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Abstract

Practical inventory settings often include multiple generations of the same product on
hand. New products often arrive before old stock is exhausted, but most inventory models
do not account for this. Such a setting gives rise to the possibility of inter-generational
substitution between products. We study a retailer that stocks two product generations and
we show that from a cost perspective the retailer is better off stocking only one generation.
We proceed with a profit scheme and develop a price-setting profit maximization model,
proving that in one and two generation profit models there exists a unique solution. We
use the profit model to show that there are cases where it is more profitable to stock two
generations. We discuss utility and preference extensions to the profit model and present
the general n-product case.
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Chapter 1

Introduction

The Economic Order Quantity (EOQ) model is one of the building blocks in inventory
management. It can be traced back to 1913 when Ford Whitman Harris, an engineer for
Westinghouse Electric, first presented the model [4]. The basic premise is to try to balance
the cost of ordering inventory against the cost of holding inventory over multiple periods
in a fixed time horizon. The model has been studied extensively and has a rich literature
surrounding it, with research into perishable goods and inventory systems with stockouts.

Each extension to the framework is aimed at making the model match more closely with
what happens in a real inventory system. However, the literature falls short of addressing
inventory systems that stock multiple generations of the same product; a major feature of
real inventory systems. Upon receiving a new batch of goods, retailers often possess older
products from the previous batch. The presence of both new and old goods creates an
opportunity for inter-generational substitution, however the literature is largely silent on
this. We see multiple generations of the same products all the time at the grocery store
(milk with different expirations) on car lots (this years’ model and last years’ model of
the same type of car), with fashion retailers, and the list goes on. Hence, an important
question arises: when is it preferable for a retailer to hold two generations of a product?

In considering multiple generations, we touch upon another important topic: product
pricing. Most EOQ related settings neglect this area and consider the retailer as a price
taker. These settings are concerned with the total cost of the inventory system and leave
product pricing to revenue management. In view of an inventory system with multiple gen-
erations of products, one salient question is: how should we price them? That is, how will
our pricing scheme impact revenue and profit. There are other important questions: how
will the optimal order quantity be affected in the presence of multiple product generations,
and how many cycles will there be?

We present an EOQ model in which the retailer can hold two product generations
and set prices, then arguing that under this setting, profit, rather than cost, is a more



appropriate optimization criterion. Our approach can also be extended to include consumer
utility, which we believe establishes an important link between consumers, prices and
inventory quantities. In the following sections we breifly discuss the historical origins
of the model and some existing EOQ extensions; we consider some of the work already
undertaken for price setting retailers, lay the framework of our approach, and quickly
review the major results.

1.1 Existing EOQ Variants in Inventory Management

In 1918, E.W. Taft published the next major EOQ development after Harris [4]. His
contribution is recognized today as the Economic Production Quantity (EPQ) model and
incorporates the production rate of the item held in inventory. Following Taft, a number
of practitioners would publish (without citation) models so similar to the EOQ and EPQ
that a comprehensive review by Fairfield E. Raymond in 1931 was necessary to determine
the origins of the model [4]. Raymond also wrote a standard exposition for the model that
closely resembles Harris’.

In the decades since Harris and Taft, the EOQ model has been developed extensively.
Many relaxations to the model assumptions have been made, and many extensions to the
model framework have been undertaken. Zhang et al. [24] recognized that in the presence
of a stockout of one product, there might be adverse impacts on related products. They
modify the partial backordering framework to include correlated demand caused by cross-
selling. Under their framework they present a major item (which allows back ordering)
and minor item (without stock outs) with identical order cycle times. The major item has
an independent demand, while the minor item has demand correlated with the major item.
They go on to show the effect of lost sales of the minor item due to back ordering of the
major item. This work represents an important step in linking the demand of one product
with another. Although our framework is not concerned with backorders, we recognize the
importance of a model with cross demand effects and include it in our work.

A great deal of work has been done in the area of perishable goods. Weiss [23] ap-
proached the problem by using non-linear holding costs to approximate the increasing
costs of holding a product in inventory for longer periods of time. Ferguson et al. [5]
applied a variation of the Weiss model in a numerical study to show how the parameters
in the model could be estimated, and demonstrated the cost reductions over the classical
EOQ model. Fujiwara et al. [6] approach the same problem by applying linear and expo-
nential penalty costs (with second order approximations). Their approach leads naturally
to closed form solutions for perishable items, can be extended to included backordering,
and the authors claim it can easily be extended to the EPQ framework. These works are
important steps in dealing with products that have a life expectancy, but neglect a very



real occurrence: two generations of a product available for purchase at the same time. Our
framework employs two distinct generations of the same product with separate but related
demands for each.

Imperfect items form another important class of EOQ considerations. Salameh and
Jaber [16] give a framework for imperfect and poor quality items, showing the effects on
inventory costs. They assume a fixed fraction of incoming inventory is imperfect, account
for the screening time associated with finding the imperfect inventory, and enforce a condi-
tion that the quantity ordered minus the imperfect items would be enough to meet demand
over the period. Khan et al. [§] review a number of extensions to Salameh and Jaber’s
framework by other authors. Extensions include the EPQ model, shortages and backo-
rdering, and inclusions into supply chains. We recognize the importance of this research,
and although our framework cannot directly address these questions, we believe a similar
framework that considers the price of perfect and imperfect products would change the
inventory decisions and should also be considered.

There are a number of other extensions to the EOQ setting including fuzzy (uncertain)
parameters, restocking decisions, production capacity limits and multi-period models. Ex-
cellent summaries can be found in Zipkin [25] as well as in Chan et al. [2].

1.2 Pricing Strategies in Inventory Management

Pricing decisions form a major part of a retailer or supplier’s decisions. Recently there has
been some interest in the inclusion of prices into the EOQ model. Including the concept of
“price” can take many forms. Matsuyama [10] introduces two relaxations independently;
namely that there is a discount to purchase prices for larger orders (similar to bulk dis-
counts) and a new set up cost that depends on the size of the order. These inclusions are
aimed at addressing a more realistic ordering and inventory cost scheme, however they still
assume the retailer is a price taker. By contrast, we do not.

Wang and Tung [22] propose a pricing model for products that are gradually becoming
obsolete (technology or clothing). Their framework employees a time and price dependent
demand rate on a single product. Analysis with their model suggests that multiple dis-
counts provide higher profit than a single discount. This is an important contribution for
two reasons: it uses a profit criterion and recognizes the impact of price on demand. How-
ever, their framework does not address holding multiple generations of the same product.

