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Abstract

Multiagent learning (MAL) is the study of agents learning while in the presence of
other agents who are also learning. As a field, MAL is built upon work done in both
artificial intelligence and game theory. Game theory has mostly focused on proving
that certain theoretical properties hold for a wide class of learning situations while
ignoring computational issues, whereas artificial intelligence has mainly focused on
designing practical multiagent learning algorithms for small classes of games.

This thesis is concerned with finding a balance between the game-theory and
artificial-intelligence approaches. We introduce a new learning algorithm, FRAME,
which provably converges to the set of Nash equilibria in self-play, while consulting
experts which can greatly improve the convergence rate to the set of equilibria.
Even if the experts are not well suited to the learning problem, or are hostile,
then FRAME will still provably converge. Our second contribution takes this idea
further by allowing agents to consult multiple experts, and dynamically adapting
so that the best expert for the given game is consulted. The result is a flexible
algorithm capable of dealing with new and unknown games. Experimental results
validate our approach.
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Chapter 1

Introduction

Multiagent learning (MAL) is the study of agents learning while in the presence of
other agents who are also learning. To best understand MAL, it helps to consider
the study of single agent learning. A simple example of a single agent learning
problem is given in Figure 1.1.

Agent 1
a1,1 2
a1,2 5

Figure 1.1: A simple single agent learning problem

In this problem an agent is given the choice of two actions, a1,1 and a1,2. If the
agent chooses action a1,1 it receives a utility of 2 and if the agent chooses action
a1,2 it receives a utility of 4. This process repeats infinitely often. Over the course
of these repetitions the agent must learn which action gives it the highest utility.
There are many well understood techniques to solve this problem and much harder
ones. In fact single agent learning has many real world applications; from helping
people with dementia through different activities, to helping computers understand
human dialogue and even to helping helicopters fly autonomously [6, 42, 47].

However, it can become more difficult when there are multiple agents trying to
all learn autonomously. Suppose the problem in Figure 1.1 was generalized to a
game involving two agents as shown in Figure 1.2. In this game, agent 1 and agent
2 each simultaneously choose an action. The cell at the intersection of these two
actions gives the utility for both agents. For example, if agent 1 and agent 2 choose
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actions a1,2 and a2,2 respectively than agent 1 will receive a utility of 5 and agent
2 will receive a utility of 0.

Agent 1

Agent 2
a2,1 a2,2

a1,1 2,2 0,5
a1,2 5,0 1,1

Figure 1.2: A multiagent version of Figure 1.1

As with the agent in Figure 1.1, the agents in Figure 1.2 must devise a way of
maximizing utility through the use of some learning algorithm . However, the game
in Figure 1.2 is harder for several reasons. First, the learning algorithm agent 1
uses has an affect on agent 2 and vice-versa. For example, it is possible for agent
1’s learning algorithm to prevent agent 2 from ever receiving a “decent utility”.
Therefore, an additional challenge in multiagent learning can be trying to create
learning algorithms which minimize the negative impact they have on other agents.
The second issue is that unlike the problem in Figure 1.1, which a clear and unique
solution, there are several different possible solutions to the game in Figre 1.2. The
maximum utility for both agents can be either 1, 2 or 2.5 depending on how we
specify the model for the game. The problem is that models for MAL can be more
flexible than those for single agent learning. Therefore, we must find a way to be
more specific in how we specify MAL models.

One common solution to both of these issues is the use of game theory. Game
theory provides a method for understanding how agents interact with each other.
(A formal introduction to game theory is given in Chapter 2.) Games can be used
to describe many different phenomena. A simple example is the game in Figure
1.2. More complex examples include auctions for advertisement slots on Google’s
search results pages or routing on the Internet [17, 53]. In other words, game theory
can be used to help analyze situations worth billions of dollars or of fundamental
importance to modern society. With respect to single agent learning, game theory
allows for a generalization to a situation with multiple agents. This could include
helping to mediate between multiple autonomous helicopters or optimizing routing
over the Internet.

Since single agent learning and game theory have such different backgrounds,
it is not surprising that researchers in MAL have varied backgrounds and hence
also varied goals. Shoham et. al. have identified five main areas or agendas in
MAL: [49]
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1. Computational

2. Descriptive

3. Normative

4. Prescriptive, cooperative

5. Prescriptive, non-cooperative

The computational deals with developing computational approaches to deter-
mining properties of games. The descriptive agenda deals with building models
of how people learn in multiagent systems. The normative agenda tries to under-
stand which learning approaches are in equilibrium with each other.1 Finally, the
prescriptive agendas deal with how agents should learn in cooperative and non-
cooperative settings, respectively. In a cooperative setting, agents are trying to
improve the group as a whole while in a non-cooperative setting, agents are only
concerned with helping themselves.

Shoham et. al. have argued that the last agenda is the most interesting [49]. We
agree with this view. However, Shoham et. al. ignore the fact that the boundary
between these agendas is not always clear. Specifically, this thesis argues that
the normative agenda plays an important role in the prescriptive, non-cooperative
agenda.

Although many MAL algorithms use both machine learning and game theory
ideas, the algorithms can often be characterized by their balance between the two.
MAL algorithms that are mostly machine learning tend to focus on achieving results
for specific situations. On the other hand, game-theoretic MAL tends to be more
concerned with the universality of the properties of the learning algorithms than
with their computational properties.

1.1 Approach

This thesis is concerned with trying to get the best of both the machine learning
and game theory worlds. An ideal learning algorithm would be universal in its
application but also as practical as possible.

1An equilibrium is some strategy from which no agent wants to unilaterally deviate. A formal
definition is given in Chapter 2.
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The approach will focus on recent work in the game theory community which de-
veloped a learning algorithm, ALERT, that can be used for basically all games [30].
However, agents using ALERT make very naive decisions, and as a result the algo-
rithm is not practical for even the simplest of games. (We measure an algorithm’s
practically by how easily a computer could implement it.) By using ideas from
machine learning, we are able to help agents make much more efficient decisions.
We also rely on experts and experts algorithms, which are ideas from single agent
learning.

1.2 Contributions

Specifically, this thesis introduces three new algorithms. The first algorithm is
FRAME. FRAME is a multiagent learning algorithm which achieves a strong bal-
ance between theoretical concerns and practical ones. On the theoretical side,
FRAME can be used in any game to find a solution from which no agent will want
to unilaterally deviate from. On the practical side, FRAME, in part through the
use of consultation of a single expert, is shown to be a useful algorithm in realistic
situations on computers.

Our second algorithm is adaptive-FRAME. Adaptive-FRAME achieves the same
theoretical guarantees as FRAME does. However, adaptive-FRAME is able to con-
sult multiple experts and does so adaptively (i.e., better experts are consulted
more often). Thus adaptive-FRAME achieves a considerable improvement in per-
formance over FRAME. As a result, adaptive-FRAME can be used in many situa-
tions where FRAME cannot. Part of the improvement in adaptive-FRAME comes
from the use of experts algorithms.

The last algorithm, LERRM, is an experts algorithm designed specifically for
adaptive-FRAME. We show that LERRM is competitive with existing standard
experts algorithms, and in some cases LERRM can out perform them.

1.3 Guide to the Thesis

Chapter 2 This chapter provides background on multiagent learning. This also
covers different metrics for examining learning algorithms.

Chapter 3 This is the related research chapter. This chapter is broken up into
three parts. The first introduces the game-theoretic algorithms which FRAME

4



generalizes. The second part introduces the machine learning MAL ideas that
FRAME and adaptive-FRAME use to help achieve better performance. Fi-
nally, the third part talks about the machine learning idea of experts algo-
rithms, which is used in LERRM.

Chapter 4 This chapter introduces FRAME. We prove that FRAME achieves
convergence to the set of Nash equilibria and in many cases can converge to
a single Nash equilibria.

Chapter 5 This chapter shows the experimental results of FRAME. Our experi-
ments involved several games covering a wide range of types of games.

Chapter 6 This chapter introduces adaptive-FRAME, which is a generalization of
FRAME. We prove that adaptive-FRAME is also able to guarantee conver-
gence to the set of Nash equilibria and in many cases can converge to a single
Nash equilibria. We also present experimental results that show adaptive-
FRAME is able to achieve considerable improvement in the convergence rate
in many games over FRAME. Finally, we introduce LERRM, an experts al-
gorithm designed specifically for adaptive-FRAME.

Chapter 7 This is the conclusion. We also suggest areas for future research.
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Chapter 2

Background

The setting for our work is repeated games. Repeated games are based on stage
games, which are introduced in Section 2.1. Section 2.2 describes the idea of regret
which is used throughout this work. In Section 2.3 we introduce repeated games.
Section 2.4 introduces learning in repeated games and discusses some properties
with which we measure potential solutions.

2.1 Stage Games

A n-player stage game is a tuple G = 〈N,A = A1 × . . . × An, u1, . . . , un〉 where
N = {1, . . . n} is the set of agents in the game, Ai is the set of actions available for
agent i to play, A is the set of possible joint actions and ui : A → R is the utility
function for agent i. We denote the size Ai by mi. We let ai denote a specific action
taken by agent i. As is standard in the literature, we will use A−i to denote the joint
actions of all agents but agent i, i.e. A−i = {A1× . . .×Ai−1×Ai+1× . . .×An}, and
a−i ∈ A−i, a−i = (a1, . . . , ai−1, ai+1, . . . , an) to be a particular joint action. Agents
are all self-interested, in that their only concern is maximizing their own utility.

Figure 2.1 shows Battle of the Sexes, a classic example of a stage game. The
basic idea behind Battle of the Sexes is that agents would like to coordinate on an
action but cannot agree on which action to coordinate on.

When a stage game is given in matrix form, the game is said to be in normal
form. Agent 1 and agent 2 will each pick an action simultaneously. Agent 1’s action
can be thought of as picking a row in the matrix. Likewise, agent 2’s action can be
thought of as picking a column in the matrix. The cell at the intersection of the
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row and column gives the utility for both agents. The first value in that cell gives
the utility for agent 1 and the second value gives the utility for agent 2. All of the
concepts are generalized in the obvious manner for games with more than 2 agents.

Agent 1

Agent 2
a2,1 a2,2

a1,1 1, 0.5 0, 0
a1,2 0, 0 0.5, 1

Figure 2.1: An example of a stage game: Battle of the Sexes

We assume that agents play strategies.

Definition 1 A strategy, σi, for agent i, is a probability distribution over its action
set Ai, stating with what probability the agent will play each action. A pure strategy
is one in which the agent plays one action with probability equal to one. All other
strategies are called mixed strategies. The set of all possible strategies for agent i is
Σi. The profile σ = (σ1, . . . , σn) is a joint strategy among all agents and Σ = ×n

i=1Σi

is the set of all possible joint strategies.

We define Σ−i = Σ1 × . . .× Σi−1 × Σi+1 × . . . × Σn and σ−i to be an element
of Σ−i.

By abuse of notation, we define

ui(σi, σ−i) =
∑

(ai,a−i)∈A

ui(ai, a−i)σi(ai)σ−i(a−i). (2.1)

In words, agent i’s expected utility with respect to its strategy σi and its opponents’
joint strategy σ−i is the sum of the utility over all possible joint actions of the
utility for agent i of a joint action multipled by the probability of that joint action
happening due to the strategies σi and σ−i. We also define an agent’s utility with
respect to playing a specific again as

ui(ai, σ−i) =
∑

a−i∈A−i

ui(ai, a−i)σ−i(a−i). (2.2)

In words, agent i’s expected utility with respect to playing action ai given its
opponents’ joint strategy σ−i is the sum of the utility over all possible joint actions
that include ai of the utility for agent i of such a joint action multipled by the
probability of the that joint action happening due to the joint strategy σ−i.
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Referring back to Figure 2.1, a possible strategy for agent 1 would be σ1 =
(1/2, 1/2). If agent 2 also had the same strategy, i.e. σ2 = (1/2, 1/2), then we
would calculate the utility of agent 1 as follows;

u1(σ1, σ−1) = u1((a1,1, a2,1))σ1(a1,1)σ−1(a2,1) (2.3)

+ u1((a1,1, a2,2))σ1(a1,1)σ−1(a2,2)

+ u1((a1,2, a2,1))σ1(a1,2)σ−1(a2,1)

+ u1((a1,2, a2,2))σ1(a1,2)σ−1(a2,2),

= 1 · 1

2
· 1

2
+ 0 + 0 +

1

2
· 1

2
· 1

2
,

=
3

8
.

By the symmetry of the game, agent 2’s utility would be the same.

By definition, the agents’ strategies are a Nash equilibrium if no agent is willing
to change its strategy, given that no other agents change theirs [41].

Definition 2 A strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
n) is a Nash equilibrium if for every

agent i
ui(σ

∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i), ∀σ′

i 6= σ∗
i . (2.4)

A strategy profile σ∗ is an ǫ-Nash equilibrium if for every agent i

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i) − ǫ, ∀σ′

i 6= σ∗
i . (2.5)

In the game in Figure 2.1, an example of an ǫ-Nash equilibrium would be the
joint strategy

{σ1, σ2} = {(1, 0), (3/4, 1/4)} (2.6)

for ǫ = 1/4.1 To show that this is an ǫ-Nash equilibrium, we must show that neither
agent could increase its utility by more than ǫ by unilaterally deviating from this
joint strategy. Given agent 2’s strategy, agent 1’s best response is (1, 0) which is
its current strategy. Therefore, agent 1 cannot increase its utility at all. However,
given agent 1’s strategy, agent 2’s best response is also (1, 0) which is not its current
strategy.2 Agent 2’s current strategy provides a utility of 1

4
while its best response

provides a utility of 1
2
. Therefore, agent 2 could increase its utility by at most ǫ by

changing its strategy. Therefore, {(1, 0), (1− ǫ, ǫ)} is an ǫ-Nash equilibrium.

1This actually holds for all ǫ. For simplicity, we examine only one case.
2As long as one action provides more expected utility than any other action, playing only that

action maximizes utility. Thus, we need only check every pure strategy to find the best response.
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We denote the set of all Nash equilibria for some game G by NG, and the set
of all ǫ-Nash equilibria by NG

ǫ . When it is clear from the context, we will drop the
game index G and use N and Nǫ respectively. Finally, let N c

ǫ be the set of all joint
strategies that are not ǫ-Nash equilibria.

If we assume that agents play actions (i.e. instead of just playing a strategy,
agents are forced to pick an action according to their strategy), then we can also
define joint strategies in terms of the probabilities that each joint action is played.

Definition 3 Define σa to be the probability that the joint action a is played. We
can now define a correlated strategy, σA, as the probability distribution

σA = {σa|a ∈ A}. (2.7)

This is a correlated strategy because

σA((ai, a−i)) = σi(ai)σ−i(a−i) (2.8)

does not have to hold. Instead the strategy one agent plays can have an effect on
the strategies other agents choose to play.

We define σA−i
to be the correlated strategy for all agents but agent i. Since the

strategies are correlated, agent i’s choice of strategy will have an effect on what σA−i

is. Thus, we can consider the probability P (σA−i
|σi). Whereas with uncorrelated

strategies, all strategies had to be known before an expected utility could be calculated,
with correlated strategies agent i only needs to know its strategy to calculate its
expected strategy. This means that we can calculate the expected utility for agent i
based solely on its own strategy as

ui(σi) =

∫

σA−i
∈ΣA−i

P (σA−i
|σi)ui(σi, σA−i

). (2.9)

Using Equation 2.9, we can calculate agent i’s expected utility as

ui =

∫

σi∈Σi

P (σi)ui(σi). (2.10)

In games with simultaneous moves, the easiest way to have correlated strategies
is for each agent to receive a private signal from a third party suggesting which
action to play. In order for these signals to be correlated, each agent must know
the relative frequency that each joint signal is used. Since there are only a finite
number of actions per agent, there are only a finite number of possible joint signals.
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If we assume that each agent follows its suggested action, each agent has only a
finite number of possible strategies. As a result, we can simplify Equations 2.9 and
2.10 to

ui(σi) =
∑

σA−i
∈ΣA−i

P (σA−i
|σi)ui(σi, σA−i

), (2.11)

and
ui =

∑

σi∈Σi

P (σi)ui(σi), (2.12)

respectively.

As an example, consider the game in Figure 2.1. Suppose that a third party
can send one of two signals, B and S, to each of the agents. There is a probability
of 0.5 that the third party sends B to both agents and a 0.5 probability that the
third party sends S to both agents. If the agents receive the signal B, agents 1
and 2 will choose actions a1,1 and a2,1 respectively and otherwise they will choose
actions a1,2 and a2,2 respectively. This results in a correlated strategy of

σA = {σA((a1,1, a2,1)) = 0.5, σA((a1,1, a2,2)) = 0,

σA((a1,2, a2,1)) = 0, σA((a1,2, a2,2)) = 0.5}. (2.13)

A graphical respresentation of this correlated strategy is shown in Figure 2.2.

Agent 1

Agent 2
a2,1 a2,2

a1,1 0.5 0
a1,2 0 0.5

Figure 2.2: A graphical representation of the correlated strategy in Equation 2.13

Assuming that both agents follow their suggested strategy, we can use Equations
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2.11 and 2.12 to calculate agent 1’s expected utility as follows3

u1 =
∑

σ1∈Σ1

P (σ1)u1(σ1)

= P (a1,1)u1(a1,1) + P (a1,2)u1(a1,2)

=
1

2





∑

σA2
∈ΣA2

P (σA2
|a1,1)u1(a1,1, σA2

)





+
1

2





∑

σA2
∈ΣA2

P (σA2
|a1,2)u1(a1,2, σA2

)





=
1

2
[P (a2,1|a1,1)u1((a1,1, a2,1)) + P (a2,2|a1,1)u1((a2,2, a1,1))]

+
1

2
[P (a2,1|a1,2)u1((a2,1, a1,2)) + P (a2,2|a1,2)u1((a2,2, a1,2))]

=
1

2
(1 · 1 + 0 · 0) +

1

2
(0 · 0 + 1 · 1)

=
3

4

By the symmetry of the game, agent 2 will also have an expected utility of 3
4
. It is

important to note that each agent receives a higher utility than they would from
the mixed Nash equilibrium of this game.

In fact, σA is actually an equilibrium, specifically a correlated equilibrium [2].
A correlated equilibrium is a correlated strategy in which every time agent i plays
the strategy σAi

, there is no strategy that could have achieved a higher utility.
Formally, for agent i and all strategies σAi

such that P (σAi
) > 0,

∑

σA−i
∈ΣA−i

P (σA−i
|σAi

)ui(σAi
, σA−i

) ≥
∑

σA−i
∈ΣA−i

P (σA−i
|σ′

Ai
)ui(σ

′
Ai
, σA−i

) (2.14)

for all σ′
Ai

∈ ΣAi
and for all i ∈ N .

We can now address the assumption that each agent plays its suggested action.
An agent will only play its suggested action if that action maximizes its utility.
By definition, if a correlated strategy is also a correlated equilibrium, then that
strategy maximizes utility. Hence, for the strategy in Equation 2.13, we are able

3For simplicity, we use a1,1 to also denote the strategy of playing action a1,1 with probability
1.
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to assume that agents played their suggested strategy because doing so maximized
their utility.

