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Abstract 

 The following two studies examined the influence of spatial regularities on our 

ability to learn and predict frequencies and sequences of events. Research into statistical 

and sequence learning has demonstrated that we can learn the statistical properties of 

events and use this knowledge to make predictions about future events. Research has also 

demonstrated that redundant spatial features associated with events can influence our 

ability to respond to and discriminate between different stimuli. The goal of this thesis was 

to test whether redundant spatial features could influence our ability to notice non-spatial 

regularities in an environment. Using a computerized version of the children’s game ‘rock-

paper-scissors’ (RPS), undergraduates were instructed to win as often as possible against a 

computer that played varying strategies. For each strategy, the computer’s plays were 

either presented with spatial regularity (i.e., ‘rock’ would always appear on the left of the 

screen, ‘paper’ in the middle, and ‘scissors’ on the right) or without spatial regularity (i.e., 

the items were equally likely to appear in any of the three screen locations). The results 

showed that, although irrelevant to the task itself, spatial regularities had a moderate 

influence when participants learned to exploit easy strategies, and a more pronounced 

influence when learning to exploit harder strategies.  This research suggests that 

redundant spatial features can influence our ability to learn and represent distributions of 

events. 
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CHAPTER 1: Introduction 

 We have an amazing ability to process and categorize events into coherent patterns 

of observation.  This skill is crucial to learn the properties that make up our environment 

and to enable successful interaction with that environment. Our experiences while driving 

a car provide information about how much to press the gas and brake pedals for gradual 

(rather than jerky) accelerations and decelerations, our experiences with the food at a 

cafeteria give information about which days of the week provide the best meals, and a 

batter’s experiences with a pitcher’s throwing patterns can help him/her predict what 

pitch to expect after seeing two fastballs and a change-up.  

 Although we may only pay attention to some specific features of an event to help us 

learn its properties, there may potentially be additional features related to the event that 

can provide equally predictive information. A pilot attempting to learn the sequence of 

button presses necessary for takeoff in a particular aircraft can learn either the sequences 

of buttons that need to be pressed, or simply learn the spatial arrangement of the buttons, 

without necessarily relying on their functions. Previous research has demonstrated that 

both task relevant information (e.g., in the pilot example, the function of each button) and 

task irrelevant information (e.g., the spatial sequencing of button presses) can have an 

influence on our behaviour. Less is known about the potential learning benefits that can 

occur when two or more event properties converge. The goal of this thesis is to explore the 

potential benefits that multiple features can have on our ability to learn and perceive 

regularities in our environment. 

 There is a large body of research that attests to our ability to extract patterns and 

regularities from our environment.  Participants can learn long, sometimes complex motor 
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sequences through trial and error alone (Jenkins, Brooks, Nixon, Frackowiak, & 

Passingham, 1994; Jueptner, Stephan, Frith, Brooks, Frackowiak, & Passingham, 1997a, b; 

Toni, Krams, Turner, & Passingham, 1998) and this type of learning can occur outside of 

explicit awareness (Willingham, 1999; Willingham, Wells & Farrell, 2000).  We are also 

sensitive to the statistical properties that compose specific events.  Studies exploring 

language acquisition have shown that we can learn to segment words from an artificial 

language based solely on the transitional probability between the syllables that compose 

the language (Saffran, Newport, & Aslin, 1996; see Ellis, 2002 for review). This ability has 

also been demonstrated using non-word auditory stimuli (Creel, Newport, & Aslin, 2004) 

and visual stimuli (Fiser & Aslin, 2001; Orban, Fiser, Aslin, & Lengyel, 2008; Abla & 

Okanoya, 2009).  

 This research demonstrates that under certain conditions, we are proficient at 

detecting patterns and regularities in the environment; however, in real world situations, 

events do not always occur with absolute certainty. Indeed, uncertainty poses a difficult 

problem to overcome when attempting to understand the rules underlying a series of 

events. Yu and Dayan (2005) describe two different types of uncertainty that can be 

associated with events. Expected uncertainty describes an environment in which the 

probability of an event occurring is known, but its predictability is stochastic and 

unreliable (e.g., the probability of a coin flip resulting in ‘heads’ is 0.5, but it is uncertain 

whether ‘heads’ will come up on the next trial). Unexpected uncertainty describes perceived 

events that violate expectations associated with an environment (e.g., a coin that flips to 

‘tails’ on 95/100 trials; Yu & Dayan, 2005).  
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 Studies looking at probabilistic learning have explored our ability to learn under 

uncertain conditions. The extensive research on probability matching has demonstrated 

that we are generally able to represent the expected uncertainty of an environment and 

approximate our predictions of outcomes based on their probability of occurrence (Vulkan, 

2000; Shanks, Tunney, & McCarthy, 2002). We are also sensitive to situations of 

unexpected uncertainty, where the events we perceive do not match our expectations. 

Danckert and colleagues (2012) had healthy and brain damaged subjects play the 

children’s game ‘rock-paper-scissors’ against a computer that switched from choosing all 

three items with equal probability, to choosing one item (‘paper’) on 80% of trials. Healthy 

subjects managed to notice this switch and adapt their play (i.e., prefer ‘scissors’) to 

increase their win rate (Danckert et al., 2012).  

