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Abstract

The effects of differential diffusion in the numerical modelling of a turbulent non-
premixed hydrogen-air jet flame using a Conditional Moment Closure (CMC) method are
investigated. The CMC calculations, which are coupled with computational fluid dynamics
(CFD) calculations, relax the commonly used assumption of equal species mass diffusivi-
ties. The focus is on the predictions of species mass fractions and temperatures, especially
the production of NO. The results of the calculations are compared with available experi-
mental measurements.

The formulation of the CMC species transport equation including differential diffusion
is presented and the closure of the terms are discussed. Further, the CMC equation for
conditional enthalpy is also derived in the present study. The implementation of the CMC
equations using two dimensional finite volume method is discussed, including a presentation
of the discretised forms of the equations.

The results of the CMC calculations including the effects of differential diffusion show
that NO mass fractions are increased from the large underpredictions observed for equal
diffusivity results near the jet nozzle. Improvements are also found for other species such
as H2 and H2O. The results show physical behaviours, such as a shift in the location of
the reaction zone and increased reaction rates due to increased diffusion rates of H2. It
is also found that differential diffusion effects persist downstream from the nozzle, where
the effects are expected to be small, and reasons for the discrepancies are discussed in
the present study. The profiles obtained from the CMC calculations show large radial
variations, much larger than in equal diffusivity calculations. An analysis isolating the
differential diffusion effects of various species shows that the largest changes occur due to
the accounting for the differential diffusivity of H2. A budget of the terms in the CMC
equations for the differentially diffusing chemical species and enthalpy is also investigated.
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Chapter 1

Introduction

This chapter provides the motivation and objectives of the present study. An outline of
the subsequent chapters is also presented.

1.1 Overview

Turbulent combustion plays a vital role in today’s high energy demand society due to its
presence in most transportation and power generation applications. Over two decades, from
1990 to 2009, rapid growth of energy usage in Canada has been observed in the commer-
cial (37% growth), industrial (17%), and transportation (37%) sectors. Correspondingly
greenhouse gas (GHG) emissions have also grown in commercial (29%), industrial (8%),
and transportation (36%) [1]. Due to economic, regulatory, health and environmental fac-
tors, the research and development of new combustion technologies have been focused on
improving fuel economy and reducing atmospheric pollution. As emission regulations and
control become progressively rigorous, adequate prediction of pollutant emissions, such
as carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx) and unburnt carbon
particulates (soot), can prove invaluable in the design of these systems. Experimentation
has traditionally been adopted for research and design of combustion systems, since their
complexity limits the applicability and accuracy of theoretical calculations. However, re-
peated experimental studies are costly, especially for testing the magnitudes of different
parameter and configurations of complex combustion systems.

With the rapid pace of advancement in computer power, computational fluid dynamics
(CFD), the numerical solution of fluid problems, has increasingly become a viable and
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sought after tool to complement experimentation in the engineering design process of com-
bustion applications. CFD can also contribute to the improvement of the fundamental
understanding of the complex phenomena involved in turbulent combustion that are diffi-
cult to observe in experimental studies, which in turn results in more reliable simulations
and innovative designs of industrial combustion devices. It is easy to see the motivation
for the growing community in numerical combustion research. However, in numerical com-
bustion research, accurate prediction of pollutant formation proves to be a challenging
objective to achieve. Complex interactions occur between turbulent mixing, chemical re-
actions, heat transfer and multiphase fluid leading to a wide range of length and time
scales, from the macroscopic to the molecular level, that need to be modelled. In addition,
the tradeoff between accuracy and computational cost of modelling approaches serves as
the motivation for model development. These challenges drive the ongoing research in
numerical combustion.

With rising prices and environmental awareness of conventional fossil fuels (petroleum,
natural gas, and coal), interest has risen not only in improving efficiency and emissions
of conventional fuel systems, but also in the viability of alternative fuel systems, such as
biofuels, hydrogen, alcohols, and more [2]. The growing range of systems with different
fuels has also contributed to the surge in combustion research. One alternative fuel that
has garnered much attention is the use of hydrogen based fuels, known for being regarded
as an emissionless fuel, and sustainable due to its abundance [3]. Though hydrogen fuel
is commonly regarded to have zero-emission (product being mostly water, H2O), this is
only true when the oxidizer is pure oxygen. More commonly in practical combustion ap-
plications, the oxidizer is air which contains nitrogen (N2), and reaction with hydrogen
will result in small amounts of nitrogen oxides. As such, prediction and reduction of nitro-
gen oxide emission are hurdles that hydrogen fuel faces. Alternatively, hydrogen has also
gained attention not only as a primary fuel, but also as a constituent in conventional fuels
systems that acts as a stabiliser of the ignition and combustion processes, thereby reduc-
ing emissions in the traditional combustion processes [4]. The development of combustion
modelling techniques suitable for the emerging alternative fuels, such as hydrogen fuels,
can inevitably help to advance the state of the art.

1.2 Objectives

The history of each turbulent CFD and combustion modelling methods has, for the most
part, followed the same progression of advancement. The methods are first developed
with a set of assumptions and contraints, and subsequent efforts proceed to assess the
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methods for its applicability to different problems and to further develop the methods to
push the boundaries of the presupposed constraints. The Conditional Moment Closure
method (CMC) is one such combustion modelling approach which has attracted interest
in the numerical combustion community. Numerous studies focus on extending the the
approach to a wider variety of combustion problems. One assumption regularly made for
CMC modelling, as well as many other combustion modelling methods, is that of equal
mass diffusivities for every chemical species. The equally diffusive species or unity Lewis
assumption is often considered to be valid for sufficiently high Reynolds number turbulent
flows and in non-premixed turbulent combustion modelling, leading to convenient relation-
ships between species concentrations and conserved scalar variables, and greatly simplifying
the model formulations [5]. However, the validity of this assumption can be questioned
when the Reynolds number is moderate and significantly different species diffusivities are
present, for example in mixtures containing a highly diffusive component like hydrogen,
H2, or a less diffusive constituent like soot.

The objectives of the present study are:

• The implementation of a previously derived CMC species transport equation [6, 7]
which accounts for the effects of differential diffusion. To the author’s best knowledge,
the method has not been previously implemented in a CFD simulation of a flame.

• The derivation and implementation of a new formulation for the CMC enthalpy
transport equation which also accounts for the effects of differential species diffusion.
The derivation of the enthalpy equation follows a similar approach to the derivation of
the species equation [6, 7], but the inherent differences between species and enthalpy
transport are evident in the resulting CMC equations.

• The assessment of benefits and drawbacks of the CMC model with differential dif-
fusion, by comparison with the experimental data, in its application to a well docu-
mented experimental turbulent non-premixed hydrogen-air jet flame in a Reynolds-
Averaged Navier-Stokes (RANS) setting. Especially of interest are the predictions of
NO production, which have previously been found to be inadequate when differential
diffusion effects are disregarded.

• Identification and suggestions of possible areas of investigation for improving the
CMC approach for future studies.

3



1.3 Outline

In Chapter 2 the general background of turbulent combustion modelling is covered. The
fundamental concepts should provide sufficient knowledge for the reader to interpret the
contents of the subsequent chapters. The topics introduced include the governing equations
of fluid flows, statistical concepts for turbulence, and common tools for turbulent non-
premixed combustion modelling. Brief presentations are given for various methods in
turbulent flow and non-premixed combustion modellling, along with their advantages and
shortcomings, so that the reader has an overview of the state of the art.

Chapter 3 is centred on the details of the main phenomenon addressed in this study,
differential diffusion. A discussion of the concepts, with a focus on its role turbulent non-
premixed combustion, is provided. A review of previous experimental, direct numerical
simulation, and numerical modelling studies involving differential diffusion in turbulent
non-premixed combustion, and brief discussions on their findings, are presented, as to
provide the reader with a perspective of the current progress in the area.

The turbulent combustion modelling approach applied in this study, CMC, is discussed
in Chapter 4. A review is given for the derivation procedure for the transport equation
of conditional species mass fraction with differential diffusion effects considered. A novel
derivation of conditional enthalpy transport equation considering differential species diffu-
sion effects is presented, along with the application of the primary CMC closure hypothesis
to the unclosed diffusion terms with differential diffusion. The chapter also covers closure
models for other terms in the CMC equations that are used in this study.

Following the development of the CMC equations, Chapter 5 details the general imple-
mentation (not specific to a particular flame) of the CMC model with differential diffusion
effects. An outline of the solution chronology is provided, illustrating the coupling of the
CFD and combustion modelling methods. The numerical methods that are used in the
present study, including the finite volume discretisation of the transport equations and the
numerical solution of the system of differential equations, are discussed.

The application of the aforementioned modelling method to the investigation of a
hydrogen-air jet flame is conducted in Chapter 6. Firstly, an overview of the experimental
study of the hydrogen-air jet flame is provided. The details of the numerical setup of
parameters related to the flame under investigation are established, including the compu-
tational finite volume grid, boundary and initial conditions, CFD model parameters, and
chemical mechanism. The remainder of the chapter is dedicated to the presentation and
assessment of the results that are obtained for the hydrogen-air flame using the numerical
models, by comparison to the experimental data and to calculations disregarding differ-
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ential diffusion effects. The assessment includes identifying successes and shortcomings of
the application of the model to the experimental test case, and analyzing the plausible
causes and, wherever possible, suggesting potential methods for improvement.

Lastly, the current study and its findings are summarized in Chapter 7. Recommenda-
tions for future areas of study based on the knowledge that is obtained from the current
research are suggested.
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Chapter 2

Background

In this chapter, an overview of concepts fundamental to the turbulent combustion modelling
is presented. Governing equations for fluid and thermodynamics are presented. One of the
main topics in this chapter is the statistical treatment of turbulence; a review of statistics
and the statistical representation of the governing equations is covered, as well as insight
into the difficulties that arise from the statistical representation. An emphasis is placed on
turbulent non-premixed reacting flow modelling, and various turbulence and combustion
modelling techniques are briefly introduced.

2.1 Principles of Turbulent Combustion

2.1.1 Classification of Combustion Processes

Combustion processes involve the exothermic chemical reaction between a fuel and an
oxidizer (reactants) in a mixture, resulting in the production various chemical products.
It is useful to classify these processes based on their characteristics. It is common to
categorize the combustion processes based on when combustion occurs in relation to the
mixing of the fuel and oxidizer.

In premixed flames, the fuel and the oxidizer are homogeneously mixed before ignition
occurs. The mixture is stoichiometric when the fuel and oxidizer are completely consumed
in the combustion process. When there is excess fuel or oxidizer, the mixture is fuel-
rich or fuel-lean, respectively. The premixture can be described by the equivalence ratio,
which relates the composition of the mixture to the stochiometric mixture. The fresh
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and burnt mixtures are separated by a reaction zone which, with sufficient heat release,
self-propagates and consumes the unburnt mixture.

In non-premixed flames, the fuel and the oxidizer are mixed as combustion is occurring;
hence, combustion occurs across a range of equivalence ratios. This results in a more
complex chemistry due to the presence of both rich and lean burning. Unlike the self-
propagating nature of the reaction zone in premixed combustion, the reaction zone in
non-premixed combustion occurs at the interface of the fuel and oxidizer and its structure
is governed by the fluid dynamics of the mixing process.

Both types of combustion processes have advantages and disadvantages. Premixed
combustion processes are more efficient than non-premixed processes due to the ability to
restrict the chemistry that occurs by controlling the composition of the premixture. The
advantage of non-premixed combustion processes is better safety than premixed processes,
since the reactants are initially seperated, preventing accidental ignition. It is also easier
to control non-premixed processes after ignition has occurred, since the flame does not
self-propagate.

Most commonly studied flames can also be classified by whether the fluid flow governing
the mixing process is laminar or turbulent. Mixing in turbulent flames is enhanced due to
turbulent eddies, resulting in greater transport of mass, momentum, and heat. Examples
of combustion systems that are classified under premixed or non-premixed, and turbulent
or laminar, are given in Table 2.1.

2.1.2 Governing Equations of Transport Phenomena and State
Equations

The present description of the governing equations of mass, momentum, species, and
enthalpy transport in turbulent combustion phenomena adopts an Eularian viewpoint,
though a Lagrangian viewpoint is equally valid, and in some cases more convenient.

Transport of mass

The equation for the conservation of mass, or the continuity equation, can be expressed as

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density and u is the velocity vector field. Equation 2.1 states that the rate
of change in mass of the control volume is equal to the net rate of flow into the control
volume.
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Table 2.1: Classification of combustion systems

Laminar Turbulent

Premixed
• Flat flame

• Bunsen burner

• Spark ignition engine

• Gas turbines

Non-
premixed

• Wood fire

• Radiant burners

• Candle

• Coal combustion

• Aircraft turbine

• Diesel engine

• Rocket engine

• Furnaces

Transport of Linear Momentum

The transport of linear momentum can be described by

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · τττ + B. (2.2)

The two terms on the left hand side (LHS) of Eq. 2.2 are the material derivative describing
the local and advection rates of change in momentum in the control volume. The terms
on the right hand side (RHS) are the forces acting on the control volume, consisting of a
pressure gradient, stress tensor, and body forces. Equation 2.2 describes a system of N
equations, where N is the number of spatial components of u, commonly known as the
Navier-Stokes equations.

The total stress tensor for Newtonian fluids (where the viscous stresses are proportional
to the strain rates) is

τττ = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij, (2.3)

where λ is the bulk viscosity, and δij is the Kronecker delta. λ is commonly approximated
as −2

3
µ [8].
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Transport of Species

The mass fraction Y of a chemical species i is the ratio of the mass of the species to the
mass of the mixture. The sum of the mass fraction of N species is equal to 1,

N∑

i

Yi = 1. (2.4)

The transport of a species i is expressed by the equation

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · ji + ρω̇i, (2.5)

where ji is the species diffusion flux, and ωi is the rate of production or destruction of
the species due to chemical reactions. The terms on the LHS of Eq. 2.5 account for
the temporal rate of change of h, and the advection of h. The species diffusion flux
involves different modes of diffusion: ordinary diffusion due to concentration gradients,
thermophoretic (Soret) diffusion due to temperature gradients, pressure diffusion due to
pressure gradients, and forced diffusion due to differences in body forces, and can be
summarized as,

ji = jdi + jTi + jPi + jfi , (2.6)

where the superscripts d, T , P , and f denote ordinary, thermophoretic, pressure, and
forced diffusion, respectively. Pressure gradients are typically not large enough in combus-
tion processes for pressure diffusion to be significant. Forced diffusion, generally caused
by charged species, is also negligible in most combustion processes. Thermophoretic dif-
fusion is important for light species such as hydrogen, but only at lower temperatures [9].
The ordinary diffusion component is commonly approximated using Fick’s law for binary
diffusion,

jdi = −ρDi∇Yi, (2.7)

where Di is the binary diffusion coefficient of species i and a reference species. The gov-
erning equation for species transport, where only jdi is important in ji, is obtained from
using Eqs. 2.5-2.7,

∂ρYi
∂t

+∇ · (ρuYi) = ∇ · (ρDi∇Yi) + ρω̇i. (2.8)
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Transport of Enthalpy

Enthalpy describes the thermodynamic potential of a system. The enthalpy h of the
mixture is the mass weighted sum of the individual specific enthalpy hi of species i,

h =
∑

i

Yihi. (2.9)

The standardized or total enthalpy of a species i is given as

hi (T ) = h
o

f,i (Tref ) + δhs,i (Tref ) , (2.10)

where h
o

f,i (Tref ) is the enthalpy of formation at the reference state, describing the energy

potential in the chemical bonds, and δhs,i (Tref ) is the sensible enthalpy, describing the
amount of energy needed to change the temperature from Tref to T . The transport of
enthalpy in a system is expressed by the equation

∂ρh

∂t
+∇ · (ρuh) = −∇ · jq + ρsh + Φv +

Dp

Dt
, (2.11)

where ρ is the density, u is the velocity vector, jq is the heat diffusion flux, sh is the heat
source, Φv is the viscous heating, and Dp

Dt
is the material derivative of pressure. The terms

on the LHS of Eq. 2.11 account for the temporal rate of change of h, and the advection of
h. For constant pressure flames, the last term of the RHS involving changes in pressure,
is neglected. Φv is negligible for low Mach numbers [10]. In turbulent combustion, the
enthalpy source term usually accounts for heating due to radiation, though in general
electrical sources can be included. The heat diffusion flux involves the following modes of
diffusion: heat conduction, species diffusion, and Dufour effects caused by concentration
gradients, and can be summarized by the relationship

jq = jcq + jdq + jDq . (2.12)

Dufour effects are typically negligible in most cases, and jp can be expressed by,

jq = −λ∇T +
∑

i

hiji, (2.13)

where λ is the thermal conductivity and ji is the the species diffusion flux from Eq. 2.6.
The terms on the RHS describe the contributions of heat conduction (Fourier’s law) and
species diffusion, respectively. ∇T in Eq. 2.13 can be expressed in terms of h by the use
of Eq. 2.9, and along with the expression for ji in Eq. 2.7, jq can be expressed as [11],
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jq = −ρα∇h+
∑

i

ρhi (α−Di)∇Yi, (2.14)

where α is the thermal diffusivity, Yi is the mass fraction of the ith chemical species, Di

is its diffusion coefficient, and hi is its enthalpy. The resulting governing equation for
enthalpy transport, neglecting viscous heating, pressure changes, and Dufour effect, is

∂ρh

∂t
+∇ · (ρuh) = ∇ · (ρα∇h)−∇ ·

∑

i

ρhi (α−Di)∇Yi + ρsh. (2.15)

Equations of State

Other than the transport of quantities, it is useful to relate various state properties to each
other. Various equations from thermodynamics are commonly used in conjunction with
the transport equations.

The ideal gas law is an equation of state relating the pressure, volume and temperature
of a gas, under the assumption of ideal gas behaviour, stated as

p =
nRT

V
=
ρRT

M
, (2.16)

where p is the pressure, n is the number of moles, T is the temperature, ρ is the density,
M is the molar mass, and R = 8.314 J

K·mol is the ideal gas constant. The ideal gas law
assumes negligible molecular size and intermolecular attractions, and works well for gases
with low density and high temperatures.

The calorific equations of state are equations relating the internal energy and enthalpy
to pressure and temperature. For an ideal gas, the equations are

u− uref =

∫ T

Tref

cvdT, (2.17)

and

h− href =

∫ T

Tref

cpdT, (2.18)

where cv is the constant volume specific heat and cp is the constant pressure specific heat,
both of which are functions of temperature.
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2.1.3 Statistical Description of Turbulence

The instantaneous equations of Section 2.1.2 are sufficient to describe the deterministic
nature of fluid flows for any Reynolds number. However, the distinguishing feature of tur-
bulent flows is the seemingly chaotic fluctuations in its properties, as opposed to in laminar
flows where the fluctuations are dampened by viscous effects. Any small perturbation in
the system results in drastic changes in the state of the system. As turbulence intensi-
fies, quantified by an increasing Reynolds number, the range of energy containing scales
widens, leading to greater sensitivity of the system to initial and boundary conditions. In
experiments, it is impossible to know or control the exact initial and boundary conditions.
Experimental results of turbulent flow studies are presented as statistics of numerous trials.
In numerical studies of turbulent flows, it is impractical, and for most engineering appli-
cations impossible, to fully resolve the details of the flow. Subsequently, turbulence is, in
most cases, treated statistically as a random dynamical process. The randomly fluctuating
(stochastic) flow quantities, such as velocity and reactive chemical species, can take on
a value in a set of possible values described by their probability. In this section, a brief
review of basic concepts in statistics is presented.

Probability Density Functions

In turbulent combustion modelling, the velocity and scalars are stochastic variables that
can take on a set of different values within the sample space. The stochastic variables can
either be discrete, taking on certain values, or continuous, taking on any of an uncountably
infinite number of values within the range of the sample space. These possible values of
a stochastic variable can be described by their probabiliities. The cumulative probability
of a stochastic variable Y is the probability of the event in which Y takes on a value less
than or equal to a particular value of the sample space variable Z, given by

F (Z) = prob(Y < Z), (2.19)

and its values over all Z constitute the cumulative distribution function (CDF). The deriva-
tive of the CDF of a continuous stochastic variable is its probability density function (PDF),
which maps the density of the probability around values in the sample space;

P (Z) =
dF (Z)

dZ . (2.20)

Figure 2.1 shows an example of the CDF and PDF of a Gaussian distribution. The prob-
ability of the stoichastic variable being within some infinitesimal range dZ is given by the
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product of P (Z) and dZ, such that

prob(Z ≤ Y < Z + dZ) = P (Z)dZ. (2.21)

A property of the PDF is that the sum of the density over the entire space is equal to 1;

∫ ∞

−∞
P (Z)dZ = 1. (2.22)

0 1
0

1

Z

F

prob(Y < Z)

Z1

(a) CDF

0 1
0

3

Z

P

P(Z1)∆Z

Z1

∆Z

(b) PDF

Figure 2.1: CDF and PDF of Gaussian distribution

Moments

Moments are important concepts in stochastic variables which characteristize a set of
points. The moments of the PDF describes the features of the distribution. The nth
moment of the PDF about a value c is given by,

µ′n =

∫ ∞

−∞
(Z − c)nP (Z)dZ. (2.23)

The nth moment of the PDF about zero is called the expected value of Yn,

E(Yn) =

∫ ∞

−∞
ZnP (Z)dZ. (2.24)
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The expected value of Y , or the first moment of the PDF about zero is, is the mean of Y ,
which describes the central tendency of the distribution,

〈Y〉 =

∫ ∞

−∞
ZP (Z)dZ. (2.25)

For any deterministic function f(Y) of stochastic variable Y , the mean is

〈f(Y)〉 =

∫ ∞

−∞
f(Z)P (Z)dZ. (2.26)

The fluctuation of Y about its mean 〈Y〉 is denoted by,

Y ′ = Z − 〈Y〉 . (2.27)

The variance, which characterizes the spread of the distribution about the mean, is given
by the second moment about the mean, or the central second moment,

〈
Y ′2
〉

=

∫ ∞

−∞
(Z − 〈Y〉)2P (Z)dZ. (2.28)

Joint Probability Density Functions

For multivariate stochastic variable Y , where Y = (Y1,Y2, ...,Yn)T is a set of n stochastic
variables on the same probability space, the probability of Y1 < Z1, Y2 < Z2, ..., Yn < Zn,
where Z = (Z1,Z2, . . . ,Zn)T is the set of sample space variables corresponding to each
stochastic variable, is the joint cumulative probability function,

F (Z) = prob(Y1 < Z1,Y2 < Z2, ...,Yn < Zn). (2.29)

The density of the probabilities in the probability space is mapped by the joint probability
density function, which is given by the nth order derivative of the joint CDF,

P (Z) =
∂nF (Z < Z)

∂Z1∂Z2...∂Zn
. (2.30)

Once again, the integration of the joint PDF across the entire probability space is equal to
1,

∫

Z
P (Z)dZ = 1. (2.31)
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If the stochastic variable are statistically independent, then their events are independent
of each other, and the PDF is simply the product of the individual single-variable PDFs,

P (Z1,Z2, ...,Z3) = P (Z1)f(Z2)...f(Zn). (2.32)

The expected value of a function f(Y1,Y2, ...,Yn) is obtained by integration over all sample
spaces,

〈f(Y1,Y2, ...,Yn)〉 =

∫

Z
f(Z1,Z2, ...,Zn)P (Z1,Z2, ...,Zn)dZ1dZ2...dZn. (2.33)

Conditional Probability Density Functions and Conditional Averaging

A conditional probability is the probability of an event A of the stochastic variable Y1

occurring, determined for particular realizations B of the stochastic variable Y2, such that

P (A|B) =
P (A,B)

P (B)
. (2.34)

For example, the conditional PDF P (Z1|Y2 = Z2) is the probability density of Y1 around
the sample space variable Z1 given the realization that the stochastic variable Y2 is equal
to the state space variable Z2. The joint PDF can be expressed as the conditional PDF
multiplied by the single variable PDF across all realizations,

P (Z1,Z2) = P (Z1|Y2 = Z2)P (Z2). (2.35)

The conditional expectation 〈Y1|B〉 of Y1 is the average of Y1 over the sub-ensemble of the
particular realizations B. For example, the conditional expectation of Y1 on the realization
of Y2 = Z2 is given by

〈Y1|Y2 = Z2〉 =

∫ ∞

−∞
Z1P (Z1|Y2 = Z2)dZ1. (2.36)

The unconditional mean of Y1 can also be obtained from the conditional mean by integra-
tion over all realizations of Y2,

〈Y1〉 =

∫ ∞

−∞
〈Y1|Y2 = Z2〉P (Z2)dZ2. (2.37)
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2.1.4 Averaging Transport Equations

The statistical treatment of an instantaneous quantity in turbulent fluid flows involves
the decomposition of the quantity into its mean and fluctuations about the mean. The
decomposition of instantaneous quantities is applied to the governing transport equations.
Two averaging techniques are described in the following sections.

Reynolds Averaging

A stochastic quantity φ can be decomposed into a time average and fluctuation about the
average,

φ (xk, t) = φ (xk) + φ′ (xk, t) , (2.38)

where ′ denotes the fluctuation about the average value. The process in Eq. 2.38 is known
as Reynolds decomposition, and a graphical example is shown in Fig. 2.2. Reynolds
averaging is typically used in non-reacting flows, where density fluctuations are negligible.
The ensemble average is the average of the quantity over a sample size of N , defined by

φ (xk, t) =
1

N

N∑

i=1

φi (xi, t) . (2.39)

The average of the fluctuations is zero, such that φ′ (xi, t) = 0.

Favre Averaging

In turbulent flows with significant density fluctuations, such as in reacting flows due to large
changes in temperature, Reynolds averaging results in correlations of the form ρ′φ′ which
can not be neglected. These correlations can be neglected by the use of density-weighted
averaging, also known as Favre averaging. The Favre average is given by

φ̃ =
ρφ

ρ
. (2.40)

Though the use of Favre averaging is common in reacting flows, it is difficult to relate the
quantities to Reynolds-averaged quantities, since a relation between the Favre averaged
and Reynolds-averaged quantity requires the density correlations to be known, where

ρφ̃ = ρφ+ ρ′φ′. (2.41)
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Figure 2.2: Reynolds decomposition of point scalar measurement

Decomposition with Favre averaging results in

φ (xk, t) = φ̃ (xk, t) + φ′′ (xk, t) , (2.42)

where ′′ denotes fluctuations about the Favre average. The Favre averaged form of the
transport equations (Eqs. 2.1, 2.2, 2.8, and 2.15) are

Mass:

∂ρ

∂t
+∇ · (ρũ) = 0. (2.43)

Linear momentum:

∂ρũ

∂t
+∇ · (ρũũ) +∇ ·

(
ρũ′′u′′

)
= −∇p+∇ · τττ + B. (2.44)

Species:

∂ρ Ỹi
∂t

+∇ ·
(
ρũỸi

)
+∇ ·

(
ρũ′′Y ′′i

)
= ∇ ·

(
ρDi∇Ỹi

)
+ ρ ωi. (2.45)

Enthalpy:

∂ρh̃

∂t
+∇ ·

(
ρũh̃

)
+∇ ·

(
ρũ′′h′′

)
= ∇ ·

(
ρα∇h̃

)
−∇ ·

(∑

i

ρh̃i (α−Di)∇Ỹi
)

+ ρ sh.

(2.46)
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2.2 Computational Fluid Dynamics of Turbulent Flows

The prevalence of turbulent flows in engineering applications has substantially driven the
development of numerical methods for analyzing such flows. The immense complexity of
turbulence has made it impossible to solve the governing physics of the flow (Section 2.1.2)
without simplifications; instead statistical approaches (Section 2.1.3) allow methods that
require less computational power. A few of the most well-known computational methods
for turbulent flows are presented in this section.

2.2.1 Direct Numerical Simulation

Direct Numerical Simulations (DNS) treats any fluid flow deterministically, such that the
state of the system is completely resolved, instead of described by a probability distribution.
This involves the solution at all scales in the flow. Any fluctuations are due to perturbations
to initial or boundary conditions, or due to noise cause by discretization. The spatial grid
and timesteps must be adequately fine to capture the smallest turbulent eddies. As the
Reynolds number of the flow increases, the energy scale widens and the smallest eddy
decreases in size, therefore an increasingly finer grid is required. Due to the large range of
scales involved in turbulent flows, the computational resources required for DNS severely
limits its use. Though the use of DNS to most industrial applications is unrealistic with
current computing technologies, DNS can be useful in aiding the development of turbulence
models, as well as in the validation of the models. The analysis of turbulent flames using
DNS is limited to simple configurations; further information on the use of DNS in reacting
flows can be found in [12, 13, 14, 15, 16]

2.2.2 RANS Modelling

The Reynolds Averaged Navier Stokes equations contain the non-linear correlations u′u′

collectively known as the Reynolds stresses; and correspondingly, the Favre averaged form

ũ′′u′′ in Eq. 2.44. Various turbulence models have been used to predict the Reynolds
stresses in order to close the RANS equations. Most of the RANS models rely on the
turbulent viscosity hypothesis proposed by Joseph Boussinesq in 1872, which assumes that
effects of the Reynolds stresses on the mean flow are analogous to the effects of viscous
stress proportional to the rate of deformation of fluid elements. This enables the Reynolds
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stresses to be described by the mean velocity gradients, such that

τij = −ρu′iu′j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρkδij, (2.47)

where µt = ρνt. Although the assumption is poor for many complex flows, reasonable
predictions can be obtained for simple shear flows.

