
Implementing Real-Time Video Deblocking in
FPGA Hardware

by

Martin Hansen

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c© Martin Hansen 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Video compression techniques are commonly used to meet the increasing de-

mands for the storage and transmission of digital video content. Popular video

compression techniques such as MPEG video encoding make use of block-transform

coding algorithms which are susceptible to blocking artifacts. These artifacts can

be reduced using a deblocking process, of which there are many. However, those

deblocking algorithms which provide noticeable improvements in visual quality also

tend to be computationally expensive and unsuitable for real-time video use.

This dissertation selects and examines an appropriate algorithm for real-time

video deblocking applications, and describes its hardware implementation on a Al-

tera Cyclone II FPGA. The chosen algorithm is based on the concept of shifted

thresholding; it reduces computational complexity by several means, such as by

using only integer arithmetic and by replacing division operations with bit shift-

ing. The implementation leverages the reduced hardware complexity of the chosen

algorithm to cost-effectively implement real-time video deblocking.

iii

Acknowledgements

I would like to thank my co-supervisor, Dr. Bill Bishop, for his continuous sup-

port and assistance, as well as my co-supervisor Dr. Wayne Loucks for his ongoing

feedback and insightful suggestions. This work would not have been possible with-

out both of their contributions as well as both of their support for my academic

career.

I would also like to thank Altera Corporation for their substantial hardware

contributions to the University of Waterloo’s Electrical and Computer Engineering

Department, without which this work would not have been possible. Finally, I

would like to thank the members of the Parallel and Distributed Systems Group at

the University of Waterloo, particularly Alex Wong.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Statement of Thesis . 4

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Background 6

2.1 Image Compression . 7

2.1.1 Implementations of Block Operations 9

2.2 Image Deblocking . 11

2.2.1 Deblocking Techniques . 12

2.2.2 Comparison of Techniques 13

2.3 Hardware Considerations . 14

2.3.1 Non-Application-Specific Devices 15

2.3.2 Application-Specific Devices 16

2.3.3 Hardware Implementation 17

2.3.4 Hardware in Video Processing 18

2.3.5 Altera DE2 Board . 19

3 Shifted Deblocking Algorithm 23

3.1 Overview . 24

v

3.2 Image Shifting . 24

3.3 Transform and Inverse Transform 26

3.4 Thresholding . 29

3.5 Reassembly . 29

3.6 Image Format . 30

3.7 Hardware-Beneficial Features . 31

4 Implementation 33

4.1 Pipelining . 35

4.2 Memory Access . 40

4.2.1 Memory Selection . 41

4.2.2 Maximum Throughput . 42

4.2.3 Memory Implementation . 46

4.3 Discrete Cosine Transform . 49

4.3.1 Matrix Multiplications . 49

4.3.2 Scalar Multiplication . 52

4.4 Additional Optimizations . 53

4.4.1 Thresholding . 53

4.4.2 Averaging . 54

4.5 Summary of Final Design . 56

4.6 Commentary on the Design Process 57

5 Results 61

5.1 Speed . 61

5.2 Area . 63

5.3 Quality of Deblocking . 64

5.4 Future Work . 64

6 Conclusions 69

vi

6.1 Thesis Contributions . 70

6.2 Thesis Applicability . 72

Bibliography 74

vii

List of Tables

2.1 JPEG compression data for Figure 2.2 10

2.2 Comparison of deblocking techniques 14

2.3 EP2C35 Cyclone II FPGA features 21

2.4 DE2 board memory options comparison 21

4.1 Implementation tradeoffs for throughput and area 38

4.2 SDRAM memory request latencies (durations in clock cycles) 43

4.3 Minimum memory latency (in clock cycles) 45

4.4 Comparison of threshold matrix implementations 54

4.5 FPGA resource utilization . 57

5.1 Summary of final design characteristics and performance 62

viii

List of Figures

1.1 JPEG-compressed image, before (a) and after (b) deblocking 3

2.1 JPEG encoder processing steps [Wal91] 8

2.2 JPEG compression at different ratios (partial image) 9

2.3 Example (partial) image with noticeable blocking artifacts 12

2.4 Altera DE2 development board [Alt06] 20

3.1 Overview of shifted transform deblocking [WB06] 25

3.2 Image shift patterns: (-3,-3), (-1,-1), (1,1), (3,3) 26

4.1 Data flow of the hardware implementation 35

4.2 SDRAM finite state machine [Int00] 47

4.3 VHDL pseudocode of rotation functionality 52

4.4 Overview of final design . 58

5.1 First sample result of hardware deblocking (shown at 75%) 65

5.2 Second sample result of hardware deblocking (shown at 75%) 66

ix

Chapter 1

Introduction

This dissertation describes and examines a novel hardware implementation of real-

time video deblocking. Although many types of deblocking implementations exist,

most have either high computational cost or provide lower quality results. This

project implements a recently proposed algorithm which delivers high quality de-

blocking with reduced hardware complexity. Reducing the hardware requirements

allows for effective deblocking to be accomplished using low-cost hardware devices.

This result is ideal for integration into consumer electronic devices.

