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Abstract

Scheduling in wireless networks plays an important role. The undetermined nature of

the wireless channel is usually considered as an undesirable property. Recently, the idea of

opportunistic scheduling is introduced and it takes advantage of the time-varying channel

for performance improvement such as throughput and delay.

Since the introduction of opportunistic scheduling, there are two main bodies of works.

The first body of works assume that each user is greedy and has infinite backlog for trans-

fer. With this assumption, fairness objective becomes an important factor in designing

a scheduling algorithm to avoid severe starvation of certain users. Typical fairness in-

volve processor sharing time fairness, proportional fairness, and minimum performance

guarantee. On the other hand, delay performance is not a appropriate factor to evaluate

the effectiveness of a scheduling algorithm because of the infinite backlog assumption. In

reality, this assumption is not true as data arrives and leaves the network randomly in

practice.

The second body of works deal with the relaxation of the infinite backlog assumption.

Thus, the notion of stability region arises. The definition of stability is that the queue

at each source node remains finite. Stability region can be defined as the set of traffic

intensities which can all be stabilized by the network. The well known throughput optimal

algorithm is proven capable of achieving the largest stability region.

In this thesis, two innovative opportunistic scheduling algorithms which aim to mini-

mize the amount of resources used to stabilize the current traffics are proposed. The key

feature of our algorithms is that the incoming traffic rates are available to the scheduler,

whereas the throughput optimal algorithm has no such prior traffic knowledge. Perfor-

mance comparisons are made by means of simulation to demonstrate that the proposed

algorithms can achieve the same stability region as the throughput optimal algorithm.

Moreover, the delay performance is better than that of the throughput optimal algorithm,

especially under heavy traffic conditions.
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Chapter 1

Introduction

In wired line networks, the link capacities are fixed and there is no interference between

adjacent links. Scheduling has been extensively studied in operations research. However,

these scheduling policies can not be directly applied to the wireless domain due to time-

varying channels and multiuser-diversity. Traditionally, the time-varying property of the

wireless channel is considered undesirable, and many research have been done trying to

overcome this problematic feature. New scheduling solutions are specifically designed and

tailored for the wireless networks, and a new name is given to these policies – opportunistic

scheduling.

The formal definition of opportunistic scheduling is that it is a scheduling policy which

exploits the channel variations of users to achieve higher throughput. In simple words,

the policy assigns the channel to the user with the best channel condition at current time

and postpone the users whose channel conditions are poor. In addition, opportunistic

scheduling can also provide quality of service (QoS) at the cost of throughput. In most

of the recent literatures, opportunistic scheduling is performed slot by slot and the QoS is

established in terms of time average.

There are two major bodies of opportunistic scheduling algorithms. The first body of

works [11],[12],[14], and [15] adopt the assumption of saturated traffics, which means that

each individual user is greedy and has infinite backlog to transfer. The second body of

works [1],[3], and [7] relax this assumption and address the issue of the stability region. In

this body of work, the users are non greedy and the algorithms which are able to achieve
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Introduction 2

the largest stability region are preferred since more revenue can be generated from the

service provider’s point of view. However, the gain of stability region usually comes at

the cost of delay performance degradation. In this thesis, a new scheduling algorithm is

proposed with the aim of resources minimization and its stability region is investigated by

means of simulation.

A well designed scheduling algorithm should address the following three critical fac-

tors: fairness, delay and throughput. Interestingly, fairness is essential in the context of

saturated throughput and its purpose is to ensure no one will be starved for a long period

of time. The reason is that every user demands more than the processing capacity of the

system, if no fairness constraint is implemented, some users may be starved indefinitely.

There are several different types of fairness such as processor sharing time, minimum per-

formance guarantee [15] and proportional fairness [9],[19]. However, in case of unsaturated

throughput, pre-defined fairness constraints such as minimum amount of processor sharing

time is not necessarily appropriate. For example, if we allocate a pre-defined processor

sharing time to a particular user, there will be potentially a waste of processor time. The

argument is simple: data arrives dynamically and user may not require all the reserved pro-

cessor time to empty its buffer. When this happens, the scarce network resources is wasted

and the scheduling algorithm becomes inefficient. Therefore, we studied and compared the

distribution of starvation period of our algorithm with existing scheduling algorithms via

simulations to ensure that the proposed algorithm does not result in severe starvation and

provides a comparable performance in terms of starvation period to other algorithms.

Secondly, delay is not a proper factor to be considered in saturated throughput case

since all user has infinite backlog which implies that the delay of each user is also infinite.

However, it is a very important performance measure in unsaturated case. It is clear that

stability region and delay performance are two separate optimization objectives. In general,

an algorithm cannot optimize both objectives at the same time without making necessary

tradeoffs. In this thesis, the primary design goal is to minimize the amount of resource

used to stabilize the current traffics, and the secondary goal is to investigate its delay

performance and stability region. We will show through simulation results that our algo-

rithms indeed can achieve the same stability region as the throughput optimal algorithm

and provides a significant delay improvement by utilizing queue length information.
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The last criterion is throughput. If one algorithm is able to maximize the average

throughput in long term for any stable input configuration, it must be the algorithm

which achieves the largest stability region. Hence, any algorithms which is capable of

achieving the largest stability region can be considered as throughput optimal. Note that an

algorithm which maximizes throughput on a short-term scale does not necessarily maximize

the throughput in long term. We will use simulation to illustrate this simple fact.

The thesis is organized as follows: in Chapter 2 we will explore and study previous

works on various opportunistic scheduling policies, which are designed for TDMA systems.

Those policies are further divided into different categories based on the types of fairness

constraints and the length of period over which the constraint is applied. In Chapter 3,

two new opportunistic scheduling algorithms focusing on minimizing the resources used to

stabilize the current traffics under the assumption that the traffic is known are proposed.

Their performances are analyzed and compared with the well-known throughput optimal

algorithm [3] and the Round Robin policy via simulations. Finally, we conclude in Chapter

4 with the main contributions of this work and suggestions on future research works.



Chapter 2

Previous Works

In this chapter, a brief review of the current literature on opportunistic scheduling will be

presented. Typical works with and without infinite backlog assumption are discussed. The

following algorithms all consider a time-slotted system model where time is the resource to

be shared among all users, which includes TDMA systems and time-slotted CDMA systems.

Both the uplink and the downlink scheduling of a wireless network are considered, and the

base station serves as the central control station.

2.1 Long-term Constraints in Saturated Cases

Scheduling algorithms with long-term constraints try to guarantee certain QoS or fairness

over the entire time horizon. Therefore, user-oriented constraint or requirement can only

be satisfied on an average scale. There is no guarantee that the requirement will be met in

a finite time interval; hence, a real-time user who experiences a bad channel condition for a

long time will also experience a prolonged delay period. The scheduling schemes described

in [15] assume that all users are greedy with saturated traffics by which the authors actually

mean that each user always has data to send and the queues are infinite in lengths. It is

important to note that a fairness criteria is essential to scheduling problems for greedy

users in wireless system. Without a good fairness criterion, the system performance can

be maximized by simply letting the user with the best channel condition to transmit

all the time. This will cause the “poor” users to be starved infinitely. In the following

4



Previous Works 5

subsection, we study three types of fairness constraints for both the uplink and the downlink

of a wireless network in detail: Resource Sharing Fairness Constraint, Performance Based

Fairness Constraint, and Minimum Performance Fairness Constraint. The notations used

in this chapter are listed below:

• N : denotes the set of users indexed by i.

• µi(t): denotes the channel rate for user i in timeslot t. Thus ~µ(t) = [µ1(t), ..., µN(t)]

denotes the vector of the channel rates for all users at time t.

• fi(·): denotes the system utility function, which is typically a function of the trans-

mission rate (i.e. fi(µi)). We assume that fi is an additive convex function.

• Q(~µ(t)): denotes a scheduling policy which selects a user in timeslot t, given ~µ(t).

2.1.1 Resource Sharing Fairness Constraint – Temporal Fairness

In essence, in a typical TDMA system, time is the resource shared by all users. Therefore,

a natural fairness criterion is to assign each user a pre-defined share of the total processor

time. Let ri denote the minimum fraction of processor time that should be assigned to

user i, where ri ≥ 0 and
∑N

i=1 ri ≤ 1. The value of ri is the minimum fraction of time

that a user should be allocated on the channel, which is usually determined by the user’s

class or the price a user is willing to pay. The scheduler decides which time slot should be

assigned to which user, given the minimum requirements. This type of fairness ensures that

on average each user gets a certain share of the time resources. The associated problem

formulation is shown below:

max
Q

∑
i∈N

E[fi(µi)I{Q(~µ)=i}] (2.1)

Subject to P{Q(~µ) = i} ≥ ri (2.2)
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The feasibility is guaranteed by imposing the condition
∑

i∈N ri ≤ 1. The solution can be

obtained by formulating the Lagrangian:

L(Q,~λ) =
∑
i∈N

E[fi(µi)I{Q(~µ)=i}] +
∑
i∈N

λi{E[I{Q(~µ)=i}]− ri}

=
∑
i∈N

∑

~µ∈S

πsfi(µi)I{Q(~µ)=i} +
∑
i∈N

λi(
∑

~µ∈S

πsI{Q(~µ)=i} − ri)

where λi is the Lagrangian multiplier and S denotes the set of channel states ~µ. In [15],

the authors have assumed that the channel is a discrete memoryless channel with finite

number of states. Let π~s be the stationary distribution of the channel at state ~s. For a

given, ~λ = [λi], Q will maximize L(Q,~λ) if and only if

Q = arg max
i
{
∑

~µ∈S

π~µ

∑
i∈N

(fi(µi) + λi)I{Q(~µ)=i}} (2.3)

At the beginning of each time slot t, given the channel state, the solution is

Q∗(~µ(t)) = arg max
i
{fi(µi(t)) + λi(t)} (2.4)

Using stochastic gradient algorithm, the Lagrangian multiplier is updated as:

λi(t + 1) = [λi(t) + εt(ri − I{Q(~µ(t))=i})]
+ (2.5)

where εt = 1/t is a positive decreasing sequence, and [·]+ denotes the positive projection.