Mixing Length Model

The mixing length model, developed by Prandtl in 1925, does not require the solution of
any additional transport equations. The assumption is made that the turbulence occurs
in a single velocity scale and a single length scale. Dimensional analysis of the turbulent
viscosity νt with dimensions of m2

s
show that it can be expressed by the product of the tur-

bulent velocity scale vt with dimensions m
s

and the turbulent length scale lt with dimension
m,

νt = Cvtlt. (2.48)

For flows exhibiting two dimensional turbulence such that the τxy = τyx = −ρu′v′ are
the only significant Reynolds stresses and only one component of the velocity gradient is
significant, the velocity scale can be described by

vt = clt

∣∣∣∣
∂U

∂y

∣∣∣∣ . (2.49)

Combining Eqs. 2.48 and 2.49, while absorbing the constants into lt results in

νt = l2t

∣∣∣∣
∂U

∂y

∣∣∣∣ . (2.50)

Because most of the turbulent kinetic energy is in the largest eddies, lt is taken as the
length scale of the largest eddies corresponding to the mixing length lm. The Reynolds
stresses are

τxy = τyx = −ρu′v′ = ρl2m

∣∣∣∣
∂U

∂y

∣∣∣∣
∂U

∂y
. (2.51)
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k-ε model

One of the most well known and used RANS model is the k-ε model [17, 18, 19]. The
turbulent kinetic energy k is

1

2

(
u′2 + v′2 + w′2

)
. (2.52)

The turbulent eddy viscosity is given by

µt = ρCµ
k2

ε
. (2.53)

The transport equation for k and ε are [17]:

∂ρk

∂t
+∇ · (ρku) = ∇ ·

(
µt
σk
∇k
)

+ 2µtSij · Sij · Sij − ρε, (2.54)

and

∂ρε

∂t
+∇ · (ρεu) = ∇ ·

(
µt
σε
∇ε
)

+ Cε1
ε

k
2µtSij · Sij − Cε2ρ

ε2

k
. (2.55)

The standard values for the adjustable constants are Cµ = 0.09, σk = 1.00, σε, Cε1 = 1.44,
Cε2 = 1.92. The k-ε model is known to have difficulties in modeling certain types of flows
such rotating flows, curved boundary layers, and axisymmetric jets [19]. However, due to
its computational efficiency, the k-ε model is one of the most commonly used turbulence
models.

Reynolds Stress Model

For flows with complex strain fields, the Reynolds stresses τij are not well predicted. The
Reynolds Stress Model (RSM) does not use the the eddy viscosity hypothesis to approxi-
mate the Reynolds stresses. The following system of equations is solved for the Reynolds
stresses,

∂ρu′iu
′
j

∂t︸ ︷︷ ︸
Rate of change

+
∂ρuiu′iu

′
j

∂xi︸ ︷︷ ︸
Advection

= Dij︸︷︷︸
Diffusion

+ Pij︸︷︷︸
Production

− εij︸︷︷︸
Dissipation

+ Πij︸︷︷︸
Pressure−strain

+ Ωij︸︷︷︸
Rotation

. (2.56)
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The details of the exact form of terms on the RHS of Eq. 2.56 can be found in various
reference texts on CFD methods, such as [19]. RSM requires higher computational costs
than other RANS modelling approaches, but has the advantage of being more general.
Though the approach fair better for many types of flows, it still suffers in accuracy for
flows where ε is poorly predicted by its transport equation, such as axisysmmetric jets
[19].

2.2.3 Large Eddy Simulation

Large Eddy Simulation (LES) resolves the larger eddies in the flow, while the small eddies
are modelled. The large and small eddies are separated by a spatial filtering, which filters
out the small eddies from the unsteady Navier-Stokes equations. The interaction between
the large eddies, which are resolved from the filtered Navier-Stokes equations, and the small
eddies are described by subgrid-scale (SGS) stresses. There are various models proposed
for modelling the SGS stresses [19].

The unsteady nature of LES, along with grid spacing requirements proportional to
the filter width, result in significantly higher computational resources than most RANS
modelling approaches. Additionally, LES is three-dimensional, and therefore computations
can not be performed in two-dimensions for many flows that can otherwise be done in RANS
modelling. Though computational requirements are high, the recent rapid improvements
in computing technologies have increased interest in LES.

2.3 Turbulent Non-premixed Reacting Flow Modelling

The complex nature of turbulent reacting flows requires the use of concepts and tools to aid
in the numerical analysis of such problems. In this section, key concepts in the modelling
of turbulent non-premixed combustion are briefly presented.

2.3.1 Turbulence-Chemistry Interaction

The consideration of combustion adds to the complexity in the prediction of turbulent
flows, due to the fluctuations in the species concentrations from the consumption and
production of species, and fluctuations in temperature from the exothermic reactions. The
sensitive coupling between reaction rates, temperature, and species concentrations demand
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reliable predictions of reactant and heat transport due to turbulent and molecular motion.
An important dimensionless number is the Damköhler number,

Da =
Diffusive time scale

Chemical time scale
=
τt
τc
, (2.57)

which describes the ratio of the time scales of turbulent transport τt to the time scales
of chemical reactions τc. When Da � 1, the time needed for chemical reactions to occur
is less than the time needed turbulent transport. Equivalently, the reaction rates are
greater than the advection rates; as such, reacting flows with high Da are known as fast
chemistry flames. A characteristic of fast chemistry non-premixed flames is a thin reaction
zone. Conversely, Da � 1 corresponds to large times for chemical reactions compared to
advection. The limit of Da → 0 corresponds to pure mixing without combustion, since
chemical time scales are infinitely large (will not occur).

2.3.2 Mixture Fraction

The structure of the non-premixed flame is dependent on the mixing between the fuel and
oxidizer. The mixture fraction ξ is a major concept in non-premixed combustion, and plays
a role in most models. The mixture fraction allows the mixing of all reactive scalars to
be described by the evolution of a single variable. There is no universal definition of ξ;
various definitions have been proposed under different assumptions. In the mixing of two
fluid streams, ξ is defined as the ratio of the fuel stream mass flux to the sum of the mass
flux of the fuel and oxidizer mass fluxes,

ξ =
ṁf

ṁf + ṁo

. (2.58)

In non-reacting multi-component flows, the species mass fractions are linearly related to
the mixture fraction. If the streams have different temperatures, the temperature is also
linearly related to the mixture fraction. In reacting flows, the mixture fraction is linearly
related to the atomic mass fractions and the standardized enthalpy. When the chemical
species are assumed to diffuse at equal rates, ξ is a conserved scalar, known as a Schwab-
Zel’dovich variable [20]. The use of the mixture fraction allows a description of turbulent
mixing. For flames far from extinction and ignition limits, the reaction zone is located near
mixture fractions corresponding to stoichiometric compositions. The transport equation
for the instantaneous mixture fraction is

∂ρξ

∂t
+∇ · (ρuξ) = ∇ · (ρDξ∇ξ) , (2.59)
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where Dξ is the diffusivity of ξ. The lack of a source term indicates that ξ is conserved.
Without the assumption of equal species diffusivities, the validity of a conserved mixture
fraction is debatable, though theoretical studies have suggested that a definition of a con-
served mixture fraction exists [21]. The transport equation for the Favre averaged mixture
fraction is

∂ρξ̃

∂t
+∇ ·

(
ρũξ̃

)
+∇ ·

(
ρũ′′ξ′′

)
= ∇ ·

(
ρDξ∇ξ̃

)
, (2.60)

where the turbulent flux ũ′′ξ′′ is modelled by the gradient diffusion hypothesis

ũ′′ξ′′ = −Dt∇ξ̃. (2.61)

The transport equation for the mean mixture fraction variance ξ̃′′2 is

∂ρξ̃′′2

∂t
+∇ ·

(
ρũξ̃′′2

)
+∇ ·

(
ρũ′′ξ′′2

)
+ 2ρũξ′′ · ∇ξ̃ + 2ρDξ

˜∇ξ′′ · ∇ξ′′ = 0, (2.62)

where the turbulent flux ũ′′ξ′′2 is modelled using the gradient diffusion hypothesis. The
last term on the LHS of Eq. 2.62 is the mean scalar dissipation rate χ̃.

2.3.3 Scalar Dissipation Rate

The scalar dissipation rate is

χ̃ ≡ 2D∇ ˜φ′′ · ∇φ′′, (2.63)

where φ is a scalar variable (ξ in Eq. 2.62) and D is its diffusivity. The mean scalar
dissipation rate χ̃ is an important parameter that links the mixing and combustion field.
Analogous to turbulent kinetic energy dissipation ε in turbulent mixing, it describes the
dissipation rate of scalar variance (fluctuations) in small scales by turbulent micromixing,
influencing the mixing of reactants. Scalar dissipation mainly occurs in the finiest scales.
In literature, various expressions have been associated with χ, though they all describe
mixing. The scalar dissipation can be related to the inverse of the diffusive time,

χ ≈ τt, (2.64)

and as a result can be related to the Damköhler number,

χ ≈ (τcDa)−1 . (2.65)
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Figure 2.3 shows a sketch of the effect of χ on flame temperature in mixture fraction
space. A low χ̃ indicates conditions close to the fast chemistry limit, or equilibrium condi-
tions. An increase in χ̃ indicates a departure from the fast chemistry limit, as the diffusive
time decreases and the reaction zone is strained, such that mass and heat transfer through
the reaction zone is enhanced and chemical reactions do not occur at equilibrium condi-
tions. The result is a decrease in temperature due to lower reaction rates. The modelling of
the scalar dissipation rate is one of the main challenges in turbulent combustion modelling.

0 1
ξ

T

pure mixing
TO

TF

increasing χ

fast chemistry

Figure 2.3: Sketch of the effect of scalar dissipation rate on temperature

2.3.4 Chemistry

The presence of chemical reactions in combustion modelling poses additional complexities
not found in non-reacting flow modelling. For an irreversible, one-step global reaction
consisting of a fuel (F ), an oxidizer (O), and a product (P ) defined by

F + rO → (1 + r)P, (2.66)

where r is the mass of O per unit mass of F , the instantaneous fuel reaction rate is expressed
by the Arrhenius law,

ω̇F = −Aρ2T nYFYOexp

(
− E

RT

)
, (2.67)
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where A is the pre-exponential factor, E the activation energy, and R the gas constant.
The averaged fuel reaction rate, expanded using a Taylor’s series [22], can be expressed by

ω̇F = −Aρ2T̃ nỸF ỸOexp

(
− E

RT̃

)[
1 +

Ỹ ′′F Y
′′
O

ỸF ỸO
+ (P1 +Q1)

(
Ỹ ′′F T

′′

ỸF T̃
+
Ỹ ′′OT

′′

ỸOT̃

)

+ (P2 +Q2 + P1Q1)

(
Ỹ ′′F T

′′2

ỸF T̃ 2
+
Ỹ ′′OT

′′2

ỸOT̃ 2

)
+ . . .

]
,

(2.68)

where Pn =
∑n

k=1 (−1)n−k (n−1)!

(n−k)![(k−1)!]2k

(
E

RT̃

)k
, and Qn = b(b+1)...(b+n−1)

n!
. The correlations

such as Ỹ ′′k Y
′′n require closure. As well, the highly non-linear nature of the terms in

the series means that many of the higher order terms can not be excluded without large
errors in the results. The handling of the mean reaction rate is one of the main modelling
challenges in turbulent combustion.

2.4 Models for Turbulent Non-premixed Combustion

The wide use of turbulent non-premixed combustion in engineering applications has been a
driving factor in the development and refinement of turbulence-chemistry models for these
applications. The key to the development of combustion models is a balance between
efficiency and accuracy, by using tools and assumptions that simplify calculations while
maintaining a reasonable representation of the underlaying physics. Brief introductions
to a few well-known models are presented. The models and their major assumptions are
summarized in Table 2.2.

2.4.1 Fast Chemistry Models

The underlaying assumption in fast chemistry models is that the time scales of chemical
reactions are infinitely smaller than the time scales of the mixing processes. The simplest
fast chemistry model is the Burke-Schumann solution [23]. For an irreversible, one-step
global reaction consisting of a fuel, an oxidizer, and a product defined by Eq. 2.66, mixing
occurs between a stream containing F and another stream containing O, and reaction
takes place where the mixture fraction is equal to the stoichiometric value, resulting in an
infinitely-thin flame sheet. The mass fractions of F , O, and P are linear functions of ξ.
Figure 2.4 shows the Burke-Schumann solution plotted as a function of ξ.
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Table 2.2: Non-premixed combustion models and their major assumptions

Combustion model Main assumptions

Flamelet modelling

• Flame structure made from ensemble of flamelets

• Reaction zone smaller than Kolmogorov scales

• Diffusion balances chemistry as in a 1-D counter-
flow flame

• Presumed PDF

CMC method

• Reduction in source term fluctuations when con-
ditionally averaged

• Diffusion captured by modelling micromixing

• Presumed PDF

PDF method
• Diffusion captured by modelling micromixing

• Closed chemical source term

The eddy dissipation model (EDM) [24] is an extension to a model initially developed for
premixed combustion, the eddy breakup model (EBU) [25]. The models are devised under
the assumption of high Reynolds number and Damkohler numbers. The mean reaction
rate of the fuel is given by

ω̇F = −Cρε
k

√
Ỹ ′′2F , (2.69)

for EBU, and

ρω̇F = αρ
ε

k
min

(
ỸF ,

ỸO
r
, β

ỸP
(1 + r)

)
, (2.70)

for EDM, where C, α, and β are model parameters that can be adjusted for different
problems.
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Figure 2.4: Burke-Schumann solution for fuel (F ), oxidizer (O), and product (P ) mass
fractions against mixture fraction.

2.4.2 Laminar Flamelet Models

Laminar flamelet models [26] are finite rate chemistry models, based on the assumption
that chemical reactions are fast enough so that they occur in thin regions with widths
smaller than the Kolmogorov length scales, called flamelets, such that the regions are
locally laminar. The laminar flamelet equation is given by

∂Yi
∂t

=
χ

Lei

∂2Yi
∂ξ2

+ ω̇i. (2.71)

The local conditions of the flamelet are characterized by ξ describing the micromixing, and
χ describing the stretching of the flamelet which allows for finite rate chemistry effects.
The solutions to Eq. 2.71, Yi (ξ, χ), can be compiled for a range of χ values into a library of
flamelets, which can then be referenced for local values of ξ and χ throughout the turbulent
flame. The Favre mean species can be obtained by

Ỹi (xk, t) =

∫ 1

0

∫ ∞

0

Yi (η, ξs) P̃ (ξs, η;xk, t) dξsdη, (2.72)

where ξs is the sample space variable for ξ. The basis of the flamelet model on the assump-
tion of thin reaction zones makes it less suitable for the larger chemical time scales, such
as in autoignition or slow chemistry.
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2.4.3 Conditional Moment Closure

Conditional moment closure method (CMC) for combustion modelling was first proposed
independently by Bilger [27] and Klimenko [28], derived using different approaches. Bilger’s
formulation involves decomposing the scalars into its conditional mean and fluctuation in
their transport equations. Klimenko uses the joint PDF evolution equation of the reactive
and conserved scalars. In both cases, the transport equations are conditionally averaged on
a sample space variable η, taking on certain realizations of a scalar. In non-premixed com-
bustion, the scalar is the mixture fraction ξ. The process of taking the conditional moment
of the chemical source term considerably reduces its fluctuation about its mean value, such
that the higher order terms in Eq. 2.68 can be neglected. Reasonable predictions of the
source term is obtained by using first order closure which assumes that fluctuations in the
conditional scalars are due to fluctuations in the mixture fraction [7]. Previous studies show
that the first order CMC performs well for most turbulent non-premixed flames, except
for flames close to extinction or ignition where significant fluctuations in temperature and
species concentrations are present [29, 30, 31], so that disregarding the higher order terms
in Eq. 2.68 is no longer credible. The focus of the present study is on CMC modelling,
and further details on the model are presented in Section 4.

2.4.4 Transported PDF models

PDF transport models provide a general statistical description of turbulent combustion,
applicable to both non-premixed and premixed regimes. Unlike in fast chemistry models,
laminar flamelet model, and conditional moment closure, the form of the PDF is not
presumed. Instead, the transport equations for the joint PDFs of velocity and species are
solved. The transport equation for the joint PDF of velocity and reactive scalars P (u, φ)
is derived by Pope [32],

∂ρP

∂t
+∇ · (ρuP ) + (ρg −∇p) · ∇uP +

∂

∂ψi
(ωiP )

= ∇u · (〈−∇ · τ +∇ρ′|v, ψ〉P )− ∂

∂ψi
(〈∇ · (ρD∇φi) |v, ψ〉P ) .

(2.73)

The chemical reaction rate is in closed form, thus no modelling is required for that term.
Modelling is still required for the closure of viscous and molecular mixing terms, and
the accuracy of results will depend of the submodels used. Due to the high dimension-
ality of the PDF transport equation, Monte Carlo techniques [33], for which memory
requirements scale linearly with the dimensionality, are used over finite-volume methods,
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where memory requirements scale exponently with dimensionality. The stochastic nature
of transported PDF methods requires substantial computational resources compared to
deterministic methods such as flamelet modelling and CMC.
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Chapter 3

Differential Diffusion in Turbulent
Non-premixed Combustion

In this chapter, the topic of differential diffusion in turbulent non-premixed combustion is
discussed. First, the theory behind differential diffusion (what it is and why it happens) is
discussed. Various experimental investigations where differential diffusion effects had been
observed and studies that used direct numerical simulation to investigate the phenomenon
is presented. Lastly, a review of the previous strides in the inclusion of differential diffusion
in turbulent reacting flow modelling is conducted.

3.1 Theory

Diffusion is a transport phenomena which involves the movement of mass or energy without
the influence of bulk motion. The rate of diffusion between two types of molecules is
dependent on the average inter-molecular distances, the average molecular speeds, and the
sizes of the molecules. The dependency of the the rate of diffusion on the three factors can
be quantified in the following relationship [34],

D ∝ T 0.7

ρ
, (3.1)

where D is the mass diffusivity, a measure of the rate of diffusion between a pair of species,
and a higher value of D indicates a higher diffusion rate between the pair. The temperature
T offers a measure of the average kinetic energy of the molecules proportional to the square
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of its velocity. An increase in the temperature results in an increase in the diffusion rate due
to faster movement of the molecules. The density ρ of the mixture containing the molecules
is a measure of the average distances between molecules. A lower density indicates larger
inter-molecular distances, decreasing the chance of collision when diffusing towards each
other and increasing the rate of diffusion. It can be noted that T and ρ in a gas are
related by Eq. 2.16 such that a change in either T or ρ results in a change in the other
variable unless p also varies at the same rate. In a constant pressure system, an increase
in temperature results in a decrease in density, or vice versa, such that the increase in
diffusivity is greater than in a system where the pressure is increased.

Larger molecules exhibit lower rates of diffusion while smaller molecules have higher
rates of diffusion. Larger molecules have a higher chance of collision when attempting to
diffuse across another type of molecule. In turbulent combustion modelling, it is common
practice to assume equal diffusivity for all species, simplifying the modelling process. There
are two main justifications made for the equal diffusivity assumption. First, many of the
gaseous chemical species have similar diffusivities due to the similar sizes of three of the
main elements involved in hydrocarbon combustion: carbon (C), nitrogen (N), and oxygen
(O). Second, homogenization due to turbulent mixing tends to outweigh molecular diffusion
effects due to the larger length and time scales of turbulence phenomena. However, there
are cases where the weaknesses of the equal diffusivity assumption are seen in non-premixed
flames.

The first justification is weakened when considering species with significantly differ-
ent diffusivities diffusing to the other gaseous species, such as the high diffusivity of
monoatomic hydrogen (H) and diatomic hydrogen molecules (H2) due to their smaller
molecular sizes, or the low diffusivity of large solid particulates such as soot. In turbu-
lent flames, the differences in the diffusivities become prominent when high concentrations
of species with significantly different diffusivities are involved, or where the differential
diffusing species are of particular interest. High concentrations of H2 or H are found in
flames involving hydrogen fuels. In these flames, the light hydrogen molecules diffuse at
a higher rate towards the reaction zone, thus increasing reaction rates. In heavily sooting
flames, the low diffusivity of soot increases its residence time in the reaction zone after its
formation, affecting the rate of enthalpy transport away from the reaction zone.

Experimental studies, which are discussed in Section 3.2, had shown that differential
diffusion can be significant in turbulent nonpremixed flames near the nozzle. Various
explanations were proposed to explain the presence of differential diffusion in these region,
which were contrasted in the downstream regions where the effects disappeared.

In discussing the cause of differential diffusion effects in the context of turbulence mod-
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elling, the prominence of the effects is related to the balance between the molecular diffu-
sivity D and the turbulent diffusivity Dt. In high turbulence flows, Dt is many magnitudes
larger than D, such that D is effectively zero and any change in D is equally negligible.
However, if Dt is decreased and/or D is increased such that they are of comparable mag-
nitudes, substantial differences between the diffusivities of the chemical species become
evident. In turbulent non-premixed flames, the high temperatures and low densities result
in higher molecular diffusivities compared to non-reacting flows due to the reasons noted
earlier. However, the differences in temperature and densities between reacting and non-
reacting cases result in an increase of one or two orders of magnitude in the diffusivities,
which are still not comparable to the high turbulent diffusivities in turbulent diffusion
flames. As such, an increase in molecular diffusivity alone is not enough to account for
the noticable effects of differential diffusion. More likely is the larger effect of decreasing
turbulent diffusivity close to the nozzle. The turbulent diffusivity is proportional to the
eddy viscosity, Dt ∝ νt, where the eddy viscosity is a function of the turbulent kinetic
energy k and the inverse of its dissipation ε. Near the nozzle, the ratio of k to ε is lower,
such that νt, and subsequently Dt, are lower.

A reason for the decrease in the ratio of k to ε can be given by examining the length
scales of turbulence near the nozzle. ε is proportional to the inverse of the characteristic
mixing length, ε ∝ l−1

m , where lm is of the order of the mixing layer width between the fuel
and oxidizer streams. When the mixing layer increases away from the nozzle, the ratio
of k to ε increases, resulting in higher eddy viscosity. Pitsch [35] initially estimated that
differential diffusion effects would be important when the characteristic mixing length is
smaller than the Kolmogorov length scale ηk (the smallest scales of turbulence), but argued
that the Kolmogorov eddies would have insufficient energy to contribute to transport within
the layer and that a larger length scale, such as the Taylor scale λt might be a better
criteria for the importance of differential diffusion effects. When the turbulence, or Dt,
is very low, the mixing layer essentially becomes laminar sublayer, decreasing the local
Reynolds number.

Another viewpoint is that the close to the nozzle, the structure of the mixing layer
where the reaction zone is found, is laminar in structure. The laminar structure is the
result of buoyancy effects and volumetric expansion in the reaction zone suppressing the
formation of vortices.

The two viewpoints on the structure of the mixing layer are essentially the same in
the physical sense (ie. the governing equations make no distinction between laminar and
turbulence). However, the distinction is important in the context of computational fluid
dynamics, since the modelling strategies of laminar and turbulent flows are very different,
such as with the statistical description for turbulence. From the reasonings above, it is
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evident that differential diffusion effects are quite possibly not only limited to laminar
flames, but also in turbulent flames that satisfy the above conditions. It is also important
to note that differential diffusion is not a different phenomenon from molecular diffusion,
since the mechanism is the same. The concept of differential diffusion is only due to the
common simplifications that are used in theoretical and numerical analyses of molecular
diffusion.

The effects of differential diffusion on characteristic parameters reacting flows are of
interest. One of these parameters is the Lewis number,

Le =
α

D
, (3.2)

describing the ratio of the thermal and mass diffusivities. Under equal species diffusivity
assumption, the Lewis numbers for each species are equivalent. Often in theoretical and
numerical analyses of reacting flows, the assumption is taken a step further by assuming
that the species diffusivities are equal to the thermal diffusivity, such that the Lewis number
has the value of 1, which greatly simplifies the analyses. The consideration of differentially
diffusing species implies species Lewis numbers that differ depending on the diffusivity of
the species. Examples of other characteristic parameters that are important in the study
of differential diffusion are the Damköhler number (Eq. 2.57) and Schmidt number,

Sc =
viscous diffusion rate

molecular diffusion rate
=

ν

D
. (3.3)

3.2 Differential Diffusion in Experimental Studies

Various experimental studies of laboratory flames revealed trends that advocated the sig-
nificance of differential diffusion. In particular, flames involving hydrogen fuels had shown
that differential diffusion could explain observations of higher temperatures and radical
production (such as OH and NO). This section reviews experimental studies in literature
and presents their major findings in relation to differential diffusion.

Drake et al. [36] observed evidence of differential diffusion effects on H2, H2O, and
N2 concentrations in fuel rich regions of a mildly turbulent flame of Reynolds number
1500 and 2200 H2 in air jet flame in laser-Raman spectroscopy measurements. Correlation
plots of concentration versus temperature for H2 and N2 departed from the equal diffusiv-
ity, adiabatic, and equilibrium calculations. Temperature measurements were found to be
higher than the equilbrium solution. In the fuel rich regions, N2 and H2O concentrations
measurements were found to be higher than predicted and H2 concentrations were lower.
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Predicted departures were not consistent with the measured departures. Drake et al. [36]
considered the effects of differential diffusion as the explanation for their observations of
super-equilibrium temperatures. Drake et al. proposed several possible assumptions in the
equilbrium calculations that might have been the source of the deviations: neglect of ra-
diative heat loss, finite rate chemistry, buoyancy, and differential diffusion. Calculations of
maximum radiative heat loss showed that the resulting changes in temperature and concen-
trations were much smaller than the deviations observed. The calculated time scales that
brought the theoretical and measurements into agreement by considering non-equilibrium
effects were not compatible with the shorter time scales in hydrogen combustion. Buoyancy
effects were also not able to account for the magnitude of deviations observed. Drake et al.
concluded that the most plausible explanation for the observations were due to differential
diffusion effects of H2 from the rich regions. Drake et al. [37] extended the investigation by
including data for Re = 8500 flame and deviations were still observed close to the nozzle
(less than 50 nozzle diameters), though suggested that finite-rate chemistry may also play
a role.

A different set of experiments with H2-air non-premixed flame were conducted by Bar-
low and Carter [38], with flames of Re = 10, 000 and different levels of helium dilution in the
fuel. In addition to Raman scattering measurements for major species concentrations (H2,
O2, H2O, and N2), Rayleigh scattering techniques were used to also obtain concentrations
for OH and NO. Even at this Reynolds number, differential diffusion effects were observed
close to the nozzle. Super-equilibrium concentrations were observed for OH, which were
found to be close to calculations for a strained laminar flame which considers differential
diffusion. Interestingly, the helium dilution of the flame, which minimized the effects of
radiation, resulted in trends (super-equilibrium temperature and OH concentrations) that
were qualitatively the same as the undiluted case, and thereby strengthened the conjec-
ture of the significance of differential diffusion. Temperature and O concentration in turn
affected the production rate of NO [39].

Super-equilibrium temperatures and increased NO production rates near the nozzle
were also observed by Meier et al. in the Raman/LIF measurements of H2-air non-premixed
flame with various levels of dilution by N2, at different Reynolds numbers (6200 and 8800)
[40], as well as with different nozzle diameters (at Re = 10, 000) and with lift-off conditions
(separation of flame from the nozzle) [41]. Like the helium diluted flames studied by Barlow
and Carter, the nitrogen dilution reduced radiation heat losses, which reduced uncertainty
caused by these losses. To further investigate the influence of differential diffusion, Meier
et al. examined the correlation of the NO measurements to two different mixture fraction
definitions, one based on the elemental mass fraction of H and another on the elemental O
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mass fraction. The elemental mixture fractions were defined by the expression

ξα =
Yα − Yα,o
Yα,f − Yα,o

, (3.4)

where the subscript α indicates the element, and f and o indicates fuel and oxidizer streams,
respectively. It was found that the peak NO shifted to the rich side of the stoichiometric
mixture fraction for the H element mixture fraction and to the lean side for the O element
mixture fraction. The defined mixture fraction did not conserve the stoichiometric value
under the presence of differential diffusion, since the elemental mixture fractions themselves
diffused differently. In other words, the stoichiometric value of mixture fraction shifted to
the rich side of the hydrogen element mixture fraction due to a higher rate of diffusion
of hydrogen element, and by conservation, the opposite effect occurred for the oxygen
element mixture fraction. Meier et al. found that differential diffusion effects became more
pronounced as the exit velocity was decreased, while a constant Reynolds number was kept
by increasing the nozzle diameter. As well, a slightly stronger influence of differential was
found when the flame was lifted.