 Studies examining multiple-cue probability learning also suggest that we can learn 

to use task-relevant redundant cue features to predict events (Edgell et al., 1996; Edgell & 

Morrissey, 1992; Edgell & Castellan, 1973). Edgell and Morrissey (1992) presented 

participants with cues made up of multiple features (e.g., a geometric shape made up of 

horizontal or vertical lines) before asking them to predict whether a green or red light 

would appear. Through trial and error, participants learned to associate cues with different 

outcomes. The researchers varied the predictability of the cues so that in certain conditions 

only one cue feature would predict the light that would appear (e.g., horizontal lines, 

regardless of the geometric shape, would predict a green light), or that both features 

together would serve to predict which light would appear (e.g., a triangle made up of 

vertical lines would predict a green light). Results showed that participants in both 

conditions managed to learn to associate the predictive cues with event outcomes (Edgell & 
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Morrissey, 1992). This research shows that participants can learn to associate task-relevant 

redundant features of a cue with future events, and selectively ignore other features when 

they are not relevant to the prediction. 

 These examples demonstrate that we are able to learn the regularities associated 

with events in the environment, and that we are also able to do so when the rules 

underlying these events are not entirely certain. These data also demonstrate that this 

learning is flexible and can adapt to environmental changes. However, the primary focus of 

this prior research has been to understand how events related specifically to a task are 

perceived and integrated. In reality, events can have many redundant features that may 

help (or hinder) our ability to learn the rules associated with them.  

 Research has shown that the task-irrelevant or redundant features can influence 

performance on certain tasks. Perhaps the dominant example of how irrelevant or 

redundant information can influence performance comes from work showing interference 

effects. For example, research on the Simon effect has shown that we are faster to respond 

to targets when their location is congruent with the location of the response (Simon, 1969; 

see Hommel, 2011 for review; see also MacLeod, 1991 and Lu & Proctor, 1995 for a review 

of other interference effects). In contrast, redundant information has also been shown to 

improve performance. Druker and Anderson (2010) had participants perform a simple 

colour discrimination task (i.e., determine whether a target was red or green). They then 

manipulated the probability with which targets would appear in a specific region of the 

display. Although the spatial distribution of targets (i.e., with targets primarily occurring 

within a ‘hotspot’ on the screen) was irrelevant to the task, results showed that both speed 

and accuracy for the colour discrimination was improved at the high probability location. 
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This was true even though participants were not specifically instructed to pay attention to 

a target’s location and despite the fact that most participants were unaware of the biased 

distribution of target locations (Druker & Anderson, 2010). Both of these examples 

demonstrate that the spatial features of a stimulus (and in the case of the Simon effect, its 

associated response codes) can influence our ability to categorize and respond to targets, 

even when such spatial information is not directly related to the task. However, less is 

known about the influence of redundant spatial features on our ability to learn the 

distributions of events.  

 The aim of the current study was to explore the possibility that redundant spatial 

information would improve our ability to learn the properties associated with a non-spatial 

task. Furthermore, it was hypothesised that redundant spatial information would make it 

easier to detect changes occurring in the non-spatial task. Through the use of a computer 

game, this study demonstrated that spatial regularities can have an influence on learning, 

but that its effects may serve primarily as an aid when such learning is more difficult. 
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CHAPTER 2: Experiment 1 

 In the first experiment, participants played the classic children’s game ‘rock-paper-

scissors’ to measure how well they could learn to exploit a bias in their opponent’s play 

strategy (e.g., the computer chooses ‘rock’ most of the time) when that bias was presented 

under conditions of spatial regularity (i.e., specific choices always presented in specific 

spatial locations) or no spatial regularity (i.e., play choices presented in random spatial 

locations; Figure 1).  The goal was to determine whether spatial regularity associated with 

stimuli, but irrelevant to the task itself, would improve a participant’s ability to detect and 

exploit a computer’s strategy. This task was also designed to understand whether spatial 

regularity could improve a participant’s ability to detect changes in a computer’s play and 

switch his/her play accordingly (i.e., would it be easier to detect an opponent’s shift from 

biasing ‘rock’ to now biasing ‘scissors’ when that information was presented with 

redundant spatial regularity?).  

 In this version of ‘rock-paper-scissors’ (RPS), participants were either assigned to a 

regularity condition, where the location of the computer’s choices would remain constant 

for each item, or a no regularity condition, where the location of the computer’s choices 

were not related to the computer’s strategy. If spatial regularities assist a participants’ 

ability to learn and detect changes in a series of events, participants in the regularity 

condition would be expected to exploit their opponent’s bias more efficiently than those in 

the no regularity condition. Furthermore, when the computer switches from one strategy 

to another, the addition of spatial regularity in the task should enable a more rapid or 

efficient switch to the second strategy when contrasted with participants in the no 

regularity condition. 
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2.1 Methods 

Participants 

 Thirty-nine undergraduates (19 female, Mean age = 19.8 years, SD = 1.7 years) from 

the University of Waterloo participated in this experiment for course credit. The 

experimental protocol was approved by the University of Waterloo's Office of Research 

Ethics and all participants gave informed written consent prior to participation. 

 

Display and Keyboard 

 All stimuli were presented on an 18” ViewSonic Professional Series PF790 Cathode 

Ray Tube monitor at a resolution of 1280x1024 with refresh rate set to 85 Hz. Responses 

were recorded using a Dynex DX-WKBD keyboard. 