The Lagrangian multiplier λi can be considered as an offset used to achieve the fairness

requirement. Suppose we want to maximize the performance of the overall system without

any constraint. It is clear that the scheduler should choose the user with the highest

channel rate at each time slot (i.e. Q∗(~µ(t))) = arg maxi(µi(t)). However, such a scheme

may be unfair to some users whose channels are poor for a long time. Hence, to satisfy the

fairness requirement, the scheduler should pick the “relative-best” user to transmit. User

i is “relative-best” if fi(µi) + λi > fj(µj) + λj. If λi > 0, then user i is an unfortunate

user because its channel is poor and an offset must be used to ensure it can be served

fairly. The dynamic of λi can be also seen from the dual update equation. If the required

resource is satisfied, λi will decrease towards zero. Otherwise, it will increase towards

+∞. It is important to note that to maximize the performance of the overall system,



Previous Works 7

these unfortunate users can only receive the amount of time resource equivalent to their

minimum requirements. On the other hand, users with better channel condition get more

than their minimum requirements in cases where
∑N

i=1 ri < 1.

The average system performance is maximized by Q∗ even if the users’ channel con-

ditions are arbitrarily correlated, both in time and across users. If individual channel

conditions are independent of each other, then the following proposition holds:

Proposition 2.1: If the performance values fi(µi), i ∈ N , are independent, then for all

i,

E[fi(µi)I{Q∗(~µ)=i}] ≥ P (Q∗(~µ) = i)E[f(µi)] ≥ riE[f(µi)] (2.6)

Note that E[fi(µi)I{Q∗(~µ)=i}] is the average performance value of user i by using policy

Q∗. P (Q∗(~µ) = i)E[f(µi)] is the average performance of user i by using a non-opportunistic

scheduling algorithm such as Round Robin, where P (Q∗(~µ) = i) is greater or equal to the

fraction of time assigned to user i.

Proposition 2.1 guarantees that the average performance of each user by using Q∗ will

be no worse than that of any non-opportunistic scheduling algorithm that allocates the

same fraction of service time to the user if users’ channel conditions are independent of

each other. This result can be interpreted as follows. When a user is experiencing good

channel conditions, it has a higher chance to get transmission opportunity. When a user is

experiencing bad channel conditions, it has less probability to get transmission opportunity.

Hence, a user tends to transmit more often under good channel conditions. The net effect is

that every user sees an effective channel distribution which has a higher mean transmission

rate than the actual channel model. Finally, different users may experience different level of

improvement depending on the physical channel model. Normally, the larger the variance

of a user’s channel condition, the greater the improvement. If a user has a constant channel

condition, then the equality sign in (2.6) holds.

2.1.2 Performance Based Fairness Constraint – Utility-based Fair-

ness

In wireless networks, since the channel conditions are always varying, the amount of time

slots allocated to a certain user does not have a linear relationship with its performance. In
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other words, allocating certain time slots to a user does not grant the user a certain amount

of throughput value. Hence, from a user perspective, another performance guarantee is

more preferred. In [15], the authors state that Utility-based fairness ensures that each

user gets a certain share of the total system throughput. Note that under such fairness

constraint, each user’s performance will have an impact on the total system throughput.

Therefore, although each user is guaranteed some throughput in terms of percentage of

the total system throughput, if one user misbehaves, the rest of the users will have to

be penalized in order to meet each individual’s fairness constraint. The corresponding

optimization problem is shown below:

max
Q

∑
i∈N

E[fi(µi)I{Q(~µ)=i}] (2.7)

Subject to E[fi(µi)I{Q(~µ)=i}] ≥ ai

∑
i∈N

E[fi(µi)I{Q(~µ)=i}] (2.8)

where a′is are predetermined fairness parameters and the feasibility is guaranteed by im-

posing the condition
∑

i∈N ai ≤ 1. Let ν =
∑

i ai be a tuning parameter. The smaller the

ν is, the larger the opportunity to improve the system performance. The solution can be

obtained through solving the Lagrangian equation:

L(Q,~λ) =
∑
i∈N

E[fi(µi)I{Q(~µ)=i}] +
∑
i∈N

λi{E[fi(µi)I{Q(~µ)=i}]− ai

∑
i∈N

E[fi(µi)I{Q(~µ)=i}]}

where λi is the Lagrangian multiplier for user i. For a given ~λ = [λi], the policy Q will

maximize L(Q,~λ) if and only if

Q∗ = arg max{
∑

~µ∈S

π~µ

∑
i∈N

fi(µi)(1 + λi −
∑
i∈N

λiai)I{Q(~µ)=i}}

At the beginning of each time slot, the channel condition is known and the optimal policy

is given by

Q∗(~µ(t)) = arg max
i
{fi(µi(t))(1 + λi(t)−

∑
i∈N

λi(t)ai)}

λi is updated by using a stochastic approximation algorithm as follows:

λi(t + 1) = [λi(t) + εt(ai

∑
i∈N

fi(µi(t))I{Q(~µ(t))=i} − fi(µi(t))I{Q(~µ(t))=i})]
+
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where εt is positive decreasing sequence to ensure convergence.

Utilitarian scheduling schemes have certain notable features. First, any policy Q that

satisfies the fairness constraint defined in (2.8) has the property that

ai

1− ν + aj

≤ E[fi(µi)I{Q(~µ)=i}]
E[fj(µj)I{Q(~µ)=j}]

≤ 1− ν + ai

aj

, ∀ i, j ∈ N

In other words, a utilitarian fairness constraint controls the maximum discrepancy of per-

formance between users.

Secondly, utilitarian fairness ensures that a user is given at least a fraction of the

total performance. Sometimes, this is a more suitable fairness constraint than temporal

fairness. However, there is also a significant disadvantage of this type of fairness. A user

experiencing poor channel conditions could have a large impact on the overall system

performance. Rewriting (2.8), we have E[fi(µi)I{Q(~µ)=i}]/ai ≥
∑

i∈N E[fi(µi)I{Q(~µ)=i}].

Therefore, if one user performs extremely bad and has a large value of ai, then the overall

system performance will be degraded significantly. To overcome this problem, the value of

ai will be decreased when:

E[fi(µi)I{Q(~µ)=i}]
P (Q(~µ) = i)(

∑
i∈N E[fi(µi)I{Q(~µ)=i}])

≤ β

where β is a pre-determined threshold.

2.1.3 Minimum Performance Fairness Constraint – Absolute Min-

imum Capacity

The scheduling schemes discussed above provide fairness guarantees in terms of relative

performance measures. On the other hand, the following policy presented in [15] guarantees

each user an absolute performance value. Hence, the QoS is defined in terms of minimum

performance guarantee. Unlike the previous two schemes, this one offers a more direct way

of guaranteeing service quality. But since the total capacity is a finite value, it might not

be always possible to satisfy all users’ minimum data-rate requirements. Hence, feasibility

is an issue in this type of scheduling policy. However, to illustrate, we assume the minimum

capacities given in the problem can be realized by at least one policy. The corresponding
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optimization problem is shown below:

max
Q

∑
i∈N

E[fi(µi)I{Q(~µ)=i}] (2.9)

Subject to E[fi(µi)I{Q(~µ)=i}] ≥ Ri (2.10)

where Ri is the minimum data-rate requested by user i. The associated Lagrangian equa-

tion is:

L(Q,~λ) =
∑
i∈N

E[fi(µi)I{Q(~µ)=i}] +
∑
i∈N

λi{E[fi(µi)I{Q(~µ)=i}]−Ri}

where λ = [λi] is the Lagrangian multiplier. For a given ~λ, the policy Q will maximize

L(Q,~λ) if and only if

Q∗ = arg max{
∑

~µ∈S

π~µ

∑
i∈N

(fi(µi) + λifi(µi))I{Q(~µ)=i}}

At the beginning of each time slot, the channel condition is known and the optimal decision

is:

Q∗(~µ(t)) = arg max
i
{fi(µi(t))(1 + λi(t))} (2.11)

λi is updated by using a stochastic approximation algorithm as follows:

λi(t + 1) = [λi(t) + εt(Ri − fi(µi(t))I{Q(~µ(t))=i})]
+ (2.12)

where εt is a positive decreasing sequence. If we further simplify the solution to make

Q∗(~µ(t)) = arg maxi{vi(t)fi(µi(t))} where vi(t) = 1 + λi(t), it turns out that a large

group of opportunistic scheduling problems has the solution in this form. For example, the

solution in Utility-based Fairness scheme can be converted to this form. Also, a very well

known scheme - throughput optimal scheduling scheme [3] is also in this form and will be

discussed in the next section.