Differential diffusion effects were also observed in CO2 diluted hydrogen flames studied
by Masri et al. [42] and Smith et al. [43]. At the high temperature of the flame, CO2 was
not completely inert, and reacted to produce CO. Masri et al. investigated high Reynolds
numbers (15000 to 30000) flames with blowoff, and found that although differential diffusion
effects on major species were not too important, the effects on minor radicals like H, which
were important in controlling extinction, were significant. Smith et al. explored a wide
range of reacting jets of Reynolds numbers 1,000 to 30,000, and found differential diffusion
effects to be present throughout the range of Reynolds numbers by examining the elemental
mixture fractions of H and C defined by Eq. 3.4. Significant differential diffusion effects
occurred on the fuel rich side of the flame, and caused a greater net flux of hydrogen toward
reaction zone from diffusion between hydrogen and H2O compared to the diffusion between
CO2 and H2O. Smith et al. also noted, by comparing with nonreacting measurements,
that the presence of chemical reactions accentuated the differential diffusion of H2 by
the existence of a sink for H2 (and source for H2O) which caused steeper concentrations
gradients. The same trends were observed by Bergmann [44] in a methane (CH4)/H2/N2

flame, who also found deviations in the elemental mixture fractions of H and C from equal
diffusivity results at five nozzle diameters from the jet exit.
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3.3 Differential Diffusion in DNS Studies

Though the use of DNS to simulate practical combustion processes is unfeasible, DNS
can nonetheless be used to assess simplied, and often theoretical cases. DNS studies can
provide information that are otherwise difficult to quantify in experiment measurements.
This section provides a brief outline of a few DNS studies that pertain to differential
diffusion in non-premixed reacting flows.

Katta et al. [45] simulated the surface of a low-speed hydrogen-air nonpremixed flame to
analyze the effects of differential diffusion on the flame structure, using detailed chemistry
to capture finite rate effects. It was observed that the rates of mass diffusion were higher
than heat diffusion on the fuel-rich side of the reaction zone due to high H2 concentrations,
while mass and heat diffusion rates were similar on the lean side. As such, differential
diffusion effects were found to be important in predicting flame temperature oscillations.

Jaberi et al. [46] conducted a DNS study on homogeneous, turbulent box flow under
reacting nonpremixed conditions. The results indicated the importance of the Damköhler
number and Schmidt number in the characterization of reacting flows with differential
diffusion. As reactions rates were increased, the influence of differential diffusion also
increased. Scalar variances were also found to have increased for reacting scalars with
higher diffusivities, while variances were decreased for lower diffusivities. Overall, changes
in the scalar statistics (ie. the PDF) due to differential diffusion were observed in the
presence of chemical reactions.

Nilsen and Kosaly [47] examined differential diffusion effects on fields of isotropic, de-
caying turbulence of reacting scalars. It was also demonstrated that differential diffusion
effects increased with increasing Damköhler number. More significantly, Nilsen and Kos-
aly used the DNS results to assess whether flamelet and CMC methods could accurately
account for differential diffusion effects. It was found that neglecting conditional fluctua-
tions in the presence of differential diffusion misled the Reynolds number dependence of
the scalar concentrations and reaction rates, due to not accounting for small scale effects
at which differential diffusion occurred. In other words, careful consideration had to be
taken in the modelling of conditional dissipation and diffusion rates of the conserved scalar
(mixture fraction) .

Hilbert and Thévenin [48] performed two dimensional DNS of diluted turbulent hy-
drogen non-premixed flames to investigate the influence of differential diffusion on tem-
peratures. Two cases were compared, where the difference was in the evaluation of the
diffusion velocities in the species transport equations, where one case assumed all species
Lewis numbers are unity and another case where differences in diffusivities were considered.
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Analysis of equilbrium temperatures showed that the fast chemistry limit was dependent
on local conditions. Hibert and Thévenin pointed out that the variation in equilibrium
profiles was consistent if the diffusion coefficient of the mixture fraction differed from the
thermal diffusion coefficient.

3.4 Progress in Differential Diffusion Modelling

Due to the experimental and DNS evidence, as described in Section 3.2 and 3.3, there has
been interest in incorporating differential diffusion effects in existing turbulence-combustion
models. This section reviews different strategies that had been used, summarizing their
philosophies and results, and a discussion into their advantages and disadvantages. Exten-
sive details on the theory and model development involved will not be covered.

One of the first attempts, to the author’s best knowledge, at incorporating differential
diffusion effects into turbulent non-premixed flame modelling was the perturbation analysis
of Bilger [49]. Bilger introduced the effects of differential diffusion by modelling them as
perturbations about the equal diffusivity, adiabatic, equilibrium solution (the fast chem-
istry solution described in Section 2.4.1 with linear elemental mass fractions and enthalpy).
Equations for the perturbations were derived. The hydrogen-air diffusion flame of Drake
et al. [36] was analyzed and found reasonable agreement with experimental measurements
for the H2. The weaknesses of the method were associated with the assumption of fast
chemistry. The inability to predict finite chemistry and strained flames limited its uses.
This was especially important for the prediction of pollutants such as NOx and soot.

Pitsch and Peters [50] developed an Unsteady Laminar Flamelet Model which included
the effects of differential diffusion. The main assumption in this model was, as described in
Section 2.4.2, that the flame could be described as an ensemble of locally laminar flames.
Pitsch [35] applied the model to a turbulent CH4/H2/N2-air diffusion flame [44]. Good
agreement with experimental measurements was obtained in the region close to nozzle,
but in the downstream regions, agreement was only achieved by reverting to unity Lewis
numbers at the end of the jet potential core. Some effect of the differential diffusion on
species and temperature predictions remained even at downstream locations where unity
Lewis numbers were used, showing a history effect in the flame. Pitsch postulated that the
transition from non-equal to unity Lewis number was due to the existence of a fully laminar
flow very close to the nozzle before transitioning to turbulence. However, concerns arising
from the arbitrary switch in the Lewis number are expressed here. The point of transition
from laminar to turbulence, assumed to have occurred 10 nozzle diameters downstream
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in the flame studied by Pitsch [35], is not clear-cut. Transition is also difficult to predict
using RANS models such as k-ε.

For transported PDF approaches to modelling combustion, the main modelling chal-
lenge is the closure of molecular mixing, as described in Section 2.4.4. Most mixing models
are proposed under the assumption of equal diffusivity. Efforts to include differential dif-
fusion in transported PDF methods had been made by [51, 52, 53]. Chen and Chang
proposed a function to replace the linear relationships in the existing mixing models. The
function was dependent on the Peclet number defined as,

Pe =
advective transport rate

diffusive transport rate
=
LU

D
, (3.5)

where L is the characteristic length, U is the characteristic velocity, and D is the diffusion
coefficient. As Pe→∞, such that advective transport dominated over diffusive transport,
the mixing model reverted to the equal diffusivity approximations. Chen and Chang ap-
plied their method to H2/CO2 flames [43] and H2/N2 flames [41]. For the H2/CO2 flames,
less agreement with the experimental data was found. For the H2/N2 flames, better agree-
ment was found at downstream locations than in the near field regions. Similar to Pitsch
[35], Chen and Chang attributed the discrepancy in near-field region to the laminarization
of the flame, where traditional turbulence modelling was unable to perform properly. Aside
from the modelling difficulties, transported PDF approaches remain on the upper end of
combustion modelling approaches in terms of computational costs. Likewise, Fox [52] de-
veloped a different mixing model which considered differential diffusion and validated it
against DNS data for scalars in isotropic turbulence. The model of Fox was further ex-
tended in [54] by validating it against a simple one-step chemistry DNS case and found
good agreement if the conditional scalar dissipation rate could be accurately predicted.
McDermott and Pope [53] proposed modifications to the Filtered Density Function (FDF)
methods, the LES (Section 2.2.3) equivalent for the transported PDF. In their proposed
model, the assumption of negligible variance molecular transport was made, limiting its use
to high Reynold number regimes. Numerical studies involving pure mixing test cases had
been performed to evaluate the accuracy and computational costs of the model [53, 55], but
the model had not been applied to experimental flames, likely due to the high collective
costs of performing both LES and PDF methods.

Maragkos et al. [56] recently presented a methodology to include differential diffusion
in the solution of the species transport equation in physical space which had been projected
onto a subspace of conserved scalars (no chemical source term). The chemical source term
in the species transport equation was removed by taking certain linear combinations of the
equations, and resulted in the separation of the diffusion term into a component expressing
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the diffusion of the conserved scalars and another expressing feedback from the combustion
model. Maragkos et al. [56] applied the method to laminar, axi-symmetric H2/N2-air
diffusion flames [57]. However, the formulation had not been validated for turbulent flame
calculations, though it was suggested that the method can be extended to turbulent flames
[56].

Kerstein [58] investigated differential diffusion using the Linear-Eddy Model (LEM) and
found that differential diffusion could be considered by assigning the appropriate molecular
diffusivity for each species, though the resolution which captured all relevant lengthscales in
this process was needed. The model was applied to the prediction of non-reacting hydrogen-
Freon jets and good agreement was found. A Multiple Mapping Conditioning (MMC)
model, an extension of the CMC method combined with the transported PDF approach
for differential diffusion had also been derived and tested against DNS for homogeneous,
isotropic and two scalar mixing [59]. Further comparisons are needed to fully evaluate its
performance to general turbulent combustion problems including differential diffusion.

Kronenburg and Bilger [60] analyzed the modelling of differential diffusion in non-
reacting flows following the CMC method of Bilger [27] derived by the decomposition
of the scalar into a mean and its fluctuations, and proposed models for unclosed terms
that become significant when differential diffusion was considered. The model was used
to investigate reacting flows by application to one turbulent hydrogen-air flame [61] with
special focus on NOx predictions in the near-field of the flame, two methane-air flames
[62] and three ethylene-air flames [63] for soot formation. This model required the solution
of an additional transport equation for each differentially diffusing species and enthalpy
in order to model a term drives the profiles towards equal diffusivity. An approximation
was provided by fitting some DNS data obtained for mixing between two non-reacting
scalars in homogeneous isotropic decaying turbulence [60]. For the study involving the
hydrogen-air flame, the model was applied to a RANS simulation of the turbulent hydrogen
jet flame of Barlow et al. [38]. It was reported that the differential diffusion effects
of H2 on species transport had no notable effect on temperature and OH predictions.
Accounting for the effects of H2 differential diffusivity on enthalpy resulted in improved
temperature predictions around stoichiometric, as well as an increase of almost 100% in NO
levels. Inclusion of H differential diffusivity resulted in further improvement in temperature
predictions, but NO predictions were 20% less than when only H2 is considered. The
results reported showed that although NO mass fractions increased near the nozzle where
significant underprediction due to the effects of differential diffusion occurred [64], the
predictions remained noticeably underpredicted. Yunardi et al. [63], in their investigation
of the effects of differential diffusion on soot generation in turbulent nonpremixed ethylene
flames in RANS, found better agreement with experimental data when differential diffusion
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of soot was considered.

The CMC approach used by Kronenburg and Bilger [60] was also studied in LES context
by Navarro-Martinez et al. [65]. A similar formulation was implemented in LES-CMC for
soot with tabulated chemistry [65] with reasonable predictions for the soot volume fraction.
The modelled term in [66, 62] requiring additional transport equations, which affected small
scale differential diffusion transport, was assumed to be small in LES compared to large
scale transport and was neglected [65].

More recently, Hewson et al. [6] proposed a different approach to derive a formulation
for CMC which included the effects of differential diffusion in the species transport equa-
tion, but without the need to solve additional transport equations for the differentially
diffusing species. The formulation was investigated in an a priori sense for an ethene pool
fire using mixture fraction ξ and soot mass fracton Ys evolution predicted from the one-
dimensional turbulence model to evaluate the significance of differential diffusion terms in
the CMC equation [67]. It was reported that a residual term related to the term associ-
ated with differential diffusion in the CMC formulation of the soot transport equation was
found to be significant. Additional investigations were carried out by Hewson et al. [68]
and Lignell et al. [69] in the context of ethylene jet flame configuration in which direct nu-
merical simulation results were used to analyse the CMC formulation. Lignell et al. found
that for gaseous species, the model for the differential diffusion term predicts reasonably
well, while an overshoot was noted for the terms associated with the product of scalar and
its dissipation rate, and the cross-dissipation of the scalar and the mixture fraction.

3.5 Summary

As examined in the preceding sections, differential diffusion effects play a perceptable
role in many combustion cases. A discussion of the theory behind differential diffusion
in Section 3.1 provided insight into its mechanisms. Experimental and DNS investiga-
tions of different flames presented evidence in a wide range of hydrogen fuel based flames
with different conditions such as Reynolds numbers. A review of the previous efforts to
model differential diffusion showed the advantages and shortcomings of various numerical
methods in accounting for differential diffusion effects. Of particular interest here are the
CMC models of Kronenburg and Bilger [61], and Hewson et al. [6]. The CMC model of
Kronenburg and Bilger required the solution of an additional transport equation for each
differential diffusing species. In contrast, the formulation used by Hewson et al. did not
need additional transport equations to be solved. The model was studied in an a priori
sense for ethylene flames, but was never applied to a hydrogen flame or coupled to a CFD
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simulation of a flame. The following chapter provides details on the CMC species trans-
port formulation used by Hewson et al., and introduces a similar formulation for enthalpy
transport. The model is applied to a coupled CFD investigation of the hydrogen-air flame
experimentally studied by Barlow and Carter [38].
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Chapter 4

Conditional Moment Closure

A brief overview of the CMC method was presented in Section 2.4.3. In this chapter,
the derivations of the CMC species and enthalpy transport equations, with the effects of
differential diffusion, are explained. A discussion of the closure submodels for unclosed
terms in the CMC formulations is given. Finally, the CMC equations with the closure
models included are presented, to prelude the discretisation of the equations in Chapter
5. The following derivations of the CMC equations follow Klimenko’s approach using the
joint PDF equation [28].

4.1 Probability Density Function Transport Equation

The PDF and some of its properties were introduced in Section 2.1.3, and in this section, the
concept of the PDF is extended to the transport phenomena. The transport of a random
variable can be represented by the transport of its PDF. The derivation of a PDF transport
equation starts from defining a useful function, the fine-grained PDF ψ, associated with
the PDF by the following relationship,

P (Z) = 〈ψ〉 , (4.1)

where 〈·〉 denotes an ensemble average of the quantity inside the bracket. In other words, ψ
is the one-time PDF of stochastic variable Y over the sample space Z. The time derivative
of ψ is given by,

∂ψ

∂t
= − ∂

∂Zi

(
ψ
∂Yi
∂t

)
, (4.2)
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while the gradient vector of ψ is given by,

∇ψ = − ∂

∂Zi
(ψ∇Yi) , (4.3)

The identities given by Eqs. 4.2 and 4.3 are obtained by mathematical transformation
from the Dirac delta function representation of ψ. The details of the delta representation
and the procedures for obtaining Eqs. 4.2 and 4.3 are omitted here, but can be found in
[7]. Next, a scalar φi is defined as a stochastic variable Y , which is an element of the set
φ = {φ1, φ2, . . . , φn}, where each element satisfies the following scalar transport equation,

ρ
∂φi
∂t

+ ρu · ∇φi = ∇ · (ρDi∇φi) + ρWi, (4.4)

where Di is the diffusion coefficient of φi, and Wi is the source term of φi. Equation 4.4 is
similar in form to the species transport equation assuming Fickian diffusion, Eq. 2.8.

The transport equation for the fine-grained PDF is obtained by combining Eqs. 4.2
and 4.4, and with the use of Eq. 4.3 and the continuity equation (Eq. 2.1), this results in
the divergent form of the fine-grained PDF transport equation,

∂ρψ

∂t
+∇ · (ρuψ) = − ∂

∂Zi
(ψ∇ · (ρDi∇φi))−

∂

∂Zi
(ρψWi) . (4.5)

Equation 4.5 describes the evolution of ψ(φ), the fine-grained joint PDF of the set of
scalars φ. The transport equation for the joint PDF, P (φ), can easily be obtained by
averaging Eq. 4.5, and the resulting equation is

∂ 〈ρ|φ = Z〉P
∂t

+∇ · (〈ρu|φ = Z〉P ) = − ∂

∂Zi
(〈∇ · (ρDi∇φi) |φ = Z〉P )

− ∂

∂Zi
(〈ρWi|φ = Z〉P ) .

(4.6)

There are two methods in deriving the CMC equations, one involving the use of Eq. 4.5,
while the other uses 4.6. Both methods are explored in the next sections; the CMC species
transport equation is derived using Eq. 4.6 as the starting point, while the CMC enthalpy
transport equation is derived using Eq. 4.5. However, both approaches are applicable to
the derivation of either equations.

4.2 Equal Diffusivity CMC Formulation

The CMC equations in the case of equal diffusivity assumption are first presented in this
section, without rigorous details on the derivation, for the interest of comparison with the
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more general non-equal diffusivity CMC equations to be derived in Sections 4.3 and 4.4.
In the case of unity Lewis number, the unclosed CMC equation for species i derived using
Klimenko’s joint PDF method, is given by [7],

∂ 〈ρYi|ξ = η〉Pη
∂t

+∇ · (〈ρYiu|ξ = η〉Pη) = − ∂2

∂η2

(〈
ρDξ (∇ξ)2 Yi|ξ = η

〉
Pη
)

+
∂

∂η
(〈2ρDξ (∇Yi∇ξ) |ξ = η〉Pη) + 〈ρω̇i|ξ = η〉Pη,

(4.7)

where the notation Pη = P (η) is used for convenience. The terms on the LHS of Eq. 4.7
represent the temporal rate of change and advection, while the first two terms on the RHS
describe diffusion across the conserved scalar space η and the last term is the source term.
It should be noted that Eq. 4.7 is derived under a high Reynolds number assumption, so
that terms describing the diffusion of the conditional quantities in physical space (x, y, z)
are omitted. The high Reynolds number assumption is not made in the derivation of the
non-equal diffusivity CMC equations; an explanation of assumption is not presented here,
but interested readers are referred to [7].

Various quantities in Eq. 4.7 require modelling for closure. The primary closure hy-
pothesis [28], which is discussed in Section 4.5.1, attempts to model the first two terms on
the RHS of Eq. 4.7, the diffusion terms. After applying the primary closure hypothesis,
Eq. 4.7 can be written as

∂ρηQiPη
∂t

+∇ · (〈ρYiu|ξ = η〉Pη) =
1

2
ρηχηPη

∂2Qi

∂η2
− 1

2

∂2ρηχηPη
∂η2

Qi + ρηω̇η,iPη, (4.8)

where the notation ρη is used for the conditional density 〈ρ|ξ = η〉. For convenience,
the density-weighted (Favre) conditional averaged mass fraction Qi and Favre conditional
averaged reaction rate ω̇η,i in Eq. 4.8 are defined as,

Qi =
〈ρYi|ξ = η〉
〈ρ|ξ = η〉 , (4.9)

and

ω̇η,i =
〈ρω̇i|ξ = η〉
〈ρ|ξ = η〉 . (4.10)

Additionally, the conditional Favre averaged scalar dissipation rate χη in Eq. 4.8 is defined
as,

χη =

〈
2ρDξ (∇ξ)2 |ξ = η

〉

〈ρ|ξ = η〉 . (4.11)
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The closure of the conditional velocity term and the conditional source term are discussed
in Section 4.5.

Similar to Eq. 4.7, the unclosed form of the CMC enthalpy transport equation can be
obtained using the joint PDF method, and under high Reynolds number assumption, is

∂ 〈ρh|ξ = η〉Pη
∂t

+∇ · (〈ρhu|ξ = η〉Pη) = − ∂2

∂η2

(〈
ρα (∇ξ)2 h|ξ = η

〉
Pη
)

+
∂

∂η
(〈2ρα (∇h∇ξ) |ξ = η〉Pη) + 〈ρsh|ξ = η〉Pη,

(4.12)

Once again, the first two terms on the RHS of Eq. 4.12 are modelled using the primary
closure hypothesis of Kllimenko, resulting in

∂ρηQhPη
∂t

+∇ · (〈ρhu|ξ = η〉Pη) =
1

2
ρηχηPη

∂2Qh

∂η2
− 1

2

∂2ρηχηPη
∂η2

Qh + ρηsη,hPη, (4.13)

where Qh = 〈ρh|ξ = η〉 / 〈ρ|ξ = η〉 is the Favre conditional averaged enthalpy and sη,h =
〈ρsh|ξ = η〉 / 〈ρ|ξ = η〉 is the Favre conditional averaged source term including radiation
losses. In Eq. 4.13, it is assumed that the thermal diffusivity α is equal to the mixture
fraction diffusivity Dξ. A comprehensive derivation of Eqs. 4.8 and 4.13 for the case of
equally diffusive species can be found in [7].

The transport equation for the mixture fraction PDF, P (η), should be satisfied jointly
with Eqs. 4.8 and 4.13. The P (η) transport equation can be obtained from Eq. 4.6 for a
single scalar variable, and with the use of some identities involving the gradient operation
[7], results in the form

∂ρηPη
∂t

+∇ · (ρηuηPη) = −1

2

∂2ρηχηPη
∂η2

, (4.14)

where uη = 〈ρu|ξ = η〉 / 〈ρ|ξ = η〉 is the Favre conditional averaged velocity vector. The
most common form of the CMC equations can be found by subtracting Eq. 4.14 multiplied
by Qi from Eq. 4.8, giving

ρηPη
∂Qi

∂t
+∇ · (〈ρYiu|ξ = η〉Pη)−∇ · (ρηuηPη)Qi =

1

2
ρηχηPη

∂2Qi

∂η2
+ ρηω̇η,iPη, (4.15)

and by subtracting Eq. 4.14 multiplied by Qh from Eq. 4.13,

ρηPη
∂Qh

∂t
+∇ · (〈ρhu|ξ = η〉Pη)−∇ · (ρηuηPη)Qh =

1

2
ρηχηPη

∂2Qh

∂η2
+ ρηsη,hPη. (4.16)
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Equations 4.15 and 4.16 are in conservative form, suitable for discretisation using the finite
volume approach, while Eqs. 4.8 and 4.13 are in non-conservative form, suitable for the
finite difference discretisation approach. In the present study, the transport equations in
conservative form are used, where the finite volume approach is employed in Section 5.2.

4.3 CMC Formulation of Species Equation Including

Differential Diffusion

The CMC formulation for species transport used in the present investigation is derived
using a similar approach to Klimenko’s joint PDF method for the equal species diffusivity.
The difference is that the assumption of equal diffusivity is not made, resulting in different
diffusion terms in the CMC equation. This section provides a review of the derivation
outlined by Hewson et al. [6]. Additional details of the procedure can be found in the
more rigorous derivation in Appendix A.

The derivation begins from the joint PDF transport equation, Eq. 4.6, for two scalar
stochastic variables, φ1 and φ2, expressed as

∂ 〈ρ|φ1 = Z1, φ2 = Z2〉PZ1,Z2

∂t
+∇ · (〈ρu|φ1 = Z1, φ2 = Z2〉PZ1,Z2)

= − ∂

∂Z1

(〈∇ · (ρD1∇φ1) |φ1 = Z1, φ2 = Z2〉PZ1,Z2)

− ∂

∂Z2

(〈∇ · (ρD2∇φ2) |φ1 = Z1, φ2 = Z2〉PZ1,Z2)

− ∂

∂Z1

(〈ρW1|φ1 = Z1, φ2 = Z2〉PZ1,Z2)

− ∂

∂Z2

(〈ρW2|φ1 = Z1, φ2 = Z2〉PZ1,Z2) .

(4.17)

An equation for the joint PDF, P (ZY , η), of the mass fraction Yi of species i and the
mixture fraction ξ, is obtained from Eq. 4.17 by setting φ1 = Yi and φ2 = ξ. Consequently,
the sample space variables Z1 and Z2 become the respective sample space variables ZY
and η. The diffusion coefficients are D1 = Di and D2 = Dξ, while the source term
W1 is the species production rate ω̇i. Following the assumption of the existence of a
conserved mixture fraction definition (Section 2.3.2), the source term W2 becomes zero.
The conserved mixture fraction assumption is consistent with previous modelling studies
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involving differential diffusion [50, 67]. The resulting equation is

∂ 〈ρ|Yi = ZY , ξ = η〉PZY ,η
∂t

+∇ · (〈ρu|Yi = ZY , ξ = η〉PZY ,η)

= − ∂

∂ZY
(〈∇ · (ρDi∇Yi) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂η
(〈∇ · (ρDξ∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂ZY
(〈ρω̇i|Yi = ZY , ξ = η〉PZY ,η) .

(4.18)

Conducting a series of mathematical manipulation (details in Appendix A) based on the
gradient operation of Eq. 4.3 and the relationship 〈◦ψ〉 = 〈◦|Y = Z〉P (Z) where ◦ is a
general quantity [7], Eq. 4.18 can be expressed as

∂ 〈ρ|Yi = ZY , ξ = η〉PZY ,η
∂t

+∇ · (〈ρu|Yi = ZY , ξ = η〉PZY ,η)

= − ∂

∂η
(〈∇ · (ρ (Dξ −Di)∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

+∇2 (〈ρDi|Yi = ZY , ξ = η〉PZY ,η)
−∇ · (〈∇ (ρDi) |Yi = ZY , ξ = η〉PZY ,η)

− ∂2

∂Z2
Y

(〈
ρDi (∇Yi)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

− ∂2

∂η2

(〈
ρDi (∇ξ)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

− 2
∂2

∂ZY ∂Zη
(〈ρDi (∇Yi∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂ZY
(〈ρω̇i|Yi = ZY , ξ = η〉PZY ,η) .

(4.19)

Eqn. 4.19 is then multiplied by ZY and integrated over ZY . The resulting equation is the
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following unclosed CMC formulation of species transport equation,

∂ 〈ρYi|ξ = η〉Pη
∂t

+∇ · (〈ρYiu|ξ = η〉Pη) = − ∂2

∂η2
(
〈
ρDi(∇ξ)2Yi|ξ = η

〉
Pη)

+
∂

∂η
(〈2ρDi(∇Yi∇ξ)|ξ = η〉Pη)

− ∂

∂η
(〈∇ · [ρ(Dξ −Di)∇ξ]Yi|ξ = η〉Pη)

+∇2 (〈ρDiYi|ξ = η〉Pη)−∇ · (〈∇ (ρDi)Yi|ξ = η〉Pη)
+ 〈ρω̇i|ξ = η〉Pη.

(4.20)

The terms on the LHS of Eq. 4.20 describe the transient evolution of Yi and the advection
of Yi in physical space, respectively. The first three conditionally averaged terms on the
RHS, describing the diffusion of conditionally averaged quantities across conserved scalar
space, involve the product of the dissipation and the scalar Yi (DS), the cross dissipation of
ξ and Yi (CD), and differential diffusion (DD), respectively. The next two terms involve the
diffusion of conditional averaged quantities in physical space. The spatial diffusion terms
are relatively small for high Reynolds number [7], and are often neglected. In the present
implementation, these terms are kept due to the possibility of finding lower local Reynolds
number values in the near field of the flame. The last term contains the conditional average
of the chemical source term. The closure of the terms in Eq. 4.20 is presented in Section
4.5.

A comparison between the differential diffusivity formulation of Eq. 4.20 and the equal
diffusivity formulation of Eq. 4.7 shows differences in the diffusion terms. The DS and CD
terms in Eq. 4.20 are of a similar form to the diffusion terms in Eq. 4.7, with the exception
of the diffusion coefficients, where the assumption of Di = Dξ is not made. Also different
from the formulation for equal diffusivity, is the presence of the third term on the RHS,
which disappears if Di = Dξ.

An alternate approach to the derivation of Eq. 4.20 involving the formulation of a
transport equation for ψηYi results in the same equation. The ψηYi transport equation is
obtained by combining the transport equations for ψη (Eq. 4.5 for a single scalar variable)
and Yi (Eq. 2.8). This approach is employed for the derivation of the non-equal diffusivity
formulation of the CMC enthalpy transport equation in Section 4.4.
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4.4 CMC Formulation of Enthalpy Equation Includ-

ing Differential Diffusion

The derivation of the enthalpy equation is proposed in the present investigation which
follows a similar approach outlined in Klimenko and Bilger [7] for the derivation of the
species transport equation. This approach involves the derivation of the governing equation
for the product hψη, by using the transport equations for h and ψη. The transport equation
for the fine-grain PDF of the mixture fraction, ψη = ψ (η), is obtained by setting φ = ξ in
Eq. 4.5. To introduce the enthalpy h, Eq. 4.5 is multipied by h, resulting in

h
∂ρψη
∂t

+ h∇ · (ρuψη) = −h ∂
∂η

(ψη∇ · (ρDξ∇ξ)) , (4.21)

since φ = ξ, then Z = η, D = Dξ, and W = 0. Similarly, the transport equation for h, Eq.
2.15, is multiplied by ψ, resulting in

ψηρ
∂h

∂t
+ ψηρ (u · ∇h) = ψη∇ · (ρα∇h)− ψη∇ ·

[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(4.22)

Equations 4.21 and 4.22 are summed, and with some rearrangement of the resulting equa-
tion, a transport equation for hψη is obtained,

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂

∂η
(hψη∇ · (ρDξ∇ξ)) + ψη∇ · (ρα∇h)

− ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(4.23)

Similar to the derivation of the species equation in Section 4.3, a series of mathemat-
ical manipulation (details in Appendix B) based on the gradient operation of Eq. 4.3 is
performed, to set Eq. 4.3 to an easier form for averaging. Subsequently, the transformed
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equation is averaged to obtain the following unclosed form of the CMC enthalpy equation,

∂ 〈ρh|ξ = η〉Pη
∂t

+∇ · (〈ρuh|ξ = η〉Pη) = − ∂2

∂η2
(
〈
ρhDξ (∇ξ)2 |ξ = η

〉
Pη)

+
∂

∂η
(〈ρ (Dξ + α) (∇ξ · ∇h) |ξ = η〉Pη)

−
∑

i

(
∂

∂η
(〈ρhi (α−Di) (∇ξ · ∇Yi) |ξ = η〉Pη)

)

+∇ · (〈ρDξ∇h|ξ = η〉Pη) +∇ · (〈ρ (α−Dξ)∇h|ξ = η〉Pη)
−
∑

i

(∇ · (〈ρhi (α−Di)∇Yi|ξ = η〉Pη)) + 〈ρsh|ξ = η〉Pη.