Correlated strategies are dependent on agents receiving signals that are corre-
lated, even if they are private. For example, in the game in Figure 2.1, a set of
uncorrelated signals could be agent 1 receiving B 2

3
’s of the time and S 1

3
of the

time while agent 2 receives B 1
3

of the time and S 2
3
’s of the time. In this case

equation Equation 2.11 would simplify to

ui(σA) =
∑

a∈A

P (σA−i
) · ui(σAi

, σA−i
), (2.15)

and we would have uncorrelated play. More importantly, the specific set of uncor-
related signals would result in agents playing a Nash equilibrium. Therefore, the
set of correlated equilibria contains the set of Nash equilibria. By using correlated
strategies, a richer set of outcomes is possible. However, using correlated strategies
requires a more complex model. Before trying to understand such a model, it makes
sense to make sure that we understand the simpler model needed for uncorrelated
strategies. Thus, for the rest of this thesis, with the exception of the examination
of related work, we will only be concerned with uncorrelated strategies.

2.2 Regret

Another notion that agents may use to evaluate their choice of strategy is that of
regret.

Definition 4 Given a joint strategy σ, agent i’s regret is

ri(σ) = max
σ′

i∈Σi

[ui(σ
′
i, σ−i) − ui(σi, σ−i)] . (2.16)

Given σ, the regret of a game is the maximum regret among all agents, i.e. r(σ) =
maxi∈N(ri(σ)). When σ is obvious, we shall just use r. This may be seen as a
measure of how much agent i is hurt by playing strategy σi as opposed to any other
strategy.

Two other types of regret are external and internal regret [32, 21]; external
regret measures regret against all pure strategies while internal regret measures
regret for having played action a instead of action b for all a 6= b. These notions
are expanded upon in Chapter 3.
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For an example of regret, we return to the Battle of the Sexes game in Figure
2.1. Suppose both agents use the joint strategy in Equation 2.6. We have already
shown that agent 1 cannot increase its utility by changing its strategy. Therefore,
agent 1’s regret, r1(σ), is 0. We have also shown that agent 2 can increase its utility
by at most 1/4 by changing its strategy. Therefore, agent 2’s regret, r2(σ), is 1/4.

We can use regret to give another way of defining a Nash equilibrium. If all
agents have no-regret about the strategies they are playing, i.e. ri = 0, ∀i ∈ N ,
then the strategy profile is a Nash equilibrium. Similarly, if ri ≤ ǫ for all i, then we
have an ǫ-Nash equilibrium.

Another important notion related to regret and Nash equilibria is best response.

Definition 5 The best response for agent i, if all other agents are playing σ−i, is

BRi(σ−i) = {σi ∈ Σi|ri(σi, σ−i) = 0}. (2.17)

.

We can also define the ǫ-best response in a similar fashion.

Definition 6 The ǫ-best response for agent i is

BRǫ
i(σ−i) = {σi ∈ Σi|ri(σi, σ−i) ≤ ǫ}. (2.18)

For Battle of the Sexes, if agent 1’s strategy is (1, 0), then agent 2’s best response
is the set {(1, 0)} since any strategy in this set maximizes agent 2’s utility with
respect to agent 1’s strategy. Assuming the same strategy for agent 1, an ǫ-best
response for agent 2 would any strategy {(1 − ω, ω)} for any ω ≤ ǫ. Any such
strategy would give agent 2 a regret of at most ǫ.

A stronger notion than best response is dominant strategy . A strategy is domi-
nant if it is strictly the best response regardless of what joint strategy the agents’
opponents are playing. A slightly weaker notion is an ǫ-subdominant strategy .

Definition 7 A strategy σi is an ǫ-subdominant strategy if

∀σ−i ∈ Σ−i, σi ∈ BRǫ
i(σ−i). (2.19)

For a game G, we let d(G) be the least ǫ ≥ 0 such that at least one agent has a
ǫ-subdominant strategy.

Battle of the Sexes does not have a dominant strategy for either agent. A game
with a dominant strategy for both agents is shown in Figure 2.3. In this game,
regardless of what strategy the other agent is going to play, it is always in the best
interests of the agent to play the strategy (0, 1).
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Agent 1

Agent 2
a2,1 a2,2

a1,1 2, 2 0, 5
a1,2 5, 0 1, 1

Figure 2.3: A game with a dominant strategy for both agents

2.3 Repeated Games

In this section we introduce the idea of repeated games, which form the basis for
this thesis. Repeated games allow for far greater flexibility than stage games. As a
result, many results are possible in repeated games which were not possible in stage
games. This section shows what the differences between stage games and repeated
games are and how the rest of the thesis will treat repeated games.

Given a stage game, a repeated game is one in which all agents play that stage
game over and over again. As is standard, we assume that a repeated game is either
of infinite length or its length is unknown to all agents. To examine repeated games
in a formal setting, we consider the following model based on the one by Mertens
et al. [37].

Definition 8 Given a stage game, G = 〈N,A = A1 × . . . × An, u1, . . . , un〉, we
define the repeated game ΓG as follows.

Let Θ be a finite set of possible states for ΓG. A state in a repeated game is the
same idea as a state in a deterministic finite automata (DFA). We define θt ∈ Θ
to be the state of ΓG at time t.4

At the beginning of turn t, agent i will receive a signal st
i ∈ Si where Si is the set

of all signals for agent i. These signals may tell the agent which state the game is
currently in, although this is not required. Agents can use this signal to help them
choose a strategy; σi[si] is agent i’s strategy when it receives the signal si and σi is
the set of strategies for all possible signals. If an agent’s strategy is dependent on
the time, we denote it by σt

i , otherwise the strategy is said to be stationary.

The transition from one state to another is given by T : A × Θ → ∆(Θ × S),
where ∆(Θ × S) is the set of probability distributions over all possible state and
signal combinations.

4Mertens et al. also generalize ui to be dependent on Θ. The resulting game is better known
as a stochastic game or a competitive Markov Chain Process. For simplicity, we will keep ui

independent of Θ.
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Finally, we define q ∈ ∆(Θ×S) to be the initial probability distribution over all
possible state and signal combinations.

Thus, we define ΓG = 〈N,A, u,Θ, S,T, q〉. We can also think of the repeated
game as a stage game plus the states and transitions or ΓG = 〈G,Θ, S,T, q〉. The
utilities of the repeated game ΓG are exactly the same as those of the stage game
G. Specifically, the set of possible utilities is independent of which state ΓG is in
at any particular time or what signals the agents receive. The importance of states
and signals is that it allows agents to have correlated strategies. An example of
this is given later in this section.

Definition 9 A game has complete state information if every agent always knows
which state the game is currently in. That is, for every signal si ∈ Si, there exists
a single state θ ∈ Θ such that if agent i receives si then θ must be the current state.
It is important to note that for each θ there can exist more than one possible si.

We denote a strategy for agent i in a repeated game by (σt
i)

∞
t=0, where σt

i is the
strategy played in the stage game at time t. Similarly, we denote the regret in a
repeated game by (rt)∞t=0, where rt is the regret at time t.

In a repeated game, agents are no longer necessarily just concerned with their
immediate utility. A lower immediate utility might be acceptable if it leads to a
greater utility in the future. Likewise, a higher immediate utility might not be
acceptable if it comes with a lower utility in the future.

Given a sequence of utilities u1
i , u

2
i , . . . for agent i starting at time 1, one possible

way of balancing immediate versus future utility is by examining the κ-discounted
sum of the utilities, given by: 5 6

v(u1
i , u

2
i , . . .) = (1 − κ)

∞
∑

t=1

κt−1ut
i. (2.20)

By “decaying” utilities over time, utilities in the near future are worth more than
utilities from futher into the future.

5In machine learning, this is known as the value of a state (assuming one state), and hence we
denote it by v.

6The (1 − κ) term is needed to normalize the sum, i.e. (1 − κ)
∑

∞

t=1 κt−1 = 1.
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Definition 10 The value of a game, given its starting state θ0 and the set of
stationary strategies σ, is

vi(θ
0, σ) = (1 − κ)

∞
∑

t=1

∑

θ∈Θ

∑

s∈S

κt−1P (θt|σ)P (s|θt)ui(σ[s]), (2.21)

where P (s|θt) is the probability of the joint signal s = {s1, . . . , sN} being sent to the
agents given the state θt, and P (θt|σ) is the probability of the game being in state
θ at time t given the stationary strategy σ. As with correlated strategies in stage
games, we assume that agents know the probabilities of receiving each possible joint
signal in any state.

The value due to the repeated game at time t is equal to the probability of the
game being in state θ at time t, times the probability of the signal s being sent to
all agents given the state θt, times the utility of the resulting joint strategy.

As a result, we must generalize our notion of equilibrium.

Definition 11 A stationary strategy σ is in equilibrium if and only if for all i ∈ N

vi(θ
0, σ) ≥ vi(θ

0, (σ′
i, σ−i)) (2.22)

for all σ′
i ∈ Σi.

Since we have generalized our notion of equilibrium, we now ask: do G and ΓG

necessarily have the same equilibria? To examine this question, we first introduce
some notation.

Definition 12 Let σ be a stationary strategy. Let Yi(σ, ai, θ, κ) be the value of ΓG

for agent i, assuming that all agents follow σ except for at t = 0, when agent i will
play action ai and all agents will play σ−i.

This allows us to redefine vi as follows.

vi(θ) =
∑

ai∈Ai

σi[θ](ai)Yi(σ, ai, θ, κ), ∀θ ∈ Θ. (2.23)

For σ to be an equilibrium, it must be to no agent’s advantage to unilaterally
change its strategy. Since we are dealing with stationary strategies, an agent cannot
change its strategy at a specific time. Instead the agent can only change its strategy
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in a specific state (assuming complete knowledge). Under these conditions, we can
achieve an equilibrium with the following theorem, which is known as one of the
Folk theorems [39].7

Theorem 1 Given a repeated game with complete state information and station-
ary joint strategy σ, if there exists a bounded vector v such that

vi(θ) = max
ai∈Ai

Y, (2.24)

and Equation 2.23 is met, then σ is an equilibrium of the repeated game with the
κ-discounted sum.

The importance of this theorem is that we can show that strategies in a stage
game which are not in equilibrium may be in equilibrium in a repeated game.
Consider the example in Figure 2.4 based on one by Myerson [39].

Agent 1

Agent 2
cooperate defect

cooperate 0.5, 0.5 0, 1
defect 1, 0 0.25, 0.25

Figure 2.4: Prisoners’ Dilemma

In the Prisoner’s Dilemma, the only Nash equilibrium is for both agent to de-
fect. Furthermore, defecting is also the only correlated equilibrium. However, in a
repeated game of Prisoners’ Dilemma, it is possible to have an equilibrium of both
agents cooperating.

Let Θ = {c, d} where the initial state is c and the state d means that at
least one agent defected in the previous round. An equilibrium strategy would
be σ(cooperate|c) = 1 and σ(defect|d) = 1. (This is commonly known as the
trigger strategy.) To see why, we first find the value of the strategy.

vi(c) = vi(cooperating, c) = (1 − κ)0.5 + κ(v(c)) (2.25)

vi(d) = vi(defecting, d) = (1 − κ)0.25 + κ(v(d)) (2.26)

7The term Folk theorem comes from the fact that these theorems were generally accepted long
before they were actually proved. The name is not overly descriptive of the theorems themselves
and Myerson instead refers to them as general feasibility theorems[39].
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If agent i instead chose to defect in state c, its new value would be

v′i(c) = (1 − κ)1 + κ(v(d)). (2.27)

Likewise, if agent i instead chose to cooperate in state d, its new value would be

v′i(d) = 0 (2.28)

For the strategy to be in equilibrium we need Equation 2.25 greater than or
equal to Equation 2.27 and Equation 2.26 greater than or equal to Equation 2.28.
The second condition is met unconditionally and the first is met when κ ≥ 2/3.
Thus, if agent i cares enough about its future utility, then cooperating can become
an equilibrium strategy.

Is this example an exceptional case? If not, we must take extra care when
defining exactly what we mean by a solution in repeated games. As Fudenberg and
Maskin show, the above example is most likely not exceptional at all [29].

Theorem 2 For a stage game G, let v̂i be the minimax utility when considering
only pure strategies. Let F denote the set of all possible utilities that could be
obtained due to some correlated strategy in G.

Then for any repeated game, let x be any vector in F such that F ∩{z ∈ R
N |v̂i ≤

zi ≤ xi, ∀i ∈ N} has a nonempty interior relative to R
N . Then there exists some

number 0 < κ̄ < 1 such that for every κ, such that κ̄ ≥ κ < 1, there exists a
correlated strategy µ such that µ is a subgame-perfect publicly correlated equilibrium
of the repeated game, with a discount factor of κ and a value of xi for each agent.8

Although this result deals with correlated strategies, it does suggest that there
are many uncorrelated equilibria in repeated games which are not possible in stage
games. The advantage, as shown by the above example, is that these equilibria
may be much “nicer” (in the sense that both agents receive a higher utility). The
disadvantage is the complexity of determining if a given strategy is an equilibrium.
Thus, although we consider the more general case to be a valid and interesting
area of research, for now we will consider the more simple case of κ = 0. This will
restrict us to equilibria in the repeated game which are also equilibria in the stage
game.

8Suppose at time t, the repeated game ΓG is in state θt. The repeated game ΓG in state θt′ is
a subgame if it is possible for ΓG to go from state θt to state θt′ in some finite number of turns.
A strategy is subgame perfect if it is an equilibrium in ΓG at state θt as well as for all possible
subgames [39].
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2.4 Learning in Repeated Games

As agents play the repeated game they begin to learn which are the best strategies
to play in the stage game. In particular, their strategies may change and evolve as
they gain more experience. A learning algorithm is any algorithm an agent uses to
help it play a repeated game.9

A solution to a repeated game is some joint strategy where no agent wants to
change their strategy. There has been considerable discussion recently over what
sorts of solutions agents should try to achieve. The AI Agenda argues that a Nash
equilibrium may be a poor solution choice since agents do not necessarily have any
incentive to try to reach a Nash equilibrium [49]. For example, in the Prisoners’
Dilemma, agents would prefer to both cooperate than play the Nash equilibrium.

Thus, the AI agenda instead has agents developing best-response strategies to
specific classes of agents. For example, Powers and Shoham have developed an algo-
rithm which can achieve a best-response against agents with limited memory [44].
However, it seems unrealistic that a single agent will have some unique advantage
over all other agents. Therefore, we are interested in repeated games between iden-
tical agents (i.e. self-play). We argue that for self-play, a Nash equilibrium is still
a valid solution concept. To show this, we now consider several different possible
solution concepts and examine their relative strengths and weaknesses.

1. Social welfare maximization - this requires maximizing the sum of the utilities
of all the agents. Since our agents are only self-interested, they might not
agree with the social welfare maximizing outcome. For example, suppose
that agent i is given a choice between two actions, ai,1 and ai,2. Action ai,1

gives agent i a utility of 1 and all agents a social welfare of 10. Action ai,2

gives agent i a utility of 10 and all agents a social welfare of 1. The social
welfare maximization solution is for agent i to choose action ai,1. However,
since agent i is only concerned with its only utility, it will chooose action ai,2.

2. Pareto optimal solution - this requires finding a joint strategy for which no
agent could change their strategy to improve its utility without hurting the
utility of another agent. However, again since our agents are self-interested,
they might not agree with this type of solution either.

9It should be noted that in the game theory literature, what we refer to as a learning algorithm
is called a strategy. To avoid the obvious confusion, we will stay with the term learning algorithm.
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3. Nash equilibria - this is the type of solution we will be interested in. Since
agents are self-interested and concerned with only their immediate utility,
Nash equilibria are the only enforceable outcomes.

The problem is that finding a Nash equilibrium (or even an ǫ-Nash equilib-
rium) is PPAD-complete [10, 11]. Hence, we do not expect to be able to
create an algorithm which can be used in practice for all repeated games.

4. Maximizing utility - an alternative solution could be for agents to try and
maximize their utility. As has already been seen with the Prisoners’ Dilemma,
converging to a Nash equilibrium does not always provide the highest long
term utility for an agent. However, as shown, to have agents both agree to
cooperate requires a far more complex model than the one used in this thesis.

Another example where maximizing utility differs from converging to a Nash
equilibrium is when there are multiple Nash equilibria for a game. In this
case, it is possible that one Nash equilibrium is Pareto optimal. In this case,
it would make sense to try to converge to the first Nash equilibrium. Besides
the fact that finding a Pareto optimal Nash equilibrium is NP-complete, for
a given Nash equilibrium N1, there may be multiple Nash equilibria that are
Pareto optimal to it [12].

For a repeated game G, if there existed some time t′ such that for all t ≥ t′, the
joint strategy σt was a Nash equilibrium, i.e. σt ∈ NG, then we could say that the
game had obtained a solution at time t′. However, it is rare for a noncooperative
multiagent learning algorithm to actually reach a Nash equilibrium at some finite
point in time. It is much more common that as time goes on, σt gets closer and
closer to a Nash equilibrium, even though it never actually reaches that equilibrium,
i.e.

∀ω > 0 ∃t,Ni ∈ N such that ∀t′ ≥ t, ||σt′ −Ni|| < ω. (2.29)

In words this means that there exists some Nash equilibrium, Ni, such that for any
ω > 0, there exists some finite time t such that all joint strategies starting at time
t are a distance of at most ω away from Ni. This leads to the idea convergence to
a Nash equilibrium, i.e.

lim
t→∞

σt ∈ N . (2.30)

This is a standard goal for learning algorithms trying to reach a Nash equilibrium.

However there are a couple of alternative notions of convergence that can be
considered. The first is convergence to the set of Nash equilibria. This means that
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Agent 1

Agent 2
R L

T 1,1 0,0
B 0,0 1,1

Figure 2.5: A simple game

limt→∞ σt does necessarily exist. For example, for the game in Figure 2.1, we could
have the following sequences of joint strategies,

{(.9, 0), (.9, 0)}, {(0, .9), (0, .9)}, {(.99, 0), (.99, 0)}, {(0, .99), (0, .99)}, . . . (2.31)

This sequence has no limit. However, it is made up of two separate subsequences,
each of which does have a limit. More importantly, each of these limits is a Nash
equilibrium. This is an example of convergence to the set of Nash equilibria. For-
mally, if the sequence of joint strategies {σ0, σ1, . . .} can be partitioned into a
(possibly infinite) set of distinct subsequences, {σS1 , σS2, . . .} such that ∀i,

lim
t→∞

σS
t
i ∈ N , (2.32)

then the original sequence is said to converge to the set of Nash equilibria. This is
also a valid notion for a solution. Note that convergence to a Nash equilibrium is a
strictly stronger notion. However, there are other notions of convergence which are
not as valid. Both of the above notions relate to period-by-period behaviours. An
alternative one relates to the cumulative empirical frequency of play. The difference
is best demonstrated by an example. The game in Figure 2.5 has 3 Nash equilibria,
{(1, 0), (0, 1)}, {(0, 1), (0, 1)} and {(1

2
, 1

2
), (1

2
, 1

2
)}.

