale, there are issues associated with in-situ 

station network density (Sterl, 2004). The further a point within the reanalysis climate conditions 
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is away from an incorporated station, the greater the possibility of error within the model 

forecast. On a temporal scale, the density of in situ networks, particularly in North America, has 

changed over time. This alters the internal spatial error of the forecast, making it more difficult to 

compare reanalysis results across such a long period of time (Sterl, 2004). The 20
th

 Century 

Reanalysis Project is an extremely new data product (2011) and as a result, there have been 

relatively few published evaluations of the data accuracy. Therefore the degree of spatial and 

temporal error is not well established. When taken into consideration all together, these 

limitations all indicate that the first methodology of this study cannot exclude natural variation 

from its results. In order to overcome these limitations, the second methodology, Observation 

Minus Reanalysis (OMR) was used to provide a way to extract the local surface level climate 

signal. 

 

3.2  Observation Minus Reanalysis Results 

The twenty year comparison plots in Figure 3.11a show the 20
th

 century changes in 

temperature found using the CRUTEM4 surface observation anomaly dataset. There is an 

increase in temperature of 1.2
o
K in the CTRL and of 1.3

o
K in the PERT. In both time periods, 

PERT was slightly cooler (1900-1919 = 0.18
o
K; 1980-1999 = 0.13

o
K), although this difference 

is not significant. However, unlike the 20CR temperature result, both the CTRL and PERT areas 

demonstrated a  statistically significant change over time. The increasing temperature trend more 

accurately reflects the 20
th

 century temperature trends shown in the literature. Climate change 

has raised the PBL temperature of North America (IPCC, 2007). Nevertheless, the cooling 

associated with the changes to albedo caused by the harvest cycles in agricultural fields (Song, 

1999) is still observed. The second observation dataset (Terrestrial Air Temperature from the 

University of Delaware) presents very similar results after being transformed into anomaly data 
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(Figure 3.11b). It also presents a 20
th

 century increase in surface temperatures with a cooler 

climate over the PERT areas. Temperature increased less in the CTRL and PERT areas for this 

dataset than in the CRUTEM4 case (CTRL = 0.9
o
K; PERT = 1.1

o
K). While the trends in this 

dataset do agree with the results produced by the CRUTEM4 data, none of the changes (either 

over time or between the two land cover types) is statistically significant.  

 

 
Figure 3.11a/b: Calculated OMR temperature anomalies in 

o
K represented as described in Figure 

3.2, including both (A) CRUTEM4 and (B) University of Delaware versions of OMR. 

 

3.2.1 Temporal Inhomogeneity 

While the OMR methodology is a good tool for making tropospheric reanalysis data 

relevant to the climate within the boundary layer, the results are still not completely able to 

describe the influence of the land cover on climate. The accuracy of the observation datasets 

used for the OMR is subject to the same sources of error introduced by changing in situ network 

densities and measurement standards (Jones, et al., 2012; Matsuura & Willmott, 2009) that 
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influence the accuracy of the 20CR and other reanalysis products (Sterl, 2004). In fact, these 

errors may actually be larger in the temperature observations. The surface pressure observations 

used to create the 20CR have a very consistent historic record dating to the beginning of the 19
th

 

century (Compo, et al., 2011). Implementing the OMR does minimize the influence that the 

observation dataset inhomogeneities may introduce, it cannot be said that they are completely 

removed. The 20CR data may also not have been the optimal reanalysis dataset to use with the 

OMR methodology. Kalnay, et al. (2006), states that the reanalysis dataset should not assimilate 

surface observations. This is because the purpose of OMR is to remove climate forcing processes 

above the boundary layer. The 20CR is based entirely on surface observations (section 2.1.2). 

However, this does not invalidate the results. When tested with a surface observation based 

reanalysis product, the final OMR product produced similar, but weaker results (Kalnay, et al., 

2006). This does imply that the changes over time in the results presented above may actually be 

larger than presented. 

Figure 3.12a/b presents the inter-annual variability of the OMR, using the anomaly 

versions of the two observation datasets, between 1900 and 1999. Before 1950, the temperature 

very obviously deviates from the 1961-1999 climatology. The variation appears to be greater in 

the PERT areas for both of the OMR anomaly datasets. After 1950, the anomalies are much 

smaller for both land cover cases. The difference between the first and last 50 years of the 20
th

 

century is further emphasized in Figure 3.13. In this figure, the top two panels represent the 

OMR using the CRUTEM4 anomaly and the bottom two panels represent the OMR using the 

University of Delaware anomaly for both time periods. These maps show that the negative 

anomaly is very strong, over the prairies particularly, in both datasets. While both anomalies 
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decrease after 1950 by a similar amount, the biases are larger in the University of Delaware 

OMR dataset. 

Moreover, between the 1930s and early 1960s, there is a period of large bias in the 

anomaly data. During this time, the temperature anomaly becomes more negative before being 

reduced to within 1 degree of the 30 year climatology. This feature is not present in the 20CR 

temperature trend shown in Figure 3.5, indicating that there is a force within the boundary layer 

which is influencing this bias. It is difficult however, to attribute this bias or the overall 20
th

 

century temperature trend to LULCC alone. If the OMR had successfully isolated the influence 

of LULCC on temperature, there would be a clear distinction between the CTRL and PERT land 

cover areas. Instead, the extreme inter-annual variability presented in Figure 3.12a/b suggests 

that either there are other factors influencing the temperature over the two land cover areas 

making it difficult to isolate LULCC, or that LULCC is not having any measureable influence on 

the temperature of these areas in this study. 