(4.24)

The terms on the LHS of Eq. 4.24 describe the transient evolution of h and the advection of
h in physical space, respectively. The first three conditionally averaged terms on the RHS
describe the diffusion of conditionally averaged quantities across conserved scalar space,
and involve the product of the dissipation and the scalar h, the cross dissipation of ξ and
h, and differential diffusion, respectively. The differential diffusion term contains the cross
dissipation term of ξ and Yi. The next three terms involve the diffusion of conditional
averaged quantities in physical space. Similar to the spatial diffusion terms in the CMC
species transport equation (Eq. 4.20), the spatial diffusion terms in Eq. 4.24 are relatively
small for high Reynolds number [7], and are often neglected. However, these terms are
kept due to the possibility of finding lower local Reynolds number values in the near field
of the flame. The last term contains the conditional average of the enthalpy source term.
Additional details of the procedure covered in this section can be found in the more rigorous
derivation in Appendix B. The closure of various terms in Eq. 4.24 will be presented in
Section 4.5.

A comparison between the differential diffusivity formulation of Eq. 4.24 and the equal
diffusivity formulation of Eq. 4.12 shows differences in the diffusion terms. The first terms
on the RHS of Eq. 4.24 are of a similar form to the diffusion terms in Eq. 4.12, with the
exception of the diffusion coefficients, where the assumption of α = Dξ is not made. The
third term on the RHS is not found in the equal diffusivity assumption where the α is
assumed to be equal to Di.

The approach used in the derivation of Eq. 4.20 in Section 4.3, starting from the joint
PDF transport equation, Eq. 4.6, can also be employed to obtain the non-equal diffusivity
CMC enthalpy formulation, Eq. 4.24. In this case, the two stochastic scalar variables are
φ1 = h and φ2 = ξ, such P (Zh, η).
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4.5 Models for the Unclosed Terms

The CMC equations derived in Section 4.3 and 4.4 contain terms that require closure. In
this section, the models used in the present study are provided. The terms for which closure
models are provided include the conditional η space diffusion terms, the probability density
function, the conditional chemical source term, the conditional enthalpy source term, the
conditional velocity, and the conditional conditional scalar dissipation rate.

4.5.1 Closure Hypothesis for JY

The terms describing diffusion in η space in CMC equations, Eqs. 4.20 and 4.24, require
closure. The diffusion fluxes in the species and enthalpy equations, JY and Jh, respectively
are defined as

JY =− ∂

∂η
(
〈
ρDi(∇ξ)2Yi|ξ = η

〉
Pη) + 〈2ρDi(∇Yi∇ξ)|ξ = η〉Pη

− 〈∇ · [ρ(Dξ −Di)∇ξ]Yi|ξ = η〉Pη,
(4.25)

Jh =− ∂

∂η
(
〈
ρhDξ (∇ξ)2 |ξ = η

〉
Pη) + 〈ρ (Dξ + α) (∇ξ · ∇h) |ξ = η〉Pη

−
∑

i

(〈ρhi (α−Di) (∇ξ · ∇Yi) |ξ = η〉Pη) .
(4.26)

The η space diffusion terms in Eqs. 4.20 and 4.24 correspond to ∂JY
∂η

and ∂Jh
∂η

, respectively.

The primary closure hypothesis described by [7] is used. The flux JY is assumed to
take the following form,

JY = AQi +B
∂Qi

∂η
. (4.27)

Klimenko [28] reasoned that for particle motion time scales larger than the Kolmogorov
time scale, the particle motion in η space occurred in uncorrelated increments. The particle
motion in conserved scalar space η could then be likened to the Brownian motion of particles
in physical space described by a Markov process, where future states depended only on the
present state. Eq. 4.27 is a first-order relationship obtained for a diffusion process satisfying
the Markov property in the form of a stochastic Smoluchowski equation (expressing the
evolution of the PDF of the particle position). More specifically, the diffusion process
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described by Eq. 4.27 is a type of diffusion process called an Ornstein-Uhlenbeck process,
which is distinguished from a standard Brownian motion process (Wiener process) by non-
constant stochastic drift (change in the average value of the diffusion process) characterized
by the drift coefficient A [70]. The drift term tends the process to a long-term average
value. B is the diffusion coefficient characterizing the fluctuation about the average value
due to Brownian statistics (or Gaussian white noise). To preserve the linearity of the
Markov process, A and B are independent of Qi. A and B can be obtained in explicit
form, in contrast to the dependence on the modelling of Dt in gradient diffusion modelling.

For initial and boundary conditions of Yi that are related to ξ by the linear relationship
Yi = a + bξ, then Yi = a + bξ is a solution of the scalar transport equation describing the
inert mixing field (Eq. 2.5 without the source term) for any velocity field. The solution
Yi = a+ bξ corresponds to Qi = a+ bη [7]. Subsequently, Eq. 4.27 becomes

JY = A (a+ bη) +Bb. (4.28)

The coefficients A and B can be obtained by substituting Y = a + bξ into Eq. 4.25,
resulting in

JY = −
(

1

2Lei

∂ρηχηPη
∂η

+

(
1− 1

Lei

)
ρηMηPη

)
(a+ bη) +

ρηχηPη
2Lei

b, (4.29)

where ρη and χη are as defined in Section 4.2. The conditional diffusion velocity Mη

denotes,

Mη =
〈∇ · (ρDξ∇ξ) |ξ = η〉

〈ρ|ξ = η〉 . (4.30)

Klimenko and Bilger [7] suggested the following closure for Mη,

Mη =
1

2ρηPη

∂ρηχηPη
∂η

. (4.31)

It can be seen by comparing the corresponding terms in Eq. 4.28 and Eq. 4.29 that
the coefficients take the following form,

A = − 1

2Lei

∂ρηχηPη
∂η

+

(
1− 1

Lei

)
ρηMηPη,

and B =
ρηχηPη

2Lei
.

(4.32)

52



Substituting the A and B from Eq. 4.32 into Eq. 4.27, the following expression is obtained,

JY = − 1

2Lei

∂ρηχηPη
∂η

Qi −
1

2

(
1− 1

Lei

)
∂ρηχηPη
∂η

Qi +
ρηχηPη

2Lei

∂Qi

∂η
. (4.33)

To obtain the form of the diffusion terms in Eq. 4.20, the derivative of Eq. 4.33 is taken,
and with some rearrangement, results in

∂JY
∂η

= −1

2

∂2ρηχηPη
∂η2

Qi +
ρηχηPη

2Lei

∂2Qi

∂η2
− 1

2

(
1− 1

Lei

)
∂ρηχηPη
∂η

∂Qi

∂η
. (4.34)

The primary closure hypothesis is also used to model the enthalpy diffusion flux Jh
described by Eq. 4.26. The same form for the diffusion process, Jh = AQh + B ∂Qh

∂η
is

assumed. Following the procedure used for the closure of JY , the following expression for
Jh is obtained,

Jh = −1

2

∂ρηχηPη
∂η

Qh −
ρηχηPη

2

∑

i

((
1− 1

Lei

)
∂Qi

∂η

)
Qhi +

ρηχηPη
2

∂Qh

∂η
. (4.35)

The assumption of α = Dξ is made; however, the assumption of Di = Dξ is relaxed. To
obtain the form of the diffusion terms in Eq. 4.24, the derivative of Eq. 4.35 is taken, and
with some rearrangement, results in

∂Jh
∂η

= −1

2

∂2ρηχηPη
∂η2

Qh +
ρηχηPη

2

∂2Qi

∂η2
− ∂

∂η

[
ρηχηPη

2

∑

i

((
1− 1

Lei

)
∂Qi

∂η

)
Qhi

]
.

(4.36)

Hewson et al. [6, 68, 67] proposed the presence of residual terms RDS, RCD, and
RDD, which were the differences between the exact DS, CD, and DD terms in Eq. 4.25
and modelled diffusion flux of 4.33. In other words, the residuals represented the error
from assuming the form of Eq. 4.27. Although RDS and RCD were found to be the same
magnitude as the modelled terms, they tended to balance each other and were generally
neglected [6]. RDD was found to be significant in the soot CMC equation, but small in the
equations for gaseous species [69]. Following the findings reported in [6, 69], the residuals
are neglected in the present study.

4.5.2 Presumed Probability Density Function

The probability density function, briefly introduced in 2.1.3, is an important quantity in
CMC, as it is found in Eqs. 4.20 and 4.24. The PDF Pη in Eqs. 4.20 and 4.24 can be
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related to the Favre averaged PDF by

ρηPη = ρP̃ (η,x) . (4.37)

The PDF is also necessary to relate the Favre averaged mass fraction to the density-
weighted conditional averaged mass fraction obtained from CMC calculations. The rela-
tionship between conditional and unconditional quantities is given by, Eq. 2.37, written as
follows for the quantity ρφ [22],

ρφ =

∫ 1

0

〈ρφ|ξ = η〉P (η) ∂η. (4.38)

Using Eqs. 2.40 and 4.37, Eq. 4.38 can be expressed as

φ̃ =

∫ 1

0

〈ρφ|ξ = η〉
〈ρ|ξ = η〉 P̃ (η,x)∂η, (4.39)

where 〈ρφ|ξ = η〉 / 〈ρ|ξ = η〉 is the Favre conditional averaged mass fraction Qi for φ = Yi
and enthalpy Qh for φ = h.

In CMC, the form of the PDF is presumed, so that the PDF transport equation, Eq.
4.14, does not need to be solved directly. However, the presumed form of the PDF should
be able to provide a physically valid description of the quantities. Two commonly used
forms of the PDF in non-premixed flames are the clipped Gaussian distribution and the
β distribution. The shape of the presumed Favre averaged PDF at a certain location is
parameterised by the local Favre averaged mixture fraction and mixture fraction variance,

such that P̃ (η,x) ≡ P̃
(
η; ξ̃ (x) , ξ̃′′2 (x)

)
.

Clipped Gaussian PDF

The Gaussian distribution is a symmetrical distribution centered on the mean value, and
the spread is determined by the variance. The PDF is given by

G (η) =
1√

2πξ̃′′2
exp


−

(
η − ξ̃

)2

2ξ̃′′2


. (4.40)

The tails of the distribution described by Eq. 4.40 extends beyond the range of the mixture
fraction sample space, 0 ≤ η ≤ 1. The property that the sum of the PDF over the sample
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space is equal to 1 (Eq. 2.22) is no longer true for sample space η,
∫ 1

0

P (η)dη 6= 1. (4.41)

A modification is made to change the inequality of Eq. 4.41 by introducing the Favre
averaged clipped Gaussian PDF, expressed as

P̃ (η) = α1δ (η) + (1− α1 − α2)PT (η) + α2δ (1− η) , (4.42)

where PT is the Gaussian distribution in Eq. 4.40 normalized for the range of 0 ≤ η ≤ 1,

PT (η) =
G (η)∫ 1

0
G (η) dη

, (4.43)

resulting in a change in the magnitude of the PDF in the range of 0 ≤ η ≤ 1 to account for
the tails of the PDF outside of the range. Equation 4.43 satisfies the integration property
between 0 and 1. However, Eq. 4.43 does not provide a proper representation of unmixed
fluid at the boundaries. To accommodate for this discrepancy, Dirac delta functions δ, with
values of 1, are added at η = 0 and η = 1, as seen in Eq. 4.42. The delta functions represent
the intermittency of the turbulent shear flow near the boundaries of the shear layer where
the entrainment of unmixed or non-turbulent fluid results in spikes. The strengths of the
delta functions are modified by the factors α1 and α2. The values for α1 and α2 are assumed
to be equal to the clipped tails of the Gaussian distribution, such that

α1 =

∫ 0

−∞
G (η) dη,

and α2 =

∫ ∞

1

G (η) dη.

(4.44)

The strengths of the α1 and α2 become stronger as the mean value approaches the bound-
aries of η; in other words, the delta functions are strongest near the fuel inlet and far
from the fuel jet. Figure 4.1a shows the clipped Gaussian PDF for various values of ξ̃

and ξ̃′′2. Care should be taken when using the clipped Gaussian distribution, since the
discontinuities at the boundaries of η space may lead to unphysical behaviour.

β PDF

The Favre averaged β distribution is given by

P̃ (η) =
ηα−1 (1− η)β−1

Ib
, (4.45)
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Figure 4.1: Clipped Gaussian and β distributions with for different values of ξ̃ and ξ̃′′2

where Ib is the integral

Iβ =

∫ 1

0

ηα−1 (1− η)β−1 dη, (4.46)

and the parameters α and β are

α = ξ̃



ξ̃
(

1− ξ̃
)

ξ̃′′2
− 1


 ,

and β =
(

1− ξ̃
)


ξ̃
(

1− ξ̃
)

ξ̃′′2
− 1


 .

(4.47)

Figure 4.1b shows the β PDF for different values of ξ̃ and ξ̃′′2. The β function described
by Eq. 4.45 is a smooth PDF that is generally asymmetric, but the shape approaches a

symmetric Gaussain form for small ratios

√
ξ̃′′2/ξ̃ and

√
ξ̃′′2/

(
1− ξ̃

)
. Unlike the discon-

tinuous delta functions used in the clipped Gaussian distribution (Eq. 4.42) to account for
the intermittency, the β distribution behaves asymptotically near the η = 0 and η = 1.
Girimaji [71, 72, 73] showed that the β distribution provided an accurate representation

of P̃ (η), and was supported by various DNS studies [74]. The tradeoff was the increase in
computational cost due to the need to solve the integral Ib. The beta PDF tends to give
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better predictions for large variances of the mixture fraction. However, both forms of the
PDF have been show to perform similarly in hydrogen jet flame computations.

4.5.3 Chemical Source Term

The highly non-linear averaged reaction rates, in the form of Eq. 2.68, is described in
Section 2.3.4. One of the main motivations of CMC methods is the reduction in the order of
the reaction rate. When the source term is conditionally averaged on the mixture fraction,
such as in Eqs. 4.15 and 4.20, the conditionally averaged terms involving the fluctuations
Y ′′ and T ′′, are found to be small [7]. The higher order terms seen in Eq. 2.68 can then
be neglected by first order closure and the Favre averaged chemical reaction rate can be
describe as a function of the Favre conditional species mass fraction and temperature,
ω̇η,i (Qi, QT ), where QT = 〈ρT |ξ = η〉 / 〈ρ|ξ = η〉. The first order closure approximation to
the conditional chemical source term of species i is subsequently expressed by the sum of
the rates of each reaction involving the species i,

ωη,i =
Mi

ρη

L∑

l=1

(
ν ′′i,l − ν ′i,l

)
(
kf,l

N∏

j=1

[Xj|η]ν
′
j,l − kr,l

N∏

j=1

[Xj|η]ν
′′
j,l

)
, (4.48)

where L is the number of elementary reactions, N is the number of reactants and products
for each reaction l, ν is the stoichometric coefficients of the reactants (denoted by ′) and
products (denoted by ′′) . The conditional averaged concentration of species i is related to
the conditional averaged mass fraction by

[Xi|η] =
ρηQi

Mi

, (4.49)

where Mi is the molecular weight of species i. k is the temperature dependent rate constant
acquired in Arrhenius form,

k = AT nexp

(
− E

RT

)
, (4.50)

and this relationship is also seen in the unaveraged form, Eq. 2.67. The subscripts, f and
r indicate forward and reverse reactions, and are related by

kr =
kf
Kc

, (4.51)

where the equilibrium constant Kc is often found tabulated.

The validity of the first order closure depends on the magnitudes of the conditional
fluctuations. The first order closure is a good approximation for flames far from extinction.
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4.5.4 Radiative Heat Loss

The conditional averaged enthalpy source term, as shown in Eq. 4.13 and 4.24, typically
accounts for radiation heat losses in turbulent reacting flows. Under the assumption of
optically thin flame, that is, at each point the source has an unimpeded isotropic view of
the cold surroundings resulting in negligible radiative heat transfer within the flame itself,
the radiative heat loss rate per unit volume [ W

m3 ] is given by

sh (T, pi) = 4σ
∑

i

piKP,i

(
Q4
T −Q4

T,b

)
, (4.52)

where σ = 5.670373 · 10−8 W
m2K4 is the Stefan-Boltzmann constant, pi is the partial pressure

of the ith species, KP,i is the Planck mean absorption coefficient of the ith species, and
QT,b is the Favre conditional background temperature. The Planck mean absorption coef-
ficient is a path-length independent quantity that is a function of temperature, and various
empirical correlations had been proposed for KP,i. The partial pressure is obtained by the
use of the ideal gas law (Eq. 2.16) weighted with the mass fraction,

pi =
YiρRQT

Mi

. (4.53)

4.5.5 Conditional Velocity and Turbulent Flux

The advection term in CMC species equation, Eq. 4.20, can be decomposed as,

∇ · (〈ρYiu|ξ = η〉Pη) = ∇ · [(〈ρYi|ξ = η〉 〈u|ξ = η〉+ 〈ρY ′i u′|ξ = η〉)Pη]
= ∇ · [(ρηQiuηPη + ρη 〈Y ′′i u′′|ξ = η〉Pη)] .

(4.54)

The conditional turbulent flux 〈Y ′′i u′′|ξ = η〉 is modelled using the gradient diffusion hy-
pothesis for the scalar Qi,

〈Y ′′i u′′|ξ = η〉 = −Dt∇Qi, (4.55)

such that Eq. 4.54 becomes

∇ · (〈ρYiu|ξ = η〉Pη) = ∇ · [(ρηQiuηPη −DtρηPη∇Qi)] . (4.56)

The turbulent diffusivity Dt is given by

Dt =
νt
Sct

=
Cµ
Sct

k2

ε
, (4.57)
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where νt is the turbulent kinematic viscosity, Sct is the turbulent Schmidt number, and
Cµ is an empirically constant typically with a value of 0.09. Similarly, the advection in the
CMC enthalpy equation, Eq. 4.24, can be expressed as,

∇ · (〈ρhu|ξ = η〉Pη) = ∇ · [(ρηQhuηPη −DtρηPη∇Qh)] . (4.58)

The Favre conditional averaged velocity uη is approximated using the linear model
proposed by Kuznetsov and Sabelnikov [75]. The model assumes a linear relationship in η
space, expressed as,

uη,k = ũk +
ũ′′kξ

′′

ξ̃′′2

(
η − ξ̃

)
, (4.59)

where uη,k is one component of the vector uη. The ũ′′ξ′′ is once again modelled by the
gradient diffusion hypothesis described by Eq. 2.61, such that

uη,k = ũk −
Dt

ξ̃′′2

∂ξ̃

∂xk

(
η − ξ̃

)
. (4.60)

The linear model is considered a good approximation for many flows for η values within
two standard deviations of ξ̃ [76]. The linear model is commonly used due to its ease of
implementation and low computational requirement.

4.5.6 Conditional Scalar Dissipation Rate

The modelling of the conditional scalar dissipation rate, χη, is one of the major areas of
ongoing research in CMC methods. Various models have been proposed under different
assumptions, such as constant value for all η values, homogeneous turbulence [77, 78],
and inhomogeneous turbulence [76]. In the present investigation, χη is modelled using
the Amplitude Mapping Closure (AMC) model developed by O’Brien and Jiang [77]. The
model is derived from the homogeneous PDF transport equation using the mapping closure
solution for the scalar PDF. The PDF initially has a double delta distribution and later
relaxes to a Gaussian distribution. The model assumes that χη is proportional to a function

of η independent of ξ̃ and ξ̃′′2, G (η) = exp(−2 · erf−1(2η − 1)2) such that,

χη =
χ̃G (η)∫ 1

0
G (η)P (η) dη

, (4.61)
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where χ̃ is the Favre averaged scalar dissipation rate described by Eq. 2.63. Equation 2.63

is also unclosed due to the correlation ∇ ˜φ′′ · ∇φ′′. Peters [11] proposes the expression

χ̃ = Cχ
ε

k
ξ̃′′2, (4.62)

where Cχ is a constant of proportionality dependent on the nature of the flow. The value
of Cχ = 2 is found to provide good results in the study of an inert jet [79], and this value
is retained in the present study. Equation 4.62 is obtained by assuming proportionality

between the integral time scale of the mixing field τi = ξ̃′′2/χ̃, and time scale of the
turbulent flow τ = k/ε, such that

τ = Cχτi. (4.63)

Other models have also been proposed for the closure of χ̃, but arel not examined in the
present investigation.

The form of χη is shown in Fig. 4.2. The AMC model results in a χη profile that is
symmetrical and centered at η = 0.5. AMC requires some unmixed fluid to be present. The
AMC model is used for its good compromise between accuracy and ease of implementation.
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Figure 4.2: χη distribution modelled by AMC
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4.6 Summary of CMC Equations with Differential Dif-

fusion

The closed form of the CMC equations are presented in this section. Substitution of Eqs.
4.34, 4.36, 4.56, and 4.58 into Eqs. 4.20 and 4.24, results in

∂ρηQiPη
∂t

+∇ · [(ρηQiuηPη −DtρηPη∇Qi)] = −1

2

∂2ρηχηPη
∂η2

Qi +
ρηχηPη

2Lei

∂2Qi

∂η2

− 1

2

(
1− 1

Lei

)
∂ρηχηPη
∂η

∂Qi

∂η
+∇2 (〈ρDiYi|ξ = η〉Pη)

−∇ · (〈∇ (ρDi)Yi|ξ = η〉Pη) + ρηω̇η,iPη,

(4.64)

and

∂ρηQhPη
∂t

+∇ · [(ρηQhuηPη −DtρηPη∇Qh)] = −1

2

∂2ρηχηPη
∂η2

Qh +
ρηχηPη

2

∂2Qi

∂η2

− ∂

∂η

[
ρηχηPη

2

∑

i

((
1− 1

Lei

)
∂Qi

∂η

)
Qhi

]

+∇ · (〈ρDξ∇h|ξ = η〉Pη) +∇ · (〈ρ (α−Dξ)∇h|ξ = η〉Pη)
−
∑

i

(∇ · (〈ρhi (α−Di)∇Yi|ξ = η〉Pη)) + ρηsη,hPη.

(4.65)

Similar to the equal diffusivity formulation in Section 4.2, Eqs. 4.64 and 4.65 can be
modified to conservative form by subtracting Eq. 4.14 multiplied Qi and Qh, respectively.
The resulting equations are

ρηPη
∂Qi

∂t
+∇ · [(ρηQiuηPη −DtρηPη∇Qi)]−∇ · (ρηuηPη)Qi =

ρηχηPη
2Lei

∂2Qi

∂η2

− 1

2

(
1− 1

Lei

)
∂ρηχηPη
∂η

∂Qi

∂η
+∇2 (〈ρDiYi|ξ = η〉Pη)

−∇ · (〈∇ (ρDi)Yi|ξ = η〉Pη) + ρηω̇η,iPη,

(4.66)
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and

ρηPη
∂Qh

∂t
+∇ · [(ρηQhuηPη −DtρηPη∇Qh)]−∇ · (ρηuηPη)Qh =

ρηχηPη
2

∂2Qi

∂η2

− ∂

∂η

[
ρηχηPη

2

∑

i

((
1− 1

Lei

)
∂Qi

∂η

)
Qhi

]

+∇ · (〈ρDξ∇h|ξ = η〉Pη) +∇ · (〈ρ (α−Dξ)∇h|ξ = η〉Pη)
−
∑

i

(∇ · (〈ρhi (α−Di)∇Yi|ξ = η〉Pη)) + ρηsη,hPη.

(4.67)

In Eq. 4.66, the first term on the RHS is of a similar form to the diffusion term found
in the Eq. 4.15, except for the presence of the inverse of the Lewis number. Hewson et al.
[67] found this term to be relatively small for the soot tranport equation, due to the high
Lewis number of soot. For the low Lewis number of hydrogen, the converse is expected;
the term will have a greater significance when differential diffusivity is considered. Also
different from the formulation in the η space diffusion for equal diffusivity is the presence
of the second term on the RHS of Eq. 4.66. The term increases in magnitude as the Lewis
number deviates from unity, and approaches zero as the Lewis number tends to unity.

In Eq. 4.67, the first term on the RHS is the same as the diffusion term in Eq. 4.16,
due to the assumption of α = Dξ. The second term on the RHS of Eq. 4.67, is not found
in the equal species diffusivity formulation, since the term tends to zero as the value of Di

approaches α. This term accounts for the differential diffusion effects of chemical species.

Equations 4.66 and 4.67 are used in the discretisation and implementation of CMC in
Chapter 5.
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Chapter 5

Implementation of Conditional
Moment Closure

The CMC transport equations derived in Chapter 4 are used in the solution of a turbulent
flame. This chapter describes the general methodology in applying the CMC model in
turbulent flame simulations. The chapter begins by providing an overview of the compu-
tational routine used in the present investigation in obtaining the results in Chapter 6.
However, the details described in this chapter are for a general implementation and are
not for any specific flame, while the procedure involved specific to the flame investigated in
the current study are deferred to Chapter 6. In this chapter, the CMC equations are dis-
cretised using the finite volume method. The advection scheme, PDF ratio, Lewis number
approximations, and numerical solver used in the current study are discussed.

5.1 Overview of Computational Methodology

The methodology of the computations is important in obtaining accurate results in an
efficient time. In CMC modelling, good initial values can aid convergence, by promoting
stability and decreasing time of computation. The flow chart, shown in Fig. 5.1, provides
an overview of the structure of the computation.

The first step of the computation code is to read an input file, which contains specifi-
cations of the simulation set by the user. The file includes parameters related to the initial
and boundary conditions (such as initial temperature and boundary velocities), computa-
tionall grid, numerical solver (such as number of iterations), turbulence model, combustion
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Figure 5.1: Computational methodology
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model, thermodynamic (enthalpy polynomials), and chemistry mechanism. Variables are
initialised based on the input parameters, such as the creation of matrices of appropriate
sizes for the computational grid.

The first set of calculations are performed using a infinite rate chemistry model of an
one-step irreversible reaction described in Section 2.4.1, generating the Burke-Schumann
solution, and resulting in mass fractions of major species and temperature which are linear
functions of η. The next step is the generation of laminar flamelet model libraries for
preset values of χ̃ used for interpolation in the field solution of the laminar flamelet model
described in Section 2.4.2.

The flow field is first solved in the case of mixing only, i.e. no chemical reactions. This
involves iteration of the discretized equations for turbulent kinetic energy k, turbulent ki-
netic energy dissipation ε, mixture fraction ξ̃, mixture fraction variance ξ̃′′, and specific
enthalpy h̃. After obtaining a converged pure mixing field, iterations are performed includ-
ing chemistry by using the flamelet libraries. The mean scalar dissipation rate calculated
from the mixture fraction field is used to interpolate the species mass fractions. The change
in the mean density and temperature from chemistry considerations affects the mixing field
variables, and is used in the equations for the flow field variables. The iteration between
the flamelet libraries and the flow field equations is performed until convergence. The
reacting flow field provides an initial condition for the CMC calculations that follows.

The CMC equations are solved for the conditional species mass fractions and enthalpy
by using the value of the mean scalar dissipation from the mean mixture fraction field to
obtain the conditional scalar dissipation rate, and by using the mean mixture fraction and
variance to obtain the Favre averaged PDF. The Favre averaged mass fractions and en-
thalpy are then obtained from the conditional results by using Eq. 4.39. Subsequently, the
flow field variables are updated with the mean density and temperature changes from the
updated mean mass fractions and enthalpy. This process is iterated until both conditional
and unconditional results reach convergence. The post-processing include outputting the
conditional and unconditional quantities to data files, which can then be use for interpre-
tation, such as in graphical representation.

5.2 Finite Volume Discretisation of the CMC equa-

tions

The method of solution employed in the present study is the finite volume method. The
finite volume method lends itself well to physical interpretation, expressing the conservation
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principles for a finite volume. The advantage of the method is that the integral conservation
of mass, momentum, species, and energy is always satisfied over for any group of control
volumes.

The CMC transport equations, Eqs. 4.66 and 4.67, are integrated over a control volume
to yield discretised equations that can be solved numerically. The equations are discretised
on a structured two-dimensional rectangular grid, as shown in Fig. 5.2. The positive axial
direction (xk = x) is designated as west (w) to east (e), while the positive radial direction
xk = r is designated as south (s) to north (n). Variables with lower case subscripts
indicate values at the cell boundaries, upper case subscripts indicate values at the cell
center of adjacent nodes, and no direction subscript refers to the value at the node of the
current computational cell. For the purpose of demonstration, the steps to obtain the

Figure 5.2: Section of computational grid, reproduced from Cleary [80]

finite volume formulation of the conditional species equation (Eq. 4.66) are presented in
this section; the conditional enthalpy equation (Eq. 4.67) finite volume formulation can
be obtained by following the same steps, and only the final form is presented at the end
of this section. The derivation begins by integrating Eq. 4.66 over the computational cell
volume. With the use of Gauss’ divergence theorem expressing the volume integral of a
vector field as a surface integral, and second-order midpoint approximations for volume
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and surface integrals, the resulting equation becomes

ρeP̃eAe

(
uηQi −Dt

∂Qi

∂x

)
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− ρwP̃wAw
(
uηQi −Dt

∂Qi
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)
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−
(
ρDiA

∂QiP̃
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s

+ ρP̃V ω̇i,η,

(5.1)

where V = rdxdr is the volume of the cell, Ae = Aw = rdr are the area of the east and
west faces, An = rndx is the area of the north face, and As = rsdx is the area of the south
face.