Mishra and Mishra [I1] also consider deteriorating products in a market with perfect
competition. Their framework employs an inventory dependent demand rate and a linear
demand rate, switching definitions at a predetermined point in the period. They then
employ an algorithm for computing prices which involves computing the marginal revenue



and marginal cost at equilibrium. Their economic framework also assumes the retailer is
a price taker.

By specifying demand as a decreasing quadratic function of selling price, Sana [17] con-
siders an EOQ model with perishable items and price sensitive demand. This framework
employs n non-identical cycles in the unit time, during which the product quality deteri-
orates and the demand is a function of price in each period. The goal is to choose prices
in each period so as to maximize revenue over the entire cycle. The framework addresses
the question of optimal order quantities and optimal prices, however it does not consider
holding multiple generations of the same product.

Other important price setting work includes Rosenberg’s [15] optimal price and inven-
tory decisions for a monopolistic firm compared against return on inventory investment and
Porteus’ [14] work with reducing inventory set up costs in an EOQ framework to reduce
inventory operating cost. Ladany and Sternlieb [9] study the interaction between EOQ
and marketing policies with product selling price playing a role as a driver for demand.
Other work has been done on multi-period models and lot sizing, however it is generally
unrelated to our work as this body of literature is concerned with methods to deal with
variable and uncertain demand.

1.3 Proposed EOQ Extensions

We extend the EOQ framework in two important ways. First we consider a setting in which
there are two generations of the same product: old and new. We show how to explicitly
solve for the optimal order quantities and then prove that when using a total cost criterion,
we never prefer to have two generations. We switch from a total cost criterion to a profit
maximization criterion and try to maximize profit over the cycle thereby allowing retailers
to set order quantity and price. To prevent retailers from setting prices arbitrarily high,
we make demand a function of price. We solve the model for a single generation, provide
conditions for the existence of a unique optimal solution, and explain why these conditions
are satisfied by real inventory systems.

We then formulate the framework for two products, allowing the retailer to set prices
for both generations and the order quantity optimally. The general demand setup allows
for own and cross price effects on the demand for products. We provide conditions for the
existence of a unique optimal solution, and explain why these conditions are realistic in
practise. When we compare the profit maximization framework across the one and two
generation models, we find that when demand substitution between generations is high,
single generation retailers are able to capture more of the demand for older products.
The higher prices charged for products coupled with a better inventory cost structure
make the the single generation setting the preferred choice in the presence of high demand

4



substitution. We find that when demand substitution is low it is more profitable to have two
generations instead of one. Lower demand substitution implies that the single generation
retailer neglects the revenue available from old product, whereas that revenue is captured
fully by the two generation setting.

We consider the impact of demand substitution on product prices, order quantities,
and cycle length. The comparison of one and two generation settings is sensitive to the
choice of price for old products, and we explain the consequences of this sensitivity. We
show how to extend the model to incorporate utility functions and thus connect the link
between consumer utility for products with the optimal prices and order quantities of that
product.

The rest of this thesis is organized as follows: in Chapter [2 we first review the classical
EOQ model and then develop the two generation EOQ model. We then compare the
two models and show definitively that we prefer a single generation under the total cost
criterion. In Chapter [3, we develop the profit maximization model with price setting for
one generation and then extend the model to a two generation setting. We then use a
numerical example to compare the two models across demand substitution and the price of
old products. In Chapter [ we show how to extend the two generation price setting model
to incorporate utility models, specifically the Dixit-Stiglitz model and the Mussa-Rosen
model, and provide a general extension to our model from one to n products. Chapter
concludes and offers some remarks on the possible direction of future research with our
framework.



Chapter 2

Classical EOQ and Two Product
EOQ

In this chapter we first review the classical single generation EOQ model. This EOQ setting
assumes that there is only a single type of product in inventory available for consumers.
We challenge this notion by observing that real inventory systems often have two or more
generations of the same product (e.g. multiple years of the same model of car on a car lot).
We introduce a two generation EOQ model that allows the retailer to have two generations
of the same product: an old product and a new product. We compare the classical EOQ
model to the new two generation EOQ model to find conditions under which retailers might
prefer two generations of products over one and vice versa.

2.1 Classical EOQ

The classical EOQ model deals with a single identical product and tries to minimize the
total cost of the inventory system over a unit time (e.g. per year). To accomplish this, the
model assumes the following [1§]:



1. The demand rate is constant and deterministic.

2. The order quantity need not be an integral number of units, and there are no
minimum or maximum restrictions on size.

3. The unit variable cost does not depend on the replenishment quantity; in
particular, there are no discounts in either the unit purchase cost or the unit
transportation cost.

4. The cost factors do not change appreciably with time; in particular, inflation
is at a low level.

5. The item is treated entirely independently of other items; that is, benefits from
joint review or replenishment do not exist or are simply ignored.

6 The replenishment lead time is of zero duration, extension to a known nonzero
duration creates no problem.

7. No shortages are allowed.

The entire order quantity is delivered at the same time.

9. The planning horizon (unit time) is very long. In other words, we assume that
all parameters will continue at the same values for a long time.

*®

Figure shows the inventory position I(t), where ¢ units of inventory are ordered,
arrive instantaneously, and are then consumed at demand rate D. Thus the inventory
position is I(t) = g — Dt. As soon as all of the inventory is depleted, the next batch of
inventory arrives and replenishes the stock. The time between successive inventory arrivals
is denoted by the cycle T" with inventory replenishment occurring at 1', 27", 3T and so on,
since all the cycles in the planning horizon are identical.

Inventory Position I{t) Inventory Usage D
A Inventory Re-supply

gl — N T TN TN

Figure 2.1: Inventory Position I(¢) for a single product.

In a simple inventory system the goal is the minimize the total cost of three factors:
the cost of ordering inventory, the average cost of holding inventory and the purchase
cost of inventory. The cost of ordering inventory is the order cost K multiplied by the



frequency of orders during the unit time OF. The average inventory holding cost is given
by the unit cost of holding inventory h multiplied by the average inventory over the cycle
I. The purchase cost of inventory is simply the cost per unit of inventory ¢ multiplied
by the demand rate during the unit time D. Thus the total cost over a single cycle is
TC = KOF + hl + Dc.