Even though these errors exist in the OMR methodology, making it more difficult to 

relate the changes in the OMR between the two land cover types across the 20
th

 century (Figure 

3.11a/b), the influence of LULCC still cannot be completely discarded. The difference in 

temperature from the 1900-1919 period to the 1980-1999 period more closely represent the 

observed surface warming for North America over the 20
th

 century (IPCC, 2007) than the 

temperature results from the 20CR (Figure 3.5). Additionally, they show that there is still a 

difference between the two land cover types, despite the noise of climate change and large scale 

circulation patterns.  
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Figure 3.12a/b: Inter-annual variability in the OMR results for temperature anomalies in 

o
K 

represented as described in Figure 3.2, including both (A) CRUTEM4 and (B) University of 

Delaware versions of OMR. 
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Figure 3.13: Difference in temperature anomaly in 

o
K between the first and second halves of the 

20
th

 century over North America. The top two panels represent the OMR using the CRUTEM4 

(C) observations and the bottom two panels represent the OMR using the University of Delaware 

(D) observations represented as described in Figure 3.2. 

 

3.3  Summary and Impetus for Model Experiment 

In this chapter, the results of reanalysis and OMR studies are presented. The reanalysis 

study demonstrated generally that the mean temperature is cooling as a result of agricultural 

intensification. This is a century long process where the change in temperature appears to 

increase steadily as agricultural coverage increases. The trend is most apparent after the 1950s in 

the OMR mean annual results. It also showed that there was greater WVC over the PERT areas 

but that there was very little change (if any) over time. If the trend is due to LULCC, it is 

possible that the greater WVC is due to increased water availability as a result of irrigation. 

Finally, the results showed that changes to CAPE are not, either over time or between the two 

land cover types, easily distinguishable. CAPE is however greater over PERT areas.  

The OMR study results show the influence of 20
th

 century climate change on surface 

temperatures and demonstrate how difficult it is to isolate the climate signal produced by 

LULCC from the larger climate trends. The purpose of the reanalysis and OMR studies was to 
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use a simple method to test for a relationship between LULCC and changes in climate during the 

20
th

 century. While the results of these studies cannot be used to definitively state that changes in 

land cover are changing the climate of the North American prairies, they do indicate that there is 

some variation that LULCC can impose. By using only collected climate data, it is very difficult 

to fully isolate the impact of LULCC on a continental scale. One of the best ways to control for 

all of the potential outside variables is to simulate the change from prairie grasses to agriculture 

in a modelled environment. The following chapter therefore, will describe a separate experiment 

which will overcome the large number of limitations with using reanalysis and observation data 

as described in this chapter.  

  



54 
 

Chapter 4: Model Experiment 

This chapter will discuss the results produced by a modelling experiment that was 

conducted using the AM2-LM2 coupled model as described in section 2.3.3. The purpose of this 

study was to create two prairie simulations. The first simulation represented a situation where the 

entire region had been left as a massive grassland area (GRASS). The second simulation 

represented a completely agricultural prairie (AGRIC). The AGRIC case was then subtracted 

from the GRASS case to quantify the differences in climate over the prairies caused by the 

change in land cover.  

 

4.1  Whole Prairie Results 

In agreement with the results found in the reanalysis and observation study, the model 

study found that the shift in land cover type from the native prairie grasslands to a vast 

agricultural zone has had an impact on the region’s climate. In general, the results have increased 

the certainty of this statement. The first changes which will be discussed are found in the 

prescribed variable ‘snow free albedo’. During months with snow, the albedo range is the same 

for both agricultural and grassland cover types. However, during the snow free period, albedo is 

prescribed at 0.16 for agriculture and 0.18 for grasslands. The GRASS albedo is shown in Figure 

4.1a, where the snow free period is shown to be between May and September. Over the entire 

year, the response plots show that under the AGRIC conditions, albedo is consistently lower than 

under GRASS conditions (Figure 4.1b). This change is only statistically significant during the 

April-October period. The difference in albedo between the two cases during these months is 

equal to the difference between the prescribed snow free albedo values (α AGRIC (0.16) - α 

GRASS (0.18) = -0.02). Therefore, the change in albedo during these months can be said to have 

been caused directly by the change in land cover type.  
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Figure 4.1a/b: (A) Monthly mean albedo for the whole prairie (blue), the northern prairie (red), 

and south prairie (blue) in the control case. (B) Monthly response in mean caused by replacing 

the grassland with the agricultural scenario (AGRIC-GRASS). The whole, north, and south area 

divisions will be discussed in section 4.2 and 4.3. Statistical significance (p ≤ 0.05) is indicated 

by a dot in a colour corresponding to the related plot line. 

 

This direct change can therefore be treated as an initiation point for any subsequent changes in 

climate found in the response plots and maps for the prairie temperature and radiation balance. 

