An Investigation of Word Sense Disambiguation
for Improving Lexical Chaining

by

Matthew John Reinhard Enss

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2006
(© Matthew Enss 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

This thesis investigates how word sense disambiguation affects lexical chains,
as well as proposing an improved model for lexical chaining in which word sense
disambiguation is performed prior to lexical chaining. A lexical chain is a set of
words from a document that are related in meaning. Lexical chains can be used to
identify the dominant topics in a document, as well as where changes in topic occur.
This makes them useful for applications such as topic segmentation and document
summarization.

However, polysemous words are an inherent problem for algorithms that find
lexical chains as the intended meaning of a polysemous word must be determined
before its semantic relations to other words can be determined. For example, the
word bank should only be placed in a chain with money if in the context of the
document bank refers to a place that deals with money, rather than a river bank.
The process by which the intended senses of polysemous words are determined is
word sense disambiguation. To date, lexical chaining algorithms have performed
word sense disambiguation as part of the overall process of building lexical chains.
Because the intended senses of polysemous words must be determined before words
can be properly chained, we propose that word sense disambiguation should be
performed before lexical chaining occurs. Furthermore, if word sense disambigua-
tion is performed prior to lexical chaining, then it can be done with any available
disambiguation method, without regard to how lexical chains will be built after-
wards. Therefore, the most accurate available method for word sense disambigua-
tion should be applied prior to the creation of lexical chains.

We perform an experiment to demonstrate the validity of the proposed model.
We compare the lexical chains produced in two cases:

1. Lexical chaining is performed as normal on a corpus of documents that has
not been disambiguated.

2. Lexical chaining is performed on the same corpus, but all the words have been
correctly disambiguated beforehand.

We show that the lexical chains created in the second case are more correct than
the chains created in the first. This result demonstrates that accurate word sense
disambiguation performed prior to the creation of lexical chains does lead to better
lexical chains being produced, confirming that our model for lexical chaining is an
improvement upon previous approaches.

1ii

Acknowledgments

First and foremost I would like to thank my supervisor, Chrysanne DiMarco,
for all her support. It was Chrysanne who led me to the field of computational
linguistics, and supported my interest in classical linguistic approaches despite the
prevailing obsession with statistical methods. Without her help this thesis would
not have been possible.

I would also like to thank my readers, Robin Cohen and Randy Harris, for their
suggestions and corrections, as well as for actually reading my thesis. Randy was
also the person who initiated my interest in the field of linguistics when he taught
my first course on the subject during my undergrad.

Brenda McBay, Jessica Miranda, and Margaret Towell deserve much thanks for
having shepherded me through the administrative trials and tribulations that come
with grad school.

I thank my parents Karen and Bo, and my siblings Daniel, Raina, Rhiannon,
and Gabriel, for their love and support throughout all of my university studies.

Last, but certainly not least, I would like to thank my friends in the Artificial
Intelligence lab, including Laurent Charlin, Greg Hines, Reid Kerr, Fred Kroon,
Rado Radoulov, Tyrel Russell, Martin Talbot, and John Whissell. Not only did
they lend me their knowledge, advice, and support, they also ensured that grad
school was about more than just courses and research.

v

Dedication

This is dedicated to my parents, Karen and Bodo Enss, for whom I am eternally
grateful.

Contents

1 Introduction

2 Background

2.1 Lexical cohesion o
2.2 Lexical chains in Morris and Morris & Hirst

2.2.1 An algorithm for building lexical chains
2.3 Word sense disambiguation
24 WordNeto
2.5 Semantic relatednesso

3 Literature review

3.1 Hirst and St. Onge L
3.1.1 Allowed paths
3.1.2 Chain creation oL
3.1.3 Word sense disambiguation

3.2 Barzilay and Elhadado

3.3 Silber and McCoy

3.4 Galley and McKeown oo

3.5 Stokes

4 An improved model for lexical chaining

vi

© 00 = ke~

10
13

17
17
19
19
20
21
23
24
26

28

5 Experiment

5.1 Our lexical chaining algorithm

5.1.1 The first pass

5.1.2 Thesecond pass.

5.1.3 Runtime . . .
52 Corpus
5.3 Method

5.3.1 The output of our experiment

5.4 Comparing chains . .

5.5 Hypotheses of this experiment

5.6 Results.
5.7 Discussion

5.7.1 Longest chains

5.7.2 Improvement in chains with perfect disambiguation

5.7.3 FErrors in perfect chains

5.7.4 Incorrect disambiguation leads to better chains

5.7.5 Correct chains that cannot be created

5.7.6 Validity of our

model

5.7.7 Why incorrect disambiguation is sometimes useful

6 Conclusion

6.1 Future work

6.2 Applications using lexical chaining

6.3 Identifying related senses of the same word

6.4 Thesis contributions

A Brown corpus portion of the SemCor corpus

vil

34
34
35
37
40
41
43
44
44
46
46
52
92
93
93
o4
95
o7
o7

61
61
61
62
63

66

List of Figures

2.1
2.2
2.3
24
2.5

2.6

5.1
5.2
2.3
0.4
2.5
2.6
2.7
5.8
5.9

Noun senses of bat from Roget’s Thesaurus [26] 10
WordNet sense entry for the flying mammal meaning of bat [1] . . . 11
Unique beginner noun senses in WordNet [1] 12
All noun senses of bat in WordNet 13
Shortest path between Doberman and Labrador retriever in WordNet

(1] 15
Shortest path between water and human in WordNet [1] 16
Algorithm for metachain creation 35
Sample metachain table 00000 36
Algorithm for chain selection 38
Silber and McCoy term-based score function [29] 39
Chain selection example 40
The brownl1 section of the SemCor corpus 42
Algorithm for computing perfect and classic chains 43
Number of lexical chains by length 47
Shortest path from church_building to Christian_church in WordNet

(1] . 60

viil

Chapter 1

Introduction

Coherent text generally has the property of cohesion: the elements in the text
“stick together” to form a meaningful whole. The cohesion in a text is a product
of the syntactic and semantic relations between elements in the text. Among the
relations that create cohesion are semantic relations which exist between words
related in meaning. These semantic relations create a unity in meaning for the
text, such that the text is about the concepts the related words have in common.
For example, a passage that is about tools might contain the semantically related
words screwdriver, hammer, and drill. These words are semantically related because
they are all kinds of tools and are used for assembling and disassembling.

Halliday and Hasan [9] describe in detail how lexical cohesion is achieved in a
text. Morris [20] formalized their ideas about cohesion and semantic relations into
a concept she called lexical chains. Lexical chains are chains of semantically related
words in a text. Morris showed that lexical chains could be used to determine
which subjects were being discussed where in a text, in effect mapping out the topic
structure of the text. She also presented an algorithm for discovering lexical chains
in a document. However, this algorithm could not be implemented on a computer
because it used Roget’s Thesaurus [26], which was not then machine-readable, to
determine how words were related in meaning. For example, hammer and drill are
both listed in the tool category in Roget’s thesaurus, so Morris’s algorithm would
place them together in a lexical chain.

Since Morris’s work there have been multiple computer-based lexical chaining
algorithms developed. Almost all these lexical chaining algorithms use WordNet [1]
to determine how words are semantically related. However, WordNet-based lexical
chaining algorithms have difficulty with polysemous words, as it is necessary to first
determine their intended meaning in the document to properly chain them. For

example, if orange occurs in a document, it may refer to the colour orange or to the
fruit of the same name. It is only related semantically to words such as apple and
kiwn if it is being used as a fruit, and therefore its membership in a chain containing
apple and kiwi depends on its intended meaning in the surrounding context.

Determining the intended meaning of a polysemous word in a given context is
known as word sense disambiguation, and is a classic unsolved problem in Computa-
tional Linguistics. All the lexical chaining algorithms we present perform word sense
disambiguation in the process of building lexical chains. In this thesis we argue that
word sense disambiguation is a vital part of building lexical chains, that correctness
in word sense disambiguation performance is directly related to the correctness of
the lexical chains produced, and that for the best lexical chaining performance,
word sense disambiguation should be performed prior to chain creation. The cen-
trepiece of our thesis is an experiment in which a lexical chaining algorithm is first
run on a document corpus for which the words have already been disambiguated,
and subsequently run without the disambiguation information. This experiment
will allow us to determine what effect, if any, accurately performing word sense
disambiguation before building lexical chains has on the correctness of the lexical
chains built. Our results show that prior accurate word sense disambiguation sig-
nificantly improves the correctness of the lexical chains produced, regardless of how
the word sense disambiguation is performed.

The layout of this thesis is as follows:

Chapter 2 provides the background material necessary for understanding com-
putational approaches to lexical chaining. First we present the work of Halliday
and Hasan [9] on lexical cohesion and explain how it provides the linguistic basis
for lexical chains. We then describe Morris’s [20] original lexical chaining algorithm
in detail. Together these two works provide the theoretical foundation for all sub-
sequent lexical chaining research. We follow this background material with detailed
descriptions of WordNet (a form of machine-readable thesaurus), word sense dis-
ambiguation, and semantic relatedness. Knowledge of all three of these subjects is
necessary for understanding the lexical chaining algorithms we present in Chapter

3.

Chapter 3 is our literature review, where we survey the main lexical chaining
algorithms. The algorithms we present are from Hirst and St. Onge [11], Barzilay
and Elhadad [3], Silber and McCoy [27] [28] [29], Galley and McKeown [7], and
Stokes [31]. We pay particular attention to how the algorithms perform word sense
disambiguation.

Chapter 4 presents the theoretical basis for our claim that word sense disam-
biguation should be performed prior to lexical chaining. We describe how the

approaches used by lexical chaining algorithms to perform word sense disambigua-
tion are constrained. We argue that with an ideal semantic relatedness measure,
improved word sense disambiguation will always lead to improved lexical chaining
performance. We then outline our experiment for testing the effect of perfect word
sense disambiguation on lexical chaining.

Chapter 5 contains the complete description of our experiment and results, in-
cluding a detailed specification of the lexical chaining algorithm we used. Our
lexical chaining algorithm is a slight but significant modification of Silber and Mc-
Coy’s lexical chaining algorithm [27] [28] [29]. Our results show that performing
perfect word sense disambiguation before lexical chaining significantly reduces the
number of incorrect chains created. However, our results also indicate that in some
cases errors in word sense disambiguation allow for correct lexical chains that are
not possible with perfect word sense disambiguation.

Chapter 6 contains our future work and our conclusions. We describe two areas
for future work that stem from this thesis. The first is changing existing lexical
chaining algorithms to perform word sense disambiguation prior to chain creation.
We also briefly cover how other applications that use lexical chains can be used
to further evaluate our results. The second direction is improving WordNet to
incorporate semantic relations that we identify in our experiment. We conclude with
a summarization of our results and contributions, the concluding principles being
that accuracy in word sense disambiguation is necessary for good lexical chaining
performance and word sense disambiguation should be performed separately from
lexical chain creation.

Chapter 2

Background

In this chapter we start by presenting Halliday and Hasan’s work on lexical cohesion
[9]. It provides the linguistic basis for Morris [20] and Morris and Hirst [21], which
we describe next. It was Morris who first proposed and defined “lexical chains”
[20]. After describing Morris’s work, we present the background material necessary
for understanding how computer-based algorithms for lexical chaining work.

2.1 Lexical cohesion

For a text to make sense, it must be more than just grammatically correct. Mean-
ingful text is about something, a topic, and as such the words in the text will be
related to that topic in meaning. For example, this paragraph and the following
one are both about cohesion in text, hence the repeated use of the words cohesion
and text, as well as words related to them such as topic, words, meaning, etc.

Halliday and Hasan [9] give a comprehensive description of how cohesion in
text is created in their seminal book on the subject, Cohesion in English. As they
describe it, cohesive text “hangs together as a whole.” Cohesion exists in part as
relations between semantically related parts of the text. These relations include
lexical cohesion relations, or relations between pairs of words. Lexical cohesion
relations are very useful for computational methods because they can be defined
formally.

Morris and Hirst [21] describe Halliday and Hasan’s relations as being divided
into five classes (definitions and examples produced verbatim):

1. Reiteration with identity of reference:

4

e Mary bit into a peach.

e Unfortunately the peach wasn’t ripe.
2. Reiteration without identity of reference:

e Mary ate some peaches.

e She likes peaches very much.
3. Reiteration by means of a superordinate:

e Mary ate a peach.
e She likes fruit.

4. Systematic semantic relation (systematically classifiable):

e Mary likes green apples.

e She does not like red ones.
5. Nonsystematic semantic relation (not systematically classifiable):

e Mary spent three hours in the garden yesterday.
e She was digging potatoes.

Morris and Hirst make a clear distinction between the first three classes and
the last two. As they point out, the first three classes all involve reiteration, what
Halliday and Hasan call the “repetition of a lexical item.” In the first two cases the
repetition is obvious as the same word, peaches, has been used twice. Superordinate
terms provide repetition because the superordinate includes the subordinate in the
entity to which it refers, e.g., fruit refers to peaches as well as to all other kinds of
fruit.

Morris and Hirst describe the fourth class as systemically classifiable because the
words are related by a specific semantic relation that is easy to identify. Examples
of these easy-to-identify relations that they give include: set membership (e.g., {red,
green, blue, ...}), antonymy, and part-to-whole relationships (e.g., wing-airplane).
In fact, each of the first four classes of relations can be determined systemically.
Identifying the repetition of a word (classes one and two) is just text-matching.
Identifying superordinate terms is done by comparing one word to the parents of
another in a hierarchical categorization of all the words in the language. Deter-
mining the hierarchical categorization is not easy, but can be done (see WordNet
[1], which we discuss later). The systemic semantic relation can be determined in

5

largely the same way as superordinate terms are recognized, as WordNet includes
both part-of and antonym relations. Determining whether two words belong to a
semantically related set such as {red, green, blue} just requires an enumeration of
all the allowable sets that can be searched.

It is the nonsystematic semantic relation that is troublesome for any automated
processing of cohesion, precisely because there is no system for determining it. In
the example given, garden and digging are related because digging is an action that
people perform in a garden. Other kinds of relations that fall into this category
include entities and actions the they perform (wheel, roll), entities and the adjectives
often applied to them (car, fast), and objects that are used as part of the same
activity (spoon, pot). However, the list of possible relations covered by this class
is so expansive that it is extremely difficult identify all of them with an algorithm.
Even listing all the possible relationships that fall into this category may not be
possible. Morris and Hirst do not define the relations belonging to this class, saying
only that “the exact relationship between these words can be hard to classify, but
there does exist a recognizable relationship.”

While the above five classes of relations are often used to define semantic rela-
tionships in lexical chaining algorithms, there are three different classes of semantic
relation that are also often used: semantic similarity, semantic relatedness, and
semantic distance.

Semantic similarity is a measurement of the degree of similarity between two
concepts. For instance, cars and trucks are similar in that both perform the same
function, are very similar in construction (both have wheels, engine, seats, doors,
etc.), and are used in generally the same way (driven by people on roads).

Semantic relatedness is much more broad, encompassing any possible relation
between two items. As such, it is equivalent to the union of Morris and Hirst’s five
classes of relations. In this way, semantic relatedness includes semantic similarity;
two items can be semantically related by being semantically similar. Beyond simi-
larity, semantic relatedness includes any semantic relation between two items, even
if the kind of relation cannot be defined.

Semantic distance is the inverse of semantic relatedness. It measures the degree
to which two concepts are unrelated. If two terms are strongly semantically related
then the semantic distance between them is small. Conversely, if two items are
dissimilar then there is great semantic distance between them.

While semantic relatedness encompasses all five of Morris and Hirst’s classes of
relations, semantic similarity is roughly equivalent to the first three classes and part
of the fourth. When a term is repeated (classes one and two) then obviously the

two identical terms are similar in meaning—we can say that they are maximally
semantically similar. Superordinate terms have features that are shared by their
subordinates, and hence they are similar in their features. For example, robins are
semantically similar to birds because robins have wings, feathers, a beak, etc., just
like all birds. With regard to the fourth class, systemic semantic relations, there is
similarity between two members of the same set (such as the red, green example).
But other systemic semantic relations, such as meronymy, do not imply similarity:
a wheel is not very similar to a car, even though a car has wheels; they are very
different in their function and appearance.