1.1 Motivation

Deblocking algorithms are a type of image manipulation which is useful when an

image (or a frame of video) has been compressed using block-based compression

techniques. These types of compression, such as JPEG for images [Wal91] and

MPEG for video [ISO94] are extremely prevalent in most consumer electronic de-

1

CHAPTER 1. INTRODUCTION 2

vices, such as phones, personal data assistants (PDAs), and digital television sys-

tems. Compression allows for efficient usage of storage space and transmission

bandwidth. However, to greatly reduce the amount of data used in these devices,

often media are too greatly compressed.

When overly reducing image and video file sizes, the quality of the media suffers.

To address this loss in quality without affecting the desirable savings in space

that have been achieved, deblocking can be used. Deblocking aims to correct one

prevalent artifact caused by block-based compression, that of discrepancies at the

block boundaries. Figure 1.1 displays an image that has been compressed using the

JPEG standard, resulting in blocking artifacts, and the corresponding image after

deblocking.

The deblocking process can be time-consuming and computationally intensive.

To achieve real-time video deblocking, 24 frames (images) per second must be

processed. Attaining any significant increase in image quality at this speed can

be quite challenging. This difficulty, along with the goal of targeting consumer

electronics, make this project suitable for hardware development, as opposed to

software development. Hardware allows a customized solution, one which can be

designed specifically for low-cost devices such as Field Programmable Gate Arrays

(FPGAs).

The usefulness of such hardware implementations has not gone unnoticed. VIA

Technologies’ PN800 mobile chipset includes a video deblocking tool [VIA07], and

ATI’s Radeon X800 consumer video card contains video deblocking functionality as

well [Alt07]. H.264-compressed video in particular has several proposed hardware

deblocking architectures [PH06] [SCL06] [SZZ04].

The development of a real-time hardware video deblocker allows a wide range of

CHAPTER 1. INTRODUCTION 3

(a)

(b)

Figure 1.1: JPEG-compressed image, before (a) and after (b) deblocking

CHAPTER 1. INTRODUCTION 4

devices and applications to transmit and store video (as well as image) data more

efficiently, with enhanced media quality and end-user satisfaction.

1.2 Statement of Thesis

It is my thesis that a reasonable quality of real-time video deblocking can be im-

plemented in low-cost hardware, suitable for use in consumer electronics. This

implementation would allow a reduction in media file sizes through block-based

compression, while limiting visual quality degradation. Real-time deblocking al-

lows for more efficient use of digital storage and data transmission, which, notably

for mobile devices, can be a major concern.

One relevant application is high definition digital television. A real-time video

deblocking system could be integrated in the end-user signal processor, allowing

transmission costs to be reduced, which would allow bandwidth to be used for

other applications such as enhanced digital television content or higher resolution

television.

1.3 Contributions

This thesis makes the following significant contributions:

1. selects a preferred deblocking algorithm for implementation in hardware;

2. describes the modifications necessary to the chosen deblocking algorithm for

further applicability to a hardware environment as opposed to a software

environment;

CHAPTER 1. INTRODUCTION 5

3. details an implementation of the algorithm on a low-cost FPGA, including

further optimizations which are required due to area and throughput require-

ments for real-time applications; and

4. analyzes the feasibility of the given implementation for real-time video de-

blocking, including the feasibility for usage in high-definition television.

1.4 Thesis Outline

Chapter 2 introduces the field of image and video compression, showing the im-

portance of video deblocking and the situations in which it is applicable. This

chapter also introduces some hardware considerations, and includes information on

the hardware available for this project. Chapter 3 selects a preferred algorithm

for implementation, based on its quality of results and on its perceived suitability

for hardware development. Chapter 4 details the implementation itself, includ-

ing explanation of the optimizations used, and some analysis of the limitations of

the hardware. Also included is a commentary on means of improvement for the

hardware design process. Finally, Chapter 5 analyzes the performance of the im-

plementation and provides suggestions for future work, and Chapter 6 concludes

the document with a discussion of the results.

Chapter 2

Background

Video and image data is heavily used in consumer applications and entertainment,

among other areas. To supply consumers with this data, efficient representation

of the multimedia information can be an important requirement [GES+99], and is

often indispensable [CKL06]. Unlike the compression of textual and other data,

compression of video and images, as well as audio, can be lossy. That is, data can

be lost with the end product still appearing acceptable and reasonably unchanged

to the end user. This approach allows a greater reduction in data size. Since

lossy compression achieves noticeably smaller file sizes than lossless techniques, the

former has become a much more common method of compressing video and images.

The primary challenge becomes to find the optimal balance between file size and

image quality; in other words, to find the optimal compression ratio.

In many areas of consumer entertainment, such as in video transmitted over the

internet, quality becomes a minor consideration in comparison to the data transfer

rate, and thus, the amount of data to be transferred. The result is that greater

compression ratios are used, which improves user satisfaction in the primary area

6

CHAPTER 2. BACKGROUND 7

(transfer rate), but lowers it in the secondary (quality). To address this quality issue

without increasing transfer rates, much research has been done in image processing.

The goal becomes to continue transmitting small (lower-quality) images but to then

improve the quality through post-processing once the image is contained locally.

This chapter introduces techniques used for image compression, extends this

knowledge to describe a method of quality improvement (reduction of blocking

artifacts), and describes the role that hardware plays in this field. The descriptions

refer specifically to image manipulations, with the implication that all techniques

are extendable to video applications, as video can be viewed as a collection of images

(frames) in this context.