As mentioned before, feasibility is an issue in this case. However, there are some

natural settings where feasibility is not an issue. For instance, let Ri = ρiE[fi(µi)], where

0 ≤ ρi ≤ 1 and
∑

i∈N ρi ≤ 1. This setting can be achieved by a non-opportunistic

scheduling policy in which user i is selected for transmission with probability ρi. Therefore,

it is feasible for opportunistic scheduling policies naturally.
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2.2 Long-term Constraints in Unsaturated Cases

In this section, we remove the assumption that all users are greedy and assume that

each user’s queue is finite. By relaxing this assumption, the crucial performance factor –

delay must be taken into consideration. In general, QoS can be defined in many different

ways. One of the standard ways is that the delays of most of the data packets need to be

kept below a certain threshold. For example, in [3], the authors have used the following

requirement:

P (Wi > Ti) ≤ δi (2.13)

where Wi is a packet delay for this user, and parameter Ti and δi are the delay threshold

and the maximum probability of exceeding it respectively. Note that this requirement is

established in long-term sense. There is no guarantee that every packet will have a delay

less than Ti.

It has been shown that the above requirement can be achieved by throughput optimal

scheduling schemes, in particular the Modified Largest Weighted Delay First (M−LWDF )

scheme. The definition of throughput optimal scheduling algorithm is that a scheduling

algorithm is called throughput optimal if it is able to keep all queues stable if this is

feasible at all. M − LWDF is throughput optimal and it is given by

Q∗(t) = arg max
i
{αiWi(t)µi(t)}

where Wi(t) is the head-of-line packet delay for queue i, µi(t) is the channel condition,

and αi is an arbitrary positive constant. The above algorithm has another equivalent form

shown below:

Q∗(t) = arg max
i
{αiqi(t)µi(t)} (2.14)

where Wi(t) is replace by qi(t) which represents the queue length. In the simulation section,

we will compare the performance of the proposed algorithm with that of (2.14). From this

point onwards, we will refer to the throughput optimal policy as the one given by (2.14).

There are three key features associated with the above policy:

• The policy uses both current channel conditions and queue lengths to make a schedul-

ing decision.
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• The policy is able to achieve the largest stability region without knowing the incoming

traffic rates.

• The delay distribution of individual users can be controlled by tuning the parameters

αi.

The ability to control individual delay distribution is a powerful feature. Requirement

(2.13) can be satisfied by selecting αi as follows:

αi =
− log(δi)

TiE[µi]
(2.15)

where E[µi] is the mean of user i’s channel rate. Parameter αi considers the QoS require-

ment, and provides QoS differentiation between the flows. For instance, if users A and

B have the same delay threshold T , but δA = 4δB, which results in αB = 2αA. The net

effect is that user B will be given priority in assigning transmission opportunity. Substitute

(2.15) into (2.14), we have

Q∗(t) = arg max
i
{− log(δi)qi(t)µi(t)

TiE[µi]
}

It is easy to see that the chance of a user being scheduled is increased when the user has a

higher QoS requirement and the values of its queue length and channel rate are increased.

In all, this rule approximately “balances” different users’ probabilities of dead-line violation

relatively to their maximum allowed values δi. Therefore, the rule supports every user’s

desired QoS specified in (2.13) if this can be done at all with any other rule. This implies

that there is a fundamental limit in specifying delay requirement. In other words, the

delay bound cannot be made arbitrarily small. In fact, increasing the parameter αi of user

i, while keeping αis of other users unchanged, reduces delays for this flow at the expense

of a delay increase for other flows. Overall, there is no gain without loss. However, in

this thesis, an algorithm which provides better delay performance, especially under heavy

traffic conditions, than (2.14) is proposed and presented later.

We note that all the schemes discussed in section 2.1 deal with long-term performance

measures. In reality, short-term performance guarantee is more important from a individual

user’s point of view. When a user’s service is lagging behind its specified share or it
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is experiencing significant delay, we want to increase its transmission opportunities to

guarantee its service quality. Hence, we will consider opportunistic scheduling with short-

term constraints in the following section.

2.3 Short-term Constraints in Saturated Cases

Short-term constraints guarantee fairness/QoS over finite time duration. This is a more

appealing requirement in practice as most applications are delay sensitive to some extent.

Since the time horizon is infinite in the long-term fairness case, the QoS can be met precisely

on average. However, due to the lack of scheduling flexibility, short-term fairness is often

difficult to be met precisely within a finite time duration. In [11], the authors present a

scheme with short-term temporal fairness with the assumption that users are greedy, which

means each of the users always has data to receive on the downlink). Let’s assume that

each user i has an associated weight φi such that
∑

i∈N φi ≤ 1. Let’s group time slots into

successive non-overlapping windows of M slots each. The problem formulation is shown

below:

max
M−1∑

t=0,i∈N

E[µi(t)IQ(t)=i] (2.16)

Subject to
M−1∑
t=0

IQ(t)=i ≥ φiM (2.17)

In words, the above optimization problem can be defined as follows: among all scheduling

policies which select each user φiM times in M consecutive time slots, find the one which

maximizes the system throughput. Clearly, this policy ensures that no user will be starved

more than 2M−1 slots, and every user will get its Mφi number of slots in every successive

non-overlapping window.

Since the problem involves dynamic channel conditions and usually it is quite difficult

to estimate many parameters in the channel state model, the solution to the above prob-

lem cannot be obtained in the same way as the long-term problems and the Lagrangian

multiplier will not be able to converge within the specified finite time duration. However,

a few special cases have been worked out and a heuristic policy is proposed. We will give
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the final results directly without showing the technical proof, which can be found in [12].

Case 1: M = ∞
This case is identical to the long-term temporal fairness in section 2.1.1. On average,

user i must get a time share of the service time that is greater than or equal to φi. The

corresponding problem formulation is

max
∑
i∈N

E[µiI{Q(~µ)=i}]

Subject to E[I{Q(~µ)=i}] ≥ φi

The solution is given by

Q∗(~µ(t)) = arg max
i
{µi(t) + λi(t)} (2.18)

where λi is a non-negative Lagrangian multiplier.

Case 2: N i.i.d users and φi = 1/N , M = N

It is clear that the window size in this case is the shortest possible. Every user gets

exactly one slot in every M slots. The channel models for all users are identically and

independently distributed across users and time. In the following case, this i.i.d assumption

will be removed and a different solution will be obtained. The problem formulation for

case 2 is:

max
M−1∑
t=0

∑
i∈N

E[µiI{Q(~µ)=i}]

Subject to
M−1∑
t=0

I{Q(~µ)=i} = 1

and the optimal scheduling policy is

Q∗(t) = arg max
i∈A∗(t)

{µi(t)} (2.19)

where A∗(t) denotes the set of users who have not been served yet. The dynamic of A∗(t)

is A∗(t) = A∗(t−1)−Q∗(t−1). This policy is given the name Opportunistic Round Robin
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policy. Once the user is selected, this user will be considered as inactive until the start of

the next non-overlapping window.

Case 3: N independent users and φi = 1/N , M = N

The problem formulation is identical to Case 2, but users have different channel distri-

butions. The channel rates for each user are still independent across time. The optimal

scheduler is

Q∗(t) = arg max
i∈A∗(t)

{µi(t) + V ∗
A∗(t)−{i}} (2.20)

A∗(0) = N, A∗(t + 1) = A∗(t)−Q∗(t)

where V ∗
B is the total expected optimal reward which could be received by users in set B.

In words, the above policy can be described as follows. Let A∗(t) be the set of unserved

users at the beginning of slot t. Assume that the scheduler picks user i ∈ A∗(t) for service.

The throughput in the current slot will be µi(t). The expected total throughput in the

remaining window will be V ∗
A∗(t)−{i}. Hence, the optimal policy in this time slot selects the

user with the maximum µi(t) + V ∗
A∗(t)−{i} to maximize the total expected throughput.

In fact, a careful thought should reveal that (2.20) is equivalent to the following policy:

Q∗(t) = arg max
i∈A∗(t)

{µi(t)− E[µi]}
A∗(0) = N, A∗(t + 1) = A∗(t)−Q∗(t)

The rational of this policy is very straightforward: schedule the user whose channel is the

best comparing to its mean channel rate. Since the channel are not i.i.d, E[µi] will not be

the same for all users. However, in Case 2, E[µi] is the same for all users and then the

policy reduces to

Q∗(t) = arg max
i∈A∗(t)

{µi(t)}

Motivated by the solution in Case 1, a heuristic policy has been proposed to solve the

original general problem (2.16):

Q∗(t) = arg max
i∈A(t)

{µi(t) + λi}
A(0) = N, Ni(0) = 0

Ni(t) = Ni(t− 1) + I{Q(t−1)=i}, A(t) = A(t− 1)−Q(t− 1)I{Ni(t)=Mφi}
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where λi denotes the value of the Lagrangian multiplier obtained in the long-term case

(after convergence in steady state). A(t) denotes the set of users whose constraints have

not been met. Within a scheduling window, the scheme always picks the user having the

largest µi(t) + λi from the active users set A(t) at the beginning of each time slot. A

counter, Ni(t), is used to keep track of the number of time slots allocated to each user.

If the counter is equal to the minimum fairness requirement of a user, then this user is

removed from A(t). We can easily see that the performance of this policy will converge

to the long-term temporal fairness policy when M is large. If the sum of all requested

resource is less than the total resource (i.e.
∑

i φi < 1), this heuristic algorithm is not

the optimal solution. In this case, the true solution requires accurate channel estimation,

which is usually a complicated process. Therefore, the author does not mention this case

in his original work.

We note that if the short-term constraints can be relaxed, then it can be solved by

standard Lagrangian method as well. Hence, we can also draw a conclusion that the

stricter the short-term constraint is, the less flexibility the system will have to improve

the total system performance. There exists a tradeoff between total system performance

values and each user’s quality of service.