The above five classes are presented here because they provide the basis for
Morris and Hirst’s original description of how lexical chains should be created.
Furthermore, these classes have been used as the basis for relations in most of the
lexical chaining algorithms that have been written since (in particular Hirst and St.
Onge [11], Barzilay and Elhadad [3], Silber and McCoy [29], and Stokes [31]). In
the section on semantic measurements we explore in detail how semantic relations
can be determined computationally.

2.2 Lexical chains in Morris and Morris & Hirst

Morris [20] (and later in Morris and Hirst [21]), first proposed the idea of lexical
chains, which they described as “sequences of related words”. These lexical chains
would indicate the cohesive structure of a text, as defined by Halliday and Hasan [9].
The relations between the words in the chains are those we listed above, adapted
from Halliday and Hasan.

Here is a sample lexical chain in a passage of text from Morris and Hirst [21]:

In front of me lay a wirgin crescent cut out of pine bush. A dozen
houses were going up, in various stages of construction, surrounded
by hummocks of dry earth and stands of precariously tall trees nude
halfway up their trunks. They were the kind of trees you might see in
the mountains.

Morris and Hirst investigated the use of using lexical chains to determine the
discourse structure of a text as defined by Grosz and Sidner [8]. Morris and Hirst’s
goal was to automatically discover discourse segments, which are segments of a text
that are about a single topic or subject. Automatic discovery of discourse segments
is an important step in determining discourse structure, and Morris and Hirst were

7

able to show that the boundaries of the lexical chains (i.e., where the chains start
and end in the text) formed by their algorithm corresponded strongly with the
divisions between discourse segments.

2.2.1 An algorithm for building lexical chains

Before lexical chaining can be performed on a document, the words to be considered
for chaining must be selected. These words are referred to as the candidate words
for the document. Morris and Hirst did not specify how to choose candidate words,
but did rule out pronouns, prepositions, and verbal auxiliaries. They also excluded
high-frequency words, listing good, do, and taking as examples.

According to Morris and Hirst’s description of a general lexical chaining algo-
rithm, a word is placed into a chain by virtue of the scored relations between it
and the other words in that chain. There are two factors used to determine the
relations scores between two words: the semantic relatedness between the words
and the physical distance between the words in the document.

The distance between words is important for two reasons. First, if two words
are related in meaning but are far apart in the text, then they may not actually
refer to each other. For example, if grow and fruit occur in the same sentence, it
is much more likely that grow actually refers to the fruit growing or being grown
than if grow appears in a separate sentence or paragraph. Secondly, even if a word
is repeated, if the second occurrence happens much later in the text then the text
between the words may not have anything to do with the words. In this case,
the subject of discussion to which both words relate ended, the subject changed,
but then the discussion returned to the original subject. Morris and Hirst term
these occurrences as chain returns. Properly identifying chain returns was a very
important goal for Morris and Hirst, as these correspond to breaks in the discourse
segments. In examining a small set of documents, Morris and Hirst found that
two semantically related words could be at most three sentences apart and still be
linked together in a chain. Beyond three sentences, a semantically related word can
only indicate a chain return.

Some of the lexical chaining algorithms that we present later do not identify
breaks in chains or chain returns. As a result, the lexical chains they produce are
not suitable for discourse analysis, but are still useful for other applications we
mention later.

Morris and Hirst used Roget’s Thesaurus [26] to identify most semantic relations
between words. The thesaurus groups words into categories, where a category is a

list of words that are all related in meaning. The thesaurus does not specify the
nature of the relation. Morris and Hirst also used links between the categories and
the manner in which the thesaurus groups the categories to determine relations. We
do not go into details of the thesaurus’s organization or Morris and Hirst’s methods
for determining relations as neither is relevant to later lexical chaining algorithms,
which generally use WordNet [1] to determine semantic relations.

Morris and Hirst did not implement their lexical chaining algorithm on a com-
puter because Roget’s thesaurus was not available to them in a machine-readable
form. However, that is not the only problem that they would have to overcome to
automate their algorithm, as Morris and Hirst were also determining the meaning
of polysemous words by hand. If a word is polysemous, then it appears in multiple
categories in Roget’s Thesaurus. When polysemous words were encountered by
their algorithm, Morris and Hirst used their own judgement to decide which cat-
egory in the thesaurus applied to the particular instance of the polysemous word.
For a lexical chaining algorithm to be completely automated, it must determine
the intended meaning of any polysemous words itself. This thesis focuses on the
problems inherent in handling polysemous words, and the effect these problems
have on the lexical chains produced.

2.3 Word sense disambiguation

We now turn our attention to the problems inherent in modeling the meanings
of words, and the relations between those meanings, in computational Natural
Language systems.

Many words in the English language have multiple meanings or senses. For
example, bat can refer to both a baseball bat and a flying mammal, among other
meanings. However, when a word is used in a document usually only one of its
possible meanings is intended, and it is the context surrounding each word’s use
that makes the intended meaning unambiguous. In the phrase “bats often sleep
in caves”, bats refers to flying mammals and not baseball bats, as flying mammals
sleep and baseball bats do not. In this context, bats should not be put in a lexical
chain with baseball-related terms such as glove, home run, and outfield. Likewise,
the baseball meaning of bat should not be chained with words such as wings and
echolocation.

Because Morris and Hirst’s lexical chaining algorithm was not automated, they
manually disambiguated (i.e., determined the intended meaning) of every candidate
word themselves. All lexical chaining algorithms proposed since have disambiguated

the candidate words automatically in the course of building the lexical chains.
Automatic word disambiguation requires a machine-readable lexicon that lists all
the possible senses for all the possible candidate words. A single sense is then
selected for each word before it is placed in a chain. Morris and Hirst used Roget’s
Thesaurus [26] as their lexicon. The thesaurus contains an index of all its words,
and under each word all of its different meanings are listed. Each different meaning
is described with a single word or short phrase (Figure 2.1 lists the different noun
senses of bat in Roget’s Thesaurus) and an index to the category for that meaning.
The category entry is a list of words related to the noun sense from the index.

e blind 441.4

e hit 283.4

e mammal 414.58; 415.8
e plaything 878.16

e revel 878.6

e spree 996.5

Figure 2.1: Noun senses of bat from Roget’s Thesaurus [26]

Morris and Hirst did not attempt to implement their lexical chaining algorithm
because no machine-readable version of Roget’s thesaurus was available to them.
Since then, the 1911 version of Roget’s thesaurus has been made available online,
but Hirst and St. Onge [11] claim it is unusable for lexical chaining for two reasons:
it lacks an index of the words and its information about the English language is
outdated. Instead the vast majority of lexical chaining algorithms developed since
Morris and Hirst have used the electronic lexical database WordNet [1] as their
lexicon of word senses.

2.4 WordNet

WordNet [1] is a linguistic ontology of English words. By design, it is easily accessed
in computational form, making it an ideal resource for Natural Language applica-
tions, especially lexical chaining algorithms. WordNet is based on psycholinguistic
principles, so it is possible to search for words conceptually, rather than just lexi-

10

Synset

Index

Gloss

{bat, chiropteran}

2055000

“nocturnal mouselike mammal with forelimbs
modified to form membranous wings and
anatomical adaptations for echolocation by
which they navigate”

Figure 2.2: WordNet sense entry for the flying mammal meaning of bat [1]

cally as in a dictionary. In this way, WordNet is very similar to a thesaurus such

as Roget’s [5] 1.

Figure 2.2 shows a sample sense entry from WordNet. Each WordNet sense has
three attributes defined as follows:

e Synset: Synset is short for “synonym set”. A synset is a set of all the words
that are synonyms for the sense. In the sample sense, bat and chiropteran are
synonyms for “flying mammal”, where chiropteran is the scientific term for
this order of mammals.

e [ndex: The index of a sense is an integer that is a unique identifier for the

sense.

e (loss: The gloss is a short description of the sense. The purpose of the gloss
is to make the meaning of the sense clear to the average English reader. It
is often similar to a definition but not necessarily so. Some glosses contain
examples of one of the synonyms being used.

WordNet contains only nouns, verbs, adjectives, and adverbs. Commonly used
lexical chaining algorithms to date have used only nouns as candidate words, so we
look only at the noun portion of WordNet.

WordNet contains a number of formal semantic relations between senses. Among
nouns, the most prominent relations are hypernymy and hyponymy. Sense a is a hy-
pernym of sense b if a entirely encompasses b. For example, mammal is a hypernym
of elephant because all elephants are mammals. The hyponym relations goes in the
other direction: if a is a hypernym of b, then b is a hyponym of a. This relationship
is also referred to as the is-a or kind-of relationship, as we can say that an elephant

L All the information presented here pertains to version 2.0 of WordNet, though most of it also
applies to previous versions as well. Throughout this thesis, any reference to WordNet refers to

version 2.0.

11

is-a mammal or that an elephant is a kind-of mammal. We also refer to the hy-
ponyms of a sense as its children and a sense’s hypernyms as its parents. As well,
two senses are siblings if they have a common parent. We recursively define the
descendants of a sense as its children, and all children of its descendants. Likewise,
a sense’s ancestors are its parents, and all parents of its ancestors. For example,
mammal is an ancestor of all senses that refer to specific kinds of mammals, and all
the specific kinds of mammals are descendants of mammal. The hypernymy and
hyponymy relations among the nouns form a hierarchy of nouns. This hierarchy is
a directed acyclic graph, and our use of parents, children, siblings, ancestors, and
descendants is consistent with their use with regards to directed acyclic graphs [5]
[18].

Most noun senses in WordNet have only a single parent, so large portions of the
noun hierarchy have a tree structure. However, the noun hierarchy does not have a
single root sense from which all other senses descend. Instead there are nine noun
senses with no parents (listed in Figure 2.3) which are referred to as the unique
beginners.

Synset Gloss

{entity} that which is perceived or known or inferred to
have its own physical existence (living or nonliv-
ing)

{psychological feature} | a feature of the mental life of a living organism

{abstraction} a general concept formed by extracting common
features from specific examples

{state} the way something is with respect to its main at-

tributes; “the current state of knowledge”; “his
state of health”; “in a weak financial state”

{event} something that happens at a given place and time

{act, human_action, | something that people do or cause to happen

human _activity}

{group, grouping} any number of entities (members) considered as a
unit

{possession } anything owned or possessed

{phenomenon} any state or process known through the senses

rather than by intuition or reasoning

Figure 2.3: Unique beginner noun senses in WordNet [1]

In addition to hypernymy and hyponymy, the other semantic relations between
nouns in WordNet are meronymy, holonomy, and antonymy. Sense a is a meronym

12

Synset Index Gloss

{bat, chiropteran} 2055000 | nocturnal mouselike mammal with forelimbs
modified to form membranous wings and
anatomical adaptations for echolocation by
which they navigate

{bat, at-bat} 434369 | (baseball) a turn batting; “he was at bat when
it happened”; “he got 4 hits in 4 at-bats”

{squash racket, | 4127511 | a small racket with a long handle used for play-

squash racquet, bat} ing squash

{cricket bat, bat} 3018500 | a bat used in playing cricket

{bat} 2708091 | a club used for hitting a ball in various games

Figure 2.4: All noun senses of bat in WordNet

of sense b if a is a part of b. For example, chain is a meronym of bicycle because
a chain is part of a bicycle. If a is a meronym of b, then b is a holonym of a.
Meronymy is often referred to as the part-of relation, and holonymy is often referred
to as the has-a or contains relation. Antonymy exists between senses that are the
opposite of each other. For example, back and front are antonyms. Meronymy,
holonymy, and antonymy are all much less prevalent in WordNet than hypernymy
and hyponymy, and many semantic relatedness measurements and lexical chaining
algorithms ignore them.

If a word has multiple meanings, then it appears in multiple synsets. The set
of possible meanings of a word w in WordNet is the set of all senses such that the
synsets of those senses contain w. For example, Figure 2.4 lists all the noun senses

of bat in WordNet.

Lexical chaining algorithms developed since Morris and Hirst [21] use WordNet
to determine the semantic relations between words. When a word w belonging to
multiple synsets is encountered, the lexical chaining algorithm disambiguates w by
choosing one sense from WordNet for it. The WordNet relations for the chosen
sense of w are then used to determine which other words in the text should be
chained with w.

2.5 Semantic relatedness

WordNet-based lexical chaining algorithms require a means of determining how
strongly pairs of senses are related semantically to each other. The hypernymy

13

and hyponymy relations in the noun hierarchy provide one method for measuring
semantic relatedness. By definition, any two senses linked by hypernymy or hy-
ponymy should be semantically related. Intuition suggests that senses connected
by a short path in WordNet should also be related, due to semantic relations being
transitive to some degree. As well, senses with short paths between them in the
hierarchy often have a close common ancestor. Senses with a common ancestor are
often similar to one another because they all share the properties of the ancestor.
For example, it can be deduced that car and truck are similar because both are chil-
dren of the WordNet sense {motor_vehicle, automotive_vehicle}: “a self-propelled
wheeled vehicle that does not run on rails”.

It should be noted that under this reasoning, the length of the shortest path
between two senses is inversely related to their semantic relatedness. Therefore the
length of the path is actually a measurement of the semantic distance between the
two senses. This measurement can be converted into one of semantic relatedness by

either inverting it (i.e., relatedness =), or by subtracting the path length

distance
from a constant value: relatedness = C' — distance.

One problem with using hypernym and hyponym paths to determine relatedness
is deciding the maximum length of a path to allow. Deeper parts of the noun hierar-
chy tend to be very detailed, and as a result there can be many intermediate senses
on the path between two related senses. For example, Dobermans and Labrador
retrievers are semantically related because they are dogs, but the shortest path
between them is eight senses long. From Doberman to dog the path is Doberman
is-a pinscher is-a watchdog is-a working dog is-a dog, and from Labrador retriever
to dog the path is Labrador retriever is-a retriever is-a sporting dog is-a dog (the
path from Doberman to Labrador retriever is shown in detail in Figure 2.5). De-
spite Dobermans and Labradors both being dogs, the great number of distinctions
between different types of dogs causes the two breeds to be far apart in WordNet.

Conversely, some unrelated senses have fairly short paths between them. These
short paths usually pass through the senses close to the top of the noun hierarchy,
which tend to be very general or broad in their meaning. Consequently, their
descendants are often not very closely related to each other. For example, the path
between water and human is only five senses long and goes through the shared
ancestor, entity. Figure 2.6 shows this path in detail.

To alleviate both these problems, various methods have been proposed for
weighting the links between senses such that the sum of the weighted shortest path
between any two senses more accurately reflects the semantic distance between
them (Budanitsky and Hirst [4] provide a good overview of such methods).

14

{Doberman, Dober-
man_pinscher}

medium large breed of dog of German origin with a
glossy black and tan coat; used as a watchdog

{pinscher} any of three breeds of dogs whose ears and tail are usu-
ally cropped

{watchdoyg, a dog trained to guard property

guard_dog'}

{working_dog}

any of several breeds of usually large powerful dogs bred
to work as draft animals and guard and guide dogs

{dog, domestic_dog,
Canis_familiaris }

a member of the genus Canis (probably descended from
the common wolf) that has been domesticated by man

since prehistoric times; occurs in many breeds; “the dog
barked all night”

a dog trained to work with sportsmen when they hunt
with guns

a dog with heavy water-resistant coat that can be
trained to retrieve game

breed originally from Labrador having a short black or
golden-brown coat

{sporting_dog,
gun_dog}
{retriever}

{ Labrador_retriever}

Figure 2.5: Shortest path between Doberman and Labrador retriever in WordNet

1]

Given that senses deeper in the WordNet noun hierarchy are more closely related
to their neighbouring senses than senses located higher up, it makes sense to weight
links between senses based on their depth. For example, the animal sense of dog has
a depth of 11, where as entity, the closest common ancestor of water and human,
has a depth of zero as a top-level sense in the noun hierarchy. Jiang and Conrath
[12] argue that this effect of depth occurs because as senses become more specific
deeper in the hierarchy, the distinctions between their children become more and
more fine. As a result, the semantic distance between the children shrinks.

Richardson and Smeaton [25] argue that the density of the hierarchy also affects
semantic distance in that the children of a sense with many children will be more
closely related than the children of a sense with few children. Each sense can be
thought of as occupying a semantic space, and its children divide this space up into
subspaces. Therefore if there are many children, they are only accounting for a
small part of what their parent sense represents or means, and so will be closer in
meaning than if their parent had only a few children.