2.1 Image Compression

Block-based image compression schemes are very widely used as a way of obtain-

ing a large (for example, 20-fold) reduction in image file size [CAGM94]. These

schemes are particularly useful in images which contain gradual changes, such as

photographs, as opposed to those with distinct boundaries and solid surfaces, such

as textual data and frames of animation. Although this compression can still be

used on the latter cases, image degradation is more perceptible. Despite this issue,

block-based schemes are still often used for all types of image data.

Generally, block-based compressions operate on a (most commonly 8 pixel by

8 pixel) block of the image at a time, transforming the data into a different do-

main and retaining only the useful components. The widely used JPEG (Joint

Photographic Experts Group) standard uses a Discrete Cosine Transform (DCT)

to calculate 64 frequency components from the original 64 pixels [Wal91]. These

CHAPTER 2. BACKGROUND 8

frequency components can be selectively quantized; low-frequency coefficients are

likely to be larger than high-frequency coefficients [Wal91]. Those coefficients which

are zero can be eliminated, greatly reducing the total volume of data. To reconsti-

tute the image, the inverse process is applied, using an Inverse DCT (IDCT). The

JPEG encoding system can be seen in Figure 2.1.

Figure 2.1: JPEG encoder processing steps [Wal91]

Although JPEG can be used for lossless compression, where the original image

can be exactly recreated, it is more commonly used in a lossy manner to obtain great

reductions in file size with (hopefully) little reduction in image quality. This lossy

nature can manifest itself in different ways, through blocking artifacts, striping,

blurriness, and so on. As can be seen in Figure 2.2 (details in Table 2.1), these

effects become more apparent as the compression ratio is increased. The Peak

Signal to Noise Ratio (PSNR) is a measure of the image quality, measured relative

to image a (larger values are better)1. As mentioned, artifacts can be particularly

obvious in non-photographic data, where the assumption of gradual change is less

valid. For example, in drawn images, the transition between two surfaces is an

immediate change, which can be difficult to represent accurately using a JPEG

1Measurements were done with MSU Video Quality Measurement Tool

CHAPTER 2. BACKGROUND 9

image format with a high compression ratio.

(a) (b)

(c) (d)

Figure 2.2: JPEG compression at different ratios (partial image)

2.1.1 Implementations of Block Operations

Block-based compression is based on the principle of transforming blocks of pixels

into a different domain, which can represent the same visual image using a smaller

amount of data. Commonly, 8 by 8 blocks of pixels are used. Most block transform

algorithms use the DCT or variants thereof, although wavelets are used in some

CHAPTER 2. BACKGROUND 10

PSNR Image Sizes (bytes) Compression
Image (dB) Initial Final Ratio Comments

a n/a 175 824 175 824 1:1 Initial JPEG
b 38.4 175 824 33 072 5.3:1 Negligible quality

loss
c 34.9 175 824 20 430 8.6:1 Noticeable quality

loss
d 32.4 175 824 16 079 10.9:1 Questionable

quality

Table 2.1: JPEG compression data for Figure 2.2

newer algorithms such as JPEG 2000. In JPEG images, the DCT is used as the

transform operation (Equation 2.1).

Fout (u, v) = 1
4
C (u) C (v)×

[
7∑

x=0

7∑
y=0

Fin (x, y) cos (2x+1)uπ
16

cos (2y+1)vπ
16

]
,

C (u) , C (v) =


1√
2
, u, v = 0

1, otherwise

(2.1)

The DCT can be implemented in various ways. A simple representation is using

matrix operations: two matrix multiplications involving the 8×8 transform matrix

B (Equation 2.2). This approach is particularly intuitive as the input is already a

two dimensional array (matrix) of values.

Fout = BFinB
T (2.2)

Ideally, these calculations can be applied losslessly; using a DCT followed by an

IDCT will mathematically return an exact copy of the original block. In practical

CHAPTER 2. BACKGROUND 11

terms, the calculations can not be done with infinite precision and so some loss

can occur. However, again in practical terms, JPEG is most often used as lossy

compression, using quantization between the DCT and IDCT operations, and thus

these calculation losses are irrelevant.

2.2 Image Deblocking

As explained previously, extensive compression results in lower visual quality of the

image. The quality can be affected in many ways, such as with blurriness or loss of

detail. Only one symptom will be addressed here: blocking artifacts.

Blocking artifacts come about from compression schemes that use blocks. The

artifacts are discrepancies in the continuity of the image, and occur at the block

boundaries; since each block is compressed independently of the others, the pixels at

the right edge of one block are affected differently by the compression process than

their neighbouring pixels which exist at the left edge of the adjacent block. Thus,

the pixel transitions within the block are acceptable but the transitions from block

to block have noticeably worse continuity, which degrades the subjective visual

acceptability of the image (as shown in Figure 2.3).

There are several approaches that can be taken to reduce these artifacts. Some

techniques achieve quite good results but require a great deal of computation. In

these cases there is much less possibility of a real-time implementation for video

deblocking, due to the time constraints for processing each frame. Other techniques

have very low costs but only produce marginal improvements to the image. Again

this situation is not ideal. The preferred technique should have reasonably low

computation requirements but still deliver a noticeable (although not necessarily

CHAPTER 2. BACKGROUND 12

Figure 2.3: Example (partial) image with noticeable blocking artifacts

the best) reduction in blocking artifacts.