Suppose Agent 1 and Agent 2 play the following repeated sequence of actions,

(T, L), (B,R), . . . (2.33)

Each turn both agents get 0 utility. However, the cumulative empirical frequency
of play, or the average number of times each agent played each action, corresponds
to the Nash equilibrium {(1

2
, 1

2
), (1

2
, 1

2
)}. Thus, we can say that the cumulative

empirical frequency of play converges to a Nash equilibrium. The problem with this
definition is that just because the cumulative empirical frequency of play converges,
does not mean that agents get the utility from the corresponding Nash equilibrium.

Which notion of convergence is used is not the only criterion that can be used
to judge a learning algorithm. Another is the level of cooperation allowed (or
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required) between agents. The whole point of learning an equilibrium (as opposed
to finding one through some centralized process) is that agents can remain self-
interested and do not have to trust any other agents or third party. This allows us
to use our results in a wide variety of situations from interactions on the Internet
to economics. These are situations where agents (or people) would often not be
willing to give up self-interest or be willing to trust others.

In light of this, cooperation between agents should be kept to a minimum, and if
possible, any cooperation should be justified as being in the agents’ best interests.
The least amount of cooperation that can be obtained is when agents are not even
aware of the existence of other agents. This means that agents are not even aware
they are playing a game. All agents know is that they are picking an action (or
strategy) and each time they do so they receive a utility. Agents know nothing
about the connection between the actions they choose and the utility they receive.
An algorithm that can work in such a setting is called radically uncoupled [22].
Since agents cannot make any assumptions about the other agents they are playing
against, a radically uncoupled algorithm can work in any setting. If a learning
algorithm is aware of the existence of other agents but agents can still keep their
payoff functions private, then the learning algorithm is called uncoupled. There are
some learning algorithms that are not even uncoupled; these will be talked about
later. If we must ever use a non-uncoupled algorithm, we will either justify it as
being in the agents’ best self-interest or making a substantial difference in the time
it takes to converge to a Nash equilibrium.

Finally, we must address what sort of complexity is to be allowed in a learning
algorithm. This is a more theoretical concern. Algorithms which are too complex
will be either impractical to code or impractical to run. However, in the next
section we will discuss a number of possibility and impossibility results from the
game theory community. These results often assume that a learning algorithm has
R-recall and is stationary [35]. A learning algorithm has R-recall if the algorithm
depends on only the last R turns. In other words, the learning algorithm has
only a finite amount of memory. If a learning algorithm has R-recall and does not
depend on t (the current time), the algorithm is said to be stationary. If a learning
algorithm does not have R-recall then a common alternative is that it must be
based only on summary statistics.
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Chapter 3

Related Research

In this chapter we examine the related research in the field of multiagent and
machine learning. We examine three of the main categories of learning algorithms in
repeated games: regret-based learning, fictitious play and gradient ascent learning.
Finally, we study the machine learning literature on experts algorithms.

3.1 Regret-Based Learning

A regret-based learning algorithm is any algorithm that is trying to minimize an
agent’s regret. Sometimes this is done explicitly and sometimes this is an “after
the fact” observation. To best understand how regret can be used by a learning
algorithm, it helps to consider a more general definition of regret. Consider regret
to be the comparison between the utility from a given strategy, σi, and the best
possible utility that could have been achieved by any strategy in some set of strate-
gies, Σσi

∈ Σi. If Σσi
= Σi, then we have our original definition of regret. We can

also consider Σσi
to be a strict subset of Σi. This could be done by using a set of

mappings that take σi and map it into the desired set. Greenwald and Jafari used
Φ, the finite subset of the set of linear maps φ : Σi → Σi [31]. In this case, regret
is redefined as

rΦ(σi, σ−i) = max
φ∈Φ

(ui(φ(σi), σ−i) − ui(σi, σ−i)). (3.1)

Following Greenwald and Jafari’s work, we can now generalize the linear map
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φi : Σi → Σi to φi : ΣA → ΣA as1,

φi(σA)(ai, a−i) =
∑

a′
i∈Ai

σA(a′i, a−i)φi(δa′
i
)(ai), (3.2)

where δa′
i
is the Dirac function which creates a probability distribution over Ai with

all mass concentrated at a′i .

Definition 13 The correlated joint strategy, σA, is a Φ-equilibrium if and only if
ui(σA) ≥ ui(φi(σA)) for all agents i and for all φi ∈ Φi.

Definition 14 If a learning algorithm is able to minimize Φi-regret, i.e.

lim
t→∞

rΦ(σt
i , σ

t
−i) = 0, (3.3)

then that algorithm achieves no-Φi-regret and the algorithm is a no-Φi-regret learn-
ing algorithm.

Greenwald and Jafari prove the following theorem.

Theorem 3 Given a game G, if all agents i play via some Φi-no-regret learning
algorithm, then the joint empirical distribution of play converges to the set of Φ-
equilibria, almost surely.

The importance of this theorem is that, by choosing the right Φi, it might
be possible to get some sort of convergence. Thus we start by exploring the two
most common types of Φi-no-regret learning algorithms: no-external regret and
no-internal regret algorithms. It should be noted that both of these types of learn-
ing algorithms are often referred to simply as “no-regret learning algorithms”. We
reserve the term “no-regret learning algorithm” for a specific type of learning al-
gorithm and will, in this case, keep our terminology in line with the game theory
literature.

3.1.1 No-External Regret

No-external regret is obtained by letting Φi = {φai
|ai ∈ Ai} where φai

(σi) = δai
.

Hence, no-external regret compares a given strategy against all pure strategies. No-
external regret is also known as Hannan consistency or universal consistency [32].

1The value σA(a′

i, a−i) is the probability of the joint action (a′

i, a−i) according to σA.
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There are a large number of no-external regret algorithms in the literature including
work done by Blackwell, Foster and Vohra, Freund and Schapire, Fudenberg and
Levine and Hannan [5, 20, 23, 26, 32]. The Logistic Fictitious Play algorithm
presented later in this chapter, achieves ǫ-no-external regret.

A no-external regret equilibrium can also be thought of as any joint strategy
where each agent receives at least as much utility as they would have from a gener-
alized minimax equilibrium. A traditional minimax equilibrium is defined for a zero
sum game, which is any two-person game where the utilities for any outcome add to
zero. In these games the agents are purely adversarial meaning that one agent’s gain
is the other agent’s loss. An agent’s optimal strategy in a zero sum game is then to
minimize the other agent’s maximum potential utility. These strategies are called
minimax strategies and the resulting utility is called the minimax utility. If both
agents are playing minimax strategies then the joint strategy an equilibrium [54].
This sort of equilibrium is called a minimax equilibrium.

Minimax equilibria can also be used to determine the minimum utility which
an agent can be guaranteed to receive in any game. For example, to determine
the minimum utility agent i can be guaranteed to receive in some game G, we can
transform G into a zero sum game G′. In the game G′ agent i’s utilities remain
unchanged however, its opponent’s utilities now become the negative of agent i’s.
An example of this conversion is shown in Figures 3.1 and 3.2. The maximum
utility agent i can receive in G′ is the minimum guaranteed utility it can receive in
G. Furthermore, if agent i plays its minimax strategy from G′ in G it will achieve
this utility. If all agents play such strategies in G, then the resulting joint strategy
is called a generalized minimax equilibrium. Furthermore, any other joint strategy
that achieves at least as high a utility as the minimax utility for all agent is also a
generalized minimax equilibrium.

Agent 1

Agent 2
L R

T 6, 6 2, 7
B 7, 2 0, 0

Figure 3.1: The game of Chicken

Continuing the example in Figures 3.1 and 3.2, agent 1’s minimax strategy in
Figure 3.2 is B. Likewise, agent 2’s minimax strategy would be R. In Figure 3.1,
the joint strategy {B,R} would give both agents a utility of 0. Thus, for Figure
3.1, any joint strategy that gives both agents a utility of at least 0 is a generalized
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Agent 1

Agent 2
L R

T 6,−6 2,−2
B 7,−7 0, 0

Figure 3.2: A zero sum version of the game in Figure 3.1 for agent 1

minimax or a no-external regret equilibrium. In this case, the set of no-external
regret equilibria includes all possible strategies. This includes the game’s 3 Nash
equilibria, {(2

3
, 1

3
), (2

3
, 1

3
)}, {(1, 0), (0, 1)} and {(0, 1), (1, 0)}, as well as all of the

correlated equilibria. (See next section for a discussion of this game’s correlated
equilibria.) This is proof by example that no-external regret equilibria include all
of the correlated and Nash equilibria; a formal proof is given by Greenwald and
Jafari [31]. Hence, no-external regret is the weakest form of regret.

3.1.2 No-Internal Regret

No-internal regret is obtained by letting Φi = {φai,a′
i
|a′i 6= ai ∈ Ai} where

(φai,a′
i
(σi))a

′′

i
=











σi(a
′′

i ) if a
′′

i 6= ai, a
′
i,

0 if a
′′

i = ai,

σi(ai) + σi(a
′
i) if a

′′

i = a′i.

(3.4)

In words, internal regret is the regret agent i feels every time it plays action ai

instead of a′i for any a′i 6= ai ∈ Ai.

Hart and Mas-Colell Algorithm

Foster and Vohra originally defined no-internal-regret with respect to the on-line
decision problem (ODP) [21]. A classic ODP is to try to minimize the error in
predicting a sequence of 0’s and 1’s [55]. This is done using a prediction scheme
c. The sequence is picked by a purely adversarial agent who knows c. In this case,
the best case possibility is to have c be a randomized scheme that picks 0 and 1
with equal probability. In this case the average number of incorrect predictions,
or the loss, is .5. However, suppose that there are multiple prediction schemes
C = {c1, . . . , cl}, with no restriction placed on the possible methods each scheme
can use. Each turn we must decide which scheme to use. Then we can ask how well
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our selection of schemes did compared to how well we could have done. If every
time we picked scheme cj we wished we had picked scheme ci, we would experience
regret. Formally, given some sequence of length T , let LT (C) be the overall loss
the prediction schemes achieved. At turn t, there was a probability of pt

cj
of using

scheme cj, which if used would have received a loss of Lt
cj

. Now if cj had been used
every time instead of ci, (assuming the sequence remained constant) our loss would
have been

LT (C) − (

T
∑

t=1

pt
cj
Lt

cj
−

T
∑

t=1

pt
cj
Lt

ci
). (3.5)

If
∑T

t=1 p
t
cj
Lt

cj
−∑T

t=1 p
t
cj
Lt

ci
> 0, we would experience regret for having used cj

instead of ci. Thus the overall regret for scheme cj is defined as

RT
cj

(C) =
∑

ci∈C

max

[

0,
T
∑

t=1

pt
cj

(Lt
cj
− Lt

ci
)

]

, (3.6)

and the overall regret for the prediction schemes H is

RT (C) =
∑

cj∈C

RT
cj

(C), (3.7)

also known as internal regret.

Foster and Vohra also presented the first algorithm to achieve no-internal re-
gret [21]. Due to its greater simplicity, we instead present the no-internal regret
algorithm by Hart and Mas-Colell (HMC) [33].

HMC

At time t, agent i plays an action, ai, according to σt
i . Agent i then examines all the

times action ai has been played (including at time t). Agent i compares the average
utility from these times against the average utility that it would have received if
every time it had played ai, it instead had played some other action a′i ∈ Ai\{ai}.
If agent i would have been better off always playing a′i, it feels regret. That regret
Rt(ai, a

′
i) is the additional utility agent i could have gained. The regret is calculated

for all a′i ∈ Ai\{ai}. The value of σt+1
i (a′i) is then proportional to that regret.

The version of the HMC algorithm presented here has been adjusted slightly so
that agents can play strategies instead of actions.
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Given σt
−i, D

t
i(ai,j , ai,k), defined as

D
t
i(ai, a

′
i) =

∑

a−i∈A−i

σt
i(ai)σ

t
−i(a−i)[ui(a

′
i, a−i) − ui(ai, a−i)], (3.8)

is a measure of how much agent i prefers action a′i to ai. If we define at
i to be an

action picked according to σt
i , then we can define σt+1

i as follows:

Rt(ai, a
′
i) = max{0,Dt

i(ai, a
′
i)} (3.9)

σt+1
i (ai) =

{

1
µ
Rt

i(a
t
i, ai), if ai 6= at

i

1 −∑a′
i 6=at

i
σt+1

i (a′i) otherwise.
(3.10)

The parameter µ is a constant which can have any value greater than |Ai − 1|.
We let µ = |Ai|.

The main result for HMC is

Theorem 4 If every agent plays according to HMC, then the empirical distribu-
tion of play at

i converges almost surely as t → ∞ to the set of correlated equilibria
of G.

In fact, Greenwald and Jafari show that achieving no-internal regret always
guarantees convergence to the set of correlated equilibria [31].

We return to our example in Figure 3.1 to find its set of correlated equilibria.
We start by considering agent 1. Suppose that agent 2 has decided to use strategy
σ2. (We place no restrictions on σ2. In fact, the following proof must hold for all
σ2 which agent 2 has a positive probability of playing.) Agent 1 then decides to
respond with the correlated strategy σA1

. For σA1
to result in no-internal regret,

every time agent 1 plays action T , it must yield at least as high a utility as playing
action B would have. Specifically, the expected utility agent 1 gets from playing
action T is,

σA1
(T )(6σ2(L) + 2σ2(R)). (3.11)

However, if every time it played T , it instead played B, it would have received an
expected utility of

σA1
(T )(7σ2(L) + 0σ2(R)). (3.12)

Therefore, we have

σA1
(T )(6σ2(L) + 2σ2(R)) ≥ σA1

(T )(7σ2(L) + 0σ2(R)), (3.13)
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or
σA1

(T )((−1σ2(L) + 2σ2(R)) ≥ 0, (3.14)

or
−1σA(TL) + 2σA(TR) ≥ 0. (3.15)

Equation 3.15 gives us our first constraint.

To obtain our second constraint, we consider the expected utility agent 1 gets
from playing B,

σA1
(B)(7σ2(L) + 0σ2(R)). (3.16)

This must be greater than the utility that agent 1 would have expected if it played
T every time instead of B, which is

σA1
(B)(6σ2(L) + 2σ2(R)). (3.17)

This results in our second constraint of,

1σA(BL) − 2σA(BR) ≥ 0. (3.18)

By symmetry of the game, we also obtain the following two constraints for agent
2

−1σA(LT ) − 2σA(LB) > 0, (3.19)

and
1σA(RT ) − 2σA(RB) > 0. (3.20)

Equations 3.15, 3.18, 3.19 and 3.20 are the constraints which define the set of
correlated equilibria. It can be checked that all of the Nash equilibria meet these
constraints. However, there are also other correlated strategies which meet these
constraints; one example is in Figure 3.3. The importance of this example is that
both agents achieve a higher utility than from any of the Nash equilibria.

L R
T 1/3 1/3
B 1/3 0

Figure 3.3: An example of a correlated equilibrium.
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3.1.3 No-Regret

Possibility and Impossibility Results

Greenwald and Jafari show that out of the class of Φ-no regret learning, no-internal
regret gives the tightest convergence guarantee. In other words, no Φ-no regret
learning algorithm can achieve convergence to any subset of the set of correlated
equilibria. Thus, if we wish to achieve convergence to the set of Nash equilibria
using no-regret learning, we will have to somehow extend Φ.

A further impossibility result is given by Hart and Mas-Colell who showed that
no deterministic radically uncoupled algorithm could guarantee convergence to the
set of Nash equilibria [34]. Furthermore, Hart and Mas-Colell also proved the
following [35]:

Theorem 5 For every small enough ǫ > 0, there are no uncoupled, finite recall,
stationary learning algorithms that guarantee, in every game, the almost sure con-
vergence of the behaviour probabilities to ǫ-Nash equilibria of the stage game.2

However, we are able to obtain a positive result if we weaken R-recall to R-
memory.

Definition 15 A learning algorithm has R-memory if it requires at most |Ai|R
states.

Theorem 6 For every M and ǫ > 0 there exists an integer R and an uncoupled,
R-memory stationary learning algorithm that guarantees, in every game with payoffs
bounded by M, the almost sure convergence of the behaviour probabilities to the set
of ǫ-Nash equilibria [35].

These results give a sense of what can and cannot be achieved.

Regret Testing

The idea of using randomized sampling and ǫ-Nash equilibria to achieve convergence
in two agent games was used in the algorithm Annealed Regret Testing (ART) by
Foster and Young [22]. ART is based on the learning algorithm Regret Testing, also

2If an event happens “almost surely” then it happens with probability 1.
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by Foster and Young [22]. Both ART and Regret Testing are radically uncoupled
algorithms (so agents do not have to even know they are playing a game). Since
these are radically uncoupled algorithms, agents are required to play actions each
turn instead of strategies.

The goal is that for any ǫ > 0, any two agents in a repeated game can use Regret
Testing to eventually guarantee that their joint strategy is an ǫ-Nash equilibrium
with a probability of 1 − ǫ. To do this, Regret Testing uses a grid to discretize the
strategy space of each agent; the smaller ǫ is, the finer the grid is. Agents each start
off by picking a strategy somewhere on their grid. Agents will each play with their
starting strategy for a period of some length of time. After this period is up, each
agent estimates its regret by comparing how it did when playing with its strategy
versus when it played randomly. If the regret is too high, a new strategy is chosen.
Otherwise, the old strategy is kept. Agents again play using their new strategies
for a fixed period of time and the process repeats.

Regret Testing:

Agent i has a set of possible strategies, Σh
i ⊆ Σi where Σh

i contains every
strategy in each probability that can be expressed as a multiple of 1/h. The larger
h is, the more closely any strategy can be approximated by a strategy in Σh

i . Agent
i’s initial strategy σh

i is picked uniformly at random from Σh
i .

The repeated game is divided up into periods of length T .

1. Each turn, i plays according to Σh
i , except when, with a probability of Λ, i

plays an action at random.

2. At the end of each period, i calculates ũ, its average utility over the last
period when it did not play a random action. Agent i also calculates ũai

for
all ai ∈ Ai, the average utility over the last period from when it played an
action at random and chose action ai.

3. If ũai
− ũ > ρi for any ai and some ρi, agent i picks a new strategy at random

from Σh
i , with each strategy being picked with a probability of at least γi.

Otherwise, agent i keeps the same strategy.

Regret Testing basically reduces the repeated game to a Markov chain.

Definition 16 A process X = X1, X2, . . . over the set of states S = {S1, . . . , Sn}
is a Markov Chain if

P (Xn = si|Xn−1) (3.21)
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for all n ≥ 1. In other words, the transition from Xn−1 to Xn is determined solely
by Xn−1.

In Regret Testing, each possible strategy is a different state. Some of these states
are ǫ-Nash equilibria and some are not. Since the strategy space is discretized,
there are only a finite number of states and they can be exhaustively searched, a
random search will guarantee that this happens. By using Regret Testing, agents
can estimate if their current state is indeed an ǫ-Nash equilibrium. Since agents
are only playing a certain state for a finite period of time, the empirical frequency
of play during that period is only an approximation of the actual strategies agents
were using. Thus, there is some error in the agent’s estimations. However, with
a fine enough grid and enough testing, agents can be reasonably sure of knowing
whether or not they have reached an ǫ-Nash equilibrium. Although agents can leave
an ǫ-Nash equilibrium by mistake, they will spend “enough” time there.

