
The Intentional Base-on-ball Phenomenon in Baseball: 

A Statistical Analysis and Strategic Recommendations 

 

by 

 

Andrew Kappy 

 

 

 

A thesis presented to the University of Waterloo   

in fulfillment of  

the thesis requirement for the degree of   

Master of Applied Science 

in  

Management Sciences 

 

 

 

 

 

Waterloo, Ontario, Canada, 2005     

©Andrew Kappy, 2005 



 ii

Author's Declaration for Electronic Submission of a Thesis 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 

thesis, including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 



 iii

Abstract 

 

The game of baseball is amenable to a variety of strategies that affect short-term 

outcomes.  This paper employs regression analysis, simulation, and cognitive analysis of 

mental biases to analyze the strategic scenario known as the “Intentional Base-on-Balls” 

and proposes a model to explain that strategy and predict its effectiveness. 

The results of this study suggest that managers are prone to Type II errors, that is, 

issuing an Intentional Base-on-Ball in a situation where objective analysis suggests 

otherwise.  Results further suggest that the ratio of Type I errors to Type II errors is 

disproportional to the ratio of their respective costs.  This imbalance points to a 

subjective component to the decision-making process, one that can be explained by 

biases and cognitive errors. 

The results and model described in this paper may allow managers to avoid future 

mistakes and improve their decision-making ability. 
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1.0 Introduction  

In major league baseball, there is an action called the intentional base-on-balls 

(IBB), whereby a manager will make a strategic decision to instruct his pitcher to 

intentionally impart four consecutive unhittable pitches rather than allow the opposing 

batter the opportunity to swing freely.  Also referred to as an intentional walk, the IBB is 

in theory a means of minimizing risk.  The walk is usually used in the three following 

situations.  1) In order to set up a force out when first base is open with a runner on 2nd or 

3rd base; 2) In a similar situation, to set up a double play; and 3) when the manager is 

afraid of the offensive potential of the current batter and would rather pitch to the 

subsequent batter.   

While the use of the Intentional Base-on-Ball has its merit, and is beneficial in a 

number of situations, it can be argued that managers have recently resorted to this tactic 

as a projection of a particular bias as opposed to a rational strategic decision.  For 

example, on June 22nd 2003, San Francisco Giant outfielder Barry Bonds was 

intentionally walked twice by the Florida Marlins with the bases empty, once with one 

out and once with two outs.  Although this is a rare occurrence, it leads one to question 

the motives of the manager.  Was he fearful of the offensive player, or was his faith in his 

pitcher so little that he would rather walk a batter than face him in a situation where only 

a home run would directly lead to a run scored?  Adding to the complexity of determining 

the answer is the fact that Barry Bonds, during that same 2003 season, hit a homerun only 

8.7% of his at-bats — roughly once every 11.5 chances. 

This paper will attempt to analyze the strategic decision-making process with 

respect to the IBB, and the biases inherent in that process.  In addition to these primary 
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concerns, the paper will attempt to confirm two hypotheses.  The first states that 

managers are tempted to offer an IBB in a situation where statistically it is not their most 

effective tactic. The second hypothesis states that managers are influenced by a number 

of biases and predispositions that will pressure them to vary from the normative model.  

These biases and predispositions include loss/risk aversion, incentive bias/agency 

problem, path dependence, confirmation bias/availability bias, regret theory/omission-

commission, and representativeness. 

The problem can be summarized in the following chart, which shows the four 

possible scenarios involving an IBB problem. 

 

Suggestion 
 Pitch Walk 

Pitch A B A
ct

io
n 

Walk C D 
 

 

Boxes ‘A’ and ‘D’ represent scenarios where the normative model and the 

manager’s decision agree.  In these situations, no biases are presumed to be inherent and 

little investigation needs to be conducted. 

The focus of this paper will be on Boxes ‘B’ and ‘C’.  Box ‘B’ represents a Type I 

error whereby the manager should have instructed the pitcher to intentionally walk the 

batter, but chose to order a pitch.  Box ‘C’ represents a Type II error whereby the 

manager should have instructed the pitcher to pitch, but chose to issue an IBB.  In these 

two situations, the normative model and the actions taken do not agree and are possibly 

influenced by a combination of biases. 
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I hypothesize that, in the case of IBB, Type II errors are more prevalent than Type 

I errors after taking into account the associated costs, or: 

 

Freq(Type II Errors)*Cost(Type II Errors) > Freq(Type I Errors)*Cost(Type I Errors) 

 

Quantifying the specific costs associated with each error may be difficult. 

However, should there be a dramatic variance between the frequency of each error,  I 

maintain that the ratio of costs could not possibly be that high.  For example, should the 

data suggest a 5:1 ratio between the frequencies of Type I errors versus Type II errors, a 

relative cost of 1:5 must exist to maintain balance.  Since this ratio is probably 

unrealistic, I will be able to assume that some tendency towards this type of error exists. 

This paper will analyze the strategic decision involved in an Intentional Base-on-Balls, 

review historical analysis of the Intentional Base-on-Balls, develop a normative model 

and discuss the biases inherent in the decision to stray from the normative model. 
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1.1 Conceptual Model 

 

 

 

 

 

 

 

 

 

 

 

1.2 Scope of Analysis 

The scope of this project assumes that a number of variables are non-factors.  

Although this assumption may limit the conclusions, it discounts information that is not 

necessarily in the control of the players through whom the managers manage.   These 

factors include defensive fielding as well as stadium characteristics. 

 

1.2.1 Fielding 

Behind every pitcher stands eight defensive players whose role is to assist the 

pitcher.  It is reasonable to assume that certain players are better defensively than others.  

It may be reasonable to further assume that, at times, a defensive player will commit an 

error, or commit a spectacular play that cannot be predicted for the average player.  
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Errors, miscues, and exemplary play will lead to deviations from the normative model 

that may affect future results.  However, for the purpose of the present model, I will not 

consider errors and such.  This is a reasonable assumption, since managers cannot predict 

these actions, and hence managers should not be expected to take them into account when 

devising a strategy involving an IBB. 

 

1.2.2 Stadium Characteristics 

In 2004, major-league baseball had 30 teams, each playing in their own home 

stadium.  Stadiums are not cookie-cutter constructions; they come in different sizes, 

dimensions and even altitudes.  While the left-field fence at Boston’s Fenway Park 

measures at 334 feet, the left-field fence at Detroit’s Comerica Park measures at 402 feet.  

While New York’s Yankees Stadium is situated at sea level, Colorado’s Coors Field is 

one mile above sea level.  Stadium variance will affect a batter’s ability to get a hit or 

reach an additional base, thereby affecting the statistical relationship between pitchers 

and batters.  It has been calculated that a home run hit at Yankee Stadium traveling 400 

feet would travel 408 feet at Atlanta’s Turner Stadium and 440 feet at Coors Field.   

Similarly, while a ball hit 340 feet to left field of Comerica Park will be an out, at 

Fenway Park it would be a homerun.  Given the variation, stadium size and dimension 

will affect every relationship between a batter and a pitcher.  Due to the number of 

stadiums and the complex disparities between these stadiums, this paper will not consider 

their effect on the intentional-walk phenomenon in baseball.   
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2.0 The Strategic Decision involved in an Intentional Base-on-Balls 

In the article ‘An Analysis of the Intentional Base of Balls’, John F. Jarvis (1999) 

compiled two tables that he used to explain the use of the IBB.  Table 2.0a outlines the 

historical performance of all batters between 1980 and 1996, while Table 2.0b outlines 

the historical performance of all batters, whose at-bat directly followed that of an IBB 

during that same time period. 

 

Table 2.0a1: Hitting Summary for All At-Bats 
 BA SLG AB 

NL 0.257 0.383 1,048,080 
AL 0.264 0.405 1,184,055 

Total 0.261 0.395 2,232,135 
   Note: Inclusive of at-bats in Table 2.0b 

Table 2.0b: Hitting Summary for All At-Bats 
following an Intentional Base-on-Balls 
 BA SLG AB 

NL 0.241 0.356 18,177 
AL 0.261 0.394 15,012 

Total 0.250 0.373 33.189 
 

The above tables show that there appears to be an incentive to intentionally walk a 

batter since, on average, the subsequent batter has a reduced expected output level.  

While Table 2.0a shows a batting average of .261 or 26.1%, the hitters following an IBB 

have a batting average of .250 or 25%.   

However, the article also points to the fact that, in a typical at-bat, hitters gain 

approximately 0.09644 bases per at-bat, while hitters gain 0.11171 bases per at-bat 

following an IBB.  In light of this, it may be considered detrimental to offer an IBB.  This 

paper will attempt to understand the discrepant predictions. 

                                                
1 BA is the ratio of hits per at-bat.  SLG is the ratio of total bases per at-bat.  
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2.1 Historical Analysis of the Intentional Base-on-Balls 

Since there are 3 bases and runners can be on any or all of them, there are 8 

possible base combinations.  Given that a team can be in an inning with 0, 1 or 2 outs, 

there are thus 24 total configurations. Much of the analyses conducted on intentional 

base-on-balls relate to the probabilities associated with these 24 scenario configurations. 

Jarvis (1999) attempts to determine whether the expected future runs in a given 

scenario was increased due to an IBB by employing two distinct mathematical methods. 

The first is a historical comparison between actual and expected outcomes, and the 

second is a regression analysis between IBBs and actual runs. 

 

2.1.1 Historical Comparison between Actual and Expected Outcomes 

Jarvis is able to prove that by utilizing the IBB, managers were able to save 39 

runs over the 16,160 that were scored in the situations he analyzed.  Basing his study on 

observed historical records, Jarvis measured the expected future runs in each of the 24 

possible scenarios. 

 

Table 2.1.1a: Expected Future Runs 
Outs/Runners --- 1-- -2- 12- --3 1-3 -23 123 

0 0.492 0.872 1.21 1.487 1.363 1.744 1.982 2.310 
1 0.261 0.519 0.684 0.907 0.955 1.167 1.386 1.558 
2 0.098 0.224 0.327 0.439 0.375 0.501 0.595 0.763 

 

The table above indicates an overall trend of increasing expected runs, as (i) the 

number of  runners increase, and/or (ii) the number of  outs decrease.  This trend matches 

expectations since these conditions would generate increased opportunities.  However, 



 8

the trend would imply that it is never beneficial to intentionally walk a batter, as the 

expected future runs will always increase.  It is this point that indicates a limitation in the 

analysis of Jarvis, and begins to explain the theory extension this paper will propose. 

 Based on the probabilities of singles, doubles, triples, homeruns and outs from 

overall batter statistics during that same time period, as seen in Table 2.1.1b, Jarvis 

recalculated the expected future runs in each scenario. 

 

Table 2.1.1b: Aggregate Probabilities – Prof. Jarvis 
 BA SLG AB S D T HR TBB IBB HBYP
Overall 
Statistics 

0.261 0.395 2,232,135 409,542 102,963 14,172 55,676 215,272 20,638 13,795 

 

Table 2.1.1c: Expected Future Runs 
Outs/Runners --- 1-- -2- 12- --3 1-3 -23 123 
0 0.522 0.943 1.121 1.557 1.121 1.557 1.736 2.256 
1 0.283 0.568 0.738 1.035 0.738 1.035 1.205 1.585 
2 0.106 0.246 0.368 0.513 0.368 0.513 0.635 0.843 
 

 In order to properly calculate the number of runs that would have been scored 

should an IBB not have been imparted, Jarvis recalculated the expected future runs and 

weighted each hitter’s statistics based on the number of IBBs they received.  A hitter who 

received more IBBs would have his statistics weighted more heavily. 