The first components of the advective terms in Eq. 5.1 are approximated by,

ρkP̃kAk (uη,kQi)k ≈ ρkP̃kAkuη [fkQi,K + (1− fk)Qi] , (5.2)

where the subscript k represents each of the directions (e,w,n,s). fk is the weighting factor
describing the relative influence of the current and adjacent computational cell, and will
be discussed in Section 5.3. The quantities at the cell faces, such as in Eq. 5.2, are
determined by linear interpolation between the current and adjacent computational nodes.
For example, the mean density at the cell face is given by the expression,

ρk = ρ+ ∆xk
ρK − ρ

∆x
, (5.3)

where ∆xk = xk − x is the distance between the current node and the cell face and
∆x = xK − x is the distance from the current node to the adjacent node. The second
components of the advection terms are approximated using central differencing,

−ρkP̃kAk
(
Dt
∂Qi

∂x

)

k

≈ −ρkP̃kAkDt,k
± (Qi,K −Qi)

∆xk
, (5.4)
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where ± takes the addition operator for north and east terms and the subtraction operator
for south and west terms. The fluxes are then expressed by

ρkP̃kAk

(
uη,kQi −Dt

∂Qi

∂xk

)

k

≈ ρkP̃kAk

(
uη,k [fkQi,K + (1− fk)Qi]−Dt,k

± (Qi,K −Qi)

∆xk

)
.

(5.5)

Combining Eq. 5.5 with the last term on the LHS of Eq. 5.1 resulting from the conversion
to conservative form, Eq. 5.5 becomes

Jk ≈ ρkP̃kAk

(
uη,kfk (Qi,K −Qi)−Dt,k

± (Qi,K −Qi)

∆xk

)
. (5.6)

The flux leaving one cell face is exactly equal to the flux entering its neighbouring cell.

The terms involving fluxes in η space also require discretisation. The η space, with
boundaries at η = 0 and η = 1, is discretised on a one dimensional grid. The η nodes
are centered in each η cells. The subscripts + and − refer to values at adjacent η nodes.
Second order central differencing obtained from the truncation of Taylor series expansions
is used for the derivatives in η space such that,
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2
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where ∆η = 1
2

(η+ − η−), ∆η+ = η+ − η, and ∆η− = η − η−.

The resulting finite volume form of conditional species equation, Eq. 4.66, is given as
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(5.9)
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where ∂χη
∂η

is also discretized by central differencing similar to Eq. 5.7. Equation 5.9 is
arranged into the following form to facilitate numerical solution by expressing as a sum of
species mass fractions and coefficients,

apQi = aeQi,e + awQi,w + anQi,n + asQi,s + a+Qi,+ + a−Qi,− + b, (5.10)

where the coefficients are,

ae =
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, (5.11c)
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, (5.11f)

ap = ae + aw + an + as + a+ + a−, (5.11g)

b = ω̇i,η. (5.11h)

The conditional enthalpy transport equation, Eq. 4.67 is also discretized in similar
fashion, resulting in the form,

apQh = aeQh,e + awQh,w + anQh,n + asQh,s + a+Qh,+ + a−Qh,− + b, (5.12)
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with coefficients,
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where the second term in b is expressed as,
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(5.14)

5.3 Advection Scheme

The weighting factor fk for the advection term, Eq. 5.5 is required, in order to estimate
the scalar quantities at the cell faces. A power-law interpolation scheme [81], which is a
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modification of the hybrid scheme developed by Spalding [82] switching between central and
upwind differencing, is used in the calculation of the advective terms. Central differencing
corresponds to a linear interpolation between the centers of adjacent cells. In central
differencing, a node is equally influenced by all its neighbouring nodes, such that the
direction of flow is not considered. For large Peclet numbers (Pe ≥ 2) described by Eq.
3.5, the transportiveness is not captured by the central differencing scheme, resulting in
unbounded solutions. The upwind differencing scheme accounts for the direction of the
flow by obtaining values at cell faces from the upwind node, resulting in solutions that
are bounded. The tradeoff is a decrease in accuracy from the second-order Taylor series
truncation error of the central differencing scheme to first-order error. The hybrid scheme
of Spalding [82] switches from central differencing for low Peclet numbers (|Pe| ≤ 2) to the
upwind scheme for high Peclet numbers (|Pe| > 2). For the hybrid scheme, Patankar [81]
found that the error at (|Pe| = 2) was rather large, and subsequently proposed a power-law
expression. For the power-law scheme, the weighting factor is given by

fk = −uk for Pe < 10,

fk =
(1− 0.1|Pek|)5

Pek
− 1

Pek
− 1 for − 10 ≤ Pe ≤ 0,

fk =
(1− 0.1|Pek|)5

Pek
+

1

Pek
for 0 ≤ Pe ≤ 10,

fk = −Pek for Pe > 10.

(5.15)

The power-law scheme is identical with the hybrid scheme for |Pe| > 10. Using Eq. 5.15,
the advective coefficients in Eqs. 5.11 and 5.13 can be expressed in a compact form,

ak =
ρkP̃kAk

ρP̃V

(J±uk, 0K +

t
Dt (1− 0.1|Pek|)5

∆xk
, 0

|)
, (5.16)

where the J K indicates the maximum of the quantities contained. The power-law scheme
requires little additional computational expense compared to the hybrid scheme, but per-
forms significantly better [81].

5.4 PDF Ratio

Two commonly presumed probability density functions, the clipped Gaussian and the
β PDFs, were introduced in Section 4.5.2. Due to the attractive properties of the β
distribution (it is continuous), it is choosen for P̃ in the present investigation.
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The discretized CMC equations coefficients, Eqs. 5.11 and 5.13, contain ratios involving
the PDF. The convective term involves the ratio of P̃ at the cell face to P̃ at the cell center,
which characterises the relative influence of the spatial advection terms to the chemical
source term and η space diffusion terms. If the PDF ratio is large, the evolution of the
conditional quantities, Qi or Qh, is determined mainly by spatial flux. On the other hand,
small PDF ratios indicates that the solution is close to the SLFM solution. Using the
definition of the β distribution, Eq. 4.45, the ratio can be expressed as,

P̃k

P̃
=

Iβ
Iβ,k

ηαk−α (1− η)βk−β . (5.17)

The integrals Iβ and Iβ,k must still be determined numerically. P̃k/P̃ tends to zero or
infinity as η → 0 or η → 1.

The coefficients a+ and a− in Eqs. 5.11 and 5.13 involve the ratio of the gradient of
P̃ to P̃ , which can conveniently be expressed as,

1

P̃

∂P̃

∂η
=
α− 1

η
− β − 1

1− η . (5.18)

Equation 5.18 is a function which at η = ξ̃ has a value of 0 and a slope of 2ξ̃−1

ξ̃(1−ξ̃)
. The

magnitude of the slope increases as η → 0 and η → 1, and asymptotes at η = 0 and η = 1.

5.5 Numerical Solver

A numerical solver is required to solve the system of equations involving Eq. 5.10 for
each chemical species and 5.12. The numerical method for the solution of the discretized
equations employed in the present investigation is a modified Newton-Raphson (N-R) solver
[83]. For a system of equations given by

f (Q) = 0, (5.19)

the N-R method solves each equation f = {f1, f2, . . . , fn} for each element Q = {Q1, Q2, . . . , Qn}
simultaneously at a one η and spatial location (x, r). From Eq. 5.10, fi is given by

fi = −apQi +
∑

akQi,k + b. (5.20)
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Taking a Taylor series expansion of each function fi about Qi and truncating terms that
are higher than second order, results in

Qk+1 = Qk + ∆k, (5.21)

where ∆k is obtained by the equation

[J ]k∆k = −f
(
Qk
)
, (5.22)

solved by using Gaussian elimination assisted by the LU decomposition method [83]. The
elements of the Jacobian matrix [J] are given by

Ji,j =
∂fi
∂Qj

= −ap,iδij +
∂bi
∂Qj

. (5.23)

For elementary reactions where the stoichiometric coefficients are 1, ∂bi
∂Qj

can be determined

analytically. Due to the large Jacobian matrix, it is impossible to solve all species at every
η and spatial grid point simultaneously. Instead, the method employed here is explicit to
transport in physical and mixture fraction space; in other words, Eq. 5.21 is solved at a one
η and location (x, r) before marching to the next. In this case, all conditional quantities
are solved for each η first at a spatial location before moving to the next spatial location.

The N-R method is generally a very efficient numerical method. However, the global
convergence of the method can be poor for large changes between in the predicted values,
and requires a good initial guess for the solution to converge stably. The use of SFLM so-
lution provides reasonable initial conditions that aid convergence. In addition, the changes
in the solution are usually small for steady-state CMC calculations. Additional restrictions
are applied by setting limits for the possible upper value for each species, and a limit on
the change in the solution for each iteration. The restriction allows the a change in the
solution between iterations up to a fraction of Qmax,i, but never exceeding Qmax,i. The
limitation set on the species mass fractions prediction can be expressed by

Qk
i ≤ min

(
Qk−1
i + CQmax,i;Qmaxi

)
, (5.24)

where C is a fraction of Qmax,i that the solution can change per iteration, typically with
the value of 0.1. The bound is removed as the solution reaches convergence, so not to
artificially limit the solution.

5.6 Lewis Number

The Lewis number describing the ratio between thermal diffusivity and mass diffusivity
(Eq. 3.2) is found in the coefficients a+ and a− in Eqs. 5.11 and 5.13. The Lewis number is
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a function of α and Di which are both dependent on temperature. Smooke [34] generated
data for the Lewis number using detailed chemistry model for a laminar counterflow diffu-
sion flame and found that the Lewis number for various chemical species could be fitted to
a constant with reasonable agreement, except at low temperature regions. Lewis numbers
approximated as constants obtained from Smooke et al. [34] are presented in Table 5.1.

Table 5.1: Lewis numbers from simplified transport model of Smooke [34]

Species Le
CH4 0.97
O2 1.11
H2O 0.83
CO2 1.39
H 0.18
O 0.70
OH 0.73
HO2 1.10
H2 0.30
CO 1.10
H2O2 1.12
HCO 1.27
CH2O 1.28
CH3 1.00
CH3O 1.30
N2 1.00

The species diffusivities Di found in the advection coefficients in Eqs. 5.11 and 5.13 is
also required.The species diffusivities are estimated from the constant Lewis number using
the relationship [34],

ρDi =
2.58 · 10−4

Lei

(
T

298

)0.7

. (5.25)

The Prandt-Schmidt number is assumed constant, expressed by

σ =
µ

ρD
= 0.7. (5.26)
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Chapter 6

Hydrogen Flame Calculations

The focus of this chapter is to provide an analysis of the performance of the current CMC
method with the effects of differential diffusion, as described in Chapter 4. First, the
selected test case, a laboratory turbulent hydrogen-air jet flame, and the numerical setup
used to replicate the experimental conditions are described. Results for the calculation
of conditional and unconditional scalars are presented. Comparison is made between the
results for equal and non-equal species diffusivity calculations. An analysis is also given
for accounting for species diffusivities individually. A budget of the contribution of terms
in the CMC equations provides a qualitative analysis. Finally, a sensitivity analysis of
various factors in the simulations is presented.

6.1 Description of Experimental Study

The flame selected for the present study is one of the laboratory flames studied by Barlow
and Carter [38, 39]. The flame serves as a good baseline for comparison with the CMC
study with differential diffusion by Kronenburg and Bilger [61] described in Section 3.2.
Other investigations [84, 85] had also pointed out the need to consider differential diffusion
effects in the modelling of this flame. The measurement data and documentation are
obtained from the Turbulent Nonpremixed Flames (TNF) library from Sandia National
Laboratories [86].

In the experimental study, three jet flames were investigated with the following fuel
compositions; undiluted hydrogen (H2), 20% helium dilution in hydrogen, and 40% helium
dilution in hydrogen. The primary objective of the experimental study of the flames was
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to provide data on NO production. Raman scattering was used to measure major species
concentrations (H2, O2, H2O, N2), while Rayleigh scattering was used for temperature
measurements, and Laser-Induced Fluorescence (LIF) was used for the measurement of
OH and NO concentrations. Velocity measurements were conducted at ETH Zurich [87]
using Laser-Doppler Velocimetry. Measurements were made at several streamwise locations
along the flame. In this study, only the undiluted hydrogen flame is studied.

Table 6.1: Summary of flame conditions

Nozzle diameter (mm) 3.75
Jet Reynolds number 10, 000
Jet velocity (m

s
) 296

Lv
D

180
Stoichiometric mixture fraction, ξst 0.028
Coflow velocity (m

s
) 1.0

Coflow humidity (kg−H2O
kg−air ) 0.0072

The experimental setup consisted of a 0.55 m straight nozzle with an inner diameter
of 3.75 mm and an outer diameter of 4.84 mm, centered at the exit of a 30 cm by 30
cm vertical wind tunnel. The coflow air stream from the wind tunnel had an average
velocity of 1.0m

s

(
±0.06m

s

)
, temperature of 294K (±2K), and an average humidity ratio

of 0.0072 kg
kgair

. The complete data set included radial profiles at several streamwise loca-

tions of three different conditions for the H2 flame: undiluted, 20% He dilution, and 40%
He dilution. In this study, only the undiluted flame is investigated, to avoid the need to
consider the differential diffusion of He. The temperature, Reynolds number, and average
velocity of the fuel at the nozzle exit were 295K (±2K), 10, 000, and 296m

s
(±1.5%), re-

spectively. The approximate visible flame length was reported to be 180 nozzle diameters,
while the stoichiometric flame length, where the centerline mean mixture fraction matches
the stoichiometric mixture fraction of 0.028, was at the streamwise location 127 diameters
downstream of the nozzle. The flame conditions are summarized in Table 6.1.

The mixture fraction reported in the experimental measurements was the Bilger’s mix-
ture fraction [88] given by

ξblgr =

2(YC−YC,O)
MC

+
(YH−YH,O)

2MH
+

(YO−YO,O)
MO

2(YC,F−YC,O)
MC

+
(YH,F−YH,O)

2MH
+

(YO,F−YO,O)
MO

. (6.1)

The experimental data provided measurements for the mean Bilger’s mixture fraction ξ̃blgr
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and its rms
√
ξ̃′′2blgr, and also presented scalars conditionally averaged on the Bilger’s mix-

ture fraction sample space ηblgr. The mixture fraction described by Eq. 6.1 is a linear
combination of the elemental mixture fractions ξH , ξC , and ξO defined by the Eq. 3.4.
Bilger’s mixture fraction retains the stoichiometric value of the mixture fraction even with
the presence of differential diffusion effects.

The experimental systematic uncertainties, affecting the accuracy of the mean scalar
values, and standard deviations are given in Table 6.2 [86]. The estimates of the uncertain-
ties were based on repeatability of Raman calibrations, changes in the Raman/Rayleigh
laser characteristics during experiments, drift in the LIF dye laser wavelengths, and uncer-
tainties in the fluorescence calibrations and corrections. The uncertainties were based on
conditions close to the stoichiometric mixture fraction (approximately 0.5 < ξ/ξst < 2.0).
Barlow and Carter [38] suggested that uncertainties may be greater for very rich and for
lean samples due to limitations in the calibration procedures.

Table 6.2: Estimates of experimental accuracy [86]

Scalar Systematic Uncertainty % rms
N2 ±3− 4% 3.8
H2O ±3− 4% 4.8
OH ±15% 7.5
T ±3% 2.5
ξ ±3− 4% 5.1
NO ±15− 20% 12.5

The experimental flame had been studied using CMC under various contexts. Smith et
al. was the first to apply the CMC model, with equal diffusivity, to the flame in [89] and
compared the CMC results with those obtained from the transported PDF model in [64].
Barlow et al. [84] examined radiation modelling with CMC. Fairweather and Woolley [85]
used CMC modelling and compared results using different RANS turbulence modelling
approaches (k-ε and RSM) and chemical mechanisms of varying complexity. As described
in Section 3.4, Kronenburg and Bilger [61] studied differential diffusion effects using a CMC
formulation different from the model used in the present study.

6.2 Computational Setup

This section provides the details of the computational setup used for the modelling of the
turbulent hydrogen-air jet flame discussed in Section 6.1. The simulation details are con-
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figured to replicate the experimental conditions as closely as possible. The computational
grid, boundary, and initial conditions used are described.

6.2.1 Computational Domain, Boundary Conditions, and Initial
Conditions

The computational domain, boundary conditions, and initial conditions are established to
replicate the experimental set up as closely as possible with the known parameters and
conditions. The computational domain is shown in Fig. 6.1. The domain is represented by
a hexahedral two dimensional axisymmetric computational domain, such that all gradients
in the azimuthal component are zero. The domain has a total length of 1.5 m in the axial
direction (x) and a radius of 0.2 m, which is over twice the visible flame length from the
experiment and approximately ten times the maximum flame width based on experimental
data at the half-length of the flame. The fuel jet inlet extends over a radial distance (r) of
1.875 mm located at the base of the domain and starting from the centerline. An adiabatic
wall of 0.545 mm separates the fuel and the air coflow streams. The air coflow inlet occupies
the rest of the radial width at the base of the domain. An outlet is placed along the top
boundary far downstream of the flame length which allows fluid to flow out of the domain
without restriction. The outer side boundary is sufficiently far from the flame such that
there is no impact on the flame structure, and specified as an opening allowing fluid to
move through.

Dirichlet boundary conditions are set for the fuel and oxidizer inlets. A profile for
the Favre averaged velocity, shown in Fig. 6.2, is specified for the fuel stream inlet with
an average velocity of 296 m/s. The turbulent intensity at the inlet is 5%. Since the
computation is two dimensional and axisymmetric, the azimuthal length spans 2π radians.
Due to the low velocity of the air stream, a uniform velocity profile of 1 m/s is used for
the oxidizer stream. The composition of the coflowing air is specified as YO2 = 0.2303,
YN2 = 0.7625, and YH2O = 0.0072, neglecting the small (< 1%) amount of inert Argon
(Ar) and the trace gases found in atmospheric air. The fuel and air temperatures are set
to 293 K and atmospheric pressure is imposed. Zero gradient conditions are specified for
the outer boundary on the air side.

The inlet conditional profiles are obtained from the SLFM, where the conditional pro-
files are obtained from a balance between chemistry and diffusion. The local mean scalar
dissipation rate is χ̃ = 0, so that the conditional profiles are at equilibrium conditions.
This provides the necessary boundary conditions for the CMC calculations, where the con-
ditional profiles affect the advection terms for the CMC calculations. Zero gradient, or

78



Figure 6.1: Computational domain and boundary conditions (not to scale)
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Figure 6.2: Specified inlet velocity profile
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zero Neumann boundary conditions, are applied to the wall boundaries, such that

∂Q

∂x⊥
= 0, (6.2)

where x⊥ is the component perpendicular to the boundary.

The computational domain is discretized into 380 cells and 160 cells in the axial and
radial direction, respectively. A higher density of nodes is placed in the jet core and shear
layer to better resolve the higher gradients in the flow and mixing fields. The distribution
of spatial nodes is summarized in Table 6.3.

Table 6.3: Distribution of nodes in spatial grid

Axial Direction
Range Number of Nodes
0 - 0.003 10
0.003 - 0.04 70
0.04 - 0.09 70
0.09 - 0.7 50
0.7 - 1.5 20

Radial Direction
0 - 0.001875 20
0.001875 - 0.00242 7
0.00242 - 0.0375 103
0.0375 - 0.075 20
0.075 - 0.2 10

The CMC spatial mesh is set to a one-to-one correspondance with the CFD mesh, so
that the CMC equations are solved for each CFD cell. A coarser CMC grid can be selected
due to reduced spatial dependence of the conditional averages, but is not investigated
further due to tractable computational run times. The mixture fraction sample space is
discretized into 115 nodes with a higher number of nodes between the values of 0 and 0.1.
The distribution of nodes for the η grid is summarized in Table 6.4.

The mixture fraction grid is used for both the SLFM and CMC calculations. The
extent of the mixture fraction grid refinement is large in order to take into account the fact
that the stoichiometric value does not remain constant in the present differential diffusion
CMC calculations. Additional details on the sensitive analysis on computational grid are
presented in Section 6.3. Some previous CMC studies employed dynamic CMC spatial and
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Table 6.4: Distribution of nodes in η grid

Range Number of Nodes Distribution
0 - 0.09794 50 uniform
0.09794 - 0.4197 50 uniform
0.4197 - 0.5037 8 uniform
0.5037 - 1 7 growth factor 1.64

mixture fraction grids which did not perform CMC calculations in nodes where chemical
reactions were not expect to occur (very high and low mixture fractions) [80, 90]. However,
since differential diffusion, which can occur even at mixture fractions without chemical
reactions, is taken into account in the CMC calculations in this study, no restriction is
placed on the CMC grid and all nodes are solved.

In the present CMC implementation, thirteen discretized governing equations are solved
for the conditional species mass fractions (Eq. 5.10) and one transport equation for the
conditional enthalpy (Eq. 5.12) for each mixture fraction and spatial node. The conditional
mass fraction of the fourteenth species, N2, is obtained by conservation of mass at each η
value of the grid. Non unity Lewis number are only included for H2, H, OH, and O, which
possess the largest differences from the value of 1.

6.2.2 Turbulence Model

The mean flow transport equations are solved using a RANS approach (Section 2.2.2).
Two additional equations, one for the turbulent kinetic energy and one for its dissipa-
tion, are solved using a k − ε model. The k-ε model with standard parameters had been
widely reported to have trouble with accurately predicting axisymmetric jets [91]. With
standard values for modelling constants, the radial spreading rate of the jet was largely
overpredicted. A change to the k − ε model parameters, most commonly Cε1 or Cε2 , was
often necessary to adequately predict the flow and mixing fields for specific configurations.
Various attempts to improve predictions had been proposed such as the modification of
Cε1 [92]. The aim of the modifications was to generate the effect of reducing the spreading
rate. In previous studies, the selection of a constant was typically based on fitting to the
centerline predictions. However, although spreading rates were reduced to provide good
predictions near the centerline, the predictions were less satisfactory away from the cen-
terline [84, 93]. In the present study, a modification of the Cε1 constant from the standard
value of 1.44 to 1.7 is found to provide the best agreement between the radial profiles of the
predicted mean mixture fraction (using Bilger’s definition, Eq. 6.1) and its variance, and
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the experimental values in the regions close to the stoichiometric mixture fraction, where
NO formation is expected to be most prominent. Though the k − ε model possesses the
difficulties mentioned above, Fairweather and Woolley [85] found that the model produced
superior predictions of the mixing field close to the nozzle, which is the region of interest
in the current study, compared to the RSM approach. A sensitivity analysis for the k-ε
modifications is presented in Section 6.3 for different values of Cε1.

6.2.3 Temperature

Various sources provide thermodynamic properties as a power series. In the present study,
the conditional temperatures are obtained from the conditional enthalpy values, such that

Qh = a0 + a1 (QT − 298.15) + a2 (QT − 298.15)2 , (6.3)

where Qh is the conditional enthalpy in kJ
kmol

and a0, a1, and a2 are parameters tabulated
in Table 6.5. The unconditional temperatures are obtained with the same method, with
h̃ and T̃ replacing Qh and QT , respectively in Eq. 6.3. The parameters in Table 6.5 were
obtained by a second order polynomial curve fit of NASA data [94], which consisted of
pinned polynomials for the ranges of T ≤ 1000K and T ≥ 1000K. The thermodynamical
data were obtained by simultaneous least squaring of C◦P , S◦T , and H◦T −H◦ref . Compared
to only fitting CP , this gave better reproducibility of the properties and lower deviation,
with errors usually less than half of the previous method [95]. The temperature range of
the polynomial fitting was between 300 to 5000 K, enough to cover the range of combustion
of fuels.

6.2.4 Chemical Kinetics

The chemical source term is often the cause for the divergence of iterations in the system
of stiff equations. In order to improve the effectivenesss of the numerical solver, described
in Section 5.5, Patankar [81] suggested the linearization of the chemical source term, into
the form

ωη,i = SU,i + SP,iQi, (6.4)

and from Eq. 4.48, the terms SU,i and SP,i can be expressed as

SU,i =
Mi

ρη

L∑

l=1

(
ν ′′i,lkf,l

N∏

j=1

[Xj|η]ν
′
j,l − ν ′i,lkr,l

N∏

j=1

[Xj|η]ν
′′
j,l

)
, (6.5)
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Table 6.5: Enthalpy coefficients

Species a0 a1 a2

O2 -318.5359 31.9258 0.0017
H2O -241800.0 34.6674 0.0048
H2 81.5507 28.0397 0.0018
H2O2 -136980.0 53.0956 0.0058
OH 39267.0 28.6722 0.0017
H 217860.0 20.3981 0.0001139
O 248880.0 21.0771 -0.0000883
HO2 11834.0 40.9080 0.0042
N2 -299.8299 30.2975 0.0016
N 471870.0 20.6962 0.00004856
NO 90710.0 31.6996 0.0014
HNO 105240.0 39.1926 0.0059
NO2 33166.0 46.7331 0.0032
N2O 80539.0 48.6296 0.0035

and

SU,i =
Mi

ρηQi

L∑

l=1

(
ν ′i,lkf,l

N∏

j=1

[Xj|η]ν
′
j,l − ν ′′i,lkr,l

N∏

j=1

[Xj|η]ν
′′
j,l

)
. (6.6)

A chemistry mechanism is required for H, O, and N chemistry in order to obtain the rate
constant k. The three parameters A, E, and n in Eq. 4.50 for the forward rate kf are
obtained from the chemical mechanism in Chen et al. [96]. The detailed hydrogen-nitrogen
mechanism, shown in Table 6.6, consists of 48 elementary reactions involving 14 chemical
species. For the reactions involving third bodies M , the third body efficiencies for species
that are not specified has a value of 1.0. The reverse rate constant kr is obtained using
Eq. 4.51, where the equilibrium constant KC is

KC = KP

(
P

RT

)∑
i νi

, (6.7)

and the equilibrium constant expressed in terms of partial pressure KP is the ratio of KP,i

for each reactants over the products. KP,i values for each species are obtained from JANAF
tables, where they are tabulated for different temperatures.
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Table 6.6: Hydrogen-nitrogen chemical mechanism

Reaction A (cm,sec,K,mole) n E (cal/mole)

H +O2 → OH +O 2.00E14 0.0 16800.0
OH +O → H +O2 1.57E13 0.0 841.3
O +H2 → OH +H 5.06E4 2.67 6286.0
OH +H → O +H2 2.22E4 2.67 4371.0
OH +H2 → H2O +H 1.00E8 1.60 3298.0
H2O +H → OH +H2 4.31E8 1.60 18274.0
2OH → O +H2O 1.50E9 1.14 100.4
O +H2O → 2OH 1.47E10 1.14 16991.0
O2 +H +M → HO2 +M 2.30E18 -0.80 0.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
HO2 +M → O2 +H +M 3.19E18 -0.80 46699.3

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
H +HO2 → 2OH 1.50E14 0.00 1004.0
H +HO2 → H2 +O2 2.50E13 0.00 693.1
OH +HO2 → H2O +O2 6.00E13 0.00 0.0
HO2 +H → H2O +O 3.00E13 0.00 1721.0
HO2 +O → OH +O2 1.80E13 0.00 -406.3
HO2 +HO2 → H2O2 +O2 2.50E11 0.00 -1242.0
OH +OH +M → H2O2 +M 3.25E22 -2.00 0.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
H2O2 +M → OH +OH +M 1.69E24 -2.00 48348.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
H2O2 +H → H2O +OH 1.00E13 0.00 3585.0
H2O2 +OH → H2O +HO2 5.40E12 0.00 1003.8
H2O +HO2 → H2O2 +OH 1.80E13 0.00 32206.0
H +H +M → H2 +M 1.80E18 -1.00 0.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
OH +H +M → H2O +M 2.20E22 -2.00 0.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
O +O +M → O2 +M 2.90E17 -1.00 0.0

H2O/6.5, H2/1.0, O2/0.4, N2/0.4
H2O2 +H → HO2 +H2 4.79E13 0.00 7945.8
HO2 +H2 → H2O2 +H 3.42E13 0.00 24134.8
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Hydrogen-nitrogen chemical mechanism

Reaction A (cm,sec,K,mole) n E (cal/mole)

OH +O +M → HO2 +M 1.00E16 0.00 0.0
HO2 → OH +O 1.41E19 -0.55 66580.0
H2 +O2 → OH +OH 1.70E13 0.00 47780.0
OH +OH → H2 +O2 5.89E11 0.00 29820.0
H +O +M → OH +M 6.20E16 -0.60 0.0
OH +M → H +O +M 3.22E17 -0.60 105548.6