Formally, Foster and Young prove the following theorem.

Theorem 7 Let G be a two-agent game and let ǫ > 0. If both agents use regret
with the parameters listed below, then at all sufficiently large times t their joint
strategy at t will be an ǫ-Nash equilibrium with probability at least 1 − ǫ.

ρi ≤
{

d2(G)/48 if d(G) > 0

ǫ2/48 otherwise,
(3.22)

Λi ≤ τ/16, (3.23)

hi ≥ 8
√

|Ai|/τ, (3.24)

γi ≤ 1/|Pi(hi)|, (3.25)

T ≥ (103m2/Λτ 2) ln(105m/ǫ2Λ7), (3.26)

where |Pi(hi)| is the number of strategies that can created for agent i given hi,
τ = min{τ1, τ2}, Λ = min{Λ1,Λ2}, γ = min{γ1, γ2} and m = max{m1, m2}.

The above conditions can be slightly overwhelming and the justifications for
them are left to Foster and Young’s paper; however, there are a few simple things
that these conditions imply [22]. First, as ǫ decreases, the probability of finding an
ǫ-Nash equilibrium increases. However, this is balanced by s strictly monotonically
increasing as ǫ decreases. The conditions also show why letting ǫ = 0 will not work.
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Annealed Regret Testing

Instead of setting ǫ to 0, it might be possible to slowly decrease ǫ and the associated
values so that we get convergence to the set of Nash equilibria. This is what Foster
and Young’s Annealed Regret Testing (ART) does [22].

It turns out that any positive sequence ǫ1 > ǫ2 > ǫ3 > . . . decreasing towards
zero will work. However, since Foster and Young are after a radically uncoupled
algorithm, it is impossible to know for sure when to move to the next ǫ. Instead,
ART uses a probabilistic rule for moving to the next ǫ. At the beginning of each
period, each agent has a probability of moving from ǫk to ǫk+1 of

pk ≡ ǫ2k+1

2k2T (ǫk+1)
, (3.27)

where T (ǫk+1) is defined as follows.

Definition 17 Let PG(ǫ) be the finite-state Markov process determined by G and
the parameters in Equations 3.22 and 3.26. Let EG(ǫ) be the finite subset of states
that induce an ǫ-equilibrium of G.

Definition 18 Let P be a finite Markov process. Then P is acyclic if there is no
chance of there ever being a cycle in P . This means that P can only run for a finite
period of time.

Definition 19 Let P be an acyclic, finite Markov process and A a subset of P ’s
states. For each ǫ > 0, let T (P,A, ǫ) be the first time (if any) such that, for all
t ≥ T (P,A, ǫ) and all possible initial states, the probability of the process being in
A at time t is at least 1 − ǫ.

Foster and Young prove the following about T (P,A, ǫ):

Lemma 1 For any ǫ > 0, there exists T (ǫ) such that T (ǫ) ≥ T (PG(ǫ), EG(ǫ), ǫ)
for all G such that d(G) 6∈ (0, ǫ).

Theorem 8 Fix an action space A = A1 × A2. ART has the property that, for
every game G on A, the joint strategy converges in probability to the set of Nash
equilibria of G.
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Experimental Regret Testing

The drawback of Foster and Young’s algorithm is that it only works for two agents.
Germano and Lugosi created two algorithms, ERT and ALERT, to deal with this
drawback [30].

Like Regret Testing, ERT does not guarantee convergence. Instead, after a
certain period of time ERT can guarantee an ǫ-Nash equilibrium with a probability
1 − ǫ. (Of course, once the agents find an ǫ-Nash equilibrium, there is a chance of
them leaving it.) ERT corresponds to Regret Testing when Λ = 0 and where agents
still occasionally experiment with new strategies even when they have low regret.
Although ERT has agents playing actions, if we let T = ∞, then we can convert
ERT so that agents play strategies.

Experimental Regret Testing (ERT):

Parameters - (T ∈ N, ρ ∈ R++, ζ ∈ (0, 1))

1. t = 0, each agent chooses σ0
i ∈ Σi uniformly at random.

2. Loop:

(a) Each agent plays according to σt
i for a period of T rounds

(b) Each agent calculates its maximum average regret over the period,

rt
i = max

ai∈Ai

1

T
t+T −1
∑

τ=t

(ui(ai, a
τ
−i) − ui(a

τ )). (3.28)

(c) If rt
i < ρ then with a probability of 1 − ζ , σt+T

i = σt
i . Otherwise, σt+T

i

is selected uniformly at random from Σi. (I.e. if rt
i < ρ then with a

probability of ζ agent i will update its strategy, and if rt
i ≥ ρ, then agent

i will always update its strategy.)

(d) Set t = t+ T and repeat the loop.

The basic idea of ERT is that if at some point there are J < N agents who have
regret less than ρ, there is a positive probability of there being J − 1 agents having
regret less than ρ at the next turn. Since this process repeats indefinitely, at some
point in the future all agents will have regret greater than ρ. At this point they will
choose a new joint strategy at random from Σ and there is a positive probability of
the new joint strategy being an ǫ-Nash equilibrium [30]. Once the agents find an
ǫ-Nash equilibrium, the chances of leaving are low.
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ERT works for all generic games. The exact definition of generic games is
unnecessary for this thesis and complex enough that we refer the interested reader
to the relevant related work [30, 52]. Instead, we present only the relevant aspect
of generic games for this thesis.

Definition 20 Let G = 〈N,A, u〉 be a stage game. Then G′ = 〈N,A′, u′〉 is a pure
subgame of G if A′ ⊂ A, and u′ is induced by u, that is for a ∈ A′, u′(a) = u(a).

As well, GσJ
= 〈N ′, A′′, u′′〉 is an induced subgame of G if

1. N = N ′ ∪ J and

2. u′′ = u(σJ).

Then G is generic if it, and every possible pure subgame and induced subgame of
it, have only a finite number of Nash equilibria.

Germano and Lugosi show that the vast majority of games are generic [30]. As
well non-generic games tend to be degenerate.3

The main result for ERT is:

Theorem 9 Let G be a generic N-agent normal form game. There exists a pos-
itive number ǫ0 such that for all ǫ < ǫ0 the following holds: there exists positive
constants c1, . . . , c4 such that if ERT is used by all agents with parameters

ρ ∈ (ǫ, ǫ+ ǫc1), (3.29)

ζ ≤ c2ǫ
c3 , (3.30)

T ≥ − 1

2(ρ− ǫ)2
log(c4ǫ

c
3), (3.31)

(3.32)

then for all M ≥ log(ǫ/2)/ log(1 − ζN),

PM(N c
ǫ ) = P (σMT 6∈ Nǫ) ≤ ǫ. (3.33)

In words this means that at the end of M ·T iterations, the probability of not being
at an ǫ-Nash equilibrium is at most ǫ.

3An example of a degenerate game would be a 2x2 game with both agents receiving a utility
of 1 no matter which action they choose.
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Annealed Localized Experimental Regret Testing

Germano and Lugosi were able to take their initial algorithm and convert it into
one able to achieve convergence. Their new algorithm is called Annealed Localized
Experimental Regret Testing (ALERT).

Like ART, the basic idea of ALERT is to slowly anneal the value of ǫ and repeat
ERT for each value of ǫ. Any sequence of ǫl for l = 1, 2, . . . such that

∑∞
l=1 ǫl <∞

will work; however, Germano and Lugosi choose to use el = 2−l. The set of all
periods of play for a particular ǫl is called a regime. The set of all regimes is
indexed by l. The number of periods in the lth regime is given by

Ml ≡ 2

⌈

log 2
ǫl

log 1
1−ζl

⌉

. (3.34)

(T, ρ, ζ) must be generalized to depend on l, and so the following values are
used

Tl =

⌈

− 1

2ǫ2l
l

log(ǫll)

⌉

, (3.35)

ρl = ǫl + ǫll, (3.36)

ζl = ǫll. (3.37)

σ
[l]
i is σi at the beginning of the lth regime. Di

∞(σi, ǫ) is the L∞-ball of radius ǫ
centered around σi.

4

ALERT:

1. Each agent chooses σ0
i ∈ Σi uniformly at random.

2. Loop by l = 1, 2, . . . with parameters (Tl, ρl, ζ) (each iteration of l is called a
regime)

(a) Loop for Ml periods

i. Each agent plays an action according to σt
i for Tl turns.

ii. Each agent calculates their regret according to Equation 3.28.

iii. Agents update their strategies according to

• if rt
i ≤ ǫ

2/3
l then select σt+Tl

i ∈ Σi uniformly at random

4A L∞-ball can be thought of as a hyper-cube.
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• else if ρl ≤ rt
i ≤ ǫ

2/3
l

– if at some time t′ < t during the current regime, σt′+Tl

i had
been selected uniformly at random from Σl, then select σt+Tl

i

uniformly at random from Σl

– otherwise, select σt+Tl

i ∈ Di
∞(σ

[l]
i ,

√
ǫl)

• otherwise

– with probability 1 − γl, σ
t+Tl

i = σt
i

– otherwise select σt+Tl

i ∈ Di
∞(σ

[l]
i ,

√
ǫl)

The main result for ALERT is the following theorm.

Theorem 10 Let G be a generic N-agent game and {ǫl}∞l=1 be defined el = 2−l. If
each agent plays according to ALERT and using the parameters in Equations 3.34
through 3.37, then

lim
r→∞

σt ∈ N (3.38)

almost surely.5

In words this means that the limit of the sequence of the joint strategies is a Nash
equilibrium.

Note that as presented, ALERT is an uncoupled algorithm. However, Germano
and Lugosi also present a variant that is radically uncoupled.

The one drawback of ALERT is its rate of convergence. Since ALERT is un-
coupled, the rate of convergence is independent of the game. This can be seen in
the game parameters, where Tl and Ml are both dependent on only ǫl and ζl. The
downside is that for just about any game of interest ALERT’s rate of convergence
is impractical.

3.2 Fictitious Play Algorithms

Fictitious play (FP) is probably the oldest form of learning for repeated games [9].
The idea is that an agent assumes it is playing against opponents with unknown
but static or unchanging strategies. Each round gives the agent a better idea of

5Germano and Lugosi claim that ALERT achieves convergence to a single Nash equilibrium.
However, it is not clear if they actually mean convergence to the set of Nash equilibria.
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what its opponents’ strategies actually are. By playing a best response to the
empirical distribution of its opponents’ play, the agent will eventually arrive at a
best response for that opponent.

We first present the original definition of fictitious play for two agents, which
has each agent playing actions (instead of strategies).

Definition 21 Consider a game with two agents. Each agent assumes the other
agent is playing a fixed but unknown strategy and attempts to learn it during the
repeated game. To do this, each agent uses a weight function kt

i given by

kt
i(a−i) = kt−1

i (a−i) +

{

1 if at−1
−i = a−i

0 otherwise
(3.39)

with k0
i (a−i) ∈ R+. Note the initial weights do not have to be equal.

Agent i then calculates a probability Θt
i(a−i) of its opponent playing the joint

action a−i at time t (assuming a static strategy) where

Ξt
i(a−i) =

kt
i(a−i)

∑

a′
−i∈A−i

kt
i(a

′
−i)

. (3.40)

Fictitious play is any rule system that chooses σt
i such that σt

i ∈ BRi(Ξ
t
i).

Theorem 11 Under fictitious play, if the empirical distributions of play con-
verges, then those distributions correspond to a Nash equilibrium [27].

Although a complete characterization of the types of games in which fictitious
play can achieve convergence (in the empirical distribution of play sense) is not
known, the set includes at least all 2x2 generic games, zero-sum games and those
that can be solved by iterated strict dominance [45, 38, 40]. On the other hand,
fictitious play is known to not converge in Shapley’s game and 3-player Matching
Pennies, among others [48, 36]. In both of these games, fictitious play will most
likely result in exponential cycling. However, fictitious play can achieve convergence
to the set of correlated equilibria in these games.

We are now ready to expand the definition of fictitious play to allow agents to
play strategies (again for two players).

Definition 22 Given the joint strategy σ−i, fictitious play is any rule system that
selects a strategy, σi, such that σi ∈ BRi(σ−i).

40



3.2.1 Logistic Fictitious Play

Stochastic fictitious play (SFP) is an attempt to allow fictitious play to achieve
convergence in the behavioural sense and not just the empirical distribution of
play [25]. To understand SFP, consider fictitious play with agents playing actions.
At time t, agent i has a historical record of play to help it decide which action to
play, again assuming σ−i is static. However, at any finite point, agent i’s historical
record may not perfectly describe agent i’s opponents’ actual joint strategy. Hence,
there is always a chance that FP will pick the incorrect action to play. Instead,
a SFP algorithm will try to estimate the probability that each action is the best
action to play. This distribution, BRi(Ξ

t
−i), gives the probability by which each

action is played. Since agent i can have a mixed strategy, convergence in behaviour
is now possible.

Logistic fictitious play (LFP) is one specific example of SFP where BRi(ai) is
defined as

BRi(Ξ
t
−i)[ai] ≡

e(1/λ)ui(ai,Ξt
−i)

∑

a′
i∈Ai

e(1/λ)ui(a′
i,Ξ

t
−i)
, (3.41)

where λ is a smoothness parameter [25]. (As λ approaches 0, LFP behaves more
and more like basic FP.)

Theorem 12 For every game G and ǫ > 0, there exists a λ such that LFP is
ǫ-universally consistent [28].

Thus, the best that LFP can be guaranteed is ǫ-no-external regret.

If agents play strategies, then given σ−i, LFP is defined as

σi(ai) =
e(1/λ)ui(ai,σ−i)

∑

a′
i∈Ai

e(1/λ)ui(a′
i,σ−i)

, (3.42)

for all ai ∈ Ai.

To generalize all of these types of fictitious play, we assume that agents play
uncorrelated strategies.

3.3 Infinitesimal Gradient Ascent Algorithms

Suppose that agent i is interested in maximizing its utility assuming that its oppo-
nents’ strategies are fixed. Agent i could begin by calculating its utility as

uσ−i
(σi) =

∑

(ai,a−i)∈A

ui(ai, a−i)σi(ai)σ−i(a−i). (3.43)
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Equation 3.43 could be written as a function of m− 1 variables as

uσ−i
(σi(a1), . . . , σi(am−1))

=
m−1
∑

j=1

σi(aj)
∑

a−i∈A−i

σ−i(a−i)ui(aj , a−i)

+

(

1 −
m−1
∑

j=1

σi(aj)

)

∑

a−i∈A−i

σ−i(a−i)ui(am, a−i),

=

m−1
∑

j=1

σi(aj)





∑

a−i∈A−i

(σ−i(a−i)ui(aj , a−i) − σ−i(a−i)ui(am, a−i))



+ 1. (3.44)

Taking the partial derivative of Equation 3.44 with respect to σi(aj) for j < m
gives

∂uσ−i

∂σi(aj)
=

∑

a−i∈A−i

(σ−i(a−i)ui(aj, a−i) − σ−i(a−i)ui(am, a−i)) (3.45)

Therefore, ui is differentiable with respect to all σi(aj). The vector

<
∂uσ−i

∂σi(a1)
, . . . ,

∂uσ−i

∂σi(am−1)
> (3.46)

is called the gradient of ui [51]. One of the important properties of the gradient
is that it gives the direction for the maximum change in ui. Thus by moving its
strategy along the gradient, agent i would be able to maximize ui.

The problem with having multiple agents all simultaneously using such an ap-
proach is that one agent’s change in strategy would affect the gradients for all other
agents. Hence, an approach would have to allow agents to still reach an equilibrium.
Infinitesimal Gradient Ascent (IGA) is such an approach that works for two agents
each having an action space of size 2 [50]. Both agents update their strategies
according to the rule,

σt+1
i (ai,0) = σt

i(ai,0) + η
∂Ui(σ

t
i , σ

t
−i)

∂σi(ai,0)
, (3.47)

where ν is some step size.

Theorem 13 If both agents follow IGA, where ν → 0, then their strategies will
converge to a Nash equilibrium or the average payoffs over time will converge in the
limit to the expected payoffs of a Nash equilibrium.
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3.3.1 WoLF

A well known IGA algorithm is the Win or Learn Fast (WoLF) algorithm by Bowl-
ing and Veloso [8]. WoLF uses a variable learning rate to achieve convergence in
cases where IGA can not. The specific version of WoLF we use is WoLF-Policy
Hill-Climbing (WoLF-PHC). It has been slightly modified for playing stage games
and so that agents can play strategies. Note that WoLF assumes the opponents’
strategies from pervious iterations are observable.

1. Let t = 0, δw, δl ∈ (0, 1] and σ0
i = 1

|Ai|
.

2. Repeat

(a) Play σt
i and observe ut

i. Let t = t+ 1.

(b) Update the estimate of the average strategy

∀ai ∈ Ai σ̄
t
i(ai) = σ̄t−1

i (ai) +
1

t
(σt−1

i (ai) − σ̄t−1
i (ai)) (3.48)

(c) Update the strategy

σt
i(ai) = σt−1

i (ai) + ∆ai
(3.49)

where

∆ai
=

{

−δai
if ai 6= arg maxa′

i∈Ai
ui(ai, σ

t
−i)

∑

a′
i 6=ai

δa′
i

otherwise,
(3.50)

δai
= min

(

σt
i(ai),

δ

|Ai| − 1

)

(3.51)

δ =

{

δw if
∑

a′
i∈Ai

σt
i(a

′
i)ui(a

′
i, σ

t
−i) >

∑

a′
i∈Ai

σ̄t
i(a

′
i)ui(a

′
i, σ

t
−i)

δl otherwise.

(3.52)

Theorem 14 In a two-person, two-action, repeated general-sum game, if both
agents follow the WoLF-PHC (with δl > δw), then their strategies will converge to
a Nash equilibrium [8].

WoLF has also been shown to converge in other games such as 3-Player Matching
Pennies. However, WoLF does not converge for Shapley’s Game, among others.
More importantly, convergence in some games may depend on the specific δw and
δl values used.
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3.4 Experts Algorithms

A common problem for learning is that there is no one algorithm that is strictly
better than all the others. A learning algorithm that does very well for one type of
game can often fail to achieve convergence in another type of game. For example,
LFP and WoLF achieve convergence in different sorts of games. There could be
considerable benefit from combining these two algorithms into a new learning algo-
rithm which can achieve convergence for any game which either LFP or WoLF by
itself could achieve convergence for. The difficulty is finding some way of combining
algorithms so that each algorithm is used optimally. For example, a new algorithm
based on LFP and WoLF that used LFP when WoLF should have been used is not
a useful algorithm.

This is a common problem in machine learning. In machine learning terms, LFP
and WoLF would be considered experts. An algorithm that makes use of experts
and optimizes when to use each expert is called an experts algorithm [1]. Experts
algorithms are also known as ensemble algorithms [16].

