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Abstract

Distributed hydrological models have been used for decades to calculate and
predict the movement of water and energy within watersheds. These models have
evolved from relatively simple empirical applications into complex spatially dis-
tributed and physically-based programs. However, the evolution of distributed
hydrological models has not involved the improvement of the numerical methods
used to calculate the redistribution of water and energy in the watershed. Because
of this, many models still use numerical methods that are potentially inaccurate.

In order to simulate the transport of water and energy in a hydrological model,
typical numerical methods employ an operator splitting approach. Operator split-
ting (OS) essentially breaks down the set of coupled ordinary differential equations
(ODEs) that define a hydrological model into separate ODEs that can be solved
individually. The dominant operator splitting method in surface water models is
the ordered series approach. Because the ordered series approach treats parallel
hydrological processes as if they happen in series, it is prone to errors that can sig-
nificantly reduce the accuracy of model results. The impact that operator splitting
errors have upon hydrologic model results is, to date, unknown.

Using a new distributed hydrological model, Raven, the impact of operator split-
ting errors is investigated. Understanding these errors will lead to better numerical
methods for reducing errors in models and to shed light on the shortcomings of hy-
drological models with respect to numerical method choice. Alternative numerical
methods - the explicit Euler and the implicit iterative Heun methods - are imple-
mented and assessed in their ability to minimize errors and produce more accurate
distributed hydrological models.
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Chapter 1

Introduction

1.1 Motivation

Distributed hydrological models are used for water resource management, climate

prediction, storm response design and for many other purposes. For water man-

agement decisions to be based on the best possible information, these models need

to be both accurate and computationally efficient. While the accuracy of model re-

sults is often in question, the accuracy of the numerical methods behind the models

is rarely discussed. Attention is instead focused upon the ability of physical process

algorithms (e.g., equations describing evaporation, infiltration, percolation, etc.) to

represent nature. There is a need to improve our understanding of how the choice

of numerical method impacts the accuracy of hydrological models and a need to

improve the numerical methods used in distributed hydrological models.

Many distributed hydrological models are thought to improve in accuracy when

more detailed and/or physically appropriate process algorithms (e.g., for evapora-

tion or snowmelt) are included in the model. These advanced subprocess models

are typically more computationally intense than simpler subprocess models. Their

implementation has been made possible, in part, due to advancements in computer

hardware speed. While these more robust physical process algorithms are thought

to improve the capabilities of the model, little effort has been expended to likewise

improve the core of the model: the global mathematical solvers that connect the

individual process algorithms together. Most models either (1) still use mathe-

matical solvers that were designed to be used for a simpler set of subprocesses or

(2) are assembled without regard for what the most appropriate numerical method
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may be. In addition, the majority of models have hard-coded their mathematical

solvers inside of physical process algorithms, entwining the solvers and processes

and making it extremely difficult to change numerical solver. This difficulty is a

major hurdle to overcome when attempting to understand and improve numerical

models.

A primary goal of this research is to develop an understanding of the short-

comings of the conventional numerical methods used to solve distributed hydro-

logical models. This is a poorly understood topic which has received little or no

attention in the research literature. An objective of this research to demonstrate

how certain mathematical solvers can be improved to increase the accuracy and

efficiency of distributed hydrological models. Through this thesis, it will be shown

that the use of alternative numerical solvers may minimize errors and improve the

numerical accuracy of distributed hydrological models.

1.2 Research Overview

Hydrological models are composed of sets of coupled ordinary differential equa-

tions (ODEs) and partial differential equations (PDEs), used to describe the water

balance and energy balance within a watershed. Numerical methods are required

to solve these systems of coupled ODEs and PDEs. Most hydrologic models cur-

rently apply a method of numerical solution that relies upon operator splitting

(OS). The most conventional OS method, the ordered series approach, uses a tech-

nique whereby hydrological processes that actually occur in parallel are numerically

treated as if they occur in series. The ‘in series’ treatment leads to numerical errors

known as operator splitting errors. Operator splitting errors can impart significant

inaccuracies in model results and lead to large discrepancies that can compound over

time. These inaccuracies have been discussed in groundwater transport literature

[Jacques et al., 2006; Simpson and Landman, 2008; Kanney et al., 2003; Valocchi

and Malmstead, 1992; Carrayrou et al., 2004] but have been mostly neglected in

surface water literature. There is a need to understand the impact of errors pro-

duced by operator splitting methods and how those errors affect the trustworthiness

of model results.

Through the design and construction of the modelling software Raven [Craig

and Snowdon, 2010], the ability to test numerical solvers used within distributed

hydrological models has become much simpler. Raven was specifically designed
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to separate the numerical algorithms from the physical process representations so

that numerical routines could be modified with relative ease. This disentangling of

numerical solvers and physical process representations is the main attribute that

distinguishes Raven from existing distributed hydrological models. Raven possesses

the unique ability to allow the modeller to change not only the physical process

algorithms used to model a basin but also allows the user to change the numerical

solver. By using Raven to test multiple numerical methods at multiple timesteps,

operator splitting error impacts can be explored and be better understood. Raven’s

design, construction and operation is further described in chapter 3.

Several numerical methods have been added to Raven’s library in order to in-

crease the accuracy of distributed hydrological modelling while maintaining com-

putational efficiency. These solvers have been used within Raven to simulate the

water balance of the Nith River Basin in southwest Ontario, Canada. The solvers

were first used to establish “mathematical truth” for the simulation. Via compari-

son with the truth, the performance of various numerical methods were assessed for

accuracy and numerical error generated by numerical method choice. The improved

numerics are shown to more accurately solve the mathematical problem statement

(i.e., coupled ODEs) than the traditional numerical solvers used within distributed

hydrological models.

1.3 Thesis Organization

This thesis is organized into several chapters that will explain the background of

this research, the methods used to complete it as well as the results and discussion

that highlight its value. The following sections provide a brief overview of each

chapter in this thesis.

Chapter 1 Overview: Introduction

Chapter 1 provides an introduction to the research problem. The section de-

scribes the motivation behind this research, an overview of the research completed

and an outline of the chapters within this thesis.

Chapter 2 Overview: Background

The research background in chapter 2 includes a comprehensive literature re-

view, divided into two sections. The first section covers the current state of knowl-

edge about distributed hydrological models and the methods used to solve them.
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The second section discusses the mathematical background of current model meth-

ods and background on higher order methods that have been implemented within

the software, Raven.

Chapter 3 Overview: Methods

Chapter 3 explains in detail how Raven was designed and implemented, as well

as how the numerical solver routines were implemented into the distributed hydro-

logical model. The final part of this chapter discusses the mass balance accounting

that deals with error checking and the maintaining of mass within the system.

Chapter 4 Overview: Results and Discussion

This chapter describes the test site used during modelling tests and provides

details of the model parameters used during numerical method testing. This chapter

outlines the results of the modelling tests discussing the benefits and shortfalls of

multiple numerical schemes when applied within distributed hydrological models.

Further discussion focuses on the significance and impacts that the results have

within the current state of research in this field.

Chapter 5 Overview: Conclusions

A conclusions chapter (Chapter 5) summarizes this research and highlights fu-

ture directions that could be taken within this area of study.

Supplemental Sections Overview: Appendices and References

Appendices and a reference section are found at the end of this thesis.
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Chapter 2

Background

In order to properly understand the impacts and significance of numerical method

choice in hydrological models, it is necessary to first understand what hydrological

models are and how they function. The following sections address what hydrological

models are, the structures and capabilities of select existing hydrological models,

the numerical methods used in those models and the introduction of additional

numerical methods for use in distributed hydrological models.

2.1 Literature Review

2.1.1 Hydrological Modelling

Hydrological models are used to predict the movement of mass and/or energy

through the hydrological cycle, depicted in figure 2.1. When modelling, the hydro-

logical cycle is typically thought of in terms of storage compartments and hydrologic

processes. Water and energy are stored in a set of storage compartments (e.g., soil,

lakes, aquifers) and hydrologic processes (e.g., infiltration, runoff, percolation) move

water and energy between these compartments.

Hydrological models attempt to provide a quantitative understanding of hydro-

logic regimes by establishing continuous mathematical relationships between the

various components of the hydrological cycle [Crawford and Linsley, 1966]. In gen-

eral, a numerical hydrological model divides up a watershed into smaller parts (e.g.,

grids, subbasins) and then, for each individual area, calculates the change in storage

(e.g., water and/or energy) over time due to the influence of hydrological processes
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Figure 2.1: Hydrologic cycle showing hydrologic processes and storage units, from
USGS [2008]

(e.g., evaporation, infiltration, etc.). Hydrological processes are defined in hydro-

logical models by algorithms that mathematically represent how water or energy

is redistributed over time. Each hydrological process is usually represented using

a physically or conceptually based process algorithm [Dingman, 2002]. Physically-

based process algorithms use equations that are derived from basic physics (i.e.,

conservation of mass/ energy, diffussion, etc.) and conceptually-based process al-

gorithms use empirical or regression relationships established from field data (i.e.,

cases where a process is considered to be proportional to the amount of water/

energy stored in a particular storage unit) [Dingman, 2002]. These two types of

process algorithms make up the majority of hydrological model components.

Many hydrological modelers fail to evaluate the fluxes that occur in the individ-

ual storage compartments and rely only upon total watershed outflow in order to

justify the accuracy of the simulation. As a result, these models do not provide an

understanding of what is happening with the processes involved within the water-

shed [Lee et al., 2007]. The failure to provide an understanding of process activity

results in many models falling short of being robust, efficient and accurate for sim-

ulating distributed hydrological systems. A model needs to be able to simulate all

aspects of its intended use and as models become more complex (and subsequently

all encompassing), it becomes more difficult to maintain an accurate representation

of the myriad of interactions within a watershed. In general, simple models (e.g.,
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models representing fewer processes) are more effective at simulating their intended

goal than complicated models (e.g., several processes or highly discretized models).

However the use of simple models is limited to simple problems and situations [Bo-

rah et al., 2007]. It is often necessary to find a balance between a simple model

and a complex model in order to have a robust model that is accurate and efficient

[Borah and Bera, 2003].

Hydrological models left the world of manual calculations and entered the world

of computer simulations in the 1950s and 1960s. Singh and Frevert [2006] reports

that the first digital hydrological model available for distributed use was the Stan-

ford Watershed Model IV . It was used to predict streamflows over short timescales

provided enough meteorological data was available. Since then, models have con-

tinued to evolve and grow becoming more complex with increased capabilities. This

means that more processes and more storage compartments are included in models,

which necessitates an increase in the complexity of the algorithms that define the

model.

2.1.2 Distributed Surface Water Modelling

Hydrologic systems are typically modelled using deterministic or stochastic models.

Deterministic models use variables that have a single fixed value at any point in

time whereas stochastic models use variables that are random and are described by

probability distributions [Chow et al., 1988].

For the purposes of this thesis, only deterministic models will be reviewed.

As previously mentioned, a deterministic model is one where the outcome of the

model is determined through known relationships between state variables and their

interactions. A deterministic model will always produce the same results given

the same input data. Deterministic models can be classified into two categories;

lumped and distributed [Chow et al., 1988]. Lumped models treat a watershed as

a single system without lateral variability whereas distributed models are spatially

discretized. Both types of model require temporal discretization, simulating the

movement of water within a watershed over a period of time [Dingman, 2002].

However, because distributed hydrological models are discretized, they can simulate

and predict the spatial variability of water and/or energy movement within a basin.

They are capable of calculating watershed runoff and the amount of water routed

through channels and rivers, like a lumped model, but can also be used to calculate

other diagnostic variables, such as soil moisture.
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Distributed models can be spatially discretized into grids, hydrological response

units (HRUs) and/or grouped response units (GRUs). Each sub-basin of a wa-

tershed is composed of one or more hydrological response units that are used to

characterize the area to be modelled. The grids and response units are used to

represent unique combinations of land use, land cover and soil characteristics that

are used to parameterize the model [Dingman, 2002]. Each grid’s surface char-

acteristics are described through the use of digital elevation maps (DEMs) or its

slope, aspect and area. The sub-basins require spatially distributed meteorological

data such as temperature, precipitation, wind speed and other necessary forcing

functions (e.g., shortwave radiation, longwave radiation).