 

RPS Game Play 

 In a normal RPS game, players face each other and, on the count of three, reveal 

their choice of either rock, paper, or scissors, using hand gestures.  In this game, ‘rock’ 

beats ‘scissors’ by crushing it, ‘scissors’ beats ‘paper’ by cutting it, and ‘paper’ beats ‘rock’ 

by wrapping it up. In the task, participants played a computerized version of RPS 

programed using the PsychoPy library (Pierce, 2009). Pictures of a rock, paper, and 

scissors were presented to participants throughout the task to simplify the interpretation 

of each item. 

Participant sat approximately 60cm away from the screen throughout the task. Each 

trial started with four equally sized squares displayed on a grey background. Three of the 

squares were horizontally aligned 1.9˚ of visual angle above the centre of the screen and 
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spaced 3.8˚ apart, with one square in the left portion of the screen, one in the middle, and 

one on the right.  The last square was vertically aligned with the top middle square and 

located 1.9˚ below the centre of the screen. Each square was 6.7˚ x 6.7˚ (Figure 1).   

At the start of each trial all four squares were presented in blue.  After 500ms, the 

top three squares changed colour to pink to indicate that the computer had made its choice.  

Participants would then make their selection by pressing the ‘left’ arrow key for rock, the 

‘down’ arrow key for paper, and the ‘right’ arrow key for scissors. Once they made their 

choice, the computer’s choice would appear in one of the top three squares while the 

participants’ choice would appear simultaneously in the bottom square. The screen’s 

background would turn green if the trial resulted in a win for the participant, red for a loss, 

and would remain grey for a tie. The result would be displayed for 1000ms before starting 

the next trial (Figure 1a). 

Participants were assigned to one of two spatial regularity conditions:  

1) Regularity: the computer’s choices would always appear in the same respective 

squares (i.e., ‘rock’ would always appear in the top left square, ‘paper’ would 

always appear in the top middle square, and ‘scissors’ would always appear in 

the top right square) 

2) No regularity: The computer’s choices would appear randomly in one of the 

three top squares on each trial (Figure 1b). 

In each condition, participants were exposed to three stages of trials: 

1) Baseline: 30 trials in which the computer chose each item uniformly (i.e., the 

computer chose each item with a 33% frequency).  In this stage, the computer’s 

choices appeared pseudo-randomly in one of the top three boxes in both conditions. 
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2) Initial stage: 60 trials in which the computer played ‘rock’ on 70% of the trials with 

‘paper’ and ‘scissors’ played 15% each for the remaining trials. 

3) Switch stage: 50 trials in which the computer played ‘scissors’ on 70% of the trials 

with ‘rock’ and ‘paper’ played 15% each on the remaining trials.   

 Each participant played all three stages without being made aware that the 

computer had switched strategies (Figure 1c). 
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Figure 1. (A) Time course of each trial. After 500ms, the top three squares would turn pink 

to indicate that the computer had made its choice and that participants could make their 

selection. Once participants made their choice, both choices were displayed for 1000ms 

with a green background for a win, red for a loss, and grey for a tie. (B) Participants were 

assigned to one of two conditions. In the regularity condition, the computer’s choices would 

always appear in the same respective location (i.e., ‘rock’ would always appear in the top 

left square, ‘paper’ in the top middle, and ‘scissors’ in the top right). In the no regularity 

condition, the computer’s choices were equally likely to appear in all three squares. (C) 

Participants were exposed to 3 experimental stages:  a baseline stage, where the computer 

chose all three options uniformly for 30 trials, an initial stage, where the computer selected 

‘rock’ 70% of the time for 60 trials, and a switch stage, where the computer selected 

‘scissors’ was selected 70% of the time for 50 trials.  
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Figure 1 
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2.2 Results 

 Participant performance was measured using win rates (i.e., the ratio of wins 

compared to losses and ties), play of the optimal choice (i.e., the rate that a participant 

played the item that would beat the computer’s biased item), and reaction times. 

 

Baseline 

 The baseline portion of the task was used to ensure that any changes in participant 

performance were not due to initial biases in their performance. Overall, participant win 

rates in this stage were not different from chance and there was no advantage for either 

condition when comparing win rates (Mean win rate: Regularity = 0.35, No Regularity = 

0.31; t(37) = -1.624, p = 0.113) and reaction times (Mean reaction time: Regularity = 1.46 

sec, No Regularity = 1.42 sec; t(37) = -0.195, p = 0.846).  Participants played ‘rock’ slightly 

above chance (Mean ‘rock’ play = 0.36, chance = 0.33; t(38)=2.122, p < 0.05) and tended to 

prefer this option over ‘paper’ and ‘scissors’ (F(2,76) = 2.900, p = 0.061, η2partial = 0.071). 

However, given that the optimal choice in the Initial stage would have been to play ‘paper’, 

the tendency to choose ‘rock’ in the baseline stage would not provide any significant 

advantage when participants subsequently played against the initial bias of the computer 

opponent. 