 

Table 2.1.1d: Weighted Offensive Earned Run Average 
Outs/Runners --- 1-- -2- 12- --3 1-3 -23 123 
0 0.644 1.106 1.270 1.750 1.270 1.750 1.914 2.481 
1 0.353 0.670 0.832 1.164 0.832 1.164 1.326 1.748 
2 0.135 0.293 0.412 0.578 0.412 0.578 0.698 0.933 
 

Finally, using the available data concerning the number of times each of the 24 

scenarios has occurred, it is possible to measure the total number of runs that would have 
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been scored if an IBBs was not imparted. 

 

Table 2.1.1e: IBB Counts 
Outs/Runners --- 1-- -2- 12- --3 1-3 -23 123 
0 1 1 220 3 63 78 406 0 
1 1 11 3306 11 911 176 4140 0 
2 13 30 6428 24 1387 102 2483 0 
 

Using simple multiplication between the above two tables, a total of 16,160 runs 

would have been scored versus the 16,121 that were scored after issuing an IBB.  This 

provides a value of –0.003 runs per IBB, indicated that the strategy did save a few runs, 

indicating value in an IBB at the aggregate level. 

It should be noted that the above analysis speaks of the aggregate results of 

16,000+ scenarios disregarding the individual abilities and achievement of the key 

playmakers.  This analysis does not take the pitcher into account and is thus inadequate as 

a tool for proper decision-making.  The present paper will build on Jarvis’s results and 

propose a model that integrates individual player differences to create a tool that is 

adequate for better decision-making. 

 

2.1.2 Regression Analysis between Intentional Base-on-Balls and Actual Runs 

A second method of analysis is based on linear regression between offensive 

events and runs scored per single event.  Jarvis based his findings on 424 team-season 

records (424 *162 games) and 16,121 total runs scored between the 1980 and 1996 

seasons.  When we use 11 independent variables and runs as the dependent variable, the 

correlations look as follows: 
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Table 2.1.2a: Parameter Weights 
(runs/event) 
Event Runs 
Outs -0.101 
Strikeouts -0.099 
Single 0.439 
Double 0.679 
Triple 0.815 
Homerun 1.484 
Walk + Hit by Pitch 0.308 
Intentional Base-on-Balls 0.033 
Stolen Base 0.087 
Caught Stealing -0.238 
Ground into Double Play -0.429 

 

The value of 0.033 attributed to IBB means that every Intentional Base-on-Balls 

imparted led to an average of 0.033 runs.  This number is significantly lower than the 

coefficient attributed to any other positive offensive scenario including the categories hit 

by pitch (0.308) and single (0.439).  This indicates that an IBB leads to fewer runs than 

other offensive categories.  Using only this piece of information, it could be argued that 

an IBB would always be preferred.  This paper is an attempt to quantify argument by 

looking at hitter/pitcher head-to-head match-ups. 

One quantifiable value for an IBB can be illustrated by utilizing the aggregate 

results of Table 2.1.1b and Table 2.1.2a.  Table 2.1.1b documents the likelihood of each 

offensive outcome, while Table 2.1.2a indicates the projected runs associated with each 

offensive outcome.  By multiplying the results for the variables Outs, Singles, Doubles, 

Triples and Homeruns, it is possible to determine the aggregate projected runs expected 

per at-bat, that is, the projected runs associated with a single at-bat that does not result in 

an IBB.  This number can be compared to the projected runs associated with a single IBB 

(0.033).   
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The results of the multiplication is a project run value of 0.0421, meaning that a 

single at-bat that does not result in an IBB will lead on average to 0.0421 runs.  This 

value is greater than the 0.033 expected runs for a single IBB.  This result seems to 

validate the aggregate use of the IBB.  

 

2.2 The Normative Model Extension 

Although the above methods provide a good analysis of the effect of an IBB on 

future runs, such an analysis neglects two significant variables: the statistics of both the 

individual hitters and the statistics of the individual pitchers participating in this scenario.  

Knowing that an IBB was beneficial in an aggregate analysis is of little benefit to 

managers attempting to judge individual situations whose variables differ from that of the 

aggregate.  A manager may make one decision when there is one out and a runner on 

second and the batter is superstar Alex Rodriguez followed by weak-hitting Tony Clark.  

He may make a completely different decision in a scenario where weak-hitting Chris 

Woodward is followed by the superstar Carlos Delgado. 

The proposed normative model allows the user to input pre-specified data and 

receive an outputted decision stating whether it is beneficial to intentionally walk the 

batter in the given situation.  The model combines simulation and regression techniques.  

The development of the model required three key steps. These were: gathering raw data, 

testing data to determine historical relationships that predict future at-bat behavior and 

creating a computerized tool that will simulate the remainder of an inning. 
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2.2.1 Raw Data 

The first step was gathering raw data to be used in the creation of mathematical 

relationships between historical statistics and projected outcomes.  The difficulty in this 

step was to eliminate unnecessary data from the complex web of baseball statistics.  

Since there were 540 batters in the 2004 season, with their participation ranging from 1 to 

690 at-bats, a reduced sample was necessary to limit those batters whose limited at-bats 

would skew the overall sample.  Such a skew would occur should a batter hit a home run 

in their only career at-bat against a given pitcher, especially if that pitcher is not known 

for giving up homeruns.  Using data from a 1994 data set, only those batters with greater 

than one thousand career at-bats were included.  Similarly, I used only the statistics of a 

reasonable sample of pitchers, those whose number of career at-bats faced was greater 

than one thousand,. 

Necessary information required for both hitters and for pitchers can be found in 

the following table: 

 

Table 2.2.1a – Information Required (A) 
For Batters For Pitchers 
At-Bats At-Bats Against 
Singles Singles Allowed 
Doubles Doubles Allowed 
Triples Triples Allowed 
Homeruns Homeruns Allowed 
Strikeouts Strikeouts Allowed 
Outs (less strikeouts) Outs (less strikeouts) Allowed 
Hit By Pitch Hit By Pitch Allowed 
Walks Walks Allowed 

 

The above data was gathered at CBS Sportsline.com’s baseball statistics section, 

where one is able to view career statistics on all active and retired players.  When 
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necessary, I employed more detailed data from the Retrosheet’s website, an official 

publication for Sabremetrics (the statistics of baseball) analysis. 

The above information was necessary to compute historical individual data.  

Further data was required to represent the head-to-head data between the pitcher and the 

hitter.  This information includes: 

 

Table 2.2.1b – Information Required (B) 
For Head-to-Head Batter vs. Pitcher 
Head-to-Head At-Bats 
Head-to-Head Singles 
Head-to-Head Doubles 
Head-to-Head Triples 
Head-to-Head Homeruns 
Head-to-Head Strikeouts 
Head-to-Head Outs (less strikeouts) 
Head-to-Head Hit By Pitch 
Head-to-Head Walks 

 

I gathered head-to-head data from two primary sources.  The first source was a 

publication entitled Bill James Presents STATS 1994 Batter versus Pitcher Matchups, 

(1994). The publication breaks down every hitter versus pitcher match-up prior to the 

1994 season and surveys both active offensive and defensive players.  Secondary 

information was compiled from CBS Sportsline.com’s pitcher versus batter section.  This 

source provided updated information for the years 1995-2005. 

 

2.2.2 Simulation Data 

In the development of the model, I used raw data compiled from historical 

baseball statistics to develop a general probability equation, for each individual 

batter/pitcher pair.   
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2.2.3 Simulation 

The third step involves the creation of a baseball simulator.  This will enable a 

user to input historical information and, based on the allotted probabilities, will perform a 

number of simulations to determine what would most likely occur throughout the 

remainder of that given inning. 
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3.0 Normative Model 

An important component of the simulation tool was the relationship between the 

individual batters and the individual pitchers when determining the at-bat outcome.  

Although much data is available on individual performance, it is the relationship between 

the performances of these individuals that matters most in the proposed simulation.  It 

would be extremely easy to record only the individual performance of a pitcher and/or 

batter and extrapolate as though outcomes were independent of second parties.  

Unfortunately, it is improbable that players of varying abilities will be as good in all 

situations.  Tom Hanrahan discusses this exact point in an article he published in 2001 

entitled Does Good Hitting Beat Good Pitching? Using a sample of all hitters who, 

between 1984 and 1996, had at least 446 at-bats, and all pitchers who, during the same 

period, faced at least 100 batters, Hanrahan was able to come up with the following table. 

 

Table 3.0a: American League Pitcher/Batter Performance 
Player Category Poor Batter 

(avg.<.253) 
Average Batter 
(.252<avg<.283) 

Good Batter 
(avg>.282) 

All Batters 

Good Pitchers (opposing average less than .253) 
At Bats 93,137 106,936 81,393 281,466 
Hits 19,215 25,320 22,272 66,807 
Batting Average .2063 .2368 .2736 .2374 
Average Pitchers (opposing average between .253 and .283) 
At Bats 93,321 111,247 86,180 290,748 
Hits 21,995 29,988 26,020 78,003 
Batting Average .2357 .2696 .3019 .2683 
Poor Pitchers (opposing average greater than .283) 
At Bats 63,793 77,928 61,820 20,3541 
Hits 16,822 23,437 20,664 60,923 
Batting Average .2637 .3080 .3343 .2993 
All Pitchers 
At Bats 250,251 296,111 229,393 775,755 
Hits 58,032 78,745 68,956 205,733 
Batting Average .2319 .2659 .3006 .2652 
 

 Unsurprisingly, this table indicates that a pitcher will fare better against a poor 
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batter than a good batter and a batter will fare better against a poor pitcher than a good 

pitcher.  This necessitates the creation of a model that will quantify the relationship 

between an individual pitcher and an individual batter. 

One solution was developed by Dan Levitt (1999).  In this article, Levitt 

reintroduces an equation developed in 1983 by Bill James that attacks the same 

pitcher/batter relationship.  The equation not only determines the relationship between the 

ability of the hitter and the ability of the pitcher, it also normalizes that relationship 

against the league average.  The purpose of the equation is to determine the most likely 

future average between a batter and a pitcher.  The relationship James introduced, and 

tested against historical data, is the following: 

 

=  ________     (BatAvg*PitAvg)/(LgAvg)_________________ 

      (BatAvg*PitAvg)/(LgAvg) + ((1-BatAvg)*(1-PitAvg))/(1-LgAvg)) 

 

Where 

 

BatAvg = Batter’s average, shown as percentage of hits per official at-bats 

PitAvg = Aggregate batting average against a particular pitcher 

LgAvg = The aggregate league batting average 

 

Levitt (1999) tests the above equation against real-life data to see if the equation 

was still valid approximately 15 years after it was initially introduced.  Levitt’s results 

indicate that Bill James’s equation is not only still effective, but predicts behaviour within 
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only a few percentage points over 18 situations.  Table 3.0b shows a breakdown of 

Levitt’s analysis based on 1995 statistics. 