2.2.1 Deblocking Techniques

A large number of video and image deblocking methods have been introduced.

These methods have been categorized [WB06] as follows:

1. projections onto convex sets (POCS) methods [WLY02];

2. spatial block boundary filtering methods [CCR98];

3. wavelet filtering methods [XOZ97];

CHAPTER 2. BACKGROUND 13

4. statistical modeling methods [OS95];

5. constrained optimization methods [HCS95]; and

6. shifted transform methods [Nos01].

Although these algorithms greatly enhance image quality, the majority are un-

acceptable for real-time deblocking, since they require large amounts of computa-

tion time or memory. To develop an inexpensive hardware deblocker suitable for

operating on real-time video, these costs must be addressed.

Modern shifted transform algorithms have been shown to offer better perfor-

mance than techniques such as those based on POCS and wavelets [WB06]. They

are often very expensive in terms of computation for a real-time application, al-

though not in comparison to many other methods. Despite requiring less calcu-

lation than methods based on constrained optimization, there is still a great deal

of calculation required, including 64 DCT and IDCT operations per 8 × 8 pixel

block. Recently however, an algorithm based on shifted transforms was proposed

by Wong, which offers competitive results while reducing much of the computation

required by earlier methods [WB06].

2.2.2 Comparison of Techniques

To implement a deblocking system in hardware, the chosen algorithm must be

computationally efficient enough to provide the opportunity for video deblocking.

In other words, the algorithm should be simple enough to be able to deblock 24

images per second using off-the-shelf hardware. Within this constraint, there still

needs to be a noticeable subjective reduction in blocking artifacts.

CHAPTER 2. BACKGROUND 14

Table 2.2 summarizes the complexity and results of leading methods from var-

ious techniques. Although several of the techniques offer good results, their com-

plexity makes them unsuitable for implementation in a low-cost hardware device.

Deblocking Method Mathematical Quality of
Workload Deblocking

Projection Onto Convex Sets (POCS) high high
Spatial block boundary filtering low med
Wavelet filtering high high
Statistical modeling high high
Constrained optimization high med
Shifted transforms med high

Table 2.2: Comparison of deblocking techniques

Shifted transforms is a promising deblocking approach. Although historically

computationally intensive, the shifted transform implementation proposed by Wong

uses much less calculation than in previous implementations [WB06]. Not only is

the number of DCTs and IDCTs greatly reduced, hardware-friendly features are

also included, such as removal of floating-point operations.

2.3 Hardware Considerations

There are various hardware platforms that can be used in implementation of an

algorithm. Both application-specific and non-application-specific devices are avail-

able. The target hardware platform for this project is a low-cost FPGA device.

A FPGA is a programmable hardware device that can implement digital logic

customized by the designer, which is downloaded directly to the device with-

out additional manufacturing [Kim00]. An Application-Specific Integrated Circuit

CHAPTER 2. BACKGROUND 15

(ASIC), however, is manufactured with a specific design already implemented; it

comprises hardware that runs pre-determined logic which cannot be easily mod-

ified after production [ZRG+02]. Both of these solutions are customized to be

application-specific. Non-application-specific solutions are those such as Digital

Signal Processors (DSPs) or microprocessors.

2.3.1 Non-Application-Specific Devices

Although a variety of general use processors are available, the only general device

under consideration for this project is a DSP. Since DSPs are designed for digital

signal applications, they are more appropriate than general-purpose processors for

image and video processing.

A DSP would be required to fetch pixels from memory, perform calculations,

and save out the results. Although these operations could be done efficiently, it is

not possible to attain the level of customization inherent to an application-specific

device. However, DSPs are often clocked at higher speeds than FPGAs, giving

them a possible advantage in terms of latency of operations.

Despite the speed advantages of a DSP, they generally do not achieve the data

rate possible with a FPGA for video processing operations [SVMJ95]. The higher

data rate in an application-specific device results from the customization that is

possible. Parallelism, pipelining, and detailed optimization can be used to a great

extent to increase the throughput of a specific project.

CHAPTER 2. BACKGROUND 16

2.3.2 Application-Specific Devices

ASICs are often used for high-production goods, and for high-speed applications or

designs which have stringent area or power constraints. FPGAs, in general, require

more power and are limited to slower clock frequencies, as well as consuming more

transistors and more physical area. They do have the advantage of flexibility; they

can be continually reprogrammed by the developer. Both devices can be found

at various costs. However, ASICs are only cost-effective when produced in very

large quantities, for example requiring 250 000 or more units in a 2-pass process

before attaining a die price which is competitive with comparable FPGAs [ZRG+02].

Because of their availability in smaller quantities and their ability to be continually

reprogrammed, FPGAs are often used for prototyping of products during design

phases.

For these same reasons, a FPGA is the preferred device for development of this

project. This device can allow the designer to move beyond simulation results and

view hardware behaviour at every stage of the design without needing to manufac-

ture a new integrated circuit each time. Although area usage is greater and the

operating clock speed is slower, a successful design on a FPGA can demonstrate

the feasibility of the chosen algorithm without incurring the high costs of producing

an ASIC in small quantities.