Let E = {e0, . . . , er} be a set of r + 1 experts. At time t an agent will want to
know which expert to consult. The agent will first consult the experts algorithm
which will provide a policy pt, which is a probability vector for consulting each
agent. It is the job of the experts algorithm to try to optimize pt according to some
metric.

3.4.1 Hedge

The first experts algorithm, Hedge, was created by Auer et al [1]. Here we present
the version of Hedge given by Freund and Schapire [23]. The basic idea of Hedge
is at time t to consult expert ei with a probability proportional to some “weight”,
wt

ei
. Initially, these weights are chosen at random.

Hedge starts by assigning a “weight”, w1
ei
, to each expert ei and then consults

an expert with a probability equal to that expert’s weight proportional to all of
the weights. At time t, every expert is asked for a suggested strategy even though
only one of those strategies is used in the end. Each expert must then calculate
the regret its suggested strategy would have obtained had that strategy been used.
This regret is denoted by rt

ei
. At time t + 1, each expert’s weight is decayed by a

factor, ψ < 1, raised to rt
ei
. Thus, as time proceeds, experts who suggest strategies

that would have incurred a high regret are consulted less and less often.

Hedge:
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Provided ψ ∈ (0, 1) and an initial weight vector w1
ei

∈ [0, 1]|E| such that
∑

ei∈Ei
w1

ei
= 1.

At time t > 1:

1. Calculate pt
i as:

pt
i(ei) =

wt
i(ei)

∑

e′i∈Ei
wt

i(e
′
i)
.

2. Use suggested strategy from expert selected according to pt
i. However, all

experts must still calculate a suggested strategy. Each expert then calculated
rt
ei

which is the regret that would have been obtained if expert ei’s suggested
strategy had been used.

3. Update the weights according to

wt+1
i (ei) = wt

i(ei)ψ
rt
ei .

3.4.2 Strategic Experts Algorithm

The second experts algorithm we examine is by Pucci de Farias and Megiddo [15].
Their algorithm, Strategic Experts Algorithm (SEA), differs in two respects. First,
once an expert is picked, it is used for a number of consecutive rounds, instead of
just one. Secondly, an expert is judged only by how it actually does, as opposed to
how it could have done when it was not being consulted.

The main difference of SEA compared to Hedge is that a new expert to consult
is not chosen every turn. Instead, when expert ei is chosen, it is then consulted
for a period of Nei

turns. Initially Nei
= 1 but every time expert ei is consulted

Nei
is increased by 1. This means that the more often expert ei is chosen, the

longer it will be consulted for. The other difference between Hedge and SEA is
that SEA measures the performance of experts is based on measuring utility, not
regret. Specifically, Mei

is used to denote the “average” utility that expert ei’s
strategies have obtained. When choosing a new expert to consult at time t, with a
probability of 1/t, SEA chooses the expert with the highest Mei

value. Otherwise
an expert is chosen at random. Thus, as time goes on, the expert with the highest
average utility is consulted more and more often.

SEA:

1. Set Mei
= 0 and Nei

= 1. Set t = 1.
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2. With probability 1/t perform an exploration phase, namely, choose an expert
ei uniformly at random; otherwise, perform an exploitation phase, namely,
choose an expert ei uniformly at random from those experts with maximum
Mei

.

3. Set Nei
= Nei

+1. Follow ei’s instructions for the next Nei
−1 stages. Denote

by R̃ the average payoff accumulated during those Nei
stages, and set

Mei
= Mei

+
2

Nei
+ 1

(R̃−Mei
). (3.53)

4. Set t = t+ 1 and repeat.

To examine SEA, we consider ũt
ei
, the average utility obtained by the expert ei

up until time t and ũt
SEA, the average utility obtained by SEA overall up until time

t. This gives us the following result.

Theorem 15
P ( lim

t→∞
inf ũt

SEA ≥ max
ei

lim
t→∞

inf ũt
ei
) = 1. (3.54)

In words this means that, in the limit, the average utility achieved by SEA is
at least as much as the maximum average utility achieved by any of the individual
experts. This is useful if, for example, one of the experts is playing a minimax
strategy. In this case, SEA is guaranteed to achieve, on average, at least the
maximin value of the game.

Another use of Theorem 15 is that, under certain conditions, SEA can obtain a
higher utility than would have been achieved by converging to a Nash equilibrium.
For example in the Prisoner’s Dilemma, an agent using SEA can wind up always
cooperating instead of converging to the Nash equilibrium. To achieve this, SEA
requires that an agent’s opponents all be flexible.

Definition 23 An agent is flexible if for all t there exists some time t′ < t such
that the agent’s strategy at time t does not depend on anything that has happened
before time t′.

While the idea of flexibility is a more theoretical one, a realistic situation where
agents could be flexible is one where they would have extremely limited amounts of
memory. For example, agents working in embedded systems might have very little
memory to work with.

If an agent i, using SEA, happens to be playing against flexible opponents, then
that agent achieves almost surely an average utility that is asymptotically as large
as what agent i’s best expert could achieve against the same opponents.
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Chapter 4

FRAME

In this chapter we introduce our algorithm, FRAME. In Section 4.1, we present
FRAME and how it builds upon ALERT. In Section 4.2, we discuss and prove
FRAME’s properties.

4.1 Introduction

Although ERT and ALERT, as introduced in Sections 3.1.3 and 3.1.3 respectively,
are theoretically important, their practical use is limited by two issues:

1. Since ERT and ALERT were designed as uncoupled algorithms, agents using
ERT cannot know with certainty when they have reached an ǫ-Nash equilib-
rium. Instead agents are only able to bound the probability of not being at an
ǫ-Nash equilibrium. Obtaining the necessary bound can require an impracti-
cal amount of time. This is exasperated by ALERT calling ERT repeatedly
and needing a non-trivial decrease in the size of ǫ with each call [30].

2. ERT and ALERT pick new strategies uniformly at random. Using this brute
force method to find an ǫ-Nash equilibrium is a major reason why ALERT
takes so long to converge.

Our algorithm, a Framework for Regret Annealing Methods using Experts or
FRAME, is inspired by ALERT but explicitly addresses these two issues while still
providing the theoretical guarantees of ALERT.

To address the first issue, we start by making a number of assumptions.
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We first assume that at any given point in time, agents’ strategies are fully
observable for all past time periods. This is a common approach taken by many
algorithms [3, 8]. This assumption has no effect on the correctness of our algorithm,
instead it removes the need for experimentally determining regret which can be
very costly timewise. ALERT could get around this assumption by having agents
fix their strategy for a certain period of time. At the end of this period, through
simple observation of the actions played by each agent, agents will know all of their
opponents’ strategies. Thus no privacy is lost by this assumption.

We next assume that the maximum regret of all agents is publicly known. Again,
this has no effect on the correctness of our algorithm but removes one of the major
performance constraints in ALERT. Although this is not as common an assump-
tion, there are other algorithms that make the stronger assumption that agents can
determine a potential equilibrium in advance [4, 13]. Determining a potential equi-
librium in advance requires agents to share their utility functions, which are more
private than strategies since utility functions cannot necessarily be determined ex-
perimentally. As well, determining an equilibrium in advance is a computationally
complex problem [10, 14].

Finally we assume that while agents are self-interested, they are willing to co-
operate to a certain degree. Specifically, we assume that agents will agree to move
to a new joint strategy only if it decreases the maximum regret over all the agents.
Since we are only interested in self-play, an equilibrium is often the best outcome
for all agents. Hence, although this is our strongest assumption, some cooperation
among the agents is in their best interests as it allows for faster convergence rates.

Since the maximum regret is publicly known, agents can now know for certain
when a better ǫ-Nash equilibrium has been found. This can potentially be much
faster than the ERT and ALERT approach (which requires obtaining a probabilistic
bound), and also allows us to use a greedy approach when picking a new ǫ-Nash
equilibrium. This approach is different enough that our proof does not follow
directly from Germano and Lugosi’s work [30].

The second problem with ERT and ALERT is that they choose new strategies
naively, i.e. uniformly at random. In contrast, FRAME allows an agent, with some
probability, to consult an expert, which returns a possible new strategy. Any expert
will work, even one who makes only useless suggestions. If the expert is able to
find new strategies that lead to better ǫ-Nash equilibria, then the agent can take
advantage of this to greatly speed up convergence. However, part of the goal of
FRAME is that even with useless experts, convergence is still guaranteed.

The FRAME algorithm for agent i is shown in Algorithm 1. We use the following
notation in our algorithm: U(X) denotes a value picked uniformly at random from
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the set X, ei(·) is the expert and B(x, d) is a bounded search region centered at x
with minimum radius d > 0.

The FRAME algorithm, with respect to agent i, works as follows. At time t = 0,
agent i chooses a strategy σ0

i uniformly at random from Σi. At any subsequent
time t > 0, FRAME can consult the provided expert, (ei(·)), to obtain a new
strategy. Each agent independently consults ei(·) with a provided probability of
pi. If consulted, the expert returns a possible strategy βt+1

i . To provide protection
against poor experts, FRAME checks to see if βt+1

i is inside the region B(σt
i , d(r

t)).1

If βt+1
i is not, or if the expert was not consulted, βt+1

i is chosen uniformly at random
from the bounded search region, B(σt

i , d(r
t)). (This may be thought of as consulting

the Naive Expert, which is an expert that picks strategies uniformly at random.)
Agent i then calculates r(βt+1)i. If r(βt+1) < r(σt), then σt+1 = βt+1, otherwise,
σt+1 = σt. To avoid the off chance of getting stuck at a locally optimal joint
strategy, each agent chooses an alternative strategy τ t+1

i uniformly at random from
Σi. If the regret at τ t+1 is less than half the current regret, then with a given
probability η, the game resets to τ t+1. (Any constant fraction less than one will
work; one half was chosen for simplicity.) Resetting the joint strategy to τ just
means that τ becomes the new joint strategy.2

This process repeats until the regret is zero.

4.2 Theoretical Properties

In this section, we discuss the theoretical properties of FRAME. In particular, we
prove that FRAME is guaranteed to converge to the set of Nash equilibria. To
show convergence, we show that the limit of the sequence of regret of the agents,
all using FRAME, is 0, since 0 regret is the same thing as a Nash equilibrium.
Formally, if agents start off with a joint strategy σ0 then for the infinite sequence
of regret, (rt(σ0))∞t=0, we must show that

lim
t→∞

rt(σ0) = 0. (4.1)

We start by examining the case where η = 0, i.e. the game never resets, for
which case we will derive the more relaxed condition,

lim
t→∞

rt(σ0) = r∞ ≤ r(σ0). (4.2)

1Any function d() may be used so long as d(x) > 0, for x > 0.
2As will be discussed later, the problem with resetting strategies is that it causes random

changes in agents’ utilities. Therefore, if possible, resetting should be avoided.
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Algorithm 1 FRAMEi(pi, η, ei(·), d())
Require: 0 ≤ pi < 1 , 0 < η ≤ 1, d(ǫ) > 0, ∀ǫ > 0
σ0

i = U(Σi)
//Let β be a temporary strategy.
β0

i = σ0
i

for t = 0, 1, . . . do
xi = U([0, 1])
// With probability p, consult the expert
if xi < pi then
βt+1

i is the strategy returned by ei(·)
// If βt+1

i is outside of bounded region then must
// choose a new strategy at random
if βt+1

i 6∈ B(σt
i , d(r(σ

t))) then
x = pi

end if
end if
//Otherwise, choose a random strategy
if xi ≥ pi then
βt+1

i = U(B(σt
i , d(r(σ

t))))
end if
τi = U(Σi)
// If new regret is less than current regret, then
// update current regret and use new joint strategy
if r(βt+1) < r(σt) then
σt+1 = βt+1

else
σt+1 = σt

end if
x = U([0, 1])
//If the regret of τ is less than half the current regret,
//with probability η, the joint strategy will reset to τ
if x < η and r(τ) < r(σt)/2 then
σt+1 = τ

end if
end for
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This condition lays the foundation for one of the main propositions regarding
the correctness of FRAME.

Proposition 1 Let σ∞ be the limit of the joint strategies of agents all using
FRAME when η = 0, i.e.

lim
t→∞

σt = σ∞. (4.3)

Then one of the following two conditions must hold:

1. r∞ = 0, i.e. σ∞ is a Nash equilibrium

2. r∞ > 0 and the agent with the highest regret at σ∞ is not unique. In this
situation σ∞ is called a critical strategy.3

Proof: This is proved in Section 4.2.1. �

To avoid the second condition in Proposition 1, it is necessary to be able to
jump to a completely new joint strategy. This can be done by having η > 0. In
this case, we can achieve the following, stronger result:

Proposition 2 If η > 0, then

lim
t→∞

rt(σ0) = 0. (4.4)

Proof: This is proved in Section 4.2.2. �

As will be shown, the problem with having η > 0 is that the joint strategy
may repeatedly jump to a completely new joint strategy. This can cause chaotic
gameplay and is why we can only guarantee convergence to the set of Nash equi-
libria, as opposed to convergence to a specific Nash equilibrium. This can result
in continually random changes in the utilities for the agents. Obviously there is
no way to tell in advance if σ∞ is a critical strategy, but our experimental results
chapter shows that this case is rare. Hence, we were able to let η = 0 for all our
experiments and rely solely on Proposition 1 for our correctness.4

Example

To understand the two conditions in Proposition 1, consider the game in Figure
4.1. If we use FRAME with η = 0, this game has two possible outcomes. The first

3Formally, we define a joint strategy σ to be a critical strategy if r(σ) > 0 and σ 6∈ N . Although
this is not a standard term it is related to the idea of a critical point in multivariate calculus.

4Although having η > 0 does not make a difference in runtime asymptotically, in practice,
having to randomly select a joint strategy and compare it every turn is costly.
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Agent 1

Agent 2
a2,1 a2,2

a1,1 −ǫ, −ǫ 0, 0
a1,2 0, 0 1, 1

Figure 4.1: A game with a locally optimal and critical joint strategy.

is that σ∞ = {(0, 1), (0, 1)}. In words, this means that the game has converged
to the joint strategy (a1,2, a2,2) which is the game’s only Nash equilibrium. This
outcome falls under the first condition of Proposition 1.

The second possible outcome is that σ∞ = {(1, 0), (1, 0)} or the joint strategy
(a1,1, a2,1). Why is this outcome possible? Consider the initial starting strategy
σ0 = {(1

2
, 1

2
), (1

2
, 1

2
)}. For σ0, agent 1’s regret as a function of agent 2’s strategy is5

r1((σ1, σ2)) = (1 − σ2(a2,1)) − (
1 − σ2(a2,1)

2
− ǫσ2(a2,1)

2
),

=
1

2
− σ2(a2,1)

2
+
ǫσ2(a2,1)

2
. (4.5)

By symmetry of the game, agent 2 has an equivalent regret function. The impor-
tance of this function is that as σ2(a2,1) decreases, agent 1’s regret will increase.
Hence, as σ moves from {(1

2
, 1

2
), (1

2
, 1

2
)} to {(1, 0), (1, 0)}, the agent’s regret will

actually increase (at least for a while). Since FRAME only allows new joint strate-
gies to be adopted if they decrease the overall regret, then if σ0 = {(1

2
, 1

2
), (1

2
, 1

2
)},

FRAME will actually not be able to achieve convergence to the Nash equilibrium.
Instead FRAME will converge to the joint strategy {(1, 0), (1, 0)}, since that will
decrease the overall regret.

Once in the region of {(1, 0), (1, 0)}, FRAME will not be able to escape. Hence,
{(1, 0), (1, 0)} is a locally optimal joint strategy. It also happens to be a critical
strategy since r1({(1, 0), (1, 0)}) = ǫ = r2({(1, 0), (1, 0)}). Therefore this outcome
is covered by the second condition in Proposition 1. This is obviously not a proof
that FRAME will always result in one of the two conditions in Proposition 1.
However, it does give an idea of how those conditions can arise. To avoid the
second condition, it would be necessary to somehow be able to jump from a joint
strategy in the region around σ = {(1, 0), (1, 0)} to a joint strategy in the region
around σ = {(0, 1), (0, 1)}. This is why Proposition 2 is required.

5Note that agent 1’s regret is equal to the maximum utility it could have obtained: in this case

1 − σ2(a2,1)) minus the utility it did obtain
1−σ2(a2,1)

2 − ǫσ2(a2,1)
2 .
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4.2.1 Proof of Proposition 1

In order to prove Proposition 1, we start by proving the following two lemmas.

Lemma 2 Consider the joint strategy σ. Let σ∗
i ∈ BRi(σi). Assuming that σi 6∈

BRi(σi), consider the line segment l from σi to σ∗
i such that

l(∆) = σi + ∆ρ, 0 ≤ ∆ ≤ 1, (4.6)

where ρ = σ∗
i − σi.

Then for 0 < x ≤ 1, ui(l(x), σ−i) > ui(σi, σ−i) and ri(l(x), σ−i) < ri(σi, σ−i).

Proof: We first write out ui as

ui(σi, σ−i) =
∑

ai

∑

a−i

P (ai|σi)P (a−i|σ−i)ui(ai, a−i). (4.7)

The total differential, dui, of equation 4.7 is

dui =
∂ui

∂σi(ai,1)
dσi(ai,1) + . . .+

∂ui

∂σi(ai,|Ai|)
dσi(ai,|Ai|), (4.8)

= ▽ui· < dσi(ai,1), . . . , dσi(ai,|Ai|) > . (4.9)

If we are only interested in the total differential along l then we can simplify equation
4.9 to

dui = ▽ui · ρd∆. (4.10)

Since Equation 4.7 is just a summation of linear terms, each of the partial derivatives
is constant, and therefore ▽ui is also a constant. Therefore, the rate of change is
constant along l and must be increasing. Since the utility is increasing the regret
must be decreasing. �

Lemma 3 For a given ǫ-Nash equilibrium σ, let fσ(σ∞) : R
N |A| → R be the change

in regret from moving from the strategy σ to the new strategy σ∞, i.e.,

fσ(σ∞) = r(σ) − r(σ∞). (4.11)

If there is some strategy σ′ such that fσ(σ′) > 0 and |σ′ − σ| < d(ǫ), then there
exists some region Y ⊆ Σ such that

P (U(B(σ, d(ǫ))) ∈ Y ) > 0, (4.12)

and furthermore, for all σ′′ ∈ Y , fσ(σ′′) > 0. In words, if there is at least one
strategy, σ′, within a bounded region around σ which has less regret than σ, then
there is a positive probability of picking a strategy uniformly at random from that
bounded region that has regret less than σ. Furthermore, this region includes σ′.

Proof: This proof is left for Appendix A. �
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Using these two lemmas, we can prove the following proposition.

Proposition 3 For any non-critical ǫ-Nash equilibrium σ, the region B(σ, d(ǫ))
contains a region S, such that P (U(B(σ, d(ǫ))) ∈ S) > 0 and for all σ′ ∈ S,
r(σ′) < ǫ.