Distributed hydrological models are capable of modelling using different simu-

lation durations in order to achieve the best representation of a system. Models are

typically designed for either short-term forecasting (e.g., storm events) or long-term

forecasting [Borah and Bera, 2003, 2004]. Short-term forecasting is beneficial for ur-

ban design and storm water planning. Long-term forecasting is necessary for water

budget management and climate prediction. Both short-term and long-term simu-

lations provide important information for the understanding of and interpreting of

water resource data.

2.1.3 Numerical Methods for Distributed Surface Water

Modelling

Existing distributed surface water models are typically composed of a number of

mathematical submodels that may individually use a variety of numerical methods

including numerical integration, root-finding and/or finite difference methods. Most

of these submodels are designed based upon the principles of mass and energy

conservation. Alternatively, these submodels may be ‘simple’ empirical models

that are based on the regression of observation data.

Part of the difficulty with existing models is the inability to cater the submodels

of an individual model to a complex problem. This is because the submodels of

existing models have been designed with critical assumptions (e.g., that watersheds

can be characterized by the combination of unconnected hydrological response units

(HRUs) that are defined by land use and soil types) [Easton et al., 2008]. While

this may work for locations with deep uniform soil profiles or locations where runoff

is defined via infiltration-excess methods, this leads to models that are unable to
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properly replicate various real world conditions (e.g., multiple connected HRUs,

locations with shallow soils) and are therefore inaccurate for simulations [Easton

et al., 2008].

Numerical Methods Used in Existing Models

Multiple numerical methods are employed in distributed hydrological models to

solve and aggregate the influence of multiple process algorithms at every timestep.

The traditional numerical method used to simulate hydrological systems is a form

of operator splitting here called an “ordered series approach”. Ordered series ap-

proaches use a fixed physical process order during a timestep. The redistribution

of water and/or energy defined by the process algorithms are simulated in sequence

and not treated as simultaneous like they occur in nature. Importantly, the or-

dered series is only at the global level; for each process submodel, finite difference

schemes, finite element methods and/or analytical methods can be used.

As part of this research, a number of existing models and their numerical im-

plementation were reviewed. The models surveyed represent a small sample of

distributed hydrological models that are used to simulate surface water systems. A

summary of these prototypical models follows. These models differ in discretization,

process representation and numerical methods.

SWAT, a long term continuous model that was developed to predict water man-

agement, sediment and agricultural chemical yield impacts within watersheds [Bo-

rah and Bera, 2003, 2004] uses a numerical setup that includes several methods

that solve for rainfall, overland runoff, channel runoff and subsurface flow. SWAT

calculates the water balance through accounting daily or subdaily water budgets

(e.g., SCS curve number, empirical equations) instead of mass conservation equa-

tions (e.g., kinematic wave, diffusive wave, dynamic wave) as can be found in many

other models [Borah and Bera, 2003, 2004]. It uses a non-iterative ordered series

approach and maintains a fixed timestep throughout simulations.

TOPMODEL, a conceptual semi-distributed topography-based model, breaks

watersheds into grids or subwatershed units [Beven, 1997b]. TOPMODEL uses a

raster grid of elevations in conjunction with its multiple direction flow algorithm

to calculate the topography distribution of the watershed [Beven, 1997a]. A linear

routing algorithm is used to calculate routing for the subwatershed [Beven, 1997a].

TOPMODEL uses an explicit Euler scheme to solve the model over time which can

result in processes like baseflow increasing to a point where a basin can completely

drain in one timestep [Beven, 1997b].
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VIC, the Variable Infiltration Capacity model, is composed of process algorithms

that are based on variable bucket concepts used in land surface schemes [Kavetski

et al., 2003; Liang et al., 2003]. VIC considers both energy and water balances and

is capable of representing multiple vegetation covers [Yuan et al., 2004]. VIC breaks

down watersheds into subgrids and is capable of spatial variability with respect to

precipitation and infiltration in order to calculate the water and energy balances

[Yuan et al., 2004]. While not tied to any particular numerical method, Kavetski

[2003] implemented the VIC model using an operator splitting method termed by

Kavetski as ‘the method of fractional steps’ [Kavetski et al., 2003]. The operator

splitting method used in VIC is similar in operation time to a Runge-Kutta second

order method and therefore implies that the use of an explicit Euler method would

half the runtime for VIC [Kavetski et al., 2003]. An implicit Euler method is used

to solve for evapotranspiration and base flow and an analytical integration method

for quickflow [Kavetski et al., 2003]. ARNO (a semi-distributed conceptual model

named for the Arno river basin in Italy [Todini, 1988, 1996]) subsurface/ base flow

runoff handles the slow flow calculations and an excess infiltration method is used

for the quick flow runoff calculations [Liang et al., 2003].

WATFLOOD, a storm event model, is a combination of physically-based and

conceptual equations that represent hydrological processes [Bingeman et al., 2006].

The processes that define vertical water movement are conceptually-based while the

grid-to-grid routing equations are physically-based [Bingeman et al., 2006]. WAT-

FLOOD does not use an advanced numerical method, its solver is based on the

traditional ordered series method [Soulis, 2009]. WATFLOOD can have a variable

timestep that is usually at a daily or subdaily interval. However, when WAT-

FLOOD is run using a daily timestep, the model still performs calculations at

hourly intervals [Kouwen et al., 2005].

CRHM, the Cold Regions Hydrological Model, was designed as a modular hy-

drological model with the intended use for modelling cold regions (e.g., northern

Canada). The modular framework allows for the modification of process routines

and the addition of new routines with ease [Pomeroy et al., 2007]. CRHM does not

use advanced numerical methods to solve for individual subprocess results since

most of the hydrological process modules are designed from physically-based pro-

cess algorithms. This decreases the need for calibration but limits the model to pro-

cesses that have already been physically modelled [Pomeroy et al., 2007]. CRHM

uses an ordered series method to calculate hydrological model results. The order

that CRHM calculates the redistribution rates of the processes is defined by the
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order that the process modules are selected.

Lastly, FUSE, the Framework for Understanding Structural Errors, was de-

signed to analyze the structural errors inherent within existing hydrological models

[Clark et al., 2008]. Using VIC, TOPMODEL, SACREMENTO and PRMS for

structural frameworks, FUSE is being used to analyze the impacts of model struc-

tural errors. FUSE uses the Newton-Raphson method, an implicit scheme with

adaptive timesteps which requires iterative computations to achieve results within

a specific convergence criteria [Clark et al., 2008]. The implicit scheme was deemed

more accurate than the fixed-step ordered series explicit Euler method [Kavetski

et al., 2003]. During the FUSE simulation, the operation order is fixed for the

simulation duration.

Known Issues

The global numerical methods used in existing models are subject to numerical error

that can arise due to insufficient timestep size, threshold behaviour and/or operator

splitting. The following sections discuss these individual sources of numerical error

in detail.

Timestepping Issues

Timesteps, the length of time that a model advances between calculations, have

a large effect on the accuracy of a model. Timestep size in existing models may cause

mathematical accuracy issues because the timestep increment is not an appropriate

size to capture fine details (e.g., a model run with daily timesteps will not be able

to represent storm events with high accuracy). Unfortunately, as timesteps shrink,

computational runtime increases. For this reason, a short-term model is likely to be

run using smaller timesteps than during a long-term model simulation. Short-term

models use smaller timesteps because storm events are generally subdaily acivities

with high variability in storage compartments. The smaller timesteps will produce

more accurate results.

Multiple existing models (e.g. SWAT,FUSE) use only daily timesteps; though

some are capable of using variable timesteps [Borah and Bera, 2003]. Models run

using a daily timestep are prone to inaccuracies since the model is unable to repli-

cate the sub-timestep details of the simulation. For example, a temperature-based

process algorithm (e.g. snowmelt) may not accurately represent the process if a

mean daily air temperature is used as opposed to a mean hourly air temperature.

Daily averaged forcing functions may not represent the maximum and minimum

values appropriately and therefore a process that may require the extremes will fail
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to model well.

Any numerical approximation of a transient ODE requires time to be discretized

into a number of timesteps. The finer the time discretization (i.e., smaller the

timestep), the more accurate the approximation. The degree of accuracy depends

on the size of the timestep used and the numerical method used to solve the model

or submodel (e.g., ordered series, finite difference, etc).

A variety of models use different timestep sizes and have limitations in their

timestep size flexibility and variability. SWAT performs well for simulating monthly

flow values, but performs inadequately when used for daily results [Borah and Bera,

2004] because it uses a fixed timestep of one day [Borah and Bera, 2003]. Overall,

this leads to the understanding that SWAT’s timestep is too large to properly rep-

resent the intricacies of a watershed with a high degree of accuracy. Similar errors

can be expected in other models with similar timestep requirements. TOPMODEL

uses a variable timestep that can range from 1 to 24 hours [Beven, 1997b]. This

provides the opportunity to increase the numerical accuracy of the model by reduc-

ing timestep size (especially around storm events). VIC can be used to model daily

streamflow, monthly streamflow and predict future water resources [Yuan et al.,

2004] using two timescales that can be used to calculate quickflow and slow flow

runoff conditions [Liang et al., 2003]. This does not provide much flexibility or

the ability to capture fine details. CRHM uses a variable timestep with no limit

to the size of that timestep. FUSE was built to use daily timesteps which can

produce numerical inaccuracies. Those inaccuracies may be reduced due to the

use of higher order numerical methods (e.g., Newton-Raphson method), but time

discretization errors are still an issue. An updated balance, reflecting current com-

putational capabilities, needs to be found between timestep size and hydrological

model runtime.

Threshold Issues and Stiff Ordinary Differential Equations

Threshold behaviour constrains many processes in surface water models [Kavet-

ski et al., 2006]. These thresholds, where state variables or fluxes are constrained

to a limited range of values, limit the flow and transport of mass and energy within

the system. They act as switches, turning processes on and off as conditions are

met (e.g., turning off infiltration when maximum soil moisture capacity is reached).

A simple example of a threshold constraint is the degree day snowmelt model. In

the real world, the rate of snowmelt increases gradually as the threshold point (e.g.,

melt temperature) is approached (Blue line on figure 2.2). However, within numer-
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ical models, this transition is treated as instantaneous (Red line on figure 2.2). The

presence of thresholds affects mathematical accuracy because the conditions that

dictate when the processes turn on or off are often sensitive to the current solu-

tion, which is, in turn, sensitive to the numerical method [Kavetski and Kuczera,

2007]. These threshold constraints, while typically physically-based, can produce

numerical problems when trying to model a basin as they are extremely non-linear.

Non-linearity reduces the validity of error bound estimates for ordered series and

Runge-Kutta methods, which assume continuous, threshold-free differential equa-

tions. In fact, due to the presence of thresholds, surface water models may be

considered infinitely non-linear. The risk of over-draining, over-filling or having

spontaneous behavioral switches within processes will generate complications that

can produce errors in the model results. All surface water models contain these

threshold constraints and no methods have yet been produced to fully correct for

them.

Figure 2.2: Simple example of threshold behaviour in models

A closely related problem is the issue of stiffness of the system of ODEs defining

a hydrological model. A set of ODEs is considered stiff when the timestep size

needed for stability is much smaller than the timestep size needed for accuracy

[Hoffman, 1992]. This implies that timestep size needs to be reduced beyond the

point needed to achieve mathematical accuracy in order to maintain the stability

of the solution. Other criteria for stiff ODEs include when the timestep needed for
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stability is so small that significant round-off errors are produced [Hoffman, 1992].

This occurs in surface water models often due to the use of coupled ODEs that

each would independently require multiple timestep sizes. For stability, in order to

solve the coupled ODEs with a high degree of accuracy, the timestep size used for

a simulation needs to reflect the smallest timestep size in the coupled ODEs. Using

the smallest timestep will increase the running time of a simulation and is therefore

often undesirable. This leads to the use of inappropriate timestep sizes in models

which can potentially produce large inaccuracies in results. The use of higher order

numerical methods can help to overcome some of the problems inherent in stiff

ODEs.