Furthermore, although this scheme which is capable of providing short-term fairness to

guarantee each user’s performance looks quite appealing, it still does not take queue length

into consideration when scheduling is performed. The assumption that all users are greedy

is not practical; hence, we want to propose new opportunistic scheduling policies such that

both queue and channel information can to utilized to provide short-term performance

guarantees without assuming all users are greedy. In this thesis, short-term performance

refers to delay and maximum starvation period. Although these two performance factors

are all user-level optimization objectives which are not the primary concern of the service

provider, they should be analyzed to ensure that an “acceptable” level is achieved. In

Chapter 3, we propose two new algorithms which minimize the resources used to stabilize

the incoming traffics. Simulation results show that they can achieve the same stability

region as the throughput optimal algorithm and provide better delay performance.
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2.4 Optimal Fair Scheduling

Although opportunistic scheduling have attracted lots of researchers’ attention recently,

other resource management schemes which can provide fair and efficient resource allocations

to a large number of users are also explored and investigated in many network studies. In

this section, we briefly discuss an algorithm which provides fair allocation of capacity to

large number of users of best-effort connections [1]. In this type of framework, the greedy-

user assumption is removed and it does not provide explicit QoS in terms of delay and

throughput. Its main objective is to allocate resources in a fair manner.

Unlike opportunistic scheduling policies, this type of algorithm do not explore channel

variations. In other words, such scheduler is blind to any channel information. Normally,

there always exists a tradeoff between “fairness” and “efficiency”, and to allocate resources

fairly among users is gaining wide interest both in wire-line and wireless networks. The

notion of proportional fairness is used in [1]. This type of fairness is from the fairness

axioms in game theory which was first introduced in a network context by Mazumdar et al

[19]. Kelly termed it “proportional fairness” in later publications, which have been cited

frequently.

Kelly has shown that if the utility function is in the form of log(·), then the solution of

the optimization problem satisfies proportional fairness. Indeed, Mazumdar proves that the

solution obtained using this type of utility function is an instance of the Nash Bargaining

Solution (NBS). The formal definition of NBS does not require log utility function at all.

The features of the NBS solution are:

• The NBS is Pareto optimal.

• The solution is unchanged if the performance objectives are scaled in the form of

au + b. (scale invariant property)

• The solution is not affected by enlarging the domain if agreement can be found on a

restricted domain. (irrelevant-alternatives axiom)

• The solution does not depend on the specific labels. (symmetry property)

Pareto optimality refers to the fact that all resources are distributed in the sense that
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the bandwidth allocated to any user cannot be further increased without sacrificing the

bandwidth allocated to other users.

In [7], Girard et al present a network system where multiple users share the available

resource on a demand basis, and the sum of all demands usually exceeds the available total

bandwidth. The bandwidth requested by each user is not absolutely needed and the users

can accept an allocation smaller than what they originally demanded. The optimization

problem is formulated as

max~x

N∏
i=1

xi (2.21)

Subject to
N∑

i=1

xi = C

0 ≤ xi ≤ di

where N is the total number of connections, C is the total available bandwidth, ~x = [xi] is

the allocation vector and di represents the amount of bandwidth requested by i. And the

objective in form of (2.21) is equivalent to

max~x

N∑
i=1

log(xi)

As mentioned before, this type of utility function will lead us to an NBS solution. Since

proportional fairness has powerful features, it is the most commonly used fairness objective

in utility maximizing problems. Furthermore, log(·) is a strictly concave function. This

property will yield a unique global optimal solution.

In general, different utility functions will lead us to different operating point on the

Pareto optimal surface. A more general form of the utility function is given in [13] as

follows:

Ui(xi) = wi
x1−γ

i

1− γ
, γ > 0

where xi is the bandwidth allocated to user i, wi is the weight, the maximization problem

corresponds to a weighted proportional fairness as γ → 1 and weighted max-min fairness

as γ →∞.
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Note that max-min fairness is also Pareto efficient and it allocates network resources in

such a way that the bandwidth allocated to a user cannot be increased without decreasing

the bandwidth allocated to another user. In other words, with max-min fairness, resources

are allocated to users in the order of increasing demands, and no one will receive more

than it requires. Users with unsatisfied demands will split the remaining resources evenly

among themselves.

2.5 Summary

To sum up, we have studied different scheduling algorithms with different focuses in this

chapter. In reality, there is no single algorithm can maximize multiple objectives at the

same time without any trade-offs. Each scheduling policy has its own assumptions and

limitations. Hence, different algorithms are tailored to different application areas. In the

next chapter, we will present two general scheduling algorithms which aim to minimize

the resources used to in stabilizing the incoming traffic. Meanwhile, their stability regions

and delay performance are analyzed by simulations. These proposed algorithms relax the

assumption of infinite backlog.



Chapter 3

An Innovative Opportunistic

Scheduling Algorithm for Networks

with Packet-Level Dynamic

3.1 Motivation and Basic Framework

In practice, all service providers want to serve as many users as possible for revenue maxi-

mization provided that the service is charged on subscription basis. However, the amount

of incoming traffic that can be served is limited by the wireless channel and scheduling

scheme. In this chapter, we will present two opportunistic scheduling algorithms which

both aim to minimize the amount of resources used in order to stabilize the incoming

traffic. Although both algorithms are developed with the same optimization goal, they

have different delay performance. Simulations indicate that both algorithms can achieve

a stability region almost identical as the throughput optimal algorithm [3]. The two al-

gorithms work under any traffic model or traffic regulation method and assumes that the

average incoming traffic rates are known. The traffic intensity information is assumed to

be available to the system before scheduling decision is made.

The system model under investigation in this thesis is the following. The network

consists of a single base station which connects to all end users as shown in Fig 3.1. In

reality, the controller at the base station is the unit responsible for efficient allocation of

20
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Figure 3.1: Network Topology
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Figure 3.2: Timing of Events

the available resource to individual user as shown in Fig 3.2. Physical layer information

(PLI) is reported to the base station at the beginning of each frame. The controller will

then prepare a Burst Time Plan (BTP) showing which time slot is allocated to which user.

For modeling purpose, we consider slot-by-slot scheduling where the system time is slotted

with time-slot duration T . At the beginning of each time slot, the scheduler collects the

information of individual channel rate and queue length as inputs to assign transmission

opportunities. Only one user can be served in each time slot. We assume that the regulated

traffic rates are available to the scheduler at the start of a session. The number of sessions

is fixed in the network and corresponds to the number of users, and the only dynamic in



Opportunistic Scheduling with Packet-Level Dynamic 22

the system is packet-level dynamic.

Since a network under this model may not be stable, the notion of stability region

arises. The well-known definition of network stability is

lim
t→∞

1

t

∫ t

0

I{∑S
s=1 ns(t)+

∑L
l=1 ql(t)>M}dt → 0, as M →∞ (3.1)

where ns(t) denotes the number of sessions at source node s, and ql(t) denotes the queue

length at link l. In words, we say a network is stable if the number of sessions is finite

and the queues at each link are finite as well. The stability region is defined as the set of

arrival traffic intensities under which (3.1) is satisfied.

In this thesis, we consider uplink scheduling and the above general stability equation

is interpreted as follows: there are S source nodes/users and S uplinks in total. ql denotes

the queue length at uplink l. We assume that each source node only initiates one session

(ns = 1). Therefore, the first term in (3.1) converges by definition. Since the network

structure is a one-hop topology, the system is stable if the queue length at each source

node is finite, which guarantees the convergence of the second term in (3.1).

Two of the criteria to design a good scheduling algorithm for networks with packet-

level dynamic are: stability region and delay. In general, different scheduling algorithms

will result in different stability regions. However, the fundamental limit of the stability

region is governed by the nature of the channel. From the service provider’s point of view,

stability region is a system level performance. A larger stability region will accommodate

more users/traffics and in turn generate more revenues. On the other hand, delay is a user

level performance. Every user wants to transfer data with minimum delay. It is obvious

that maximizing the stability region and minimizing delay cannot be achieved at the same

time. In this thesis, we will propose two scheduling algorithms which try to minimize

the resources being used to stabilize the current traffic. Although these two optimization

problems are different from the optimization problem that would maximize the stability

region, simulation results suggest that both algorithms can potentially achieve a stability

region very close to the one of the throughput optimal algorithm. Moreover, they can also

provide a better delay performance than the throughput optimal algorithm.

A natural question to ask is why fairness is not considered as one of the design criteria?

In networks with greedy users, users may be starved indefinitely since they are competing
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for limited resources or transmission opportunities. Recall that the definition of a greedy

user is a user with infinite backlog to transfer. In our case, each user has a finite queue

length and the system operates inside the stability region; hence, it is able to handle all the

incoming traffics, which implies that no user will be starved indefinitely. Therefore, a strict

fairness constraint is not required in case of non-greedy users. However, the starvation pe-

riod should be analyzed to ensure no user is starved for a prolonged period. The starvation

period of a user refers to the maximum number of time slots between two consecutive

transmission opportunities for a user with non-empty queue.

In this thesis, we want to investigate and compare the throughput, delay performance

and the starvation period of the proposed two algorithms with other well-known schemes.

3.2 Problem Formulation and Solution

In this section, we will develop two algorithms which try to minimize the resources being

used to stabilize the incoming traffic.

To formulate the optimization problems, first let si(Q) be the average processor time

of user i under scheduling scheme Q given by

si(Q) = lim
t→∞

1

t

∫ t

0

I{Q(~µ(t))=i}dt (3.2)

where ~µ(t) = [µ1(t), ..., µN(t)] is the channel rate vector at time t in unit of bits/second.

This unit can be converted to packets/second if the number of bits in a packet is known.