Budanitsky and Hirst [4] describe how these and other methods can be used

15

{body_of_water, wa- | the part of the earth’s surface covered with water (such

ter} as a river or lake or ocean); “they invaded our territorial
waters”; “they were sitting by the water’s edge”

{thing} a separate and self-contained entity

{entity} that which is perceived or known or inferred to have its

own distinct existence (living or nonliving)
{causal_agent, cause, | any entity that causes events to happen
causal_agency }
{person, individual, | a human being; “there was too much for one person to
someone, somebody, | do”

mortal, human, soul}

Figure 2.6: Shortest path between water and human in WordNet [1]

to measure semantic similarity. They also provide a comprehensive evaluation of
the various methods. We present the previous two methods to highlight some of
the problems inherent in using paths in the WordNet noun hierarchy to determine
semantic relatedness. These problems are important as they lead to errors in lexical
chaining that we explore later.

Not only are the paths in WordNet not necessarily reflective of the semantic
distance between the senses they link, but often there is no path between two
related senses, or the path between the related senses is overly long and passes
through completely unrelated senses. For example, tennis racket and tennis have
no common ancestor or descendant. The shortest path between them is 14 senses
long and passes through senses such as weaponry and human activity. The relations
in WordNet do not provide a way to determine that racket, ball, and net are all
related to the game of tennis. In general, many semantically related concepts are
not linked in a way that indicates their relation. This problem arises because
the number of possible semantic relations is qute large and are often not easy to
quantify. As Morris and Hirst [21] mentioned, some words just “feel” related. These
are the relations that they described as nonsystematic semantic relations which are
not systematically classifiable. Handling such relations is exceedingly difficult for
any electronic thesaurus and has become known as the ‘Tennis Problem’ [5]. The
lack of these paths in WordNet causes the same kind of errors as caused by the
overlong paths between related senses we mentioned above.

16

Chapter 3

Literature review

In our background chapter we discussed Morris’s [20] seminal work on lexical chain-
ing. Morris proposed the concept of lexical chains and provided an algorithm for
finding lexical chains in a document. Morris did not implement her algorithm
because Roget’s Thesaurus [26], which was used to determine which words were se-
mantically related, was not available then in machine-readable form. As we pointed
out, lack of a machine-readable dictionary is not the only hurdle Morris faced in
implementing her algorithm—she also lacked a means for performing automated
word sense disambiguation.

In this section we review five key lexical chaining algorithms: Hirst and St.
Onge [11], Barzilay and Elhadad [3], Silber and McCoy [27] [28] [29], Galley and
McKeown [7], and Stokes [31]. We chose these papers because they contain de-
tailed descriptions of their respective lexical chaining algorithms and because all
are well-cited in the field. While there are many more published works about lexical
chaining, most of these focus on applications, rather than the details of the algo-
rithms. As we are concerned with word sense disambiguation, and its effects on
lexical results, applications of lexical chains are not germane to this thesis. For de-
scriptions of the papers that deal primarily with the applications of lexical chaining,
we recommend the second chapter of Stokes’s thesis on lexical chaining [31].

3.1 Hirst and St. Onge

Hirst and St. Onge [11] [30] use lexical chains to detect malapropisms, or real-world
spelling mistakes. These are errors where a person makes a mistake in spelling a
word, but the resulting word is still a correct word—e.g., writing purse when nurse

17

is intended. These errors are difficult for automatic spell checkers to detect because
a dictionary lookup would indicate that purse is a correct spelling. Hirst and St.
Onge reason that words in a document are usually semantically related to each
other, and therefore words that are not related to surrounding words around them,
i.e., words that are not part of a lexical chain, are possibly incorrect. If there exists
another word w that is close in spelling to an unchained word and w would fit into a
lexical chain already present in the document, then it is quite possible that w is the
word the author intended to write, and the unchained word is a spelling mistake.

Hirst and St. Onge use all words that appear in the noun section of WordNet
as candidate words. This means that all the nouns in a document are considered
candidates, as well as all words that have a noun form. For instance, walk is
considered a candidate word even if it is being used as a verb in the document
(adjectives and adverbs are treated the same way). These words with noun forms
are treated as nouns for the purpose of chaining because even if they are not being
used as nouns, usually they are still semantically related to the noun form.

Hirst and St. Onge define three levels of semantic relation with regard to Word-
Net: extra-strong, strong, and medium-strong.

e FExtra-strong relations exist only between repetitions of the same word. Hirst
and St. Onge require that all instances of the same word in a document have
the same sense, so all words that have an extra-strong relationship will have
the same meaning. For example, if bat appears multiple times in a document,
then the lexical chainer will not consider one instance as referring to a baseball
bat and another instance as referring to a mammal with wings.

e There are three types of strong relations:

1. Members of the same synset. For example, there is a strong relation
between exam and test because both are synonyms for the sense “a set
of questions or exercises evaluating skill or knowledge; when the test was
stolen the professor had to make a new set of questions” [1].

2. Senses that are antonyms.

3. Two senses that are linked in WordNet where one of the synonyms of
one sense is a compound word that contains one of the synonyms of the
other sense. An example of this is private_school and school, as the only
sense of private_school is a child of one of the senses of school.

o Medium-strong relations exist between senses that have an allowed path in
WordNet between them. Allowed paths are defined below. All allowed paths

18

are assigned a score, where a higher score indicates that the senses are more
closely related.

3.1.1 Allowed paths

Hirst and St. Onge classify noun relations in WordNet in terms of direction. They
define hypernym and meronym links in WordNet as being up relations and hyponym
and holonym relations as being down relations. Antonymy is defined as a horizontal
relation because it indicates neither generalization (up) nor specialization (down).

The only allowed paths without horizontal links consist of just down links, just
up links, up links followed by down links, or down links followed by up links. In
the first three cases the connected senses have a shared ancestor, and in the last
three cases they have a shared descendant.

If an allowed path contains horizontal links, then the path can have at most one
change in direction, except for one case we list below. So the horizontal links may
all come before a series of down links or after a series of down links, but not before
and after. The same is the case for up links. The only case where more than one
change in direction is allowed is when a series of up links is followed by a series of
horizontal links which are then followed by a series of down links.

All of these allowed paths have a weight defined by the function:
weight = C' — path length — k X number of changes in direction

where C and k are constants.

3.1.2 Chain creation

Hirst and St. Onge’s lexical chaining algorithm makes a single pass through the
document, during which all the words are processed from left to right. For each
word w, the existing chains are searched for a word that shares an extra-strong,
strong, or medium-strong relation with w. If a relation is found, then w is added
to the chain that contains the word with which w is most strongly related. If there
is a tie among chains, then the chain that was most recently updated is chosen. If
no relation is found for w among the already existing chains, a new chain is created
and w is added to it.

19

3.1.3 Word sense disambiguation

For each word in a chain, Hirst and St. Onge’s lexical chaining algorithm stores a
set of possible senses. When a chain is first created it contains a single word. No
disambiguation has been performed yet, so every sense of that word in WordNet is
in its set of possible senses. If a word w is added to an already existing chain, then
there exists some word wc already in the chain that has at least one sense related
to a sense of w. When w is added, the possible senses for wec and w are reduced to
senses that are most strongly related between them. For example, if w has possible
senses {wy, we, w3, wy} and we{wey, wes}, and w is added to we’s chain because wy
and ws are strongly related to we,y, then w’s possible senses are set to {wy, w3} and
wc’s are set to {wee}. When future words are processed, only senses wy, w3, and
weg will be checked for relations with the new word. This constraining of senses
disambiguates words as they are added to chains.

If adding w changes the set of possible senses for wec, then those changes are
propagated through the chain. For example, consider a chain that contains only
the single term bat. Bat has five noun senses in WordNet, one of which refers to
the flying mammal, and all of these will be stored in the chain as possible senses
for bat. If another instance of bat is added to this chain then it will be connected to
the first instance via an extra-strong relation, and its set of possible senses will be
set to the same five senses as the first instance of bat. The word wing can be added
to this chain because it has a medium-strong relation with bat: one sense of wing
has a part-of relation with the mammal sense of bat. Wing would be connected
with the most recent instance of bat, and their sets of senses would be constrained
to only contain the single sense that shares the medium-strong relation (for bat
this would be “nocturnal mouselike mammal” and for wing it would be “a movable
organ for flying”). Then the change in the possible senses for the second instance
of bat would be propagated to the word in the chain to which it was connected, the
first instance of bat, and its possible senses would be set to the same single sense
as the second bat.

Rarely does a word have more than one sense that is related to another word.
Therefore whenever the algorithm adds a word to a chain using a relation other than
extra-strong, a single sense is usually chosen for both the new word and the word
in the chain to which it is connected. As a result, Hirst and St. Onge’s algorithm
disambiguates words rather quickly, and only looks at previously processed words
when deciding which chain a word should be placed in. Other lexical chaining
algorithms that we review consider all the possible relations for a word before
choosing a sense for it.

20

Analysis Various evaluations of semantic relatedness measures have found fault
with Hirst and St. Onge’s path-based measure for medium-strong relations [4] [10]
[23]. In particular, it is noted that Hirst and St. Onge’s allowed paths can connect
many unrelated senses in WordNet, particularly senses located near the top of the
noun hierarchy (we describe this problem at the end of chapter 2). As a result,
their lexical chaining algorithm often chains words together even though none of
those words’ senses are semantically related.

As we noted above, Hirst and St. Onge’s algorithm processes words in the order
they appear in the document, and, when processing a word w, examines previously
processed words first for relations with w. Therefore words that appear prior to
w are more likely to be used for disambiguating w than words that appear after
it. As well, multiple occurrences of words that are related to w are not given more
weight than a single related word: if a single word related to a sense w; of w occurs
before w and five instances of a word related to a sense ws of w occur after w, then
sense w; is used to connect w to the previous related word before words after w are
even considered (assuming the strengths of all the relations are the same). Barzilay
and Elhadad [3] argue that this approach leads to poor word sense disambiguation
performance, and that all related words in the document should be taken into
consideration when selecting a sense for a word. Galley and McKeown [7] also
argue for considering all related words when disambiguating. Pedersen et al. [23]
propose a general framework for performing word sense disambiguation by using
various semantic relatedness measures. They find that when disambiguating a word
w, accuracy increases as the window of surrounding words considered for relations
increases in size, which suggests that localized approaches to disambiguation such
as Hirst and St. Onge’s should not be used.

3.2 Barzilay and Elhadad

Barzilay and Elhadad [3] use lexical chains for document summarization. They
argue that the strongest lexical chains in a document reflect the central or most
important topics of the document, where the strength of a lexical chain is defined as
its length minus the number of unique words it contains. This equation recognizes
that the longer a chain is the more important it is, but also takes into account the
importance of word repetition.

Barzilay and Elhadad use only nouns and noun compounds as candidate words,
stating that nouns are the most important words for determining the topic of a
document. To identify nouns they use a part-of-speech tagger, and to identify

21

compound words they use a shallow parser.

They use a small number of simple semantic relations to build lexical chains: re-
iteration, synonymy, antonymy, hypernymy/hyponymy, and holonymy/meronymy.
Each relation is assigned a weight, where a greater weight indicates a stronger
semantic relation: reiteration and synonymy ten, antonymy seven, and four for
hypernymy /hyponymy and holonymy /meronymy.

In describing their lexical chaining algorithm, Barzilay and Elhadad focus on
word sense disambiguation. They find fault with Hirst and St. Onge for considering
only the previous words when disambiguating a word, and point out that in some
cases it is necessary to look at following words to disambiguate a word properly.
To address this problem, they consider every possible interpretation of the candi-
date words, where an interpretation is an assignment of a single sense for every
candidate. Each interpretation has a score that is the sum of the scores of all the
relations, using the relation scores listed above. Consider the set of candidate words
< grip,racket,noise >. Grip has seven noun senses, racket has four noun senses,
and noise has six, which gives a total of 7 x 4 x 6 = 168 possible interpretations.
One possible interpretation is “the appendage to an object that is designed to be
held” for grip, “a sports implement” for racket, and “sound that lacks musical qual-
ity” for moise. This interpretation has a score of four, as the only scored relation
is meronymy between racket and grip, as a grip is part of a racket that is used for
sports. However, the highest scoring interpretation is found by setting the sense for
racket to “sound that lacks musical quality”, which is synonymous with the sense
chosen for noise. As Barzilay and Elhadad’s relation score for synonymy is 10, this
new interpretation has a score of 10.

Once the highest scoring interpretation of the candidate words is found, the
scored relations are used to form lexical chains such that if any two words have
a non-zero relation score under the chosen interpretation, then those words are
connected together in a chain. In the above example, racket and noise would be
chained together, and grip would remain unchained.

Analysis Barzilay and Elhadad’s lexical chaining algorithm has one significant
drawback: its time and space complexity is exponential in the number of polyse-
mous candidate words in a document. If a document contains n polysemous can-
didate words, then the number of possible interpretations is bounded below by 2.
Barzilay and Elhadad do prune interpretations with low scores while generating all
possible interpretations, but this only saves space, not time, as all possible interpre-
tations still need to be generated. Generally speaking, algorithms with exponential
runtimes are considered infeasible. Silber and McCoy [29] describe Barzilay and

22

Elhadad’s algorithm as “impossible” to run on “documents of any reasonable size”.
They propose a lexical chaining algorithm with linear complexity as an alterna-
tive to Barzilay and Elhadad. Galley and McKeown’s [7] proposed lexical chaining
algorithm does not have an exponential complexity either, and it considers all candi-
date words in the document when disambiguating each candidate word in a manner
similar to Barzilay and Elhadad’s algorithm. Furthermore, Galley and McKeown
demonstrate that their algorithm performs word sense disambiguation significantly
better than Barzilay and Elhadad’s lexical chainer.

3.3 Silber and McCoy

Silber and McCoy [27] [28] [29] use lexical chains for document summarization in
the same manner as Barzilay and Elhadad [3]. Where the two approaches differ
is how the lexical chains are formed. Silber and McCoy point out that, in most
cases, the exponential runtime of Barzilay and Elhadad’s lexical chaining algorithm
makes it infeasible. To address this problem Silber and McCoy designed a lexical
chaining algorithm with a linear runtime.

The lexical chaining algorithm we use for our experiment is based on Silber and
McCoy’s algorithm and is described in Chapter 5. Consequently, we only describe
Silber and McCoy’s algorithm briefly here, leaving the details of their algorithm as
well as how our algorithm differs to the later chapter.

Silber and McCoy use only nouns as candidate words. They determine which
words are nouns using a part-of-speech tagger. Lexical chains are defined in terms
of their topics. Each chain has an overriding sense or topic, which is a noun sense
in WordNet that is semantically related to all the words in the chain.

The lexical chaining algorithm makes two passes through the document. On
the first pass, each possible chain in the document is created. These possible chains
are called metachains. To create the metachains, each candidate word is placed
into every metachain whose overriding sense is possibly related to the candidate.
For example, bat would be placed into every metachain whose overriding sense is
related to the baseball-bat sense of bat, as well as every metachain whose overriding
sense is related to the flying-mammal sense.

The second pass consists of selecting a single metachain for each candidate term.
For each candidate term, the metachain it contributes to most is selected, where
the contribution is based on the semantic relation between the candidate term and
the other term in the metachain to which the candidate is most strongly related.

23

The candidate term is then removed from all metachains other than the one it
contributes to most. Selecting a single chain for a term in effect disambiguates the
term by selecting the sense of the term that is related to the overriding sense of the
selected chain.

Analysis When disambiguating each candidate word, Silber and McCoy’s algo-
rithm selects the metachain to which the candidate contributes the most. The only
semantic relation used in calculating the contribution is the strongest relation be-
tween the candidate and the other words in the metachain. Therefore, other related
words in the metachains have no effect on which metachain (and sense) is chosen
for the candidate (we explain this problem in more detail in Chapter 5). In only
considering the most closely related word when choosing a chain for a candidate
word, Silber and McCoy’s algorithm is similar to Hirst and St. Onge’s. We modify
Silber and McCoy’s algorithm so that contributions are computed as sums of all
the semantic relations between the candidate and the other words in a metachain,
and demonstrate that this approach performs word sense disambiguation signifi-
cantly more accurately than Silber and McCoy’s approach. However, Silber and
McCoy’s method for computing the contribution is necessary for a linear runtime.
Our method has a polynomial runtime, which is still completely feasible even for
large documents.