H2O/6.5, H2/1.0, O2/0.4, N2/1.0
O +N2 → N +NO 1.82E14 0.00 76210.0
N +NO → O +N2 1.01E14 -0.11 1330.0
O +NO → N +O2 3.80E9 1.00 41360.0
N +O2 → O +NO 3.64E10 0.92 9640.0
H +NO → N +OH 2.63E14 0.00 50390.0
N +OH → H +NO 6.88E12 0.31 1520.0
NO +M → N +O +M 3.98E20 -1.50 149945.6
N +O +M → NO +M 2.74E19 -1.50 -3519.9
N2 +M → 2N +M 3.72E21 -1.60 224850.3
2N +M → N2 +M 5.64E19 -1.60 -3854.5
N2O +O → NO +NO 6.92E13 0.00 26615.8
NO +NO → N2O +O 1.81E12 0.00 64625.7
N2O +O → N2 +O2 1.00E14 0.00 28006.2
N2 +O2 → N2O +O 5.66E13 0.00 109283.7
N2O +N → N2 +NO 1.00E13 0.00 19862.1
N2 +NO → N2O +N 1.19E12 0.00 133111.3
N +HO2 → NO +OH 1.00E13 0.00 1985.3
NO +OH → N +HO2 3.18E12 0.00 85277.9
N2O +H → N2 +OH 7.60E13 0.00 15096.1
N2 +OH → N2O +H 3.24E12 0.00 80428.4
HNO +O → NO +OH 5.01E11 0.50 1985.3
NO +OH → HNO +O 3.91E9 0.94 53960.0
HNO +OH → NO +H2O 1.26E12 0.50 1985.3
NO +H2O → HNO +OH 2.57E11 0.82 71130.0
NO +HO2 → HNO +O2 2.00E11 0.00 1985.3
HNO +O2 → NO +HO2 9.85E11 0.00 55.3
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Hydrogen-nitrogen chemical mechanism

Reaction A (cm,sec,K,mole) n E (cal/mole)

HNO +HO2 → NO +H2O2 3.16E11 0.50 1985.3
NO +H2O2 → HNO +HO2 3.90E11 0.50 36652.7
HNO +H → NO +H2 1.26E13 0.00 3972.9
NO +H2 → HNO +H 1.63E11 0.48 57760.0
HNO +M → H +NO +M 1.78E16 0.00 48663.9
H +NO +M → HNO +M 4.12E14 0.25 -1140.0
HO2 +NO → NO2 +OH 2.11E12 0.00 -479.0
NO2 +OH → HO2 +NO 2.43E13 -0.10 6340.0
NO2 +H → NO +OH 3.50E14 0.00 1500.0
NO +OH → NO2 +H 7.26E9 0.84 29890.0
NO2 +O → NO +O2 1.00E13 0.00 600.0
NO +O2 → NO2 +O 3.11E12 0.00 47505.2
NO2 +M → NO +O +M 1.10E16 0.00 66000.0
NO +O +M → NO2 +M 6.78E11 0.65 -7390.0

6.2.5 Radiative Heat Loss

The source term of the CMC enthalpy transport equation, with accounts for radiative heat
loss (Eq. 4.52), requires the estimation of the Planck mean absorption coefficient KP,i.
For the hydrogen flame studied, the radiative losses are assumed to only be due to the
energy loss from H2O molecules. Barlow et al. [84] investigated various functional fits
that had been proposed [75, 97, 98] for the Planck mean absorption coefficient of H2O,
KP,H2O. Barlow et al. found that the KP,H2O obtained from a curve fit of the results from
the RADCAL code [98], performed best compared to other models of similar complexity.
Following their findings, the RADCAL correlation is employed in this study, given by the
expression

KP,H2O = exp
[
278.713− 153.24ln(T ) + 32.1971[ln(T )]2

−3.0097[ln(T )]3 + 0.104055[ln(T )]4
]
,

(6.8)

where KP,H2O has units of 1
m·atm . The RADCAL curve of KP,H2O is shown in Fig. 6.3.
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Figure 6.3: Planck mean absorption coefficient Kp,H2O

6.2.6 Cross-stream averaging

Often in CMC studies where equal diffusivity is assumed, the solution is performed on
radially averaged transport equations, reducing the dimensionality and computational time.
The solution of radially averaged solution was suggested by Klimenko [28] by assuming that
the radial dependence of the mixture fraction PDF was greater than the radial dependence
of the conditional scalars, called the shear flow approximation. Kronenburg and Bilger [61]
also performed calculations with cross-stream averaged CMC equations with differential
diffusion modelling. In the present study, small radial dependence of the conditional scalars
is not assumed and cross-stream averaging is not employed to the CMC equations, so that
the effects of differential diffusion on radial dependence can be examined.

For the purpose of comparing the predictions with the experimental measurements [86],
which presented cross-stream averaged conditional scalars, the conditional scalars obtained
from the solution of the CMC equations are cross-stream averaged, as a post-process, at
the specified axial locations, such that

Q∗i (η) =

∫
R
ρQiP̃ (η, r) r∂r
∫
R
ρP̃ (η, r) r∂r

, (6.9)

where the superscript ∗ indicates cross-stream averaged quantities and R is the radius of
the computational domain. Performing the procedure as a post-process allows comparison
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of the results with the experimental data, without influencing the calculations with the
additional assumption during the simulation.

6.3 Sensivity Analysis

Investigation of the sensivity of modelling parameters is crucial in reducing error and uncer-
tainty in numerical methods. The highly dynamical nature of turbulence and combustion
phenomena causes the outcomes to be highly susceptible to small variations in the condi-
tions. In this section, the effects of varying the spatial grid, mixture fraction grid, and k-ε
parameter are discussed.

6.3.1 Grid Spacing

Three physical space grids, summarized in Table 6.7, are tested to examine the grid inde-
pendence of the calculations. The distribution of nodes in all three grids exhibit a higher
concentration closer to the nozzle and the near the centerline.

Table 6.7: Various spatial grids

Grid Number of axial nodes Number of radial nodes
1 120 80
2 380 160
3 420 200

The results, such as the axial profile of ξ̃ in Fig. 6.4 show noticable differences in
the change from grid 1 to grid 2. Differences between the results of grid 2 and 3 were
sufficiently small > 1%, therefore grid independance is achieved for grid 2. Grid 2 is
chosen for performing subsequent calculations.

Two mixture fraction grids with 90 and 115 nodes are examined. For both grids,
the distributions of nodes are concentrated at the lower values of η, in the region of the
stoichiometric mixture fraction. The unconditional Favre averaged results show negligible
change between the two mixture fraction grids. For the conditional profiles that are narrow,
such as Q∗OH , the resolution of the grid at the lower and higher end of the mixture fraction
grid does not fully capture smooth profiles, resulting in profiles that are not smooth.
However, since the mixture fraction PDFs for such locations are far from the peak values,
the effect on the unconditional Favre averaged results are sufficiently small.
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Figure 6.4: Axial Favre averaged mixture fraction profile with differential diffusion effects
for various grids

6.3.2 Turbulence Modelling Constant

As discussed in Section 6.2.2, the parameters Cε1 and Cε2 are not universal, and are often
adjusted for different fluid flow configurations. It is common that only one of the two
parameters are modified at a time, therefore the adjustment of Cε1 is investigated. The
following cases were tested: Cε1 = 1.6, Cε1 = 1.7, and Cε1 proposed by Morse [92] with the
expression,

Cε1 = 1.4− 3.4

(
k

ε

∂ũ

∂x

)3

c

, (6.10)

where the subscript c indicates values at the centerline.

Figure 6.5 shows ξ̃blgr results with differential diffusion effects using the forementioned

values of Cε1, at two axial locations. For all choices of Cε1, radial decay of ξ̃blgr is underpre-
dicted. At x/Lv = 1/8, setting Cε1 = 1.6 results in the closest results to the experimental
measurements near the centerline. However, the Cε1 = 1.6 profile has the largest difference
from the measurements for r/d > 2, where chemical reactions occur. Cε1 = 1.7 results in

the best agreement for r/d > 2, though the centerline predictions are compromised. ξ̃blgr
obtained using Eq. 6.10 for Cε1 lie between the values for Cε1 = 1.6 and Cε1 = 1.7. Down-
stream at x/Lv = 1/2, ξ̃blgr from Eq. 6.10 is the closest to measurements at the centerline,
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while Cε1 = 1.6 and Cε1 = 1.7 results are lower and higher than the centerline value,
respectively. However, the radial decay is underpredicted for all three cases, resulting in
higher ξ̃blgr in the region of the reaction zone.
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Figure 6.5: Radial profiles of Favre averaged Bilger’s mixture fraction with differential
diffusion effects for various Cε,1

6.4 Velocity Field Results

The turbulent velocity field and mixing field are obtained with the aid of the k-ε model.

k and ε modelling affect the calculation of ũ, ξ̃, and ξ̃′′2. In the present study, the main
measures used to assess the CMC model are the predictions of scalar production, espe-
cially NO. Therefore, it is most important to obtain satisfactory mean mixture fraction
predictions in the region where NO is generated. Most of the production and destruction
of species scalars occur in the reaction zone, which corresponds to the region where the
mean mixture fraction is close to the stoichiometric mixture fraction value. As discussed
in Section 6.2.2, a value of Cε1 = 1.7 is used in the results presented here, which provided
the best predictions of mean mixture fraction and mixture fraction variance values close to
the stoichiometric locations of the flame. The mean mixture fraction and variance results
are discuss in following sections. In this section, the distributions of ũ and k are com-
pared with the experimental measurements from [86]. The profiles at two axial locations
are examined; at x/Lv = 1/8, where Lv is the visible flame length from [38] and differen-
tial diffusion effects are expected to have a noticable impact, and at x/Lv = 1/2 where
differential diffusion effects are expected to be diminished.
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Figure 6.6 shows the radial profile of Favre averaged velocity ũ at the two chosen axial
locations. At x/Lv = 1/8, overpredictions in ũ of approximately 40% are observed near the
centerline, while underpredictions of up to 50% are found for radial distances between 1.5d
and 3.5d. As shown in Fig. 6.6, at x/Lv = 1/2, ũ values are larger than the measurements
by approximately 10%. Better estimates of ũ can be obtained with a different choice of
Cε1, however the current value is chosen to obtain good predictions for the mean Bilger’s
mixture fraction ξblgr and mixture fraction variance ξ′′2 as discussed in Section 6.3.2.
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Figure 6.6: Predicted radial profiles of Favre averaged velocity. Experimental measure-
ments are from the TNF library [86].

The mean turbulent kinetic energy distributions are shown in Fig. 6.7 alongside ex-
perimental data. The k profiles exhibit similar trends to the mean velocity profiles. At
x/Lv = 1/8, k results are overpredicted near the centerline, while the values are under-
estimated for radial distances between 2.2d and 4d. The k profile is overpredicted at
x/Lv = 1/2 for radial distances less than r/d = 10.

Though calculated mean turbulent energy dissipation rates are available, there are no
experimental measurements of ε for comparison. The predicted ε results alone are not
useful, so they are not presented here. However, numerous previous studies had found that
the k-ε model has difficulties modelling the dissipation rate [91, 93]. It is likely that the
inability to predict ε is the cause for the discrepancies in the k.

It is observed that differential diffusion has minimal effect on the velocity field. At
x/Lv = 1/8, differences between ũ for equal and non-equal diffusivity calculations are in-
significant, while at x/Lv = 1/2, a maximum increase of approximately 1% is observed. It
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Figure 6.7: Predicted radial profiles of Favre averaged turbulent kinetic energy. Experi-
mental measurements are from the TNF library [86].

can then be concluded that density changes from the temperature changes due to differen-
tial diffusion have small effect compared to the momentum of the flow.

6.5 Equal Diffusivity Results

This section focuses on the results of the calculations performed under the assumption
of unity Lewis number. The mean mixing field quantities, unconditional scalars, and
conditional scalars are presented. The equal diffusivity calculations are performed as a
validation of previous studies [89, 84, 85] that have observed inadequacies in the modelling
of the hydrogen flame due to the neglect of differential diffusion effects.

6.5.1 Mixing Field

Figure 6.8 shows radial profiles of the mean Bilger’s mixture fraction ξ̃blgr at the axial
locations of interest. These profiles are obtained from Eq. 6.1 using local elemental com-
positions from the predicted Favre average species mass fractions to be discussed in Section
6.5.3. Though not explicitly shown here, it should be noted that the evolution of the con-
served mixture fraction is unaffected by differential diffusion; in other words the plots of ξ̃
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and ξ̃blgr are equivalent under equal diffusivity assumptions. However, for consistency with

the experimental data, ξ̃blgr results are presented in Fig. 6.8.

As can be seen in Fig. 6.8, the mean mixture fraction is overpredicted near the centreline
by approximately 30 % at x/Lv = 1/8 and 5% at x/Lv = 1/2. At x/Lv = 1/8, farther away

from the jet centreline, for radial distances between 1.5d and 3.5d, ξ̃blgr values are lower
than the measurements; at r/d ≈ 2.8d, the underprediction reaches 37 %. In contrast,
at x/Lv = 1/2, the mean mixture fraction remains overpredicted by 20% for most radial
locations, except for r/d > 12. The overpredictions of the mean mixture fraction, were also
observed in previous RANS studies of the same flame [84, 85]. The discrepancies between
the calculated mixture fraction and the experimental data near the centreline are due to
the difficulty in obtaining accurate radial decay of the mean mixture fraction with the k-ε
model. As such the value of Cε1 is chosen to take into account the lower radial decay in
order to obtain good predictions near the stoichiometric mixture fraction. At this point,
it may seem that the choice in the Cε1 is poor due to the underprediction of the mixture
fraction at x/Lv = 1/8 in the region of the stoichiometric value, r/d ≈ 3.5; however, it is
shown in Section 6.6.2 that the underprediction is due to the assumption of equal species
diffusivities. There is an additional justification for the current mixing field: the ξ̃blgr
results at x/Lv = 1/2 shown in Fig. 6.8b, where differential diffusion are diminished, are

significantly better than ξ̃blgr values for the same axial location obtained by Barlow et al.
[84] where a different Cε1 was used and overpredictions up to 150% were observed.
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Figure 6.8: Predicted radial profiles of Favre averaged Bilger’s mixture fraction. Experi-
mental measurements are from the TNF library [86].
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It is not possible to calculate the variance of Bilger’s mixture fraction ξ̃′′2blgr without

solving a transport equation, since there is no simple relationship such as Eq. 6.1 for ξ̃.
Without any further information, it is only possible to assume that the variance of the
conserved mixture fraction ξ̃′′2, which is solved with Eq. 2.62, and the variance of the

Bilger’s mixture fraction ξ̃′′2blgr, are equivalent. Figure 6.9 shows the radial profiles of the

root mean square (rms) of mixture fraction,

√
ξ̃′′2. At x/Lv = 1/8, the mixture fraction

rms is overpredicted by a maximum of 30% for r/d < 2. At larger radial distances,

√
ξ̃′′2

is in good agreement with the experimental data.The good agreement near the reaction
zone suggests that the prediction of ξ̃blgr in this region is valid and further justifies the
choice of Cε1 to account for the inability of the k-ε model to properly capture radial decay.

Kronenburg and Bilger [61] showed similar overestimation of

√
ξ̃′′2 at x/Lv = 1/8 near the

centerline, though

√
ξ̃′′2 away from the centerline was predicted to be approximately 10%

higher than values presented in Fig. 6.9. At x/Lv = 1/2,

√
ξ̃′′2 is well predicted for for

r/d > 7 and underpredicted by up to 10% for r/d < 7.
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Figure 6.9: Predicted radial profiles of rms of Favre averaged mixture fraction variance.
Experimental measurements are from the TNF library [86].
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6.5.2 Conditional Scalars

Conditional mass fraction and temperature profiles obtained from CMC calculations under
the unity Lewis number assumption are presented in this section. Since the conditional
profiles from the experimental data are provided in terms of ξblgr, the calculated conditional
profiles presented here are mapped to the sample space variable of Bilger’s mixture fraction
ηblgr using Eq. 6.1, though the CMC calculations are performed using the sample space
variable of the conserved mixture fraction, η. However, as seen in Section 6.5.1, ηblgr
values correspond to η under the assumption of unity Lewis number, such that there is
no difference between the conditional profiles in the two sample spaces. The conditional
profiles are cross-stream averaged using Eq. 6.9, so that comparisons can be made with
the experimental data.

Figure 6.10 presents the conditional H2, O2, and H2O mass fraction profiles at the two
axial locations of interest. There are no estimates on the experimental uncertainties for
H2 and O2, but the calculated profiles of conditional mass fractions are in good agreement
with the thel measurements at both locations. At x/Lv = 1/8, Q∗H2O

for ηblgr > 0.03 is
lower than the experimental mean by 4%, lying on the lower range of the experimental
uncertainty bounds. Q∗H2O

at x/Lv = 1/2 shows approximately 4% higher predictions than
the measurement in the range of 0.015 < ηblgr < 0.035, such that the results are on the
upper end of the experimental uncertainty. Outside the range, the results are in good
agreement with the experimental measurements.

The conditional N2 mass fraction results, shown in Fig. 6.11, are in good agreement with
the experimental data at both axial locations. Consistent with previous results [64, 84], the
conditional temperatures are underpredicted by 200-300K in the region of 0.01 < ηblgr <
0.03 at x/Lv = 1/8, outside of the uncertainty estimates. Q∗T results are in better agreement
with experiments farther downstream at x/Lv = 1/2, where the largest difference is found
in the vicinity of ηblgr = 0.022, predicting temperatures approximately 50K higher than
the experimental mean. Figure 6.12 presents the conditional OH mass fraction profiles at
the two axial locations. At the first axial location, good agreement with experiments is
found on the fuel rich side of the stoichiometric mixture fraction, ηblgr > ηblgr,st = 0.028.
The artifact in the experimental data near ηblgr = 0.052, with an unexpected increase in
Q∗OH , is likely due to inaccuracies in the experimental measurement procedure. On the
fuel lean side of the stoichiometric mixture fraction, Q∗OH is lower than the experimental
measurements. For 0.02 < ηblgr < 0.28, the calculated values are still within experimental
uncertainty, though the results are greatly underpredicted at the lower mixture fractions.
At x/Lv = 1/2, CMC results are lower than the measurements thoughout the range of
ηblgr. In the vicinity of ηblgr,st, Q

∗
OH is within the uncertainty estimates.
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Figure 6.10: Predicted profile of conditional radially averaged H2, O2, and H2O mass
fraction with Lei = 1. Experimental measurements with uncertainties taken from the
TNF library [86].
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Figure 6.11: Predicted profile of conditional radially averaged N2 mass fraction and tem-
perature with Lei = 1. Experimental measurements with uncertainties taken from the
TNF library [86].
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Figure 6.12: Predicted profile of conditional radially averaged OH mass fraction with
Lei = 1. Experimental measurements with uncertainties taken from the TNF library [86].

The conditional NO mass fraction results in Fig. 6.13 show the same trend found in
other equal diffusivity CMC studies [64, 84, 85]. Q∗NO close to the nozzle at x/Lv = 1/8
is significantly underpredicted, with the peak value being 60% lower than the experimen-
tal data. Advancing downstream, Q∗NO becomes higher than experimental measurement,
which was also observed in the aforementioned CMC studies. On the fuel rich side of
stochiometry, ηblgr > 0.028, Q∗NO lies close to the upper edge of the uncertainty estimates,
with values up to 20% higher than the experimental mean. For leaner mixture fractions,
Q∗NO is approximately 40% greater than the measurements.

The calculations of conditionally averaged quantities show good predictions for the
major reactant species (H2, O2, and N2). At the axial location close to the nozzle, lower
values for the CMC results compared to the measurements are found for the product species
(H2O, OH, and NO). The discrepancies indicate underpredictions in the reaction rates,
which are also signified by the lower temperatures. Farther downstream, the CMC results
are generally in better agreement with the measurements.

6.5.3 Unconditional Mean Scalar Field

Favre averaged unconditional scalars predictions are obtained with Eq. 4.39, using the
CMC results of Section 6.5.2 and the Favre averaged mixture fraction PDF based on the
ξ̃ and ξ̃′′2 results of Section 6.5.1. Note that both definitions of the mixture fraction, ξ
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Figure 6.13: Predicted profile of conditional radially averaged NO mass fraction with
Lei = 1. Experimental measurements with uncertainties taken from the TNF library [86].

and ξblgr, can be used to calculate the unconditional scalars; however, the mixture fraction
used for the conditional scalar and the PDF in Eq. 4.39 should be consistent.

The unconditional Favre averaged H2 and H2O mass fraction profiles are shown in
Fig. 6.14. The ỸH2 results follow a similar trend to the ξ̃blgr profile, underpredicting the

penetration of ỸH2 into the lean regions. An overprediction is found near the centreline by
approximately 40 % at x/Lv = 1/8 . At the same axial location, farther away from the jet

centreline, ỸH2 is underpredicted for radial distances between 1d and 3.5d. In contrast, ỸH2

values are higher than the measurements by 10% for most radial locations at x/Lv = 1/2,

except for r/d > 6. ỸH2O production is generally underpredicted at x/Lv = 1/8, except

in the vicinity of r/d = 1.5. At the centerline, ỸH2O results are 18% lower than the
measurements, while the peak value at r/d ≈ 2.7 is underpredicted by approximately

10%. At x/Lv = 1/2, ỸH2O values are higher than experimental measurements by up to
approximately 30% for r/d < 15.

The unconditional Favre averaged O2 and N2 mass fraction profiles are presented in
Fig. 6.15. ỸO2 is overpredicted at the first axial location for 2.5 < r/d < 4.25, which

may indicate lower determinedreaction rates than measured. Conversely, ỸO2 values at the

downstream location are lower than the experimental data for r/d < 15. ỸN2 results at
x/Lv = 1/8 are higher than measurements by up to 10% for the range of 0.5 < r/d < 3.5,
outside of the uncertainty estimates; however, good agreement is found outside the range.
Agreement with the experimental data is also observed at x/Lv = 1/2.
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Figure 6.14: Predicted profile of unconditional Favre averaged H2 and H2O mass fraction
with Lei = 1. Experimental measurements with uncertainties taken from the TNF library
[86].
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Figure 6.15: Predicted profile of unconditional Favre averaged O2 and N2 mass fraction
with Lei = 1. Experimental measurements with uncertainties taken from the TNF library
[86].
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Figure 6.16 shows the unconditional Favre averaged O2 mass fraction predictions with
equal diffusivity calculations. The calculated peak value of ỸOH close to the nozzle is
38% higher than the measured peak. However, the lack of data points around the region
may not have properly captured the peak value in the measurements. In addition to the
difference in the peak value, it is clear that the overall profile is shifted in the direction
of the centerline. Though the conditional profile in Fig. 6.12 does not indicate the shift,
the likely cause is due to lower penetration of ξ̃blgr outwards from the jet core in Fig. 6.8.

At x/Lv = 1/2, the predicted peak value of ỸOH is close to the measured peak from the

experiment data. However, ỸOH is lower than measurements on the fuel rich side of the
peak, where the value at the centerline is 65% lower. On the lean side, ỸOH is higher than
the experimental measurements by approximately 30%.
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Figure 6.16: Predicted profile of unconditional Favre averaged OH mass fraction with
Lei = 1. Experimental measurements with uncertainties taken from the TNF library [86].

The unconditional Favre averaged NO mass fraction results are presented in Fig. 6.17.
As expected from the results of Q∗H2O

in Fig. 6.13, ỸNO is largely underpredicted thoughout

the radial profile close to the nozzle at x/Lv = 1/8. The peak value of ỸNO is 56% lower than
the measured value. The difference between calculated and measured values increases away
from the peak, for both fuel rich and lean regions. Downstream at x/Lv = 1/2, calculated

ỸNO is higher than the experimental measurements. Close to the centerline, predicted
values lie on the upper edge of the uncertainty estimates, overpredicting the mean value
by around 20%. Away from the centerline, ỸNO predictions are more than double the
measurements.

100



0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

−5

Ỹ
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Figure 6.17: Predicted profile of unconditional Favre averaged NO mass fraction with
Lei = 1. Experimental measurements with uncertainties taken from the TNF library [86].

The unconditional Favre averaged temperatures are presented in Fig. 6.18. At x/Lv =
1/8, the peak temperature near r/d = 2.9 is calculated to be 150 K higher the measure-
ments, though the lack of data points around the peak again suggest that the peak may
not be represented well. Away from the peak, temperatures are underpredicted by approx-
imately 270 K near the centerline and 150 K for r/d ≈ 4.25. At x/Lv = 1/2, the value of
the peak temperature of approximately 2150 K is close to the measured value, though the
locations differ. The measured peak temperature is found at r/d ≈ 2.1 and the calculated
peak at r/d ≈ 5. There appears to be an overprediction in the spread outwards from the
centerline, resulting in higher predictions than experiments for r/d > 3.5.

6.6 Differential Diffusivity Results

This section focuses on the modelling results of the hydrogen flame with differential diffu-
sion effects included. The mean mixing field quantities, unconditional scalars, and condi-
tional scalars are presented. Comparison is made between the differential diffusion results,
the equal diffusivity calculations of Section 6.5, and the experimental measurements. Kro-
nenburg and Bilger [61] reported some conditional scalars, and for those that are available,
the trends observed in the present study are compared to the reported findings.

101



0 1 2 3 4 5
0

500

1000

1500

2000

2500

T̃
[K

]

r/d

 

 

Experimental
Predicted

(a) x/Lv = 1/8

0 5 10 15
0

500

1000

1500

2000

2500

T̃
[K

]

r/d

 

 

Experimental
Predicted

(b) x/Lv = 1/2

Figure 6.18: Predicted profile of unconditional Favre averaged temperature with Lei = 1.
Experimental measurements with uncertainties taken from the TNF library [86].

6.6.1 Conditional Scalars

The focus of this section is the presentation and comparison of conditional mass fraction
profiles obtained from CMC calculations with differential diffusion effects. As described in
Section 6.5.2, the conditional profiles are mapped to the sample space variable of Bilger’s
mixture fraction ηblgr using Eq. 6.1 with the calculated local conditional species mass frac-
tion, so that comparison with measurements can be made. An investigation of the results
in conserved mixture fraction space ξ is found in Section 6.6.2. The conditional profiles
presented in this section are cross-stream averaged using Eq. 6.9, so that comparison can
be made with the experimental data. The radial dependence of the conditional scalars is
examined in Section 6.6.3.

Figure 6.19 compares the cross-stream averaged conditional H2, O2, H2O, and N2 mass
fraction profiles at x/Lv = 1/8 in ηblgr space in the cases of unity and non unity Lewis
numbers. The profiles still show reasonable agreement with the experimental measurements
for Q∗H2

and Q∗O2
when differential diffusion effects are included. In Fig. 6.19c, Q∗H2O

for
ηblgr > 0.035 is increased from the equal diffusivity values by 4%, resulting in a close
agreement with the experimental measurements. Conversely, Q∗H2O

is reduced for ηblgr <
0.035, with a decrease of approximately 4% around ηblgr = 0.025, so that the profile lies
on the lower range of the experimental uncertainty bounds. The increased H2O in the fuel
rich regions is consistent with the observation in experiments described in Section 3.2. Q∗N2

is reduced when differential diffusion is considered, resulting in better agreement with the
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experimental mean.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Q
∗ H

2

ηblgr

 

 

Exp.
Lei 6= 1
Lei = 1

(a) H2

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.05

0.1

0.15

0.2

0.25

Q
∗ O

2

ηblgr

 

 

Exp.
Lei 6= 1
Lei = 1

(b) O2

0 0.02 0.04 0.06
0.1

0.15

0.2

0.25

0.3

0.35

Q
∗ H

2
O

ηblgr

 

 

Exp.
Lei 6= 1
Lei = 1

(c) H2O

0 0.01 0.02 0.03 0.04 0.05 0.06

0.65

0.7

0.75

0.8

Q
∗ N

2

ηblgr

 

 

Exp.
Lei 6= 1
Lei = 1

(d) N2

Figure 6.19: Predicted profiles of conditional means of major species mass fractions with
differential diffusion effects at x/Lv = 1/8. Experimental measurements taken from the
TNF library [86].

A comparison of cross-stream averaged conditional OH and NO mass fraction and
temperature profiles at x/Lv = 1/8 is presented in Fig. 6.20. In comparison with the equal
diffusivity diffusion values, the predicted Q∗OH shown in Fig. 6.20a is increased for lean
mixtures (ηblgr < 0.02), such that there is better agreement with the measurements and the
values now lie within the uncertainty estimates. There is no significant change in Q∗OH for
ηblgr > 0.02, except near ηblgr = 0.028 where determined results are lower. It is suspected

103



that the cause of the lower peak is due to the resolution in the vicinity not capturing the
peak OH due to cross-averaging and conversation to ξblgr, and will be further discussed
in Section 6.6.3. Kronenburg and Bilger [61] also observed a similar increase Q∗OH for
the lean mixture fractions when differential diffusion was considered; however, it was also
reported that an increase was found near the stoichiometric mixture fraction, whereas it
is not present in the current results. Examining the conditional NO results in Fig. 6.20b,
Q∗NO is improved on the rich side of stoichiometry (ηblgr > 0.028) when differential diffusion
is considered; an increase of approximately 40% for ηblgr > 0.0375 is obtained. However,
Q∗NO remains underpredicted compared to the experimental measurements. Additionally,
Q∗NO is decreased up to 10% on the lean side of the stoichometric mixture fraction. The
present findings are contrasted with those reported by Kronenburg and Bilger [61] where
a higher increase of approximately 60% was observed. An increase in the conditional
temperature is observed in Fig. 6.20c for mixture fraction values on the fuel rich side
of the stoichiometric mixture fraction, 0.025 < ηblgr < 0.05, when differential diffusion
is included, with an increase in peak temperature of approximately 100 K. For fuel lean
mixtures, ηblgr < 0.025, Q∗T is lower by 100 K compared to the equal diffusivity results
and remains underpredicted compared to the experimental results. The changes in Q∗T
considering differential diffusion effects are consistent with the trends observed for the
conditional species mass fractions. The decreased temperatures for lower mixture fractions
corresponds to the lower production of H2O in Fig. 6.19 and NO in Fig. 6.20, whereas the
higher temperatures for richer mixture fractions correspond to higher values of the same
species.