It should be noted that in addition to an FPGA, the project requires memory

to store the initial and final images. For the image size being used (640×480 1-byte

pixels), 307 200 bytes are needed. Therefore the minimum size of memory needed

is 512 kByte, given that memory is only available in sizes of powers of two. Either

one or two memories of this size could be required, depending if the initial image

and final image can occupy the same space.

CHAPTER 2. BACKGROUND 17

2.3.3 Hardware Implementation

In contrast to software development, hardware development has a higher likelihood

of incurring more difficulties and of requiring a longer time to complete. For imple-

mentation of the same algorithm, software can often rapidly prototype the required

functionality whereas hardware may take substantially more time to develop. Even

using an FPGA, where much of the timing and routing complexity is handled by

the compiler, there are still difficulties.

A primary time cost is the slowness of the debugging process. Since a complete

hardware design for a complex system can often take 30 minutes to 60 minutes to

compile (in comparison to 2 minutes to 10 minutes for a similar software project on

the same computer), making incremental changes to locate errors can be an arduous

and sometimes even infeasible process. Furthermore, the avenues available for de-

bugging information are often less convenient. Often there are only simple outputs

such as LEDs that can be used for user feedback. The signal values within hardware

can be accessed through simulation and other means, but this approach can often

be time consuming to initiate. Finally, although the system can sometimes be par-

titioned into smaller pieces for debugging, this is not always convenient due to the

highly parallelized and interdependent nature of many hardware implementations.

This interdependent nature also creates further difficulty in debugging, since it

implies additional complexity. To generate high throughput it is common to create

a very concurrent style of solution, which can require quite a bit of time to design

and understand. This complexity influences the debugging process, making even

simple errors often very time-consuming to diagnose.

CHAPTER 2. BACKGROUND 18

2.3.4 Hardware in Video Processing

Given the slower development inherent with implementing hardware [AM02], there

must be suitable justification for undertaking a hardware design as opposed to

simply designing a software solution; there need to be some benefits to a hardware

solution, such as performance or cost.

Indeed there are many examples of the preference for hardware designs in video

and image processing. When JPEG images must be compressed and/or decom-

pressed in real-time, conventional software implementations are inefficient when

used in hardware devices [EPG+05]. In general, digital signal processing algo-

rithms in embedded applications, including image processing algorithms, require

high processing power which can be more readily achieved through hardware par-

allelism [AM02]. On slower consumer products, such as digital television receivers,

using a software design run on a microprocessor would not allow the kind of cus-

tomization and parallelism that is helpful for obtaining real-time throughput. Even

having a separate general-purpose microprocessor dedicated to a given algorithm

might be insufficient in terms of throughput, and inefficient in terms of power usage,

depending on the application.

Using an application-specific hardware device rather than a microprocessor can

resolve these performance concerns without needing to increase the clock speed of

the system. FPGAs have been used for several different image processing appli-

cations such as edge detection [THAE00] [HLC+05], rank-order filtering [Nel00],

and convolution [Nel00]. Intuitively, this style of implementation makes sense for

many complex algorithms that would be run continually, in real-time, and with

hard timing constraints. One such example is a high-speed edge and corner detec-

tor [THAE00]:

CHAPTER 2. BACKGROUND 19

“Several computer vision applications involve the computation of

a large number of repetitive operations over the entire input image in

order to analyze the image contents and recover useful information.

However, this task could be complex and computationally intensive.

An alternative solution to software implementation is the design of spe-

cific hardware for computer vision in order to perform a high rate of

operations per second.”

There are existing hardware video deblockers, particularly for the H.264 com-

pression standard. Some offer excellent performance, but less noticeable qualitative

improvements to the deblocked video [SCL06]. Others meet real-time requirements

but only for smaller frame sizes such as 352 × 288 and smaller [PH06] [SZZ04].

These deblockers also have been implemented at clock speeds greater than the

50MHz available for this project’s prototype.

The proposed architecture is novel in two ways. First, it is targeted at low-cost

hardware. Second, the algorithm itself is one which has not previously been imple-

mented in hardware. Furthermore, the deblocking rates achieved are competitive

with or better than those of existing architectures.

2.3.5 Altera DE2 Board

The Altera DE2 Educational Development Board (Figure 2.4) is a new hardware

platform available for use in the Department of Electrical and Computer Engineer-

ing at the University of Waterloo. One of these boards was used to implement this

project.

The DE2 has a wealth of features, most of which are not of immediate use to

CHAPTER 2. BACKGROUND 20

Figure 2.4: Altera DE2 development board [Alt06]

the project, but many of which could be used to extend the prototype design in the

future. These features include a USB (Universal Serial Bus) connector, ethernet

connector, VGA (Video Graphical Adaptor) output, audio connectors, and a small

LCD (Liquid Crystal Display). Also available to the designer for input and output

are an 8 character Seven Segment Display (SSD), 18 switches, 4 pushbuttons, and

27 LEDs (Light Emitting Diodes) in green and red. The many features of this

board make it suitable for the rapid prototyping of hardware designs.

The central component of the board is the Altera Cyclone II FPGA; in this case,

a model EP2C35F672C6 device. It contains 33 216 logic elements (LEs), 105 M4K

memory blocks (comprising a total of 60 480 bytes of memory), and 35 embedded

multipliers (Table 2.3).