These changes will then have a cascading effect on the water balance. The movement of water is 

directly impacted by other prescribed variables, which further contribute to the differences found 

within the response results. The difference in surface albedo indicates a difference in the 

reflectivity (colour) of the ground cover. The decreased surface albedo over AGRIC indicates a 

greater absorption of incoming solar radiation by the vegetation cover. The increase is 

completely attributable to the vegetation change as the soil type in the model does not influence 

albedo. The temperature in the GRASS case (Figure 4.2a) shows that monthly mean temperature 

has a smooth progression across the year. The response plot of surface temperature (Figure 4.2b) 

reflects the increase in albedo. Temperature change is minimal and not statistically significant 

during the winter and spring seasons but the increase in temperature during the June – August 
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period is greater than then GRASS case. Additionally, the map in Figure 4.3 shows that the 

increase in temperature is highly localized over the prairies during summer. The increase in 

temperature has implications on both the radiation and water balance as at the peak month of 

July, temperature is increased by 2.5
o
C as a result of the perturbation. 

 

 
Figure 4.2a/b: Mean monthly temperature in 

o
K represented as described in Figure 4.1a/b. Dots 

representing statistical significance are on the line in this case. 

 

 
Figure 4.3: Map of response temperature results (

o
K). Plots are limited to 20

o
N-90

o
N in the 

Western hemisphere. Areas of stippling within the maps represent cells where the response was 

considered statistically significant (p ≤ 0.05). 
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4.1.1 Net Radiation and the Energy Balance 

Once summertime albedo and temperature are changed by the shift from GRASS to 

AGRIC, it would be expected that there would be a cascading effect on both the net radiation and 

the energy balance. This is because of the Stephan-Boltzmann Law, which states that an increase 

in the temperature of a surface will increase its rate of energy radiation (Aguado & Burt, 2012). 

Under the GRASS scenario, net radiation reaches an annual maximum in June before decreasing 

into fall. Incoming short and long wave radiation, as well as upwelling longwave radiation peak 

in July (Figure 4.4a). In the AGRIC scenario, the warmer temperatures and lower albedo of the 

agricultural land cover do not have a significant impact on net radiation. Instead, the upwelling 

longwave radiation increases significantly between June and August and the reflected shortwave 

radiation is significantly reduced from April until the end of the year (Figure 4.4b). This shows 

that the total available energy within the system is not changed, but that the change in albedo is 

forcing more shortwave absorption at the surface in spring, driving up summer temperatures 

which are forcing an increase in the upwelling longwave radiation under AGRIC. These changes 

are immediately visible in the June-July-August (JJA) panels of Figures 4.5 and 4.6, where the 

entire prairie area is covered by the change in these two net radiation components. The change is 

also, particularly in Figure 4.5, strongly related to the change in land cover as the shape of the 

area of significant difference almost exclusively covers the study area.  
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Figure 4.4a/b: (A) GRASS net radiation and (B) response net radiation in W/m

2
 represented as 

described in Figure 4.2. 

 

 
Figure 4.5: Map of response outgoing shortwave radiation results in W/m

2
 represented as 

described in Figure 4.3. 
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Figure 4.6: Map of response upwelling longwave radiation results in W/m

2
 represented as 

described in Figure 4.3. 

 

All of the changes discussed so far indicate that there will be significant changes in the 

energy balance. The net radiation is the total amount of energy available to do work and it is 

divided into three components. They are: latent heat, sensible heat, and ground heat (Oke, 1987). 

By significantly altering the balance of short and longwave radiation being sent up to the 

atmosphere, the balance of latent and sensible heat should be impacted as well. Under the 

GRASS land cover case, the ground heat component accounts for a very small portion of the 

overall net radiation (Figure 4.7a). The residual plot (Figure 4.7b) shows that the AGRIC land 

cover does not have a large or significant impact either. The ground heat flux is not output by the 

land model. Instead, it was calculated as a residual from the energy balance equation: 

                            (4.1), 

where     is the latent heat component,    is the sensible heat, and     is the net radiation.  

In the GRASS case, net radiation increases until June. This is being driven by the 

increasing latent and sensible heat at the beginning of the year. When temperature begins to 

decrease after June, latent heat follows. Sensible heat continues to increase until August (Figure 
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4.7a). Under the AGRIC simulation, sensible heat increases significantly between May and 

August while the latent heat component decreases significantly between June and August (Figure 

4.7b). However, the response plot shows that the net radiation demonstrates very little change; 

with the exception of March, when the slight increase was statistically significant. The changes 

to sensible and latent heat are therefore occurring because the available energy is being 

rebalanced, not because of a change to the overall available energy within the environment. This 

is why there is no significant change to net radiation during the summer. The alterations to the 

albedo, temperature, and the energy balance carry implications onto the water balance, which is 

particularly important in the prairies which is such a water sensitive environment. The next 

section will discuss the changes that were found in the water balance. In addition to changes 

caused by the energy balance response, these changes were impacted by a shift in the prescribed 

variables: depth of the root network, the areal density of the root network, and the roughness 

length of the vegetation.  

 

 
Figure 4.7a/b: (A) GRASS energy balance and (B) response energy balance in W/m

2
 represented 

as described in Figure 4.2. 
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4.1.2 Water Balance 

As described in section 2.2.2, the hydrologic cycle of the AM2-LM2 model is represented 

by a condensed set of pathways and reservoirs. The entire series of pathways for water, once it 

enters the LM2 component, is outlined in Figure 2.1. The mean monthly plots (Figure 4.8a-d) 

demonstrate the GRASS scenario results as well as the response created by the difference in 

conditions for the AGRIC scenario. This discussion will separate precipitation and evaporation 

from surface (root zone) and groundwater reservoirs because there are separate processes which 

influence each set of reservoirs.  