Although this thesis deals with packet-level dynamics, we will use bits/second as the unit.

We assume that the channel distribution is stationary. Clearly, 0 ≤ si(Q) ≤ 1. By

ergodicity, (3.2) is equivalent to

si(Q) = E[IQ(~µ)=i] (3.3)

Now, we proceed to formulate the first optimization problem in the time domain which

minimizes the resources used to stabilize the current traffic:

min
Q

lim
t→∞

1

t

∫ t

0

N∑
i=1

I{Q(~µ(t))=i}dt

subject to lim
t→∞

1

t

∫ t

0

µi(t)I{Q(~µ(t))=i}dt ≥ λi,∀i
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where ~λ = [λ1, ..., λN ] is the average arrival rate vector with unit bits/second. By ergodicity,

the above problem is equivalent to

min
Q

N∑
i=1

E[I{Q(~µ)=i}] (3.4)

subject to E[µiI{Q(~µ)=i}] ≥ λi,∀i (3.5)

To change the problem to a maximization problem, we add a minus sign to the objective

and obtain:

max
Q
−

N∑
i=1

E[I{Q(~µ)=i}] (3.6)

subject to E[µiI{Q(~µ)=i}] ≥ λi,∀i (3.7)

Standard Lagrangian method can be used to solve the above problem.

L(Q(~µ), ~γ) = −
N∑

i=1

∑

~µ∈C

π~µI{Q(~µ)=i} +
N∑

i=1

γi(
∑

~µ∈C

π~µµiI{Q(~µ)=i} − λi)

where C = ⊗µi, i ∈ N denotes the Cartesian product, and π~µ is the stationary probability

at state ~µ. For a given ~γ, the corresponding optimal policy Q(~µ) maximizing L(Q(~µ), ~γ)

is given by

Q∗(~µ) = arg max L(Q(~µ), ~γ)

= arg max


∑

~µ∈C

π~µ

N∑
i=1

(−I{Q(~µ)=i} + γiµiI{Q(~µ)=i})




= arg max
i

(γiµi − 1) (3.8)

Thus, at the beginning of the tth time slot, the scheduling policy is

Q∗(~µ(t), ~γ(t)) = arg max
i

(γi(t)µi(t)− 1) (3.9)

The dual variable is updated at the end of the tth slot using stochastic approximation

which is given by

γi(t + 1) = [γi(t)− εt(µi(t)I{Q(~µ(t),~γ(t))=i} − λi)]
+ (3.10)
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where εt is a positive sequence which goes to zero as t →∞.

The stability of the above solution is established in the long-term sense. In general, any

policy which guarantees long-term performance cannot guarantee short-term performance.

From a user’s point of view, whenever the design only provides long-term stability, there

is always a possibility that some users may be starved for an extended period.

To further improve short-term performance, we formulate our second optimization prob-

lem which utilizes the real-time queue information. The derivation and goal of the second

problem are identical to the first problem. However, the difference is the addition of the

real-time information. Thus, the second problem can be considered as a modified algorithm

based on the first one. Let qi(t
−) be the queue length of user i at the beginning of tth

slot. Let qi((t + 1)−) be its queue length at the beginning of the (t + 1)th slot. Redefine

constraint (3.5) as

E[µiI{Q(~µ)=i}] ≥ λi + αiI{qi((t+1)−)≥qi(t−)} − βiI{qi((t+1)−)<qi(t−)},∀i (3.11)

where αi represents a positive virtual drift of the traffic intensity, and βi represents a

negative virtual drift of the traffic intensity. Its value can be set to a fraction of the actual

traffic intensity. Note that the actual traffic intensity remains the same. The temporary

drift is added to combat the randomness of the channel and traffic arrivals for better delay

response.

In equilibrium, the actual operating point oscillates around the true operating point.

This operation can be illustrated in Fig 3.3. The trade-off of doing so is change in stability

region. Specially, when the actual operating point is close to the boundary of the system

capacity, a positive virtual drift will improve short-term performance at the cost of reducing

stability region. A positive virtual drift will force the system to assign more service time

to a user to reduce its queueing delay, whereas a negative drift will decrease the service

time assigned to a user.

In addition, the real-time queue information can reduce time slot wasted by equation

(3.9). At each scheduling instant, the system should only schedule users with nonzero

queue. Therefore, a policy incorporating real-time information is proposed:

Q∗(~µ(t), ~γ(t)) = arg max
i∈D

(γi(t)µi(t)− 1) (3.12)

γi(t + 1) = [γi(t)− ε(µi(t)I{Q(t)=i} − λi − αiI{qi((t+1)−)≥qi(t−)} + βiI{qi((t+1)−)<qi(t−)})]
+(3.13)
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Figure 3.3: Stability Region and Operating Point with Virtual Drift

where D denotes the set of users with nonzero queues. It is important to note the fact that

the introduction of real-time information does not affect the operating point in the long

term. However, it improves the performance in short term at the cost of reduction of the

stability region. In the next section, we will run simulation to illustrate that the trade-off

is small. This results can be explained in this way: since the drift is temporary and the

scheduler responds to the queueing dynamic rapidly, the net tradeoff is zero in the long

term.

To further improve the performance, another parameter φi is introduced. φi represents

the threshold of user i’s queue length at which the drift mechanism will be activated. To

be more precise, (3.13) is executed if user i’s current queue length exceeds φi. Otherwise,

its dual variable is not changed. The idea is that when two users both experience increase

in queue length, but if one user’s queue length is below a certain threshold, the other user

should be given transmission priority.

Remark: In (3.13), the step-size is a constant instead of a decreasing sequence. This

design is different comparing to the normal application of stochastic approximation algo-

rithm. In general, to ensure convergence, a decreasing step-size must be used as in (3.10).

The effect of using a constant step-size is that the output will oscillate around the equilib-

rium point forever. In our case, oscillation is a desirable property since we want to track
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Table 3.1: Scenario 1 Channel Distribution

Channel rate (kbps) 38.4 76.8 102.6 153.6 204.8 307.2 614.4

Distribution 1 0.05 0.05 0.05 0.05 0.1 0.1 0.2

Distribution 2 0.05 0.05 0.1 0.1 0.2 0.2 0.1

Channel rate (kbps) 921.6 1228.8 1843.2 2457.6

Distribution 1 0.2 0.1 0.05 0.05

Distribution 2 0.05 0.05 0.05 0.05

the dynamic of queues.

3.3 Simulation Analysis: First Scenario

This section presents the simulation results of the two proposed algorithms, and their

performance are compared with three other benchmark algorithms. Let LS denote the

scheduling algorithm corresponding to equations:

Q∗(~µ(t), ~γ(t)) = arg max
i

(γi(t)µi(t)− 1)

γi(t + 1) = [γi(t)− εt(µi(t)I{Q(~µ(t),~γ(t))=i} − λi)]
+

and SS denote the scheduling algorithm corresponding to equations:

Q∗(~µ(t), ~γ(t)) = arg max
i∈D

(γi(t)µi(t)− 1)

γi(t + 1) = [γi(t)− ε(µi(t)I{Q(t)=i} − λi − αiI{qi((t+1)−)≥qi(t−)} + βiI{qi((t+1)−)<qi(t−)})]
+

We simulated the opportunistic scheduling policies for typical settings of a CDMA-HDR

system in three different simulation scenarios. The first simulation scenario is the following.

There are 10 users in the system, and there are two types of channel distributions shown in

Table 3.1. The unit of the channel rate is kbps/second. User 1 to 5’s channels are modeled

as i.i.d channels with distribution 1. User 6 to 10’s channels are modeled as i.i.d channels

with distribution 2. The mean channel rates for distributions 1 and 2 are 714.89kbps and
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517.78kbps respectively. Simulation has been run under this setting for many times. The

results of all trials have been found to be consistent to ensure the validity of the simulation.

Only one sample result for each test case will be presented below for illustration purpose.

Before we present the simulation results, we will introduce the three benchmark algo-

rithms briefly.

Benchmark 1: Local Throughput Maximization (LTM) Algorithm

Q∗(~q(t), ~µ(t)) = arg max
i
{min(qi(t), µi(t))} (3.14)

The idea of this algorithm is to maximize the throughput in the current time slot. However,

to achieve the largest stability region, long-term average throughput should be maximized.

Intuitively, maximizing throughput in a given slot is not equivalent to maximizing average

throughput in long term. We will illustrate that this algorithm has a smaller stability

region than that of the proposed algorithm.

Benchmark 2: Throughput Optimal (TO) Algorithm

Q∗(~q(t), ~µ(t)) = arg max
i
{qi(t)µi(t)} (3.15)

This is the well known algorithm which achieves the largest stability region [3]. We will

use simulation results to show that both the proposed algorithm in equations (3.9) and

(3.10) and the modified algorithm in equations (3.12) and (3.13) can have better delay

performance than the TO algorithm under different traffic intensities and the tradeoff in

the stability region is very small and can almost be neglected.

Benchmark 3: Round Robin (RR) Algorithm

This algorithm picks user sequentially for transmission. If the scheduled user has no data

to transmit, the algorithm searches for the next user in the sequence with pending data

for transmission.

The strategy of the first simulation environment is the following. The five algorithms

(LS, SS, LTM , TO, RR) will be simulated simultaneously in three different traffic inten-
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Table 3.2: Scenario 1 Low Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 50 50 40 40 20 20 30 30 10 10

Table 3.3: Scenario 1 Parameters of Algorithm SS under Low Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 5 5 4 4 2 2 3 3 1 1

β (kbps) 2.5 2.5 2 2 1 1 1.5 1.5 0.5 0.5

φ (bits) 5 5 4 4 2 2 3 3 1 1

sity regions: low, high and saturated traffic region1. The reason to simulate under these

three cases is that traffic rates vary constantly in reality and we want to investigate if

the proposed algorithm perform consistently well in all scenarios. In the three cases, all

algorithms see identical arrival process. The performance under investigations are average

delay, average throughput and starvation period.