 

Table 3.0b: Summary – Batter versus Pitcher Matchups 
  All Batters Good Batters Average Batters Poor Batters 
  Actual Formula Actual Formula Actual Formula Actual Formula 

Pitchers: 
Good .250 .249 .276 .275 .251 .251 .223 .220 
Average .290 .290 .317 .319 .292 .293 .262 .259 

AL 

Poor .317 .325 .340 .356 .323 .328 .287 .291 
Pitcher 
Good .245 .247 .266 .274 .251 .247 .218 .219 
Average .284 .283 .314 .313 .280 .283 .259 .253 

NL 

Poor .317 .321 .351 .353 .322 .321 .279 .289 
 

By using the above equation, we can calculate projected batting averages for all 

present batter-versus-pitcher match-ups.  For example, in a head-to-head match-up 

between All-Star pitcher Roger Clemens and All-Star hitter Barry Bonds, the projected 

batting average for the 2004 season would be the following: 

 

=  _______      _(BatAvg*PitAvg)/(LgAvg)_________________ 

(BatAvg*PitAvg)/(LgAvg) + ((1-BatAvg)*(1-PitAvg))/(1-LgAvg)) 

 

=  __________(.362*.208)/(.272)__________ 

(.362*.208)/(.272) +((.638)*(.792))/(.728)) 

 

= .285 projected batting average.   

 

Similarly, if we remove the strong Barry Bonds and insert the weaker Adam 
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Dunn, the projected batting average would fall to .257 

 

3.1 Application of Levitt’s Theory 

The equation introduced by Levitt, by way of Bill James, produces a useful and 

effective tool to predict future batting averages of head-to-head matchups.  The question 

becomes:  Can one extrapolate the frequency of singles, doubles, triples, etc. from a 

unitary statistic such as a batting average?   

To initially compare trends in performance versus batting average, I used Batter 

Versus Pitcher Match-ups (Bill James, 1994) to collect data on 194 batters and 635,921 

at-bats prior to the 1995 season.  I grouped players by batting average, and calculated 

their associated ratios of single, doubles, triples, homeruns, strikeouts, non-strikeout outs, 

walks and hit batsmen.  The purpose of this analysis was meant to assess initial high-level 

trends in the data. 

 

Table 3.1a: Trends, By Average 
Range No. S/H D/H T/H HR/H K/Out Non-K/Out BB/AB HBP/AB
.330-.340 1 74.3% 19.8% 2.1% 3.8% 11.5% 88.5% 15.9% 0.32% 
.320-.330 1 60.8% 20.7% 1.2% 17.3% 24.2% 75.8% 22.2% 0.53% 
.310-.320 1 71.9% 17.2% 2.7% 8.2% 19.4% 80.6% 5.8% 0.73% 
.300-.310 7 67.8% 19.6% 2.8% 9.7% 14.2% 85.8% 10.0% 0.53% 
.290-.300 12 73.0% 16.8% 3.0% 7.2% 16.4% 83.6% 11.8% 0.66% 
.280-.290 25 70.2% 17.0% 3.2% 9.6% 18.3% 81.7% 9.9% 0.56% 
.270-.280 20 68.7% 18.3% 2.4% 10.6% 20.5% 79.5% 9.8% 0.52% 
.260-.270 40 69.8% 17.8% 2.4% 10.0% 21.0% 79.0% 9.2% 0.71% 
.250-.260 42 68.9% 17.7% 3.0% 10.4% 23.3% 76.7% 8.7% 0.71% 
.240-.250 29 68.2% 17.5% 2.8% 11.5% 25.5% 74.5% 9.6% 0.65% 
.230-.240 9 70.9% 18.2% 1.6% 9.4% 24.0% 76.0% 9.0% 0.91% 
.220-.230 5 65.6% 17.5% 2.1% 14.9% 30.3% 69.7% 10.4% 0.96% 
.210-.220 2 57.9% 19.0% 0.6% 22.5% 39.1% 60.9% 13.5% 1.04% 
 194 69.2% 17.7% 2.7% 10.4% 21.8% 78.2% 9.7% 0.67% 
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Given the low number of batters with averages greater than .300 and lower than 

.230, these 'outside' ranges were eliminated since their small sample size might distort 

true relationships.   

 

Table 3.1b: Condensed Trends, By Average 
Range No. S/H D/H T/H HR/H K/Out Non-K/Out BB/AB HBP/AB

.290-.300 12 73.0% 16.8% 3.0% 7.2% 16.4% 83.6% 11.8% 0.66% 

.280-.290 25 70.2% 17.0% 3.2% 9.6% 18.3% 81.7% 9.9% 0.56% 

.270-.280 20 68.7% 18.3% 2.4% 10.6% 20.5% 79.5% 9.8% 0.52% 

.260-.270 40 69.8% 17.8% 2.4% 10.0% 21.0% 79.0% 9.2% 0.71% 

.250-.260 42 68.9% 17.7% 3.0% 10.4% 23.3% 76.7% 8.7% 0.71% 

.240-.250 29 68.2% 17.5% 2.8% 11.5% 25.5% 74.5% 9.6% 0.65% 
 194 69.2% 17.7% 2.7% 10.4% 21.8% 78.2% 9.7% 0.67% 

 

 The condensed chart seems to indicate a positive relationship between batting 

average and singles/hit, non-strikeout outs/out, and walks/at-bat while indicating a 

negative relationship with doubles/hit, home runs/hit, strikeouts/out and hit batsmen/at-

bat.  Interesting the one category that does not show a positive or negative relationship is 

triples/hit.  However, this category shows a curvilinear relationship, with peaks at the 

extreme. 

In order to take the analysis from high-level trends to a more detailed driven 

analysis, I more closely scrutinized each of the above eight variables and divided them 

into three major headings: hits (containing singles, doubles, triples and homeruns), outs 

(containing strikeout, and non-strikeout) and misc. (containing walks and hit batsmen).   

 

 

 

3.1.1 Section I – Outs 
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A batter can be retired in one of two ways: by a strikeout or by a hit-out.  The 

following subsection is devoted to analyzing the relationship between the two options and 

determining whether one can predict their future likelihood based on historical statistics. 

Using Batter Versus Pitcher Match-Ups (1994) as a source for data, I compiled 

the historical statistics from 194 batters and 14 pitchers, each within the American 

League.  The data set includes the same 635,921 at bats used above as well as 118,785 

batters faced (754,706 total at-bats).  The data set includes only hitter-versus-pitcher 

relationships that contain greater than 20 at-bats.  Using this dataset, I analyzed the 

strikeout-per-out (k/out) ratio. 

 

A regression analysis was conducted using the head-to-head k/out ratio as the 

dependent variable and the historical ratios of both the pitchers and hitters as the 

independent ratios.  As the input data is in the form of percentages, the typical method of 

ordinary leased squared does not apply.  Therefore, negative binomial regression was 

used to rid the data of its sigmoid-shaped curve.  I performed this alteration by altering 

both the left and right side of the input data into the form of: 

 

= LN(proportion)/(1-proportion) 

 

When originally conducted with all 1,146 runs, the R-Squared was approximately 

20%.  However, in a secondary test, runs that contained extreme values were removed, 

leaving an R-Squared of 48%.  Extreme values were represented by data sets where both 

the career percentage of the batter and the career percentage of the pitcher varied from 
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the head-to-head percentage by greater than 10%.  This discrepancy was interpreted to 

mean that the head-to-head percentage was inconsistent and not representative of the true 

relationship.  Using this new data, containing 505 total runs, the output looked as follows:  

 

Table 3.1.1a: Regression Results, K/Out 
Variable Name Estimated 

Coefficient
Standard 
Error 

T-Ratio 
77 DF 

P- 
Value 

Pitcher’s K/Out 0.6489009 0.057797 11.22723 0 
Batter’s K/Out 0.5357182 0.033805 15.84722 0 
Constant 0.1906349 0.07794 2.4459 0.007 

  R-Squared   0.484 
  R-Squared (adjusted)  0.482 
  F-Stat   237.135 
 

Therefore the equation to calculate the head-to-head Strikeout/Out ratio can be 

represented as follows: 

 

Head to Head K/O = 0.1906349+ P-K/O*(0.6489009) + B-K/O*(0.5357182) 

 

**Note that K/O is the ratio of strikeouts per out, P-K/O is the pitcher’s historical K/O 

ratio and B-K/O is the batter’s historical K/O ratio. 

 

The simulation model employs this equation to determine the relative ratio of 

strikeouts versus outs.  However, please note that each of the three percentages must be 

converted (and reconverted) to take into account the transformation to the negative 

binomial regression form.  This information can also be used to determine the percentage 

of non-K outs.  As Levitt’s theory determines the total percentage of outs, and the above 

regression analysis determines the percentage of K/out, the remainder would fall in to the 
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non-K category.  

 

3.1.2 Section II – Hits 

This section determines a reasonable approach for estimating the percentage of 

hits that will be singles, doubles, triples or homeruns. Each of these constitutes a variable. 

 

3.1.2.1 Homeruns per Hit 

 

Similar to previous sections, data was regressed, removing all extreme and 

abnormal data points2.  The final data set included 556 runs.  The negative binomial 

regression data looks as follows: 

 

Table 3.1.2.1a: Regression Results, HR/H 
Variable Name Estimated 

Coefficient
Standard 
Error 

T-Ratio 
77 DF 

P- 
Value 

Pitcher’s HR/H 5.478921 1.441312 8.981361 0 
Batter’s HR/H 1.9979163 0.130760 15.27923 0 
Constant 12.944944 0.617769 8.868912 0 

  R-Squared   0.4004 
  R-Squared (adjusted)  0.4026 
  F-Stat   187.351 
 

Given the above data, the equation to determine the future head-to-head HR/H 

ratio is as follows: 

 

HR/H = 12.944944 + (B- HR/H)*1.9979163 + (P- HR/H)*5.4789421 
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3.1.2.2 Ratio of Singles, Doubles and Triples per Hit 

This section created a little more difficulty than that of homeruns.  When negative 

binomial regression analysis was run, the total variances explained by the regression were 

4.8% and 5.8% respectively for doubles and triples.  These numbers were far too small to 

create useful simulation data.  I was able to overcome this on the basis of my experience 

with baseball and my knowledge of professional players: there are certain types of hitters 

who are more inclined to hit doubles and triples. Especially in respect to triples, speedy 

base-runners are far more likely to hit triples than slower, more powerful, batters.  