CHAPTER 2. BACKGROUND 21

Feature Quantity
LEs 33 216
M4K RAM blocks (4 kbits plus 512 parity bits) 105
Total RAM bits 483 840
Embedded multipliers 35
PLLs 4
Maximum user I/O pins 475

Table 2.3: EP2C35 Cyclone II FPGA features

The memory capacity on the board consists of three chips: an 8 MByte SDRAM

(Synchronous Dynamic Random Access Memory), a 512 kByte SRAM (Synchronous

RAM), and a 1 MByte FLASH memory. There is also a SD card slot on the board

that can be used for storage, when a SD card is installed. A summary of these

memory options, in addition to the on-chip M4K memory, can be seen in Table 2.4.

Memory Size Speed Data Notes
(MB) (MHz) Width

(bits)
SDRAM 8.00 100 16 Requires precharging and other operations
FLASH 1.00 10 8 Limited lifespan
SRAM 0.50 100 16
M4K 0.06 50 n/a On-chip
SD slot n/a 25 to 50 16 Requires SDRAM operations and SD card

Table 2.4: DE2 board memory options comparison

The DE2 is a capable system that contains the base requirements for develop-

ment of a real-time hardware image deblocker: a FPGA of reasonable size as well

as several memory options large enough to store an input test image and output

image. The board has several advantages, including its availability for this project.

It has a large number of simple inputs and outputs which can be used for debugging

purposes. There also are plentiful options for expansion of the base project. For

CHAPTER 2. BACKGROUND 22

example, deblocked images could be sent to the VGA output for immediate display

on an external monitor.

Chapter 3

Shifted Deblocking Algorithm

Before implementing deblocking in hardware, an algorithm must be selected that

meets the goals of the project. The primary concern is ease of implementation:

an algorithm which takes into account the limitations of hardware is preferable

to one that is much more complex but produces better results. The algorithm

must provide noticeably positive results while being feasible to fit physically on the

FPGA, as well as being able to run at the desired speed. Thus the design priorities

are:

1. low area, in order to have the design fit on the available hardware;

2. high throughput, producing 24 deblocked images per second; and

3. high quality, providing a noticeable reduction in blocking artifacts.

As described briefly in the previous chapter, the best fit to these requirements

is the shifted thresholding method designed by Wong [WB06]. Wong’s algorithm

contains many features that make it suitable for hardware implementation. The

23

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 24

primary benefit is that the overall algorithm is reasonably simple, implying a

greater chance of completing the deblocking process quickly and therefore implying

a greater chance of deblocking video in real-time. It is also designed with hardware

considerations in mind by removing floating point operations, replacing division

operations with bit shifting, and reducing multiplications for the transform and

inverse transform (down to 19.5 per pixel as compared to 2016 per pixel in earlier

shifted transform methods). Furthermore the algorithm is well-suited to pipelining.

3.1 Overview

A structural overview of deblocking algorithms that utilize shifted transforms is

shown in Figure 3.1. Wong’s method follows this structure. The image is shifted

based on n shift patterns and the outputs of these shifts (S1 . . . Sn) are transformed

into another domain with transform operator T . The shifted transforms are then

filtered using operator F , inverse transformed with T−1 and inverse-shifted based on

the corresponding shift pattern. Finally, the images are averaged together to form

the final output image. Wong’s algorithm contains 4 shift patterns: (∆x, ∆y) =

(−3,−3), (−1,−1), (1, 1), (3, 3). The transform used is a Discrete Cosine Transform

(DCT), with a corresponding Inverse DCT used as the inverse transform. The

filtering operation is a thresholding based on the image’s quantization matrix.

3.2 Image Shifting

The first stage in the algorithm is the shifting stage. The image is traversed block

by block, first for the first shift pattern (−3,−3) and subsequently for the others, to

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 25

Figure 3.1: Overview of shifted transform deblocking [WB06]

result in 4 scans of the full image (Figure 3.2). Therefore, the bulk of the deblocking

process must be applied over 4 different copies of the image, once for each shift.

Since the shifting operations traverse the boundaries of the image, the exterior of

the original image is zero-padded by 3 pixels in each direction. The selection of

only 4 shift patterns is a vast improvement over other shifted deblocking methods,

which can use up to 64 shift patterns and therefore require approximately 16 times

more computation to be done.

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 26

Figure 3.2: Image shift patterns: (-3,-3), (-1,-1), (1,1), (3,3)

3.3 Transform and Inverse Transform

The second stage is the transform stage. A DCT is used to transform each block

into the frequency domain. In general, the operations required for this are 2 matrix

multiplications on the 8×8 block. For Wong’s algorithm the matrix multiplications

have been greatly simplified at the expense of adding two additional operations: a

scalar multiplication and a scalar division by a multiple of 2. This change results in

each of the two matrix multiplications containing almost exclusively operations on

multiples of 2, which can be implemented using left bit shifts. The more difficult

multiplicands are relegated to the final scalar multiplication, which is by nature a

simpler operation and can accomplish these multiplications more easily.