Precipitation, in the GRASS scenario, increases monthly from January and continues to 

exceed evaporation until May, creating an atmospheric moisture surplus in the first half of the 

year (Figure 4.8a). Evaporation however, continues to increase in June. This change is reflected 

in the latent energy response which also reaches its annual maximum in June (Figure 4.7a). This 

creates a moisture deficit (Response in Figure 4.7a), which lasts until October. This is expected 

because of the albedo GRASS plot in Figure 4.1a. As discussed in that section (4.1), the model 

uses two prescribed albedo variables, one for snow covered and one for snow free conditions. 

Under snow free conditions, the grasslands land cover type is prescribed a value of 0.18 so when 

in October, albedo begins to increase, it is because of snowfall which is contributing to the 

overall volume of precipitation.  

The moisture deficit is greatest in June and July before evaporation rates quickly begin to 

decrease until October. As precipitation decreases, the available water for evaporation also 

decreases, driving down the latent heat component. This change was also forecast in the previous 

discussions because temperature continues to increase until July, forcing sensible heat to become 

the dominant component of the energy balance after the June peak in latent heat (Figures 4.2a & 
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4.7a). This is what creates the summer time hot and dry conditions that characterize the prairies 

(Peel, Finlayson, & McMahon, 2007). 

 The second half of the water balance encompasses the pathways that control water once it 

reaches the surface. In the LaD, those are the root zone and groundwater reservoirs (Figure 4.8c). 

The root zone reservoir closely follows the monthly trends in the precipitation and snowfall 

model outputs. It reaches its annual maximum in May and decreases until October when both 

precipitation and snowfall increase again. The volume of water in the groundwater reservoir is 

completely controlled by the field capacity of the root zone reservoir and a 30 day residence time 

(section 2.2.2). Without recharge from the root zone, this reservoir will slowly empty. The peak 

groundwater volume occurs one month after the peak root zone volume, and it decreases steadily 

until the end of the year. Once evaporation exceeds precipitation, the root zone reservoir is 

depleted too quickly to discharge to the groundwater reservoir. The increased water inputs from 

precipitation and snowfall at the end of the year are not large enough to exceed the root zone 

field capacity. 
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Figure 4.8a-d: (A) GRASS atmospheric water balance and (B) response atmospheric water 

balance in mm/month. (C) GRASS land water balance and (D) response land water balance for 

the entire prairies. Statistical significance is represented as described in Figure 4.2. In A and B, 

Delta (P-E) is the net moisture left on the ground (effective precipitation). In C and D, Total 

(R+G) is the total water available on the ground. Root zone and groundwater contribute to this 

total. 

 

The GRASS scenario demonstrates that precipitation and evaporation (and snow to a 

much lesser extent) control the entire water balance of the LaD model. When the AGRIC 

scenario was run, there were significant changes to these two variables across almost the entire 
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year (Figure 4.8b), which have a cascading influence on the entire hydrologic cycle. The largest 

changes occurred between May and August when both variables were reduced. The greater 

decrease in summertime evaporation reduces the moisture deficit. The effects of these changes 

are visible in the energy balance response plots (Figure 4.7b) in the decrease in latent energy, the 

result of less moisture available for evaporation. The result of these changes is a drier 

environment. The root zone reservoir therefore is also reduced. Groundwater however, is 

increased significantly at the beginning of the year. This change appears to be the result of an 

increase in snowfall during the winter.  

The reduction in both precipitation and evaporation is caused by two of the prescribed 

land cover variables: root depth (ZR) and roughness length (z0), and linked to the change in root 

zone water availability, and subsequently groundwater observed in Figure 4.8d. Root depth is 

based on the calculation of the root network density at depth. Using a generalised rate of 

decreasing root density, known as an extinction depth scale, the model calculates the depth at 

which the roots will reach a critically diminished value. Milly & Shmakin (2002a), assign this 

value a global constant of 0.5 Kg/m
3 

in the LaD model. In the AM2-LM2, the global constant 

was reduced to 0.125 Kg/m
3
 (Anderson, et al., 2004). Each land cover type has a different root 

biomass density at the surface which determines the root extinction depth (Milly & Shmakin, 

2002a). These values were drawn from Jackson, et al. (1996), where it was found that temperate 

grasslands have a substantially greater surface root biomass, meaning that in the LM2 component 

of the model, the grassland land cover type has a greater overall ZR (i.e. 0.26 m = GRASS; 0.25 

m = AGRIC). However, the difference is extremely small (1 cm). Additionally, the authors 

acknowledge a possible source of error in this methodology when a constant rate of biomass 

decay is applied to both natural and agricultural vegetation types (Milly & Shmakin, 2002a). No 
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solution or correction was recommended since, as noted previously, the original version of the 

model does not include the agricultural land cover definition.  

This change is seen in Figure 4.8d when root zone water storage is reduced by root depth, 

particularly during the spring and early summer months. The shallower root zone reaches field 

capacity sooner, draining water to the groundwater reservoir at a faster rate when field capacity 

is exceeded. This is seen in the significant increase in groundwater volume during this same time 

period. Shallower roots also limit evaporation. The model is designed to avoid water stress on 

the vegetation. It does not reduce water storage to below 75% of field capacity (equation 2.6). 