Furthermore, data trends show that the ability to hit safely for triples is not significantly 

effected by the particular pitcher.  Therefore it was deemed reasonable to use historical 

triples/hit ratios for given batters.  This could be logically extended to include doubles, as 

again, speedy batters are more inclined to hit them, and the data indicates that this doesn’t 

vary greatly depending on the pitcher.  Given that it was is possible to determine the total 

number of hits, percentage of homeruns, percentage of doubles and percentage of triples, 

I obtained the category of singles by subtration.  (singles = hits – home runs – doubles - 

triples) 

 

                                                                                                                                            
2 Representing all data sets where both the batter’s historical HR/H ratio and the pitcher’s 
historical HR/H ratio varied from the head-to-head ratio by greater than 10%. 
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3.1.3 Section III - Other 

 

3.1.3.1 Walks per At-Bat 

Similar to the above regression data that I ran on the strikeout/out ratio and the 

homerun/hit ratio, I collected and regressed data with respect to the number of walks a 

player will receive in the course of their total number of at-bats.  (Total at-bats include 

hits and outs).  Again, I eliminated extreme and abnormal data, leaving 940 total runs3.  

Given this analysis, the output looked as follows: 

 

Table 3.1.3.1a: Regression Results, BB/AB 
Variable Name Estimated 

Coefficient
Standard 
Error 

T-Ratio 
77 DF 

P- 
Value 

Pitcher’s BB/AB 2.2616779 0.281364 8.03825 0 
Batter’s BB/AB 2.2539445 0.172654 13.0546 0 
Constant 7.2333445 0.765607 9.44785 0 

  R-Squared   0.201 
  R-Squared (adjusted)  0.200 
  F-Stat   118.540 
 

Therefore, the equation to properly determine the number of walks a player will generate 

per at-bat is equal to: 

 

BB/AB = 7.2333445 + (P-BB/AB)*2.2616779 + (B-BB/AB)*2.2539455 

 

3.1.3.2 Hit-By-Pitcher per At-Bat 

Similar to the situation with doubles and triples, regression with respect to hit 

batsmen rendered statistically insignificant results.  However, I feel that it is reasonable 
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to assume that the HBP/AB ratio will closely mirror that of the individual pitcher as the 

pitcher is primarily in control of the location of the pitch.  

 

3.1.4 Example 

To clearly illustrate the use of the above data analysis and the creation of the 

normative percentages, the following example show a match-up between Barry Bonds, a 

batter on the San Francisco Giants, and Roger Clemens, a pitcher on the Houston Astros.  

All data used is from the 2004 season.  The initial step was to determine, using Levine’s 

theory, the projected battering average in a head-to-head match-up.  Using the 

pitcher/batter matchup equation introduced in Section 3.0, the projected average between 

Barry Bonds (.362 average) and Roger Clemens (.208 average against) is .285.   

 

Table 3.1.4a: Summary, Projected Averages 
Category Name Average 
Batter Bonds, Barry       0.362  
Pitcher Clemens, Roger       0.208  
League MLB       0.272  
Projected Average         0.285  

 

This number means that of every 100 at-bats between Barry Bonds and Roger 

Clemens, Barry Bonds will garner approximately 29 hits and 71 outs.  Using the 

regression equations for HR/H, BB/AB and K/out, as well as historical information for 

HBP, doubles and triples, the following totals and percentages can be calculated. 

 

 

                                                                                                                                            
3 Representing all data sets where both the batter’s historical BB/AB ratio and the 
pitcher’s historical BB/AB ratio varied from the head-to-head ratio by greater than 10%. 
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Table 3.1.4b: Summary, Projected Probabilities 
 S D T HR K Non-K BB HBP 
Totals 14 6 1 8 19 53 49 - 
Probability 9.4% 4.2% 0.5%5.1% 12.5%35.6% 32.7% 0.0% 
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4.0 Simulation 

I employed a simulation tool to predict the aggregate outcome of all relationship 

that would occur during the remainder of that inning.  The purpose of this simulation was 

to measure its strategic effect by predicting the expected future runs in a scenario in 

which an IBB was imparted, and the expected future runs in a scenario in which an IBB 

was not imparted.  

The simulation tool itself was created in Microsoft Excel and takes advantage of 

numerous lookup tables and random number generation as it predicts future behaviour 

based on historical statistics.  Using the Boston Red Sox as an example, a final scenario 

window would look as follows: 

 

Table 4.0a: Simulation 

Lineup 
B/G 
Scenario Outcome End Scenario Outs 

Runs 
Scored 

Johnny Damon      
Orlando Cabrera      
Manny Ramirez      
David Ortiz      
Kevin Millar      
Bill Mueller      
Dave Roberts      
Doug Mientkiewicz      
Pokey Reese      
Total      

 

In the above table, Lineup represents the hitters in the Boston Red Sox lineup that 

are due up during the inning under investigation.  The model allows for as many as 9 

hitters as less than 0.1% of all innings last beyond 9 at-bats. 

B/G Scenario represents the game scenario, as of the first pitch of the at-bat.  As 

there are 24 potential combinations of scenarios as determined by the number of base 
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runners and outs, there are 24 scenarios that could occur prior to an at-bat.  Each of the 24 

possible scenarios was given a number from 1 to 24. The details of all 24 scenarios can 

be seen in the Appendix A binary chart, where one represents ‘Yes’ and zero represents 

‘No’.   

The column titled Outcome represents the calculated outcome of a head-to-head 

at-bat between the given pitcher and the given batter based on historical data fed through 

a pre-specified regression program.  That outcome is based on a random seed, which in 

turn is based on possible events and the likelihood of those events. 

End Scenario represents the scenario that is a result of the initial scenario and the 

outcome of the present at-bat.  Similar to the B/G scenario, the end scenario is allotted a 

number between 1 and 24.   

The column labeled Outs represents the number of outs in the inning at the end of 

the at-bat, based on the relationship between the initial scenario and the end scenario.  

The final column, labeled Runs, describes the number of runners who crossed 

home plate due the outcome of that lone at-bat. The value of the runs generated is based 

on the initial scenario and the at-bat’s outcome.  

The subsequent section will discuss the individual columns as well as the 

mathematics and modeling techniques behind them. 

 

4.1 Calculating Outcome 

The column in Table A entitled Outcome represents the key output to the 

relationship between the pitcher and primary batter.  This relationship is expressed as a 

mathematical relationship between historical statistics, and is presented in the form of 
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probable percentages that each of the eight possible scenarios will occur (single, double, 

triple, homerun, strikeout, walk, out, hit by pitch).  Given these probabilities, a randomly 

generated number, in combination with the weights of these percentages, will give the 

calculated result.  

 

4.1.1 Step 1: Outcome Probabilities 

In the example of an at-bat between a Boston Red Sox hitter and New York 

Yankee pitcher Mike Mussina, I determined the following probabilities based on 

historical statistics calculated by the methods described in the previous section: 

 

Table 4.1.1a: Hitter Specific Probabilities 
  Probability 
Hitter Single Double Triple Homerun Walk Non-K Strikeout HBP 
Johnny Damon 18.2% 5% 0.9% 3.5% 7.3% 51.3% 13.9% 0% 
Orlando Cabrera 16.5% 5.6% 0.4% 2.3% 3.2% 58.4% 13.5% 0% 
Manny Ramirez 14% 7% 0% 6.5% 8.7% 44.9% 18.9% 0% 
David Ortiz 13.1% 7.3% 0.5% 6.2% 7.7% 45.5% 19.7% 0% 
Kevin Millar 17% 6.3% 0% 3.8% 6.6% 48.9% 17.4% 0% 
Bill Mueller 16.1% 6% 0.2% 3.3% 7.6% 51.5% 15.4% 0% 
Dave Roberts 15.3% 3.8% 1.9% 1.9% 7.1% 53.6% 16.3% 0% 
Doug Mientkiewicz 13.9% 5.4% 0.2% 2% 7.3% 55.1% 16.1% 0% 
Pokey Reese 15.6% 2.6% 0.7% 1.8% 3.7% 53.2% 22.4% 0% 

 

4.1.2 Step 2: Random Number Generation 

As a means of simulating an actual at-bat, a random number is uniformly 

generated between 0 and 1, using the function =RAND() in Microsoft Excel, which will 

determine the outcome of the at-bat, given the above probabilities.  For each batter a 

random number is generated.  In the sample case, the following numbers were randomly 

generated: 
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Table 4.1.2a: Random Numbers 
Hitter Random No. 
Johnny Damon 0.47 
Orlando Cabrera 0.93 
Manny Ramirez 0.89 
David Ortiz 0.91 
Kevin Millar 0.95 
Bill Mueller 0.76 
Dave Roberts 0.22 
Doug Mientkiewicz 0.0 
Pokey Reese 0.72 

 

 

4.1.3 Step 3: Reported Outcome 

The final step is to use the randomly generated number as a tool to help simulate 

the outcome of an at-bat.  Based on the random number, using the Boston Red Sox’s 

Johnny Damon as an example, the outcome will look as follows: 

 

Table 4.1.3a:  Outcome Possibilities 
Range Outcome 
0 – 0.18 Single 
0.18 – 0.23 Double 
0.23 – 0.24 Triple 
0.24 – 0.27 Homerun 
0.27 – 0.38 Walk 
0.38 – 0.90 Out (non-strikeout) 
0.90 – 1.0 Strikeout 

 

Therefore, in the given scenario, where the randomly generated number is 0.47, 

the outcome will be an Out as shown in Table 4.1.3a.  This method is repeated for every 

subsequent batter for the rest of the inning. 
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4.2 End Scenario 

The end scenario represents the scenario that occurs at the end of the at-bat, or at 

the beginning of the subsequent at-bat.  Based on simplistic analysis of running speed, 

and taking into account only the final destination of the batter, the end scenario could be 

generated through the table found in Appendix B. 

Intuitive reasoning and experience with baseball suggests that not all hits lead to 

the same outcome, nor to the same base destination for the lead runner.  For example, 

where a single is hit with a runner on first base, the lead runner won’t necessarily remain 

at second base and may make their way to third.  Similarly, a runner may be able to 

advance an additional base given that a single was hit to right field as opposed to left 

field. 

This idea was emphasized in an article written by Dan Levitt entitled Hitters and 

Baserunner Advancement (1999).  Levitt discusses the aggregate analysis of historical 

statistics between the years 1980 and 1983 and shows that there is in fact a statistical 

difference given the placement of a batter’s hit, but that it varies depending on the 

situation. 

 

Table 4.2a: Single with Runner on First 
  Runner Destination – Percent  
Fielder # of hits Out Second Third Home Bases/hit 
N/A 1,727 1.5% 69.3% 28.5% 0.8% 1.3 
LF 8,952 2.1% 77.8% 19.1% 1.0% 1.21 
CF 8,465 2.2% 61.5% 34.6% 1.8% 1.38 
RF 8,757 2.2% 46.9% 49.4% 1.6% 1.52 
INF 3,231 1.9% 87.4% 9.2% 1.5% 1.12 
Total 31,132 2.1% 65.2% 31.3% 1.4% 1.34 
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As shown in the above table, analyzing the 31,132 singles that occurred with a 

runner on first, on average 65.2% of the lead runners ended up on second, 31.3% on 

third, 1.4% at home and 2.1% of the lead runners were out.   

By segmenting those hits between left field (LF), center field (CF), right field 

(RF) and infield (INF), it is possible to see variations with respect to those destination 

percentages.  With most of the variance occurring between second base and third base, 

one can see that, based on historical statistics, runners are more likely to advance to third 

when the single was hit to RF (49.4%) than if the ball was hit to CF (34.6%) or LF 

(19.1%).  These statistics seem reasonable as the throw from RF to third base is the 

longest, while the throw from LF is the shortest. 