 

Initial stage 

 The analysis of the experimental stages began by examining the participants’ ability 

to learn and exploit the computer’s biased strategy in the initial stage. If participants 

managed to learn the computer’s play, their win rates and play of the optimal choice in this 
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stage should be above chance. As expected, participants performed above chance in the 

rate at which they played the optimal choice (Mean play of optimal choice = 0.46, chance = 

0.33; t(37) = 5.390, p < 0.001) and the rate at which they won (Mean win rate = 0.40; 

chance = 0.33; t(37) = 3.932, p < 0.001). 

 

Switch Stage 

 The next analysis examined participants’ ability to adjust to changes in the 

computer’s bias by measuring their performance in the switch stage. If participants 

managed to successfully adapt their play to match changes in the computer’s play, they 

would be expected to switch their item preference to match the computer’s switch. Again, 

participants performed above chance in the rate at which they played the new optimal 

choice (Mean play of the optimal choice = 0.55, chance = 0.33; t(37) = 8.010, p < 0.001) and 

the rate at which they won (Mean win rate = 0.45, chance = 0.33; t(37) = 6.861, p < 0.001) 

in the switch phase. Participants played the optimal choice at a higher rate in the switch 

stage than in the initial stage (Mean play of the optimal choice: Initial = 0.46, Switch = 0.55; 

t(38) = -2.415, p < 0.025; Figure 2) while also experiencing higher win rates (Mean win 

rates: Initial = 0.40, Switch = 0.45; t(38) = -2.030, p < 0.05) 

 In order to assess how quickly participants started to switch their play to match the 

computer’s strategies, participant plays were grouped over the course of the task into bins 

of 10 trials.  The rate that participants played the optimal choice in each bin was compared 

to chance rates to determine at what point in each stage participants started preferring the 

optimal choice above chance. A one-sample t-test showed that participants tended to play 

the optimal choice above chance within the first 20 trials of the initial stage (mean = 0.43; 
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chance = 0.33; t(38) =  2.796, p < 0.01) and within the first 10 trials of the switch stage 

(mean = 0.46; chance = 0.33; t(38) = 4.511, p < 0.001; Figure 2)  

 The analysis also examined if participant performance continued to increase in the 

trials that followed the point at which they started to prefer the optimal choice in each 

stage.  The initial stage contained 6 bins of 10 trials and the rate of optimal play in the 

remaining 4 bins that followed the participants’ switch to favouring the optimal choice was 

examined.  The switch stage contained 5 bins of 10 trials and the rate of optimal play in the 

4 bins that followed preference for the optimal choice in this stage was also examined.  A 

repeated measures ANOVA revealed that participants tended to increase their play of the 

optimal choice after preferring the optimal choice in the initial stage (F(3,114) = 3.056, p < 

0.035, η2partial = 0.074) but not in the switch stage (F(3,114) = 1.293, p = 0.280, η2partial = 

0.033; Figure 2), suggesting that participants reached ceiling in the rate that they played 

the optimal choice on the trials that followed their strategy switch. 
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Figure 2 

Figure 2. Play of the optimal choice separated into bins of 10 trials over the course of the 

initial and switch stages. Overall, participants played the optimal choice at a higher rate in 

the switch stage than in the initial stage. Participants started to prefer the optimal choice at 

a rate above chance (indicated by the dotted line) within the first 20 trials of the initial 

stage and within the first 10 trials of the switch stage. Error bars represent one standard 

error of the mean. 
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Examining the influence of spatial regularity  

 Next, performance between both spatial regularity conditions was compared. If 

spatial regularities provide a learning advantage, higher win rates and higher rates of play 

of the optimal choice would be expected for participants in the regularity condition. The 

first analysis was to compare overall performance in the initial and switch stages between 

both conditions. An independent samples t-test did not yield any differences when 

comparing overall win rates (Mean win rates: Regularity = 0.43, No regularity = 0.42; t(37) 

= -0.444, p = 0.660) or play of the optimal choice (Mean play of the optimal choice: 

Regularity = 0.49, No regularity = 0.52; t(37) = 0.836, p = 0.409). Reaction times were 

nominally quicker in the regularity condition, but this difference did not reach significance 

(Mean reaction times: Regularity = 0.73 sec, No regularity = 0.87 sec; t(37) = 1.165, p = 

.251). When a comparison was made between conditions in each stage of the experiment, 

none of the differences were found to be significant (Figure 3). 
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Figure 3 

Figure 3. Win rates, percent play of the optimal choice, and reaction times between the 

regularity and no regularity conditions. None of the differences were found to be 

significant. Error bars represent one standard error of the mean. 
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2.3 Discussion 

 The main goal of this first experiment was to explore the potential benefits of spatial 

regularity on our ability to detect regularities associated with non-spatial events. In both 

conditions, participants managed to exploit the computer strategies and switch their play 

in accordance with changes in the computer strategy. This demonstrates that participants 

managed to exploit the computer’s bias and update their play choices when the information 

they receive from the game changed.  However, despite being able to exploit the computer’s 

bias, participants exposed to spatial regularities did not show additional benefits. These 

results suggest that although congruent spatial regularities may influence our ability to 

discriminate and respond to stimuli (Simon, 1969; Drucker & Anderson, 2010), they do not 

necessarily influence our ability to detect regularities associated with the stimuli. 