The remaining 25% of root zone water volume is smaller under the AGRIC scenario, reducing 

evaporation. This has a recursive effect on precipitation as less moisture is available in the 

atmosphere for convection and cloud formation. Nevertheless, a slightly shallower root zone is 

probably not able to initiate such a large response in the hydrologic cycle alone. The drier 

conditions and lesser evaporation and precipitation are also being driven by the higher summer 

temperatures and decreasing latent energy availability (Figures 4.2b & 4.7b). 

The second prescribed variable, roughness length, has an impact that is slightly more 

difficult to quantify in the response plots. Roughness length is related to the drag imposed on the 

vertical wind profile by the height of the vegetation. It represents the point at which the vertical 

wind profile represents a wind speed of zero (Oke, 1987; Rohli & Vega, 2008). In the model, 

grasslands are assigned a z0 of 0.07m and agriculture has a z0 of 0.4 m (Milly & Shmakin, 

2002a). This is reflected in the observed data which show that in general, prairie crops tend to be 

taller than the preceding vegetation (Cho, et al., 2012). In this case, the taller vegetation will alter 

the aerodynamic resistance which has implications in the model on the calculation of sensible 

heat as well as having an additional influence on evaporation over a vegetation surface (equation 
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2.6) (Milly & Shmakin, 2002a). Given an unlimited supply of water, evaporation would likely 

increase. That scenario is in agreement with the current literature which shows that under non-

irrigated conditions, the prairies dried very quickly, causing extended periods of drought 

(Rosenberg, et al., 1999; Cook, et al., 2007). But, under irrigated conditions, where water 

limitations are removed, greater convective activity and a greater proportion of convective 

storms have been observed (Raddatz & Hanesiak, 2008), indicating more evaporation. 

All of the changes, which have been noted above, including the significant decrease in 

precipitation, demonstrate that there is overall less water available in the entire prairie 

ecosystem. Following the chain of changes which occurred when the AGRIC scenario was 

imposed can be summarized by the following processes. First, height and root zone depth of the 

vegetation in the AGRIC scenario has lead to an increase in sensible heat and potential 

evaporation over vegetated surfaces. Second, the faster rate of drainage to the groundwater 

reservoir and the smaller field capacity constrains the available water for evaporation. Third, 

available atmospheric water decreases, reducing precipitation and putting more stress on the root 

zone, eventually slowing groundwater drainage. If the model had been run for a multi-year 

period instead of only 12 months, it is probable that this trend would have continued, eventually 

creating a desert environment over the prairies. 

 

4.2  Subdividing the Prairies 

Since the area under examination is so geographically large, and crosses several climatic 

zones, it is also useful to look at changes in climate at a smaller scale. Doing so makes it easier to 

account for the differences in inter-seasonal variability and snow accumulation at different 

latitudes. The prairies were divided into a northern and southern portion along the 45
o
 latitude 

line. The division was made at this latitude in order to emphasize the contribution of the snow 
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mass to the water balance. Snow melt is one of the contributing sources to root zone water 

storage (equation 2.5).  Figure 4.8c demonstrates that there is a small amount of snowfall 

between January and March, which does contribute to the root zone, and eventually groundwater 

reservoirs. The importance of snow mass becomes apparent in Figure 4.9. The majority of the 

response in groundwater storage is occurring north of 45
o
 latitude. Figure 4.10 demonstrates that 

under the GRASS scenario, the majority of prairie snow mass also occurred largely above 45
o
 

north. The response in snow mass is not very large or statistically significant (Figure 4.8d) but 

there is a change which is occurring during the winter months and the majority of that change is 

occurring above 45
o
 north. 

This change has indicated that there is a stronger connection between the volume of 

snowfall and the AGRIC land cover type than the original control GRASS type which may have 

been masked by evaluating the full extent of the prairies. In the examination of the prairies as a 

whole, water scarcity under the AGRIC scenario appears as a significant change to the 

environment. The separation of the northern and southern prairies helps to establish the 

importance of snow for maintaining soil water levels. 
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Figure 4.9: Map of response groundwater storage in Kg/m

2
 represented as described in Figure 

4.3. 

 

 
Figure 4.10: Map of GRASS snow mass in Kg/m

2
 represented as described in Figure 4.3. 
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Figure 4.11: Map of response snow mass in Kg/m

2
 represented as described in Figure 4.3. 

 

4.2.1 Northern Prairie 

When the prairie is divided into two regions, the difference in the radiation and 

hydrologic balances is more visible in the AGRIC case. The fourfold increase in snow mass in 

the northern prairie over the volume in the south, is the only variable that is substantially 

different between the two regions. Therefore, the rate of snow fall, in addition to the increased 

rate of precipitation, which is likely the result of cooler temperatures, is the fundamental 

difference in the north. The radiation balance shows that the increased water availability within 

the root zone is contributing to a greater latent heat component later in the year (Figure 4.12c). 

The change is because of evaporation, which is only limited by the field capacity of the root 

zone. The increase in overall precipitation (i.e. snow and rain) is allowing evaporation to 

continue without limitation (Figure 4.13a). These two changes to precipitation are visible in the 

root zone water storage which is draining at a faster rate to the groundwater reservoir, 

particularly in spring time as snow mass drops (Figure 4.13c).  