Proof: Since σ is a non-critical strategy, there exists an unique agent i such
that ri(σ) = r(σ) = ǫ. Consider agent i’s strategy σi versus its opponents’ joint
strategy σ−i. For σ−i, agent i has a best response strategy σ∗

i ∈ BRi(σ−i) such that
ui(σ

∗
i , σ−i) > ui(σi, σ−i). Let l be a line segment from σi to σ∗

i . Note |l| > 0 since
σ∗

i 6= σi. When we adjust agent i’s policy, by some amount ∆(σi), along l towards
σ∗

i , we decrease i’s regret using Lemma 2.

However, at the same time we may increase another agent’s regret. In the worst
case, suppose that agent j has the second largest regret, rj , and its increase, γ, with
respect to ∆(σi), is the largest among all agents. Since we want to decrease the
overall amount of regret, we want to choose some ∆(σi) such that rj + γ∆(σi) < r.
Set

∆(σi) = min[d(ǫ),
r − rj

2γ
], (4.13)

since this guarantees that ∆(σi) < d(ǫ). Now r(σi +∆(σi), σ−i) < ǫ, that is we have
found a better ǫ-Nash equilibrium. By Lemma 3, P (r(U(B(σ, d(ǫ)))) < r(σ)) > 0.
In words, this means that a joint strategy picked uniformly at random from the
region B(σ, d(ǫ)) has a positive probability of having less regret than σ. �

We are now ready to prove Proposition 1.

Proof: We start by showing that for all non-critical joint strategies, there is
always a new joint strategy close by which is closer to being an equilibrium. By close
by, we mean within some bounded region centered on the current joint strategy.6

Proposition 3 shows that such joint strategies do exist and that FRAME has a
positive probability of finding them.

Now suppose that agents play a repeated game for an infinite number of turns
using FRAME. Agents will move to a new joint strategy if it decreases the overall
regret. Therefore, if for some subsequence, Q = {q1, . . .}, of all turns, the sequence
rq
t converges to a specific value, say r∞, then the sequence of regret for all turns

must be at most r∞.

6In our code, this bounded region is denoted by B(σt
i , d(r(σt))). In our implementation we

used the bounded region of a L∞-ball D∞(σt
i , d(r(σt))), which can be thought of as a hyper-cube

centered around σt
i with width 2d(r(σt)).
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Every turn there is a (1 − pe)
n > 0 chance of all agents picking a new strategy

at random. Therefore, let Q be the infinite subsequence of turns where all agents
update their strategies at random.

We now prove Proposition 1 by contradiction. Suppose that r∞ > 0 and σ∞ is
not a critical strategy. Now consider some finite point in time, t− 1, where agent
i has the largest regret with respect to σt−1. Let us assume the worst case, where
agent j has both the second largest regret and rj’s rate of increase with respect to
σt−1

i , γ, is the largest among all agents. (If the agent is not unique then j may be
any of them.) Define

Dp(σ
t−1) = ri(σ

t−1) − ri(σ
t−1
i + ∆t(σi), σ

t−1
−i ) − ξ, (4.14)

for some small ξ > 0, where

∆(σi) = min

[

d(r(σt−1)),
r(σt−1) − rj(σ

t−1)

2γ

]

. (4.15)

By Proposition 3, at time t, there is a positive probability of FRAME being able
to reduce the overall regret by at least Dp(σ

t−1) versus the regret at time t−1. We
would like to be able to say something about the behaviour ofDp(σ

t) as t approaches
infinity. While in general, we would expect Dp(σ

t) to be decreasing, unfortunately
it is not necessarily a monotonically decreasing function. Furthermore, even if σ∞

is not a critical strategy, it is possible that at some finite time t, σt might be one.
(This is possible since critical strategies may include non-locally optimal strategies
or locally optimal strategies from FRAME can still escape from.) Hence, Dp(σ

t)
may at times even be 0. However, there must exist some time T c after which
no critical strategy is encountered (since the game is approaching a non-critical
strategy). We thus define

Dinf(σ) = inf{Dp(σ
t)|t ∈ Q, t ≥ T c}, (4.16)

where inf or infimum is the greatest lower bound. Note that δinf (r) > 0.

Now consider the actual decreases in regret given by

Da(σ
t−1, σt) = r(σt) − r(σt−1). (4.17)

We know that limt→∞Da(σ
t−1, σt) = 0, and therefore there exists a point in time

T ∈ Q greater than or equal to T c such that

∀t′ ≥ T, Da(σ
t′ , σt′+1) < δinf (σ). (4.18)

By Proposition 3, for all t′ ≥ T there exists a positive probability of finding a
new joint strategy that reduces the overall regret by at least δinf(σ). Therefore this
must happen once which is a contradiction of Equation 4.18. Therefore σ∞ cannot
be a critical strategy and Proposition 1 is proven. �
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4.2.2 Proof of Proposition 2

If agents get stuck in a locally optimal region, FRAME will have to jump to a
completely different region of the strategy space. A key part of Proposition 2 is
Lemma 4, which says that if FRAME does pick a joint strategy uniformly at random
from all possible joint strategies, there is a positive probability of finding a strategy
closer to equilibrium.

Lemma 4 Given σ such that r(σ) > 0, there is a positive probability of picking a
joint strategy σ′ ∈ Σ uniformly at random such that r(σ′) ≤ r(σ)/2.

Proof: This is proved in Appendix A. �

Thus the proof for Proposition 2 will require showing that by picking a joint
strategy uniformly at random from all possible strategies enough times, FRAME
will never get stuck in a locally optimal region.

Proof: We now consider the case where η > 0. It should be noted that with
η > 0, new joint strategies can now come from Σ. However, it is still the case that
these joint strategies will be picked only if they decrease the overall regret. Hence,
cases where convergence was achieved when η = 0 will still achieve convergence
when η > 0. The difference is that we can now deal with cases where the limiting
strategy is a critical strategy.

Suppose that when η = 0, the limiting strategy is indeed a critical one. (In this
case FRAME would be unable to achieve convergence.) Let this strategy be σ∞

and the corresponding regret r∞ > 0. Now set η to any value such that η > 0. In
this case, FRAME now choose a new joint strategy from all possible joint strategies.
The trick is picking a new strategy such that FRAME is no longer stuck (i.e. the
limiting strategy is still σ∞). As previously mentioned, there is no way to know in
advance if σ∞ is a critical strategy or what σ∞ will be; hence we must assume the
worst case that, σ∞ is indeed a critical strategy. However, since we do not have
know what σ∞ will be, there is no way of picking a single new joint strategy such
that we guarantee FRAME will not be stuck at σ∞.

Instead we will use an infinite sequence σT ′

= {σt′
1 , σt′

2 , . . .} such that, no matter
what σ∞ actually is, we can guarantee that FRAME will not get stuck. One
possibility is a series of such that r(σt′i+1) ≤ r(σt′i)/2. That way, no matter what
σ∞ is, there exists some time j such that for all i ≥ j, r(σt′i) < r(σ∞). Hence σT ′

will not get stuck at σ∞.

To prove that σT ′

can exist, we must show that given any σ there is a positive
probability of finding σ′ ∈ Σ such that r(σ′) ≤ r(σ)/2. This is done using Lemma
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4. By setting η > 0, we guarantee that FRAME is able to make σT ′

a subsequence
of σt.

Therefore, if η > 0, σ∞, if it exists, cannot be a critical strategy and we have
convergence to the set of Nash equilibria. �

It is important to note that throughout all of these proofs, any iteration of a
game where agents consult an expert were explicitly ignored. Thus, suggestions
made by experts have no impact on the correctness of FRAME.

4.3 Conclusion

In this chapter we introduced the algorithm FRAME. FRAME builds upon ERT
and ALERT and is able to keep the theoretical results they achieve. However,
whereas ALERT cannot be used in practice even for the most simple games,
FRAME designed with the goal of being a practical algorithm. One of the rea-
sons for this is that FRAME allows agents the chance to consult an expert for
possible new strategies; when the expert makes good suggestions, the agents are
able to benefit and the convergence rate improves. However, when the expert makes
useless or even hostile suggestions, convergence is still guaranteed.

The second half of this chapter introduced the main theoretical properties of
FRAME, and proved them. Specifically, it was proven that FRAME is able to
achieve convergence to the set of Nash equilibria for all games. Furthermore, it was
proven that under common conditions, FRAME is able to achieve convergence to
a single Nash equilibrium.

57





Chapter 5

FRAME Experimental Results

In this chapter we discuss our findings from a series of experiments using FRAME.
We first describe our experimental setup, including which experts were chosen and
why, as well as which games were used in the experiments. We then report our
findings, and illustrate that FRAME is a practical learning algorithm.

5.1 Experimental Setup

While any expert will work in theory, ones that make gradual adjustments to the
strategies of the agents are considered to be better, since it is easier to observe their
effect. In our experiments we used three such experts; the Hart and Mas-Colell algo-
rithm (HMC), logistic fictitious play (LFP) and Win or Learn Fast (WoLF). These
experts were chosen because all of them work by making gradual adjustments in
strategies. Furthermore, they represent the three basic approaches to multiagent
learning. Given the fundamental difference between these experts, it is not surpris-
ing that each of them has its own area of expertise, or types of games it is best
suited for. By experimenting using these different areas of expertise we are able to
clearly contrast these experts.

5.1.1 Experts

We briefly review each of the experts.
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Hart and Mas-Colell algorithm (Section 3.1.2)

At time t, agent i plays an action at
i according to σt

i (with σ0
i being the uniform

distribution). Based on σt
−i, agent i measures its regret for not having played

any other action. At time t + 1, each action is then played with a probability
proportional to that regret.

Formally we define Dt
i(ai,j, ai,k) as

D
t
i(ai, a

′
i) =

∑

a−i∈A−i

σt
i(ai)σ

t
−i(a−i)[ui(a

′
i, a−i) − ui(ai, a−i)]. (5.1)

This is a measure of how much agent i prefers action a′i to ai. Thus we define agent
i’s regret as,

Rt(ai, a
′
i) = max{0,Dt

i(ai, a
′
i)}. (5.2)

Finally, agent i picks σt+1
i as follows,

σt+1
i (ai) =

{

1
µ
Rt

i(a
t
i, ai), if ai 6= at

i

1 −∑a′
i
6=at

i
σt+1

i (a′i) otherwise,
(5.3)

where µ is a constant which can have any value greater than |Ai − 1|. We let
µ = |Ai|.

Logistic Fictitious Play (Section 3.2)

Given σ−i, Logistic Fictitious Play (LFP) gives a strategy σi in which the probability
of playing action ai is calculated by

σi(ai) =
e(1/λ)ui(ai,σ−i)

∑

a′
i∈Ai

e(1/λ)ui(a′
i,σ−i)

, (5.4)

where λ is a smoothness parameter. As λ approaches 0, LFP approaches playing a
strict best response to σ−i.
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WoLF (Section 3.3)

Given σt−1
−i and σt−1

i , WoLF calculates σt
i by adjusting σt−1

i towards BRi(σ
t−1
−i ). This

is done in incremental steps. The key to WoLF is that the step sizes vary depending
on whether the agent is “winning” or “losing”. To determine if an agent is winning
or losing, WoLF compares the performance of the agent’s current strategy against
the performance of an “average” strategy (Equation 5.5 gives the definition of the
average strategy). If the current strategy is doing worse than the average strategy,
the agent is losing. In this case WoLF tries to change quickly by having large step
sizes. If the current strategy is doing better than the average one, the agent is
winning; in this case WoLF is more cautious and takes smaller step sizes.

1. Let t = 0, δw, δl ∈ (0, 1] and σ0
i = 1

|Ai|
.

2. Repeat

(a) Play σt
i and observe ut

i. Let t = t+ 1.

(b) Update the estimate of the average strategy

∀ai ∈ Ai σ̄
t
i(ai) = σ̄t−1

i (ai) +
1

t
(σt−1

i (ai) − σ̄t−1
i (ai)) (5.5)

(c) Update the strategy

σt
i(ai) = σt−1

i (ai) + ∆ai
(5.6)

where

∆ai
=

{

−δai
if ai 6= arg maxa′

i
∈Ai

ui(ai, σ
t
−i)

∑

a′
i 6=ai

δa′
i

otherwise,
(5.7)

δai
= min

(

σt
i(ai),

δ

|Ai| − 1

)

(5.8)

δ =

{

δw if
∑

a′
i∈Ai

σt
i(a

′
i)ui(a

′
i, σ

t
−i) >

∑

a′
i∈Ai

σ̄t
i(a

′
i)ui(a

′
i, σ

t
−i)

δl otherwise.

(5.9)

5.1.2 Implementation Issues

FRAME is implemented using C++ in Linux. The simulations were run on two
systems; Pilatus and Vidal at the University of Waterloo. Pilatus is a 64-bit system
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composed of 64 Itanium2 processors with 192 gigabytes of memory [19]. Vidal is
a cluster consisting of 20 nodes, each with 2 Opteron processors and 4 gigbytes of
memory [19]. The runtime for the batch of 1000 trials ranged from a few seconds
to a couple of hours.

5.1.3 Games

Agent 1

Agent 2
a2,1 a2,2

a1,1 1, 0.5 0, 0
a1,2 0, 0 0.5, 1

Figure 5.1: Battle of the Sexes

Agent 1

Agent 2
a2,1 a2,2 a2,3

a1,1 0, 0 1, 0 0, 1
a1,2 0, 1 0, 0 1, 0
a1,3 1, 0 0, 1 0, 0

Figure 5.2: Shapley’s Game

Agent 1

Agent 2
a2,1 a2,2

a1,1 1, 1, 0 0, 0, 0
a1,2 0, 1, 1 1, 0, 1

Agent 3 - a3,1

Agent 2
a2,1 a2,2

1, 0, 1 0, 1, 1
0, 0, 0 1, 1, 0

Agent 3 - a3,2

Figure 5.3: 3-Player Matching Pennies: agent 1 chooses the row, agent 2

chooses the column, and agent 3 chooses the matrix

We ran experiments on the games shown in Figures 5.1 through 5.3. (Additional
results for different games are included in Appendix B. The results presented in
this chapter are the most informative.) For each of these games, we ran 1000 trials.
While the starting strategies have a definite impact on the convergence rates and
possibly on the relative performance of each of the experts, to avoid an overload in
information, we examined only one starting strategy for each game. Since only a
small value for 1 − p was needed to obtain a high degree of randomization, results
are only shown for p = 0.75, 0.95 and 0.98. Where ever possible, the parameters
for each expert were based on the existing literature. Convergence was measured
to 2 decimal places.

All results are shown in histogram format. For each run, our data was divided
up into 20 intervals. For example, if for some run, the fastest convergence time was
10 iterations and the slowest was 110, then the interval size for that run’s histogram
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would be 5. Thus, the x-axis in each of our graphs is the convergence time divided
up into intervals and the y-axis the percentage of trials that fell into each interval.

For each of these games, given the starting strategies and the experts used, there
is no risk of running into a locally optimal joint strategy or a plateau. Thus, for
these games, FRAME’s correctness can rest solely on Proposition 1 and we are able
to set η = 0. This allows for a faster convergence time.

We examine each of the games in turn.

5.2 Experimental Results

Battle of the Sexes

Battle of the Sexes (BoS) has 3 Nash equilibria;

{((1, 0), (0, 1)), ((0, 1), (0, 1)), ((
2

3
,
1

3
), (

1

3
,
2

3
))}.

Different learning algorithms can have a bias towards one or two of the Nash equilib-
ria (usually either the pure or mixed equilibria). Thus, we chose this game because
it balances a simple joint action set with a complex set of Nash equilibria. We used
a starting strategy of σ0 = {(1

2
, 1

2
), (1

2
, 1

2
)}.

As a reference point, we first had both agents only consulting the Naive Expert.
The results are shown in Figure 5.4. The convergence rates for ALERT on BoS
would be off the charts compared to these results (ALERT has a fixed runtime
independent of any parameters of the game). Thus, we have already shown that
FRAME can be an effective method for learning. However, with the proper use of
experts, we can do even better.

The first expert we examined was LFP with a parameter of λ = 0.5. The re-
sults are shown in Figure 5.5. If pe = 1, it would take around 160, 000 iterations
for convergence. However, when pe = 0.98 the convergence rate improves signifi-
cantly. This shows that occasionally consulting the Naive Expert not only provides
theoretical guarantees, it can also be practical.

The next expert we used was WoLF, with parameters δw = 1
20000+t

and δl = 2δw.
The results are shown in Figure 5.6. As shown, WoLF converges very quickly for
BoS. In general, however, for such a small game, there is not much difference
between a randomized approach and WoLF. The exception is when FRAME forces
WoLF to converge to an equilibrium it would not normally converge to. In the case
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Figure 5.4: Convergence rates for BoS using a purely random learning algorithm.
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Figure 5.5: Convergence rates for BoS using FRAME with LFP. Note the difference in

scale.
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Figure 5.6: Convergence rates for BoS using FRAME with WoLF.

of BoS, by itself, WoLF would never converge to the mixed equilibrium. Hence,
when FRAME forces WoLF to do so, convergence takes much longer. This explains
why the convergence rate decreases so much for pe = 0.95. When pe = 0.98, there
are too few random jumps for FRAME to force WoLF to converge to the mixed
equilibrium.

Finally, we used HMC with a parameter of µ = 2. The results are shown in
Figure 5.7. Like WoLF, HMC is able to achieve convergence quickly. Thus, as
expected, as pe → 1, the convergence rate improves.

Shapley’s Game

Shapley’s Game, shown in Figure 5.2, is a classic game because it was the first
game in which fictitious play was shown to not converge in any sense. It is still
regarded as a hard game for learning algorithms, with more recent algorithms such
as WoLF still unable to achieve convergence. However, LFP, given the right value
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Figure 5.7: Convergence rates for BoS using FRAME with HMC. Note the difference

in scale.

for λ, converges very quickly. Shapley’s game has an unique Nash equilibrium of
{(1

3
, 1

3
, 1

3
), (1

3
, 1

3
, 1

3
)}.

Again, for reference, we first show, in Figure 5.8, the results for learning using
a purely random learning algorithm.

The results for LFP using a value of λ = 0.5 are shown in Figure 5.9. Since
LFP converges very quickly for Shapley’s game, as pe increases we could expect to
see faster convergence times, which is exactly what happens.

The results for WoLF, using δw = 1/(100 + t) and δl = 3δw, are shown in
Figure 5.10. Note the difference in scale and that data is presented up to the 98th

percentile. Since WoLF does not converge for Shapley’s Game, as pe increases, we
would expect to see slower convergence rates. This is indeed what happens. More
importantly, though, is that as pe approaches 1, while the convergence rates may
increase, we are still achieving convergence. This is an example of FRAME being
able to deal with an expert poorly suited for a particular game.
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Figure 5.8: Convergence rates for Shapley’s Game using a purely random learning

algorithm.

Finally, in Figure 5.11, we present the results for Shapley’s Game using HMC
as the expert. Although HMC does not achieve convergence by itself, it is able to
achieve convergence to the set of correlated equilibria. As pe increases, there is no
major change in the rate of convergence. This suggests that HMC is no better but
also no worse than a purely randomized approach to Shapley’s Game.

3-Player Matching Pennies

3-player Matching Pennies, as shown in Figure 5.3, is another game which can be
very difficult to achieve convergence in. However, unlike Shapley’s game, WoLF is
able to achieve convergence while LFP is not.