Model Numerical Method Timestep Thresholds

SWAT ordered series daily yes
TOPMODEL explicit Euler variable (1-24hr) yes
VIC ordered series 2 timescales yes
WATFLOOD ordered series variable yes
CRHM ordered series variable (any) yes
FUSE Newton-Raphson daily yes

Table 2.1: Summary of numerical methods in existing models

Operator Splitting Issues

Operator splitting may have a significant impact on the accuracy of models

(see section 2.2.1) and is used in all models surveyed in table 2.1. As previously

stated, the ordered series approach treats the set of coupled ODEs that define the

hydrological model as an ordered list of processes to be solved successively in time.

As each physical process rate is calculated, mass and/or energy is redistributed

between storage units. At every timestep, the ordered series approach may produce

errors as the stored water/ energy of the system are redistributed before the next

physical process rate is calculated. These errors may be compounded from previous

timesteps and may theoretically result in a significant impact on model accuracy

by the end of the simulation. This introduces concerns regarding how model results

can be used confidently for resource management when accuracy is in question.

2.2 Mathematical Background

Hydrologic models are defined by the algorithms and equations which they use to

describe the redistribution of water and energy in the natural environment [Zhang
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et al., 2008]. In order to solve the defining set of mixed ODEs/PDEs, the problem

is typically discretized in time and space and solved using a number of mixed

numerical methods. Most numerical methods for distributed surface water models

(with the known exception of FUSE) use the ordered series approach as the global

solver (i.e., the method used to connect the individual processes)(see table 2.1).

The local solver (i.e., used to simulate a single process) might also use ordered

series (e.g., most snow balance models) or might use a finite difference approach

(e.g., soil water redistribution by solving Richards equation in CLASS [Verseghy,

1991]).

2.2.1 Operator Splitting and Operator Splitting Errors

Operator splitting is a popular technique used to solve complex problems where

the original mathematical problem is split into a sequence of more manageable

problems [Faragó, 2008]. Time-splitting is used to uncouple and solve the governing

equations of a system often relating to transport/reaction, advection/dispersion or

another practical problem involving energy balance and/or mass balance [Kanney

et al., 2003]. The main goal in operator splitting is to replace the original model

with one consisting of groups of sub-processes that can then be solved successively

(rather than simultaneously) in time, allowing a solution to be obtained from several

‘simpler’ systems instead the one large one [Faragó, 2006]. However, in order to

properly model the complex physical world, it is necessary to accurately model

the effects of several different processes all acting concurrently [Faragó and Havasi,

2001] and understand the errors associated with those methods. At a small enough

timestep, the successive and concurrent solutions should be identical.

Equations 2.1 - 2.5 present the general concept of how operator splitting ap-

proaches are applied within a model. For illustration, the following lone ODE is

used:
∂φ

∂t
= M1 +M2 (2.1)

where φ represents a storage unit [L], t is time [T ], M1 and M2 are the influence of

hydrological processes [LT−1].

This simple example can be used to explain how operator splitting is imple-

mented in hydrological models. The ordered series method solves the above equa-
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tion as follows:

φn+1
∗ = ∆tM1 (φn) + φn (2.2)

φn+1 = ∆tM2

(
φn+1
∗
)

+ φn+1
∗ (2.3)

i.e., first process M1 modifies the storage, then M2 uses the results of that calcula-

tion to obtain φn+1.

In contrast, the Euler method can be expressed as:

φn+1
∗ = ∆tM1 (φn) + φn (2.4)

φn+1 = ∆tM2 (φn) + φn+1
∗ (2.5)

i.e., the process flux M2 uses delayed information from the start of the timestep.

Both methods separate the information of process M1 and M2.

The primary difference between these two applications (both forms of operator

splitting) is that the Euler method does not use the most recent storage unit value to

calculate the change in the storage unit. The ordered series approach continuously

modifies storage unit values over the course of the timestep, using the most recent

information, whereas the Euler method calculates the redistribution rates for all

simulated processes using the storage values from the beginning of the timestep

and only applies the changes to the storage units afterwards.

The primary advantage of OS methods is that different numerical schemes can

be used to solve the subcomponents of a model at each stage due to the uncoupling

of the system’s governing equations [Valocchi and Malmstead, 1992]. This is why

OS is used almost exclusively in surface water models, which are always built from

component submodels. More efficient or appropriate solvers can be applied to

the individual elements of the system than can be applied to the fully coupled

algorithms [Kanney et al., 2003]. Other advantages that should be mentioned

include the easy implementation of OS when different modules or codes are coupled,

it is possible to use multiple numerical methods to solve the uncoupled system and

codes can be readily modified for parallel computation [Jacques et al., 2006].

Even though the use of operator splitting methods is ubiquitous, no studies have

been found that report the effects of different operator splitting methods within

surface water models. However, several studies have looked at the impacts of OS in

subsurface water modelling. Methods for minimizing operator splitting errors used
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by Kanney and Carryrou [Kanney et al., 2003; Carrayrou et al., 2004] have been

applied to advection/ dispersion problems but are not appropriate for minimizing

errors in surface water models. Typically, non-iterative OS methods are used when

designing numerics and algorithms [Simpson and Landman, 2008]. However, OS

errors can theoretically be reduced if iterative methods are used [Kanney et al.,

2003]. The use of high order iterative numerical schemes can reduce the operator

splitting errors and solve the system of coupled ordinary differential equations as if

it was a simultaneous operation.

OS methods are applied exclusively in surface water models. In fact, many

hydrological model developers feel that a specific order of hydrological processes

is ‘correct’ [Pomeroy, 2008]. Nature performs all hydrological process operations

concurrently, so any ‘order of operation’ specified by a user is not representative of

the actual environment. Even with only a few hydrological processes, the operation

order can vary in multiple ways. These variations can lead to large differences in

the end results from the model.

2.2.2 Runge-Kutta Methods

In most fields, coupled ODEs are most commonly solved using Runge-Kutta meth-

ods. Unlike the ordered series approach, when using Runge-Kutta methods, the

order in which the processes are calculated does not matter. The Runge-Kutta

methods calculate an approximation to the solution for the entire system of ODEs

before applying that solution. This approximation is independent of the operation

order of the solution. This can replicate the ‘simultaneous’ solution of the system.

In this thesis, both the explicit Euler and implicit iterative Heun methods are tested

and evaluated to see their impact on hydrological model results.

Runge-Kutta methods are based on rearrangement of the Taylor series expansion

of the dependent variable. For the Euler method, which is a 1st order method,

only terms from the Taylor series expansion that are 1st order are included in the

calculation of the solution. Likewise, the Heun method, a 2nd order method, only

uses terms from the Taylor series expansion that are 2nd order and below [Hoffman,

1992].

All Runge-Kutta methods are used to solve an initial value problem, here ex-
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pressed as a single ODE:

∂φ

∂t
= f(t, φ), φ(0) = φ0 (2.6)

where ∂φ
∂t

is the finite difference approximation of the solution, f(t, φ) is a function

of time and an independent variable, φ is the independent variable of the initial

value problem and φ0 is initial value of the independent variable.

The explicit Euler Method takes the form:

φn+1 = φn + ∆tfn (tn, φn) (2.7)

where φn+1 is the solution to the problem for the current timestep, φn is the solution

from the previous timestep, ∆t is timestep size, fn is a function of t and φ from the

previous timestep and tn is the time at the previous timestep. The solution and

variables from previous timesteps are equal to the solution and variable values at

the start of the current timestep.

The explicit Euler method makes a prediction of the solution to the ODE by

using information from only the beginning of the timestep. It uses the initial values

of the current timestep in an attempt to approximate the exact solution [Hoffman,

1992]. This approach is a 1st order finite difference scheme which is prone to

truncation errors that create inaccuracies in results.

The Heuns method, a 2nd order numerical scheme, takes the form:

φPn+1 = φn + ∆tfn (tn, φn) (2.8)

φCn+1 = φn +
1

2
∆t
(
fn + fPn+1

)
(2.9)

where φPn+1 is the prediction of the solution for the current timestep, φCn+1 is a

corrector step for the current timestep and fPn+1 is the simple ODE function using

t and φ from the prediction step.

The Heuns method uses an explicit Euler scheme to make a prediction of the

solution and an implicit method to correct that prediction. The equations above

show the predictor (equation 2.8) and the corrector (equation 2.9). This method

uses information from the beginning of the timestep to make the initial prediction

and then attempts to correct that prediction using information from a combination

of the initial information and the predicted information [Hoffman, 1992]. This

approximation is more accurate than the Euler method, however it does take more
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computational runtime.

An iterative Heuns method can also be used to solve ODEs and takes the form:

φ0
n+1 = φn + ∆tf (tn, φn)

φ1
n+1 = φn +

1

2
∆t
(
f (tn, φn) + f

(
tn+1, φ

0
n+1

))
φ2
n+1 = φn +

1

2
∆t
(
f (tn, φn) + f

(
tn+1, φ

1
n+1

))
(2.10)

...

φkn+1 = φn +
1

2
∆t
(
f (tn, φn) + f

(
tn+1, φ

k
n+1

))
The iterative Heuns method performs the same initial two steps that are done

to solve the non-iterative Heuns method. In order to produce a more accurate

approximation of the exact solution, the Heuns method can use further corrector

steps in an attempt to converge the solution to a ‘best’ approximation. After each

corrector step, the solution approximation is checked against the user specified

convergence criteria to see if convergence (as defined by the user) has been reached.

This numerical scheme is more accurate than the non-iterative Heuns method and

Euler method, but is also more complicated to implement, particularly for a system

of ODEs. Equations and an extension to the solution of multiple ODEs using the

discussed numerical methods is addressed in chapter 3.

2.3 Background Synopsis

As has been discussed, there is a lack of studies into the significance and impacts

of operator splitting errors in distributed surface water models. The author was

unable to find any literature addressing operator splitting issues with regards to

distributed surface water models. However, it is clear from related literature that

the choice of numerical method has a large impact upon the results of solved cou-

pled ODEs. It would be beneficial for additional studies to be done to provide

detailed analyses into how detrimental operator splitting errors are with regards

to other aspects of hydrological modelling such as climate/ carbon modelling and

contaminant transport modelling. Other studies that would be helpful include re-

search into the effects of higher order numerical methods and their implementation

for these hydrological model extensions.
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Chapter 3

Methods

The following section discusses the methods, software design and algorithms used

to complete the objectives of this thesis: (1) to understand and quantify operator

splitting errors within hydrological models and (2) to test better approaches for

numerical implementation of hydrological models. Section 3.1 describes the design

and functions of the object-oriented software package Raven. The two sections

(3.2.1 & 3.2.2) that follow discuss the implementation of ordered series methods

and Runge-Kutta methods within Raven. The final section shows how the mass

balance budget is maintained and verified.

3.1 Object Orientation

3.1.1 Motivation

A new hydrological model, Raven [Craig and Snowdon, 2010], has been designed

and built to understand the impacts of operator splitting (OS) and to test numerical

methods in distributed hydrological models. It was uniquely designed to maintain

a separation between physical process representations and numerical solvers. This

design choice eases the introduction and testing of a variety of numerical solution

methods for use in distributed hydrological models. Rather than use an existing

hydrological model, which does not have multiple numerical method solvers, Raven

has been designed and built with the ability to add and use multiple numerical

solvers. The use of multiple numerical methods is able to be implemented with

little to no change required to the bulk of the model software. Raven’s class struc-

ture, parsing libraries, initial numerical solvers (e.g., ordered series, Euler) and the
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original input files were designed and built by James R. Craig [Craig and Snow-

don, 2010]. The author, throughout this research, added to the design and built

new physical process routines, new numerical solvers (e.g., Heun, iterative Heun)

and new data structures as were needed to emulate existing hydrological models,

including VIC and TOPMODEL.

Raven was designed and built through the use of object-oriented programming.