3.4 Galley and McKeown

Unlike the other authors we review, Galley and McKeown [7] do not use their lexical
chaining algorithm for any application. Instead they focus on the relation between
word sense disambiguation and lexical chaining performance. They argue as we do,
that improved word sense disambiguation leads to better lexical chains and that
word sense disambiguation should be performed before lexical chains are formed.
However, they are committed to using only semantic relations to perform disam-
biguation. They develop a lexical chaining algorithm with a focus on performing
word sense disambiguation accurately, and evaluate its disambiguation accuracy in
comparison to Barzilay and Elhadad’s and Silber and McCoy’s algorithms.

Galley and McKeown use only nouns as candidate words. They run their al-
gorithm only on documents that are already tagged with parts-of-speech, so they
can determine which words are candidates without using a part-of-speech tagger.
The algorithm builds representations of all possible interpretations of the candidate
words in a manner very similar to Silber and McCoy’s algorithm. For each possible

24

sense s of each candidate word, an array containing all the other candidate words
that have senses related to s is created. Senses are only considered related if they
are identical, hypernyms/hyponyms, or siblings. The relations between senses are
assigned scores based on the type of relation and distance between the words in the
document.

The algorithm then disambiguates each different word in the document, rather
than each word instance. That is, if the word bank appears multiple times in
the document, then all instances are disambiguated collectively to the same sense,
rather than disambiguating each instance of bank on its own. Disambiguation
of a word w is performed by looking at the array entries for each possible sense
of w and summing the relation scores of all the words in the document that are
related to that sense. Even after a single sense is chosen for a word, the other
possible senses of that word are still considered when disambiguating later words.
For example, if orange and blue both occur in a document, the colour sense of
orange is always considered when disambiguating blue, even if orange has already
been disambiguated as referring to the fruit, rather than the colour. This helps
prevent disambiguation mistakes from propagating and causing more mistakes. In
the above case, if orange has been incorrectly disambiguated as referring to the
fruit when it actually refers to the colour, that error will not affect how blue is
disambiguated.

Once disambiguation has been completed, the lexical chains are formed in the
same way as Barzilay and Elhadad by connecting all semantically related words
together.

Galley and McKeown conclude their paper by comparing the word sense disam-
biguation accuracy of their lexical chaining algorithm with Barzilay and Elhadad
[3] and Silber and McCoy [29]. Galley and McKeown show that the senses selected
for candidate words by their algorithm are significantly more accurate than the
senses chosen by both Barzilay and Elhadad’s aglorithm and Silber and McCoy’s
algorithm.

Analysis As mentioned above, Galley and McKeown make the same argument
we do: word sense disambiguation should be performed prior to building lexical
chains. However, they provide no experimental evidence to support their claim.
Their evaluation shows that the word sense disambiguation accuracy of lexical
chaining algorithms can be improved, but Galley and McKeown’s approach remains
committed to using simple semantic relations (i.e., only hypernyms, hyponyms, and
siblings) for performing disambiguation. As we demonstrate in the next chapter, if
word sense disambiguation is separated from the lexical chaining process entirely,

25

then any method for disambiguation can be used, and disambiguation performance
can be improved independent of how the lexical chains are built..

Galley and McKeown’s algorithm has a linear runtime, despite considering all
related candidate words when disambiguating a word. This very efficient runtime
is achieved because the algorithm disambiguates each different word, rather than
each word instance. The number of distinct candidate nouns that can appear in
a document is bounded above by the number of distinct noun words in WordNet,
which is 114648 for version 2.0 [1]. It should be noted that most documents contain
far fewer distinct nouns than 114648, and that the runtime of the algorithm is
O(m x n), where m is the number of distinct candidate nouns in the document.

3.5 Stokes

Stokes [31] uses lexical chains to perform headline generation (a specialized form
of document summarization), and topic detection and tracking. Topic detection
and tracking determines where topics and stories begin and end in broadcast news
transcripts, and is very similar to the detection of linguistic segments performed by
Morris and Hirst’s original lexical chaining algorithm [21].

Stokes’s lexical chaining algorithm is a small extension of Hirst and St. Onge’s
algorithm [11]. Stokes uses the statistical word associations (explained below) as a
possible semantic relation between words, in addition to the extra-strong, strong,
and medium-strong relations used by Hirst and St. Onge. This statistical relation
is given the lowest priority, and is only used to place a word in a chain if that word
is not already related to a chain by Hirst and St. Onge’s original relations.

Statistical word associations are based on patterns of word usage in a large
corpus. These associations are determined by the degree of similarity between the
contexts in which words appear. Words that appear in similar contexts are said
to be distributionally related. Mohammad and Hirst [19] describe the notion of
distributionally related as follows: “Distributionally related words tend to be se-
mantically related, where two words (w; and ws, say) are said to be distributionally
related if they have many common co-occurring words and this set of co-occurring
words is not restricted to only those that are related to w; and ws by the same syn-
tactic relation.” There are a number of different ways of measuring statistical word
associations. We omit the details of how Stokes computed the word associations
for their lexical chaining algorithm as they are fairly complicated and unimportant
for our work.

26

Analysis Statistical word associations are useful because they can be used to
measure the nonsystematic semantic relations that Morris and Hirst found trouble-
some. As well, they provide a way of solving the tennis problem in WordNet that
we described in Chapter 2. It may appear that statistical word associations are
superior to WordNet-based measurements of semantic relatedness, but they have
one significant weakness: they only score relations between words, not word mean-
ings. As a result, the semantic score between bat and wing does not differ based on
which sense of bat is used. This lack of distinction between senses occurs because
the corpora available for statistical analysis are not tagged with WordNet senses.
As a result, the statistical word associations can only show that the word bat often
appears with the word wing as well as with the word ball, with no difference noted
between the two instances of bat. To calculate accurate statistical word sense as-
sociations would require a large corpus in which the words have been tagged with
their correct sense from WordNet. Such corpora are exceedingly difficult to create
([14] describes the trouble involved in such an endeavour). Stokes does not provide
a formal evaluation of how using statistical word associations affected the lexical
chains created.

We find it odd that Stokes chose to adapt Hirst and St. Onge’s lexical chaining
algorithm. As we pointed out, multiple evaluations have found fault with Hirst
and St. Onge’s medium-strong semantic relatedness measure ([4] [10] [23]). Hirst
and Budanitsky found Hirst and St. Onge’s lexical chaining algorithm as a whole
unsuited to the application for which they originally created it, malapropism de-
tection [10]. Stokes argues that the criticism of Hirst and St. Onge’s algorithm,
particularly with regards to word sense disambiguation, is unfounded. Nonetheless,
we remain skeptical of the lexical chainer until an experiment comparing its perfor-
mance on a specific task (such as headline generation or document summarization)
with other lexical chaining algorithms is performed.

27

Chapter 4

An improved model for lexical
chaining

In this chapter we propose a new model for performing lexical chaining. Under our
model, word sense disambiguation is performed prior to lexical chaining. The cen-
tral claim of our thesis is that performing word sense disambiguation prior to lexical
chaining improves the correctness of the lexical chains produced. This chapter also
describes our experiment that tests the validity of our proposed model.

All the lexical chaining algorithms discussed in the previous chapter use seman-
tic relations to perform word sense disambiguation by choosing the sense for each
candidate word that is most strongly semantically related to the candidate words
near it in the text. This word sense disambiguation is performed as part of the
lexical chaining process. Galley and McKeown [7] note the importance of accurate
word sense disambiguation to producing correct lexical chains, and it is this rela-
tionship between word sense disambiguation and lexical chaining that is the focus
of our research.

Galley and McKeown’s lexical chaining algorithm is particularly interesting be-
cause it completely disambiguates all candidate words before creating any chains.
The chains it builds are then determined by the semantic relations between the
senses selected for the candidate words. However, other possible senses of the
polysemous candidate words have no affect on the lexical chains formed after the
disambiguation step is complete. Therefore, the disambiguation of the candidate
words could be performed in a manner completely unrelated to the rest of the lexical
chaining algorithm.

Correctly disambiguating a word does not guarantee that it will be chained

28

correctly. An imperfect measurement of semantic relatedness may judge two un-
related senses as being related or two related senses as not being related (below
we show how WordNet-based semantic measurements can exhibit both these prob-
lems). Nonetheless, with an imperfect semantic relatedness measurement, increased
accuracy in word sense disambiguation will still lead to better lexical chains if the
following property holds:

Correct Sense Property: There exists no word w such that choosing the cor-
rect sense for w would lead to it being chained incorrectly and choosing an
incorrect sense for w would lead to it being chained correctly.

Intuition suggests that this property should hold. Even if a semantic relatedness
measurement does not recognize that the flying-mammal sense of bat is related to
wings and echolocation, that same measurement should not recognize a relationship
between the baseball sense of bat and wings or echolocation. That is, choosing the
wrong sense for a word should not cause the word to be chained with words to which
it is related if choosing the correct sense for that word would not cause it to be
chained with those related words. It should never be the case that choosing
the wrong sense for a word leads to better lexical chains.

Based on the above reasoning, we make the following two claims:

Claim 1: The correctness of the lexical chains produced by a lexical chaining
algorithm is directly related to the accuracy of the word sense disambiguation
performed as part of or prior to the lexical chaining algorithm. That is,
improved word sense disambiguation necessarily leads to improved lexical
chains.

Claim 2: Word sense disambiguation should be performed separately from build-
ing lexical chains, using the most accurate method available.

These claims lead to the following model for lexical chaining:

1. Select the candidate words in the document.

2. Perform word sense disambiguation on the candidate words with the most
accurate disambiguation algorithm available.

3. Connect the disambiguated words into chains based on the semantic relations
between their disambiguated senses.

29

To investigate the validity of our approach, we propose an experiment evaluating
the differences in the chains produced by a lexical chaining algorithm when perfectly
accurate word sense disambiguation is performed beforehand. That is, the lexical
chainer will first be run on a set of documents where the candidate words have
not been disambiguated, and then the lexical chainer will be run on the same set
of documents, but with candidate words correctly disambiguated by humans, such
that no senses other than the correct senses can be used to form lexical chains.

30

Such an experiment requires four things:

1. A lexical chaining algorithm.
2. A corpus of documents.
3. The correct senses for all the candidate words in the corpus documents.

4. A method for evaluating the lexical chains produced.

For a lexical chaining algorithm we developed our own as a slight variation of
Silber and McCoy'’s lexical chaining algorithm [27] [28] [29] (discussed in detail in
the next chapter). We chose Silber and McCoy’s algorithm because it is fairly easy
to implement and the overriding senses it uses in building chains are useful for
our evaluation. Unfortunately, the difficulty of evaluating lexical chains (explained
below) prevents us from testing other lexical chaining algorithms as well. However,
our results should apply to other lexical chaining algorithms as well, as we are only
concerned with the lexical chains produced by the lexical chaining algorithm, not
with the details of how those lexical chains are produced. Since all lexical chaining
algorithms must deal with polysemous words, all of them should benefit from prior,
accurate word sense disambiguation.

The documents we use in our experiment are from the SemCor corpus [14].
We use this corpus because all its documents have been manually disambiguated.
Every noun, verb, adjective, and adverb in the corpus has been tagged with its
correct sense in WordNet, giving us perfectly disambiguated documents to test the
lexical chainer.

Evaluation is in many ways the trickiest part of our experiment. Most lexical
chaining algorithms are evaluated by testing their performance on a specific ap-
plication that can be machine-evaluated, such as document summarization [3] [29]
[31] or malapropism detection [11]. However, Galley and McKeown [7] observe that
this is not an accurate evaluation of the lexical chains produced as performance on
the task is dependent not only on the quality of the lexical chains produced, but
also the general appropriateness of lexical chains to the application. Galley and
McKeown use word sense disambiguation accuracy as an application-independent
evaluation of lexical chaining performance, but this metric provides no assessment
lexical chains produced. Unfortunately, at this point there is no automated method
for evaluating the quality or correctness of lexical chains. The problem is that se-
mantic relatedness measurements to date are far from perfect, and thus there is no
computational method for correctly deciding whether two words are related such

31

that they belong together in a chain. Only humans can make this decision, and
therefore we will manually evaluate the lexical chains produced in our experiment.

Human evaluation of lexical chains is problematic for two reasons: it is very
time-consuming and it is subjective. We reduce the time required by only looking
at a small subset of the lexical chains produced under the two conditions (undis-
ambiguated input and disambiguated input). Specifically we choose the longest
chains in a document to look at because we believe they are the most representa-
tive of the most dominant/important topics in the document. Smaller chains occur
much more frequently than long chains in documents, making the short chains less
useful for determining the topic structure of a document. As well, their common-
ality lessens the impact of making an error in a small chain. Errors in the longest
chains of a document can lead to subsequent errors in interpreting the document’s
meaning, particularly in document summarization applications. Deviations in the
resulting topic structure can be caused by making a chain longer than it should be
or by missing related words that are relevant to a chain: this omission is especially
significant if the chain would have otherwise been a longest chain. Focusing on this
specific subset of chains should reduce the subjectivity of our results because the
judgements we make will largely be comparisons between chains, rather than gen-
eral judgements about the chains in isolation. In the following chapter we explain
how we judge chains in more detail and list more specific was by which we reduce
subjectivity in our observations.

In evaluating the correctness of lexical chains, there are two types of possible
errors that can occur:

1. A semantically related word is incorrectly omitted from a chain.

2. An unrelated word is incorrectly placed in a chain.

An example of the first error is the word subtraction being left out of a chain
containing related words such as addition, multiplication, and arithmetic. If an
unrelated word such as giraffe were added to the chain with addition, multiplication,
and arithmetic, then that would be an occurrence of the second error.

Both of these errors can be caused in two different ways: a mistake in word
sense disambiguation or a mistake in measuring semantic relatedness. A lexical
chaining error due to word sense disambiguation occurs when:

(a) A word is omitted from a chain because an incorrect sense was chosen for it.

In this case it would have been connected to the chain if the correct sense
had been chosen.

32

(b) A word is connected to a chain because an incorrect sense was chosen for it.
Here, the word would not have been connected if its correct sense had been
chosen.

Consider the word ball. If, in the context of a document, ball refers to a formal
dance, then it is semantically related to the word dance. Therefore, if the word
dance also occurs in the document, it should be chained with ball. However, if
ball is incorrectly disambiguated as referring to a round object (such as a tennis
ball), then it will probably not be chained with dance, which is an error of type
(a). Furthermore, if the same instance of ball is incorrectly placed in a lexical chain
with the word sphere (they should not be related because ball refers to a formal
dance in this case), then this is an instance of error (b).

Errors due to imperfect semantic relatedness measures can cause a word to be
incorrectly omitted from a chain if the measurement does not recognize the word’s
relation to the chain. Such measures can also cause a word to be incorrectly added
to a chain if the semantic relation between the word and chain is scored overly high,
effectively denoting a semantic relation where one does not exist.

In the next chapter we describe in more detail how these chaining errors are
recognized in our experiment and used in determining our results.

33

Chapter 5

Experiment

To test the effect of improved word sense disambiguation accuracy on lexical chain-
ing performance, we will compare the chains created by a lexical chaining algorithm
in two different cases. In the first case, the lexical chainer will be run on a corpus
of documents with no information about the senses of the terms in the documents
other than the knowledge that all are nouns and the list of all the possible senses
in WordNet [1] for these terms. These are the circumstances under which lexical
chaining algorithms are intended to be run, where the intended meaning of each
term in its specific context must be determined by the algorithm. In the second
case, we pass only the correct sense of each term to the lexical chainer. In this
case, terms can only be placed into chains that relate to their correct sense. This is
equivalent to running a word sense disambiguation algorithm with 100% accuracy
on the documents before running the lexical chaining algorithm.

To perform our experiment we require a lexical chaining algorithm and a corpus
in which all the nouns have been tagged with their correct sense from WordNet [1].
For the lexical chaining algorithm we implement a variation of Silber and McCoy’s
lexical chaining algorithm ([27], [28], [29]) and for our corpus we use the SemCor
corpus [14]. Both the algorithm and the corpus are described below.

5.1 Our lexical chaining algorithm

Our lexical chaining algorithm is an implementation of Silber and McCoy’s lexical
chaining algorithm ([27], [28], [29]). However, we made some changes to their
algorithm, which are noted below.

34

The Silber and McCoy algorithm makes two passes through the candidate terms
in a document. On the first pass, each candidate term is placed into every chain
to which it could possibly belong (these possible chains are called metachains).
On the second pass, each term is removed from every metachain except the one to
which it is most strongly related. Chains left with only a single term are discarded,
and the remaining chains become the lexical chains for the document.