Similar analysis was conducted using a single with a runner on second, a single 

with a runner on third, a double with a runner on first, and a double with a runner on 

second.  Their respective tables and probabilities can be found in Appendices C through 

F. 

With respect to the simulation created for the purpose of this project, I decided 

not to model the destination of the hit, but rather the overall statistics that describe the 

advancement of the runner. 

Based on the information gathered by Levitt, I deduced the probability of a runner 

advancing to a particular base, given the type of hit.  For example, given a single where a 

runner is on first, the lead runner will end up out 2.1% of the time, end up at second base 

65.2% of the time, end up at third base 31.3% of the time and will end up at home 1.4% 

of the time.  It is these probabilities that were inserted into the simulation model to more 

realistically simulate actual events.   
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Table 4.2b: Aggregate Information to be used in Simulation Tool 
 Lead Runner Destination - Percent 
Scenario Out Second Third Home 
Single w/ Runner on 1st 2.1% 65.2% 31.3% 1.4% 
Single w/ Runner on 2nd 3.6% 1.2% 29.9% 65.3% 
Double w/ Runner on 1st 3.1%  53.6% 43.3% 
Double w/ Runner on 2nd 0.1%  1.4% 98.4% 
Single w/ Runner on 3rd 0.1%  0.9% 99.0% 
Total 0.1%  1.4% 98.4% 

 

This information was inserted into the simulation through the use of look-up 

tables and simple spreadsheet calculations.  By way of illustration, the remainder of this 

section will discuss possible outcomes of scenario 4: a runner on first with zero out. 

As described in Table 1, given a single, there are four possible outcomes, each 

representing a different destination for the lead runner: 

 

Scenario 1 – Outcome includes runners on first, runner on second (65.2% probability) 

Scenario 2 – Outcome includes runner on first, runner on third (31.3% probability) 

Scenario 3 – Outcome includes runner on first, runner out (2.1% probability) 

Scenario 4 – Outcome includes runner on first, runner at home (1.4% probability) 

 

Similarly, given a double, there are three possible outcomes: 

 

Scenario 1 – Outcome includes runner on second, runner on third (53.6% probability) 

Scenario 2 – Outcome includes runner on second, runner at home (43.3% probability) 

Scenario 3 – Outcome includes runner on second, runner out (3.1% probability) 
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Given the above scenarios, I used a randomly generated number in conjunction 

with a selection process — similar to that utilized in the Outcome section of the model — 

to select a fair representation of the simulation process. 

The overall table, which represents all available options with respect to lead 

runner destinations, can be found in Appendix G. 

 

4.3 Out 

The column entitled Outs represents the number of outs in the inning at the end of 

the at-bat.  This number is generated using a look-up table based on the beginning 

scenario, the outcome and the final scenario.  The complete look-up table can be found in 

Appendix H. 

 

4.4 Runs 

The final column, entitled Runs, describes the number of runners that crossed 

home plate due to the outcome of that lone at-bat.  The value of the runs generated, based 

on the initial scenario and the at-bat’s outcome, is represented by a look-up table that can 

be found in Appendix I. 

 

4.5 Aggregate Tool 

Therefore, based on the look-up tables, and information generated from both 

internal and third-party analysis, the final simulation table depicts the most probable run 

production for the remainder of any given inning.  The following situation takes into 

account not only the starting lineup of the Boston Red Sox and the starting pitcher of the 
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New York Yankees, but also the in-game scenario. Based on this information, the table 

predicts a quick two-batter inning and no runs scored. 

 

Table 4.5a – Simulation 

Lineup 
B/G 
Scenario Outcome End Scenario Outs 

Runs 
Scored 

Johnny Damon 8 Out 9 2 0 
Orlando Cabrera 9 Strikeout End 3 0 
Manny Ramirez End Strikeout End End End 
David Ortiz End Strikeout End End End 
Kevin Millar End Strikeout End End End 
Bill Mueller End Out End End End 
Dave Roberts End Homerun End End End 
Doug Mientkiewicz End Single End End End 
Pokey Reese End Out End End End 
Total     0 

 

I must stress that the above example is only one of numerous possible outcomes 

that are highly dependent on the random number generated for each player.  To give a 

more accurate prediction, I simulated the total inning a number of times and averaged and 

analyzed the final run tally.  As can be seen in Table 4.5b below, the average runs scored 

in this situation would be 0.6.   

The question then becomes, what would the outcome of the scenario be if Johnny 

Damon were given an Intentional Base-on-Balls?  This can be easily computed by 

substituting the word ‘walk’ in the Outcome column.  Simulating the scenario 20 times 

gives the following results: 
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Table 4.5b: 20 Scenario Result 
Scenario No. No IBB Yes IBB 
1 1 0 
2 1 1 
3 0 4 
4 0 3 
5 1 0 
6 0 3 
7 0 0 
8 0 0 
9 0 2 
10 2 1 
11 1 2 
12 0 2 
13 1 0 
14 0 0 
15 3 0 
16 1 3 
17 0 1 
18 0 0 
19 0 4 
20 1 0 
Average Runs 0.6 1.3 

 

Based on 20 scenarios, and based on the validity of the imported data, it seems 

apparent that in the situation where Johnny Damon is up against Mike Mussina with a 

runner on second and one out, the best strategy would be to pitch to him.  Not only are 

the average runs dramatically higher with an IBB, but the variance also poses a heavy 

risk since, in 8/20 scenarios, more than one run would be scored.  This type of simulation 

and analysis can be used for any combination of hitters and batters and applied to any in-

game scenario.
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5.0 Disparity between Normative Model and Visible Action 

With the normative model, we can analyze the historic use of the IBB and verify 

the success of those decisions.   

 

5.1 Aggregate Analysis of the Intentional Base-on-Balls 

While it is easy to criticize a manager’s decision based on a single situation, the 

more accurate method would be to analyze the aggregate results of many decisions.  It is 

for this reason that I analyzed all 47 IBBs issued during the major-league week of June 1, 

2004.  This selection represents a typical week, covers the spectrum of intentional base-

on-ball usage, and represents the range of major league managers’ decision-making 

abilities and strategies.  It does not restrict my analysis to any one of the three major IBB 

usage techniques, but tests all three.  The 47 situations were run through the simulation 

model to verify the effectiveness of the decision.  My model indicated that in 22 of the 47 

situations an IBBS was the correct decision, in 25 of them, the manager would have been 

better off pitching to the batter, saving their team an estimated 0.28 runs in the current 

inning.  

 

Suggestion 
 Pitch Walk 

Pitch A B A
ct

io
n 

Walk 25 23 
 

A failure rate greater than 50% is poor by any business or sport standard.  

Managers can ill-afford to make 25 strategic errors per week on a minor decision like the 

IBB.  Furthermore, in 12 of the 47 examples, independent of the strategy used, the 
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offensive team was able to score at least one run.  In these examples, the average runs 

scored per inning were slightly higher for the situations in which the normative model 

suggested a pitch as opposed to the situations where it suggested an IBB.  

In a sport wrought with statistics and variables, managers must learn to utilize the 

objective tools available to them to minimize errors, and minimize the future runs their 

errors would create.  As managers are not typically statisticians or mathematicians, the 

usefulness of these tools may not be apparent.  It is for this reason that I believe that the 

proposed simulation model can act as an effective tool for Major League managers.   

 

5.2 Examples 

Example 1 

Date: April 14, 2004 
Game: San Francisco Giants against the Milwaukee Brewers 
Situation: 3-0 Milwaukee in the seventh inning 

• Two out with runners on first and second base 
• Milwaukee’s Jason Bennett is pitching to Barry Bonds 

 

In the above example, the manager of the Milwaukee Brewers seems to make a 

cardinal mistake walking Barry Bonds to load the bases when his team is leading by three 

runs late in the game.  By walking Barry Bonds, the manager is bringing the winning run 

to the plate, meaning that a homerun by Edgardo Alfonzo would propel the San Francisco 

Giants into the lead.  In this instance, logic might suggest that the manager used the IBB 

when it was unnecessary. 

Upon running the simulation in turns out that the manager’s decision was, in fact, 

correct in that the projected future runs given an IBB is 0.65 and the projected future runs 

without an IBB is 0.9.  Furthermore, not only did San Francisco score in more simulated 
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situations with the IBB, the average number of runs scored per instance was higher as 

well.  This matches with the actual occurrence of a fly-out by the subsequent batter 

Edgardo Alfonzo. 

So in this situation the suggestion of the normative model reflects the decision of 

the manager, where traditional baseball thinkers might have acted otherwise.   

 

Example 2 

Date: April 11, 2004 
Game: San Francisco Giants against the San Diego Padres 
Situation: 3-0 San Diego in the eighth inning 

• One out and runners on second and third base 
• San Diego’s Jay Witasick is pitching to Barry Bonds  

 

In the above situation Barry Bonds was intentionally walked to load the bases 

with only one out with the San Diego Padres leading 3-0 in the eighth inning.  What 

actually occurred was a 5-run outburst propelling the Giants to a 5-3 lead at the end of the 

inning.  Simulating the situation in my model, the results suggest that no IBB should have 

been issued.  While the projected future runs with an IBB are 1.9, they are only 1.5 

without an IBB. 

 

Example 3 

Date: April 20, 2004 
Game: Toronto Blue Jays against the Boston Red Sox 
Situation (Part A): 3-0 Boston in the seventh inning 

• One out with a runner on second base 
• Toronto’s Acquilino Lopez is pitching to Manny Ramirez 

Situation (Part B):  4-0 Boston in the seventh inning 
• Two out with runners on second and third base 
• Toronto’s Valerio De Los Santo is pitching to Mark Bellhorn 
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The above situation contains two separate IBBs, each of which can be analyzed 

for their strategic accuracy.  Simulating the first IBB indicates that it would have been 

better to pitch to the batter, in that the projected runs is 0.85 with an IBB, and 0.35 

without.  This is further reinforced in that the manager of the Toronto Blue Jays chose to 

walk Manny Ramirez and the pitcher subsequently let up a run-scoring double.  

Simulating the second IBB also indicates a mistake, with the projected runs being 0.45 

for an IBB and 0.25 for not issuing an IBB.   

 

5.3 Aggregate Analysis of a Non-Intentional Base-on-Balls 

Similar to Section 5.1, the normative model was used to analyze 50 random 

decisions that did not result in an IBB.  The purpose of this analysis is to measure the 

degree of Type II errors.  Using 50 randomly selected at-bats during the same week 

beginning June 1, 2004, in only three cases did the model call for walking the batter when 

the manager decided to pitch to them.  This suggests that managers rarely make the 

mistake of not intentionally walking someone in a scenario where it is deemed 

acceptable. 

 

Suggestion 
 Pitch Walk 

Pitch 47 3 A
ct

io
n 

Walk C D 
 

The three scenarios in which the model suggested an IBB were extremely similar 

in that they involved the batter directly preceding a poor-hitting pitcher in the National 

League.  In these scenarios, the pitcher had a batting average below .200 with less than 1 

homerun per hitter.  However, it may be argued that the manager did not impart an IBB, 
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in fear of a pinch-hitter with stronger statistics.  Aggregating the tables in section 5.1 and 

5.3 shows the following results: 

 

Suggestion 
 Pitch Walk 

Pitch 47 3 A
ct

io
n 

Walk 25 22 
 

This analysis suggests that the original hypothesis — that Type II errors will 

occur more prevalently than Type I errors — was correct by a factor of 8.   