Object-oriented programming focuses on using discrete, reusable sections of code,

built into modules (objects) that are capable of manipulating their own data struc-

ture [Booch, 1994]. A class defines the abstract characteristics of a category (e.g.,

Class River might contain depth, watershed area, etc.). An object is a particular

instance of a class (e.g., Mackenzie could be an object of the River class).

Using object-oriented programming in the C++ language, Raven was designed

using multiple classes and objects to represent the various elements within the

model, such as rivers, soils, etc. By creating these objects and classes, Raven is a

robust model with extensive flexibility. This allows Raven to be adapted with ease

to suit the needs of the model and modeller.

3.1.2 Distributed Surface Water Modelling Library: Raven

3.1.2.1 Overview

Distributed hydrological models make a prediction of mass/ energy values stored

within one or more storage units (e.g., snow, soil, surface water, etc.). To calculate

the mass/ energy balance within these storage units, it is necessary to divide up

a watershed into multiple homogenous hydrological response units (HRUs). The

HRUs generally share similar characteristics including land type, land use, soil

profile and vegetation cover. In each HRU, multiple storage units exist and can

be thought of as buckets containing the water or energy that is present in a par-

ticular location within a hydrological response unit. Hydrologic processes act to

redistribute the water and energy between the storage units. The redistribution

is mathematically represented as coupled sets of ODEs and PDEs for each HRU.

After the ODEs and PDEs for the HRUs are defined, storage within an HRU can

be solved using various numerical methods that vary in their computational accu-

racy and efficiency. Each HRU can have its mass routed to and through channels

that connect the multiple HRUs and allow hydrographs to be created that describe

channel flow over time.
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Most deterministic hydrological models are based upon a system of ordinary

differential equations that are coupled and serve to define the mass/ energy bal-

ance in the storage units of an HRU. The general system of mass/ energy balance

equations can be described mathematically with:

dφi
dt

=
NS∑
j=1

Mij({φ}, {P}) +Qi({φ}, {P}) for i=1 to NS (3.1)

where φi is the ith water/ energy storage variable [L3 or EL2], Mij is the combined

rate of one or more hydrological processes that moves water or energy from the jth

storage unit to the ith storage unit [LT−1] which is a function of some subset of

the vector of state variables, {φ} and the physical and empirical parameters, {P}
that define the HRU. Qi [LT−1] is an external flux to or from the HRU (typically

precipitation or surface water gains/losses). NS represents the number of state

variables that are being simulated in a model run [-]. All storage values are divided

by the watershed area.

Specific mass balance equations are used within Raven to describe the flow of

mass and energy to and from the various storage units. These mass/ energy balance

equations are defined by the user to dictate which storage units receive and lose

mass and energy at rates defined by the physical process algorithms. These ‘rates of

change’, Mij, are calculated by physical process algorithms and determine the net

amount of water and/or energy that is transferred from or to a storage compartment

during a timestep. Multiple mass/ energy balance equations can be formulated at

one time and each one will define the connections that exist between individual state

variables. As an example of how these systems of ODEs are structured, equation 3.2

and equation 3.3 are used by Clark et al.[2008] to define the mass balance within

FUSE when configured to replicate the variable infiltration capacity (VIC) model

for the upper soil layer and lower soil layer respectively .

∂S1

∂t
= (Pp − qsx)− e1 − qp − qif − qufof (3.2)

∂S2

∂t
= qp − e2 − qb − qsfof (3.3)

where S1 is the upper soil layer [L], S2 is the lower soil layer [L], Pp is precipitation

[LT−1], qsx is surface runoff [LT−1], e1 is upper soil evaporation [LT−1], qp is preco-

lation from upper to lower soil layer [LT−1], qif is interflow [LT−1], qufof is overflow

from free storage in the upper soil layer [LT−1], e2 is evaporation from the lower
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soil layer [LT−1], qb is baseflow [LT−1] and qsfof is overflow from free storage in the

lower soil layer [LT−1]. Equations 3.2 and 3.3 are specific mass balance equations

that follow from the general mass balance equation (equation 3.1). S1 and S2 cor-

respond to φ, a storage unit where water or energy amounts are temporarily stored.

Pp corresponds to Qi, the external forcing input of precipitation. Variables q and e

are physical process algorithms that corresponds to Mij, the rates of hydrological

fluxes.

Mass balance equations similar to equations 3.2 and 3.3 can be replicated in

Raven to define all aspects of a basin’s mass/ energy flow between state variables.

They can be constructed to reflect any dynamic that is desired and this adds to

Raven’s high flexibility and robustness.

3.1.2.2 Raven: Operation

The pathway of a simulation within Raven is shown in figure 3.1. When the sim-

ulation begins, Raven parses four input files that define the characteristics of the

simulation. The main input file (*.rvi) contains information detailing the model

start date, the simulation duration, identifies the solver method, the names and

number of state variables and the physical processes with their connections that

will be used during the simulation. The HRU properties file (*.rvh) provides infor-

mation about the river/channel class, the HRU properties (e.g., index, elevation,

area, location, land use, vegetation cover, soil profile, slope and aspect) and defines

the initial conditions for all state variables. The timeseries property file (*.rvt)

contains all meteorological gauge information. It provides the number of and name

of all gauges as well as the daily rain, snow, minimum temperature and maximum

temperature values for the model duration. The Raven class property file (*.rvp)

defines the soil profiles (e.g., percent sand, clay, organic soil breakdown), all soil

characteristics (e.g., hydraulic conductivity, thermal properties, etc.), vegetation

classes (e.g., land cover type, vegetation properties), seasonal vegetation properties

and aquifer properties.

After the input files have been parsed, the model is initialized. At this point,

tracking of the mass/ energy balance is started, the timeseries for the meteorological

gauge data is loaded and the basins, subbasins, HRUs and physical processes are

defined and initial conditions are set. This information is used in combination to set

the initial mass/ energy balance values. The timestepping portion of the simulation

begins here. The initial conditions are used to update all forcing functions (e.g.,
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Figure 3.1: Flowchart of Raven’s general program flow. The specifics of (1),(2) and
(3) are shown in figure 3.2, figure 3.3 and figure 3.4
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precipitation values, temperature values, etc. for the current timestep) and to

define the potential evapotranspiration for the first timestep. If no errors from the

input files or forcing functions have been flagged, the simulation is ready to progress

forward through the timesteps until completion.

The simulation progresses by marching forward in time, solving the mass/ en-

ergy balance for each discrete timestep. To solve the water/ energy balance over the

current timestep, Raven first updates the forcing functions (e.g., precipitation val-

ues, air temperature values, etc.) and then proceeds to use the numerical solution

method as specified in the main input file to calculate the ‘rates of change’ (Mij)

for each physical process (e.g., infiltration, runoff, canopy drip, etc.). Mass and/or

energy is moved from and to the storage units (e.g., soil, canopy, depression) based

on the rates of change as determined by the process algorithm. When the conditions

of the numerical solver have been satisfied for the current timestep, the output files

are updated. The process is repeated for each timestep until completion.

3.1.2.3 Hydrologic Processes

Raven has an extensive library of hydrological process algorithms (i.e., equations

representing real world processes such as evaporation, sublimation or infiltration).

In the real world, each hydrologic process is governed by a complex set of physical

laws which are often too difficult to model explicitly. Instead, simplified physical or

empirical relationships are commonly used to estimate net water and energy fluxes

due to hydrological processes at the watershed scale. Since they are empirical, there

is no agreed upon way to calculate fluxes and different, equally valid, representations

may be available for each process [Beven, 2001].

The full list of physical processes incorporated into Raven at this point has been

tabulated for reference. Table A.1 details the evaporation and canopy processes,

table A.2 details the soil related processes, table A.3 details the snow related pro-

cesses and table A.4 shows the overland processes. Since only a handful of these

processes have been used during the testing and modelling during this research,

only those processes will be explained in detail in the following subsections.

Surface Runoff

Surface runoff has been adapted from FUSE [Clark et al., 2008] using the VIC

runoff equation [Wood et al., 1992]. It uses a saturation-excess mechanism which

determines how much precipitation will be runoff based upon the saturated area
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that the precipitation falls on. The saturated area for the VIC configuration is

determined using the following:

Asat = 1−
(

1− S1

S1,max

)b
(3.4)

where Asat represents saturated area[-], S1 represents the upper soil layer moisture

[L], S1,max represents the maximum storage of the upper soil layer [L], and b is the

VIC exponent [-]. Using the saturated area, it is possible to calculate the surface

runoff using:
∂S

∂t

∣∣∣∣∣∣∣∣∣Run = ACPp (3.5)

where ∂S
∂t

∣∣∣∣∣∣∣∣∣Run represents surface runoff [LT−1] and Pp is precipitation [LT−1].

Snowmelt

Snowmelt is highly variable depending on time of year, temperature, solar ra-

diation and land cover [Dingman, 2002]. The Hybrid Snowmelt method is a ba-

sic snowmelt process that shows higher prediction accuracy then the Degree Day

Snowmelt method but is not complex enough to incorporate the full energy fluxes

that exist within the snowpack [Dingman, 2002]. Developed by Kustas et al. [1994]

and Brubaker et al. [1996], daily snowmelt can be calculated using:

∂S

∂t

∣∣∣∣∣∣∣∣∣Melt =

(
K + L

ρwλf

)
+MrTa (3.6)

where ∂S
∂t

∣∣∣∣∣∣∣∣∣Melt is the rate of snowmelt [LT−1], K is shortwave radiation[EL−2T−1],

L is longwave radiation[EL−2T−1], ρw is the density of water[ML−3], λf is the

latent heat of fusion (334 KJKg−1), Tα is the temperature of air[θ] and Mr is the

restricted melt factor [LT−1θ−1]. The restricted melt factor can be derived from

basic equations but has been shown to be approximately 2 mm day−1 ◦C.

Percolation

The percolation routine has been adapted from the FUSE [Clark et al., 2008]

implementation of the variable infiltration capacity (VIC) model for percolation

[Liang et al., 1994; Demaria et al., 2007]. This method is used to represent vertical

transport of water from the upper soil layer to the lower soil layer as well as verti-

cal transport of water from the lower soil layer to deep groundwater storage (i.e.,
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aquifer). The VIC configuration for percolation within FUSE is defined as:

∂S

∂t

∣∣∣∣∣∣∣∣∣Perc = ku

(
S1

S1,max

)c
(3.7)

where ∂S
∂t

∣∣∣∣∣∣∣∣∣Perc is the percolation rate [LT−1], ku is the potential percolation rate

[LT−1], S1 is the water content of the upper soil layer [L], S1,max is the maximum

water content of the upper soil layer [L] and c is the percolation exponent [-]. This

configuration for percolation is essentially equal to the gravity drainage term in

Richards equation [Clark et al., 2008].

Baseflow

The baseflow algorithm for testing Raven was adapted from the FUSE [Clark

et al., 2008] implementation of the variable infiltration capacity (VIC) model for

percolation [Todini, 1996; Liang et al., 1996]. This representation allows horizontal

transport of water from the lower soil layer to surface water storage. It is a nonlinear

storage function that is used in conjunction with a single storage unit of infinite

size [Clark et al., 2008] and is defined by:

∂S

∂t

∣∣∣∣∣∣∣∣∣Base = ks

(
S2

S2,max

)n
(3.8)

where ∂S
∂t

∣∣∣∣∣∣∣∣∣Base is the baseflow rate [LT−1], kS is the potential baseflow rate [LT−1],

S2 is the water content in the lower soil layer [L], S2,max is the maximum water

content of the lower soil layer [L] and n is the baseflow exponent [-].

Evaporation Routines

The Potential Evaportranspiration (PET) method used for open water evapo-

ration calculation is the Penman-Combination equation [Dingman, 2002].

PET =
met · (K + L) + γ · ev · ρw · λv · v · esat · (1−Wa)

ρw · λv · (met + γ)
(3.9)

Open Water evaporation rates are calculated as a simple fraction of PET. It is

used as a constant percentage of the PET value for that timestep.

Eow = PET · FPET (3.10)

PET for vegetated surfaces is calculated using the Penman-Monteith method
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[Dingman, 2002]. The Penman-Monteith equation makes use of the Penman-

Combination model [Dingman, 2002], but is modified to include atmospheric con-

ductance. This allows the Penman-Monteith equation to be used for a vegetated

surface by including canopy conductance. This equation has become the most

common approach for estimating evapotranspiration.