5.1.1 The first pass

With the Silber and McCoy lexical chaining algorithm, every metachain has an
overriding sense, which is a sense from WordNet that is related to all the terms
placed in the chain. For two senses to be considered related, they must be either
the same sense, a parent—child pair, or siblings (children of the same parent). To
keep track of all the metachains, a hash table is constructed where the keys are the
index values of noun senses in WordNet (every noun sense has a unique index) and
the values are lists of the terms in that metachain. A sample metachain table is
shown in Figure 5.2. WordNet has a total of 114648 unique noun senses, which is
an upper bound on the number of possible metachains in any document.

1: for all candidate words w in the document do

2: for all senses s of w do

3: for all children ¢ of s do

4: Insert w into metachain hashtable at index ¢
5: end for

6: for all parents p of s do

7: Insert w into metachain hashtable at index p
8: for all children ¢ of p do

9: Insert w into metachain hashtable at index ¢
10: end for

11: end for

12: end for

13: end for

Figure 5.1: Algorithm for metachain creation

In the first pass, each term is added to every metachain to which it is related.
This is done by looking at each possible sense s for a term and adding that term
to the metachains with the same index of s, a parent or child of s, or a sibling of
s. The algorithm for this first pass is shown in Figure 5.1.

35

Metachain | Overriding sense Chain
index terms

4703162 chromatic color: “a color that has hue” orange | blue

9

4707837 orange: ‘range of colors between red and yellow” || orange | blue
4711153 blue: “the color of the clear sky in the daytime” || orange | blue

7234431 edible fruit: apple

7267116 apple: “fruit with red or yellow or green skin” apple

7275039 citrus fruit orange | apple
7275573 orange: “‘round yellow to orange fruit” orange

Figure 5.2: Sample metachain table

Figure 5.2 shows entries excerpted from a sample metachain table created for
a document containing the terms orange, apple, and blue, in that order. The de-
scriptions of the various senses are excerpted from their WordNet glosses [1]. First
the term orange is processed. There are five different noun senses for orange in
WordNet. Two of these senses are used in creating the table, one referring to the
colour orange (WordNet index 4707837) and the other referring to the fruit (index
7275573). Orange is added to the metachains at 4707837 and 7275573 because
orange is one of the synonyms for both those senses. Orange is also added to the
metachain at 4703162 because that sense of chromatic color is a parent of sense
4707837. Orange is then added to the metachain at 4711153 because that sense of
blue is a sibling of sense 4707837 via their shared parent 4703162 (i.e., both orange
and blue are colours). Finally, orange is added to the metachain at 7275039 be-
cause its sense 7275039 is a child of sense 7275039 (“any of numerous fruits of the
genus Citrus having thick rind and juicy pulp”). Blue is added to the metachains
at 4711153, 4703162, and 7275573 because these senses share an identity, parent,
and sibling relation respectively with the “the color of the clear sky in the day-
time” sense of blue. Apple is added via identity, child, and sibling relations to
the metachains at 7267116, 7234431, and 7275039 respectively. Apple and orange
are not added to each other’s senses (7267116 and 7275573) as they do not share
a parent-child or sibling relation, but they still end up in the same metachain at
7275039 because they are both related to citrus fruit.

To summarize, orange has been added to the metachains at 4703162, 4707837,
and 4711153 based on one of its senses (the colour) and metachains at 7275039 and
7275573 because of another sense (the fruit). When a single metachain is chosen
for orange in the second pass, it will determine a single final sense for the term.

36

5.1.2 The second pass

Once all the metachains are created, the lexical chaining algorithm makes a second
pass through the candidate terms in the document. For each metachain to which
a given term t belongs, t’s contribution to that chain is computed based on the
semantic and distance relations between ¢ and all other terms in the chain, where
distance refers to how far apart the terms are in the document. The term ¢ is then
removed from every metachain except for the metachain to which ¢ contributes the
most. In the event of a tie among metachains for the maximum contribution, the
metachain with the lowest sense index is chosen. The algorithm for the second pass
is shown in Figure 5.3.

In Silber and McCoy'’s first two papers describing their lexical chaining algorithm
([27] and [28]), they did not specify which metachain to choose for a term if there was
a tie among metachains. In a later specification of their algorithm [29], Silber and
McCoy choose the metachain with the highest overriding sense index (as opposed to
the lowest index which we use). The only justification given for this choice is that
“WordNet is organized with more specific concepts indexed with higher numbers.”
The more specific concepts to which they refer are senses with greater depths in the
noun hierarchy. That is, for any two senses s; and s, if s3’s depth (distance from
its closest ancestor) is greater than s;’s depth, then sy will have a larger index.
While favouring metachains with more specific overriding senses may reduce the
number of overly broad chains formed, it may also prevent some legitimate chains.
Our algorithm picks metachains with more general overriding senses to allow for
larger chains, which we believe are more representative of the overall subject of a
document.

The score function we use to measure the strength of the relation between any
two terms in a document is given in Figure 5.4. This is the same score function used
by Silber and McCoy [29]. Silber and McCoy state that these values were arrived
at by “empirical testing”, but do not provide any details about the experiments
used to derive the values. This score function differs from a semantic relatedness
measure in that it also takes into account the location of the terms in the document,
whereas a semantic relatedness measure is only between word senses.

We compute a term t’s contribution to a metachain by summing the scores
between t and every other term in the metachain. When ¢t was added to the
metachain, it was because one of its senses, s, is related to the overriding sense
for that metachain. This sense s is the sense used to compute the score between ¢
and the other terms in the metachain. In the previous example (Figure 5.2), sense
4707837 of orange (the colour) would be used for computing the contribution of

37

1: for all candidate words w in the document do

2: //First collect the indexes of chains that w is in

3: Set neighbours = {}

4: for all senses s of w do

5: for all children c of s do

6: Insert ¢ into netghbours

T: end for

8: for all parents p of s do

9: Insert p into neighbours

10: for all children ¢ of p do

11: Insert ¢ into neighbours

12: end for

13: end for

14: end for

15: //Now determine which chain w contributes to most
16: Set maz_contribution = 0

17: Set maxr_inder = —1

18: for all senses s in neighbours do

19: Set chain to the metachain at index s
20: if Contribution(w, chain) > max_contribution then
21 Set max_contribution = Contribution(w, chain)
22: Set max_indexr = s.index
23: //In the event of a tie, we pick the chain with the lowest overriding sense
24: else if Contribution(w,chain) == maz_contribution A s.index <

maz_index then

25: Set max_contribution = Contribution(w, chain)
26: Set max_indexr = s.index
27: end if

28: end for
29: // Now remove w from all other metachains
30: for all senses s in neighbours do

31 if s.index # max_index then

32: Remove w from the metachain at s
33: end if

34: end for

35: end for

Figure 5.3: Algorithm for chain selection

38

Same sentence | Within three sentences | Same paragraph | Default
Same synset 1 1 1 1
Parent or child | 1 0.5 0.5 0.5
Sibling 1 0.3 0.2 0

Figure 5.4: Silber and McCoy term—based score function [29]

orange to the metachains at 4703162, 4707837, and 4711153 because 4707837 is the
sense related to these metachain senses in WordNet. Sense 7275573 orange (the
fruit) would be used for the other metachains in which orange appears because it is
related to their overriding senses (citrus fruit and “round yellow to orange fruit”).

This method for computing the contribution of a term to a metachain differs
from the method used by Silber and McCoy. In their first two descriptions of their
algorithm ([27], [28]), functions for determining scores between terms are given
which are earlier versions of the function in Figure 5.4. However, these functions
are not accompanied by any description of how they are used to calculate the
contribution of a term to an entire chain. Silber and McCoy’s later paper [29]
specifies that whenever a term ¢ is first added to a metachain, ¢’s contribution is
the relation score between it and the term in the metachain closest to ¢ in the
document. We consider this a poor method for computing a term’s contribution
as it renders a term insensitive to all terms in a metachain, other than the closest
one. For example, consider a document containing multiple instances of the terms
orange, blue, and grapefruit. If there are two instances of orange very close together,
then both will have a contribution of 1 for every metachain in which they are placed,
regardless of the number of instances of blue or grapefruit in the document. None
of the non-orange terms will be used to disambiguate orange if only the closest
term is considered. To verify our choice of contribution measure, we compared the
word sense disambiguation performance of the lexical chainer using the two different
contribution measures. We used the same corpus as in our experiment. We found
that the accuracy of word sense disambiguation was 42.9% using the closest term
measure of Silber and McCoy, compared to 52.1% accuracy for our measure.

As an example of how a term’s contribution to a metachain is used, consider a
document in which orange and blue appear in the same sentence, while the next
sentence contains apple and two occurrences of grapefruit (as in “large yellow fruit”,
sense index 7277914). Figure 5.5 shows the metachain table for this example, the
same table as in Figure 5.2, but with grapefruit added. To select a single metachain
for orange, all the metachains to which it belongs are scored (i.e., the metachains
at 4703162, 4707837, 4711153, 7275039, 7275573, and 7277914). The contribution

39

Metachain index H Chain terms \

4703162 orange blue

4707837 orange blue

4711153 orange blue

7234431 apple

7267116 apple

7275039 orange apple grapefruit | grapefruit
7275573 orange grapefruit | grapefruit

7277914 orange grapefruit | grapefruit

Figure 5.5: Chain selection example

of orange to the metachains at 4703162, 4707837 and 4711153 is 1, as the only
other term in those metachains, blue, is a sibling of the sense of orange at index
4707837 and both terms are in the same sentence. The score between orange and
each instance of grapefruit is 0.3, as grapefruit is a sibling of the sense of orange at
index 7275573 via the shared parent citrus fruit at index 7275039 and grapefruit
and orange are one sentence apart (i.e., within three sentences). So the contribution
score of orange to the metachains at indexes 7275039, 7275573 and 7277914 is 0.6
(0.3 for each instance of grapefruit). The apple term does not affect the contribution
of orange to the 7275039 metachain because sense 7275573 is not identical to sense
7267116, nor is it a parent, child, or sibling of 7267116. Therefore the highest
scoring metachains for orange are those related to colour at 4703162, 4707837 and
4711153. To break the tie between those chains, the metachain at 4703162 is chosen
because it has the lowest index. Orange is removed from all other metachains and
the pass continues to select a single chain for the rest of the senses. Orange has
now been disambiguated to refer to the colour orange, as that is the sense of orange
that is related to the overriding sense for its chain, 4703162 “chromatic color”.

5.1.3 Runtime

We do not provide a detailed proof of our algorithm’s runtime here, but we can
state that the runtime of our lexical chaining algorithm is O(n?), where n is the
number of candidate terms in the document. Our algorithm must process all n
words, and when calculating a word w’s contribution, at most n — 1 other words
must be considered for possible semantic relations with w.

An n? runtime is perfectly reasonable for most realistic lexical chaining appli-
cations. We implemented our lexical chaining algorithm in Java and ran it on a

40

computer with an 800 MHz Pentium IIT processor and 1 GB of RAM. Using this
setup, our algorithm took less than 10 minutes to build all the lexical chains for all
of the 102 documents in our corpus.

5.2 Corpus

The SemCor corpus [14] contains 103 documents from the Standard Corpus of

Present-Day Edited American English (commonly known as the Brown Corpus),

plus Stephen Crane’s novella The Red Badge Of Courage in its entirety. The Brown

Corpus is described in detail in Francis and Kucera [6]. All words in the SemCor cor-

pus that are also present in WordNet are tagged with their correct sense in WordNet.

Multiple versions of the corpus exist, each corresponding to the version of WordNet

that was used for tagging. We used the WordNet 2.0 version of the SemCor corpus,

available online at http://lit.csci.unt.edu/ rada/downloads/semcor/semcor2.0.tar.gz.
The words were disambiguated by linguists, and are widely considered to be a gold

standard for word sense disambiguation [13].

We use only 102 documents of the Brown Corpus portion for our experiment
(one document from that portion, br-j56, was omitted due to errors in parsing it).
Figure 5.6 is a breakdown of the documents we used in terms of content. The
average number of words per document is 1932, with the shortest document having
1764 words and the longest 2066 words. Appendix A lists all the documents we
used by name, along with their lengths in words and their categories.

The documents have been marked up in SGML. A detailed description of the
document format can be found in Landes et al. [14]. Each document consists of
a number of ordered terms, and each term is surrounded by a tag which contains
multiple attributes describing the term. We use the following attributes:

e Sentence: A positive integer indicating in which sentence the term occurs.
e Paragraph: A positive integer indicating in which paragraph the term occurs.

e Lemma: A string indicating the base form of the term. For example, the
lemma for running and ran is run. The lemma is used to find the possible
senses of the word in WordNet.

In the SemCor corpus, the lemma given for a proper noun is the noun itself if
it appears as an entry in WordNet; for example, atlanta, referring to the city of
Atlanta, is in WordNet. For a proper noun that does not appear in WordNet,

41

7 News articles from newspapers and periodicals.

2 Editorial articles from newspapers and periodicals.

3 Reviews from newspapers and periodicals.

4 Essays on religion from newspapers and periodicals.

6 Articles on hobbies, recreation and skills from newspapers and periodicals.
4 Articles on history and folklore from newspapers and periodicals.

3 Social commentary articles from newspapers and periodicals.

1 Government report.

32 Academic journal papers.

35 Pieces of fiction, both short stories and novel excerpts.

5 Humorous essays.

Figure 5.6: The brownl section of the SemCor corpus

the noun in WordNet that best describes it is used. For example, the lemma
for Fulton_County_Grand_Jury is group (SemCor document br-a01).

Part of speech (POS): A string indicating to which part of speech the term
belongs. We are only concerned with nouns, which are indicated by the POS
strings NN, NNP, NNPS, NNS, NP, and NPS. In WordNet, no distinction
is made between the various types of nouns; all types occur together in the
noun hierarchies.

WordNet sense index: A positive integer indicating the correct sense of the
term in WordNet. This number, along with the lemma and POS for the
term, uniquely identifies a synset in WordNet. As this sense is provided for
all nouns in our corpus, all the nouns are perfectly disambiguated.

When a document is read in, it is converted into an array of Term objects which

we refer to as T'erms|[]. Terms[i| refers to the i*® term of the document. Each Term
object has the following parameters: sentence, paragraph, lemma, POS, sense, and
index. Sentence, paragraph and lemma are the same as in the tagged document
file. POS, sense and index are as follows:

42

e POS: The part of speech for the Term. Possible values are: noun, wverb,
adjective, and adverb, which are the same parts of speech used by WordNet.

e Sense: The sense in WordNet of the Term.

e Index: A positive integer denoting the position of the Term in the document.
Terms|i] has index i.

The candidate terms for chaining in a document are the Terms with POS noun.

A Term can be made ambiguous by ignoring the WordNet sense-index attribute
from the document. Instead, the lemma and POS for the term are used to retrieve
all possible senses for the word from WordNet. The sense for the Term then becomes
a set containing all the possible senses. When our lexical chaining algorithm is
performed on ambiguous Terms, it selects a single sense for every Term that is
placed in a chain. In effect, the lexical chaining algorithm disambiguates every
document term that is put into a chain.

5.3 Method

1: for all documents d in the corpus do

2: Set candidates := findCandidates(d)

3: Set perfectChains := findChains(candidates)

4: Set ambiguous := copy(candidates)

5. for all Terms ¢ in ambiguous do

6: Set t.sense := WordNet.getSenses(t.lemma,t.POS)
7. end for

8: Set classicChains := findChains(ambiguous)

9: end for

Figure 5.7: Algorithm for computing perfect and classic chains

Figure 5.7 presents our algorithm for finding the perfect and classic chains for
all the documents in the corpus. Line 2 selects the candidate terms, the nouns,
from the document. Line 3 runs the lexical chaining algorithm on the perfectly
disambiguated terms, resulting in a set of chains. Lines 4 through 6 copy the
candidate terms and make them ambiguous by setting each term’s sense to the
set of all possible noun senses for that term in WordNet. Therefore, in line 8
when the chainer is run on the ambiguous terms, it must select a single sense for

43

each candidate term. When the experiment is finished, if Candidates|i].sense #
Ambiguous|i].sense for any i, then the algorithm selected the wrong sense for that
term.