 

25*Cost(Type II Error) > 3*Cost(Type I Error), or 

 

25 > Cost (Type I Error) 

3      Cost (Type II Error) 

 

Although it is difficult to determine the cost of each error, it is reasonable to 

assume that the cost of a Type I error is not eight times that of a Type II error, leaving 

room for necessary qualitative interpretations of the variance. 
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6.0 The Inherent Biases in the Decision 

In the sport of baseball, the game-to-game play calling is managed by an 

imperfect set of metrics and forecasted situations.  Presently, no manager possesses a tool 

that objectively analyzes the information at hand and computes most-likely outcomes of 

given strategic decisions.  Instead, the sport is governed by ‘experience’, ‘tradition’, and 

the fear of scrutiny by the media and upper management.  The simulation model 

proposed in this paper is meant to provide the objective tool presently unavailable. 

Due to the current regime of subjectivity, there is no governing formula with 

respect to the IBB.  As can be seen in the following chart, there is a large discrepancy 

with respect to the number of IBBs ordered by each team’s manager per 100 innings 

pitched.   

 

Table 6.0a: 2004 Intentional Base-on-Balls, By Team 
Team IBB/100 IP Team IBB/100 IP Team IBB/100 IP 
Colorado 7.5 Cincinnati 4.0 Los Angeles 2.5 
Arizona 7.2 Oakland 3.9 Minnesota 2.3 
Pittsburgh 5.8 Chicago (N) 3.4 Milwaukee 2.2 
Philadelphia 5.1 Baltimore 3.2 Anaheim 2.2 
Montreal 5.0 Detroit 3.0 Boston 2.2 
Atlanta 4.4 Tampa Bay 3.0 Seattle 2.0 
Florida 4.3 New York (A) 2.9 Chicago (A) 1.6 
Cleveland 4.3 Kansas City 2.8 Texas 0.6 
Houston 4.2 San Diego 2.6 Total 3.5 
Toronto 4.2 St. Louis 2.5   
New York (N) 4.0 San Francisco 2.5   
 

I hypothesize that, in the case of IBB decisions, there are a number of biases, as 

well as psychological and sociological phenomena that will shift the basis for a 

manager’s decision from the objective and rational towards the subjective and utility-

maximizing.  In this section, I suggest why disparity might exist between the normative 
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model and the reported actions.   

It is hypothesized that six psychological phenomena may play a role in the 

overuse of the IBB: loss aversion/risk aversion, representativeness bias, confirmation 

bias/availability bias, regret theory/omission-commission, path dependence, and an 

agency problem. 

Furthermore, it may be argued that even if management possessed an objective, 

forecasting tool such as the normative model presented in this paper, management would 

still be influenced by the following subjective biases and phenomena.  

 

6.1 Loss Aversion/Risk Aversion 

In the realm of business, relationships or sport, winning is always preferred to 

losing.  Winning provides self-confidence, enhances a participant’s self-image and 

improves social status while losing incurs the opposite.  All decisions entail the element 

of win-versus-lose element and the element of risk, that is, the possibility that the decider 

will make the choice that leads to the ‘loss’ as opposed to the ‘win’. 

Kahneman et al (1991) discuss the element of risk and state that individuals 

dislike losing so much that they will overcompensate towards a risk-averse position.  

Studies show that an individual faced with two scenarios, the first being an 85% chance 

of winning $1,000 and a 15% of winning nothing and the second being a 100% chance of 

winning $800 will almost always select the second alternative even though the present 

value of the first alternative is much greater.  This example represents the element of loss 

aversion/risk aversion.  Even in the case of equal expected values, individuals tend to 

lean towards the option with less variance in the outcomes.  Bernoulli (1954) suggests 
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that "people do not evaluate prospects by the expectation of their monetary outcome, but 

rather by the expectation of the subjective value of these outcomes." 

It is my hypothesis that a manager, facing a situation that might merit an IBB, 

may overcompensate (Type II error: call for an IBB when it might not be appropriate) to 

avoid a heavier loss associated with a homerun or extra-base hit.  This overcompensation 

would not be based on a fear of the batter, but rather a fear of allowing additional bases 

(or runs) that could have been avoided if an IBB had been initially bestowed.  Based on 

historic patterns, a batter is more likely to garner an IBB if he has a history of high 

homerun totals which are correlated with high strikeout totals.  Therefore, a manager will 

choose to walk a riskier batter for a batter with less extreme statistics. This notion goes 

against traditional expected utility theory that focuses on objective utility based on 

statistical analysis, and is more in line with prospect theory, suggested by Kahneman and 

Tversky (1979), which emphasizes the value function.   

One major portion of prospect theory is loss aversion.  Loss aversion refers to the 

tendency for people to strongly prefer avoiding losses to making gains.  In the course of 

studying monetary risk, Kahneman and Tversky’s developed prospect theory (1979), 

which holds that, while individuals were risk averse in a positive domain, they were risk 

seekers in a negative domain — a relationship that Kahenman and Tversky illustrated in 

the following figure.  
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Figure 6.1a: Kahneman and Tversky's Value Function 

 

 

It is further interesting to note that the scorekeeping practice of professional 

baseball also works against the manager, since the game focuses on the scoring of runs 

and the advancement of runners as opposed to the defensive aspects of that same play, 

which is in line with with Kahneman and Tversky's (1979) statement that “losses loom 

larger than gains". This implies that managers may be more risk averse than necessary. 

They fear the negative repercussions of their actions, whereas, if they focused on the 

positive/defensive outcomes of their decisions, they would be less risk-averse. 

 

6.2 Representativeness Bias 

Ideally, one should assess probability based on exact historical information.  In 

the case of professional baseball, if a manager is interested in understanding the ability of 

a given batter, the manager must ensure that he is taking all variables into account that 

will affect the on-field outcome.  This type of analysis must include not only an analysis 

of the batter’s ability versus that of the given pitcher but also the exact scenario, where 

the scenario includes runner, outs, and secondary information such as inning, stadium, 
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fatigue and an athlete’s career curve as a representation of skill level. 

However, it has been argued that the representative bias will dissuade managers 

from seeking exact information in exchange for representative information, that is,  

information that is representative of the present scenario, but is not necessarily similar.  

Just as important, the representative bias addresses scenarios where no exact historical 

situation can be found and related scenarios must be substituted. 

The notion of representativeness implies basing a judgment on facts and signs, 

similar to those in the present situation, that one compares in order to make an objective, 

as opposed to subjective, decision.  In order to forecast the outcome of alternatives, 

individuals often compare the situation at hand versus base case scenarios that are 

“representative” of the problem presently faced.   But the term “representative bias” 

refers to a distinction between what is representative and what is probable.  For example, 

J. Tenenbaum and T. Griffith state that ‘being divorced four times’ is more representative 

of a Hollywood actress than is ‘voting democratic,’ but in reality the former is certainly 

less likely.  The issue, then, is to determine what the base-case scenarios are, and which 

ones are most representative. 

With respect to baseball and the IBB phenomenon, managers will often compare 

the present situation to some historical scenario as a means of capturing the most likely 

outcome of each alternative.  The manager may use his own experience, the historical 

stats of the batter, the historical statistics of the pitcher, or any of a multitude of statistical 

compilations. 

Tversky and Kahneman (1982b) state that people often evaluate the probability of 

an uncertain event or a sample ‘by the degree to which it is (i) similar in essential 
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properties to its parent population and (ii) reflects the salient features of the process by 

which it is generated’. 

Using the first criterion – that of parent population – Tversky and Kahneman state 

that the situation at hand will be compared to similar historical situations.  However, as 

baseball is rich in statistics, it is difficult to know which statistics are the most important 

and relevant to the situation at hand.  Does one focus on the positive categories of hitters 

such as hits and homeruns, or does one focus on the positive categories of pitchers such 

as wins and strikeouts?  Does one focus on the negative categories of hitters such as 

strikeout and double-plays, or does one focus on the negative categories of pitchers such 

as hits allowed and walks.  With each individual statistic, there are a multitude of 

computations and permutations that create even more numerical data.  It is easy for 

managers to lose track of all this information. 

Similarly, a manager may inadvertently group his hitter in a larger category of 

hitters with similar historical statistics and base a decision on the abilities of the category 

given the same situation.  For example, a manager facing a situation that involves a 

young hitter who holds a high batting average may utilize historical information 

comparing the present hitter to a prototypical hitter with a high career batting average, 

someone such as Wade Boggs, Tony Gwynn and Paul Molitor.  

Tversky and Kahneman’s second criterion for determining the probability of an 

uncertain event – that of the “salient features of the process” –cannot be directly used to 

either support or weaken the given hypothesis. It entails an analysis of what items will 

initially jump into the cognitive awareness of the manager and which instances are easiest 

to recall.  Salience may play itself out as a recent situation where a manager chose to 
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impart a base-on-balls and its subsequent outcome.  This aspect of representativeness 

may have a cross-over effect with biases such as availability and confirmation bias, 

which I will discuss in subsequent sections. 

The overall concern with this bias is that managers, overcome with the pressure of 

the situation and the plethora of statistical data, may be blinded to the true base-case 

scenarios to which they should be comparing the situation at hand.  Kahnman and 

Tversky (1972), discuss the bias’ similarity to the gambler’s fallacy.  The fallacy suggests 

that a fair coin that has turned up HHH, is more likely to turn up T on its next flip than it 

is likely to turn up H.  Similarly, a batter who has recorded 5 successive hits is more 

likely to record an out during their next at-bat. 

The gambler’s fallacy differs from the hot-hand hypothesis put forward by 

Gilovich et al (1985), which states that a batter who has recorded 5 successive hits is 

more likely to record a hit during their next at-bat.  This hypothesis suggests that an 

individual’s skill, coupled with confidence, can lead them into a streak of either good or 

bad outcomes.  

A hypothetical example would be a batter with a lifetime batting average of .200, 

with 100 career at-bats, who had a .600 batting average against a pitcher in 5 career at-

bats.  The hot-hand hypothesis would suggest that the batter is likely to get a hit in his at-

bat against the pitcher, whereas an objective observer might suggest otherwise. 

I would suggest that these biases  — the gambler's fallacy and the hot hand 

syndrome — can co-exist in people's beliefs.  However, that individual will choose the 

bias that best suites his or her experience and personality.  A risk-taking baseball 

manager may select the gambler's fallacy because he is 'taking a chance' that something 



 49

different will occur in the next at-bat, while a risk-averse individual might look at trends 

and therefore choose to be influenced by the hot-hand syndrome. 

 

6.3 Confirmation Bias/Availability Bias 

When faced with a scenario that may or may not call for an IBB, the manager 

must use information available to him to make the ultimate decision.  In this situation, the 

manager must decide which information to use and how to interpret it.  These two 

questions can be answered by the “availability bias” and by the “confirmation bias”.  