The order frequency is OF = % and is the number of cycles during the unit time. Each
cycle ends when all of the inventory has been exhausted, or when I(T") = 0. This implies
that I(1T") = ¢ — DT = 0, such that 7" = . Hence the order frequency is OF = %. The

average inventory cost over the cycle is given by the integral I = % fOT I(t)dt, with result
1= 2. Therefore the total cost T'C' is given by



TC(q) = — + — + Dc (2.1)
q 2
where
D = demand rate, per unit time
¢ = cost per unit, per unit time
h = holding cost per unit, per unit time
K = ordering cost per order
q = order quantity

We can examine the behaviour of each component of . The order cost for the unit
time decreases in ¢ since fewer orders need to be made if larger quantities are ordered. The
inventory holding cost increases in ¢, since larger orders obviously imply a larger inventory.
The purchase cost is a necessary cost to the inventory system, but plays no direct role in
determining the order quantity in this basic EOQ model. The order cost and the inventory
holding cost shown in Figure graphed against the order quantity. The variable portion
of the total cost, which is the sum of the order cost and the inventory holding cost, follows
a convex U-shape with a defined minimum. The point at which the order cost and the
inventory holding cost lines cross is also the point, and associated order quantity ¢*, which
minimizes the total cost.

Cycle Cost
A

Total Cost

~

\

Inventory
Holding Cost

;

Order Cost

: >
q* Order Quantity g

Figure 2.2: Total cost vs. order quantity.
Solving |) entails taking the first derivative %€ setting the result to zero, and

dq

9



solving for q. The value of ¢ which minimizes total cost is then

¢ = 1/?. (2.2)

Substituting ¢* back into (2.1)) and simplifying gives the minimum total cost

TC* =2hKD + De. (2.3)

The existence and uniqueness of the minimum can be verified by way of the second order
condition

ETC KD
d2 ¢
TC

Equation || is strictly positive for all values of ¢ > 0 which implies that %—q is strictly

(2.4)

increasing and that function in (2.1)) achieves a minimum at ¢*.

In the next section we develop the two generation EOQ model and follow the same
procedure employed in the development of the classical EOQ model. The notions of order
cost, inventory holding cost and total cost are important to both models. Further, the
shapes of the graphs of these functions and their functional forms turn out to be remarkably
similar between the two models.

2.2 Two Generation EOQ

The motivation for the two generation EOQ model comes from observing that in practise
retailers often stock more than one generation of the same product. Retailers order a batch
of a product, and before that product is entirely depleted they may order a new batch of
products. It may be beneficial for a retailer to hold new products and old products. We
develop a framework to investigate these choices.

In this model, two generations are considered; a “new” product ¢; which is ordered
at the beginning of the current cycle and is consumed at a rate D; leaving behind some
amount at the end of the current cycle, and an “old” product ¢o which is the remaining
product from the previous cycle consumed at a rate D, to be exhausted at the end of the
current cycle. The situation is depicted in Figure|2.3] and considers an infinite time horizon
as in the classical EOQ. Exhaustion at the end of the cycle establishes a clear end cycle
condition as in the classical EOQ model, and ensures that the retailer has two generations
throughout each cycle during the entire unit time for consumers to choose from.

The inventory position for new products is I1(t) = ¢ — Dyt. The decision to be made
is how much of ¢; to order at the beginning of the cycle T'. At the end of T there are g9
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|nVEntﬂw Position ,(U |nventow Usage D

A Inventory Re-supply Inventory Usage D,

Figure 2.3: Inventory Positions for two products.

units of new product left, which implies an end cycle condition I1(T) = g2 = ¢1 — D1T.
Thus the number of new products to order at the beginning of the period is ¢ = ¢o + DT

Next, the inventory position for old products is given by Iy(t) = go — Dot. The value ¢
is determined by the constraint that all old products must be exhausted by the end of the
cycle which implies the end cycle condition I5(7T) = 0 = go — DT Using the old product
end cycle condition, we find that the cycle length is given by T = %—22. We can then rewrite
¢1 = ggm where m = (1 + g—;).

As with the classical EOQ), total cost is given by the sum of order costs, inventory
holding costs and purchase cost during the unit time: TC' = KOF + hI + Dc. The order

frequency is OF = % = %. The average inventory is I = I; + I, where I; = % and

I, = £. Upon substituting for q;, we have 1= w. Therefore the total cost T'C' is

given by

TC(q2) = + (Dy + Ds)c. (2.5)
2 2
where
D, = demand rate per unit time for new products
Dy = demand rate per unit time for old products
q1 = order quantity for new products
g2 = period starting quantity quantity of old products

m :(1+g—;)

Equations (2.5) and (2.1) are remarkably similar in their form. In fact, if we were to
graph the order cost and inventory holding cost components of (2.5)) against quantity ¢o
we would have a picture similar to Figure[2.2] Taking the derivative with respect to g, and

11



applying the first order condition dTC = 0 yields

2K D, 1
y = . 2.
% \/ h \/m + 2 (2:6)

Solving for ¢5 in (2.6)) allows us to determine the true quantities of interest; the optimal
order quantity of new products ¢ and the optimal total cost T'C"* which are

-5

= \/ QhKDQ\/ m + 2+ (Dl + DQ)C. (28)
Equations (2.6 through (2.8) have a similar form to equations (2.2)) and ({2.3).

The existence and uniqueness of the minimum can be verified by way of the second
order condition

d*1C KDy
dqg3 @
Equation ([2.9) is strictly positive for all values of ¢ > 0 which implies that ch is strictly

increasing and that function in (2.5)) achieves a minimum at ¢5. We also note that this is
true for all Dy > 0.

(2.9)

There are two interesting cases with the two generation EOQ model that are worth
mentioning: the case where Dy = 0 and the case where Dy = 0. When D; = 0, the model
specifies the ordering of ¢ new products at the beginning of the cycle and holding them
for the entire cycle so that there are go old products at the beginning of the next cycle.
Clearly, ordering new products and holding them when there is no demand for them is a
sub-optimal policy, but we question the usefulness of employing a two generation model if
there is only demand for a single generation. The other interesting case is when Dy = 0.
In this case, We take limp, o of equations through . Equation reduces to
g2 = 0, while and . ) become and respectively. Hence, in the presence

of zero demand for old products, the two generation EOQ model neatly reduces to the
classical EOQ model.