In the response plots, the radiation balance shows that the peak in outgoing longwave 

radiation is substantially greater, leading to a larger increase in sensible heat and decrease in 
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latent heat during the summer months (Figure 4.12d). The response temperature plot (Figure 

4.2b) shows this change with the greatest increase in temperature occurring in the north. These 

changes are a clear indication that the shorter rooting depth of the agricultural land cover type is 

allowing more of the incoming water to be evaporated or drained even faster. This is made clear 

in the water balance response plot where the springtime increase in groundwater is greater than 

the entire prairie case and that simultaneously, the total root zone water availability is much 

lower (Figure 4.13d). There is more water under greater demand. Subsequently, the decreases in 

measured precipitation and evaporation seen in Figure 4.13b, shows that the change in land cover 

type is increasing early year evaporation and subsequently, by the summer, all of the additional 

water has been either sent to the groundwater or evaporated away. All of these trends indicate 

that while the exact same changes are occurring, the presence of fourfold the amount of snow 

found in the northern prairies is impacting the water balance.  

 



71 
 

 
Figure 4.12a-d: Northern Prairie: (A) GRASS net radiation and (B) response net radiation in 

W/m
2
. (C) GRASS energy balance and (D) response energy balance in W/m

2
. Statistical 

significance is represetned as described in Figure 4.2. 
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Figure 4.13a-d: Northern Prairie: Atmospheric and land water balance as described in Figure 4.8. 

 

4.2.2 Southern Prairie 

Where the patterns were exaggerated in the northern prairies because of the additional 

snowfall, the decrease in average monthly total snow in the southern prairies has had the 

opposite effect on the hydrologic and radiation balances in the south. Less water availability in 

the spring in the control case is shown by a drop in the latent heat component after May (two 

months earlier than in the north) (Figure 4.14c). The control case water balance shows that there 



73 
 

is substantially less root zone water available throughout the year. This has repercussions on the 

rate of drainage and evaporation which more closely follows the rate of precipitation (Figure 

4.15a). This indicates that the root zone is under so much pressure that any new water is 

evaporated almost immediately, reducing the total volume that can be drained downwards. As 

precipitation drops off after mid-summer, total water availability is highly limited. In the 

response plots, the same patterns presented in both the whole prairie and northern prairie areas is 

still found, however, all of the changes are minimized. The change in temperature is very small 

and the difference in snow covered albedo is the smallest of the three regions (Figures 4.1b & 

4.2b). Any change that the taller crop species would have had on the fractional area covered by 

snow is minimal as there is less snow to begin with. These differences lead to the diminished 

(but still significant) increase in outgoing longwave radiation during July; and explain why the 

increase in sensible heat and decrease in latent heat are much smaller under the perturbation 

(Figure 4.14b). The drying effect that shifting vegetation will therefore have less of an impact in 

the south, not because the change is less powerful in the south but because there is less water 

available there (Figure 4.15b, c, and d).  
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Figure 4.14a-d: Southern Prairie: Net radiation and energy balance as described in Figure 4.8. 
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Figure 4.15a-d: Southern Prairie: Atmospheric and land water balance as described in Figure 4.8. 

 

4.3  Limitations and Summary 

This type of experiment provides a very good design for evaluating the influence of the 

change in land cover on the prairies in the simplest possible terms. It is able to evaluate the 

change over a specific ecosystem within a global model. Additionally, the minimized list of 

vegetation types and the strict definitions of each type based on a small set of prescribed 
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variables means that the results of the response can be more easily evaluated. However, these 

very advantages become limitations when trying to apply the results of this study to the real 

world situation. The oversimplification of the vegetation types means that both the grasslands 

and agricultural land cover definitions are representative of the average characteristics of these 

environments from around the world. In the case of grasslands, this is less of a limitation, as 

grasslands are biologically very similar no matter where they are found. A generalized 

agricultural definition however, is more complicated as agriculture includes a wide variety of 

plant classes. The land cover definitions used in this model are based on Matthews (1983). This 

study defined areas of agriculture, or cultivated lands, based on the percentage of permanently 

disturbed area for each of the other land cover types. In section 2.5, it was stated that the 

agricultural type does closely resemble a wheat variety, which is from the Dorman & Sellers 

(1989) classification scheme. This paper assigned the prescribed values to the different types 

outlined in Matthews (1983). That study does include an agriculture type which is called 

‘Broadleaf-deciduous trees with winter wheat’. This type is also shown to be primarily located 

over the North American Prairie area with some smaller areas in Eastern Europe and India. 

Because the amalgam of vegetation types used to define agriculture includes winter wheat 

(Dorman & Sellers, 1989), the relationship between the two types is still similar enough to the 

real world for the results of this study to be meaningful. Winter wheat is a major prairie crop and 

accounts for three quarters of all wheat grown in the United States (McPherson, Stensrud, & 

Crawford, 2004).  