 The results of this experiment did not provide any definitive evidence to the 

effectiveness of spatial regularity; however this might be explained by the task being too 

simple.  Participants tended to favour the optimal choice, and drop their play of the worst 

choice, within the first 20 trials of the initial strategy, and within the first 10 trials of the 

switch strategy.  Additionally, after switching to the optimal choice in the switch strategy, 

play of the optimal choice hit ceiling, revealing no significant improvement after having 

learned the pattern in computer play.  Given how quickly participants managed to notice 

the computer’s bias, and that their maximum performance on the task was reached shortly 

thereafter, it is possible that the task itself may have been too easy for participants.  If the 

task itself was easy, participants may have either had no need to make use of redundant 

spatial information or that the task’s measures were too crude to detect it. If difficulty 

influences the effects of spatial regularities on learning, a more pronounced difference in 
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performance would be expected on difficult tasks. Experiment 2 was designed to measure 

the effects of spatial regularities when participants played against easy and difficult 

computer strategies. 
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CHAPTER 3: Experiment 2 

  Experiment 2 was designed to explore the possibility that the difficulty in learning 

task contingencies could influence the manner in which spatial regularities are used to 

support or influence our ability to detect patterns in non-spatial events. If the results from 

Experiment 1 were due to the relative simplicity of the computer strategy, it was 

hypothesized that congruent spatial regularities would provide no advantages when 

participants were exposed to an easy computer strategy, but would assist participants 

when they were exposed to a more difficult strategy. 

 In addition to the effects of spatial regularity on learning, a strategy switch was 

included in the hard condition. If participants are aided by spatial regularity in the hard 

condition, it was hypothesized that these same regularities would improve the ability of 

participants to notice a change in their environment, and cause them to switch more 

quickly in accordance with changes in the computer’s play strategy. 

3.1 Methods 

Participants 

 40 undergraduates (29 female, Mean age = 20.6 years, SD = 1.5 years) from the 

University of Waterloo participated in this experiment for course credit.  

 

RPS Game Environment 

 The RPS game environment was identical to the game play in Experiment 1, with 

one minor exception. Some participants had indicated that the background color change 

when the trial results were displayed was uncomfortable to view.  To remove this 
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discomfort, instead of changing the colour of the entire background, only the background of 

the computer and participant squares would change colors to indicate the result of the trial.   

 

Experiment 2 trial set-up 

 In order to measure the effects of difficulty on learning, participants were exposed 

to repeating sequences of computer play rather than different frequencies of play choices.  

Data from previous work using RPS has shown that participant performance can be 

difficult to distinguish from chance when the biased play choice is at only 50% (e.g., the 

computer chooses ‘rock’ 50% of the time with ‘paper’ and ‘scissors’ chosen 25% of the time 

each; Danckert et al., 2012).  Sequences were chosen instead of probability distributions to 

make a clearer distinction between easy and difficult conditions, with the assumption that 

shorter sequences would be easier to learn than longer sequences (Figure 4a).  After five 

practice RPS trials, participants were exposed to a set of easy sequences, then a set of hard 

sequences. 

 

Easy condition trial set-up 

 In the easy portion of the experiment, participants were exposed to two sequences 

that contained separate permutations of the list ‘rock’, ‘paper’, ‘scissors’.  Participants 

would play against the first sequence until they managed to beat the sequence two times in 

a row (i.e., 6 sequential wins), or until they reached 90 trials. Once finished, the participants 

were given a break before playing against the second easy sequence. The order in which 

the sequences were presented remained constant between participants.  To measure the 

influence of spatial regularity on sequence learning, each of the two sequences were 
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presented with a different spatial association (either regularity or no regularity). The order 

in which the spatial regularity was presented was counterbalanced between participants 

(Figure 4b). 

 

Hard condition trial set-up 

 The hard condition was created to test the influence of spatial regularity on a task 

when it becomes more difficult. To make this task more difficult, the sequences in the hard 

condition contained five items. The sequences were built using two sets of the items ‘rock’, 

‘paper’ and ‘scissors’ and randomly removing one of the six items. Each list of five items 

was pseudo-randomly shuffled using the Python language Random module and modified if 

necessary to ensure that they were distinct from each of the other sequences.  

 Given the number of available permutations with the setup of the hard sequences, 

this study had the opportunity to examine potential effects of spatial regularity when the 

computer’s strategy changed, and when spatial regularity remained constant between 

strategies (as in Experiment 1) or changed between strategies (i.e., one strategy would be 

presented with regularity and one without regularity). To measure this, participants were 

exposed to four blocks of trials that each contained two sequences. Participants would start 

each block by playing against a first sequence until they had beaten it two times in a row 