2.3 Classical vs. Two Generation EOQ

Having developed a framework under which a retailer is able to stock two different gener-
ations of the same product, we pose the following question: under what conditions would
a retailer choose such a strategy? In the two generation setting there is demand for new

12



and old goods. In the single generation setting, there is only one good, the new good. How
does the one generation model compare to the two generation model when there is demand
for two goods? The goal is to compare the total cost of having a single generation against
the total cost of having two generations.

We begin by assuming that in the presence of only one new good some fraction of
demand for old goods would be shifted to new goods. Specifically, let D = Dy + aDs,
where 0 < o < 1 is the fraction of old demand that would shift in a one generation
setting (v = 1 corresponds to full substitution of demand). By constructing the ratio

T%"e, which is 1} divided by 1} we find that if 2<0me < | we prefer a one generation

Toi‘:wo TC%’UJO
setting. Otherwise we prefer a two generation setting. This ratio is

TChue /20K (Dy+ aDs) + (D1 + aDs)c

TChyo  /2hK(Dy + 3Dy) + (D1 + Dy)c

(2.10)

From (2.10) it is clear by inspection that TCone < 1 for all values of a, and only when

TCo
Dy = 0 does ;g?:z

we always prefer a single generation setting and that a retailer has no incentive to stock
multiple generations of the same product.

= 1. This result implies that from an inventory cost perspective,

Our motivation for developing a two generation EOQ model was to explore why retailers
in practise offer two generations of the same product. If the total cost over the unit time of
holding two generations is at best the same as holding only one generation, and otherwise
worse, we suspect that total cost might not be the right criterion for comparing these
two settings. In the next chapter, we move from a cost minimizing framework to a profit
maximizing framework to explore the problem further. Not only will the retailer be able
to control the optimal order quantity, but they will also be able to control product prices.

13



Chapter 3

The Price Setting Retailer

In the previous chapter, we discussed the classical EOQ model and extended it to the
two generation EOQ model to explore the conditions under which a retailer would prefer
to stock two generations of the same product. We found that from an inventory cost
perspective, a retailer never prefers to stock two generations. Yet, we observe retailers in
practise stocking multiple generations of a product. Thus, we suspect that total inventory
cost during the unit time might not be the right criterion to consider and we move to a
profit maximization setting.

First, we examine a retailer that stocks one generation and we create a profit function
that considers the profit during the unit time from a single generation and the inventory cost
during the unit time given by the classical EOQ model. We then repeat the formulation
for a retailer stocking two generations by considering the revenue during the unit time
when there are two generations and the inventory cost during the unit time given by the
two generation EOQ model. We conclude by comparing the two models and show the
conditions under which a retailer would prefer one versus two generations.

3.1 One Generation Price Setting Retailer

Consider a retailer who has to make two decisions: what quantity of inventory to hold
to minimize the cost of holding inventory and what price to charge for the inventory to
maximize revenue. We need to create a profit function that increases from higher prices.
However, we also need to account for the fact that higher prices negatively impact demand
and reduces the profit function. Thus we make demand a function of price.

For ease of use we will assume a linear demand rate as commonly assumed in the
economiic literature. Let D = § — ¢p, where § > 0 is the base demand (or intercept) and

14



¢ > 0 is the rate of substitution between price and demand (or slope). This simple set up
penalizes higher prices by lowering demand. We require that D > 0 to maintain a realistic
interpretation of demand, and this implies that 0 < p < %.

The profit during the unit time is naturally broken into revenue and cost such that
m(p,q) = R(p) — TC(p,q). The revenue during the unit time is given by R(p) = pD =
p(6 — ¢p), while the cost is simply given by the classical EOQ formula (which assumes ¢ >

0), but with a price dependent demand rate such that TC(p, q) = @ + % + (0 —op)c.
The profit function is then
p,0) = (o= )5 — o) — 2 3.)
The gradient of is
Vr(p,q) = %_‘ifp__f) N (3.2)

q> 2"

Enforcing the first order condition V7 (p*, ¢*) = 0 and solving the two gradient equations
*2
o
and substituting this into the first equation leads to a third order polynomial hq® — (6 —
dc)Kq + K?¢ = 0. One of the three roots is real (the other two are a complex conjugate
pair). The structure of the real root contains higher order radicals and evaluating it with
the problem parameters can also yield a complex solution. We instead seek a computational

solution to the gradient equations.

gives values for p* and ¢*. Solving the second gradient equation for p gives p* =

An optimal solution (extreme point) is guaranteed to exist only if certain second order
conditions hold. Specifically, the determinant of the Hessian must be positive and the top
left entry must be negative.

Proposition 1: Consider the one generation price setting retailer with demand func-
tion D = 6 — ¢p. There exists a unique solution (p*,q*) that mazimizes the profit function

:

Proof. The Hessian of the profit function H[r(p, q)] is given by

S ke
Hin(p,q)] = K¢ _2K(g—¢p) . (3.3)
q? @
Since ¢ > 0 we are guaranteed that the top left entry is negative. The determinant of the
Hessian is KO(Ké— 4905 — op)
— 240 — @p
|H[r(p, q)]| = - . . (3.4)

15



As long as |H[m(p,q)]| > 0, we are guaranteed that there exists an optimal solution, and
this can be achieved if K¢ < 4¢(d — ¢p). Equivalently, in (3.4]) we require

(0 —op) > ]Af—j. (3.5)

The above inequality does not specify a solution: it cannot be solved for ¢* when given
p*; similarly it cannot be solved for p* when given ¢*. Inequality states that for a
unique solution to exist, demand must be greater than 0 (since ¢ > 0), and consequently
p < %. Positive demand necessarily exists for real inventory systems (without returns)
and is assumed by our model. Thus, there will always exist an optimal solution (p*, ¢*) to
the one generation price setting retailer problem over the set {¢ > 0U0 < p < %} that

maximizes the profit function (3.1). O

We have now developed a price setting model that a retailer could employ when stocking
a single generation. In the next section, we develop a price setting model that a retailer
would face when stocking two generations of the same product.

3.2 Two Generation Price Setting Retailer

Having developed a price setting model applicable to a retailer stocking only a single
generation, we repeat the process for a retailer stocking two generations. Our goal is to
compare these models and determine which strategy retailers prefer.