These two biases presuppose that the manager already has a hypothesis as to which 

solution would be most effective in this situation.  This hypothesis is a byproduct of other 

biases and psychological/sociological phenomena. Risk aversion, path dependence, regret 

theory and representativeness typically contribute to the foundation for a hypothesis 

geared to the impartment of an IBB. 

The availability bias answers the first question: ‘What information does the 

manager chose from?’  More specifically, the availability bias states that one uses 

information that is readily available, and easier to recall, as a means of solving more 

complex problems.  For example, Tversky and Kahneman (1982a) use an example in 

which one may assess the divorce rate in a given community by recalling divorces among 

one’s acquaintances.  Similarly, a manager may allow information that is readily 

available to him to bias his decision-making process.  Given that Barry Bonds is 

constantly in the headlines for his offensive prowess and that managers may be 

constantly questioned as to how they will pitch to him, managers may be overly fearful of 

his ability and consequently adopt strategies that overcompensate.   
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Similarly, when facing a potential IBB situation, a manager may recall instances that 

have a more powerful recall effect and that therefore bias his decision-making.  For 

example, if Barry Bonds beat a manager last night with a homerun, the manager may be 

more willing to intentionally walk Bond in a similar situation, even though the 

probability of him hitting a homerun has not changed.  This is similar to the fallacy of 

misleading vividness, which suggests that vivid events tend to have more probability 

assigned to them than is really there. Whereas objective analysis would suggest an 

emphasis on statistical evidence, subjective analysis will be blurred by a particularly 

dramatic event 

The confirmation bias states that, when faced with a decision, an individual will 

seek out information that confirms their hypothesis and will not seek out information that 

refutes it (Klayman, 1995).  Therefore, when originally seeking information, which in the 

case of baseball is often in the form of historical statistics, the manager may only seek out 

that information that confirms his original hypothesis.   

An example might be head-to-head statistics between the hitter and the pitcher.  

Suppose that the overall, career-historical head-to-head statistics favour the pitcher and 

suppose that this season’s historical head-to-head statistics favour the batter.  Should his 

original inclination be to intentionally walk the batter, the manager may overweigh the 

significance of the latter piece of information and underweigh the significance of the 

former, independent of their relative likelihoods. 

The confirmation bias also answers the question: ‘How does he choose to 

interpret it?’ It deals with information that is ambiguous with respect to the hypothesis.  

The theory of confirmation bias states that, when faced with a decision, an individual will 
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interpret ambiguous information in favour of his hypothesis (Klayman, 1995).  In the 

above example of overall career head-to-head statistics, the manager will find a way to 

either (a) internalize the information in favor of the hypothesis, or (b) discredit the 

information.  One way would be to say that either the pitcher’s effectiveness has declined 

over his career, or the batter’s ability to read the pitcher has improved and therefore, only 

recent information should be taken into account. 

This issue is further complicated by the fact that the sport of baseball is permeated 

by statistics.  There are infinite ways of analyzing a particular situation and just as 

manner ways of distorting those numbers to fit one’s convenience.  When determining 

whether to intentionally walk a batter, a manager could focus on any number of statistics.  

Example might be the age of parties involved and their relative decline in production, 

weather conditions as they relate to player’s performance and momentum generated by 

one team during the game.  In addition there are a number of available statistics to 

consider in the course of making a decision:  Overall batting statistics, batting statistics 

when facing the same situation, overall pitcher’s statistics, pitcher’s statistics when facing 

the same situation, overall head-to-head statistics for the pitcher, head-to-head statistics 

for the pitcher when facing the same situation, etc.  Even when the decision regarding 

which statistics is made, the manager must also consider whether to use all-time statistics, 

season-to-date statistics, that week’s statistics or that day’s statistics.  Given the game’s 

obsession with statistics and the plethora of available comparisons, it is probable that one 

can support any hypothesis by using historical records. 
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6.4 Regret Theory/Omission-Commission 

Life involves making decisions between available options.  Typically, an 

individual will weigh the options based on information available and, based on 

predetermined criteria, choose the option he or she hopes will maximize utility. In some 

cases, the path chosen turns out to be the optimal path, and in other cases, the chosen path 

is suboptimal.  Much research has shown that individuals, choosing the suboptimal path, 

will experience a negative emotion in response to their choice: regret (Zeelenberg).  The 

basis of regret is that the individual had the opportunity to choose a better alternative yet, 

for one of many reasons, did not and now find themselves in a worse position.  

Zeelenberg (1999) defines regret as a negative, cognitively-based emotion that we 

experience when realizing or imagining that our present situation would have been better, 

had we decided differently.  Zeelenberg argues that the fear of anticipated regret will lead 

to risk-averse decision-making.  

A manager, facing a scenario that may merit an intentional base-on-ball would be 

forced to decide between two options, (a) to impart an intentional base-on-ball or (b) not 

to impart an intentional base-on-ball.  Should the outcome of the decision be poor, the 

manager may feel regret with respect to their decision.  Zeelenberg (1999) would argue 

that a manager, fearing the eventual backlash of regret, would be inclined to lean towards 

the risk-minimizing decision to impart an intentional base-on-ball, since this decision 

decreases the likelihood of short-term defeat, that is, defeat by the player presently at 

bat). 
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 In a second article Zeelenberg et al (2002) breaks regret into two separate 

categories.  The first category is commission (or hot regret) and the second category of 

omission (or wistful regret).  Hot regret is the direct emotional reaction to the outcome, 

while wistful regret is the less intense emotion associated with pleasantly sad fantasies of 

what might have been.  The paper argues that regret is more intense in the case of 

commission than in the case of omission.  In a related paper, Gilovich and Medvec 

(1995) reinforce Zeelenberg's argument by suggesting that that actions tend to generate 

more regret in the short term, but inactions tend to be more troubling in the long run. 

In similar fashion, a manager faces the potential of two suboptimal results when 

deciding upon an IBB.  If the manager chose to impart an IBB — an act of commission 

— and the outcome was negative, he might feel a negative sense of hot regret as his 

direct action led to a suboptimal result.  The manager might wonder whether his directive 

was the cause of the result.  However, if the manager chose not to impart an intentional 

base-on-ball and the outcome was negative — an act of omission — the manager might 

feel a negative sense of wistful regret, since his lack of action led to a suboptimal result.  

The manager would subsequently wonder whether the outcome would have differed had 

he imparted the IBB. 

Zeelenberg (2002) would argue that a manager would opt towards not imparting 

the IBB (omission), as the action would minimize the potential regret.  The author 

suggests that the regret associated with omission is less than the regret associated with 

commission as commission is a direct result of a conscious decision that can be directly 

associated to a single decision-maker. Gilovich and Medvec (1995) similarly argued that 

a manager would opt towards the omission option because it would minimize his regret in 
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the short term.  Omission minimizes regret in the short term as it takes the blame and 

responsibility out of the manager’s hand and puts its squarely on the ability of the 

players. 

While the above arguments seem to reflect the earlier hypothesis, it should be 

noted that an article by Ritov and Baron (1995) maintains that an individual will be 

biased towards commission in cases where the outcomes of the option not chosen will 

never be known.  As it is impossible to know the outcome of unselected alternatives in 

baseball, it can be argued that managers would be biased towards an IBB.  Therefore, 

walking the hitter when in doubt is the best alternative. 

  

6.5 Path Dependence 

Suppose you have ten dollars in your pocket. Would you feel any different if the 

money fell out of your pocket as opposed to your being robbed of it?  Path dependence 

says that the manner in which the action (losing the $10) occurs will have different 

effects on the individual and will result in different levels of happiness/sadness. I call this 

“path dependence.” 

In order to relate path dependence to baseball, consider the following scenario: It 

is a tie game in the bottom of the ninth inning.  There are two outs and a runner on 

second.  A team’s best hitter is up with the team’s worst hitter on deck.  What do you do? 

Logic would argue that you walk the present batter and pitch to the team’s worst hitter.  

Now imagine two scenarios.  In the first scenario the manager walks the initial, better 

batter, but the second batter (the worst hitter) hits a game-winning homerun.  In the 

second scenario the manager chooses to pitch to the batter and he hits a homerun.  Which 
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loss would feel worse to the manager?  Will the manager’s initial decision be biased to 

decrease the pain associated with one type of losing over another?   

The problem with this question is inherent in the circular logic.  In the above 

example, using the case where the best hitter produced the homerun, the managers might 

be upset at themselves as they should have known better and gone with the rational 

decision.  However, in the case where the worst hitter produced the homerun, the 

manager might be upset that his team allowed the worst hitter to beat them, realizing that 

it was a fluke scenario.  In this scenario, would the manager be better off being beaten by 

talent or by luck? 

With respect to baseball, I would argue that the manager would intentionally walk 

the stronger hitter, as the core issue is attribution of blame.  In the initial scenario (luck), 

the attribution is external and lays blame on the pitcher who was unable to retire a weak 

batter or to the luck of the batter.  In the latter scenario (talent), the expectation on the 

batter is high and therefore the attribution would be internal.  The manager was aware of 

the batter's ability and chose to ignore it, thus calling his own decision-making ability 

into question.  

 

6.6 Incentive Bias/Agency Problem 

As of 2004, George Steinbrenner had owned the New York Yankees for 29 years.  

Over that period the Yankees had 21 different managers.  In 1977, the Texas Rangers 

became the first team to have four different managers in the same season.  For this 

reason, the office of a major-league baseball manager has often been compared to a 

‘revolving door’ due to the tremendous number of hiring and firings that occur each 
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season.  Although it is ultimately the players that must perform in a game situation, it is 

the managers that receive the bulk of the criticism.  Ownership often argue that, while it 

is their responsibility to build the initial network of players, it is the responsibility of the 

manager to get the most out of those players through preparation, motivation and 

strategic play-calling.  Managers are ultimately responsible to the general manager and 

club ownership for the results of their team’s performance.  This situation is at the heart 

of the agency problem, with the manager acting as the agent to the club’s ownership (the 

principle).   

I hypothesize that the nature of this relationship leads to an incentive bias that 

may propel a manager to act against the objective norm and act, not in the best interest of 

the team, but in their own personal self-interest. 

This follows from a paper written in by Eisenhardt (1989) that states that "the 

agency problem arises when (a) the desires or goals of the principal and agent conflict 

and (b) it is difficult or expensive for the principal to verify what the agent is actually 

doing" (page 58).  In the case of professional baseball, both the ownership and manager 

are focused on the overall objective of winning.  However, it is often argued that while 

the team owners is focused on short-term success, the manager should be more focused 

on building long-term success.  This may play out in a situation where a manager is 

willing to continue with a struggling pitcher to build that player’s confidence, whereas 

the owners would prefer the manager to act in the best interest of the game at hand. 

Secondly, as there is no communication between a manager and the owners 

during a particular game, owners may not be able to understand the inherent logic built 

into the manager’s strategy.   Similarly, hindsight may affect the agency problem, since 
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the owner will chose to assign blame as opposed to admit defeat.  Related to the 

confirmation and availability bias, owners will voluntarily seek out information to 

confirm their hypothesis that the manager’s decisions were poor in order to support their 

original hindsight bias. 