The scalar division is incorporated to maintain integer arithmetic throughout

the transform. After the many multiplications the terms are all scaled down, using

a division by 218, which again can be implemented using bit shifting. Equation 3.1

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 27

shows the definition for the transform and for the integer matrices M, P, and E,

which are derived from the original transform matrix B. The derivation for Wong’s

implementation of the transform can be seen in Equation 3.2, and the matrices

themselves are shown in Equation 3.3 through Equation 3.5. X represents the

input matrix and Y is the resulting output matrix, ⊗ represents scalar matrix

multiplication, and >> denotes binary bit shifting.

Y = BXBT

M ≡ round(αB)

M ≡ P⊗ E

(3.1)

Y = BXBT

α2Y =
(
MXMT

)
α2Y = (P⊗ E)X (P⊗ E)T

Y =
(
PXPT

)
⊗

(
E⊗ ET

)/
α2

Y =
(
PXPT

)
⊗

(
E⊗ ET

)
>> (2 log2 α)

(3.2)

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 28

M =



181 181 181 181 181 181 181 181

256 206 128 64 −64 −128 −206 −256

256 64 −64 −256 −256 −64 64 256

206 −64 −256 −128 128 256 64 −206

181 −181 −181 181 181 −181 −181 181

128 −256 64 206 −206 −64 256 −128

64 −256 256 −64 −64 256 −256 64

64 −128 206 −256 256 −206 128 −64



(3.3)

P =



1 1 1 1 1 1 1 1

256 206 128 64 −64 −128 −206 −256

256 64 −64 −256 −256 −64 64 256

206 −64 −256 −128 128 256 64 −206

1 −1 −1 1 1 −1 −1 1

128 −256 64 206 −206 −64 256 −128

64 −256 256 −64 −64 256 −256 64

64 −128 206 −256 256 −206 128 −64



(3.4)

(
E⊗ ET

)
=



32761 181 181 181 32761 181 181 181

181 1 1 1 181 1 1 1

181 1 1 1 181 1 1 1

181 1 1 1 181 1 1 1

32761 181 181 181 32761 181 181 181

181 1 1 1 181 1 1 1

181 1 1 1 181 1 1 1

181 1 1 1 181 1 1 1



(3.5)

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 29

The fourth stage of the algorithm, an inverse transform, occurs after the thresh-

olding process in stage three. It is accomplished using an IDCT and proceeds simi-

larly to the DCT; thus it is optimized in the same manner. The primary differences

are that the operations proceed mostly in the inverse order, and that the trans-

formation matrix used is the transpose of the one used in the DCT. The IDCT is

shown in Equation 3.6.

X =
(
PT

(
Y ⊗

(
E⊗ ET

))
P

)
>> (2 log2 α) (3.6)

3.4 Thresholding

The thresholding takes place in the frequency domain, in stage three, between the

DCT and IDCT. The frequency coefficients are compared with the values in the

threshold matrix, and those coefficients below their respective threshold are set to

zero. The threshold matrix T is derived from a scaled integer approximation of the

quantization used to decompress the image (see Equation 3.7). This relationship

allows the image to be adaptively filtered depending on the image quality. This

stage is designed to filter the highest frequencies of each block.

T = Q >> 1 (3.7)

3.5 Reassembly

Following the inverse transform the 4 shifted images must be recombined with each

other, and with the original image. This recombination is accomplished using two

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 30

different averaging schemes. The first is a global average which assigns a weight of

1/2 to the original image and a weight of 1/2 to the sum of the shifted deblocked

images. Therefore each shift pattern is given a weight of 1/8.

The second form of averaging is based on the location of each pixel within its

block in the original image. The pixel’s weight is calculated from the Euclidian

distance between the pixel in question and the centre of its block. The implemen-

tation of this operation results in each block of pixels being weighted using one of

two weight matrices, depending on whether the block is from the original image

or from a shifted deblocked image. These weight matrices are designed such that

the sum of their two values at any position is 256. Therefore, after this weighted

averaging process the pixels can be normalized using a scalar division by 256, which

is equivalent to a shift right by 8 bits.

The first averaging scheme is designed to give suitable weight to the original

image. The second averaging scheme is designed to give added weight to the original

image at the center of each block, and added weight to the deblocked images at the

block boundaries, where the deblocking is most needed.

3.6 Image Format

The steps required have now been defined but the system requires a specific data

format in order to create an implementation. This format will affect most facets of

the implementation, such as the width of the datapath, and most importantly the

specific details of the first and last stages, where the image is loaded and saved. In

order to simplify the width of the datapath and the difficulty of recombination of

the image, the original image is in greyscale as opposed to colour and is composed

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 31

of 8-bit pixels. The image format is a bitmap, for simplicity in accessing the pixel

data. Therefore, to apply the algorithm no further conversion must be done; the

file already explicitly contains the data value of each pixel. It is also implied that

the output (deblocked) file will be of the same format, and thus the deblocked pixel

data can simply replace the data of the original pixels without any change to the

image file structure.

3.7 Hardware-Beneficial Features

As mentioned previously, Wong’s algorithm contains several features that con-

tribute to its ease of implementation in a hardware environment. A main benefit

of this algorithm is its conceptual simplicity and perceived ease of implementation.