In a similar vein, this methodology does not reflect the full extent of changes which have 

actually occurred on the prairies because of agriculture. The biggest difference is the lack of 

irrigation. As discussed in Chapter 1, irrigation is heavily relied upon to sustain prairie 
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agriculture, and the vast majority of water used for this purpose is drawn from groundwater 

reservoirs in the American prairies, the largest portion of this ecosystem (Scanlon, et al., 

2007).The methodology used to calculate the water balance in the LaD model disregards water 

once it enters the groundwater reservoir. While under natural grasslands, this mechanism 

simulates actual conditions. The groundwater aquifers are too deep influence surface conditions. 

Under an irrigated system however, this limitation would be overcome. Nevertheless, by not 

including irrigation in this model experiment, the results can be used to explain how quickly 

prairie agriculture would become unsustainable without irrigation. It would also demonstrate 

how agricultural disasters such as the Dust Bowl of the 1930s occurred when natural droughts 

were exacerbated by non-irrigated agriculture, as discussed in the literature review.  

A final limitation to this study is its short time scale. The model was only run for one 

year. This provides a good evaluation of the immediate impacts of changing land cover types, 

however the longitudinal influences are not shown by the response plots. In recognition of these 

study limitations, there are many possible future directions for research into land cover change in 

the prairies. The first would be an extension of the current model run. By comparing the residual 

in the energy balance and water balance over a number of years, it may be possible to establish 

whether the changes observed in this chapter would continue or if the environment would 

eventually reach a new equilibrium. Future research directions will be discussed in more depth in 

the next chapter. 
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Chapter 5: Future Research Possibilities and Conclusions 

5.1  Research Summary 

Anthropogenic modification of the surface of the planet has been going on for centuries. 

However, not until the mid-19
th

 century, in the centre of North America, was land cover change 

carried out so extensively and rapidly with little consideration to environmental maintenance 

(Ramankutty & Foley, 1999). The change to prairie land cover has impacted the land-atmosphere 

fluxes of energy and water and has put the region at greater risk of more intense, sustained 

drought periods. This has occurred due to differences between the original grasslands and the 

replacing agricultural crops at a biological, field, and ecosystem scale. Agricultural development 

in the North American prairies has introduced a completely new ecosystem on a continental 

scale. 

 This thesis was conducted to try and answer the question: does agriculture have a 

recognizable influence on prairie climate which can be separated from all other climate forcings, 

and can this influence be observed at the continental scale. The research was undertaken in two 

sections. The first was a strictly observation-based examination of change to climate over the 

20
th

 century, the period of greatest land cover change. This was carried out in two phases. First, 

by comparing changes from the beginning of the century to the end of the century, and the inter-

annual variations in temperature, atmospheric water vapour content (WVC), and convective 

available potential energy (CAPE) using the 20
th

 Century Reanalysis Product (20CR), it was 

observed that temperatures cooled slightly while WVC increased. Additionally, it was found that 

there was more WVC over cropped areas and that these places were cooler when compared to 

areas that had remained largely natural. Second, after it was observed that the results from the 

20CR product were biased towards changes occurring in the troposphere, the Observation Minus 

Reanalysis (OMR) method was applied. By subtracting the 20CR from in-situ station 
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temperature data, the experiment was focused on temperature changes from within the boundary 

layer. From both observation datasets, temperature was still found to be cooler over agricultural 

areas, but increasing over time. Both components of this section provided some evidence that 

agricultural development was creating some modifications to the expected prairie climate. 

However, producing any specific analysis from this experiment is problematic because of the 

numerous sources of error in long term observation datasets. Additionally, both the reanalysis 

and the OMR methodologies are unable to definitively isolate the land cover signal from the 

larger climate change noise. A much more efficient way to directly evaluate the influence of land 

use and land cover change (LULCC) is through a modelling study where the problems of in-situ 

network density and climate change can be overcome. 

 The second section of this thesis used the AM2-LM2 atmosphere-land model to directly 

compare climate when the prairie region was completely overtaken by agriculture (AGRIC) 

against a totally natural environment (GRASS). It found that there is a statistically significant 

change in albedo, temperature, and in the fluxes of energy and water, particularly during the 

spring and summer months. Under the AGRIC simulation, the prescribed reduction in albedo 

forced a change to the net radiation, reducing outgoing shortwave radiation and causing surface 

temperatures to increase. The reduced field capacity (shallower root zone) meant that PET was 

reached more quickly, and the excess energy was transformed into sensible heat, which then 

further contributed to increasing surface temperatures. Both of these changes combined to reduce 

water available for precipitation, creating a deficit within the root zone, which was 

simultaneously drying faster and receiving less precipitation input. Overall, this section 

demonstrated that the major difference between a natural and a cropped prairie is a hotter and 

drier climate under agriculture. 
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Due to the limitations in the two observation studies, it is also evident that LULCC 

carries a very small signal in the larger climate variability found in North America, which 

includes sources of both forced (e.g. greenhouse gases) and natural (ENSO and PDO) climate 

variability. Nevertheless, by controlling for these other processes in the modelling experiment, it 

becomes apparent that land cover change does have an influence on prairie climate. All of the 

changes found in that study were the result of the change to the land cover, the only variable that 

was changed in the AGRIC scenario. The results of this study have therefore achieved the 

purpose of this thesis, which was to determine if the influence of LULCC on prairie climate 

could be recognized. While the results are not strong enough to conclusively state the strength of 

this connection outside of a modelled environment, the 20CR and OMR studies suggested that 

there was a connection, despite the difficulties in separating the LULCC signal from the 20
th

 

century trends, which was largely supported by the significant and more robust response found 

using the AM2-LM2 model. This also offers support to the hypothesis stated in section 1.4. 