3.3.1 Performance Analysis with Low Traffic Intensity

In this section, we will show the performance comparison under low traffic intensity. The

detailed traffic rates and parameters of algorithm SS are shown in Tables 3.2 and 3.3.

The arrival traffic is modeled by Poisson process. α is chosen to be 10 percent of the

arrival rates and β is chosen to be half of α. φ is 10 percent of the expected arrival in one

slot. The slot length is 0.0005 second. The simulation runs over 106 slots with the first 105

slots removed to eliminate the transient effect. These setups will be used in all subsequent

simulations, and will not be restated. Tables 3.4, 3.5 and 3.6 show the simulation results.

1The precise stability region is very difficult to compute theoretically. A rough boundary is found by
running simulation with a small increment of traffic intensity each time until the system is not stable.
Here, we pick a typical rate setting from each region and show the final results directly.
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Table 3.5: Scenario 1 Average Throughput Comparison under Low Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 49.99 49.99 49.99 49.99 49.99

User 2 50.03 50.03 50.03 50.03 50.03

User 3 39.99 39.99 39.99 39.99 39.99

User 4 39.99 39.99 39.99 39.99 39.99

User 5 19.99 19.99 19.99 19.99 19.99

User 6 20.00 20.00 20.00 20.00 20.00

User 7 30.00 30.00 30.00 30.00 30.00

User 8 30.00 30.00 30.00 30.00 30.00

User 9 10.00 10.00 10.00 10.00 10.00

User 10 10.00 10.00 10.00 10.00 10.00

Total 300.00 300.00 300.00 300.00 300.00

Theoretical total 300 300 300 300 300

As we expected, the throughput of all algorithms are the same because the operating

point is strictly inside of the stability region of all algorithms. In fact, this operating point

is far away from the boundary. However, their delay performance are slightly different.

First of all, the majority users under LS and SS have better delays than that of TO.

Interestingly, there is no concrete evidence that SS performs better than LS in this

traffic region. This implies that the drifting mechanism is not giving us any substantial

gain. This fact can be interpreted in the following way: since the drift mechanism is

Table 3.6: Scenario 1 Maximum Starvation Period under Low Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 28 28 32 30 9
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Table 3.7: Scenario 1 High Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 190 190 180 180 200 200 160 160 170 170

Table 3.8: Scenario 1 Parameters of Algorithm SS under High Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 19 19 18 18 20 20 16 16 17 17

β (kbps) 9.5 9.5 9 9 10 10 8 8 8.5 8.5

φ (bits) 19 19 18 18 20 20 16 16 17 17

designed to improve the short-term delay performance by tracking the queue dynamic,

its advantage will be obvious when the queue length swings up and down frequently and

substantially. When the traffic is low, the queue length is very stable. Therefore, the effect

of the drift mechanism is not significant. It should be expected that the performance of

SS should stand out when traffic rate is high.

When it comes to starvation period, LS, SS, LTM and TO have almost identical

maximum starvation period. However, RR has a starvation period of N − 1, where N is

the number of users in the system. This type of starvation behavior is a dual sword. In

one way, it ensures that everyone gets their service in a fair manner, and no user will be

starved more than N−1 slots. In the other way, this fair manner of assigning transmission

opportunity could hurt users with higher traffic rate badly.

3.3.2 Performance Analysis with High Traffic Intensity

In this section, we will show the performance comparison under high traffic intensity. High

traffic intensity refers to the arrival rates which are close to the boundary of the stability

region of throughput optimal algorithm. In the next section, we will show that a small

increment of the traffic rates will cause instability of all algorithms. The detailed traffic

rates and parameters of algorithm SS are shown in Tables 3.7 and 3.8. Tables 3.9, 3.10

and 3.11 show the simulation results.
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Table 3.9: Scenario 1 Average Delay Performance Comparison under High Traffic Intensity

Delay (ms) LS SS LTM TO (baseline) RR

User 1 40 (-33.3%) 30 (-50%) 20 (-66.7%) 60 unbounded

User 2 40 (-33.3%) 30 (-50%) 20 (-66.7%) 60 unbounded

User 3 50 (-16.7%) 30 (-50%) 20 (-66.7%) 60 unbounded

User 4 50 (-16.7%) 30 (-50%) 20 (-66.7%) 60 unbounded

User 5 40 (-33.3%) 30 (-50%) 40 (-33.3%) 60 unbounded

User 6 30 (-50%) 40 (-33.3%) unbounded 60 unbounded

User 7 50 (-28.6%) 50 (-28.6%) 40 (-42.9%) 70 unbounded

User 8 60 (-14.3%) 50 (-28.6%) 40 (-42.9%) 70 unbounded

User 9 50 (-28.6%) 40 (-42.9%) 80 (+14.3%) 70 unbounded

User 10 50 (-28.6%) 40 (-42.9%) 80 (+14.3%) 70 unbounded

The above simulation results provide an illustration that the delay performance of SS

outperforms other schemes except user 6. Moreover, LS’s delay performance is also better

than that of TO. This result can be explained by investigating the decision process of

these schedulers. TO makes decision based on current queue length and channel condition,

whereas LS only makes decision based on channel condition (assume the dual variable

converges and serves as a scaling factor). LS knows the incoming traffic rates in advance

and tries to meet this target by exercising the knowledge of the channel variation. This

process does not suffer from the randomness of the queues. On the other hand, without

the prior knowledge of the traffic rates, TO has to use queue process to ensure stability.

The randomness of the queuing process will degrade the delay performance of TO. In

conclusion, the prior knowledge of traffic rates does improve the delay performance of both

LS and SS significantly. Additionally, SS outperforms LS for majority users due to the

introduction of the drifting mechanism which utilizes the real-time queueing information.

The average throughput comparison provides evidence that LS, SS and TO have larger

stability regions than that of LTM and RR. Specially, RR has the smallest stability
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Table 3.10: Scenario 1 Average Throughput Comparison under High Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 190 190 190 190 71.4

User 2 190 190 190 190 71.2

User 3 180 180 180 180 71.6

User 4 180 180 180 180 71.2

User 5 200 200 200 200 71.8

User 6 200 200 174.8 200 52

User 7 160 160 160 160 51.6

User 8 160 160 160 160 52.1

User 9 170 170 170 170 51.8

User 10 170 170 169.9 170 52.1

Total 1800 1800 1774.9 1800 616.7

Theoretical total 1800 1800 1800 1800 1800

Table 3.11: Scenario 1 Maximum Starvation Period under High Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 30 30 33 30 9
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Table 3.12: Scenario 1 Saturated Traffic

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 195 195 185 185 205 205 165 165 175 175

Table 3.13: Scenario 1 Parameters of Algorithm SS under Saturated Traffic

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 19.5 19.5 18.5 18.5 20.5 20.5 16.5 16.5 17.5 17.5

β (kbps) 9.75 9.75 9.25 9.25 10.25 10.25 8.25 8.25 8.75 8.75

φ (bits) 19.5 19.5 18.5 18.5 20.5 20.5 16.5 16.5 17.5 17.5

region resulting from its “fairness” manner of assigning resources. LTM has a smaller

stability region because its intention is to maximize the throughput in the current time

slot. In general, local throughput maximization is not equivalent to long-term throughput

maximization. As mentioned in the derivation of algorithm SS, the stability region of SS

may be sacrificed for delay performance improvement. However, this tradeoff is negligible

since the drifting is temporary, and the positive drift cancels out the negative drift in long

term.

In terms of maximum starvation period, LS, SS, LTM and TO still have almost

identical values. RR’s starvation period remains unchanged as we expected.

3.3.3 Performance Analysis with Saturated Traffics

In this section, we will show the performance comparison under saturated traffics. Satu-

rated traffics refers to the arrival rates outside the stability region. Since the last section

simulates the traffic rates which are close to the boundary of the stability region, we only

need to increase the traffic rates by a small amount to obtain a saturated traffic setting.

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.12 and

3.13. Tables 3.14 and 3.15 show the simulation results. Note that the delay performances

are not compared because the system is no longer stable and the queue length of each user

is not bounded anymore. All algorithms will have unbounded delays for most of the users.
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Table 3.14: Scenario 1 Average Throughput Comparison under Saturated Traffic

Throughput (kbps) LS SS LTM TO RR

User 1 192.3 192.8 194.9 192.2 71.2

User 2 192.3 192.8 195.1 192.3 71.6

User 3 182.3 182.2 185 182.3 71.5

User 4 182.3 182.2 185 182.3 71.5

User 5 202.3 203.4 204.6 202.3 71.6

User 6 202.3 203.8 169.4 202.3 51.7

User 7 162.3 161.1 164.9 162.3 51.7

User 8 162.3 161.0 165 162.3 51.5

User 9 172.3 171.8 170.7 172.2 51.9

User 10 172.3 171.8 169.3 172.3 51.6

Total 1822.8 1822.8 1804 1822.8 615.9

Theoretical total 1850 1850 1850 1850 1850

Thus, only the average throughputs are compared to illustrate the processing capacity of

each algorithm.

The delay performance is not included in this case because all delays will be unbounded.