PET =
met · (K + L) + ρa · ca · Cat · esat · (1−Wa)

ρw · λv · [met + γ · (1 + Cat

Ccan
]

(3.11)

where met is the slope of the relation between saturated vapour pressure and tem-

perature [Pθ−1], ρa is the density of air [ML−3], ca is the heat capacity of air (1.00 x

10−3MJkg−1K−1), Cat is atmospheric conductance [LT−1], esat is saturated vapour

pressure [P ], Wa is relative humidity [-], ρw is the density of water [ML−3], λv is the

latent heat of vaporization (2260 KJkg−1), γ is the psychrometric constant (0.066

kPaK−1) and Ccan is the canopy conductance [LT−1].

To calculate soil evaporation, the sequential soil evaporation routine has been

incorporated from FUSE [Clark et al., 2008]. This method can be used for a VIC

[Clark et al., 2008] configuration or to replicate TOPMODEL [Clark et al., 2008].

To replicate TOPMODEL, evaporation from the lower soil layer is ignored. The

sequential soil evaporation method uses the PET calculated for the current timestep

and the upper soil layer attempts to satisfy the PET demand. If the upper soil

layer doesn’t satisfy the demand, the remaining demand is met by the lower soil

layer. Sequential soil evaporation is defined by:

∂S

∂t

∣∣∣∣∣∣∣∣∣SE1 = PET
min(ST1 , S

T
1,max)

ST1,max

(3.12)

∂S

∂t

∣∣∣∣∣∣∣∣∣SE2 = (PET − e1)
min(ST2 , S

T
2,max)

ST2,max

(3.13)

where ∂S
∂t

∣∣∣∣∣∣∣∣∣SE1 and ∂S
∂t

∣∣∣∣∣∣∣∣∣SE2 are the evaporation rates from the upper and low soil

layers respectively [LT−1], ST1 and ST2 are the tension water content of the upper

and lower soil layers respectively [L], ST1,max and ST2,max are the maximum tension

storage in the upper and lower soil layers respectively [L].
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3.2 Solver Implementation

There are four numerical solvers that have been implemented within Raven. They

include the traditional ordered series approach and three Runge-Kutta methods

(Euler, Heun and iterative Heun) that have not previously been used in surface

water models.

3.2.1 Ordered Series Implementation

3.2.1.1 Overview

The most common and straightforward method used within distributed hydrological

models is the ordered series approach. This method solves based on the operation

order. The advantages of this method include minimal computational burden and

an exact mass balance that occurs since water/ energy are moved between storage

units in sequential steps. There is also no need to worry about the interacting

processes in software code. The disadvantages are that as each process rate of

change is applied, potentially artificial deficits and surpluses are created in storage

units that will alter how much mass/ energy is available for the next process to

access and manipulate.

The ordered series method calculates the influences of physical processes in the

order specified by the user. For example, if the order specified is infiltration, perco-

lation, evaporation, then the method will simulate infiltration first, then percolation

(using the storage compartment values after infiltration has occurred) and finally

evaporation (using the storage quantities after both infiltration and percolation

have occurred). The fact that the processes are calculated in a set order may lead

to accuracy issues by moving inappropriate quantities of mass and/or energy to

and from storage units. For example, in dry regions, percolation may “remove”

all of the water from the soil before evaporation (the actual dominant process) is

allowed to act on the soil. This may cause incorrect amounts of mass and energy to

be moved in subsequent calculations. This act of competing processes may result

in compounded inaccuracies over time.

The ordered series method has been included in Raven as a basis of comparison.

It allows for examination of the impact and significance of operator splitting errors

on distributed hydrological model results. Its secondary use is as a surrogate for the

29



traditional solution method and to enable comparison with the newly implemented

numerical solvers.

3.2.1.2 Implementation Strategy

The algorithmic implementation of the ordered series method is shown in Figure 3.2.

From the main body of Raven, the ordered series solver method is called to calculate

the rates of change in storage due to each process. This method moves water and

energy, at the rate calculated, from the storage units in the order specified by the

user. Every process, including precipitation, is subject to the order. In general,

precipitation for the timestep is added at the beginning of the timestep, but this

convention can also be changed if the simulation requires it to be so. The ordered

series solver applies the process ‘rates of change’ to their associated storage units

for each timestep and for each HRU. The ordered series approach may be expressed

mathematically as:

{φ}∗ = {φ}t + ∆t
(
[M ]1,t + {Q}1,t

)
(3.14)

{φ}∗ = {φ}∗ + ∆t
(
[M ]2,t + {Q}2,t

)
(3.15)

...

{φ}t+∆t = {φ}∗ + ∆t
(

[M ]NP,t + {Q}NP,t
)

(3.16)

where NP is the number of processes being simulated and [M ]NP,t uses only the

most recent state variable vector, φ∗. The rest of the notation follows that of

equation 3.1.

3.2.1.3 Computational Considerations

The ordered series approach is the least computationally intense of algorithms con-

sidered here and does not require as much computational speed or memory during

simulations when compared to the other algorithms being considered.

3.2.2 Runge-Kutta Implementation

3.2.2.1 Overview

The Runge-Kutta solvers implemented within Raven include an explicit Euler

method, an implicit Heun method and an iterative implicit Heun method. A disad-
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Figure 3.2: Flowchart of Ordered Series Approach in Raven
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vantage of the Runge-Kutta methods is that they are slightly more computationally

costly than the ordered series method. The advantages of the Runge-Kutta meth-

ods include the ability, with varying degrees of accuracy, to better approximate at

larger timesteps the exact solution of the coupled ordinary differential equations

that govern the system.

The Euler method, the lowest order Runge-Kutta method, calculates the rates

of water redistribution between storage units based upon storage unit values at

the start of the timestep and does not move any water or energy until all the

current timestep’s process rates have been calculated. This approach more closely

approximates for theoretically ‘simultaneous’ operation of the physical processes.

Unlike the ordered series approach, the order of processes does not impact the

results.

The Heun and iterative Heun methods are essentially the same solver. The only

variation between the two Heun methods is that one iterates until some convergence

criteria is met, whereas the other iterates only once. The iterative Heun method

convergence criteria can be specified by the user in order to increase the accuracy

of the solution as needed.

3.2.2.2 Implementation Strategy

Using the notation from equation 3.1, the Euler method may be expressed mathe-

matically as:

{φ}t+∆t = {φ}t + ∆t
(
[M ]t + {Q}t

)
(3.17)

Note that the matrix of process fluxes, [M ], is calculated solely from information at

the start of the timestep. This equation, to solve for multiple ODEs, corresponds

to equation 2.7, which is for a single ODE.

As can be seen in figure 3.3, the application of the Euler method is straightfor-

ward and similar to the implementation of the ordered series approach. Differences

between the ordered series method and the Euler method include the use of pre-

precipitation storage unit values and the simulation of concurrent physical process

solutions when calculating the Euler approximation. This approach allows each

process to use the same storage unit values (from the beginning of the timestep)

for the solution approximation. Unfortunately, the Euler method is subject to the

potential violation of thresholds which may results from the overdrawing of water

from storage units.
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Figure 3.3: Flowchart of Euler’s Method
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The iterative implicit Heun method is a 2nd order Runge-Kutta method that

calculates process rates of change by using information from both the beginning of

the timestep and the end of the timestep. The iterative Heun method is solved by

making an initial guess of the solution (the Euler solution) that is repeatedly refined.

The user may either specify the level of precision required for the approximation

provided by the iterative Heun method or specify a fixed number of iterations. The

iterative Heun method can be expressed mathematically as:

{φ}G ={φ}t + ∆t
([
M
(
{φt}

)]t
+ {Q

(
{φt}

)
}t
)

{φ}t+∆t
k=1 ={φ}t+

1
2
∆t
([
M({φt})

]t
+
[
M({φG})

]t
+ {Q({φt})}t + {Q({φG})}t

)
{φ}t+∆t

k+1 ={φ}t+
1
2
∆t
([
M({φt})

]t
+
[
M({φt+∆t

k })
]t+∆t

+ {Q({φt})}t + {Q({φt+∆t
k })}t+∆t

)
Until ‖{φ}t+∆t

k+1 − {φ}
t+∆t
k ‖ ≤ ε

(3.18)

where ε is a user specified convergence criteria. Equation 3.18 is the equivalent

matrix form to the simple Heun method that was discussed in the section 2.2.2.

Figure 3.4 shows how the iterative implicit Heun method has been implemented

within Raven. Similar to the Euler method, the iterative Heun method uses the

storage unit mass/ energy values from the start of the timestep to calculate the

initial ‘rates of change’ guess, denoted by superscript (G). The refinement of that

guess is then calculated using the timestep’s initial state variable values, the up-

dated state variable values, and the previous iterations state variable values. These

values are then used to calculate new redistribution rates for the physical process

representations. When the new redistribution rates have been applied to the initial

storage unit values, these storage unit values are compared to the previous itera-

tions storage unit values to check for convergence. If the convergence criteria, as

specified by the user has been met, the simulation can move to the next HRU or

timestep. During these simulations, a maximum number of iterations can be set.

For this thesis, 30 iterations was permissable. In the yearly simulations discussed

in chapter 4, the average number of iterations required to reach convergence was

three and the maximum number of iterations was only reached twice during the

simulations.
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Figure 3.4: Flowchart of Iterative Heun Method
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3.2.2.3 Computational Considerations

The Euler method is subject to global mass balance errors as timestep size increases

because the Euler method does not explicitly recognize the influence of parallel

processes for ODEs with continuous coefficients. For the same reasons, threshold

constraints may not be met (e.g., storage quantities may become negative). As the

timestep size decreases, both the ordered series and the Euler method increase in

accuracy and will theoretically approach the exact solution to the mathematical

problem statement.

For any given timestep, the iterative Heun method should be more accurate

than the Euler method and the ordered series approach although it is the most

computationally expensive due to the increased number of terms used from the

Taylor series expansion [Hoffman, 1992]. However, it should also be more accurate

at larger timesteps than the other methods. The solution will have higher accuracy

if the order of the solver is increased or the use of finer timesteps is employed.

Unfortunately, regardless of the solver method used, thresholds are still a problem.

3.3 Mass Balance Accounting

Mass balance accounting within distributed hydrological models is essential in order

to verify that no mass or energy is lost from the system during calculations. Usually,

in hydrological models, the global mass balance is the only item used to assess the

numerical method robustness, even though it is easy to preserve the global mass

balance. Here, global mass balance accounting calculations are performed at every

timestep step to evaluate any potential mass balance errors which might indicate

that programming, input or logic errors have occurred. This simple control method

allows the modeller to verify that the system is maintaining an equilibrium of mass

and energy. This method is calculated using the following formula:

ξMB = Pcum − Tsw −Qcum + Sinit (3.19)

where ξMB is the mass balance error, Pcum is the cumulative precipitation over

the modeled watershed[L], Tsw is the sum of all mass/ energy in system [L], Qcum

is the cumulative outflow from system [L] and Sinit is the initial system mass/

energy storage [L]. For this thesis, calculation of energy balance was neglected
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because none of the physical process algorithms nor storage compartments used

during testing were defined by their energy content.

Mass and energy can be lost several ways within a system and it is essential

to constantly monitor to ensure that any losses are caught. Raven has several

safeguards built into the model that prevent loss of mass and/or energy from the

system. Global mass is always conserved in the system when modelled with Raven.

Numerical errors, such as operator splitting errors, are reflected in local mass

balance errors, such as improper distribution of mass. These errors represent fail-

ures of the model solver to properly calculate and redistribute the mass and energy

of the system.
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Chapter 4

Results and Discussion

4.1 Site Description & Model Configuration

The site that was used as a basis for testing is the Nith River Watershed located

in southwestern Ontario. It is a sub-watershed of the Grand River Watershed,

as shown in figure 4.1. A detailed map of the Nith River watershed is shown in

figure 4.2. Only the portion of the Nith River that is located upstream of the

New Hamburg stream gauge (02GA018), located at 43◦22′29” North and 80◦42′41”

West, was included in the models. Land use, vegetation cover and soil strata used

to construct the Nith River Watershed model are summarized in table 4.1, table 4.2

and table 4.3 [Modified from Presant and Wicklund [1971]].