Figure 6.21 shows the cross-stream averaged conditional H2, O2, H2O, and NO mass
fraction profiles farther downstream of the nozzle at x/Lv = 1/2. No significant changes
are observed for Q∗H2

and Q∗O2
when differential diffusion effects are included. Q∗H2O

in the
vicinity of ηblgr,st are slightly lower, by approximately 2%, resulting in closer agreement
with the experimental mean. Negligible changes are observed for Q∗H2O

away from ηblgr,st.
A small decrease in Q∗NO is found for 0.02 < ηblgr < 0.06, though the results are still well
within uncertainty estimates.

The cross-stream averaged conditional OH, NO mass fraction and temperature profiles
at x/Lv = 1/2 are presented in Fig. 6.22. As shown in Fig. 6.22a, a larger increase in OH
mass fractions compared to what is displayed in Fig. 6.20 is observed around ηblgr,st, with
a change of 8% in the peak values, bringing Q∗OH closer to the experimental mean. On
the lean side, Q∗OH is increased from the equal diffusivity value by 35% near ηblgr = 0.02,
resulting in values at the upper bound of the uncertainty estimates. Conversely, Q∗OH is
decreased on the rich side near ηblgr = 0.0375, with differences of approximately 35% from
the equal diffusivity values. Conditional NO mass fractions, as shown in Fig. 6.22b, are
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Figure 6.20: Predicted profiles of conditional means of minor species mass fraction and
temperature with differential diffusion effects at x/Lv = 1/8. Experimental measurements
taken from the TNF library [86].
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Figure 6.21: Predicted profiles of conditional means of major species mass fractions with
differential diffusion effects at x/Lv = 1/2. Experimental measurements taken from the
TNF library [86].
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increased by up to 5% for ηblgr > 0.03. As expected at this axial location, only small changes
in the predictions are observed when differential diffusion is included. The changes at the
downstream location may be due to the history effect described by Pitsch [35] which is
discussed in Section 3.4. As shown in Fig. 6.22c, there is a decrease in Q∗T of approximately
20 K for 0.02 < ηblgr < 0.03 when differential diffusion effects are included, and negligible
change outside of the range.
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Figure 6.22: Predicted profiles of conditional means of minor species mass fraction and
temperature with differential diffusion effects at x/Lv = 1/2. Experimental measurements
taken from the TNF library [86].

The conditionally averaged scalars from the CMC calculations with differential diffusion
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effects in general show improvement near the nozzle when comparing to equal diffusivity
calculations. Particularly promising is the increase in conditional NO mass fractions. Far-
ther downstream, the conditional scalars show the expected diminished effects of differential
diffusion.

6.6.2 Mean Mixing and Unconditional Scalar Field

This section presents and compares the unconditional Favre averaged mixture fraction,
chemical species, and temperatures results including differential diffusion effects to equal
diffusivity calculations and experimental measurements. The profiles of ξ̃blgr, shown in Fig.
6.23, are obtained from the local species concentration predictions using Eq. 6.1 and the
effects of differential diffusion are clearly seen. At x/Lv = 1/8, the influence of differential

diffusion on ξ̃blgr is greater diffusion towards the lower values ξ̃blgr. The largest differences

between ξ̃ and ξ̃blgr occur for radial distances between 1.5d and 3.5d. In comparison with

ξ̃, ξ̃blgr is lower for r/d < 1 (approximately 3% near the centerline), and larger by up to
40% for 1.5 < r/d < 4. This is explained by the fact that diffusion of H2 and H occurs

from fuel rich to lean regions. As can be seen in Fig. 6.23, ξ̃blgr is in better agreement with
the experimental values for r/d > 1, locations where significant reaction rates are expected
to occur. It can be seen that the Cε1 value used is justified for the good agreement
near the reaction zone, though the sacrifice of accuracy in predictions near the centerline
in favour of predictions near stoichiometry is unavoidable. Though better predictions
of radial decay can be obtained using more rigorous turbulence models, the additional
computational demand of these models is a major consideration, and an intensive study
of turbulence models is outside the scope of the present study. At x/Lv = 1/2, the values

of ξ̃blgr are larger than those for ξ̃ for most radial locations, with the largest increase of
10% occurring near the centerline. Overall, the two mixture fraction profiles are closer to
each other farther downstream where differential diffusion diminishes. The radial locations
where ξ̃blgr corresponds to the stoichiometric value of 0.028, are shifted towards the leaner
regions, resulting in new locations of 3.5d for x/Lv = 1/8 and 7.4d for x/Lv = 1/2.

Similar to the equal diffusivity results in Section 6.5.3. Favre averaged unconditional
scalars predictions are determined with Eq. 4.39, using the CMC results of Section 6.6.1
and Favre averaged mixture fraction PDF based on the ξ̃ and ξ̃′′2 results.

Figure 6.24 shows the unconditonal Favre averaged radial profiles of H2, O2, H2O, and
N2 mass fraction at x/Lv = 1/8, in the cases of equal diffusivity assumption and differential

diffusivity. Following the trend observed for ξ̃blgr, ỸH2 , shown in Fig. 6.24a, is increased
for 1 < r/d < 3.5 due to an increase in the rate of diffusion from the higher concentrations
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Figure 6.23: Predicted radial profiles of Favre averaged Bilger’s mixture fraction with
differential diffusion. Experimental measurements are from the TNF library [86].

in the jet core, resulting in better agreement with the experimental data. ỸH2 is decreased
near the centerline, but not sufficiently, and predictions are still overpredicted both with
and without differential diffusion due to the overprediction of ξ̃blgr. The increase of H2

penetration to the leaner regions results in a shift of the reaction zone outwards, as well as
increased reaction rates. In Fig. 6.24b, ỸO2 for r/d < 3.8 is shifted to the right, resulting

in a decrease of ỸO2 and better agreement with the experimental measurements. On the

lean side of the reaction zone, ỸO2 is unaffected, since H2 is not present and has no effect

on ỸO2 in this region. In the experimental data, higher ỸO2 is observed in the fuel-rich
region, which seems unrealistic. Barlow [86] noted that the inconsistency may be due
to imperfect correction for the crosstalk of H2 rotational Raman scattering onto the O2

detector, therefore the difference between the calculated results and the measurement for
this region is assumed to be due to an artifact in the experiment. The ỸH2O profile in Fig.
6.24c shows an increase for 2 < r/d < 4, corresponding to the rise in Q∗H2O

in Fig. 6.19c on
the rich side of the stoichiometric value of mixture fraction. The higher mean H2O mass
fraction predictions lead to a better agreement with the experimental measurements. The
increase of H2O production can be related to the increased reaction rate due to greater fuel
diffusion rates towards the reaction zone. Similar to the effect of H2 penetration on ỸO2 ,

Fig. 6.24d shows a shift in ỸN2 for 1 < r/d < 3.8 toward the fuel lean region, resulting in

a decrease of ỸN2 and closer agreement with the experimental measurements, especially in
the regions closer to the reaction zone.
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Figure 6.24: Predicted radial profiles of Favre averaged major species mass fraction with
differential diffusion effects at x/Lv = 1/8. Experimental measurements are from the TNF
library [86].
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The unconditonal Favre averaged radial profiles of OH, NO mass fraction and temper-
ature at x/Lv = 1/8 are presented in Fig. 6.25. The adjustment in the location of the

reaction zone from the increased penetration of H2 can be clearly seen in the ỸOH profile
in Fig. 6.25a, where the peak value is changed from r/d ≈ 2.95 to r/d ≈ 3.25. However,
the peak value is overpredicted by approximately 60% compared to experimental results
due to an increase of 25% compared to the equal diffusivity case. Away from the peak,
ỸOH is largely lower than the experimental measurements. It appears that the spreading
rate of ỸOH is underpredicted, resulting in an accumulation of OH near the reaction zone.
In Fig. 6.25b, ỸNO is increased for 2.5 < r/d < 3.75 when differential diffusion effects are

included. The peak ỸNO value is raised by 31%. However, ỸNO remains underpredicted
by approximately 30% at r/d ≈ 3. Away from the reaction zone, differences between
differential and equal diffusivity calculations are negligible. With differential diffusivity
effects, the peak of ỸT , shown in Fig. 6.25c, shifts away from the centerline by a distance
of approximately 0.3d and the peak temperature is increased by 10%. Physically, the rise
in temperature can be explained by an increase in reaction rates due to the higher H2

diffusion rate towards the reaction zone compared to the rate of heat diffusion away from
the region. Again, negligible changes were observed away from the reaction zone for rich
and lean regions. ỸT is underpredicted at r/d ≈ 4.5 where ξ̃blgr is lower than stoichiometric
values. A possible cause is the underprediction of heat diffusion away from the reaction
zone due to the assumption of α = Dξ, resulting in lower spreading of the temperature
profile.

Farther downstream, the unconditonal Favre averaged radial profiles of H2, O2, H2O,
and NO mass fraction at x/Lv = 1/2 are presented in Fig. 6.26. Some differences can
be clearly seen in the radial profiles between differential and equal diffusivity results, and
are larger than those observed for the conditional profiles in Fig. 6.21. With differential
diffusion, ỸH2 is larger by approximately 20% near the centerline compared to the equal

diffusivity results. ỸO2 exhibits the same trend as the results close to nozzle, with a decrease

in predictions for r/d < 13. Around r/d = 7, ỸH2O is increased by approximately 15%.

In contrast, ỸN2 predictions with differential diffusivity are not significantly changed from
equal diffusivity results.

Changes from the equal diffusivity calculations are also observed for the unconditional
Favre averaged radial profiles of OH, NO mass fraction, and temperature shown in Fig.
6.27. The effects of differential diffusion on the locations of peak ỸOH , ỸNO, and T̃ at
x/Lv = 1/8 are also found at x/Lv = 1/2, where the peaks have moved outwards by 1.5d.

An increase of 20% is seen in the peak of ỸOH and 3% in the the peak of ỸNO. T̃ is
increased by approximately 200 K in the vicinity of r/d = 7.

111



0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

−3

Ỹ
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Figure 6.25: Predicted radial profiles of Favre averaged minor species mass fraction and
temperature with differential diffusion effects at x/Lv = 1/8. Experimental measurements
are from the TNF library [86].

112



0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

Ỹ
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Ỹ
O

2

r/d

 

 

Exp.
Lei 6= 1
Lei = 1

(b) O2

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ỹ
H

2
O

r/d

 

 

Exp.
Lei 6= 1
Lei = 1

(c) H2O

0 5 10 15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ỹ
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Figure 6.26: Predicted radial profiles of Favre averaged major species mass fraction with
differential diffusion effects at x/Lv = 1/2. Experimental measurements are from the TNF
library [86].
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Figure 6.27: Predicted radial profiles of Favre averaged minor species mass fraction and
temperature with differential diffusion effects at x/Lv = 1/2. Experimental measurements
are from the TNF library [86].
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One possible reason for the changes observed at the downstream location when dif-
ferential diffusion is considered, which is also mentioned when examining the conditional
profiles in Section 6.6.1, is the history effect described by Pitsch [35]. However, due to the
large differences from experimental measurements, it is more seemingly caused by mod-
elling issues. Inadequencies of the k-ε model in obtaining mixing field results may affect
important quantities such as the scalar dissipation rate. There may also be inaccuracies in
the closure of the terms in the CMC equation.

In the flamelet model calculations of Pitsch [35] described in Section 3.4, a unity Lewis
number was specified for a provisional distance from the nozzle, in order to diminish the
effects of differential diffusion downstream. Current results in the downstream regions
might be improved by employing the same modification, however there are reasons against
such an approach. Firstly, the choice of transition location to unity Lewis number requires
a priori knowledge of the flame, as it is likely to contrast for different flames. The ad hoc
nature of such a modification is detrimental to the universality of the combustion model,
similar to the Cε1 parameter in the k-ε turbulence model. Instead, it is more desirable
to obtain more physical explanations for the discrepancies that are observed. The Lewis
number (Eq. 3.2) describes the relationship between thermal and mass diffusion. However,
in the CMC species equation, the relationship found in the diffusion terms is between
species mass diffusion and mixture fraction diffusion. The Lewis number is introduced
only by the assumption of equal mixture fraction and thermal diffusivities Dξ = α. The
concept of differential diffusion itself is a “correction” to the assumption of equal diffusivity,
based only on the differences in Di and Dξ. Under the assumption that Dξ = α is valid,
a transition to unity Lewis number implies that Di and α are sensitive to the turbulence
of the flow. In this case, α increases at a greater rate than Di as the flow becomes
more turbulent. If Di and α are independent of the turbulent description of the flow,
then Di and α close to the nozzle should be similar to the values at another location in
the flow that has similar temperatures. In this case a transition to unity Lewis number
would imply that the assumption of Dξ = α is not valid, and that Dξ increases for higher
turbulence. The validity of the Dξ = α assumption is of interest. In the derivation of
the CMC equation by Kronenburg and Bilger [61], a term was proposed to counteract
the differential diffusion term based on a Kolmogorov time scale to introduce a Reynolds
number dependence. Additional investigation of the dependence of Di, Dξ, and α on
turbulence would provide insight into whether transitioning from differential to unity Lewis
number is a valid approach.

Additional insight can be gained by examining the η space diffusion terms in the CMC
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species equation, Eq. 4.20, which can be rearranged to the following form,

∂2

∂η2
(
〈
ρYiDξ (∇ξ)2 |η

〉
P (η))− ∂

∂η
(〈ρ (2Dξ) (∇ξ · ∇Yi) |η〉P (η))

︸ ︷︷ ︸
equal diffusivity assumption

− ∂

∂η
(〈ρ (Di −Dξ) (∇ξ · ∇Yi) |η〉P (η))

︸ ︷︷ ︸
correction accounting for different diffusivities

,

(6.11)

where the first two terms represent the molecular diffusion under the equal diffusivity case,
found in Eq. 4.7, and the third term represents a “correction” that relaxes the equal
diffusivity assumption. The third term is of similar form to the second term except for
the diffusivities. If the Lewis number does not scale with the turbulence, then it would
indicate that the presence of differential diffusion effects in the downstream locations is
due to overpredicting the magnitude of the other components of the third term. However,
since the third term is of similar form to the second term, this would also indicate that
the closure of the second term is also not accurate. Therefore, it may be due not only
to the modelling of the differential diffusion term alone, but also due to the second term
describing molecular diffusion with the equal diffusivity assumption, and possibly the first
term as well. Lignell et al. [69] examined the terms of the CMC equation for H using DNS
for an ethylene flame and found that the modelled terms were overpredicted by double
the DNS results. Hewson et al. [6] suggested that the residual terms left from the closure
of the diffusion terms may be significant. Klimenko and Bilger [7] noted that the closure
for the two diffusion terms had noticable errors, but the errors of the two terms tended to
balance out under equal diffusivity. Though the primary closure hypothesis may have been
sufficient under the equal diffusivity assumption, differential diffusion might amplify the
error. In other words, the primary closure hypothesis may not perform well for closing the
diffusion terms, and investigation into improving the closure method is warranted, though
doing so may require the use of DNS.

Besides possible modelling issues for the diffusion terms resulting in an overestimation
of molecular diffusion, the observation of differential diffusion effects might be due to
underprediction of turbulent mixing by the advection term in Eq. 4.20. This may be due
to the underprediction of mixture fraction variance at the downstream location in Fig. 6.9,
resulting in lower scalar dissipation rates. It is also possible that the discrepancies are due
to the closure models used for the turbulent velocity and turbulent flux (Section 4.5.5).

The modelling of the conditional scalar dissipation rate is one major challenges in CMC
studies. The AMC model used in the present study, described in Secton 4.5.6, results in
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a symmetric distribution. However, Hilbert and Thévenin [48] conducted a DNS study for
a nonpremixed hydrogen-air flame and found that while the conditional scalar dissipation
rate profiles were close to Gaussian for equal diffusivities, the profiles were not symmetrical
for differential diffusivities, instead skewing to the higher mixture fractions. Investigation
into the modelling of the conditional scalar dissipation rate may yield improved results.

6.6.3 Radial Dependence of Conditional Scalars

The conditional profiles presented in Section 6.6.1 were provided in Bilger’s mixture fraction
space and cross-stream averaged to compare with experimental data. In this section, the
effects of differential diffusion on the radial dependence of the conditional quantities and
on results in η space are analyzed. The profiles in η space that are not radially averaged
are the CMC results obtained directly from the solution of the CMC equations.

Figure 6.28 presents the predicted conditional mass fraction profiles of H2, O2, OH,
and NO at x/Lv = 1/8 plotted against the sample space variable η of the mixture fraction
ξ for three radial locations: r/d = 2, 3, and 4. Since the mixture fraction is conserved
and indifferent to the effects of differential diffusion of the reacting scalars, the influence
of differential diffusion is purely on the movement of H2 and H across η space. When
unity Lewis numbers are set, there is little variation in the conditional profiles in the
radial direction, and as such are represented by one profile for each species in Fig. 6.28.
However, when differential diffusion is included in the CMC calculations, there are large
radial variations in the conditional profiles. The higher H2 diffusion rate outwards from
the core compared to the slower diffusion of air towards the core results in a net increase
in the penetration of H2 from higher to lower mixture fractions, shown by the increase
in QH2 towards the leaner mixture fractions and a decrease in the richer mixtures. At
r/d = 2, the diffusion of H2 to the lower values of mixture fraction is greater due to the
higher concentration gradients of H2 closer to the jet core. QH2 in the lean mixtures drops
with increasing radial distance from the centerline as concentration gradients decrease.
Correspondingly, largerQO2 is predicted with increasing radial distance, due to the decrease
in H2 concentrations. The locations of the peak values ofQOH andQNO vary in the locations
in η space for the different radial locations. The peaks move towards the lower mixture
fractions closer to the centerline, indicating a greater amount of differential diffusion in
those regions. The shift of the profiles had also been observed by Kronenburg and Bilger
[61], though the radial dependence was not analyzed. The lower QOH and higher QNO

at the larger radial distances may be due to lower mixture fraction variance and scalar
dissipation, resulting in profile closer to equilbrium conditions.
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Figure 6.28: Predicted profiles of conditional means of H2, O2, OH, and NO mass fraction
with differential diffusion effects (H2 and H) for various radial positions at x/Lv = 1/8, in
conserved mixture fraction space.
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The conditional mass fraction profiles shown in Fig. 6.28 are mapped to ηblgr space
and presented in Fig. 6.29. The result of the mapping is a movement of the profiles
towards the local mean mixture fraction, ηblgr = ξ̃blgr. On the lean side of ηblgr = ξ̃blgr, the
profile is shifted to the right, while a shift to the left is found on the rich side. Q∗H2

and
Q∗O2

profiles with differential diffusion converge to the profiles for equal diffusivities, such
that the stoichiometric value of the mixture fraction is conserved. The profiles without
differential diffusion remain unchanged, which affirms that ξblgr = ξ when the differential
diffusion effects are not considered. The peaks of Q∗OH and Q∗NO gather to a value of ηblgr,
so that the profiles are aligned. However, Q∗OH and Q∗NO show apparent radial variation
in the magnitudes. In the presence of differential diffusion calculations with CMC, major
reactant species may be reasonably approximated by solving radially averaged equations;
however, the production of species such as OH and NO show large radial variations and
the CMC equations should be solved in two dimensions (axial and radial).

6.6.4 Differential Diffusion Effects of Individual Species

The individual effects of the differential diffusion of H2, H, OH, and O are examined in
this section. Conditional profiles are obtained by performing four different cases, where
each of the forementioned chemical species are the sole differentially diffusing species. The
conditional profiles are compared with the equal diffusivity results.

The cross-averaged conditional H2, H2O, OH, and NO mass fractions at x/Lv = 1/8
for the differential diffusion of H2 and the differential diffusion of H are compared with the
unity Lewis number profiles in Fig. 6.30. The conditional profiles in Fig. 6.30 are presented
in the conserved mixture fraction sample space η, so that the effects of differential diffusion
are more distinguishable. The plots for the differential diffusion of H2 results in a clear
shift of the profiles to lower η corresponding to the increased diffusion rate from the higher
concentrations of H2 at rich mixture fractions. The increase of fuel diffusion rate towards
the reaction zone also results in higher production of H2O and NO. The modelling of
the differential diffusion of H shows a more subtle, but nonetheless informative, effect
on the conditional profiles of Fig. 6.30. The concentrations of H are small, such that
the apparent stoichiometric mixture fraction value is relatively unchanged. The expected
influence of differential diffusion on H is a greater spread to the lower and higher mixture
fractions. The changes in the profiles appear to be more significant on the rich side of the
stoichiometric value than for the lean regions, which is most apparent in the Q∗OH profile.
The resulting increase in NO when differential diffusion of H is included is different from
the result obtained by Kronenburg et al. [61] where NO concentrations were decreased.
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Figure 6.29: Predicted profiles of conditional means of H2, O2, and OH mass fraction
with differential diffusion effects (H2 and H) for various radial positions at x/Lv = 1/8, in
Bilger’s mixture fraction space.
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The overall effect of the differential diffusion of H2 is large than for H, which is reasonable
due to the significantly higher concentrations and concentration gradients of H2.
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Figure 6.30: Predicted conditional profiles of independent contributions of LeH2 = 0.3 and
LeH = 0.18 at x/Lv = 1/8, in conserved mixture fraction space.

The same analysis is conducted for the individual differential diffusion effects of OH
and O. Since the difference from unity Lewis number is much smaller than for H2 and H,
and the concentrations of OH and O are significantly lower than H2, accounting for the
differential diffusion of OH and O is observed to have negligible effect on the calculated
conditional scalars.
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6.6.5 Analysis of CMC equation

In this section, budgets of the terms in the CMC calculations are presented. Though there
is no supplementary data, such as DNS, available for comparison, a qualitative analysis can
nonetheless provide additional insight in the application of the CMC model with differential
diffusion effects.

Firstly, the CMC equations, Eqs. 4.66 and 4.67 are rearranged to a more practical form
for analyzing the contribution of differential diffusion modelling. In steady-state, without
the term related to unsteady effects, the CMC equation governing the conditional species
mass fractions, Eq. 4.66, can be rearranged into the following form,

∇ · (ρη 〈~vYi|η〉Pη)
ρP̃

− ∇ · (ρη 〈~v|η〉Pη)Qi

ρP̃︸ ︷︷ ︸
Advection

= ω̇i,η︸︷︷︸
Source

+
1

2
χη
∂2Qi

∂η2

︸ ︷︷ ︸
equal diffusivity assumption (ED)

−1

2

(
1− 1

Lei

)
χη
∂2Qi

∂η2
− 1

2

(
1− 1

Lei

)
1

ρP̃

∂ρχηP̃

∂η

∂Qi

∂η︸ ︷︷ ︸
correction accounting for different diffusivities (DD)

+
∇2 (〈ρDiYi|η〉P (η))

ρP̃
− ∇ · (〈∇ (ρDi)Yi|η〉P (η))

ρP̃︸ ︷︷ ︸
spatial diffusion (SD)

,

(6.12)

where the ED term is the same term found in the CMC equation under unity Lewis number
assumption, and the DD term represents a correction to the unity Lewis number case to
account for differential diffusivities. Figure 6.31 presents the budget of the terms in Eq.
6.12 for H2 at x/Lv = 1/8 for two radial positions. The two radial locations are r/d = 2,
where the mixture is fuel rich, and r/d = 3, close to the location of the stoichiometric
mixture fraction. The terms related to the spatial diffusion of the conditional averages,
the last two terms on the RHS of Eq. 6.12 (SD), are not shown in Fig. 6.31 since they
are found to be negligible compared to the other terms. As can be seen in Fig. 6.31, the
DD, source, and advective terms are larger in magnitude compared to the ED term at
both radial locations, confirming the non-negligible effect of differential diffusion close to
the nozzle. As expected, the chemical source term for H2 is significant around the values
of η where the mixture composition is close to stochiometric conditions, as shown in Fig.
6.31. At r/d = 2 on the lean side of stoichiometry (η < 0.008), the DD, source, and
advective terms significantly contribute to the CMC equation, while on the fuel side of
stoichiometry (η > 0.008), the balance is between DD and advection only. Farther out
in the radial direction, at r/d = 3 (Fig. 6.31), the chemical source is mainly balanced by
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DD for η < 0.03, while for η > 0.03, when limited (or no) chemical activity takes place,
DD and advection balance each other. Further examination of Eq. 6.12 shows that the
diffusion of H2 from the higher mixture fractions can be mainly attributed to the second
component of the DD term involving ∂Qi

∂η
, which causes a decrease in H2 mass fractions at

higher η and an increase at lower η.
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Figure 6.31: Budget of terms in CMC equation of YH2 at x/Lv = 1/8.

Figure 6.32 presents the budget of the terms in Eq. 6.12 for H for the same positions.
Similar to the observations made for H2, the two major terms in the CMC equation for H
are chemistry and DD, as shown in Fig. 6.32, with ED and advection having much smaller
contributions. In contrast to the H2 budget, a double peak in the chemical source term can
be seen for both radial positions, one located on the fuel lean and one around stoichiometry.
Similarly, a double peak is also shown in the DD term, which is the main term balancing
the chemical source term. The present observations are in qualitative agreement with the
findings shown by Lignell et al. [69], though the study was applied to an ethylene flame.

The budgets for the terms of Eq. 6.12 for H2 and H farther downstream at x/Lv = 1/2
are presented in Figs. 6.33 and 6.34, respectively, for radial locations of r/d = 5 and 7. At
this axial location, the radial location of r/d = 5 corresponds to the fuel rich region, while
r/d = 7 lies close to the location of the stoichiometric mixture fraction. For both radial
locations in Figs. 6.33 and 6.34, the profiles of the terms are similar to their respective
counterparts at x/Lv = 1/8 in Figs. 6.31 and 6.32, albeit with lower magnitudes. The DD
terms remain on the same order of magnitude as the source, ED, and advective terms. The
relative significance of the DD terms at the x/Lv = 1/2 may contribute to the observation
of differential effects in the conditional scalars in Section 6.6.2.
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Figure 6.32: Budget of terms in CMC equation of YH at x/Lv = 1/8.

0 0.01 0.02 0.03 0.04 0.05 0.06
−10

−5

0

5

10

η

[1
/s
]

 

 

ED

Source

Advective

DD

(a) r/d = 5

0 0.01 0.02 0.03 0.04 0.05 0.06
−10

−5

0

5

10

η

[1
/s
]

 

 

ED

Source

Advective

DD

(b) r/d = 7

Figure 6.33: Budget of terms in CMC equation of YH2 at x/Lv = 1/2.
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Figure 6.34: Budget of terms in CMC equation of YH at x/Lv = 1/2.

Likewise, the steady-state CMC equation for enthalpy, Eq. 4.67 can be decomposed
into several terms such that

∇ · (ρη 〈~vh|η〉Pη)
ρP̃

− ∇ · (ρη 〈~v|η〉Pη)Qh

ρP̃︸ ︷︷ ︸
Advection

= sη,h︸︷︷︸
Source

+
1

2
χη
∂2Qh

∂η2

︸ ︷︷ ︸
equal diffusivity assumption (ED)

−
(

1− 1

LeH2

)
1

ρP̃

∂

∂η

(
ρχηQhP̃

2

∂QH2

∂η

)

︸ ︷︷ ︸
correction accounting for differential diffusivity of H2 (DD H2)

−
(

1− 1

LeH

)
1

ρP̃

∂

∂η

(
ρχηQhP̃

2

∂QH

∂η

)

︸ ︷︷ ︸
correction accounting for differential diffusivity of H (DD H)

+
∇ · (〈ρDξ∇h〉Pη)

ρP̃
+
∇ · (〈ρ (α−Dξ)∇h〉Pη)

ρP̃

−
∑

i

(∇ · (〈ρhi (α−Di)∇Yi〉Pη))
ρP̃︸ ︷︷ ︸

spatial diffusion (SD)

,

(6.13)

where the ED term is the same term found in the CMC equation under unity Lewis number
assumption, and the DD H2 and DD H terms represent corrections to the unity Lewis
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number case to account for the differential diffusivities of H2 and H, respectively. Figure
6.35 presents the budget of the terms in Eq. 6.13 at x/Lv = 1/8 for two radial locations.
Similar to Eq. 6.12, the last three terms on the RHS of Eq. 6.13 are negligible compared
to the other terms, and are excluded from Fig. 6.35. At r/d = 2, all the terms are on the
same order. The advection, DD H2, and DD H terms peak on the lean side and near the
stoichiometric mixture fraction (η < 0.008), where the enthalpy gradients are found to be
the highest, while two peaks can be seen for ED on both sides of stoichiometric conditions.
At r/d = 3, the largest contributions come from the ED and source terms, suggesting that
the relative contributions of the differential diffusion terms scale with the inverse of the
local temperature since the temperature values are higher at r/d = 3 compared to those
at r/d = 2.
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Figure 6.35: Budget of terms in CMC equation of h at x/Lv = 1/8.