While the results of these experiments cannot be used to conclusively quantify the exact forcing 

of LULCC on climate, they have demonstrated that a relationship exists at the continental scale. 

The most important result of this thesis was that it opened up a series of possible future research 

directions to be explored. Additionally, it helps to emphasize the argument made by Pielke, Sr., 

et al. (2005), that the study of LULCC and its role in anthropogenic climate change remains 

underdeveloped. 

 

5.2  Future Directions 

These results open several possible future research directions. A first route would be to 

further refine the modelling experiment of Chapter 4. The changes in the water balance are 

explained as the result of the combined change in the root depth (ZR) and roughness length (z0). 
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In order to understand the separate influence of each of these prescribed variables would require 

the creation of two new land cover types in the land model. Each would be identical to the 

AGRIC scenario but one of ZR and z0 would be reset to match the GRASS value. Then the water 

balance results from both of these new scenarios would be compared with the AGRIC scenario 

from the original experiment. Because it was noted that the influence of a greater roughness 

length is difficult to directly attribute onto changes to the hydrologic cycle, this experiment 

would help to isolate that influence. Additionally, it would clarify exactly how significant the 

influence of the 1 cm decrease in ZR is, which initially appeared to be a very small change. 

As extensions of the original modelling experiment, there are three different research 

directions that could be carried out using the same AM2-LM2 coupled model. The first would be 

to expand the scope of the model study. This could be done in several ways. The first would be 

to run the GRASS and AGRIC scenarios for multiple years in order to evaluate the long term 

changes which would appear in the response plots. Without such an analysis, it cannot be stated 

definitively if the presented results are representative of the beginning of a long term trend or if 

they are a one year anomaly, which would re-equilibrate after a short period of time. A second 

way would be to use more than one model as part of an ensemble. Because the LaD component 

of the AM2-LM2 model is so simplistic, using a series of more complex models could paint a 

more realistic picture of the true influences of agriculture on prairie climate. This would also 

provide a stronger result for changes to the hydrologic cycle, including how evaporation from 

surface water bodies occurs when it is not immediately taken up by the vegetation layer or is 

drained to the groundwater. These are simple changes which could easily be integrated into a 

next steps project. The second and third directions are more involved proposals. 
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The second future research direction would be to force the agricultural definition in the 

LaD model to better represent the variety of crop types found on the prairies. Currently, the 

agriculture land cover type is completely static and is represented by a generalized winter wheat 

definition. Additionally, there is no allowance for irrigation or timed growing season within the 

model structure. To create a more accurate representation of the prairies would entail the creation 

of a completely new map of the prairies under an agricultural regime where the land cover type 

is determined for each cell based on the majority crop type grown therein. Monfreda, 

Ramankutty, & Foley (2008) identify each major crop type group (corn, barley, etc.) and their 

map series, which show the percentage of each 5 min resolution cell dominated by each group, 

could be used as a mask to identify these areas. This map would also have to include a period of 

bare soil both before germination and after harvest time. This would require controlling the land 

cover type on a monthly basis as the model is running. Irrigation can be introduced by either 

increasing the residence time within the root zone or by artificially increasing the rate of 

precipitation. To achieve the former, either the rooting depth of the crop land cover types could 

be extended or the field capacity could be increased, delaying drainage to the groundwater 

reservoir. Because water is completely separated from the vegetation and surface layers once it 

reaches the groundwater reservoir, and discharge to the riverine systems is controlled almost 

uniformly around the world by a constant 30 day residence time, reducing the overall volume of 

water in the groundwater will not have an impact on the results produced by the model. The later 

method, altering precipitation, would require a thin layer of water to be added directly to the root 

zone reservoir. This would be ‘new’ water in the hydrologic cycle. Alternatively, the LM2 model 

could be run in ‘offline’ mode with prescribed meteorology (Milly & Shmakin, 2002a). The 

recognized difference (Chapter 1) between the rate and patterns of growth between crops and 
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grassland species, as well as the differences in albedo as each plant type develops makes this a 

potentially interesting future research direction. 

The third and final primary research direction is the utilization of field research. This 

would shrink the geographic scope of the research to a field scale but it would allow for a more 

complete image of water and energy fluxes under different vegetative environments. This 

approach would also produce a more accurate image of the timing of crop growth and the 

influence of irrigation. Irrigated and non-irrigated fields could be compared under different crop 

types. Overall, a combination of the above three future directions would be a good next step for 

this type of research. Integrating field observations with a more complex model system could be 

better used to evaluate how agriculture has impacted the prairies. Additionally, such a research 

project could be used to address a noted gap in the literature. Many sources discount the 

influence that land use and land cover change can have on climate because its signal in climate 

records is easily masked by other, larger variables like climate change, particularly in the 20
th

 

century (Kalnay, et al., 2006). While the results presented here can be used alone to demonstrate 

a link between prairie LULCC and climate, it is apparent that there are still many other avenues 

of research that could be used to more accurately describe this relationship. However, in order to 

properly design and carry out such future research projects, the foundational connection had to 

be first established. That requirement has been largely met by this thesis, the results of which can 

now be carried forward in any of the future research directions outlined in this chapter. 
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