5.3.1 The output of our experiment

At the completion of chain creation, Per fect]] is the set of the chains created when
the lexical chaining algorithm is run on perfectly disambiguated terms, whereas
Classic[] is the set of chains created when the chainer is run on ambiguous or
undisambiguated text. Each lexical chain is a set of Term objects. When compar-
ing Terms inside Classic|| and Per fect|], we say that two Terms are the same if
they have the same index. For example, if Classicli].index = Per fect[j].index,
then Classicli] and Per fect[j] refer to the same term in the original document,
represented by Terms[Classic[i].index|. These Terms may still differ with regards
to their sense, i.e., if the lexical chainer did not pick the correct sense for Classicli].

The size or length of a chain is the number of Terms it contains. The order of
the Terms in a chain does not matter. The first Term of a chain refers to the Term
in the chain that occurs first in the document. Correspondingly, chains have a last
Term that occurs last in the document. The span of a chain is the distance from
its first Term to its last, which can be measured in sentences or paragraphs.

We refer to a chain that belongs to Perfect|] as a perfect chain, and a chain
that belongs to Classic|| as a classic chain.

5.4 Comparing chains

For each document we will generate two sets of lexical chains, the perfect chains
and the classic chains. From each set of chains we will pick the three longest chains
as the most ‘important’ chains for the document and compare them. We refer to
these as the longest classic chains and longest perfect chains. In the event of ties for
the longest three chains, we will pick all tying chains. Formally, the set of longest
chains is defined as:

Let C = {c1,¢a,...,c,} be a set of chains in a document, where every chain is
a set of terms from that document. The set of longest chains for the document is
the smallest set of chains L = {¢,, 1y, ..., i, } such that:

1. k>3

44

2. Forall 4, j,if ¢; € L, ¢; € C and ¢; & L, then |¢;| > |¢;].

We hypothesize that the average number of longest chains selected by this
method will be close to three. If many more chains are selected for a document, then
this suggests either that the document has many equally important or dominant
topics, or that despite there being only a few dominant topics in the document, the
longest lexical chains do not necessarily correspond with these dominant topics.

As decisions about semantic relatedness and lexical cohesion are, to some degree,
subjective, we take care to minimize the amount of subjectivity in our analysis.
We compare only the longest chains for each document, focusing on the differences
between the classic and perfect chains. When a classic and perfect chain are the
same, we count both chains as correct without examining them further. When a
classic chain and a perfect chain have terms in common, but are not the same, we
judge whether the correct meaning of the common terms is being used.

For example, if one of the longest perfect chains in a document contains the
terms bank and teller, then bank refers to a financial institution rather than a river
bank. Consequently, the chain—by virtue of its overriding sense that is related
to both bank and teller—indicates that the document is about banks as financial
institutions. If a longest classic chain for that document contains bank and slope,
then the lexical chaining algorithm has misinterpreted bank. We count this kind of
longest classic chain as an error.

If a longest classic chain mistakenly adds terms to a longest perfect chain, but
still uses the correct meanings for the terms the chains have in common, then we
do not count the classic chain as incorrect. For example, consider a longest perfect
chain that contains the terms slope and ridge and a longest classic chain from the
same document that contains slope, ridge, and bank. Even if bank has been added
incorrectly (i.e., misinterpreted as the side of a river when it is actually intended
as a financial institution), the meaning of the common terms, slope and ridge, has
been maintained. Therefore the overriding sense for the classic chain is the same
or closely linked to the overriding sense for the perfect chain. In both cases, the
longest chain indicates that the document is about geological features such as slopes
and ridges. As the subject for the document indicated by the longest chain has not
changed, we do not count this as an error, despite the incorrectly added terms in
the longest classic chain.

Lastly, there is the case of a longest classic chain that does not have any terms
in common with any of the longest perfect chains, or vice versa for a longest perfect
chain. We count such a chain as incorrect if its longest correct portion would not

45

be included in the set of longest chains for the document if the incorrect terms were
removed.

In none of these cases do we consider whether a longest chain is missing terms,
i.e., if there are terms in the document that should be part of a longest chain but
are not included. Missing terms are unimportant as the chains in question will have
already been selected as the longest chains for the document. Ignoring terms that
have been omitted from chains is very useful, as checking every document for terms
omitted from chains would be extremely time-consuming.

5.5 Hypotheses of this experiment

Hypothesis 1: Given that WordNet links some senses that are only loosely re-
lated, it is possible for perfect chains to be incorrect. Despite this, we hy-
pothesize that there will be very few incorrect longest perfect chains.

Hypothesis 2: We hypothesize that accurate word sense disambiguation is nec-
essary for building lexical chains that are correct. As a result, many more
longest classic chains than longest perfect chains will be incorrect.

5.6 Results

In this section we present the results of our experiment in detail.

Our lexical chainer, when run on the entire corpus, generates 6663 chains when
perfect word disambiguation is used and 6757 chains when there is no prior disam-
biguation. Figure 5.8 lists the number of classic and perfect chains by chain length.
Most of the chains are very small; 4253 of the perfect chains and 3941 of the classic
chains contain only two or three terms, and these short chains account for 64% and
58% of the total perfect and classic chains respectively. The average chain length
is 4.37 terms for the perfect chains and 4.93 terms for the classic chains.

A combined total of 344 perfect chains and 334 classic chains was selected by
our method as the set of longest chains in the corpus documents. This works out
to an average of 3.37 long perfect chains and 3.27 long classic chains per document.
The longest classic chains were longer than the longest perfect chains for the most
part, with an average length of 21.3 terms compared to 17.2 terms for the longest
perfect chains. The shortest of the longest chains selected was of length seven for
the classic chains and length five for the perfect chains.

46

Chain | Perfect | Classic Chain | Perfect | Classic Chain | Perfect | Classic
Length Length Length

2 3004 2652 28 4 5 54 0 0
3 1249 1289 29 2 5 55 0 0
4 699 730 30 1 5 56 0 0
5 428 476 31 7 6 57 0 0
6 286 341 32 2 4 58 0 1
7 203 240 33 3 9 59 0 0
8 161 167 34 2 4 60 0 0
9 112 139 35 1 1 61 0 0
10 74 98 36 3 4 62 0 0
11 66 99 37 3 4 63 0 0
12 48 82 38 3 1 64 0 1
13 42 66 39 0 1 65 0 1
14 33 48 40 3 2 66 1 0
15 40 35 41 0 4 67 0 0
16 20 37 42 4 2 68 0 0
17 21 22 43 1 1 69 0 0
18 20 23 44 1 3 70 0 0
19 19 26 45 2 1 71 0 2
20 21 20 46 1 2 72 1 0
21 14 21 47 1 1 73 0 0
22 11 14 48 1 2 74 0 1
23 10 15 49 1 2 75 0 0
24 12 15 50 0 1 76 0 0
25 10 9 51 0 1 7 1 0
26 5 8 52 1 2 78 0 0
27 5 5 53 0 0 79 0 1

Figure 5.8: Number of lexical chains by length

47

Two hundred and forty two of the longest perfect chains share at least one term
with one of the longest classic chains, whereas 235 of the longest classic chains
share at least one term with a longest perfect chain. The reason for the difference
between the two numbers is that thirteen longest classic chains contain terms from
more than one longest perfect chain, while only six longest perfect chains contained
terms from more than one longest classic chain. Chains with common terms account
for a majority of the longest chains, forming 70.3% of the longest perfect chains and
70.4% of the longest classic chains. While some of these chains have few terms in
common, most are very similar. These intersecting chains fall into four categories:

e Chains that are the same or almost the same, i.e., neither chain contains more
than two terms not present in the other.

e Perfect chains that contain most or all of the terms in a longest classic chain
plus many terms not in any longest classic chain.

e (lassic chains that contain most or all of the terms in a longest perfect chain
plus many terms not in any longest perfect chain.

e Chains that overlap such that they have some terms in common, but both
chains also contain terms not found in the other.

Forty-four of the longest chains were exactly the same, i.e., both the longest
classic chain and longest perfect chain contained exactly the same terms. A further
50 pairs of longest classic and perfect chains we consider to be virtually the same
(differing by at most two terms). These chains represent the cases in which prior
word sense disambiguation had little or no effect on the longest chains produced by
the lexical chaining algorithm.

Only 12 longest perfect chains were longer than the longest classic chains with
which they shared terms. Three of these longest perfect chains completely contained
a longest classic chain.

In contrast, there were 112 longest classic chains that expanded upon longest
perfect chains. In many cases the longest classic chain added many terms to a
longest perfect chain. In document a-11, one of the longest perfect chains is
{center, left, right, short, right, center, right, short, center, right, center, short,
center}, which are all terms in the document that refer to baseball positions. One
of the longest classic chains expands this chain with more baseball terms: {second,
Catcher, catcher, Shortstop, center, plate, pitchers, mound, short, second, center,
third, plate, short, third, second, center, third, center, short, center, shortstop,

48

mound, plate, thirds, shortstop}. The extra terms are added because the lexical
chainer chooses senses for some terms that are not correct but are related to each
other. For example, the WordNet gloss for the correct sense for short in the per-
fect chain is “the location on a baseball field where the shortstop is stationed” [1]
but in the classic chain the sense used is “the fielding position of the player on a
baseball team who is stationed between 2nd and 3rd base”. This sense allows it
to be connected with other position names, such as shortstop and catcher. The
Silber and McCoy relatedness function does not recognize these two senses of short
as being related, as the shortest path between the two senses in WordNet is too
long at twelve senses.

When a classic chain extends a perfect chain, terms may be added correctly
or incorrectly. In the document br-a0l, the classic longest chain {election, elec-
tion, election, election, election, election, election, election, election, election, elec-
tion, election, primary, reelection, vote, general_election, primary, vote, vote, vote,
votes} correctly extends the perfect longest chain {reelection, primary_election, elec-
tion, election, primary, election, election, election, primary, general_election, pri-
mary, election, election, election, election, election, election, election} by adding
the terms wvote, vote, vote, votes, as voting is closely related to elections. An in-
correct extension occurs in document br-f10, where the classic longest chain adds
light,light to the longest perfect chain {machine, applicator, machine, machine,
machine, machine, machine, machines, machine, machine, machine, machines, de-
vices, machine, devices, gadgets, machines, gadget, machines, device, device, ma-
chines, gadgets, device, machines, devices, devices, device, device, gadgets, devices,
machine, machine, gadget, device, machine, device, device, machines, device}. The
correct sense of light in the document is “(physics) electromagnetic radiation that
can produce a visual sensation; the light was filtered through a soft glass window”.
However, in the classic case, light is misinterpreted as “a device for lighting or
igniting fuel or charges or fires; do you have a light?” and therefore incorrectly
added. As both incorrect and correct additions can occur in the same classic chain,
and the portion of terms that are incorrect can vary greatly, it is difficult to mea-
sure the goodness or correctness of an expanded classic chain. For this reason, we
do not distinguish between different types of chain expansion, except in the case
described below.

In the previous example, the classic chain maintains the correct meanings of
all the terms it shares with the perfect chain it expands (machine, gadget, device,
applicator). Only the mistake in interpreting light causes it to be added incorrectly.
The occurrence of machine can be explained by studying the expanded chain more
closely. It is apparent that machine still refers to “any mechanical or electrical

49

device that transmits or modifies energy to perform or assist in the performance of
human tasks”, rather than another sense such as “an efficient person; the boxer was
a magnificent fighting machine”. In some cases, terms from the perfect chain are
misinterpreted, leading to a classic chain with a very different overriding meaning
than the perfect chain that it contains. For example, the document br-b20 contains
{West, West, West, West, West, West, West} as a longest perfect chain, where
West refers to “the countries of (originally) Europe and (now including) North
and South America”. The terms of that chain are contained within a longest
classic chain: {West, West, London, West, West, commentators, West, writer,
London, France, West, West, page}. In this chain, West is incorrectly interpreted
as referring to an author (“British writer (born in Ireland) (1892-1983)”). Likewise,
London, France, and page have also been incorrectly interpreted as the last names
of authors, which are all related to commentators and writer because all of them
are writers. We judged these sorts of chains as incorrect classic chains; they account
for 10 of the total 112 longest classic chains that expand upon longest perfect chains.

There are 23 instances of a longest classic chain overlapping a longest perfect
chain such that each chain has at least three terms not present in the other. When
characterizing these chains, we paid particular attention to how the terms they
had in common were interpreted. In 10 cases, senses were chosen for the terms in
common that are unrelated to the correct senses. This resulted in a classic chain
that is unrelated in meaning to the perfect chain, in the same manner as the West
chain described above. An example of an incorrect overlap occurs in document br-
k16. One longest perfect chain is {bay, bay, bay, bay, water, New_York_Bay, inlets,
sea}, where the correct sense of bay is “an indentation of a shoreline larger than a
cove but smaller than a gulf.” This chain overlaps with the longest classic chain
{horse, horse, horses, horse, horse, bay, bay, bay, bay}, where bay is incorrectly
taken to mean “a horse of a moderate reddish-brown color”. These nine longest
classic chains were counted as incorrect.

In the case of the other thirteen pairs of overlapping longest chains, the classic
chains used either the correct sense or a closely related sense for all the terms the
chains have in common. The terms that the classic chain adds may or not be added
correctly. When the classic chain does contain extra correct terms, then neither
chain contains all the terms that should be chained together. For example, in doc-
ument br-k03, the longest classic chain {man, boy, boy, man, boy, boy, white_men,
man, man, man, old_man} overlaps the longest perfect chain {boy, boy, fellow, boy,
boy, fellow, fellow}. Between the two chains there are a total of 14 unique terms,
all of which we consider to be related, forming the chain {man, boy, boy, man, boy,
boy, white_man, man, man, man, old_man, fellow, fellow, fellow}. In some cases,

20

such as this example, it is possible to pick senses for all the terms that allow them
to be placed in a single chain—this requires picking senses for all the terms that
are all related to a single overriding sense for that chain. For this example, senses
can be selected for all of these terms that are related via WordNet to the sense of
man, “an adult male person (as opposed to a woman); there were two women and
siz men on the bus”.

In some cases, neither overlapping chain contains all the terms that should be
chained together, but it is not possible to pick senses for these words such that
they are all related to a single overriding sense. In four of the overlapping pairs,
despite all the terms being related, it was not possible to pick senses that were
all related to a single overriding sense for the terms. In document br-j02, the
longest classic chain {temperature, temperature, temperature, temperature, temper-
ature, temperature, Temperatures, temperature, temperature, temperature, temper-
ature, temperature, temperature, temperature, temperature, temperatures, tempera-
ture, temperatures, temperature, temperatures, temperature, temperature, tempera-
ture, temperature, temperature, temperature, temperature, temperatures, heat, heat,
high_temperature, heat, heat, Heat, heat, heat, heat, heat, heat, heat, heat, heat,
enthalpy, enthalpy, reflection, heat, heat, heat} overlaps the longest perfect chain
{energy, energy, energy, enerqy, energy, energy, energy, enerqy, energy, energy,
heat, heat, heat, physical_phenomena, heat, work, Heat, conduction, radiation, heat,
pressure, heat, heat, heat, conduction, heat, radiation, heat, pressure, heat, heat,
radiation, reflection, radiation, heat, heat, heat, radiation}, with the numerous in-
stances of heat being common to both chains. There are 68 total unique terms
between the two chains, but whichever senses may be picked for the terms, the
longest possible chain is always the classic chain with 48 terms. The classic chain
makes the obvious connection between heat and temperature, but the perfect chain
links heat with energy, radiation, and conduction because the sense it uses for heat
is the scientific/theoretical definition, “a form of energy that is transferred by a
difference in temperature”. In contrast, the sense of heat used in the classic chain
is the more simplistic “the presence of heat”, which allows the connection to tem-
perature in WordNet. Despite the two senses of heat being related, they are not
closely linked in WordNet, so it is impossible to create a chain that contains all the
related terms as long as only a single sense is allowed for the heat terms.

One hundred and two of the longest perfect chains had no terms in common
with any of the longest classic chains, while 99 of the longest classic chains had no
terms in common with any of the longest perfect chains: we refer to these chains as
untouched chains. Most of the untouched longest perfect chains shared some or all
of their terms with a classic chain, but the classic chain was not long enough to rank

o1

in the top three longest classic chains for the document. Most of the untouched
longest classic chains combined or overlapped multiple perfect chains that were not
as long as the longest perfect chains in the document.