The first expert we used was LFP. Unlike with Shapley’s Game, by itself LFP
cannot achieve convergence in 3-Player Matching Pennies. As a result, the more an
agent consults LFP, the slower convergence should be. However, we should still be
seeing convergence. The results shown in Figure 5.12 confirm these expectations.

The convergence rates for WoLF are shown in Figure 5.14. Since WoLF con-
verges quickly in 3-Player Matching Pennies, we would expect to see faster conver-
gence rates. This is what happens, which shows that a poor expert for one game
may actually be an excellent expert in another. This is a strong argument in favour
of exploring many different experts.

The results for 3-Player Matching Pennies using HMC are shown in Figure 5.15.
We see that, although HMC is not as well suited for 3-player Matching Pennies as
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Figure 5.9: Convergence rates for Shapley’s Game using FRAME with LFP. Note the

difference in scale.

it was for Shapley’s game, it is still able to perform decently well. This is reflected
in the moderate decrease in convergence rates as pe increases.

5.3 Conclusion

In this chapter we reported on the experimental results for FRAME; these experi-
ments involved several different experts and games. The results confirmed the two
key benefits of FRAME. The first is that the practice of consulting experts can
have a significant impact on the convergence rate: when experts provided good
strategies, agents were able to improve the convergence rate. The second benefit is
that convergence is always guaranteed. Even when experts do not provide useful
strategies and the convergence rate decreases, convergence is to the set of Nash
equilibria still achieved.
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Figure 5.10: Convergence rates for Shapley’s Game using FRAME with WoLF. Note

the difference in scale. Each graph is shown up to the 98th percentile.
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Figure 5.11: Convergence rates for Shapley’s Game using FRAME with HMC.
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Figure 5.12: Convergence rates for 3-Player Matching Pennies using a purely random

learning algorithm.
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Figure 5.13: Convergence rates for 3-Player Matching Pennies using FRAME with LFP.

Note the difference in scale.
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Figure 5.14: Convergence rates for 3-Player Matching Pennies using FRAME using

WoLF. Note the difference in scale.
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Figure 5.15: Convergence rates for 3-Player Matching Pennies using HMC. Note the

difference in scale.
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Chapter 6

Adaptive-FRAME

In the previous chapter, we showed the experimental results for FRAME. These
results confirmed that FRAME is able to balance theoretical guarantees and prac-
tical concerns. However, FRAME is limited by allowing agents to only consult one
expert. Since different experts are better suited for different games, this limits the
flexibility of FRAME.

The solution is to allow agents to consult multiple experts. The naive way of
doing this is to have agents consult each expert with an equal probability; we call
this approach the Naive Experts Algorithm (NEA). However, for a given game, if
one expert is providing better strategies than another expert, consulting the first
expert more would improve convergence rates. Thus, we would like some sort of an
adaptive approach to consulting agents.

In order to do so, we have to define some metric for comparing the performance
of experts. Based on this metric, we will have to develop some adaptive approach
to consulting the experts. It turns out that there are several possible metrics and
adaptive approaches. This chapter is concerned with examining different metrics
and approaches; these include existing methods as well as ones designed specifically
for FRAME.

6.1 An Adaptive Approach

We generalize FRAME in two ways: first, instead of one expert, each agent has a
set of experts Ei = {ei,0, . . . , ei,|ei|} to consult. (For simplicity, ei,0 is always the
Naive Expert which suggests a strategy picked uniformly at random from a bounded
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region.) Since different experts are better suited for different games, this will allow
an agent more flexibility. With slight abuse of notation, we define ei to be some
specific but undefined expert for agent i. Expert ei is consulted with probability
pei

and returns a suggested strategy βei
.

Secondly, we allow the probabilities of consulting each expert to vary over time,
that is we generalize pei

to pt
ei
. As a result we are no longer required to decide

on and fix the probabilities in advance. We are now able to tune the probabilities
to best suit the current game. The most practical way of doing this is to adjust
the probabilities while playing the game, since this allows us to deal with new and
unknown games. Algorithms that allow us to adjust the probabilities of consulting
different experts during game play are called experts algorithms [1]. Agent i’s
experts algorithm is denoted by æi and pi is called æ’s policy.

The resulting algorithm, adaptive-FRAME, is shown in Algorithm 2. For cor-
rectness, we only require that

∞
∑

t=1

pt
ei,0

= ∞. (6.1)

In words this means that the Naive Expert is consulted infinitely often. As long
as Equation 6.1 holds, the correctness for adaptive-FRAME follows directly from
Propositions 1 and 2. If Equation 6.1 does not hold, then by the Borel-Cantelli
Lemma, there will only be a finite number of turns where all agents consult the
Naive Expert. This would violate the conditions in Proposition 1.

In practice, this condition does not have to hold. In particular, our experiments
were conducted using experts algorithms which did not necessarily satisfy Equation
6.1. If convergence rates are fast enough then Equation 6.1 can be relaxed. Hence,
it is more of a theoretical condition than a practical one. However, to maintain
theoretical correctness of adaptive-FRAME we could set a maximum rate of decay
of consulting the Naive Expert, i.e.,

p̃t
ei,0

= max{g(t), pt
ei,0

} (6.2)

for any g(t) such that
∑∞

t=0 g(t) = ∞ (for example g(t) = 1/(t0.9)), and renormalize
the other probabilities.

6.2 Experts Algorithms

In this section we briefly review some the standard experts algorithms in the liter-
ature. We also introduce our experts algorithm, designed specifically for use with
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Algorithm 2 adaptive-FRAMEi (æi(·), Ei, d(), η)

σ0
i = U(Σi)

for t = 0, 1, . . . do
• pt

i =æi(·) is the probability distribution over the experts Ei for agent i at
time t
• βt+1

i is the strategy returned by consulting ei,j(·), where ei,j was determined
according to pt

i

if βt+1
i is not in the bounded region B(σt

i , d(r(σ
t))) then

• βt+1
i is the strategy picked uniformly from B(σt

i , d(r(σ
t))))

end if
if the regret of β is less than the regret of σt then
σt+1 = βt+1

else
σt+1 = σt

end if
• τi is strategy picked uniformly at random from U(Σi)
if the regret of τ is less than half the regret of σt+1 then
• with probability η, set σt+1 = τ

end if
end for

adaptive-FRAME. Experts algorithms vary in both how they measure the perfor-
mance of the experts and how they adapt to the relative performance of the experts.
The review of the existing experts algorithms provides a context for our algorithm.

Hedge (Section 3.4.1)

Hedge measures the performance of an expert by using regret [23]. The regret is
based upon comparing the actual utility an expert’s decision would have achieved
versus the best utility achieved amongst all other experts. The probability of con-
sulting each expert is proportional to some weight value for that agent, where the
initial weight vector is w1

i ∈ [0, 1]|ei|. This weight decays according to some decay
factor, ψ ∈ [0, 1], raised to the expert’s regret.

1. Calculate pt
i as

pt
i(ei) =

wt
i(ei)

∑

e′i∈Ei
wt

i(e
′
i)
.
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2. Use suggested strategy from expert selected according to pt
i. However, all

experts must still calculate a suggested strategy. For all experts, we calculate
the regret, r(βt

ei
, βt

−i), that using their suggested strategy would have given
agent i.

3. Update the weights according to

wt+1
i (ei) = wt

i(ei)ψ
r(βt

ei
,βt

−i).

4. Repeat.

Strategic Experts Algorithm (Section 3.4.2)

On the other hand, Strategic Experts Algorithms (SEA) measures the performance
of an expert by the utility it did achieve and not by comparing the expert to any
others.

1. Set Mei
= Nei

= 0. Set t = 1.

2. With probability 1/t perform an exploration phase, namely, choose an expert
ei uniformly at random; otherwise, perform an exploitation phase, namely,
choose an expert ei uniformly at random from those experts with maximum
Mei

.

3. Set Nei
= Nei

+1. Follow ei’s instructions for the next Nei
stages. Denote by

R̃ the average payoff accumulated during those Nei
stages, and set

Mei
= Mei

+
2

Nei
+ 1

(R̃−Mei
). (6.3)

4. Set t = t+ 1 and repeat.

6.2.1 Logistic Expected Regret Reduction Maximization

Logistic Expected Regret Reduction Maximization (LERRM) is an experts algo-
rithm created specifically for adaptive-FRAME, inspired by LFP [25]. The metric
LERRM uses to measure the performance of an expert is the Expected Regret
Reduction (ERR). At time T , for agent i, expert ei’s ERR is defined as,

ERR(ei)
T
i =

∑T−1
t=0 (ri(β

t) − ri(β
t+1
ei
, βt+1

−i ))

T
. (6.4)
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ERR is a measurement of how much an expert’s suggested strategies could have,
or did, reduce an agent’s regret. Specifically, at time T , assuming that all agents
other than agent i played the same strategies for t = 0 to t = T , ERR measures
the average reduction in agent i’s regret if agent i had always consulted expert ei.

ERR is a better measure of what we are trying to achieve in adaptive-FRAME
than an expert’s regret or actual utility. Since we are interested in trying to reduce
regret, it makes sense to actually measure the ability of each expert to do that.

Example: To demonstrate how ERR is calculated, consider the following ex-
ample. Suppose that two agents, both using adaptive-FRAME, are playing the
repeated game of Battle of the Sexes as shown in Figure 6.1.

Agent 1

Agent 2
a2,1 a2,2

a1,1 1, 0.5 0, 0
a1,2 0, 0 0.5, 1

Figure 6.1: An example for calculating ERR

Suppose that agent 1 has two possible experts to consult each turn, {e1,1, e1,2}.
We wish to calculate the ERR value for both of these experts at time t = 3. Table
6.1 shows the suggested strategies by both experts over the time t = 0 to t = 3
as well as which expert agent 1 actually consulted each turn. Following adaptive-
FRAME, both agents choose their inital strategies uniformly at random instead of
consulting an expert. Therefore, β0

e1,j
is not defined.

t 0 1 2 3

βt
e1,1

- (1,0) (1,0) (1,0)

βt
e1,2

- (0.75,0.25) (0.8,0.2) (0.7,0.3)

Expert consulted - e1,1 e1,1 e1,2

βt
1 (1,0) (1,0) (1,0) (0.7,0.3)

Table 6.1: An example of calculating ERR continued

Suppose that agent 2’s strategy over the same period is given by Table 6.2.

We first calculate expert e1,1’s ERR. It does not matter that expert e1,1 was
not always consulted. What we are interested in is what would have happened if
expert e1,1 was always consulted, assuming that this would not have changed any of
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t 1 2 3 4

βt
2 (0,1) (0.1,0.9) (0.5,0.5) (0.6,0.4)

Table 6.2: An example of calculating ERR continued

agent 2’s strategies. To calculate expert e1,1’s ERR, we start by noting that at time
t = 0, agent 1’s regret was 0.5. At time t = 1, if agent 1 had gone with the strategy
suggested by expert e1,1 (which it actually did), agent 1’s regret would have become
0.35. Thus by consulting expert e1,1 for σ1

1, agent 1 would have reduced its regret
by 0.15. Similarly, by consulting expert e1,1 for σ2

1 , agent 1 would have reduced its
regret by 0.35 since β2

e1,1
was an optimal strategy. Finally, the strategy β3

e1,1
would

have reduced agent 1’s regret by 0 since both β2
1 and β3

e1,1
were optimal strategies.

Thus we can calculate expert e1,1’s ERR as

ERR(e1,1)
3
1 =

0.15 + 0.35 + 0

3
,

=
1

6
.

Through similar reasoning, we can show that ERR(e1,2)
3
1 = 0.1225.

If ERR was a perfect measure of an expert’s ability to reduce regret, it would
make sense to simply consult the agent with the highest ERR. However, at any
given time, ERR is only an estimation. Hence, it might be that the agent with the
highest ERR is not actually the optimal expert to consult. Furthermore, we want
to ensure that there is always a positive probability of consulting the naive expert.
Thus, we would like to use ERR to determine some probability of consulting each
expert. This is exactly what LERRM does.

LERRM(ei)
t
i =

e
1

λ
ERR(ei)

t
i

∑

e′i∈Ei
e

1

λ
ERR(e′i)

t
i

. (6.5)

As in LFP, λ is a measure of smoothness. Thus LERRM can serve as a balance
between using the expert with the highest ERR and considering other experts.

Example: Continuing the example for calculating ERR, we can use these values
for LERRM. Supposing that λ = 1, at t = 4, LERRM will consult expert e1,1 with
a probability of .51104 and expert e1,2 with a probability of .48896.
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Agent 1

Agent 2
a2,1 a2,2

a1,1 0.54, 0.54, 0.54 0.54, 1, 0.54
a1,2 1, 0.54, 0.54 0.46, 0.46,0

Agent 3 - a3,1

Agent 2
a2,1 a2,2

0.54,0.54,1 0, 0.46, 0.46
0.46,0,0.46 0.46, 0.46, 0

Agent 3 - a3,2

Figure 6.2: 3-player Chicken: agent 1 chooses the row, agent 2 chooses the columm,

and agent 3 chooses the matrix

6.3 Experimental Setup

The games used in the experiments were Battle of the Sexes (Figure 5.1), Shapley’s
Game (Figure 5.2) and 3-player Chicken (Figure 6.2). These games were chosen to
best illustrate the adaptive aspect of adaptive-FRAME. For each of these games,
there are obvious optimal experts. As shown in Table 6.3, WoLF is the best expert
for BoS, LFP is the best expert for Shapley’s game and HMC is the best expert
for 3-player Chicken (shown in Figure 6.2). Thus the performance of the different
experts algorithms in being able to determine the optimal expert should be easy to
measure. As well, Shapley’s Game and 3-player Chicken are hard games to learn,
so these results will help to reinforce the practicality of adaptive-FRAME.

The same experts were used in testing adaptive-FRAME that were used for
testing FRAME as well as HMC from Section 3.1.2. All experts were run with the
same parameters used in testing FRAME. For experts algorithms, we used NEA as
a basis for comparison. We used all three of the experts algorithms mentioned in
the previous section; Hedge, SEA and LERRM. LERRM was run with λ = 0.00005
and Hedge was run with β = 0.00005. These values were chosen experimentally.

Since adaptive-FRAME is a random process, there will always be a few excep-
tionally long runs. These runs are not overly representative of the adaptive-FRAME
process. Furthermore, showing these results in graphs often forces a loss of detail
in the important regions. Hence, when necessary, results are shown for the 98th

percentile.

For comparison purposes we first tested each expert on its own without the use
of FRAME. These convergence rates are presented in Table 6.3.1

1DNC = does not converge. NT = not tested.
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Game Number of Iterations
to Convergence

LFP WoLF HMC (average)
BoS DNC 3509 NT

Shapley’s Game 14 DNC NT
3-player Chicken DNC 64 < 10

Table 6.3: Convergence rates for each expert without the use of FRAME.
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Figure 6.3: Convergence rates for BoS using adaptive-FRAME. Results are given for

the 98th percentile.

6.3.1 Battle of the Sexes

BoS was tested using WoLF and LFP as experts. Both WoLF and the Naive Expert
do reasonably well by themselves, as shown in Table 6.3 and Figure 5.6, respectively.
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Figure 6.4: Convergence Rates for Shapley’s Game using adaptive-FRAME. Note the

difference in scale. Results are given for the 98th percentile.

However, as shown in Table 6.3, LFP does not achieve convergence at a practical
rate. The results in Figure 6.3 show that all of the experts algorithms are able to
outperform the worst expert. These confirm the idea that having multiple experts
makes agents more flexible and provides protection against poor experts.

However, Figure 6.3 also shows that NEA does basically as well as the other
experts algorithms. NEA is able to perform that well simply because BoS is such
a simple game. Since Hedge, LERRM and SEA still outperform the worst expert,
this suggests that for simple games there may not be much benefit to using a more
sophisticated approach than NEA but there is also no harm in doing so.
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Figure 6.5: Expert usage statistics for Shapley’s Game

6.3.2 Shapley’s Game

Shapley’s Game was tested using LFP and WoLF as experts. Figure 6.4 shows
that all of the experts algorithms do much better than WoLF, which is the worst
expert for Shapley’s Game as shown in Table 6.3. Hedge and LERRM give, on
average, much faster convergence rates compared to the NEA. In particular LERRM
performs very well. SEA does only about as well as NEA. However, the range of
results is much larger for Hedge and LERRM. One possible explanation is that
Hedge and LERRM are both very sensitive to initial conditions; having the first
few rounds be exceptional cases could throw both of these algorithms off. On
the other hand, SEA’s performance suggests that it is either poorly suited for use
in adaptive-FRAME or convergence happens so quickly that SEA does not have
enough time to adapt to consulting the optimal agent.

How are Hedge and LERRM able to achieve this performance? Since LFP
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gives the fastest convergence rate, Hedge and LERRM should consult LFP with a
very high probability. The left column in Figure 6.5 shows the probability Hedge
and LERRM have, respectively, of consulting LFP at the time of convergence.
These results show that both experts algorithms, on average, do consult LFP with
a very high probability. For Shapley’s Game, the other experts are, practically
speaking, equally inefficient. Therefore, we would expect both experts algorithms
to consult the Naive Expert and WoLF with roughly equal probability. The right
column of Figure 6.5 shows the probability of consulting the Naive Expert minus the
probability of consulting WoLF at the point of convergence for Hedge and LERRM,
respectively. These results show that in fact, on average, there is no major difference
in the probability of consulting the two experts. Thus, we are able to see that Hedge
and LERRM are able to adapt so they consult the most appropriate expert for the
game. LERRM’s superior performance can be attributed to it adapting so that it
places most of its weight on LFP.

However, we see that both Hedge and LERRM occasionally preform very poorly.
Specifically, while the slowest convergence for SEA was 2021 iterations, Hedge
and LERRM’s slowest convergence was 12012 and 16848 iterations, respectively.
Roughly 3% and 2% of LERRM and Hedge’s trials took longer than 2021 iterations
respectively. While this is a noticeable number, Hedge and LERRM preform well
enough on average that these exceptional cases do not have a noticeable impact. To
understand these cases, note that as shown in Figure 6.5, both Hedge and LERRM
will very occasionally wind up consulting LFP with a very low probability. The
problem is that both Hedge and LERRM adapt quickly enough so that they are
very sensitive to the results from the first few iterations. Given the random na-
ture of adaptive-FRAME, it is not surprising that these iterations are not always
representative of the true state of the game. When this is the case, Hedge and
LERRM can wind up with an incorrect idea of which experts are optimal to con-
sult. However, even in these exceptional cases adaptive-FRAME is still achieving
convergence. On the other hand, since SEA is so slow to adapt, it does not suffer
from this problem.