However, the average throughput comparison still provides us important insights about the

stability region/processing ability of each algorithm. LS and TO have identical throughput

for each user, and LS, SS and TO all have same total throughput. Comparing with the

high traffic intensity case, the traffic rate of individual user is increased only by 5kbps.

Table 3.15: Scenario 1 Maximum Starvation Period under Saturated Traffic

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 30 30 33 30 9
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Table 3.16: Scenario 2 Channel Distribution

Channel rate (kbps) 38.4 76.8 102.6 153.6 204.8 307.2 614.4

Distribution 1 0.06 0.06 0.04 0.04 0.1 0.1 0.19

Distribution 2 0.15 0.15 0.1 0.1 0.1 0.1 0.02

Channel rate (kbps) 921.6 1228.8 1843.2 2457.6

Distribution 1 0.19 0.06 0.08 0.08

Distribution 2 0.05 0.05 0.09 0.09

However, this small amount of increase in traffic intensity has caused the system to become

unstable under all schemes. Hence, this implies the three algorithms have similar processing

ability and stability region.

3.4 Simulation Analysis: Second Scenario

To further validate our results, we will simulate the two algorithms under a different simu-

lation scenario. Similar to the first scenario, there are also ten users in the system and there

are two different types of channel distributions shown in Table 3.16. User 1 to 5’s channels

are modeled as i.i.d channels with distribution 1. User 6 to 10’s channels are modeled

with distribution 2. The mean channel rates for distributions 1 and 2 are 777.992kbps and

600.98kbps respectively.

3.4.1 Performance Analysis with Low Traffic Intensity

In this section, we will show the performance comparison under low traffic intensity. The

detailed traffic rates and parameters of algorithm SS are shown in Tables 3.17 and 3.18.

Tables 3.19, 3.20 and 3.21 show the simulation results. The delay performance for most

of the users have been improved under both proposed algorithms comparing to that of

the throughput optimal policy. However, there is no obvious evidence showing which one

of the two proposed algorithms is better in terms of delay. And since we are testing all
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Table 3.17: Scenario 2 Low Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 50 50 40 40 20 20 30 30 10 10

Table 3.18: Scenario 2 Parameters of Algorithm SS under Low Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 5 5 4 4 2 2 3 3 1 1

β (kbps) 2.5 2.5 2 2 1 1 1.5 1.5 0.5 0.5

φ (bits) 5 5 4 4 2 2 3 3 1 1

algorithms with low traffic intensities, the system is stable under all schemes tested; hence,

as expected, the average throughput of each user as well as total throughput are same for

all five schemes.
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Table 3.20: Scenario 2 Average Throughput Comparison under Low Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 49.98 49.98 49.98 49.98 49.98

User 2 50.01 50.01 50.01 50.01 50.01

User 3 39.99 39.99 39.99 39.99 39.99

User 4 39.99 39.99 39.99 39.99 39.99

User 5 20.00 19.99 19.99 19.99 19.99

User 6 20.02 20.02 20.02 20.02 20.02

User 7 30.01 30.01 30.01 30.01 30.01

User 8 29.99 29.99 29.99 29.99 30.00

User 9 10.00 10.00 10.00 10.00 10.00

User 10 10.00 10.00 10.00 10.00 9.99

Total 299.99 299.99 299.99 299.99 299.99

Theoretical total 300 300 300 300 300

3.4.2 Performance Analysis with High Traffic Intensity

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.22 and

3.23. The results in Tables 3.24, 3.25 and 3.26 illustrate that the delays of all users have

been improved significantly using the proposed schemes and SS performs even better than

LS for most of the users. Moreover, the system becomes unstable under schemes LTM

and RR; hence, they must have smaller processing capacities than those of the proposed

Table 3.21: Scenario 2 Maximum Starvation Period under Low Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 28 28 32 28 9
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Table 3.22: Scenario 2 High Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 215 215 205 205 225 225 185 185 195 195

Table 3.23: Scenario 2 Parameters of Algorithm SS under High Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 21.5 21.5 20.5 20.5 22.5 22.5 18.5 18.5 19.5 19.5

β (kbps) 10.75 10.75 10.25 10.25 11.25 11.25 9.25 9.25 9.75 9.75

φ (bits) 21.5 21.5 20.5 20.5 22.5 22.5 18.5 18.5 9.75 9.75

algorithms and TO.

3.4.3 Performance Analysis with Saturated Traffics

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.27 and

3.28. Tables 3.29 and 3.30 show the simulation results. Again, in this case, each user’s

arrival intensity is increased by 5kbps comparing with the high traffic intensity case. The

total throughput values under all schemes are smaller than the theoretical ones, and this

means that the system is no longer stable. We can say that the processing capacity of our

proposed algorithms are almost identical to that of the throughput optimal policy.

3.5 Simulation Analysis: Third Scenario

In this scenario, we increased the number of users in the system to fifteern and the two

types of channel distributions are shown in Table 3.31. User 1 to 7’s channels are modeled

as i.i.d channels with distribution 1. User 8 to 15’s channels are modeled with distribution

2. The means of distribution 1 and 2 are 714.89kbps and 517.78kbps respectively. Since the

simulation results are quite consistent with our two previous scenarios, only the simulation

results are presented below for illustration purpose. We will give a brief summary for all
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Table 3.24: Scenario 2 Average Delay Performance Comparison under High Traffic Intensity

Delay (ms) LS SS LTM TO (baseline) RR

User 1 22 (-45%) 21 (-47.5%) 83 (+107.5%) 40 unbounded

User 2 20 (-50%) 20 (-50%) 33.3 (-16.75%) 40 unbounded

User 3 21 (-48.78%) 21 (-48.78%) 72 (+75.6%) 41 unbounded

User 4 22 (-45%) 22 (-45%) 41 (+2.5%) 40 unbounded

User 5 21 (-46.15%) 20 (-48.72%) unbounded 39 unbounded

User 6 21 (-44.74%) 19 (-50%) 56 (+47.37%) 38 unbounded

User 7 34 (-19.05%) 34 (-19.05%) 15 (-64.29%) 42 unbounded

User 8 27 (-35.71%) 32 (-23.81%) 14 (-66.67%) 42 unbounded

User 9 27 (-34.15%) 27 (-34.15%) 18 (-56.1%) 41 unbounded

User 10 24 (-41.46%) 26 (-36.59%) 19 (-53.66%) 41 unbounded

three test scenarios at the end of this chapter.

3.5.1 Performance Analysis with Low Traffic Intensity

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.32 and

3.33. Tables 3.34, 3.35 and 3.36 show the simulation results.
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Table 3.25: Scenario 2 Average Throughput Comparison under High Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 214.9 214.9 214.7 214.9 77.5

User 2 215.1 215.1 214.2 215.1 77.4

User 3 205.2 205.2 204.6 205.1 78.2

User 4 205.1 205.1 205 205.1 77.9

User 5 225.1 225.1 216.1 225.1 77.8

User 6 224.9 224.9 224.2 224.9 60.7

User 7 185.4 185.1 185 185.1 60.9

User 8 184.9 184.9 184.8 184.9 59.6

User 9 195.1 195 194.9 194.9 60.6

User 10 194.8 194.8 194.8 194.8 60.8

Total 2050.4 2049.9 2038.5 2049.9 691.5

Theoretical total 2050 2050 2050 2050 2050

Table 3.26: Scenario 2 Maximum Starvation Period under High Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 36 36 36 35 9

Table 3.27: Scenario 2 Saturated Traffic

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 220 220 210 210 230 230 190 190 200 200
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Table 3.28: Scenario 2 Parameters of Algorithm SS under Saturated Traffic

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 22 22 21 21 23 23 19 19 20 20

β (kbps) 11 11 10.5 10.5 11.5 11.5 9.5 9.5 10 10

φ (bits) 22 22 21 21 23 23 19 19 20 20

Table 3.29: Scenario 2 Average Throughput Comparison under Saturated Traffic

Throughput (kbps) LS SS LTM TO RR

User 1 218.1 218.6 210.9 218 78.5

User 2 218 218.6 210 217.9 77.5

User 3 208 207.9 208.8 208.1 78

User 4 207.9 207.8 209.2 208 77.6

User 5 228 229.2 208.7 227.9 76.1

User 6 227.9 229.4 225.6 227.9 59.8

User 7 188 186.8 190 188.1 61

User 8 188 186.7 190 188 61.7

User 9 198 197.4 200 198 61

User 10 197.9 197.4 200.1 198.1 60

Total 2079.8 2079.8 2053.4 2079.8 691.1

Theoretical total 2100 2100 2100 2100 2100

Table 3.30: Scenario 2 Maximum Starvation Period under Saturated Traffic

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 36 36 36 36 9
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Table 3.31: Scenario 3 Channel Distribution

Channel rate (kbps) 38.4 76.8 102.6 153.6 204.8 307.2 614.4

Distribution 1 0.05 0.05 0.05 0.05 0.1 0.1 0.2

Distribution 2 0.05 0.05 0.1 0.1 0.2 0.2 0.1

Channel rate (kbps) 921.6 1228.8 1843.2 2457.6

Distribution 1 0.2 0.1 0.05 0.05

Distribution 2 0.05 0.05 0.05 0.05

Table 3.32: Scenario 3 Low Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14 λ15

Traffic Intensity (kbps) 10 10 20 20 30 40 40 30 30 25 20 20 20 20 10

Table 3.33: Scenario 3 Parameters of Algorithm SS under Low Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α (kbps) 1 1 2 2 3 4 4 3 3 2.5 2 2 2 2 1

β (kbps) 0.5 0.5 1 1 1.5 2 2 1.5 1.5 1.25 1 1 1 1 0.5

φ (bits) 1 1 2 2 3 4 4 3 3 2.5 2 2 2 2 1
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3.5.2 Performance Analysis with High Traffic Intensity