(i.e., 10 sequential wins) or until they reached a maximum of 90 trials. The computer then 

switched to a second sequence without the participant being informed that the sequence 

had changed. The block finished once they beat the new sequence two times in a row or 

reached a maximum of 90 trials.  
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 In the hard condition, participants were exposed to 4 blocks of trials, each 

containing a distinct switch in the spatial regularity of the sequences. One block contained 

two sequences with the same spatial regularity (R-R), a first sequence that contained 

spatial regularity and switched to a sequence with no regularity (R-N), a first sequence that 

contained no regularity and switched to a sequence with regularity (N-R), and two 

sequences that did not contain any spatial regularity (N-N). In the sequences that contained 

spatial regularities, ‘rock’ was always presented in the top left, ‘paper’ always displayed in 

the top middle, and ‘scissors’ was always displayed in the top right. To account for order 

effects, participants were exposed to the blocks of sequences in the same order, but the 

spatial regularity switch in each block was counterbalanced using a balanced latin squares 

design (Figure 4c). 
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Figure 4. (A) Participants in Experiment 2 played RPS against a computer that repeated 

sequences of plays. The sequences each contained three items in the easy condition and 

five items in the hard condition. Participants were exposed to each sequence until they 

could either beat it two times in a row (i.e., 6 consecutive wins in the easy condition and 10 

consecutive wins in the hard condition). (B) Participants were each exposed to two blocks 

of easy sequences, one with spatial regularity and one with no spatial regularity.  The order 

of the blocks remained constant for each participant, but spatial regularity was 

counterbalanced between participants. (C) In the hard condition, participants were 

exposed to four blocks of trials, each containing two sequences. In each block, participants 

played against a first sequence and were then switched to a second sequence without being 

made explicitly aware that a switch had occurred. The sequences were presented either 

with a spatial regularity (R) or no spatial regularity (N). The block order remained constant 

for each participant, but the spatial regularity of each block was counterbalanced between 

participants using a balanced latin squares design. 
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Figure 4 
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3.2 Results 

Sequences of three vs. sequences of five 

 To determine whether the sequences of five items were in fact more difficult than 

sequences of three items, performance in each part of the experiment was compared.  

Participants took half as long on average to learn sequences with three items (Mean trials 

to criterion: three items = 26.63, five items= 56.36; t(37) = - 8.992, p < 0.001) and had 

higher overall win rates (Mean win rates: three items = 0.59, five items = 0.53; t(37) = 

2.786, p < 0.01). It is possible that participants took more trials to learn sequences of five 

because the sequences themselves contained more items (i.e., if a participant only needs to 

be exposed to a sequence once to learn it, it would take them 3 trials to learn a sequence of 

three items and 5 trials to learn a sequence of five items). To account for this possibility, 

the mean number of iterations participants required to learn each sequence length was 

compared.  Participants required exposure to fewer iterations to learn the sequence of 

three items (Mean number of iterations: three items= 9.16, five items= 11.54; t(37) = -

2.458, p < 0.02), confirming that the sequences of five items were harder to learn than 

sequences of three items. 

 

Easy sequences 

 Based on the results from Experiment 1, spatial regularity was not expected to 

improve participant performance when learning easy sequences. However, participants 

tended to take fewer trials to learn sequences with a spatial regularity, a difference that 

approached significance (Mean trials to criterion: Regularity = 22.24 trials, No regularity = 

31.03; t(37) = -1.825, p = 0.076; Figure 6a).  A nominal difference was found when 
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comparing win rates (Mean win rates: Regularity = 0.615, No regularity = 0.563; t(37) = 

1.276, p = 0.210; Figure 6b) and reaction times (Mean reaction times: Regularity = 1.19 sec, 

No regularity = 1.32 sec; t(37) = -1.060, p = 0.296), but none of these differences were 

significant (Fig 5). 

 

Hard sequences 

 It was hypothesized that spatial regularities would improve performance when the 

task itself increased in difficulty. An analysis of the hard condition began by dividing 

performance on all hard sequences based on the presence of a spatial regularity. Overall, 

participants took fewer trials to learn sequences presented with a spatial regularity (Mean 

trials to criterion: Regularity = 52.51, No regularity = 60.20; t(37) = -3.771, p = 0.001) and 

had higher win rates (Mean win rates: Regularity = 0.56, No regularity = 0.51; t(37) = 

3.070, p < 0.005; Figure 5).  Participant reaction times were nominally quicker in the 

regularity condition, but this difference was not significant (Mean reaction times: 

Regularity = 1.05 sec, No regularity = 1.12 sec; t(37) = -1.118, p = 0.271).  

 

 

 

 

 

 

 

 



28 
 

Figure 5 

Figure 5. Participant performance when playing against repeating sequences of three 

computer plays (3 items) or five computer plays (5 items). The number of trials required to 

learn each sequence along with win rates tended to be lower when a spatial regularity was 

present in sequences of 3 items, although the differences were not significant. While 

playing against sequences of 5 items, participants took fewer trials to learn each sequence 

and experiences higher win rates when spatial regularities were present. Error bars 

represent one standard error of the mean. 
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 The hard sequences were then split into groups based on their position in each 

block to measure the effects of spatial regularity on learning and detecting strategy 

changes. Using paired samples t-tests, regularity was found to decrease the number of 

trials required by participants to learn both the first sequence (Mean trials to criterion – 

first sequence: Regularity = 53.92, No regularity = 61.28; t(37)= -2.163, p < 0.04) and the 

second sequence (Mean trials to criterion – second sequence: Regularity = 51.11, No 

regularity =59.13; t(37)= -3.121, p < 0.004) in each block.  Participants also experienced 

higher wins when a spatial regularity was present in both the first sequence (Mean win 

rates – first sequence: Regularity = 0.56, No regularity = 0.51; t(37) = 2.305, p < 0.03) and 

second sequence (Mean win rates – second sequence: Regularity = 0.55, No regularity = 