The retailer now has to maximize profit with two generations present. In establishing
a relationship between prices and demand, we need to ensure that increasing the price of
a product results in a decrease in the demand of that product. We might also like that
increasing the price of new products results in an increase in demand for old products[] Let
demand for new products be D1 (p1, p2) = 61 — ¢1p1 + ¢12p2 and demand for old products
be Dy(p1,p2) = 92 — ¢ap2 + ¢p21p1. The parameters ¢; > 0 and ¢;; > 0 allow flexibility in
specifying the slopes of the demand functions and have necessary dimensions, while §; and
09 are simply intercepts specified as a base “demand rate per unit time”. For simplicity of
notation, we occasionally refer to the demand functions D;(p1, p2) and Dy(py, p2) simply as
Dy and D, respectively. We also require that Dq(p1,p2) > 0 and Ds(py, p2) > 0 to maintain
a realistic interpretation of demand. This bounds the prices as follows: 0 < p; < ‘SIJF(‘Z%*”Q

5
and0§p2<%.

'We ignore pathological examples such as “Giffen” goods, however the framework can be easily modified
to accommodate them.
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The profit during the unit time is 7 (p1, p2, ¢2) = R(p1,p2) — TC(p1, p2, g2). The revenue
contribution is R(p1, p2) = p1 D1 + pa D2 and the cost contribution is the two product EOQ
model (2.5 with price dependent demand rates. Thus the full profit function is

7(p1, P2, q2) = (P1 — ¢) (01 — P1p1 + P12p2) + (P2 — ) (82 — Pap2 + P2111)

_ K(62—¢opat+é21p1)  hge 3+ (01 —¢1p1+¢12p2) (36)
q2 2 (02—gapa+ep21p1) | °

The gradient equations are

Dl—(p1—0)¢1+(p2—c)¢21—%4‘%<§—12+¢%2D1>

Vr(p,pa,g2) = | Da— (p2 =)o + (p1 — ¢)pp — 522 — 12 (%j + %?) . (3.7)
KDo> h Dy
g 2 (3 + D—2>

Enforcing the first order condition V7 (pi, p3, ¢5) = 0 and solving the three gradient equa-
tions computationally gives the values for pj, p5 and ¢5. We can then solve for the value
of 7* and ¢f which is the order quantity at the beginning of the cycle.

Establishing general conditions for optimality in the two product case is more chal-
lenging than in the one product case, since there is no natural analog to the process we
used in the one product case. But it would be nice to find conditions under which an
optimal solution is guaranteed to exist. One strategy might be to compute the Hessian
H[m(p1,p2,q2)]. If the diagonal entries of the Hessian are negative (H[m;] < 0), which
they are, and diagonal dominance of the Hessian holds (|H[m;]| > >, [H[m;]|) then all
of the eigenvalues of H|[r] are negative. This is a convenient result, but ensuring diagonal
dominance of the Hessian turns out to be incredibly difficult.

Our approach will be to consider the profit function and apply the following theorem:

Theorem ([1], pg. 54): A non-negative linear combination of concave functions is
also a concave function. That is, if fi(-) : X — R,i = 1,2,...,m, are concave functions on
a convez subset X C R", then f(x) = > " a;f'(x) where a; € Ry, i =1,2,...,m, is also
a concave function on X C R"™.

To find conditions for optimality, we return to the profit function m(py, pa, g2) and break it
into its separate parts R(py,p2) and T'C(p1, p2, q2). We then establish concavity conditions
for each part, and consequently the whole profit function.

Proposition 2: Consider the two generation price setting retailer with demand func-

tions Dy(p1,p2) and Do(p1,p2). If ¢1 > 0 and 41y > (1o + ¢21)?, then there exists a
unique solution (pi,ps,qy) that mazimizes the profit function @
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Proof. The contribution from revenue is R(p1, p2) = p1(d1 — d1p1 + d12p2) + pa(da — daps +
¢91p1). The Hessian is

—2¢1 P12 + Po1

H[R(p17p2)] = ¢12 + ¢21 _2¢2

(3.8)

The determinant of the Hessian is |H[R(p1, p2)|| = 4¢102— (¢d12+¢21)?. For concavity of the
revenue contribution R(py, p2) we require —2¢; < 0 and |H|[R(p1, p2)]| > 0, or equivalently

¢1>07

4¢1¢2 > (¢12 + ¢21)2. (39)

The cost contribution is

D1 (p1,p2)

KDQ(p17p2) has (3 + D2 (p1,p2)
+
q2 2

TC(p1,p2,q2) = ) + (D1(p1,p2) + Da(p1,p2))c.  (3.10)

TC(p1,p2,q2) includes the demand functions D;(py, p2) and Ds(p1,pe). We have already
specified that Di(py,p2) > 0 and Dsy(py, p2) > 0. Once selected, the demands are constant
from the point of view of T'C'(py1, p2, ¢2), which then simply becomes T'C(qz) from ({2.5)).
The choices of p; and p, can be thought of as defining a family of T'C'(¢,) functions. Every
function in this family exhibits similar behaviour; they are all convex (as shown before
with (2.9)). Among them, there will be a p; and p} (optimal to 7(p1,p2,¢2)) that define
a particular instance of T'C'(g2). Therefore positive demand guarantees strict convexity of
TC(p1,p2,q2), and strict concavity of —T'C(p1,pa, go).

We conclude by applying the theorem: the profit function m(p1,ps2,q2) = R(p1,p2) +
(=TC(p1,p2,q2)) is concave if holds. Thus, there will always exist an optimal solution
(pt,p5,q5) to the two generation price setting retailer problem over the set
{2 >0U0 < p < ‘Sﬁg%m U0 < py < %} that maximizes the profit function

(3-6)- O

The price setting model allows us to set prices, but it does not require us to. We have
the flexibility to consider a setup where the price of new products is known and the retailer
can then choose the price of old products. Or we can fix the price of old products and allow
the retailer to choose the price of new products. In the next section we will compare both
the one and two generation price setting models and see whether or not retailers prefer to
stock one or two generations of the same product.
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3.3 One vs. Two Generation Price Setting Retailers
- Numerical Illustration

Now that we have both one and two generation price setting models that consider the profit
criterion, we can begin to shed some light on our original observation: why in practise do
retailers sometimes stock two generations of the same product?