Agri. Forest Wetland Urban Bare Water Total

Area(km2) 466 50.0 12.2 8.8 0.4 14.3 552
Percent 85 9 2 1 <1 2 100

Table 4.1: Land use for the Nith River Watershed [Lang, 2008]

Forest Type % Area Covered

Broadleaf 20
Conifer 80

Table 4.2: Nith River Watershed Forest Types

The information summarized in tables 4.1 - 4.3 and figures 4.1 - 4.2 has been

used to build the model and input files for a one-year continuous simulation of 2004
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Figure 4.1: Grand River Watershed and Subwatersheds [Lang, 2008]

Soil Layer Depth [cm] Sand [%] Silt [%] Clay [%] Organic [%]

Layer 1 0-10.16 23 41 36 7.0
Layer 2 10.16-20.32 27 41 32 1.8

20.32-30.48 23 41 36 0.8
30.48-45.72 20 42 38 0.9

Layer 3 45.72-60.96 14 40 46 0.6
60.96+ 19 45 36 0.4

Table 4.3: Nith River Watershed Soil Profiles
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Figure 4.2: Landuse of the Nith River Watershed
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with Raven. The four largest land classes (i.e., agricultural, forest, wetland and

urban) in the Nith River Watershed have been used to define the 4 HRUs for these

tests. Many aspects of the basin have been inferred based on the information of

Lang [2008] and Presant and Wickland [1971] for use in model calibration. Raven

calculates several derived watershed parameters which helps minimize the amount of

data required to assemble the input files. The timeseries data for precipitation and

temperature was provided by the University of Waterloo Weather Station located

in Waterloo, Ontario at 43◦28′25.6” North and 80◦33′27.5” West [Seglenieks, 2008].

All data used for these simulations were at daily intervals.

It is important to note that, for the purpose of this thesis, the physical accuracy

of the model is not considered as important as the models mathematical precision.

4.2 Experimental Design Overview

Multiple simulations were performed to analyze the impacts and significance of

using different numerical algorithms to simulate water fluxes within the Nith River

watershed. Three numerical methods were tested: the ordered series method, the

explicit Euler method and the iterative implicit Heuns method. All simulations were

run at daily and 5 minute time intervals. Additional intermediate time intervals

were used to assess solution convergence and error bounds.

Tests were initially used to establish mathematical ‘truth’. ‘Truth’ is represented

by the 5 minute timestep simulations because most of the numerical methods tested

converge to a single answer at this level of discretization. Further tests were then

conducted to compare diagnostic results from different algorithms at a range of

temporal resolutions to mathematical ‘truth’. These tests focused on multiple op-

eration orders with the ordered series method and the use of the Euler and iterative

Heuns methods.

Three different forms of model output were used to evaluate model perfor-

mace: storage, cumulative redistribution and hydrographs. Storage results show

the amount of mass or energy present in a state variable or storage unit at the

end of every timestep. Cumulative redistribution results show the cumulative mass

or energy that has been moved by a specific process at the end of every timestep.

Hydrographs show the channel, river or stream flow exiting the watershed at the

end of each timestep. Comparisons of storage, cumulative redistribution and hy-
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drograph results for multiple numerical methods and multiple timesteps are shown

in the following sections.

Two test cases were used to simulate the Nith River Watershed. Test case 1

(TC1) is a calibrated simulation and test case 2 (TC2) is a simplified simulation.

The state variables, processes and parameters depicted in figure 4.3 represent TC1.

Test case 2, depicted in figure 4.4, is nearly identical to test case 1, but differs in its

parameterization. The purpose of test case 2 is to emphasize the potential errors

that may be generated in hydrological models due to operation order. Using these

two test cases, four primary steps were taken to meet the primary objectives of

the thesis. Initially the model was calibrated to Nith River gauge data. Following

calibration of this model configuration (TC1), the impacts of multiple ordered series

approaches at several timesteps and the performance of the Runge-Kutta methods

at several timesteps were investigated. Comparisons between the ordered series

approaches and the Runge-Kutta methods were then conducted to evaluate their

relative performance. Since the calibrated model demonstrated minimal operator

splitting errors for this watershed, the TC1 model was simplified to create TC2 by

reducing the number of storage compartments and hydrological processes as well

as manipulating some of the process input variables, which still represent the Nith

River hydrology but provides a better, more error-sensitive model for comparing

algorithms. Following these tests, an error analysis was performed to quantify the

mathematical accuracy of each numerical method. These steps are discussed in

detail in the following sections.

4.3 Model Calibration

Raven was auto-calibrated with the Ostrich calibration software [Matott, 2005] to

the New Hamburg stream gauge data. The goal was to modify watershed, HRU and

process parameters so that Raven’s output would reasonably match the Nith River

gauge data. Calibration serves to show that Raven is capable of replicating a real

world location with confidence. A perfect replication of the Nith River was not the

goal, only a reasonable representation was desirable. The iterative Heuns method

at a daily timestep was used for calibration. In order to calibrate Raven to match

the Nith River gauge data, it was necessary to introduce a ponded water storage

compartment (i.e., depression storage). The ponded water storage compartment

receives a portion of all precipitation, while the depression is not full, and is subject

42



Figure 4.3: Flowchart of Raven TC1 showing state variables, processes and cali-
bration parameters
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Figure 4.4: Flowchart of Raven TC2 showing state variables, processes and cali-
bration parameters during operator order investigation
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only to evaporation. The water moved to ponded water storage does not enter the

surface water store and therefore does not get routed through the river/ channel

storage unit. Post-calibration hydrographs showing daily streamflow (figure 4.5)

and 5 minute timestep streamflow (figure 4.6) for the ordered series approach,

Euler method and iterative Heuns method are discussed in this section.

The simulated results show that using TC1, Raven is able to produce streamflow

that is comparable to the measured flow of the Nith River at the daily timestep with

a Nash-Sutcliffe of -0.10. With this configuration, Raven appears to have difficul-

ties replicating the streamflow during storm events and the resulting hydrographs

depicts more minor streamflow fluctuations than the gauge data during the course

of the simulation. Similarly, the simulated streamflow produced by Raven is not

able to replicate the initial melt at the end of winter. These errors are likely due

to a lack of appropriate physical process repesentations, but could also be due to

inappropriate discretization of the simulated watershed. In spite of this, Raven has

still managed to produce reasonable hydrographs (figure 4.5) using all numerical

methods.

Figure 4.5: Hydrograph from TC1 showing the ordered series, Euler and iterative
Heuns method compared to the Nith River Stream Gauge at a daily timestep

Using the same parameters as obtained from calibration using the iterative
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Heuns method, the ordered series, Euler and iterative Heuns methods generate

hydrographs that are essentially identical with some minor variations between them

at peak streamflow events. Minor variations can be seen in figure 4.6, where the

simulation range is constrained to 100 days. However, it is important to note that

the 3 different numerical methods produce essentially identical hydrographs and

that those hydrographs are comparable to the measured streamflow from the Nith

River. A five minute timestep was used for the simulations here. With such a small

timestep, these numerical methods are not expected to produce different results.

Figure 4.6: Hydrograph from TC1 showing the ordered series, Euler and iterative
Heuns method compared to the Nith River Stream Gauge using a 5 minute timestep

4.4 Ordered Series Approach

It is hypothesized here that operator order in the conventional ordered series ap-

proach will impact model results, and that this impact may worsen with increasing

timestep size. To test this hypothesis, both TC1 and TC2 were used. Test case 1

provides a reasonable replication of the Nith River Watershed and test case 2 was

used to accentuate the potential competition that exists between hydrological pro-

cesses. These simulations were compared to results from the finely discretized sim-
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ulations using all numerical methods. When the simulations are finely discretized,

results from all numerical methods converge to the same solution.

4.4.1 The Influence of Operator Order

Most hydrological models use an ordered series approach, without regard for the

potential impact of operator order. Here, six orders of operation (table 4.4) were

used to simulate the Nith River Watershed with TC1. Errors due to operator

order have been assessed by examining simulated output hydrographs (figure 4.7)

and simulated storage of the upper soil layer (figure 4.8). Six orders of operation

(table 4.5) were also used for TC2.

Hydrologic Process

A Precipitation
B Soil Evaporation
C Percolation (Upper Soil to Lower Soil)
D Percolation (Lower Soil to Groundwater)
E Baseflow (Lower Soil to Surface Water)
F Baseflow (Groundwater to Surface Water)
G Snowmelt
H Open Water Evaporation

Numerical Method Process Order
Ordered Series 1 A B C D E F G H
Ordered Series 2 A H D G B C F E
Ordered Series 3 A E H D B F C G
Ordered Series 4 A G E H C B F D
Ordered Series 5 A H G B F E D C
Ordered Series 6 C D B G E H F A
Euler Method Not applicable to this method
Heun Method Not applicable to this method

Table 4.4: Hydrological process labels and order of physical process representations
for TC1 ordered series testing. Process order does not affect results of Euler and
Heun method simulations.

It can be seen in figure 4.7 that all TC1 operator splitting approaches generate

nearly identical hydrographs at the daily timestep. It has already been stated that

one of the reasons that the ordered series approach is favored in hydrological models

is due to its ability to perfectly conserve mass. Since the hydrograph represents the

total net outflow from a system dominated by runoff, it is not surprising that all

six operation orders produce similar hydrographs. This is due to the fact that the
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Hydrologic Process

A Precipitation
B Soil Evaporation
C Percolation (Upper Soil to Lower Soil)
D Percolation (Lower Soil to Groundwater)
E Baseflow (Lower Soil to Surface Water)

Numerical Method Process Order
Ordered Series 1 A B C D E
Ordered Series 2 A C E B D
Ordered Series 3 A D B E C
Ordered Series 4 A E D C B
Ordered Series 5 C E B D A
Ordered Series 6 E D C B A
Euler Method Not applicable to this method
Heun Method Not applicable to this method

Table 4.5: Hydrological process labels and order of physical process representations
for TC2 ordered series testing. Process order does not affect results of Euler and
Heun method simulations.

model simulation redistributes water between storage compartments with surface

water/ channel flow being the end of the water pathway.

Figure 4.8 depicts the water storage in the upper soil layer from a one year

simulation of TC1 using a daily timestep. Results only varied slightly in the upper

soil layer during the simulation due to operation order. As can seen in the graph,

only ordered series 6 is visually distinguishable from the results of the other five

ordered approaches. This is likely due to the precipitation input being added to

the simulation at the end of a timestep instead of at the beginning as is done in the

other five series. Due to the precipitation input at the end of the timestep, ordered

series 6 has less water available for redistribution by the hydrological processes

during a timestep, which results in ordered series 6 lagging a day behind the other

orders when simulated.

The simulated output hydrograph (figure 4.9) of TC2 shows that each ordered

series approach produces different results. The output from all six ordered series

follows the same general trends but each operation order produces a unique time

series. The critical difference between TC1 and TC2 that influences this behaviour

is the speed and demand of the hydrological processes. In TC1, there is limited

competition between processes which results in the more demanding process redis-

tributing the majority of the available water. In TC2, the parameters that define

48



Figure 4.7: Hydrographs from TC1 for multiple ordered series approaches during a
one year simulation

Figure 4.8: Upper soil layer storage from TC1 for multiple ordered series approaches
at a daily timestep
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process rates have been altered to make the redistribution rates of all processes,

interacting with the same storage unit, nearly equivalent and of high demand. This

creates a highly competitive environment which shows how operator order may

affect hydrological model results.

Figure 4.9: Hydrographs from TC2 for multiple ordered series approaches at a daily
timestep

Simulated storage in the upper soil layer from TC2 shows higher variability in

storage. Again all six operation orders produce unique results. The water content

of the soil layer fluctuates continuously and all six ordered series approaches follow

the same trend. Similar results are found for the lower soil layer.