0.50; t(37) = 2.443, p < 0.02; Figure 6).  
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Figure 6 

Figure 6. Participant performance on sequences of five items split by the sequence’s 

position in each block. Participants took fewer trials to learn sequences and experienced 

higher win rates when a spatial regularity was present, regardless of the sequence’s 

position in the block. Error bars represent one standard error of the mean. 
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Spatial regularity switches in the hard blocks 

 Experiment 2 was also interested in the examining the ability to adapt one’s play 

strategy in the face of changes to the computer opponent’s play when the regularity of the 

hard sequences varied within each block. Performance was expected to be best overall in 

the R-R blocks, equal in the R-N and N-R blocks, and poorest in the N-N blocks. A repeated 

measures ANOVA comparing the average trials required to learn each sequence in the four 

different blocks revealed a main effect for block (F(3,111) = 3.214, p < 0.03, η2partial = 

0.080), confirming that performance was not homogenous across all blocks. When each 

block was compared using a Helmert simple effects contrast, participants required 

significantly more trials to learn the sequences in the N-N block compared to all other 

blocks (Mean trials to criterion: R-R = 53.95, R-N = 52.28, N-R = 55.57, N-N = 63.64; F(1,37) 

= 8.125, p < 0.01, η2partial = 0.180). The same contrast did not reveal any further differences 

between the other blocks ( F(1,37) = .520, p = 0.475, η2partial = 0.014).  Participants also 

tended to have the highest win rates in the R-R block, similar win rates in the R-N and N-R 

blocks, and lowest win rates in the N-N group, but a repeated measures ANOVA comparing 

the win rates in each block was not significant (F(3,111) = 1.174, p = 0.323, η2partial = 0.031; 

Figure 7). 
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Figure 7 

Figure 7. Average performance in each block according to spatial arrangement. When 

participants were exposed to two sequences with no spatial regularity (N-N), they took a 

higher number of trials to learn each sequence when compared to the blocks that contained 

at least one sequence with spatial regularity (R-R, R-N, and N-R). Although mean win rates 

were also nominally higher when a spatial regularity was present in at least one block 

sequence, the trend was not significant. Error bars represent one standard error of the 

mean. 
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 Since performance differed between the four blocks, each sequence of the different 

blocks was examined in more detail. The analysis began by comparing the performance in 

the R-R and N-N blocks. If spatial regularities aid sequence learning, higher performance 

would be expected in the first and second sequences of the R-R block when compared to 

the N-N block. Participants took nominally fewer trials to learn the first sequence in the R-R 

blocks (Mean trials to criterion: R-R = 58.31, N-N = 64.05) and experienced a nominally 

higher win rate (Mean win rates: R-R = 0.55, N-N = 0.52) but a paired samples t-test did not 

find either of these differences to be significant (Trials to criterion: t(37) = -1.145, p = 

0.260; Win rate: t(37) = 1.328, p = 0.192). When the second sequences in both blocks were 

compared, participants required fewer trials to finish the second sequence in the R-R block 

than in the N-N block (R-R = 49.58, N-N = 63.24; t(37) = -2.523, p < 0.02) and tended to 

experience a higher win rate (R-R = 0.55, N-N = 0.49; t(37) = 1.776, p = 0.08). Participants 

also improved their performance from the first to the second sequence in the R-R block 

(Trials to criterion – R-R block: First sequence = 58.31, Second sequence = 49.58; t(37) = 

2.034, p < 0.05), but showed no improvement in the N-N block (Trials to criterion – N-N 

block: First Sequence = 64.05, Second sequence = 63.24; t(37) = 0.157, p = 0.876; Figure 

8a). 

 Participant performance was then compared in blocks where spatial regularity 

changed between the block sequences. Performance was expected to be best on sequences 

that contained a spatial regularity, regardless of their position in the block. When the 

sequences were divided in the R-N and N-R blocks by regularity, a paired samples t-test 

confirmed that participants tended to take fewer trials when a regularity was present 

(Trials to criterion: Sequences with regularity = 51.08, Sequences with no regularity = 
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56.76; t(37) = -1.943, p = 0.06) and experienced higher win rates (Win rates: Sequences 

with regularity = 0.56, Sequences with no regularity = 0.51; t(37) = 3.159, p < 0.004). A 2x2 

repeated measures ANOVA with block (R-N, N-R) and sequence position (first sequence, 

second sequence) as within subject factors found a trending block by sequence interaction 

when trials were used as a dependent variable (F(1,37) = 3.776, p = 0.06, η2partial = 0.093), 

and a significant interaction for win rates (F(1,37) = 9.977, p < 0.004, η2partial = 0.212; 

Figure 8b). This confirms that performance tended to be better on sequences that 

contained a regularity, regardless of the regularity’s position in the block. 
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Figure 8 

Figure 8. (A) Performance comparison between the R-R and N-N blocks. Participants took 

nominally fewer trials to learn the first sequence of each block and significantly fewer trials 

to learn the second sequence. They also experienced nominally higher win rates in the R-R 

block, but this difference did not reach significance. (B) Performance comparison between 

the R-N and N-R blocks. Participants took fewer trials to learn a sequence, and experienced 

higher win rates, when the sequence was resented with a spatial regularity, regardless of 

the sequence’s position within a block. Error bars represent one standard error of the 

mean. 
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3.3 Discussion 

 Although spatial regularity did not seem to affect performance in Experiment 1, the 

seeming ease with which participants managed to learn computer strategies led us to 

hypothesise that the main task may have been too simple for participants and that the 

additional information provided by spatial regularities was not necessary to help them 

predict the computer’s next play.  In Experiment 2, participants played against easy and 

hard sequences of RPS play with varying spatial regularities. 