While it is not possible for any of the perfect chains to have any mistakes due
to an incorrect meaning of a term being used, it is still possible for terms to be
incorrectly connected in a perfect chain because of incorrect or tenuous links be-
tween senses in WordNet. We classify 10 of the untouched longest perfect chains as
being incorrect. An example of an incorrect perfect chain formed via tenuous links
is {occurrences, experience, experience, instances, experience, instance, experience,
incident, cases, things, cases, break, experiences, instances} from document br-f03.
An overriding sense for this chain is thing: “an event; a funny thing happened on
the way to the...”.

We classified 72 of the untouched longest classic chains as incorrect. Mistakes
in a classic chain can be caused by either a mistake in word sense disambiguation
or in semantic relatedness, and often a combination of both happened in incorrect
classic chains. An example of an untouched longest classic chain containing both
kinds of mistakes is {end, end, death, offices, state, state, state, state, state, action,
action, action, state, order} from document br-a0l. In this case, the state terms
have been interpreted as meaning “the way something is with respect to its main
attributes; the current state of knowledge; his state of health; in a weak financial
state” when the correct sense is “the territory occupied by one of the constituent
administrative districts of a nation; his state is in the deep south.” All the terms
in the chain are then linked because they are all states that something can be in
(i.e., state of death, state of order, etc.).

5.7 Discussion

5.7.1 Longest chains

When selecting the three longest chains for a document, more than three chains
could be chosen if some long chains were tied in length. If many more than three
longest chains were chosen then that would indicate that the longest chains in the
document were not distinct. This did not prove to be the case: in general, our
method was fairly good at selecting only three longest chains of each type per
document. The average number of longest chains selected per document, and the
large difference between the average chain lengths of the longest chains compared

52

to all chains (shown in Figure 5.7.1), indicates the distinct nature of the longest
chains in a document.

Perfect | Classic
Average number of longest chains per document | 3.37 3.27
Average length of longest chains 17.2 21.3
Average length of all chains 4.37 4.931

5.7.2 Improvement in chains with perfect disambiguation

The results show a significant improvement in the performance of the lexical chain-
ing algorithm when the correct senses for all terms are used. A total of 92 longest
classic chains were judged to be incorrect, compared to only 10 of the longest
perfect chains being incorrect. Incorrect chains account for 27.5% of all longest
classic chains, but only 2.9% of all longest perfect chains are incorrect. The un-
touched longest classic chains represent all the instances where the algorithm with
no prior word sense disambiguation selected a completely different chain compared
to when perfect disambiguation was used. 72.7% of these longest classic chains
were incorrect, whereas only 9.8% of the untouched longest perfect chains were
incorrect. Therefore, perfectly disambiguating candidate terms before performing
lexical chaining does greatly improve the correctness of the resulting chains, which
is what we hypothesized.

5.7.3 Errors in perfect chains

Even with perfect word sense disambiguation, at least 10 incorrect longest chains
were created (these are the incorrect untouched longest perfect chains). The 94
matching and almost matching longest perfect chains may also include some incor-
rect chains, as we did not check those chains for errors. These errors occur because
Silber and McCoy’s semantic relatedness measure incorrectly considers some unre-
lated senses to be related. Usually the cause of such errors is the links in WordNet
between unrelated senses located high in the noun hierarchy. The incorrect longest
perfect chain referred to earlier, {occurrences, erperience, experience, instances,
experience, instance, erperience, incident, cases, things, cases, break, experiences,
instances}, is a result of this problem. WordNet lists occurrence as the parent of
thing (“an event; a funny thing happened on the way to the....”) and experience,
instance, incident, case, and break as children of thing [1], so all the terms are
related to thing according to the Silber and McCoy relatedness measure.

93

5.7.4 Incorrect disambiguation leads to better chains

One unexpected result to note is the formation of longest classic chains that are
untouched and correct, of which there were 27. These chains combine terms from
multiple perfect chains that are shorter than the longest perfect chains selected for
the document. For example, document br-d03 contains the longest classic chain
{churches, Church, churches, churches, Churches, churches, churches, churches,
churches, churches, churches, church, church, church, churches, churches, church,
Church, Protestant, Protestants, Protestants, Protestants, Protestants, faith, faith,
Faith, faith, religious_orders, Catholic_Church, faith, Catholic_church}. This chain
combines terms from the following perfect chains:

1. {churches, churches, church, Church, Protestant, faith, Faith, religious_orders}
2. {faith, faith, faith}

{services, Mass, church, Mass, Mass, Mass}

Ll

{ Protestants, Protestants, Protestants, Protestants, Anglicans, Nonconformists}

5. {Church, churches, churches, Churches, churches, churches, churches, churches,
churches, churches, church, church, churches, cathedrals, chapel, chapel, chapels}

6. { Catholic_Church, Catholic_church, Roman, Roman}

The longest classic chains selects the same sense for all instances of church in
the document, “one of the groups of Christians who have their own beliefs and
forms of worship”, but this sense is only correct for the instances of church in the
first perfect chain. In the third perfect chain, church refers to “a service conducted
in a church; don’t be late for church” and in the fifth perfect chain church refers to
“a place for public (especially Christian) worship; the church was empty”. To us,
it seems obvious that these different senses of church are related, and so should be
placed together in a chain. Yet there is no short path between them in WordNet.
They have no common ancestor or descendant, and the shortest path between any
of the senses is 14 terms long (as shown in Figure 5.9). Such a path connects all
manner of buildings to religion and faith via senses such as flower_arrangement,
making it impossible for any WordNet-path-based semantic relatedness measure
to recognize that the two senses of church are related without incorrectly relating
other unrelated senses.

For the lexical chainer to place all the church terms in the document in the
same chain, then the same sense must be used for all the terms, whether or not it

o4

is the correct sense for them. In these cases, choosing an incorrect sense for some
terms actually leads to better chains compared to using the correct senses, which
contradicts our hypothesis that improved word sense disambiguation performance
necessarily leads to better lexical chaining performance.

Formally speaking, the situation is as follows:

A and B are words in a document whose correct senses when disambiguated
are sa* and sg* respectively. s4* and sp* are semantically related such that A
and B should be chained together, but the relation between s4* and sg* is not
recognized in WordNet (i.e., there does not exist a short path between ss* and
sp*). However, A has another sense, s’, which is semantically related to both
s4* and sp*. Furthermore, there exists a short path from s4’ to sg* in WordNet.
Therefore by selecting an incorrect sense for A, s4*, A and B can be chained
together, but if the correct sense for A is selected they cannot be chained together.

In the above case, “a place for public (especially Christian) worship” is the
correct sense for some of the instances of church. This sense is semantically related
to the correct sense for Mass, “(Roman Catholic Church and Protestant Churches)
the celebration of the Eucharist”, but the shortest WordNet path between these
senses is 14 senses long. If the incorrect sense for church, “a service conducted
in a church”, is used, then church and Mass can be chained together, as they are
siblings. In this case, the correct sense of church (as a building) is semantically
related to the incorrect sense (church service), but there is no short path between
them.

5.7.5 Correct chains that cannot be created

Selecting incorrect senses allows for all the church terms to be placed in the same
chain. However, other terms can only be placed in this chain if they are related to
the single sense selected for church. Terms such as mass and chapel are omitted
because they are only linked to senses of church not used in the classic chain, even
though both terms are related to faith, religion and churches. Given the 44 terms
churches, Church, churches, churches, Churches, churches, churches, churches,
churches, churches, churches, church, church, church, churches, churches, church,
Church, Protestant, Protestants, Protestants, Protestants, Protestants, faith, faith,
Faith, faith, religious_orders, Catholic_Church, faith, Catholic_church, services, Mass,
Mass, Mass, Mass, Anglicans, Nonconformists, cathedrals, chapel, chapel, chapels,
Roman, and Roman, there is no combination of senses for the terms, incorrect or
not, that are all linked to a single overriding sense. Therefore, no selection of senses

95

allows for all these terms to be placed in the same lexical chain by our chaining
algorithm. The largest chain that can possibly be formed from these terms is the
longest classic chains with 31 terms. This is the same problem noted previously in
the temperature, heat, and energy overlapping chains, and is described formally as
follows:

Given a longest perfect chain p = {ti, o, ..., tg, tp1, tp2, ..., tp,} and longest
classic chain ¢ = {ty, to, ..., ty, tcy, tco, ..., tey), where ty, ..., tg are the terms they
have in common, there does not exist senses s, Sa, ..., Sk, SP1, SP2, +++s SPn, SC1, SCa,
.esy SCy, and overriding sense s* such that:

1. s; is a valid sense for term ¢; for all 1 < <k
2. sp; is a valid sense for term tp; for all 1 <i < n
3. sc¢; is a valid sense for term t¢; for all 1 < i< m

4. s; is the same sense as s* or it shares a parent, child or sibling relation with
s*foralll <i<k

5. sp; is the same sense as s* or it shares a parent, child or sibling relation with
s*foralll <i<n

6. sc; is the same sense as s* or it shares a parent, child or sibling relation with
s*foralll1 <i<m

For example, there is no way to select senses for the terms faith, church, and
cathedral such that all of them can be placed in the same chain. If the sense “one
of the groups of Christians who have their own beliefs and forms of worship” is
selected for church, then it can be chained with faith. Selecting the sense “a place
for public (especially Christian) worship” for church allows it to be chained with
cathedral. However, there is no sense that can be chosen for church that allows it
to be chained with both faith and cathedral, regardless of which senses are selected
for faith and cathedral.

While we did not count all the times that the above situation occurred, we
did note more than a few occurrences of it. Such instances demonstrate that even
allowing for incorrect senses to be used when they are related to the correct sense
for a word would not allow for the largest possible correct chains to be found. This
problem of incorrect disambiguation leading to better lexical chains is due to how
related senses of the same word are represented in WordNet. We examine this
problem in detail later in this chapter.

o6

5.7.6 Validity of our model

In the previous chapter we defined the Correct Sense Property: There exists no
word w such that choosing the correct sense for w would lead to it being chained
incorrectly and choosing an incorrect sense for w would lead to it being chained
correctly. Our results show that this property does not hold, as in some cases the
incorrect sense chosen for a word by the lexical chainer allowed it to be placed in a
correct chain that it could not be placed in when perfect disambiguation was used.
The church chain we described above is a perfect example of this.

In the previous chapter, claim 1 states that “improved word sense disambigua-
tion necessarily leads to improved lexical chains”. This claim has been shown to
be false, because the Correct Sense Property does not hold. Our results show that
correct word sense disambiguation does not always lead to better lexical chains.
However, because greater accuracy in word sense disambiguation does lead to more
correct lexical chains on average, our second claim has been proven true: Word
sense disambiguation should be performed separately from building lexical chains,
using the most accurate method available.

In general, our model has proven to be a better method for performing lexical
chaining, despite the instances where incorrect disambiguation was useful.

5.7.7 Why incorrect disambiguation is sometimes useful

WordNet is described as being “fine-grained” because often words in WordNet have
multiple senses that are related in meaning. Sometimes these senses are so similar
in meaning that even humans have difficulty distinguishing between them [16].
However, even words with closely related senses can also have completely unrelated
senses. Such a word is bank, which has the following senses in WordNet:

1. A financial institution that accepts deposits and channels the money into
lending activities: “he cashed a check at the bank”; “that bank holds the
mortgage on my home”.

2. Sloping land (especially the slope beside a body of water): “they pulled the
canoe up on the bank”; “he sat on the bank of the river and watched the
currents”.

3. A supply or stock held in reserve for future use (especially in emergencies).

27

W~

. A building in which commercial banking is transacted: “the bank is on the
corner of Nassau and Witherspoon”.

5. An arrangement of similar objects in a row or in tiers: “he operated a bank
of switches”.

6. A container (usually with a slot in the top) for keeping money at home: “the
coin bank was empty”.

7. A long ridge or pile: “a huge bank of earth”.

8. The funds held by a gambling house or the dealer in some gambling games:
“he tried to break the bank at Monte Carlo”.

9. A slope in the turn of a road or track; the outside is higher than the inside
in order to reduce the effects of centrifugal force.

10. A flight maneuver; aircraft tips laterally about its longitudinal axis (especially
in turning): “the plane went into a steep bank”.

Senses 1, 3, 4, 6, and 8 are all related: they largely have to do with storing
money. Senses 2, 7, 9, and 10 are all related to a sloped shape: some have to do
with sloped earth and one has to do with tilting a plane such that its wings form
a slope. Sense 5 is distinct from all the other senses.

Despite senses 1 and 4 being related, they are not closely linked in WordNet.
Sense 1, bank as an institution (e.g., the Bank of Canada) is a descendant of
the sense {group, grouping}: “any number of entities (members) considered as
a unit”, whereas sense 4, the actual bank building, is a descendant of {entity}:
“that which is perceived or known or inferred to have its own distinct existence
(living or nonliving))”. Some of the synsets to which sense 1 is linked are merchant
bank, credit union, savings and loan, and trust company, all of which share the
concept of dealing with finance. On the other hand, sense 4 is related to other
buildings that store things, such as library and museum, and the financial aspect
is completely ignored. As a result, if a document uses sense 4 of bank, a lexical
chaining algorithm which correctly identifies its sense will be unable to connect to
other terms related to finance via links in WordNet.

Our lexical chaining algorithm will usually chain together bank and credit union
in a document because those terms have senses that are directly linked in WordNet.
This will occur even if the intended sense of bank is number 4 (a physical bank
building). This happens because our algorithm always seeks to select senses for

o8

words that allow them to be chained together: in the absence of words that are
linked to senses of bank other than sense number 4, the chainer will select the
only sense for bank that will result in it being placed in a chain (number 4). The
following sentence is an example of this: “I use the bank on King Street, but if you
want the credit union, their closest branch is in Kitchener.” Here, bank refers to a
physical bank building (located on King Street), but the chainer will select sense
number 1.

The problem here is that the relations in WordNet do not indicate which senses
of the same word are related. If WordNet did indicate which senses of the same
word are related, then possibly the problem of having to choose incorrect senses to
create the correct lexical chains in a document would be alleviated. Consider the
case we described earlier where three different but related senses of church lead to
three different chains under perfect disambiguation:

1. {churches, churches, church, Church, Protestant, faith, Faith, religious_orders}
2. {services, Mass, church, Mass, Mass, Mass}

3. {Church, churches, churches, Churches, churches, churches, churches, churches,
churches, churches, church, church, churches, cathedrals, chapel, chapel, chapels}

These are the senses of church used in the respective chains above:

1. “one of the groups of Christians who have their own beliefs and forms of
worship”

2. “a service conducted in a church; don’t be late for church”

3. “a place for public (especially Christian) worship; the church was empty”

If these three different senses were linked in WordNet, then all of the terms in the
three perfect chains could be placed together in a single chain. Correct word sense
disambiguation would no longer lead to worse lexical chains than when incorrect
senses are used. The new chain would be even better than the classic church chain
from our results. The classic chain only contains words related to the single sense
chosen for all the instances of church, whereas the new chain would contain all the
words related to any of the three senses of church. In the future work section of
the next chapter we suggest possible methods for automatically identifying these
senses of the same word that are semantically related.

29

10.
11.
12.

13.

14.

. church, church_building: “a place for public (especially Christian) worship;

the church was empty”

13

. place_of _worship, house_of prayer, house_of God, house_of worship: “any

building where congregations gather for prayer”

. building, edifice: “a structure that has a roof and walls and stands more or

less permanently in one place; there was a three-story building on the corner;
it was an imposing edifice

. structure, construction: “a thing constructed; a complex construction or en-

tity; the structure consisted of a series of arches; she wore her hair in an
amazing construction of whirls and ribbons”

artifact, artefact: “a man-made object taken as a whole”

. decoration, ornament, ornamentation: “something used to beautify”

flower_arrangement: a decorative arrangement of flowers

arrangement: “an orderly grouping (of things or persons) considered as a
unit; the result of arranging; a flower arrangement”

. group, grouping: “any number of entities (members) considered as a unit”

social_group: “people sharing some social relation”
organization, organisation: “a group of people who work together”

institution, establishment: “an organization founded and united for a specific
purpose”

religion, faith: “institution to express belief in a divine power; he was raised
in the Baptist religion; a member of his own faith contradicted him”

church, Christian_church: “one of the groups of Christians who have their
own beliefs and forms of worship”

Figure 5.9: Shortest path from church_building to Christian_church in WordNet [1]

60

Chapter 6

Conclusion

6.1 Future work

For future work, we see our research continuing in two directions. The first is
obvious: our model for separating word sense disambiguation from lexical chaining
would be useful in any application that uses lexical chaining. The second direction
would follow up on developing a method for identifying and linking semantically
related senses of the same word in WordNet.