We will assume, as we did when comparing EOQ models, that in the presence of only
one new good, some fraction of demand for old goods will shift to new goods. Specifically,
let D(py) = D1(p1,p2) + aDs(p1,p2) with 0 < a < 1. Depending on how much demand for
old products is captured when the retailer only stocks new products, it may or may not be
more profitable to have two product generations; the choice of o will affect the decision.
Additionally, the price of old products cannot be determined by the single generation
setting, so we must set it as a parameter for the single generation model; the choice of po
will affect the decision. Finally, our analysis is valid only if a retailer selects one of the two
strategies for the unit time; we will not permit the retailer to switch inventory strategies
over the planning horizon.

Let K =100, h = 0.2, ¢ = 2, 0y = 100, 9o = 80, ¢1 = 1, ¢ = 1.5, ¢y = 0.1 and
¢21 = 0.15. The optimal solution to the two generation price setting retailer problem is
p} = 55.05, p5 = 32.52, qf = 216.38, ¢ = 91.82 and 7* = 3684.22. Now we consider the
one generation price setting model with the same parameters. We shall investigate how
the choice av changes the profit, price, and order quantity, all while taking p, = p; = 32.52
from the two generation setting.

Figure shows how profit changes as o changes. As the substitution « increases,
we observe the profit in the one generation setting increases as well, since increasing «
implies that more of the demand for old products can be captured by the retailer even
when there are no old products offered for sale. When « is greater than about 0.52, it is
more profitable to have only new products. If the substitution is high, the profit in the
one generation setting surpasses the two generation setting for two reasons. First, more
consumers are purchasing the new product, which has a higher price than the old product,
and thus provides more revenue per unit sold. Second, the inventory costs are lower for
the one generation retailer, because they are not holding new products during the current
cycle so that they have old products to sell in the next cycle. The combination of these
two effects eventually allows the one generation retailer to surpass the profit of the two
generation retailer when demand substitution is high.

We observe that, in this scenario, when « is less than about 0.52, it is more profitable
to have both old and new products. If demand substitution is low, the profit from the one
generation setting is lower than the profit from the two generation setting. This is due to
the fact that the single generation retailer neglects much of the revenue possible from the
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demand for old products. Despite the higher inventory costs, the two generation setting
captures all the revenue available from the demand for both products, and is the preferred
strategy when demand substitution is low. Note that the profit from two generations is
not a function of a and remains constant at 7* = 3684.22.

One Generation

4500 1

4000 4

Profit

3500 4 r =4 = 7 _______

Two Generaticns

] 20 2
3000
4 10_
L e e e L EE S Eos S E R S | 0_'|-|'|'|'|'|'|'|'|'|
01 02 03 04 05 06 0F 038 09 10 01 02 03 04 05 06 0F 08 03 10
Substitution Substitution
(a) Profit vs. Substitution a. (b) Prices vs. Substitution .

Figure 3.1: Profit and Prices vary with Substitution, p, = 32.52, K = 100, h = 0.2, ¢ = 2,
51 = 100, 52 = 80, ¢1 = 1, ¢2 = 15, gblg = 0.1 and ¢21 = 0.15.

Figure shows how the price varies in the one generation model as substitution
a changes. The price in the single generation setting is almost always higher than both of
the prices in the two generation setting, primarily because substitution means the retailer
can afford to charge higher prices that reduce demand but improve profit. Note that even
when all of the demand is captured, the price in the one generation setting is not the sum
of the prices in the two generation setting. Ever higher prices eventually destroy demand
and reduce profit, so there is a trade-off when increasing the price. Additionally, the model
cannot violate the positive demand condition given by (3.5).

Figure shows how the quantity varies in the one generation model as substitution
« changes. Again, note that even when all of the demand is captured, the quantity in the
one generation setting is not the sum of the quantities in the two generation setting. This
is because the rising order quantity incurs higher inventory holding costs, so the model

adjusts by increasing the order frequency (reducing the cycle) to balance the total cost
during the unit time, which is shown in Figure |3.2(b)|

Now we consider the one generation price setting model with the same initial parame-
ters. We shall investigate how the choice ps changes the profit, price, and order quantity,
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Substitution Substitution
(a) Quantity vs. Substitution «, ps = 32.52. (b) Cycle vs. Substitution «, ps = 32.52.

Figure 3.2: Quantities and Cycle vary with Substitution, p, = 32.52, K = 100, h = 0.2,
Cc = 2, (51 = 100, (52 = 80, 9251 = 1, ¢2 = 15, ¢12 = 0.1 and ¢21 =0.15

all while taking o = 0.52, the approximate indifference point in the previous analysis. We
expect that when py, = 32.52 we will be indifferent to either setting. We observe in Figure
that the profit is sensitive to po; lower prices for older products result in a prefer-
ence toward stocking only new products, while higher prices for older products result in a
preference for stocking both generations. This result is intuitive: as the price of the older
product increases, it becomes more profitable to stock it.

Figure shows that as the price of old products increases, the price the retailer
can charge for new product also declines. This result is counter intuitive, and stems from
the construction of the combined single generation demand function: D(p;) = (01 + ady) —
(p1 — agor)p1 — (g — P12)p2. Because of the form of the demand function, increases
in the price of old products actually cause demand for new products to decline as WGHEI
To counteract this, the retailer must charge lower prices for the new product to maintain
demand. Consequently, D = D; + aDs may not be the best construction to explore how
the change in the the price of old products affects the price of new products, since we
would expect the increase in price of old products to increase demand for new products.
The order quantity in the single generation setting declines as the price increases. This is
because the higher prices are reducing demand, and so smaller orders (Figure [3.4(a)) are

2This is not true for all .. If o > % then increases in py cause decreases in D(p;). However, if a < %

increases in po cause increases in D(p;). If a = % changes in ps have no effect on D(p1).
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(a) Profit vs. Price of Old Product ps. (b) Prices vs. Price of Old Product ps.

Figure 3.3: Profit and Prices vary with Price of Old Product, o = 0.52, K = 100, h = 0.2,
Cc = 2, (51 == 100, (52 = 80, qbl = 1, ¢2 = 15, ¢12 = 0.1 and ¢21 = 0.15.

made less frequently (Figure [3.4(b)).

In summary, the choice of o and py clearly affect the results when comparing the two
price setting models. Increasing demand substitution a eventually makes holding only a
single generation a more profitable choice. When consumers of old products are unwilling
to purchase new products, the two generation setting is the preferred choice. Increasing
the price of old products p, eventually makes holding two generations the more profitable
choice. Methods for estimating o and justifications for using a certain ps when comparing
these two frameworks are outside the scope of our discussion; we simply state that care
must be taken in choosing these parameters.