 Although a consistent nominal advantage for spatial regularity was present in the 

easy sequences, none of the differences in performance were significant. This suggests that 

spatial regularities may still potentially help with the learning of easier sequences, but that 

the task may not have been sensitive enough to measure a significant difference. 

 In the hard condition, participants were exposed to repeating sequences of five RPS 

items. A comparison in performance between the easy and hard conditions confirmed that 

the sequences containing five items were harder to learn than sequences of three items. 

When performance was compared between the hard sequences that contained a spatial 

regularity and those that did not, participants were found to required fewer trials to learn 

sequences and managed higher win rates when a spatial regularity was present.  

 Next, the different blocks of hard trials were examined to explore the influence of 

spatial regularity on learning and detecting changes in the computer’s play. Overall, 

performance on the first and second sequences in each block was improved by spatial 

regularities. When the spatial regularity remained consistent between the two sequences in 

each block, learning of the initial sequence was slightly improved and performance on the 

second sequence was significantly improved. When the spatial regularity switched between 
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sequences within each block, learning and switch detection were both improved by the 

presence of spatial regularity, regardless of the position of the sequence containing the 

spatial regularity. 

 Overall, these results confirm that spatial regularities can improve learning, and can 

help us detect unexpected changes in our environment. However, it seems that these 

benefits present themselves when the primary task itself is difficult. 
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CHAPTER 4: General Discussion 

 The purpose of this research was to provide insight into the influence of redundant 

spatial features on our ability to detect regularities in our environment. This study 

demonstrated that spatial regularities can facilitate the integration of regularities 

associated with non-spatial events, and that their effect may be more pronounced when the 

regularities of non-spatial events are more difficult to interpret. These results suggest that 

in addition to helping humans respond (Simon, 1969) and discriminate (Druker & 

Anderson, 2010) between different events, spatial regularities can also assist in learning 

the statistical properties of those events. 

 One potential limitation to this interpretation of these results is the absence of a 

neutral condition, where the computer’s choices would always appear in the same fixed 

screen location.  A neutral condition was omitted to avoid overtly signalling to participants 

a change in the task (particularly in Experiment 2). However, without a neutral condition 

for comparison, we cannot directly assert whether spatial regularity improves learning or 

whether spatial irregularity interferes with learning. Future studies comparing both the 

regularity and no regularity conditions with a neutral condition would provide additional 

insight into the direction of this influence. 

 These findings are potentially relevant to research exploring the broader topic of 

mental model building and updating (Danckert et al., 2012; Gläscher, Daw, Dayan, & 

O’Doherty, 2010; Daw, Gershman, Dayan, & Dolan, 2011; Tenenbaum, Kemp, Griffiths, & 

Goodman, 2011; Lauwereyns, 2010). Research exploring mental models has focused on 

understanding the way humans use prior experiences to explain and predict future events. 

This work has also explored our ability to update mental models when the events in the 
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environment no longer match the predictions derived from our current model. The results 

from Experiment 2 suggest that spatial regularities can improve our ability to learn the 

properties of non-spatial events, and facilitate our ability to adapt our behaviour when the 

environment changes. This suggest that in addition to helping us build representative 

models of our environment, spatial regularities can also help us detect mismatches 

between our models and the environment, and update them accordingly. 

 Research into the brain activation involved with processing redundant stimulus 

features provides a possible neurological account for the learning benefit of spatial 

regularities. Fias and colleagues (2001) tested the degree to which the processing of a task-

relevant feature would be influenced by task-irrelevant features. They found that task-

irrelevant features influenced participant responses to task-relevant features when these 

features shared common regions of neural activation, but not in cases when the task-

relevant features activated separate neural regions (Fias et al., 2001). In the context of the 

current experiment, the neural regions likely involved in processing the spatial features of 

the stimuli may also be involved in learning patterns and sequences. Research has 

implicated regions of the posterior parietal cortex in spatial attention (Colby & Golberg, 

1999; Mesulam, 1999; Silver, Ress, & Heeger, 2005) and sequence learning (Sakai et al., 

1998; Jenkins et al., 1994). It is possible that the benefits observed in Experiment 2 could 

be due to overlapping regions of neural activation which served to strengthen a 

participant’s ability to perceive patterns presented with spatially redundant features. 

Future studies using non-spatial redundant features (e.g., color, shape, luminosity) could 

test this relationship more closely to determine the extent to which overlapping regions of 
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neural activation associated with multiple features of a stimulus could influence our ability 

to detect regularities in our environment. 

 The current study has demonstrated that our ability to predict events can be 

influenced by features not immediately related to the events themselves. This research 

provides an insight into the way we process information, and proposes that we cannot 

discount the influence of redundant features when studying the mechanisms involved in 

learning. It also provides some evidence for the interconnectedness of different brain 

regions, and how they may interact to facilitate different areas of cognition. 
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