6.2 Applications using lexical chaining

The lexical chaining algorithms we presented in our literature review, apart from
Galley and McKeown, were all developed as part of a larger application. These
applications involved malapropism detection and correction [11], document sum-
marization [3] [29], and topic segmentation [31]. Lexical chaining has been applied
to other problems as well (Stokes [31] lists over 30 papers on applications of lexical
chains). We believe that all applications that use lexical chains would benefit from
separating word sense disambiguation from the chaining process.

Hirst and St. Onge [11] [30], Barzilay and Elhadad [3], Silber and McCoy [27]
[28] [29], and Stokes [31] all perform automatic evaluations of the performance of
their algorithms on their respective tasks. It would be interesting to evaluate the
changes, if any, in the performance of these algorithms, when word sense disam-
biguation is performed separately from lexical chaining. Changing these algorithms
to use our model of lexical chaining would be straightforward, but choosing a test

61

corpus for the evaluation is more problematic. The papers listed above all use
specialized corpora for evaluating their algorithms, none of which have been dis-
ambiguated in the manner of the SemCor corpus we used for our experiment.

One option is to adapt the SemCor corpus to work with their evaluation meth-
ods. Adapting SemCor would then allow testing the effect of perfect disambigua-
tion with the applications listed above, in a manner similar to our experiment. For
Barzilay and Elhadad, Silber and McCoy, and Stokes, this adaptation would involve
generating gold standard summaries of the SemCor documents by hand. Hirst and
St. Onge require malapropisms to be manually added to the documents, and they
explain how to do this in their work.

The SemCor corpus is useful because it allows for perfect disambiguation to be
tested. However, our model can be evaluated without using perfect disambigua-
tion. Instead, the corpora already used by the above papers for evaluation could be
disambiguated with an available word sense disambiguation algorithm. The disam-
biguation would not be perfect, possibly far from perfect, but it would still be useful
to evaluate whether performing word sense disambiguation separately with an im-
perfect disambiguation algorithm gives better results than when disambiguation is
performed by the lexical chaining algorithm. Choosing a word sense disambiguation
algorithm is easy in that a great many such algorithms exist, but difficult in that
evaluation of these algorithms often varies. We direct readers to Mihalcea and Ped-
ersen’s [17] tutorial on word sense disambiguation for an excellent overview of the
various approaches to the problem. As well, the Senseval Workshop [15] on the eval-
uation of word sense disambiguation algorithms is a good resource. Pedersen et al.
[23] propose an approach that is particularly pertinent to lexical chaining in which
senses are chosen so as to maximize semantic relation scores, in the same manner as
current lexical chaining algorithms. Theirs is a generalized framework that allows
for a number of parameters to be set to maximize disambiguation performance.
The framework allows for a variety of WordNet-based semantic relatedness mea-
surements to be used, most of which are more sophisticated than those currently
used in lexical chaining algorithms.

6.3 Identifying related senses of the same word

We believe it is feasible to identify and link related senses of the same word in Word-
Net (but not the unrelated senses), as there has already been some work on this
problem. This problem is usually defined as generating a “coarse-grained” Word-
Net, where very similar senses are combined. This work is usually done with the

62

intention of improving the evaluation of word sense disambiguation methods which
to date have largely involved rewarding only exact matches, i.e., only considering an
algorithm to be correct if it selects the single correct sense for a polysemous word.
All other answers are considered incorrect, regardless of how close in meaning they
are to the correct answer. For example, if the word to be disambiguated is bank and
the correct sense is the first sense (a financial institution), then all the other senses
are considered equally wrong, whether they are close to the right answer (e.g., a
bank building) or completely unrelated (sloping land). Resnik and Yarowsky [24]
outline how semantic relatedness between senses of the same word can be used in
disambiguation evaluations, and methods for combining similar senses have been
presented by Mihalcea and Moldovan [16] and Palmer et al. [22].

One approach which we believe has merit is using dictionaries to identify similar
senses of the same word. Dictionaries often arrange definitions of a word into
hierarchies, first dividing a word into its unrelated meanings, and then listing all the
related senses for the word under their shared meanings. For example, the Oxford
English Dictionary [2] entry for bank lists three main noun senses: one pertaining
to the finance-related senses of bank, one pertaining to slopes or hills, and one to
a bench, shelf, or row of items. A WordNet sense’s gloss could be compared to
the definitions in a dictionary to decide which main dictionary sense the WordNet
sense would fall under. WordNet senses belonging to the same dictionary main
sense could then be linked.

While the above research ideas are more speculative than our earlier ideas for
adapting existing lexical chaining algorithms, we consider them more interesting.
Modeling word meanings computationally is a fascinating but difficult problem, and
we believe the problems we encountered with the lexical chains produced during
our experiment indicate key problems with current approaches.

6.4 Thesis contributions
This thesis has made six main contributions to the areas of lexical chaining:

New lexical chaining model: In Chapter 4 we presented a new model for
lexical chaining. Our model separates word sense disambiguation from lexical
chain creation. We separate word sense disambiguation because polysemous
words must be disambiguated before the semantic relations between them
can be determined; the semantic relations, if any, between two words cannot
be determined before the meanings of the two words are known. Once word

63

sense disambiguation is separate from lexical chain creation, any method for
word sense disambiguation can be used, with more accurate methods being
desirable.

Improved lexical chaining algorithm: In Chapter 5 we proposed a modi-
fied version of Silber and McCoy’s lexical chaining algorithm for use in our
experiment. We showed that by modifying how the contribution of a word
to a metachain was calculated, the word sense disambiguation accuracy of
the algorithm was significantly improved. While this change does increase
the runtime of the algorithm from O(n) to O(n?), the new runtime is still
reasonable.

Experimental evaluation of our model: Chapter 5 contains our experiment
which evaluates the effectiveness of performing accurate word sense disam-
biguation separately from building the lexical chains. The experiment com-
pared the correctness of the lexical chains created under two conditions:

1. No prior disambiguation of candidate terms. This is how lexical chaining
algorithms are normally run.

2. Perfect disambiguation performed prior to the creation of lexical chains.

Our results showed that the longest lexical chains created under the second
condition were significantly more likely to be correct than those created un-
der the first. These results prove that accurate word sense disambiguation
is important for building correct lexical chains, and therefore disambigua-
tion should be performed separately from lexical chaining. Our results also
demonstrated that correct word sense disambiguation does not always lead
to better chains than incorrect disambiguation.

How incorrect disambiguation can improve lexical chaining: In our re-
sults, we found that sometimes incorrect word sense disambiguation resulted
in more correct lexical chains than those produced under correct disambigua-
tion. At the end of Chapter 5 we showed that WordNet contains senses of
the same word that are related in meaning, yet no short path between these
senses exists. As a result, selecting an incorrect but related sense for a candi-
date word can allow it to be placed in a correct chain, whereas selecting the
correct sense for that candidate would leave it unchained.

Applying our model to other lexical chaining algorithms: In the future
work section of this chapter we explained how other lexical chaining algo-
rithms could be adapted to fit our model. Adapting these algorithms would

64

allow for our model to be evaluated with regard to specific applications of
lexical chaining.

Identifying related senses of the same word: In the future work section we
also proposed possible methods for identifying senses of the same word that
are related, such as the following senses of church: “a service conducted in a
church; don’t be late for church” and “a place for public (especially Christian)
worship; the church was empty” [1]. Linking related senses such as these could
eliminate the cases where incorrect word sense disambiguation allows for more
correct chains than correct disambiguation.

Our original goal was to demonstrate the importance of word sense disambigua-
tion to lexical chaining, and prove the benefits of performing disambiguation before
building lexical chains. We accomplished both these goals, but also found an un-
expected result: it is sometimes the case that better lexical chains can be created
by selecting an incorrect sense for a word.

65

Appendix A

Brown corpus portion of the
SemCor corpus

’ Document \ Content ‘

br-a01l Newspaper/periodical article
br-a02 Newspaper /periodical article
br-all Newspaper/periodical article
br-al2 Newspaper/periodical article
br-al3 Newspaper/periodical article
br-al4 Newspaper/periodical article
br-al5 Newspaper /periodical article
br-b13 Newspaper/periodical editorial
br-b20 Newspaper/periodical editorial
br-c01 Newspaper /periodical review
br-c02 Newspaper /periodical review
br-c04 Newspaper /periodical review
br-d01 Essay on religion

br-d02 Essay on religion

br-d03 Essay on religion

br-d04 Essay on religion

br-e01 Article on hobbies/recreation
br-e02 Article on hobbies/recreation
br-e04 Article on hobbies/recreation
br-e21 Article on hobbies/recreation
br-e24 Article on hobbies/recreation
br-e29 Article on hobbies/recreation

66

’ Document \ Content

br-f03 Article on history /folklore
br-f10 Article on history /folklore
br-f19 Article on history/folklore
br-f43 Article on history/folklore
br-g01 Social commentary article
br-g11 Social commentary article
br-g15 Social commentary article
br-h01 Government report

br-j01 Academic journal article
br-j02 Academic journal article
br-j03 Academic journal article
br-j04 Academic journal article
br-j05 Academic journal article
br-j06 Academic journal article
br-j07 Academic journal article
br-j08 Academic journal article
br-j09 Academic journal article
br-j10 Academic journal article
br-j11 Academic journal article
br-j12 Academic journal article
br-j13 Academic journal article
br-j14 Academic journal article
br-j15 Academic journal article
br-j16 Academic journal article
br-j17 Academic journal article
br-j18 Academic journal article
br-j19 Academic journal article
br-j20 Academic journal article
br-j22 Academic journal article
br-j23 Academic journal article
br-j37 Academic journal article
br-j52 Academic journal article
br-j53 Academic journal article
br-j54 Academic journal article
br-j55 Academic journal article
br-j56 Academic journal article
br-j57 Academic journal article
br-j58 Academic journal article

67

’ Document \ Content

br-j59 Academic journal article
br-j60 Academic journal article
br-j70 Academic journal article
br-k01 Fiction
br-k02 Fiction
br-k03 Fiction
br-k04 Fiction
br-k05 Fiction
br-k06 Fiction
br-k07 Fiction
br-k08 Fiction
br-k09 Fiction
br-k10 Fiction
br-k11 Fiction
br-k12 Fiction
br-k13 Fiction
br-k14 Fiction
br-k15 Fiction
br-k16 Fiction
br-k17 Fiction
br-k18 Fiction
br-k19 Fiction
br-k20 Fiction
br-k21 Fiction
br-k22 Fiction
br-k23 Fiction
br-k24 Fiction
br-k25 Fiction
br-k26 Fiction
br-k27 Fiction
br-k28 Fiction
br-k29 Fiction
br-111 Fiction
br-112 Fiction
br-m01 Fiction
br-m02 Fiction
br-n05 Fiction
br-p01 Fiction

68

’ Document \ Content

br-r05
br-r06
br-r07
br-r08
br-r09

Humour
Humour
Humour
Humour
Humour

69

Bibliography

1]
2]
3]

WordNet 2.0. http://wordnet.princeton.edu/2.0/WordNet-2.0.eze.
Oxford English Dictionary. dictionary.oed.com, 2006.

Regina Barzilay and Michael Elhadad. Using lexical chains for text summa-
rization. In Proceedings of the Intelligent Scalable Text Summarization (ISTS),
Madrid, Spain, 1997.

Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-based mea-
sures of semantic distance. Computational Linguistics, 32:13—-47, June 2006.

Christiane Fellbaum. Introduction. In Christiane Fellbaum, editor, Word-
Net: An electronic lexical database, pages 1-20. MIT Press, Cambridge, Mas-
sachusetts, 1998.

W. N. Francis and H. Kucera. Brown corpus manual.
http://helmer.aksis.uib.no/icame/brown/bem.html, 1964.
Michel Galley and Kathleen McKeown. Improving word sense disambiguation

in lexical chaining. In Proceedings of 18th International Joint Conference on
Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

Barbara Grosz and Candace Sidner. Attention, intentions, and the structure
of discourse. Computational Linguistics, 12:175-204, July 1986.

M. A. K. Halliday and Ruqaiya Hasan. Cohesion in English. Longman Group
Ltd., 1976.

Graeme Hirst and Alexander Budanitsky. Correcting real-word spelling errors
by restoring lexical cohesion. Natural Language Engineering, 11:87-111, March
2005.

70

[11]

[18]

[19]

[20]

[21]

Graeme Hirst and David St. Onge. Lexical chains as representations of con-
text for the detection and correction of malapropisms. In Christiane Fellbaum,
editor, WordNet: An electronic lexical database, chapter 13. MIT Press, Cam-
bridge, Massachusetts, 1998.

Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus
statistics and lexical taxonomy. In Proceedings of International Conference
Research on Computational Linguistics (ROCLING X), Taiwan, 1997.

Adam Kilgarriff. Gold standard datasets for evaluating word sense disam-
biguation programs. Computer Speech and Language, 12:453-472, 1998.

Shari Landes, Claudia Leacock, and Randee Tengi. Building semantic con-
cordances. In Christiane Fellbaum, editor, WordNet: An electronic lexical
database, chapter 8. MIT Press, Cambridge, Massachusetts, 1998.

Rada Mihalcea and Phil Edmonds, editors. Senseval-3: Third International
Workshop on the Ewvaluation of Systems for the Semantic Analysis of Text,
Barcelona, Spain, July 2004. Association for Computational Linguistics Con-
ference.

Rada Mihalcea and Dan I. Moldovan. Automatic generation of a coarse grained
wordnet. In Proceedings of NAACL Workshop on WordNet and Other Lezical
Resources, Pittsburgh, PA, June 2001.

Rada Mihalcea and Ted Pedersen, editors. Advances in word sense disam-
biguation. Association for Computational Linguistics Conference, ACL 2005,
June 2005.

George A. Miller. Nouns in WordNet. In Christiane Fellbaum, editor, Word-
Net: An electronic lexical database, chapter 1. MIT Press, Cambridge, Mas-
sachusetts, 1998.

Saif Mohammad and Graeme Hirst. Distributional measures as proxies for
semantic relatedness. Submitted, 2005.

Jane Morris. Lexical cohesion, the thesaurus, and the structure of text. Mas-
ter’s thesis, University of Toronto, December 1988.

Jane Morris and Graeme Hirst. Lexical cohesion computed by thesaural re-
lations as an indicator of the structure of text. Computational Linguistics,
17:21-43, 1991.

71

22]

23]

28]

[29]

[30]

[31]

Martha Palmer, Hoa Trang Dang, and Christiane Fellbaum. Making fine-
grained and coarse-grained sense distinctions, both manually and automati-
cally. Natural Language Engineering, To appear.

Ted Pedersen, Satanjeev Banerjee, and Siddharth Patwardhan. Maximizing
semantic relatedness to perform word sense disambiguation. Technical Report
2005/25, University of Minnesota Supercomputing Institute, March 2005.

Philip Resnik and David Yarowsky. Distinguishing systems and distinguish-
ing senses: New evaluation methods for word sense disambiguation. Natural
Language Engineering, 5:113-133, June 1999.

R. Richardson and A. F. Smeaton. Using WordNet in a knowledge-based
approach to information retrieval. Working paper, Dublin City University,
Dublin, Ireland, 1995.

Peter Roget. Roget’s International Thesaurus. Harper and Row, Publishers
Inc., fourth edition, 1977.

Gregory Silber and Kathleen McCoy. Efficient text summarization using lexical
chains. In Proceedings of the 13th International Conference on Intelligent User
Interfaces (IUI 2000), pages 252255, New Orleans, January 2000.

Gregory Silber and Kathleen McCoy. An efficient text summarizer using lex-
ical chains. In Proceedings of the First International Conference on Natural
Language Generation (INLG 2000), pages 268271, Israel, June 2000.

Gregory Silber and Kathleen McCoy. Efficiently computed lexical chains as an
intermediate representation for automatic text summarization. Computational
Linguistics, 28(4):487-496, December 2002.

David St-Onge. Detecting and correcting malapropisms with lexical chaining.
Master’s thesis, University of Toronto, Toronto, Canada, 1995.

Nicola Stokes. Applications of lexical cohesion analysis in the topic detection
and tracking domain. PhD thesis, National University of Ireland, Dublin,
Ireland, April 2004.

72