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.37 and

3.38. Tables 3.39, 3.40 and 3.41 show the simulation results.

3.5.3 Performance Analysis with Saturated Traffics

The detailed traffic rates and parameters of algorithm SS are shown in Tables 3.42 and

3.43. Tables 3.44 and 3.45 show the simulation results.

3.6 Simulation Summary

The two proposed algorithms have been simulated in three different scenarios with different

channel conditions, traffic arrival rates as well as number of users in the system. All

numerical results are consistent and indicate that the delay performance of both proposed

algorithms are better than other benchmark schemes for majority users under any traffic

conditions. And the improvement is more significant when traffics are heavy. Moreover,

simulation results also indicate that the processing abilities/stability regions of the two

proposed algorithms are very close to that of the throughput optimal algorithm.
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Table 3.35: Scenario 3 Average Throughput Comparison under Low Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 10.01 10.01 10.01 10.01 10.01

User 2 10.01 10.01 10.01 10.01 10.01

User 3 20.01 20 20 20.01 20.01

User 4 20.01 20.01 20.01 20 20.01

User 5 30.02 30.02 30.02 30.02 30

User 6 40.04 40.04 40.04 40.04 40.04

User 7 40.04 40.04 40.04 40.04 40.04

User 8 29.97 29.96 29.97 29.97 30

User 9 30.03 30.03 30.03 30.03 30.01

User 10 25.01 25.01 25.01 25.01 25

User 11 20.03 20.04 20.03 20.04 20.04

User 12 20 20 20.01 20 20.01

User 13 20.02 20.02 20.02 20.02 20.03

User 14 20.04 20.04 20.04 20.04 20.04

User 15 10 10 10.01 10 10

Total 345.25 345.25 345.25 345.25 345.26

Theoretical total 345 345 345 345 345

Table 3.36: Scenario 3 Maximum Starvation Period under Low Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 38 38 39 39 14
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Table 3.37: Scenario 3 High Traffic Intensity

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 130 130 140 140 150 160 160 130 120 115

User λ11 λ12 λ13 λ14 λ15

Traffic Intensity (kbps) 120 120 120 130 140

Table 3.38: Scenario 3 Parameters of Algorithm SS under High Traffic Intensity

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 13 13 14 14 15 16 16 13 12 11.5

β (kbps) 6.5 6.5 7 7 7.5 8 8 6.5 6 5.75

φ (bits) 13 13 14 14 15 16 16 13 12 11.5

User 11 12 13 14 15

α(kbps) 12 12 12 13 14

β (kbps) 6 6 6 6.5 7

φ (bits) 12 12 12 13 14
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Table 3.39: Scenario 3 Average Delay Performance Comparison under High Traffic Intensity

Delay (ms) LS SS LTM TO (baseline) RR

User 1 45 (-43.84%) 46 (-43.19%) 28 (-64.91%) 80 unbounded

User 2 48 (-39.45%) 48 (-39.31%) 25 (-68.77%) 80 unbounded

User 3 41 (-46.68%) 37 (-52.26%) 44 (-42.95%) 77 unbounded

User 4 38 (-50.63%) 36 (-53.33%) 61 (-21.88%) 78 unbounded

User 5 37 (-49.46%) 31 (-57.49%) unbounded 73 unbounded

User 6 33 (-52.56%) 27 (-62.18%) unbounded 70 unbounded

User 7 29 (-58.67%) 25 (-65.17%) unbounded 71 unbounded

User 8 46 (-44.74%) 46 (-44.54%) 67 (-20.33%) 84 unbounded

User 9 47 (-46.08%) 58 (-34.37%) 33 (-62.25%) 88 unbounded

User 10 64 (-27.36%) 86 (-3.34%) 26 (-70.23%) 89 unbounded

User 11 85 (-2.46%) 74 (-15.48%) 32 (-63.97%) 88 unbounded

User 12 43 (-51.42%) 52 (-40.42%) 40 (-54.28%) 88 unbounded

User 13 45 (-47.23%) 56 (-34.96%) 27 (-68.4%) 86 unbounded

User 14 46 (-45.26%) 48 (-42.6%) 73 (-13.37%) 84 unbounded

User 15 38 (-52.65%) 36 (-55.62%) unbounded 80 unbounded
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Table 3.40: Scenario 3 Average Throughput Comparison under High Traffic Intensity

Throughput (kbps) LS SS LTM TO RR

User 1 130.1 130 130.1 129.99 47.2

User 2 130.2 130 130.1 130 48.6

User 3 140.1 140 140.1 140 47.3

User 4 140.1 140.1 139.8 140 48.00

User 5 150 150 149.6 149.8 48.2

User 6 160 160.1 154.7 159.9 47.8

User 7 159.9 159.9 150 159.9 47.1

User 8 129.8 129.7 129.9 129.8 34.6

User 9 120.1 120.1 119.9 119.9 34.1

User 10 115.1 114.8 115 114.9 34.6

User 11 120.5 120 120 120 34.2

User 12 119.9 119.9 119.9 119.8 34.3

User 13 120.1 119.9 120.1 119.9 34.2

User 14 130 130 129.8 129.9 34.4

User 15 139.9 139.9 135.9 139.9 33.9

Total 2005.7 2004.3 1984.8 2003.7 608.6

Theoretical total 2005 2005 2005 2005 2005

Table 3.41: Scenario 3 Maximum Starvation Period under High Traffic Intensity

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 45 45 45 45 14
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Table 3.42: Scenario 3 Saturated Traffic

User λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Traffic Intensity (kbps) 135 135 145 145 155 165 165 135 125 120

User λ11 λ12 λ13 λ14 λ15

Traffic Intensity 125 125 125 135 140

Table 3.43: Scenario 3 Parameters of Algorithm SS under Saturated Traffic

User 1 2 3 4 5 6 7 8 9 10

α (kbps) 13.5 13.5 14.5 14.5 15.5 16.5 16.5 13.5 12.5 12

β (kbps) 6.75 6.75 7.25 7.25 7.75 8.25 8.25 6.75 6.25 6

φ (bits) 13.5 13.5 14.5 14.5 15.5 16.5 16.5 13.5 12.5 12

User 11 12 13 14 15

α (kbps) 12.5 12.5 12.5 13.5 14

β (kbps) 6.25 6.25 6.25 6.75 7

φ (bits) 12.5 12.5 12.5 13.5 14
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Table 3.44: Scenario 3 Average Throughput Comparison under Saturated Traffic

Throughput (kbps) LS SS LTM TO RR

User 1 131.4 131.2 134.7 131.5 48

User 2 131.4 131.1 134.9 131.5 47.4

User 3 141.5 142 144.7 141.6 47.9

User 4 141.5 142 144.1 141.6 47.6

User 5 151.5 152.7 143.1 151.4 47

User 6 161.5 163.3 145.8 161.3 46.9

User 7 161.4 163.3 146 161.4 47.8

User 8 131.4 131.2 129.9 131.3 34.2

User 9 121.4 120.4 125 121.4 35.1

User 10 116.4 115.1 120 116.5 35

User 11 121.3 120.3 124.8 121.3 35.5

User 12 121.5 120.5 125 121.5 35.2

User 13 121.4 120.5 125.1 121.5 34.4

User 14 131.5 131.2 133.4 131.4 36.1

User 15 141.6 142.2 132.5 141.7 35.1

Total 2027 2027 2008.9 2026.9 613.2

Theoretical total 2080 2080 2080 2080 2080

Table 3.45: Scenario 3 Maximum Starvation Period under Saturated Traffic

Scheduling Scheme LS SS LTM TO RR

Maximum Starvation Period (slots) 47 47 47 47 14



Chapter 4

Conclusion

The goal of this thesis is to develop efficient algorithms which minimize the amount of

resources to stabilize the incoming traffic. The stability regions of the proposed algorithms

are investigated by using simulations. The results suggest that the proposed algorithms can

achieve almost the same stability region as the throughput optimal algorithm. However, a

strict mathematical derivation in proving that the proposed algorithms indeed achieve the

largest stability region is left for future research.

The most important difference between the proposed algorithms and the well known

throughput optimal algorithm is that instead of using the queue length, the incoming traffic

rate is used when scheduling is done. The delay performance of the proposed algorithms are

analyzed by means of simulation and their performances are compared with the throughput

optimal algorithm. The simulation results show that the application of traffic arrival rates

does improve the delay performance and the improvement is more significant when traffic

intensity is high.

Simulations have been run under three different traffic regions. Especially under high

traffic condition, the delay performance is significantly improved. Finally, in saturated

traffics case, numerical results illustrate that our two schemes have comparable data pro-

cessing ability as the throughput optimal algorithm. We can conclude that the proposed

algorithms perform consistently well under all traffic conditions and is able to handle the

constantly varying traffic intensities in reality.

For future work, it will also be interesting to analyze the impact of the tuning pa-
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rameters (drifting parameters) in the modified algorithm. In addition, we would like to

extend this work to WiMax system which has several intermediate stations called sub-

scriber station between the end users and the central base stations. With the addition of

this subscriber station, the new topology looks like a two-level point-to-multipoint struc-

ture. In this case, we would like to design the corresponding opportunistic algorithm which

achieves the largest stability region with minimal communication overhead. Typically, the

number of users in WiMax system is huge. It is impossible to upload the queue information

of every user to the base station for scheduling decision to be made. Hence, information

aggregation is necessary and it will be a interesting topic to study what kind of aggregated

information the user should send.
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