6.3.3 3-Player Chicken Game

We present two sets of results for 3-player Chicken. The first set of results, shown
in Figure 6.6, is with just WoLF and LFP as experts. These results show all of
the experts algorithms easily outperforming the worst expert for 3-player Chicken,
LFP, as shown in Table 6.3. One of the major differences between 3-player Chicken
and Shapley’s Game is that SEA can do much better than NEA. This indicates
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Figure 6.6: Results for 3-Player Chicken with Ei = {NaiveExpert, LFP,WoLF}.
Note the difference in scale.
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Figure 6.7: Results for 3-Player Chicken with

Ei = {NaiveExpert, LFP,WoLF,HMC}.

that SEA is able to learn which is the optimal expert to consult; it just takes longer
to do so than Hedge or LERRM. The second set of results, shown in Figure 6.7, is
with WoLF, LFP and HMC as experts. HMC is by far the best expert for 3-Player
Chicken, hence we would hope to see a noticeable improvement in the convergence
rate. However, it might be possible that with an additional expert, it would take
longer for the experts algorithms to find the optimal expert.

How are Hedge and LERRM able to outperform NEA? The left column of
Figure 6.8 shows the probability of consulting WoLF in the 3-player Chicken Game.
This column shows that both Hedge and LERRM consult WoLF with a very high
probability. The right column of Figure 6.8 shows the difference in probability
between consulting the Naive Expert and LFP. Since neither expert is very useful,
we do not expect to see much difference in how much they are consulted. This is
indeed what we see, therefore, we can conclude that Hedge and LERRM perform
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well since they both adapt so that they consult the best expert for the game.
This time, both Hedge and LERRM consult the best expert with roughly equal
probability, which explains their similar results.

As with Shapley’s game, the results for 3-player Chicken show that both Hedge
and LERRM occasionally have very slow convergence rates. The same analysis
applies here.

6.4 Conclusion

In this chapter we introduced the idea of adaptive-FRAME. The goal of adaptive-
FRAME is to keep the theoretical guarantees of FRAME while allowing agents to
further improve convergence rates and be more flexible. This goal was achieved by
allowing agents to consult multiple experts and to do so in an adaptive manner.
The use of experts algorithms allows agents to dynamically adapt to the expert
best suited for the current game.

We presented results using a number of experts and experts algorithms. This
included an experts algorithm, LERRM, we specifically designed for adaptive-
FRAME. Our results showed that the use of experts algorithms can give a def-
inite improvement in the convergence rates. As well, LERRM was shown to be
competitive with existing standard experts algorithms, and in some cases can even
outperform them.
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However, we see that both Hedge and LERRM occasionally preform very poorly.
Specifically, while the slowest convergence for SEA was 2021 iterations, Hedge
and LERRM’s slowest convergence was 12012 and 16848 iterations, respectively.
Roughly 3% and 2% of LERRM and Hedge’s trials took longer than 2021 iterations
respectively. While this is a noticeable number, Hedge and LERRM preform well
enough on average that these exceptional cases do not have a noticeable impact. To
understand these cases, note that as shown in Figure 6.5, both Hedge and LERRM
will very occasionally wind up consulting LFP with a very low probability. The
problem is that both Hedge and LERRM adaptive quickly enough that they are
very sensitive to the results from the first few iterations. Given the random nature
of adaptive-FRAME, it is not surprising that these iterations are not always repre-
sentative of the true state of the game. When this is the case, Hedge and LERRM
can wind up with an incorrect idea of which experts are optimal to consult.
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Figure 6.8: Expert usage statistics for 3-Player Chicken with

Ei = {NaiveExpert, LFP,WoLF}.
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Chapter 7

Conclusion

This thesis set out to study multiagent learning in repeated games. Our interest
was in what Shoham et. al. call the prescriptive, non-cooperative agenda [49]. In
particular, we were interested in studying how agents could maximize their utility
when facing similar agents (i.e. self-play). Specifically, this thesis was interested in
developing a bridge between theoretical guarantees of convergence and real-world
performance.

Recent algorithms had been able to achieve convergence to Nash equilibria in
nearly all games. However, these algorithms could not be used in practice. The
goal of this thesis was to create new algorithms which could be used in practice by
computers.

7.1 Contributions

The main contributions of this thesis are:

• FRAME: FRAME is a multiagent learning algorithm which uses a greedy
method for selecting new strategies that are closer to equilibrium than the
current strategy. FRAME also introduces the idea of allowing agents to con-
sult an expert for possible new strategies. When these experts provide good
suggestions, the convergence rate improves. Agents are protected, however,
against experts who make poor suggestions.

• In Chapter 4, we introduced FRAME and proved the main theoretical results
about it. Specifically, FRAME is able to achieve convergence to the set of
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Nash equilibria for all games. Furthermore, for a large number of games
FRAME is able to achieve convergence to a single Nash equilibrium.

• In Chapter 5, we presented our experimental results. These results confirmed
that FRAME is a practical algorithm. FRAME was even able to achieve
reasonable convergence rates on games generally considered to be difficult.
The results showed how experts could be beneficial for agents and how the
agents were still able to achieve convergence with poor experts.

• Adaptive-FRAME: adaptive-FRAME built upon FRAME by allowing agents
to consult multiple experts and to do so in a dynamic manner. Hence, agents
were able to adapt so that they consulted the expert best suited for a given
game. This provided agents with a greater degree of flexibility in dealing
with new games. Adaptive-FRAME also showed a noticeable improvement
over FRAME in the convergence rates in general.

• Adaptive-FRAME introduced the idea of using experts algorithms in a mul-
tiagent setting. Experts algorithms are a common idea in single agent learn-
ing but have only been applied to multiagent learning in a very limited set-
ting [24]. We studied the use of two common experts algorithms.

• LERRM: In Chapter 6 we also introduced our own experts algorithm, LERRM.
We showed that LERRM was competitive with the existing experts algorithms
and at times could even outperform them.

7.2 Directions for Future Work

This work opens up new interesting directions for future work. In this section we
outline these directions.

7.2.1 Examining Different Experts and Experts Algorithms

The experiments with adaptive-FRAME showed that agents were able to take ad-
vantage of additional experts. Thus having more experts would help agents improve
their performance on the games used in the thesis, and deal better with new games.
There are several experts that we did not study in this thesis which could be use-
ful, such as Fictitious Play and GIGA-WoLF [7]. The performance of two of the
experts we used, LFP and WoLF, are dependent on the parameters they are given;
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adaptive-FRAME could be expanded to work with multiple sets of parameters for
different experts. It might also be possible to learn online different values that work
well for these experts.

Although our experts algorithms were able to adapt to the optimal expert for a
given game there is always room for improvement. Our experts algorithm LERRM
presents hope that an experts algorithm specifically designed for adaptive-FRAME
could have a noticeable advantage over traditional experts algorithms. Analyzing
the experimental results also highlighted some roadblocks to better experts algo-
rithm performance. For example, experts algorithms were very sensitive to results
during the initial part of the game. By random chance these initial results were
not always reflective of the actual situation, and the experts algorithms might ben-
efit from being a little more conservative initially. This could potentially be very
advantageous in more challenging games.

7.2.2 Using Different Notions of Regret

Although FRAME and adaptive-FRAME were able to achieve practical convergence
rates on many games, there are many more games for which we do not expect to
obtain such rates. In particular, the joint strategy space for games with more than
3 players is large enough that FRAME and adaptive-FRAME may never work for
them. Recent results by Chen and Deng suggest that finding Nash equilibria in
general, let alone learning, is not likely to be done efficiently (e.g. in polynomial
time) time [11, 10].

However, there are alternative notions of convergence that might be used in-
stead. In particular, the notion of correlated equilibria is promising. Recent results
have shown that in many cases finding a particular correlated equilibrium is rel-
atively easy [43]. Furthermore, correlated equilibria open up the possibility of
more cooperation between agents ,and should allow for more mutually beneficial
outcomes. One way of achieving convergence to the set of correlated equilibria is
through the use of no-internal regret algorithms. Hence, a different notion of regret
could be useful.

7.2.3 Adapting FRAME to Stochastic Games

A stochastic game is made up of multiple stage games (also known as states).
For all possible joint action, each state provides not only the utilities for each
agent but also a transition to the next state. Stochastic games are also known
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as competitive-MDPs and can be thought as of multiagent MDPs [18]. Stochastic
games can be used to model many different situations in real life, from economics to
robotics. However, there is currently no known method for achieving convergence
to Nash equilibrium in stochastic games. Creating such an algorithm would not
only have benefits in the theoretical domain but could be very useful in different
sorts of modeling. We are currently in the process of adapting FRAME to work in
stochastic games.

There are several challenges for stochastic games. First of all, the idea of regret
has not been as well established in stochastic games. Secondly, decreasing regret
in one state may cause an increase in regret in another state.

7.3 Summary

It was the goal of this thesis to help build a bridge between theoretical and practical
agendas in multiagent learning. Our algorithm, FRAME, does this by creating a
balance between the two. However, as with all balancing acts, compromises had
to be made. It is unlikely that there will ever exist some “silver-bullet” multiagent
learning algorithm, thus it is hoped that FRAME can serve as a means rather than
an end. Ideally, FRAME will serve as a means to understanding the conflicting
goals in multiagent learning and examining different means of addressing them.
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Appendix A

Measure Theory

This Appendix provides a background on the measure theory used in this the-
sis. Specifically, measure theory is required for the main Propositions regarding
FRAME.

An essential step in proving FRAME’s correctness is to examine what happens
when a strategy is selected uniformly at random from Σ or some subset of it. We
are unable to use basic probability theory since it only deals with with probabili-
ties involving discrete sample spaces or very basic situations involving continuous
sample spaces. Instead we must use a generalization of probability theory called
measure theory.

Specifically, this Appendix proves Lemmas 3 and 4 from Chapter 4. Lemma 4
is proved first since its proof provides an introduction to measure theory. A more
thorough introduction is given by Rosenthal[46].

Lemma 4 Given σ such that r(σ) > 0, there is a positive probability of picking a
joint strategy σ′ ∈ Σ uniformly at random such that r(σ′) ≤ r(σ)/2.

Proof:

We start by defining a probability measure space as the triple (Σ,F , P ):[46]

• The joint strategy space Σ is also our sample space.

• The σ-algebra F is a collection of subsets of Σ such that:

– The sets Σ and ∅, the empty set, are both contained in F .

– F is closed under complements and countable unions and intersections.
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• The measure probability P which is a mapping from F to R such that:

– 0 ≤ P (A) ≤ 1 for all A ∈ F .

– If A1, A2, . . . are a countably infinite number of subsets of Σ then

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2\A1) + P (A3\A2\A1) + . . . (A.1)

– P (∅) = 0 and P (Σ) = 1.

Note that P (X) is defined if and only if X ∈ F .

Although we are free to choose any σ-algebra, for simplicity we chose one based
on L∞-balls. A L∞-ball, D∞(γ, ǫ), is a hypercube with a center at γ ∈ Σ and a
width of 2ǫ ≥ 0. Let J denote the set of all possible L∞-balls inside of Σ. Our
σ-algebra will be B = σ(J ), also known as the Borel set, which is the smallest
σ-algebra containing all elements of J .

Finally we must define P (X) for all X ⊆ B.To do this, we will rely on another
measure, the Lebesgue measure or µ. The Lebesgue measure may be thought of as
an extension of volume to a higher dimension. Like P , µ is a mapping from F to
R. However, we do not require that µ(Σ) = 1.

We are now define P (X) as

P (X) =
µ(X)

µ(Σ)
, (A.2)

assuming that X ∈ B. This definition meets all the requirements for a measure
probability and leads to the intuitive idea of what a probability should be.

In the case of this lemma, we are interested in finding P (Nǫ) for some ǫ > 0.
In order to find P (Nǫ), we must find µ(Nǫ) and µ(Σ). Since Σ is a solid region,
µ(Σ) has a positive value. (Finding the exact value is unnecessary, the important
part is that it is positive.) However we can not find a minimum value for µ(Nǫ)
since it may not exist [46]. In other words, there are subsets of Σ that do not
have a measure defined for them. Although these cases are rare in stage games, for
completeness we now consider how to deal with them [30].

Since the measure of a set X is defined for all elements in F , if some X does
not have a measure defined for it, this means that X 6∈ F . How can this happen?
Returning to the definition of F , we see that if A1 and A2 are both in F then so
is A1 ∪ A2, and furthermore µ(A1 ∪ A2) = µ(A1) + µ(A2\A1). In the context of
our definition of F for the joint strategy space, if A1 and A2 are both L∞-balls
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(i.e. both A1 and A2 are in F)) then A1 ∪ A2 ∈ F and furthermore, µ(A1 ∪ A2) =
µ(A1) + µ(A2\A1). We can expand on this inductively by adding in as many Ai’s
as we want. In fact, as long as we have a countably infinite number of Ai’s all of
this will still hold.

The problem arises when we have an uncountably infinite number of Ai’s. The
difference between countably and uncountably infinite is vital. A set of infinite
numbers is countably infinite if they can be enumerated. For example, the set of
positive integers is countably infinite because you could start listing off all of them
and every positive integer would eventually be included in your list. The same
goes for rational numbers. More thought has to be put into your list but there
is a way of listing off all the rational numbers such that every one is eventually
included. The cardinality of these sorts of sets is ℵ0. For sets that are uncountably
infinite there is no way of enumerating them. For example the real numbers are
uncountably infinite. No matter what method you try to enumerate them with,
there will always be numbers that are never included in your list. The cardinality
of reals and similar sets is ℵ1.

The importance of all of this is that F is not closed under an uncountable
number of unions. This means that if X is the union of an uncountably infinite
number of L∞-balls, then its measure may not be defined. To examine this in the
context of this thesis, we make the following definition. For a Nash equilibrium
σNi, let Nǫ(σ

Ni) denote the region in Σ that is an ǫ-Nash equilibrium with respect
to σNi. Therefore

Nǫ = ∪σNi∈NNǫ(σ
Ni). (A.3)

Since each Nǫ(σ
Ni) is a subregion of Σ, µ(Nǫ(σ

Ni)) is positive for all i. Therefore

µ(Nǫ) =
∑

σNi∈N

µ(Nǫ(σ
Ni)), (A.4)

> 0,

as long as N is at most countably infinite. Under these circumstances, P (Nǫ) is
always defined and positive. In fact, Germano and Lugosi approach this problem
by basically assuming that there are only a finite number of Nash equilibria [30].

Thus, the problem only arises when there are an uncountably infinite number
of Nash equilibria. An example of this is shown in Figure A.1. This game is not
actually a problem since every joint strategy is a Nash equilibrium, however it is
possible to create more complex games which are. To deal with these problem
games we simply consider a single Nash equilibrium, σNi , out of all possible ones.
Since Nǫ(σ

Ni) ⊆ Nǫ, the probability of randomly picking a strategy that is in Nǫ is
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Agent 1

Agent 2
a2,1 a2,2

a1,1 1,1 1,1
a1,2 1,1 1,1

Figure A.1: A simple game with an uncountably infinite number of Nash equilibria.

at least as high as the probability of picking a strategy in Nǫ(σ
Ni), which is positive.

Thus we simply define P (Nǫ) to be positive in this case as well.

To complete this proof we simply pick some ǫ < r(σ)/2. �

Next, we prove Lemma 3 from Chapter 4.

Lemma 3 For a given ǫ-Nash equilibrium σ, let fσ(σ̃) : R
N |A| → R be the change

in regret from moving from the strategy σ to the new strategy σ̃, i.e.,

fσ(σ̃) = r(σ) − r(σ̃). (A.5)

If there is some strategy σ′, such that fσ(σ′) > 0, and ||σ′ − σ|| < d(ǫ) then there
exists some region Y ⊆ Σ such that

P (U(B(σ, d(ǫ))) ∈ Y ) > 0, (A.6)

and furthermore, for all σ′′ ∈ Y , fσ(σ′′) > 0. In words, if there is at least one
strategy σ′ within a bounded region around σ which has less regret, then there is
a positive probability of picking a strategy uniformly at random from that bounded
region that has regret less than σ. Furthermore, this region includes σ′.

Proof: Note that f is continuous (since r is also continuous). Thus by definition
of continuity, for every σ̃ and every δ > 0 there exists an ǫ > 0 such that if the
distance from σ̃ to σ̃′ is less then ǫ than the distance between f(σ̃) and f(σ̃′) is less
than δ.

Let δ = f(σ′)/3. By continuity, there exists some ǫ such that if σ′′ is within an
ǫ-ball of π′,

f(σ′) − δ < f(σ′′) < f(σ′) + δ. (A.7)

Considering the first half of the inequality A.7, and substituting in f(σ′)/3 for
δ, we get

f(σ′) − 1

3
f(σ′) =

2

3
f(σ′) < f(σ′′). (A.8)
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Now since f(σ′) > 0, f(σ′′) > 0. Since the ǫ-ball has a positive measure, we
have found a region of positive measure around σ′ where equation 4.11 is positive.

Therefore, by definition of positive measure, P (U(B(σ, d(ǫ))) ∈ Y ) > 0. �
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Appendix B

Additional Results

The results included in this appendix are included for completeness.

We consider two additional games, shown in Figures B.1 and B.2.

Agent 1

Agent 2
a2,1 a2,2

a1,1 0.5,0.5 0,1
a1,2 1,0 0.1,0.1

Figure B.1: Prisoners’ Dilemma

Agent 1

Agent 2
a2,1 a2,2

a1,1 1,-1 -1,1
a1,2 -1,1 1,-1

Figure B.2: Matching Pennies

Prisoner’s Dilemma is a simple game with only one Nash equilibrium, {(0, 1), (0, 1)}.
As a result, the Naive Expert (e.g. purely random updates to the strategy) is a
reasonably effective method, as shown in Figure B.3. Both WoLF and LFP are also
reasonable efficient experts for this game, as in Figures B.4 and B.5, respectively.

In fact, LFP and the Naive Expert performance equally as well as shown by the
equal performance for all the results in Figure B.5. On the other hand, WoLF by
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Figure B.3: Convergence rates for Prisoners’ Dilemma using FRAME with a purely

random learning algorithm.
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Figure B.4: Convergence rates for Prisoners Dilemma using FRAME with WoLF. Note

data is presented to the 98th percentile. Also note that the difference in scale compared

with Figre B.3.
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Figure B.5: Convergence rates for Prisoners’ Dilemma using FRAME with LFP.
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Figure B.6: Convergence rates for Matching Pennies using a purely random learning

algorithm.

itself does not do as well as the Naive Expert. However, it is interesting to note that
when WoLF is consulted 75 percent of the time, the convergence rate is better than
for either of the experts by themselves. This lends evidence to the ideas that the
Naive Expert has some practical use and that there is value from simply combining
experts.

Matching Pennies is a slightly more complex game with a single mixed Nash-
equilibrium of {(1

2
, 1

2
), (1

2
, 1

2
)}. Again the Naive Expert is able to achieve a reason-

able convergence rate. WoLF’s performance suffers because WoLF has a harder
time converging to a mixed Nash equilibrium than a pure one. However, the con-
vergence rate is relatively unaffected by the value of pe. Although the convergence
rate is decreasing as pe increases, the rate of change is small. This supports the
idea that pe can be very close to 1 and the Naive Expert can still have a definite
impact. On the other hand, pe has very little effect on LFP.
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Figure B.7: Convergence rates for Matching Pennies using FRAME with WoLF.
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Figure B.8: Convergence rates for Matching Pennies using FRAME with LFP. Note the

difference in scale.
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