We have demonstrated that in a profit maximization setting when retailers are allowed
to choose product prices, it may be more profitable for a retailer to stock two generations
of a product instead of just one. In the final chapter, we will consider a further extension
to the two generation price setting model that uses consumer utility as the force behind
demand, and we will generalize the two generation model to allow for more than one
product type.
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Chapter 4

Utility Function Extensions and the
General Case

The motivation for the previous chapters was to find out why in practise retailers may
choose to stock two generations of the same product. Now that we have shown clearly that
there are cases when a retailer will prefer to stock two generations, we further extend the
model for the two generation price setting retailer. In this chapter we show how to use
consumer utility to derive the demand for consumers. We view this as the next natural
step in the process of linking inventory quantities to consumer behaviour. We then present
the general n-product two generation profit maximization model - the natural extension
to to the two generation price setting retailer - and give conditions for the existence and
uniqueness of the solution.

4.1 Price Setting Retailer with Dixit-Stiglitz Utility
Functions

Demand for retail goods ultimately stems from consumer utility for those goods. If we can
connect consumer utility to demand, and then demand to inventory quantities, then we can
better understand the link between consumer preference and inventory decisions. Using
the price setting model, we will employ utility functions proposed by Dixit and Stiglitz to
generate consumer demand.

The Dixit-Stiglitz [3] consumer problem employs a two variable quadratic function
U(dy,dy) that forms a concave surface specified by the parameters «;, §; and . The param-
eters a; and f; are valuation parameters for product ¢, while ~ is a substitution parameter
between products ¢ and j. Each consumer faces the following constrained maximization
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problem when attempting to maximize his/her utility subject to a budget constraint:

Maximize U(dl, dg) = Oéldl + OéQdQ - %Bld% - %ﬁgd% — ’)/dldQ

subject to p1d1 + p2d2 =m (41)

where o; > 0, 8; > 0, v > 0 and m > 0.

The method for solving this problem is to form the Lagrangian function £(dy,ds, \) =
U(dy,ds) + A(m — p1dy — pads), and solve the gradient equations VL(dy,da, A) = 0, which

leads to oL
2d; =a1—51d1—7d2—/\p1 =0,

a5 = 02 — Pady — ydy — App =0, (4.2)

8 =m — pidy — pady = 0.

The first two equations can be re-arranged and divided into the form gg/ gql = zl,

which relates the marginal rate of substitution for the consumer to the slope of the budget
constraint Bl This ratio leads to the inverse demand curves

p1=oq — Bidy — vda,

4.3
P2 = Qg — PBody — ydy. (4.3)
The equations in (4.3) can be solved for the demands d; and dy to give
_ a1flo—any B v
dy = /5}1522—722 ,31,322—72])1 + /81,32_721727
(4.4)

_ agfi—o1y B1 ol
b= 55—F ~ BhP2 T FpPL
The form of the equations in (4.4]) follows the same format as the demand functions we

used in the two product price setting model. We can use that same model once we make
the following substitutions

_ a1fa—asy _ __ B _ o]
61 = BiB2—2 ¢1 — BiB2—72? ¢12 — BiB2—72
(4.5)
_ amfi—a1y _ B1 _ o
52 = BiBa—2 ¢2  B1fa—72? ¢21 — BiBa—2"

As long as 132 > 72, then equations (4.5)) satisfy the optimality conditions (3.9) and
are valid for use in the two generation price setting model. These expressions provide a

concrete way of linking consumer preference to the inventory decisions of a retailer without
creating any new mathematical complications. We believe this to be an area of further
interesting research.

30mitting the budget constraint merely removes the link between utility and a particular budget, but
we still retain the information about consumer preference.
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4.2 Price Setting Retailer with Mussa Rosen Income
Utility Functions

In the previous section we showed how Dixit-Stiglitz utility functions could be used to
generate demand for the two generation price setting retailer. We now show how to adopt
the Mussa Rosen Income Utility framework.

The Mussa Rosen [12] framework assumes that consumers lie on an income distribution
0 <7 < ®. Each product has a utility curve, which depends on each consumer’s income.
Specifically, let u; = iy — p; and us = iy — py for new and old products respectively,
where we assume that oy > as and p; > ps. We are interested in the situation depicted in
Figure 4.1l For those consumers who have positive utility generated from either product,
they demand the product with greater utility. Accordingly d; and d, denote the demand
for new and old products respectively.

u
A

Figure 4.1: Mussa-Rosen Income-Utility curve for two products

We can solve for d; and ds explicitly in terms of the prices, since d; = 1 — ¢** and

dy = 1™ —4*, by finding the intercept i* = Z—Z (consumers who are indifferent to consuming

old products or no product) and the crossing i** = 2=£2 (consumers who are indifferent
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to consuming new products or old products). Thus, the demands are

dy = & — bL=p2
al—asg’
(4.6)
_ pi=p2 _ P2
d2 - ai—oi a22 :
The expressions in (4.6 can be re-arranged into the following
_ 1 1
dy =@ — a1—a2p1 + Ocl—azpz’
(4.7)

d2 = _(al_aoiQ)OQPQ + aliazpl'

We can then match the parameters from (4.7)) to the demand parameters in the two product
price setting model as follows

=0, =7 =g

aj—ag’

(4.8)

0=0, ¢r=%e, 2= 50

The parameters in always satisfy the optimality conditions , so they are valid

for use in the two generation price setting model. The expressions differ dramatically

from what one might expect for demand parameters. For example, d; = 0 implies there

is no base demand for old products in the model. Further, three of the four elasticities

are identical. Nonetheless, the formulation satisfies the mathematical requirements of our

model. Expressions provide a concrete way to link consumer utility and income to

inventory prices and quantities. If a retailer can estimate consumer income and utility for

new and old products, it can determine the precise prices to set and quantities to hold to
maximize profit.

4.3 mn-Product Two Generation Price Setting Retailer

In Chapter [3] we introduced a price setting retailer that could choose between stocking
one or two generations of the same product type (e.g., two different years of the same car
model). In this section, we present a general formulation that allows a retailer to stock
two generations of n different products. The goal of this formulation is to capture how
interaction between demands for different types of products and across generations affect
the quantities of those products that the retailer stocks.