Both the upper and lower soil layers share interesting traits: the two ordered

series cases where precipitation was added at the end of the timestep (ordered series

5 and 6) are producing results that are not the same values. Ordered series 6 tends

to generate higher soil water content then the other ordered series approaches and

ordered series 5 tends to generate the lowest soil water content during the first half

of the simulation. This trend reverses in the second half of the simulation. This

variation in the results from the ordered series approaches is due to the effects and

sensitivity of the hydrological processes used in the simulation. These differences

are minor for any actual modelling application, however that may be different
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depending on the simulated watersheds location and parameters. Due to the fact

that the effect of operation order on results is not easy to predict, ordered series

approaches have the potential to generate unexpected results.

4.4.2 Impact of Timestep on Operation Order Errors

The previous tests examined only the impact of operator splitting errors. Addi-

tional tests were performed to examine how timestep size influences these errors.

Six orders of operation were used during Raven’s simulation of the Nith River Wa-

tershed at a daily and 5 minute timesteps to identify how closely the six ordered

series are able to replicate ‘mathematical truth’, represented by model results from

a 5 minute timestep run of ordered series 1.

TC1 was used to produce simulated streamflow (figure 4.10), cumulative losses

to the atmosphere (figure 4.11) and upper soil layer storage (figure 4.12) graphs

that are used to evaluate the accuracy of the ordered series approaches as timesteps

increase from ‘truth’ (5 minute) to daily. For comparison in this section, only the

5 minute and daily timesteps are evaluated. Additional timesteps are discussed in

section 4.6.3.

Figure 4.10 shows a comparison of the six ordered series approaches, from TC1,

at a daily timestep to results from ordered series 1 using 5 minute timesteps. The

hydrograph timescale has been shortened to highlight the differences between the

simulation outputs. As before, the six ordered series approaches at a daily timestep

all produce similar results (as was shown in figure 4.7). As the timestep is decreased,

the results from the ordered series tests converge.

The 5 minute timestep hydrograph in figure 4.10, representing ‘truth’, shows

nearly identical results compared to the ordered series approaches that were calcu-

lated at the daily timestep. When the timestep shrinks from daily to the 5 minute,

the output resolution improves. During baseflow moments (the ‘normal’ flowrate of

the river when no precipitation events are occurring) of the hydrographs, timestep

plays less of a role. This is seen on the relatively ‘flat’ sections of the hydrographs

where the multiple timestep results overlap.

Cumulative losses to the atmosphere include evaporation from both soil layers

and open water. As figure 4.11 depicts, ordered series 1 - 5 of TC1, produce identical

results. Ordered series 6 shows slightly lower values due to the time of precipitation

input. The results of the ordered series approach simulated at the 5 minute timestep
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Figure 4.10: Hydrograph from TC1 for multiple ordered series approaches using
daily and 5 minute timesteps

show higher evaporation than the daily timestep results. This difference in results

is likely due to the fact that soil evaporation plays a large role in this model and is

able to act on the soil layers at a faster rate than other processes in the system when

at a smaller timestep. It is also likely that the depression storage, which is only

acted upon by evaporation, receives a larger amount of water during the simulation

with smaller timesteps due to the fact that open water evaporation acts quickly on

the available ponded water. This then allows more water to be redistributed into

the ponded storage compartment during precipitation events.

Figure 4.12 shows how variable the water content in the upper soil layer is over

time. It is clear from this graph that the ordered series approaches (using daily

timesteps) are not able to replicate the finely resolved model results.

During simulation of the lower soil layer with TC1, the ordered series approaches

fluctuate and do not coincide with the finely resolved solution. Ordered series 1 - 5

generate results that are identical and ordered series 6 is nearly identical. The lower

soil layer is emptying slowly regardless of incoming water. This is likely caused by

the baseflow and percolation processes. Truth is simulated to be lower than the

daily simulation. This is a good indication that ordered series approaches do not
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Figure 4.11: Cumulative losses to the atmosphere from TC1 for multiple ordered
series approaches using multiple timesteps

Figure 4.12: Upper soil layer storage from TC1 for multiple ordered series ap-
proaches using multiple timesteps
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perform well at a daily timestep and that the use of some processes (e.g., baseflow,

percolation) when used at the end of the operation order have the potential to

continuously empty storage units.

The upper soil layer storage from TC2 shows that regardless of the operator

order used, no daily representation is capable of replicating truth. All six operator

orders produce different results, some of which are significantly different. Ordered

series 5 and 6 are the closest to replicating truth through the majority of the

simulation, which may be due to the precipitation being added to the system at

the end of the timestep. Ordered series 1 - 4 generate similar, but not identical,

results. Similar results are found in the lower soil layer (figure 4.13) using TC2.

Figure 4.13: Lower soil layer storage from TC2 for multiple operator orders using
two timestep sizes

4.4.3 Ordered Series Summary

The ordered series approach is used by most models to perform their redistribution

rate calculations. The use of this method may incorrectly apply model processes

which can theoretically result in poor model results and cause misinterpretations

of the contributions of the storage units and redistribution fluxes in a simulated

54



watershed. Due to the variability of the results with series order, it would seem

prudent to limit or avoid the use of ordered series approaches to solve models. This

restriction is even more warranted when using a low time resolution which will

exacerbate potential errors. Although the errors found in these tests were small,

the potential for significant operator splitting errors in simulations raises concerns

about the validity of results that can obtained through the use of hydrological

models that use an ordered series approach as well as any decisions that may been

made based upon those results.

4.5 Runge-Kutta Methods

It is thought that the use of Runge-Kutta methods will negate operator order

impacts in hydrological models and reduce numerical errors at larger timesteps.

To test this hypothesis, simulations in this section are intended to show that the

use of numerical methods other than the ordered series approaches in distributed

hydrological models can generate results that may be more accurate and unaffected

by operation order. Assessment of the results from different Runge-Kutta methods

(Euler, iterative Heuns) and the ordered series approach was conducted using daily

and 5 minute timesteps.

4.5.1 Convergence Behaviour

Neither the Euler method or iterative Heuns method at a daily timestep is able to

replicate the results produced at a 5 minute timestep, but it is apparent that the

daily Euler and iterative Heuns method provide a close approximation of the finely

resolved solution. The iterative Heuns method is more computational expensive (in

theory) when compared to the Euler method regardless of timestep. The number of

iterations used by the iterative Heuns method also affects the computational cost of

the method. During these tests, the iterative Heun averaged three to four iterations

per HRU per timestep before solution convergence occurred. A full discussion of

the results from the Runge-Kutta methods including graphs is in section 4.6.
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4.6 Numerical Method Comparison

The tests in this section were designed to test whether simulations at a daily

timestep using Runge-Kutta methods, specifically the iterative Heuns method, will

out perform the Euler method and the traditional ordered series approach for ac-

curacy. Comparison of the results from both the ordered series and Runge-Kutta

methods are used to highlight how performance varies based on numerical method

choice. The comparisons were performed using both a daily and 5 minute timesteps.

4.6.1 Daily Timestep

The ordered series approaches, the Euler method and the iterative Heuns method

were used at a daily timestep to see how the various numerical methods perform

in comparison to each other. The hydrographs (figure 4.14) show that ordered

series 1, the Euler, and the iterative Heuns method at the daily timestep produce

almost identical results for watershed outflow. Ordered series 1 was chosen to

represent the ordered series approaches because the simulations for ordered series

1, the Euler and iterative Heuns method were all conducted with the same input file

that defines the order in which the global process solver applies the hydrological

processes. The hydrographs confirm that all three methods are sending roughly

equivalent amounts of water into the channel during the course of the simulation.

As was shown in previous results for this model setup, there is little variation in

hydrographs due to numerical method selection.

4.6.2 Multiple Timesteps

The tests in this section were completed using the ordered series approaches and

the Runge-Kutta methods. The ordered series approaches, the Euler method and

iterative Heuns method were applied to Raven’s simulation of the Nith River Wa-

tershed at daily and 5 minute timesteps to compare the three methods to each

other in order to assess their viability, at the daily timestep, to provide a stable

and mathematically accurate solution.

Figure 4.15 depicts the results generated for cumulative open water evaporation

from TC1. The 5 minute timestep simulations all produce the same results which

therefore overlap on the graph. This is likely due to the fact that the calibration for
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Figure 4.14: Hydrograph from TC1 of simulations using ordered series 1, Eulers
method and iterative Heuns method at a daily timestep

this particular watershed is composed of hydrological processes that do not compete

equally. The faster processes (e.g., evaporation) take the majority of the available

water regardless of where the process occurs in the operation order. As the graph

shows, at the end of a 100 day simulation, there is already a 20% difference in

the cumulative open water evaporation amounts. This may increase further if the

simulation were to run for a longer duration. This is a good example of a situation

where the ordered series approach may negatively impact decisions and predictions.

Figure 4.16 provides a comparison between the six ordered series methods and

the Runge-Kutta methods using TC2. As stated previously, at the 5 minute

timestep, solutions from all methods converge to the same solution. This figure

shows that the six ordered series approaches have large variability in their results.

Ordered series 1 - 4 produce nearly identical results, where series 1 and 3 overlap

and series 2 and 4 overlap on the graph. Series 1 and 3 show slightly higher val-

ues than series 2 and 4. Ordered series 5 and 6 overlap and are partially hidden

behind the results given by the Euler and iterative Heuns methods. As is visible

on the graph, the daily timestep Euler and Heuns results are nearly identical to

the 5 minute timestep results for the same methods. This is a good indication that
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Figure 4.15: Cumulative open water evaporation from TC1 using the ordered series,
Euler method and iterative Heuns method for multiple timesteps

while the results generated by various operator orders is prone to error, the Euler

and Heuns methods at the daily timestep are capable of replicating truth at similar

computational cost.

A fine resolution graph (figure 4.17) of the lower soil layer clearly shows the

iterative Heuns methods ability to maintain a good approximation of truth during

the simulation. This figure provides a straightforward example of how variations in

operator order can affect the mathematical accuracy of hydrological models. Since

operation order does not affect the Euler method or the iterative Heuns method,

they are superior numerical methods for use in hydrological models. However, the

likelihood of the Euler method to violate thresholds makes it behave worse than

the ordered series approach.

4.6.3 Error Analysis

Understanding of the three numerical methods used during Ravens simulation of

the Nith River watershed requires knowledge of the errors inherent to the solvers.

This section discusses the absolute associated with each method, as well as the
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Figure 4.16: Upper soil layer storage from TC2 using ordered series, Euler and
iterative Heuns method for multiple timesteps

Figure 4.17: Truncated lower soil layer storage from modified simulation using
ordered series, Euler and iterative Heuns method for multiple timesteps
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error associated with timestep size, during their use in TC2. Absolute error was

calculated using:

ξAbs =
∥∥x− xa∥∥ (4.1)

where ξAbs is the absolute error, x is the ‘exact’ solution for a given diagnostic

variable (here represented by the 5 minute timestep), and xa is the approximation

of the solution. Relative error was also computed but is not included in these results

since it provided little additional information to the absolute error.

The ordered series approach, which is assumed to contain significant errors,

shows that as timestep size is decreased, the absolute error decreases. As timestep

size shrinks from daily to 11.25 minutes, the error is reduced by a factor of 100.

The absolute error associated with the Euler method is generally slightly lower

than the error produced by the ordered series approach, although only marginally.

The error decreases as timestep size shrinks from the daily to the 11.25 minute and

reduces by the same magnitude as the ordered series approach .

The iterative Heuns method absolute error (figure 4.18) is lower than both the

ordered series and Euler methods. The results show that at a daily timestep,

the error associated with the iterative Heuns method is less than 1. This raises

confidence that the iterative Heuns method should have increased mathematical

accuracy than the other methods implemented at a daily timestep.

An assessment of the absolute error at every timestep was conducted to see how

error changes as timestep size decreases. Figure 4.19 shows that for each numerical

method implemented, as the timestep size decreases, the error also decreases. As

expected, the error associated with the ordered series approaches varies depending

on the operation order and timestep. The error does decrease, but not in a con-

sistent manner for all orders. The iterative Heuns method graph shows that the

error decreases with timestep size in an almost consistent fashion. An interesting

trait occurs in all methods: the 12 hour timestep shows larger errors than all other

timesteps including the daily timestep size. The author is unable to explain this

anomaly.