The budgets for the terms of Eq. 6.13 farther downstream at x/Lv = 1/2 are presented
in Fig. 6.36 for radial locations of r/d = 5 and 7. Similar to the first axial location, the
ED, source, and advective terms at both radial locations exhibit comparable magnitudes.
However, different from the results in Fig. 6.35, the terms involving the differential diffusion
of H2 and H in Fig. 6.36 are small relative to the other terms. The diminished effects of
differential diffusion downstream from the nozzle appear to be captured by Eq. 6.13, unlike
for the species equations (Eq. 6.12).

Outside of the qualitative analysis performed here, further investigation of the contri-
butions of the terms in the CMC equation can benefit from DNS; however, such analysis
is outside the scope of the present study.
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Figure 6.36: Budget of terms in CMC equation of h at x/Lv = 1/2.
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Chapter 7

Conclusions

The focus of the present study is the investigation of differential diffusion effects in a
turbulent hydrogen-air non-premixed flame using the CMC method. The first order CMC
model of the species transport equation, which allows for different diffusivities of chemical
species to be considered, is fully coupled with a RANS method and is applied to the steady
two dimensional simulation of the flame experimentally studied by Barlow and Carter [38].
The model, to the author’s knowledge, has not been previously implemented to a RANS
or LES simulation of a flame. Additionally, a CMC formulation of the enthalpy transport
equation which accounts for species differential diffusion effects is derived in this study
using a similar method to the derivation of the species equation, and implemented in the
CMC calculations. The advantages of the present CMC formulation are that no additional
equations are introduced compared to CMC without differential diffusion, and the CMC
equations are in conservative form entirely consistent with the solution of the mixture
fraction PDF. The numerical implementation of the CMC model is described, including
the discretisation of the CMC equations and the various submodels used for the various
unclosed terms such as the conditional scalar dissipation rate, velocity, turbulent flux,
chemical source term, and probability density function in the CMC equations. Differential
diffusion effects of H2, H, OH, and O are investigated by comparison to results obtained
from unity Lewis number calculations and to experimental data, with particular interest
in the production of radicals such as OH and NO.
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7.1 Hydrogen Flame Results

The hydrogen-air flame calculations are first validated under equal diffusivity assumption
using CMC. The trends show an underprediction in the diffusion of mean H2 mass fraction
towards the lean regions close to the nozzle. Due to lower movement of fuel towards
the reaction zone, lower H2O and NO mass fractions are found near the nozzle compared
to experimental measurements. The underprediction of NO mass fraction is especially
significant, with peak value lower than the measurements by approximately 56%. As well,
OH production is observed to occur closer to the centerline than the measurements.

The inclusion of non unity Lewis numbers of H2 and H in the CMC calculations results
in a higher penetration of H2 into the fuel lean mixtures and a greater spreading of H.
With differential diffusion effects, the conditional profiles of temperature, H2O, and NO
mass fraction show some improvement close to the nozzle at x/Lv = 1/8 where differen-
tial diffusion effects are prominent in comparison with the experimental data for mixture
fractions on the rich side of stoichiometric conditions. In particular, the increase in the
peak NO mass fraction of approximately 40% compared to the equal diffusivity predic-
tions is promising. Unconditional Favre averaged profiles also show improvement for the
mixture fraction, H2, H2O, O2, N2, and NO mass fractions. However, though the peak
unconditional NO mass fraction is increased by approximately 31%, it remains lower than
the experimental measurements by 30%. Also observed is a shift in the location of OH
production resulting in the alignment of the predicted and measured locations of peak OH,
explained by the relocation of the reaction zone to the leaner regions due to greater diffu-
sion rates of the fuel. However, mean OH mass fraction and temperature are higher than
experimental measurements, which may be cause by an underprediction of heat diffusion.
It is also found that the differential diffusion effects persist farther downstream where they
would be expected to be negligible.

Several possible sources of discrepancy can be identified which may lead to the observed
differences from the experimental measurements. First, the present CMC formulation in-
cludes several assumptions related to the closure of the additional differential diffusion
terms. In particular, the residual terms are neglected in the closure of the η space diffu-
sion terms. The a priori analysis in [69] showed some differences in the modelled terms
compared to the DNS values for H. The conditional species fluctuations may also have a
non-negligible effect in the near field of the flame. Second order closure for the chemical
source had previously been applied to the same flame in CMC without differential diffusion
[99], though no significant improvement was noticed near the nozzle. Instead, Hewson et
al. [68] suggested that the conditional fluctuations could be included in the differential
diffusion terms. Further, Clemens and Paul [100] mentioned that heat release near the

129



nozzle potentially leading to flow laminarization. This effect is not captured by the cur-
rent RANS calculations. It had also been previously suggested that the Lewis number,
which is assumed constant in the present study, could depend on the Reynolds number
[35]. As well, the assumption of α = Dξ, and its dependence on Reynolds number, may
not be a valid assumption.

The differential diffusion effects in the CMC equations are seen to produce significant
radial variations in the conditional profiles, much larger than those without differential dif-
fusion. This increased radial dependence is caused by differences in the local concentration
gradients of differentially diffusive species. The conditional profiles converge when mapped
to Bilger’s mixture fraction space, which conserves the stoichiometric mixture fraction.
For major species such as H2 and O2, the convergence of the profiles shows that radial
averaging of the CMC equations is justifiable. However, for minor species such as OH
and NO, there is significant radial variation in the mass fraction profiles even in Bilger’s
mixture fraction space. Radial averaging of the CMC equation may not be accurate in the
consideration of differential diffusion for the prediction of minor species, and the solution
of the two dimensional equations is recommended over the one dimensional cross-stream
averaged equations.

An analysis of the effects of the differential diffusion effects of individual species show
that the differential diffusion of H2 has the greatest impact on the results due to the high
concentrations of H2. The effects of H diffusion are significantly smaller than those of H2

due to lower concentrations, though should still be included. Inclusion of non unity Lewis
number for OH and O has a negligible impact on species mass fraction predictions.

Budgets of the terms in the CMC equations show the large significance of differential
diffusion contributions in the equations for H2 and H. The differential diffusion contribu-
tions are balanced by chemical source term close to the stoichiometric mixture fractions,
and by advection for higher mixture fractions. The terms accounting for differential dif-
fusion are still observed to be of comparable magnitude to the other terms downstream
from the nozzle, where the effects of differential diffusion are expected to be small. The
discrepancy may be due to modelling inaccuracies of the diffusion terms, the advection
terms, or the assumption of constant Lewis numbers.

7.2 Recommendations and Future Work

There are several possible causes for the differences in the calculated and measured results
that are discussed in this study. Analysis of these conjectures will lead to refinement of

130



the CMC model with differential diffusion effects. An investigation into the appropriate
form of the closure models using DNS for the CMC equations could lead to new insight
into the applicability of the model to the flame studied under consideration. Particularly
of interest are the closures for the diffusion terms (the primary closure hypothesis), the
advection terms, and the conditional scalar dissipation rate (which has been observed to
be asymmetric under differential diffusion effects [48]). In addition, DNS studies may also
provide additional information on the Reynolds number dependence of the Lewis number,
and the validity of the α = Dξ assumption.

Improvement to the turbulent flow and mixing field predictions, such as with the use
of LES, is also needed to provide better overall mean species predictions compared to the
experimental data. Due to computational requirements of DNS studies, improvement to
flow and mixing field predictions using LES may be more accessible for the near future.
Further numerical optimization may also be pursued to reduce the computational cost, in
particular for future LES calculations.

The applicability of the CMC model used in the present study to other flames is also
of interest. The application of the model should be extended to evaluate its prediction
of differential diffusion effects for other hydrogen based flames, such as H2/CO2, H2/N2,
and H2/CH4 flames, or the differential diffusion effects of soot in flames such as ethylene
flames.

In the CMC formulation used in the current study, there is no significant increase
in computational cost with additional differentially diffusing species since no additional
conservation equations are solved. However, a direct comparison with other model for-
mulations to quantify the computational cost and performance, especially with the CMC
model of Kronenburg and Bilger [61], could be performed by implementing the models
with the similar codes, where the only difference is the combustion model used.
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Appendix A

Derivation of CMC species transport
equation

The transport equation for the joint PDF of Yi and ξ (Eq. 4.18) is

∂ 〈ρ|Yi = ZY , ξ = η〉PZY ,η
∂t

+∇ · (〈ρu|Yi = ZY , ξ = η〉PZY ,η)

= − ∂

∂ZY
(〈∇ · (ρDi∇Yi) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂η
(〈∇ · (ρDξ∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂ZY
(〈ρω̇i|Yi = ZY , ξ = η〉PZY ,η) .

(A.1)

Klimenko and Bilger [7] provided the following identities,

∇ · (ρD∇ψ) =− ∂

∂Z1

(ψ∇ · (ρD∇Y1))− ∂

∂Z2

(ψ∇ · (ρD∇Y2)) +
∂2

∂Z2
1

(
ψρD (∇Y1)2)

+
∂2

∂Z2
2

(
ψρD (∇Y2)2)+ 2

∂2

∂Z1∂Z2

(ψρD (∇Y1∇Y2)) ,

(A.2)

and

∇ · (ρD∇ψ) = ∇2 (ψρD)−∇ · (ψ∇ (ρD)) , (A.3)
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where Eqs. A.2 and A.3 can be combined to obtain

∇2 (ψρD)−∇ · (ψ∇ (ρD)) =− ∂

∂Z1

(ψ∇ · (ρD∇Y1))− ∂

∂Z2

(ψ∇ · (ρD∇Y2))

+
∂2

∂Z2
1

(
ψρD (∇Y1)2)+

∂2

∂Z2
2

(
ψρD (∇Y2)2)

+ 2
∂2

∂Z1∂Z2

(ψρD (∇Y1∇Y2)) .

(A.4)

Setting Y1 = Yi, Z1 = ZY , Y2 = ξ, Z2 = η, and D = Di in Eq. A.4, and using the
relationship 〈◦ψ〉 = 〈◦|Yi = ZY , ξ = η〉P (ZY , η), where ◦ is a general quantity [7], Eq. A.4
becomes

∇2 (〈ρDi|Yi = ZY , ξ = η〉PZY ,η)−∇ · (〈∇ (ρDi) |Yi = ZY , ξ = η〉PZY ,η)

= − ∂

∂ZY
(〈∇ · (ρDi∇Yi) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂η
(〈∇ · (ρDi∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

+
∂2

∂Z2
Y

(〈
ρDi (∇Yi)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

+
∂2

∂η2

(〈
ρDi (∇ξ)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

+ 2
∂2

∂ZY ∂η
(〈ρDi (∇Yi∇ξ) |Yi = ZY , ξ = η〉PZY ,η) .

(A.5)
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The first term on the RHS of Eq. A.5 corresponds to the first term on the RHS of Eq.
A.1. Substituting Eq. A.5 into Eq. A.1 gives Eq. 4.19 in Section 4.3,

∂ 〈ρ|Yi = ZY , ξ = η〉PZY ,η
∂t

+∇ · (〈ρu|Yi = ZY , ξ = η〉PZY ,η)

= − ∂

∂η
(〈∇ · (ρ (Dξ −Di)∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

+∇2 (〈ρDi|Yi = ZY , ξ = η〉PZY ,η)
−∇ · (〈∇ (ρDi) |Yi = ZY , ξ = η〉PZY ,η)

− ∂2

∂Z2
Y

(〈
ρDi (∇Yi)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

− ∂2

∂η2

(〈
ρDi (∇ξ)2 |Yi = ZY , ξ = η

〉
PZY ,η

)

− 2
∂2

∂ZY ∂Zη
(〈ρDi (∇Yi∇ξ) |Yi = ZY , ξ = η〉PZY ,η)

− ∂

∂ZY
(〈ρω̇i|Yi = ZY , ξ = η〉PZY ,η) .

(A.6)

In order to obtain an transport equation in terms of the single variable PDF, P (η), each
term in Eq. A.6 is multiplied by ZY and subsequently integrated over ZY . The integrals
of each term, determined using integration by parts, are as follows:

∫ ∞

−∞
ZY

∂ 〈ρ|Yi = ZY , ξ = η〉PZY ,η
∂t

dZY =
∂ 〈ρYi|ξ = η〉Pη

∂t
(A.7)

∫ ∞

−∞
ZY∇ · (〈ρu|Yi = ZY , ξ = η〉PZY ,η) dZY = ∇ · (〈ρuYi|ξ = η〉Pη) (A.8)

∫ ∞

−∞
ZY∇2 (〈ρDi|Yi = ZY , ξ = η〉PZY ,η) dZY = ∇2 (〈ρDiYi|ξ = η〉Pη) (A.9)

∫ ∞

−∞
ZY∇ · (〈∇ (ρDi) |Yi = ZY , ξ = η〉PZY ,η) dZY = ∇ · (〈∇ (ρDi)Yi|ξ = η〉Pη) (A.10)

∫ ∞

−∞
ZY

∂

∂η
(〈∇ · (ρ (Dξ −Di)∇ξ) |Yi = ZY , ξ = η〉PZY ,η) dZY

=
∂

∂η
(〈∇ · (ρ(Dξ −Di)∇ξ)Yi|ξ = η〉Pη)

(A.11)
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∫ ∞

−∞
ZY

∂2

∂Z2
Y

(〈
ρDi (∇Yi)2 |Yi = ZY , ξ = η

〉
PZY ,η

)
dZY = 0 (A.12)

∫ ∞

−∞
ZY

∂2

∂η2

(〈
ρDi (∇ξ)2 |Yi = ZY , ξ = η

〉
PZY ,η

)
dZY

=
∂2

∂η2
(
〈
ρDi(∇ξ)2Yi|ξ = η

〉
Pη)

(A.13)

∫ ∞

−∞
2ZY

∂2

∂ZY ∂Zη
(〈ρDi (∇Yi∇ξ) |Yi = ZY , ξ = η〉PZY ,η) dZY

=
∂

∂η
(〈2ρDi(∇Yi∇ξ)|ξ = η〉Pη)

(A.14)

∫ ∞

−∞
ZY

∂

∂ZY
(〈ρω̇i|Yi = ZY , ξ = η〉PZY ,η) dZY = 〈ρω̇i|ξ = η〉Pη (A.15)

In Eqs. A.7-A.11, A.13, and A.14, the variables t, x, and η are independent of ZY . The
result is the unclosed form of the CMC species transport equation,

∂ 〈ρYi|ξ = η〉Pη
∂t

+∇ · (〈ρYiu|ξ = η〉Pη) = − ∂2

∂η2
(
〈
ρDi(∇ξ)2Yi|ξ = η

〉
Pη)

+
∂

∂η
(〈2ρDi(∇Yi∇ξ)|ξ = η〉Pη)

− ∂

∂η
(〈∇ · [ρ(Dξ −Di)∇ξ]Yi|ξ = η〉Pη)

+∇2 (〈ρDiYi|ξ = η〉Pη)−∇ · (〈∇ (ρDi)Yi|ξ = η〉Pη)
+ 〈ρω̇i|ξ = η〉Pη.

(A.16)

which is the expression given in Eq. 4.20.
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Appendix B

Derivation of CMC enthalpy
transport equation

Starting from the transport equation for hψη (Eq. 4.23), given by

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂

∂η
(hψη∇ · (ρDξ∇ξ)) + ψη∇ · (ρα∇h)

− ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh,

(B.1)

Eq. B.1 is rearranged using the following set of three identities (details on their derivation
in [7]) to a form that is easier for averaging,

∇ · (ρDξh∇ψη) =
∂2

∂η2

(
ψηρhDξ (∇ξ)2)− ∂

∂η
(ψηh∇ · (ρDξ∇ξ))

− ∂

∂η
(ψηDξρ (∇ξ · ∇h)) ,

(B.2)

∇ · (ψηρα∇h) = ψη∇ · (ρα∇h)− ∂

∂η
(ψηρα (∇ξ · ∇h)) , (B.3)

and

∇ · (ψηρ (α−Di)hi∇Yi) = ψη∇ · (ρ (α−Di)hi∇Yi) (B.4)

− ∂

∂η
(ψηρ (α−Di)hi (∇ξ · ∇Yi)) . (B.5)
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Substituting Eqs. B.2 and B.3 into first and second terms, respectively, on the RHS of Eq.
B.1 results in

∂ρhψη
∂t

+∇ · (ρuhψη) = −
[
∂2

∂η2

(
ψηρhDξ (∇ξ)2)− ∂

∂η
(ψηDξρ (∇ξ · ∇h))−∇ · (ρDξh∇ψη)

]

+

[
∇ · (ψηρα∇h) +

∂

∂η
(ψηρα (∇ξ · ∇h))

]

+ ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(B.6)

Combining the second and fifth terms on the RHS of Eq. B.6 gives

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂2

∂η2

(
ψηρhDξ (∇ξ)2)+

∂

∂η
(ψηρ (Dξ + α) (∇ξ · ∇h))

+∇ · (ρDξh∇ψη) +∇ · (ψηρα∇h)

− ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(B.7)

Expanding the third term on the RHS of Eq. B.7 results in

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂2

∂η2

(
ψηρhDξ (∇ξ)2)+

∂

∂η
(ψηρ (Dξ + α) (∇ξ · ∇h))

+ [∇ · (ρDξ∇ (hψη))−∇ · (ρDξψ∇h)] +∇ · (ψηρα∇h)

− ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(B.8)

Combining the fourth and fifth terms on the RHS of B.8 results in

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂2

∂η2

(
ψηρhDξ (∇ξ)2)+

∂

∂η
(ψηρ (Dξ + α) (∇ξ · ∇h))

+∇ · (ρDξ∇ (hψη)) +∇ · (ψηρ (α−Dξ)∇h)

− ψη∇ ·
[∑

i

(ρhi (α−Di)∇Yi)
]

+ ψηρsh.

(B.9)
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Using Eq. B.4, and recognizing that the summation and divergence operations are asso-
ciative, the second last term on the LHS of Eqn. B.9 rewritten, resulting in

∂ρhψη
∂t

+∇ · (ρuhψη) = − ∂2

∂η2

(
ψηρhDξ (∇ξ)2)+

∂

∂η
(ψηρ (Dξ + α) (∇ξ · ∇h))

+∇ · (ρDξ∇ (hψη)) +∇ · (ψηρ (α−Dξ)∇h)

−
∑

i

[∇ · (ψηρhi (α−Di)∇Yi)]

−
∑

i

[
∂

∂η
(ψηρhi (α−Di) (∇ξ · ∇Yi))

]

+ ψηρsh.

(B.10)

Averaging is applied to Eq. B.10, such that

∂ 〈ρhψη〉
∂t

+∇ · 〈ρuhψη〉 = − ∂2

∂η2

〈
ψηρhDξ (∇ξ)2〉+

∂

∂η
〈ψηρ (Dξ + α) (∇ξ · ∇h)〉

+∇ · 〈ρDξ∇ (hψη)〉+∇ · 〈ψηρ (α−Dξ)∇h〉
−
∑

i

〈∇ · (ψηρhi (α−Di)∇Yi)〉

−
∑

i

〈
∂

∂η
(ψηρhi (α−Di) (∇ξ · ∇Yi))

〉

+ 〈ψηρsh〉 ,

(B.11)

and the relationship 〈◦ψ〉 = 〈◦|ξ = η〉P (η), where ◦ is a general quantity [7], is used in
Eq. B.11 resulting in the unclosed form of the CMC ethalpy equation,

∂ 〈ρh|ξ = η〉Pη
∂t

+∇ · (〈ρuh|ξ = η〉Pη) = − ∂2

∂η2
(
〈
ρhDξ (∇ξ)2 |ξ = η

〉
Pη)

+
∂

∂η
(〈ρ (Dξ + α) (∇ξ · ∇h) |ξ = η〉Pη)

−
∑

i

(
∂

∂η
(〈ρhi (α−Di) (∇ξ · ∇Yi) |ξ = η〉Pη)

)

+∇ · (〈ρDξ∇h|ξ = η〉Pη) +∇ · (〈ρ (α−Dξ)∇h|ξ = η〉Pη)
−
∑

i

(∇ · (〈ρhi (α−Di)∇Yi|ξ = η〉Pη)) + 〈ρsh|ξ = η〉Pη,

(B.12)

which is the expression given in Eq. 4.24.
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[48] R. Hilbert and D. Thévenin. Influence of differential diffusion on maximum flame tem-
perature in turbulent nonpremixed hydrogen/air flames. Combust. Flame, 138:175–
187, 2004.

[49] R. W. Bilger. Molecular transport effects in turbulent diffusion flames at moderate
Reynolds number. AIAA Journal, 20:962–970, 1982.

143



[50] H. Pitsch and N. Peters. A consistent flamelet formulation for non-premixed com-
bustion considering differential diffusion effects. Combust. Flame, 114:26–40, 1998.

[51] J.-Y. Chen and W.-C. Chang. Modeling differential diffusion effects in turbulent
nonreacting/reacting jets with stochastic mixing models. Combust. Sci. and Tech.,
133:343–375, 1998.

[52] R. O. Fox. The Lagrangian spectral relaxation model for differential diffusion in
homogeneous turbulence. Phys. Fluids, 11:1550–1571, 1999.

[53] R. McDermott and S. B. Pope. A particle formulation for treating differential diffu-
sion in filtered density function methods. J. Comput. Phys., 226:947–993, 2007.

[54] R. O. Fox, C. M. Cha, and P. Trouillet. Lagrangian PDF mixing models for react-
ing flows. In Proc. of the Summer Program, pages 369–380, Center for Turbulence
Research, 2002.

[55] S. Viswanathan, H. Wang, and S. B. Pope. Numerical implementation of mixing and
molecular transport in LES/PDF studies of turbulent reacting flows. J. Comput.
Phys., 230:6916–6957, 2011.

[56] G. Maragkos, P. Rauwoens, and B. Merci. A new methodology to incorporate differ-
ential diffusion in CFD simulations of reactive flows. Combust. Flame, 160:1903–1905,
2013.

[57] V. V. Toro, A. V. Mokhov, H. B. Levinsky, and M. D. Smooke. Combined experimen-
tal and computational study of laminar, axisymmetric hydrogenair diffusion flames.
Proc. Comb. Inst., 30:485–492, 2005.

[58] A. R. Kerstein. Linear-eddy modelling of turbulent transport, part 3, mixing and
differential molecular diffusion in round jets. J. Fluid Mech., 216:411–435, 1990.

[59] L. Dialameh, M. J. Cleary, and A. Y. Klimenko. A multiple mapping conditioning
model for differential diffusion. Phys. Fluids, 26:025107, 2014.

[60] A. Kronenburg and R. W. Bilger. Modelling of differential diffusion effects in non-
premixed nonreacting turbulent flow. Phys. Fluids, 9 (5):1435–1447, 1997.

[61] A. Kronenburg and R. W. Bilger. Modelling differential diffusion in nonpremixed
reacting turbulent flow: Application to turbulent jet flames. Combust. Sci. and
Tech., 166:175–194, 2001.

144



[62] A. Kronenburg, R. W. Bilger, and J. H. Kent. Modeling soot formation in turbulent
methane-air jet diffusion flames. Combust. Flame, 121:24–40, 2000.

[63] Yunardi, R. M . Woolley, and M. Fairweather. Conditional moment closure predic-
tion of soot formation in turbulent, nonpremixed ethylene flames. Combust. Flame,
152:360–376, 2008.

[64] N. S. A. Smith, R. W. Bilger, C. D. Carter, R. S. Barlow, and J.-Y. Chen. A
comparison of CMC and PDF modelling predictions with experimental nitric oxide
LIF/Raman measurements in a turbulent H2 jet flame. Combust. Sci. and Tech.,
105:357–375, 1995.

[65] S. Navarro-Martinez and S. Rigopoulos. Differential diffusion modelling in LES with
RCCE-reduced chemistry. Flow Turb. Combust., 89:311–328, 2012.

[66] A. Kronenburg and R. W. Bilger. Modelling differential diffusion in nonpremixed
reacting turbulent flows: Model development. Combust. Sci. and Tech., 166:195–
227, 2001.

[67] J. C. Hewson, A. J. Ricks, S. R. Tieszen, A. R. Kerstein, and R. O. Fox. On the
transport of soot relative to a flame: Modeling differential diffusion for soot evolution
in fire. In H. Bockhorn, A. D’Anna, A. F. Sarofim, and H. Wang, editors, Combustion
generated fine carbonaceous particles, pages 271–587. Karlsruhe University Press,
Karlsruhe, Germany, 2009.

[68] J. C. Hewson, D. O. Lignell, and A. R. Kerstein. Modeling differential diffusion
in non-premixed combustion: soot transport in the mixture fraction coordinate. In
Proc. of the Summer Program, pages 225–236, Center for Turbulence Research, 2008.

[69] D. O. Lignell, J. C. Hewson, and J. H. Chen. A-priori analysis of conditional moment
closure modeling of a temporal ethylene jet flame with soot formation using direct
numerical simulation. Proc. Comb. Inst., 32:1491–1498, 2009.

[70] L. Arnold. Stochastic differential equations: theory and applications. John Wiley &
Sons Inc., 1974.

[71] S. S. Girimaji. Assumed β-PDF model for turbulent mixing: validation and extension
to multiple scalar mixing. Combust. Sci. Tech., 78:177–196, 1991.

[72] V. Eswaran and S. B. Pope. Direct numerical simulation of the turbulent mixing of
a passive scalar. Phys. Fluids, 31:506–520, 1988.

145



[73] N. Swaminathan and S. Mahalingam. Assessment of conditional moment closure for
single and multistep chemistry. Combust. Sci. Technol., 112:301–326, 1996.

[74] P. Givi, C. K. Madnia, C. J. Steinberger, and S. H. Frankel. Large eddy simula-
tions and direct numerical simulations of high speed turbulent reacting flows. NASA
Langley Research Centre Technical Report, 1991.

[75] V. R. Kuznetsov and V. A. Sabelnikov. Turbulence and combustion, Moscow: Nauka,
1986. Turbulence and combustion. Washington: Hemisphere, 1989.

[76] C. B. Devaud, R. W. Bilger, and T. Liu. A new method of modeling the conditional
scalar dissipation rate. Phys. Fluids, 6:2004–2011, 2004.

[77] E. O’Brien and T. L. Jiang. The conditional dissipation rate of an initially binary
scalar in homogeneous turbulence. Phys. Fluids A, 3:3121–3123, 1991.

[78] S. S. Girimaji. On the modeling of scalar diffusion in isotropic turbulence. Phys.
Fluids A, 4:2529–2537, 1992.

[79] J. Janicka and N. Peters. Prediction of turbulent jet diffusion flame lift-off using a
PDF transport equation. Proc. Combust. Inst., 19:367–374, 1982.

[80] M. Cleary. CMC modelling of enclosure fires. PhD thesis, University of Syndey,
Sydney, Australia, 2004.

[81] S. V. Patankar. Numerical heat transfer and fluid flow. Hemisphere, New York, 1980.

[82] D. B. Spalding. A novel finite-difference formulation for differential expressions in-
volving both first and second derivatives. Int. J. Num. Methods Eng., 4, 1972.

[83] W. H. Press, S. A. Teukolksy, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in Fortran. Cambridge University Press, 2nd edition, 1992.

[84] R. S. Barlow, N. S. A. Smith, J.-Y. Chen, and R. W. Bilger. Nitric oxide formation
in dilute hydrogen jet flames: Isolation of the effects of radiation and turbulence-
chemistry submodels. Combust. Flame, 117:4–31, 1999.

[85] M. Fairweather and R. M. Woolley. First-order conditional moment closure modeling
of turbulent, nonpremixed hydrogen flames. Combust. Flame, 133:393–405, 2003.

[86] R. S. Barlow. Sandia H2/He flame data - release 2.0. http://www.ca.sandia.gov/
TNF, 2003. Sandia National Laboratories.

146

http://www.ca.sandia.gov/TNF
http://www.ca.sandia.gov/TNF


[87] M. Schlatter, J. C. Ferreira, M. Flury, and J. Gass. Analysis of turbulence-chemistry
interaction with respect to NO formation in turbulent, nonpremixed hydrogen-air
flames. Proc. Combust. Inst., 26:2215–2222, 1996.

[88] R. W. Bilger. The structure of turbulent nonpremixed flames. Proc. Combust. Inst.,
22:475–488, 1988.

[89] N. S. A. Smith, R. W. Bilger, and J.-Y. Chen. Modelling of nonpremixed hydrogen jet
flames using a conditional moment closure method. Symposium (Intl.) on combustion,
24:263–269, 1992.

[90] A. J. M. Buckrell and C. B. Devaud. Investigation of mixing models and conditional
moment closure applied to autoignition of hydrogen jets. Flow Turb. Combust.,
90:621–644, 2013.

[91] S. B. Pope. An explanation of the turbulent round-jet/plane-jet anomaly. AIAA
Journal, 16:279–281, 1978.

[92] A. P. Morse. Axisymmetric turbulent shear flows with and without swirl. PhD thesis,
London University, London, England, 1977.
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