The general situation can become complicated quite quickly. Some of the different
product types may come from the same supplier, so replenishment of those products could
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be linked. We assume that each of the products is shipped from an independent supplier;
the cost to order and replenishment of different products is independent.

The demand for each product is affected by its own price and the price of all the other
product types and generations. The general demand function for product ¢ of age j is

Dij(p11, P12, P21, P2z - - -, Pt Pn2) = 0ij + Z DijhiPrt- (4.9)
k.l

where ¢;;1; is the elasticity or substitution between product i of age j and product k of age
. We assume D;;(p11, p12, P21, D225 - - -, Pnu1s Pn2) > 0, with base demand d;; > 0 and own
price elasticity ¢;;;; < 0. The cross elasticities ¢, for kl # ij could be either positive or
negative if products are substitutes (then ¢ > 0) and if products are complementary

(then ¢;;1 < 0). Each price is bounded: 0 < p;; < i Z(’y)#(”) Digkt
i51]

Individual profit functions for each product type follow the form of (3.6) and are

Ti(Pi1, Pias Giz) = Ri(p11, P12, P21, P22, - - - Pt Pr2) — T Ci(pir; Piz, qiz). The retailer’s full profit
function over the unit time is the sum of each individual profit function for each product

™= Zﬂ'i(pilapi%qﬁ)- (4-10)

=1

Equation (4.10)) is simply a composition of revenue functions and cost functions, all linked
together by demand functions. From this, we note that the revenue contribution is

R(pi1, P12, 21, P22, - - -, Puts Pn2) Z R; = szlDzl + piaDio. (4.11)

Equation (4.10)) can be solved by enforcing the first order condition V7 = 0 and solving
3n gradient equations for p};, p, and ¢5, ¢ = 1,...,n. We now provide conditions for the
existence and uniqueness of the optimal solution.

Proposition 3: Consider the n-product two generation price setting retailer with demand
functions D;;(p11, p12, P21, P22s - - -, Pn1s Pn2) fori=1,...,n. If the Hessian matric
H[R(p11, P12, P21, P22, - - - s Pnls Pn2)] 8 megative definite, then there exists a unique solution

(ply, Diyy aly) for all i =1,...,n that mazimizes the profit function .

Proof. Recall the Theorem ([1], pg. 54) from Section [3.2] We can prove that the profit
function (4.10)) is concave and has a unique solution if it is composed of concave functions.
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The Hessian matrix H[R(pi1, p12, P21, P22, - - -, Pnl, Pn2)] Of revenue contribution (4.11)) is

201111 G2 + G211 Q21 F 2111 oo Plinn T Pt |
d1112 + P1211 201212 G1221 + P2112 .- D12nn + Onni2
HIR] = 1121 + P2111 P1221 + P2112 202191 cov G21pn + Orn21 (4.12)
L Cbllnn + ¢nn11 ¢12nn + ¢nn12 ¢21nn + ¢nn21 CC 2¢nnnn

H[R] is composed entirely of known parameters, so determining whether the matrix is
negative definite can be done computationally. If the Hessian H|R| is negative definite,
then the function R(p11, P12, P21, P22, - - - s Pu1, Pn2) 1S strictly concave. Since we have specified
that the demand functions D;; > 0 and D;s > 0, each total cost function T'C;(p;1, pi2, ¢i2)
reduces to an instance of T'C;(g;2) (depending on the particular value of the demands), all
of which must be strictly convex (as shown before with (2.9))). Thus each —T'C;(ps1, pia, ¢iz)
is strictly concave.

We conclude by applying the Theorem ([1], pg. 54): the profit function
T = R(p11, P12, P21, P22 - - - Pt Pn2) — D iy TCi(pin, Piz, Giz) is concave if the Hessian H[R]
from (4.12)) is negative definite. Thus, there will always exist an optimal solution (p;;, gj)
to the n-product two generation price setting retailer problem over the set {g» > 0U0 <

dij— i 5y Pij . .
pij < — Z(’“’l#“’”%kl} foralli=1,...,nand j =1,2. O

Dijij

The n-product two generation model allows the retailer to examine the interaction
between different product types and product generations, and how it effects optimal prices
and order quantities. A retailer may be a price taker for some products and have the
opportunity to set prices for others; this framework is flexible enough to consider a variety
of such situations and to undertake a study of how changes between product types and
product ages affect overall profit and inventory decisions. We believe this extension to be
an area of further interesting research.
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Chapter 5

Conclusions

Our work is motivated by the observation that retailers in practise often stock multiple
generations of the same product. We considered the relevant inventory management lit-
erature and concluded it did not address this specific situation. Using the classical EOQ
model as a starting point, we developed a two generation EOQ model that allowed retailers
to simultaneously hold new and old products over the entire planning horizon. We then
showed that from a total inventory cost perspective over the planning horizon, having two
generations is always more expensive than having one, and proposed to look at the problem
from a total profit view point.

The profit maximization model allowed for retailers to set order quantities as well as
prices, and we showed that under such a scheme there are clearly cases where a retailer
would prefer to stock two generations instead of one generation and vice versa — they
pick the more profitable strategy. But the more profitable strategy depends on how much
demand for old products the one generation price setting retailer can capture. We showed
that in situations where consumers of old products are unwilling to purchase new products,
the two generation setting is the superior choice.

With a better understanding of why retailers in practise prefer two generations, we then
considered what motivates demand for a product. The goal here was to link inventory
decisions with consumer preferences. We showed how this might be done using Dixit-
Stiglitz utility functions, as well as the Mussa Rosen income-utility framework. Within
these frameworks, if a retailer can estimate consumer utility (and income), then optimal
prices and quantities can be found that maxmimize the retailer’s profit. Our model is
robust, and we expect there are other utilty frameworks that can be adapted to it. We also
considered the general n-product two generation model with price setting extension, and
gave conditions for the existence and uniqueness of a solution. We think these extensions
are important areas of further research.
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The two generation EOQ model we developed can easily be extended to include more
product generations for further investigation. We expect that a price setting model with
greater than two generations would exhibit similar behaviour to the two generation price
setting retailer model we discussed. Interesting questions begin to arise: are three gen-
erations better than two, and where does demand for the third product go if there is no
third product — to the first generation, second, or perhaps both? We can also extend the
model in other important ways to study and quantify the effect of end period scrap on to-
tal cost and profit. The classical EOQ setting is an important building block in inventory
management, an we believe it can still be used to find new insight into existing problems.
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