4.6.4 Numerical Method Comparison Summary

The numerical method that most accurately represents truth is unfortunately not

easy to pinpoint from the tests done in this section. Tests performed using TC1
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Figure 4.18: Absolute error associated with the iterative Heun method in the upper
soil layer from TC2 at multiple timesteps

Figure 4.19: Absolute error associated with all numerical methods and ordered
series approaches in the upper soil layer from TC2 at multiple timesteps
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tend to show that the ordered series approach is the best approximation of truth

when analyzing the amount of water in storage units over time. However, analyses

of cumulative redistribution fluxes show that the Euler method is also capable of

closely approximating truth. When using TC2, it is clear that the iterative Heun

method is the best approximation of truth. Unlike the ordered series methods

which varies depending on the operator order and the Euler method which is a

near approximation of truth, the iterative Heun method maintains a consistently

close approximation of truth. It is likely that the modification of existing models to

incorporate high order Runge-Kutta methods will benefit hydrological models. The

most important reason for this is the fact that it negates the impact of operation

order when calculating redistribution rates in hydrological models.

4.7 Implications of Results

The results shown in the previous sections demonstrate that, regardless of numerical

method and timestep, Raven is capable of approximating the streamflow present in

the Nith River. However, as previously established, a reasonable hydrograph is not

indicative of a properly calibrated or necessarily effective model [Kirchner, 2006].

For test case 2, simulations using the ordered series approaches show that the

solution approximation is dependent upon the operator order, though the degree

of dependence was less than might be expected. The conventional ordered series

approach has been shown to be susceptible to some operator splitting errors that

may lead to discrepancies in model predictions of water/ energy storage values and

redistribution fluxes of a watershed. The minor operator splitting errors found in

these results are likely due to this particular test case. Alternate test cases may

produce larger and therefore more worrisome errors. The implications of this is that

many existing hydrological models could produce diagnostic results that contain

significant errors. These errors can affect predictions and policy or management

decisions that are based upon those predictions. These errors cannot be discerned

without the ability to either (1) more finely resolve the timestep or (2) run the

model with a more robust algorithm. Understanding how the ordered series method

operates in practise is essential to improving the numerical methods used in existing

models and distributed hydrological models overall.

The iterative Heuns method, at a daily timestep, appears to be slightly more

accurate than the Euler and ordered series methods, at similar computational cost.
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The use of the iterative Heuns method in distributed hydrological models is bene-

ficial for mathematical accuracy. Higher order numerical methods can increase the

runtime of a model, however being able to produce results at a daily timestep that

are equivalent to the results at small timesteps makes the iterative Heuns method a

potentially valuable contribution to distributed hydrological modelling. It is impor-

tant to note that within Raven (and likely other hydrological models), numerical

method choice does not have a large impact on the model runtime. The bulk of

runtime is spent reading and writing from input/output files.

The sensitivity of hydrological processes can be assessed based on the results

generated while using test case 2. It can be seen that some processes are dominant

within the watershed; soil evaporation and open water evaporation are fast acting

processes that move large quantities of water. The other processes that define the

system are constrained by threshold behaviour. All surface water processes are

prone to threshold constraints which limit the redistribution of water and energy

within a system. Parameter values within the simulation can act to increase or

decrease the effect of individual process rates. However, the increase or decrease

of a few parameters (e.g., soil thickness, soil evaporation PET fraction, maximum

depression storage) has the ability to control and significantly modify the results

obtained from a model. It is assumed that arid systems would show more sensi-

tivity to parameters and threshold behaviour than continuously saturated areas.

This is because arid areas have a finite amount of moisture which would promote

competition between hydrological processes.

Modellers, when designing future hydrologic models, should consider the po-

tential for inaccuracy based on numerical method choice. The traditional solution

method, the ordered series approach, should be implemented with knowledge of the

inherent errors associated with its use. The implementation of alternative numerical

methods, such as the iterative Heuns method or other high order implicit meth-

ods, can increase model accuracy, and can be done without significant increases in

computational cost.
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Chapter 5

Conclusions

The results of the simulations run with Raven using three numerical methods and

multiple timesteps show that many hydrological models have the potential to gener-

ate errors when replicating the internal processes occurring in a watershed. Through

simulations using the ordered series approach with multiple operation orders, it is

clear that results cannot be predicted with ease and perform in unexpected ways.

The results produced by Raven show that variations in operator order can

change how the internal storage and water fluxes in a watershed are determined.

This has been overlooked for many years, in part because the typical method for

verifying models has been to use streamflow gauges for calibration. The results

clearly show that hydrographs produced using multiple operator orders are unaf-

fected by the sequence order. It has been shown, through the use of ordered series

approaches, that hydrographs can be replicated with a high degree of confidence

while the other diagnostics, such as snow depth or soil moisture may vary. This

reinforces the belief that operator splitting errors can increase during the use of

ordered series methods even though TC1 and TC2 resulted in less significant errors

that hypothesized. Alternate test cases may show larger operator splitting errors

when tested.

The use of higher order Runge-Kutta methods, such as the Euler method and

the iterative Heuns method, produce results that can be more accurate using a daily

timestep than results produced by the ordered series approach at the same timestep.

If Runge-Kutta methods are incorporated into existing models, it would lead to

2 improvements; (1) operator order would cease to be an issue in the operation

of models and (2) models, using a daily timestep, may produce results that are

comparable to results achieved at smaller timesteps using lower order numerical
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methods. As these results have shown, variations in timestep size appear to have

a greater effect on the accuracy of hydrological model results then the choice of

numerical method.

The importance of this research is to show that many existing models may

produce results that cannot be confidently relied upon. This is not just due to the

selection of subprocess algorithms or parameters, but also the numerical method.

The understanding of the inner workings of a watershed model are necessary to

properly simulate storage unit interactions. This thesis shows that the internal

storage and redistribution rates are more sensitive than outflow hydrographs to

timestep size and numerical method choice. The numerical methods and algorithms

implemented in Raven are transferable and can be implemented in existing models.

Raven currently has the ability to emulate many existing models and the numerical

methods tested have been used within those emulations.

This research can be expanded to include studies into the effects of ordered series

approaches when implemented in other types of complex distributed models (e.g.,

for climate prediction or contaminant transport). Additional numerical methods

can also be implemented and tested to see if they produce more accurate results.
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Appendix A

Appendix A: Hydrological

Processes available in Raven

A.1 Hydrological Processes

The following tables summarize the hydrological processes that are currently avail-

able in the distributed hydrological model Raven.

1From Dingman [2002]
2From Maidment [1992]
3From Clark et al. [2008]
4From Beven [1997b]
5From Kavetski et al. [2003]
6From Linsley et al. [1949]
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Process Method Equation

Potential
Evapotranspiration

Penman-Combination1 PET =
met · (K + L) + γ · ev · ρw · λv · v · esat · (1−Wa)

ρw · λv · (met + γ)

Penman-Monteith1 PET =
met · (K + L) + ρa · ca · Cat · esat · (1−Wa)

ρw · λv · [met + γ · (1 + Cat

Ccan
]

Hargreaves2 PET = 0.0075RaCtδ
1
2
t Tavgδ

Priestley-Taylor1 PET =
1

λ
met(Rn−G)

s+γ
αPT

Constant User specified rate
Soil Evaporation

Moves water VIC3 ∂S

∂t

∣∣∣∣∣∣∣∣∣SE = PET

(
1− (1− Ssat

Smax

)γV

)

from uppermost TOPMODEL3 ∂S

∂t

∣∣∣∣∣∣∣∣∣SE = PET
min(ST1 , S

T
1,max)

ST1,max

soil layer(s) Sequential3
∂S1

∂t

∣∣∣∣∣∣∣∣∣SE = PET
min(ST1 , S

T
1,max)

ST1,max

to atmosphere
∂S2

∂t

∣∣∣∣∣∣∣∣∣SE =
(
PET − ∂S1

∂t

) min(ST
2 ,S

T
2,max)

ST
2,max

through Root Weighting3 ∂S1

∂t

∣∣∣∣∣∣∣∣∣SE = PETr1

min(ST1 , S
T
1,max)

ST1,max

evapotranspiration (ET)
∂S2

∂t

∣∣∣∣∣∣∣∣∣SE = PETr2

min(ST2 , S
T
2,max)

ST2,max

Canopy Evaporation

moves water from canopy Constant
∂S

∂t

∣∣∣∣∣∣∣∣∣CE = EcFc

to atmosphere via ET Rutter1 ∂S

∂t

∣∣∣∣∣∣∣∣∣CE = (1− Ft)PET
S0

CcapFc

Canopy Drip/ Drainage

moves water from canopy Slow Drain
∂S

∂t

∣∣∣∣∣∣∣∣∣Drip = S0 − FcCcap + CD
S0

Fc

to surface, ponded, Rutter1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Drip = (1− Pp)MC

and soil storage
∂S

∂t

∣∣∣∣∣∣∣∣∣Drain =
∂(Cstor −MD)

∂t

Table A.1: Evaporation and Canopy processes currently incorporated in Raven
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Process Method Equation

Percolation

moves water from soil VIC/ TOPMODEL FUSE3 ∂S

∂t

∣∣∣∣∣∣∣∣∣Perc = ku

(
S1

S1,max

)c

layer to lower soil layer
Baseflow

moves water from soil Bucket
∂S

∂t

∣∣∣∣∣∣∣∣∣Base = αbS0

and ground storage to VIC FUSE3 ∂S

∂t

∣∣∣∣∣∣∣∣∣Base = ks

(
S2

S2,max

)n

surface water storage TOPMODEL FUSE3 ∂S

∂t

∣∣∣∣∣∣∣∣∣Base =
ksm

λnn

(
S2

mn

)n

Quickflow

VIC SPM5 ∂S

∂t

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Qf = Pp

(
(Smax − S0)

(Smax − Scrit)

) 1

αV
+1

Table A.2: Soil processes currently incorporated in Raven

Process Method Equation

Snowmelt

moves water from snow Degree Day1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Melt = min(S0,Ma(Ta − Tf ))

to soil and surface storage Hybrid1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Melt = min

[(
K + L

ρwλf

)
+MrTa, S0

]
Sublimation

moves water from Kuzmin6 ∂S

∂t

∣∣∣∣∣∣∣∣∣Sub = 0.18 + 0.098v(esat − e)

snow to Sverdrup6 ∂S

∂t

∣∣∣∣∣∣∣∣∣Sub =
0.623ρak

2v(esat − e)

Pa(log(
800

Rs

))2

atmosphere Central Sierra6 ∂S

∂t

∣∣∣∣∣∣∣∣∣Sub = 0.0063(vhteht)
− 1

6 (esat − e)v

Williams6 ∂S

∂t

∣∣∣∣∣∣∣∣∣Sub = 0.00011ρav(e− esat)

Table A.3: Snow processes currently incorporated in Raven
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Process Method Equation

Runoff

Partition1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = (1− Pc)Pp

Mass Balance1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = 0.0

SCS Method2 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run =
(Pp − 0.2r)2

(Pp + 0.8r)

Rational2
∂S

∂t

∣∣∣∣∣∣∣∣∣Run = crRIrA

Green-Ampt1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = Pp −

[
Ke

(
1 +

(ψ − Φi)Sf
Fi

)]
VIC1 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = Pp(1−K1(Sat − Smax)γV 2)

VIC FUSE3 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = PpAsat

TOPMODEL FUSE3 ∂S

∂t

∣∣∣∣∣∣∣∣∣Run = PpAsat

Routing
Muskingum6 Qj+1

o = C1I
j+1 + C2I

j + C3Q
j
o

Storage Coefficient Qo =
1

(tt + 0.5)
vol

Mannings6 Qo =
Ach
Mn

(
Ach
Pch

) 2
3 √

Rm

None Qo = 0.0

Table A.4: Overland processes currently incorporated in Raven
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