Finally, as Major League Baseball is built around one-on-one, head-to-head, 

pitcher-to-batter confrontations utilizing the world’s top professional baseball players, 

there is no guarantee of offensive success even if the manager’s strategy is perfect.  Over 

the past 65 years, only one hitter has been able to hit safely in over 40% of their at-bats 

over the course of a single season.  Ted Williams’ remarkable batting average of .407 in 

1941 still renders a 59% chance of failure.  Ownership often overlooks the opposing 

team’s caliber of players and the objective likelihoods of success when passing judgment 

on the manager. 

Given the presence of the agency problem, and given the overzealous owners who 

seem to keep their finger of the proverbial ‘fire manager’ button, there is an obvious 

incentive for a manager to act in their own best interest.  Managers may be inclined to 

direct their players in a manner that spotlights the success and failures of the players and 

de-emphasizes the manager’s own contributions.  With respect to the intentional base-on-

ball, managers may feel inclined to walk a particular batter in a situation where they 

believe pitching is the best strategy because they fear the criticism of the owners should 

their own strategy not meet with success. 

This issue is further complicated by the emergence of sports media coverage.  

Whether in newspapers, magazines, television shows or websites, commentators are 

extensively analyzing a manager’s tactics and frequently subjecting the manager to 
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unnecessary blame and scrutiny. 
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7.0 Conclusion  

The intentional base-on-ball represents an important strategic tool that provides an 

advantage to those managers who are better able to understand its importance and how 

best to use it.  Whereas existing literature supports the use of the IBB at an aggregate 

level, this paper extended that analysis to include an individual, head-to-head perspective 

utilizing data analysis techniques such as regression and simulation.   

The present study compiled data from a 25-year period and analyzed it to uncover 

key relationships between variables previously undocumented.  While the outcomes were 

statistically significant, the model was limited by the sample size (it used only batters and 

pitchers with great than 1000 at-bats or 1000 batters faced), input variables (items such as 

fielding and stadium size were disregarded) and computer applications (accuracy of 

applications).  Further analysis can be conducted extending each of these factors, thus 

creating a more complete tool. 

While the initial purpose of the model was to create a decision-making tool, 

prescribing instances in which an IBB was the preferred strategic technique, the model 

was also used to evaluate the historical use of the same technique. 

The model illustrated the overuse of the IBB by managers in accordance with the 

paper’s initial hypothesis.  The paper concluded with an introduction to the reasons for 

the overuse, described in terms of subjective biases and cognitive errors.   In this respect, 

further research can be conducted to test those reasons and determine the significance of 

each variable through direct testing of actual baseball managers.  
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The importance of this research lies in its ability to improve the decision making 

process of baseball managers and limit future Type I errors.  Through the use of this 

model, subjective biases and cognitive errors can be reduced, thus allowing managers to 

make smarter and more informed decisions.  
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Appendix 

 

Appendix A - 24 Scenarios 
  Runners Outs 
24 Scenarios First Second Third One Two 

1 0 0 0 0 0 
2 0 0 0 1 0 
3 0 0 0 1 1 
4 1 0 0 0 0 
5 1 0 0 1 0 
6 1 0 0 1 1 
7 0 1 0 0 0 
8 0 1 0 1 0 
9 0 1 0 1 1 
10 0 0 1 0 0 
11 0 0 1 1 0 
12 0 0 1 1 1 
13 1 1 0 0 0 
14 1 1 0 1 0 
15 1 1 0 1 1 
16 1 0 1 0 0 
17 1 0 1 1 0 
18 1 0 1 1 1 
19 0 1 1 0 0 
20 0 1 1 1 0 
21 0 1 1 1 1 
22 1 1 1 0 0 
23 1 1 1 1 0 
24 1 1 1 1 1 
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Appendix B - Post At-Bat Scenario 
  At-Bat Outcomes 
24 Scenarios Single Double Triple Homerun Walk Out Strikeout HBP 

1 4 7 10 1 4 2 2 4 
2 5 8 11 2 5 3 3 5 
3 6 9 12 3 6 End End 6 
4 13 16 10 1 13 5 5 13 
5 14 17 11 2 14 6 6 14 
6 15 18 12 3 15 End End 15 
7 13 7 10 1 13 8 8 13 
8 14 8 11 2 14 9 9 14 
9 15 9 12 3 15 End End 15 

10 4 7 10 1 4 11 11 4 
11 5 8 11 2 5 12 12 5 
12 6 9 12 3 6 End End 6 
13 22 19 10 1 22 14 14 22 
14 23 20 11 2 23 15 15 23 
15 24 21 12 3 24 End End 24 
16 22 19 10 1 22 17 17 22 
17 23 20 11 2 23 18 18 23 
18 24 21 12 3 24 End End 24 
19 22 7 10 1 22 20 20 22 
20 23 8 11 2 23 21 21 23 
21 24 9 12 3 24 End End 24 
22 22 19 10 1 22 23 23 22 
23 23 20 11 2 23 24 24 23 
24 24 21 12 3 24 End End 24 

(Please note that ‘End’ represents the end of an inning, or three outs). 
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Appendix C – Single with Runner on Second 
  Runner Destination - Percent  
Fielder # of hits Out Second Third Home Bases/hit 
N/A 1052 1.5% 2.9% 41.5% 54.1% 1.51 
LF 5117 4.5% 0.2% 26.9% 68.4% 1.68 
CF 5476 2.4% 0.1% 14.8% 82.6% 1.82 
RF 4374 4.3% 0.0% 23.9% 71.7% 1.72 
INF 2380 4.2% 7.3% 76.6% 12.0% 1.05 
Total 18399 3.6% 1.2% 29.9% 65.3% 1.64 
 

Appendix D – Double with Runner on First 
  Runner Destination - Percent  
Fielder # of hits Out Second Third Home Bases/hit 
N/A 673 1.5%  50.8% 47.7% 2.46 
LF 3118 2.6%  56.9% 40.5% 2.38 
CF 1160 4.6%  36.8% 58.6% 2.54 
RF 2021 3.6%  58.8% 37.7% 2.34 
INF 25 8.0%  80.0% 12.0% 2.04 
Total 6997 3.1%  53.6% 43.3% 2.40 
 

Appendix E – Single with Runner on Third 
  Runner Destination - Percent  
Fielder # of hits Out Second Third Home Bases/hit 
N/A 541 0.2%  2.2% 97.6% 0.98 
LF 2840 0.1%  0.0% 99.9% 1.00 
CF 3080 0.1%  0.0% 99.9% 1.00 
RF 2566 0.1%  0.0% 99.9% 1.00 
INF 1106 0.4%  7.2% 92.4% 0.92 
Total 10133 0.1%  0.9% 99.0% 0.99 
 

Appendix F – Double with Runner on Second 
  Runner Destination - Percent  
Fielder # of hits Out Second Third Home Bases/hit 
N/A 399 0.0%  1.5% 98.5% 1.98 
LF 1975 0.2%  0.7% 99.2% 1.99 
CF 772 0.1%  1.6% 98.3% 1.98 
RF 1317 0.2%  2.4% 97.5% 1.97 
INF 18 0.0%  11.1% 88.9% 1.89 
Total 4481 0.1%  1.4% 98.4% 1.98 
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Appendix G -  Lead Runner Destination/Outcome Chart 
At-Bat Outcomes Probability 

24 Scenarios Single Double Single Double 
4 13 19 65.2% 53.6% 
  16 7 31.3% 43.3% 
  5 8 2.1% 3.1% 
  4   1.4% 0.0% 
5 14 20 65.2% 53.6% 
  17 8 31.3% 43.3% 
  5 9 2.1% 3.1% 
  6   1.4% 0.0% 
6 15 21 65.2% 53.6% 
  18 9 31.3% 43.3% 
  6 End 2.1% 3.1% 
  End   1.4% 0.0% 
7 4 7 65.4% 100.0% 
  16  29.9% 0.0% 
  5  3.6% 0.0% 
  13   1.2% 0.0% 
8 5 8 65.3% 100.0% 
  17  30.9% 0.0% 
  6  2.6% 0.0% 
  14   1.2% 0.0% 
9 6 9 65.3% 100.0% 
  18  30.9% 0.0% 
  End  2.6% 0.0% 
  15   1.3% 0.0% 
13 13 19 65.7% 100.0% 
  22  30.3% 0.0% 
  14   4.0% 0.0% 
14 14 20 65.7% 100.0% 
  23  30.3% 0.0% 
  15   4.0% 0.0% 
15 15 21 65.7% 100.0% 
  24  30.3% 0.0% 
  End   4.0% 0.0% 
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Appendix H: Number of Outs 
  At-Bat Outcomes, Outs 
24 Scenarios Single Double Triple Homerun Walk Out Strikeout HBP 
1 0 0 0 0 0 1 1 0 
2 1 1 1 1 1 2 2 1 
3 2 2 2 2 2 3 3 2 
4 0 0 0 0 0 1 1 0 
5 1 1 1 1 1 2 2 1 
6 2 2 2 2 2 3 3 2 
7 0 0 0 0 0 1 1 0 
8 1 1 1 1 1 2 2 1 
9 2 2 2 2 2 3 3 2 
10 0 0 0 0 0 1 1 0 
11 1 1 1 1 1 2 2 1 
12 2 2 2 2 2 3 3 2 
13 0 0 0 0 0 1 1 0 
14 1 1 1 1 1 2 2 1 
15 2 2 2 2 2 3 3 2 
16 0 0 0 0 0 1 1 0 
17 1 1 1 1 1 2 2 1 
18 2 2 2 2 2 3 3 2 
19 0 0 0 0 0 1 1 0 
20 1 1 1 1 1 2 2 1 
21 2 2 2 2 2 3 3 2 
22 0 0 0 0 0 1 1 0 
23 1 1 1 1 1 2 2 1 
24 2 2 2 2 2 3 3 2 
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Appendix I - Number of Runs Scored 
  At-Bat Outcomes: Runs Scored 
24 
Scenarios Single Double Triple HomerunWalk Out Strikeout HBP 
1 0 0 0 1 0 0 0 0 
2 0 0 0 1 0 0 0 0 
3 0 0 0 1 0 0 0 0 
4 0 0 1 2 0 0 0 0 
5 0 0 1 2 0 0 0 0 
6 0 0 1 2 0 0 0 0 
7 0 1 1 2 0 0 0 0 
8 0 1 1 2 0 0 0 0 
9 0 1 1 2 0 0 0 0 
10 1 1 1 2 1 0 0 1 
11 1 1 1 2 1 0 0 1 
12 1 1 1 2 1 0 0 1 
13 0 1 2 3 0 0 0 0 
14 0 1 2 3 0 0 0 0 
15 0 1 2 3 0 0 0 0 
16 1 1 2 3 1 0 0 1 
17 1 1 2 3 1 0 0 1 
18 1 1 2 3 1 0 0 1 
19 1 2 2 3 1 0 0 1 
20 1 2 2 3 1 0 0 1 
21 1 2 2 3 1 0 0 1 
22 1 2 3 4 1 0 0 1 
23 1 2 3 4 1 0 0 1 
24 1 2 3 4 1 0 0 1 
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