Although shifted deblocking by its nature does not produce the best qualitative

image results (as compared to other forms of deblocking), it does greatly reduce

blocking artifacts with relatively low computational cost. Furthermore the selec-

tion of only 4 shift patterns (in comparison to as many as 64) allows for many less

iterations of the deblocking process in comparison to earlier techniques. Another

example of implementation simplicity is the algorithm’s ease of discretization: it is

quite straight-forward to divide the process into smaller steps, and even into dif-

ferent combinations of steps, which is ideal for a pipelined implementation as well

as for load-balancing the pipeline as a means of optimization. The algorithm can

be viewed as operations on one single block of pixels at a time, which is a further

benefit.

Another major contribution of Wong’s work is the large reduction in arithmetic,

most notably in the DCT and IDCT operations. In comparison to the original

CHAPTER 3. SHIFTED DEBLOCKING ALGORITHM 32

Nosratinia algorithm, his “requires approximately 103 times less multiplications

and approximately 16 times less additions [...] making it suitable for real-time

video deblocking purposes.” [WB06] This reduction is accomplished through the

optimizations to the transform matrices, allowing most of the multiplications to

be reduced to trivial shift operations. Additionally, all divisions are designed such

that their divisors are powers of 2, again resulting in shift operations as opposed

to much slower divisions.

A third simplification is the elimination of floating-point operations. This im-

provement is accomplished mainly using scaling, which results in increased datapath

width to match the increasing scale of the values being calculated. However the

datapath still does not exceed 31 bits for any values since the operations are nor-

malized at logical points using the above-mentioned divisions. One such example

has already been discussed: the weighted pixel averaging in the Reassembly stage,

which is normalized using division by 256. Overall the increased width is a rela-

tively minor penalty in return for the ease of integer operations (both in terms of

speed and area).

Chapter 4

Implementation

It is often beneficial, when implementing an algorithm in hardware, to deviate from

the original sequential perception of that algorithm. Even with an algorithm that is

explicitly designed to be “hardware-friendly”, such as Wong’s shifted thresholding

algorithm, changes are often needed before implementing it. These changes can

range from minor arithmetic manipulations to the regrouping of entire steps in

ways that are conceptually different. Since the deblocking algorithm chosen does

have many features that are conducive to a hardware implementation, it becomes

interesting to note how many changes still have to be made throughout the hardware

design process to accommodate restrictions such as memory bandwidth and physical

FPGA area.

It is worthwhile to note that the chosen algorithm can indeed be implemented

directly (without optimization or modification) on hardware that does not suffer

from the above restrictions. In other words, there can still be a direct mapping

from the initial design to the FPGA, resulting in a processor that modifies the

input image as required. When this is done experimentally, two problems are

33

CHAPTER 4. IMPLEMENTATION 34

immediately apparent: low throughput and insufficient physical area. If the clock

frequency of the hardware could be increased indiscriminately then throughput

could be improved; since this is not the case, optimization is needed to process

the data in a timely manner. Similarly, if the available area could be increased

indiscriminately then there would be no need for the improvements that are required

on this real platform. As described in Chapter 2, the hardware being used is clocked

at 50MHz and contains 33 216 logic elements.

Therefore, changes must be made. To improve throughput, pipelining is used,

and to address area limitations various optimizations are made to the mathematics

and the construction of the required operations. From a development standpoint,

these optimizations can be challenging. Often it can be useful to implement func-

tionality first and optimize second, to verify a baseline of functional correctness

before modifying the original algorithm. For this project, the area constraints pre-

vent this approach from taking place: in some cases even implementing just one

unoptimized portion of the algorithm exceeds the available area, let alone imple-

mentation of the entire system. Therefore implementation and optimization must

go hand in hand, and must be done iteratively, observing the tradeoffs that occur

at different stages. Since compiling for this hardware at 90% or greater LE usage

takes approximately 60 minutes, reducing the number of compiles is a significant

concern in the development process and places great emphasis on developing the

system in an efficient way.

Figure 4.1 illustrates a high-level view of the data flow within the hardware. At

each stage, one 8×8 block of pixels is manipulated, and the design iterates over the

entire image multiple times (five full passes are required). The implementations of

the pipeline scheme, the memory systems, the transform operations, and the other

CHAPTER 4. IMPLEMENTATION 35

components are discussed in the following sections.

Stage 5 - Weighted Averaging

Stage 4 - Inverse Transform

Stage 6 - Saving

Stage 1 - Shifting

Stage 2 - Transform

Stage 3 - Thresholding

Figure 4.1: Data flow of the hardware implementation

4.1 Pipelining

Arguably the most important high-level architectural decision is the segmentation

of the algorithm into pipeline stages. Pipelining is required in order to generate

efficient throughput of the data. A comfortable balance needs to be found between

pipeline stage length (clock cycles) and pipeline length (number of stages). Al-

though dividing the algorithm into stages is trivial due to the sequential nature of

its steps, more complexity is introduced when selecting their optimal arrangement.

For simplicity, the length of the stages in the pipeline, measured in clock cycles,

CHAPTER 4. IMPLEMENTATION 36

will be referred to as the width of the pipeline. More specifically, this term will

refer to the length of the longest stage: the limiting value for the clock cycle length

of the pipeline as a whole, or in other words, the time required for all data in the

system to propagate one stage further in the pipeline. The term pipeline length will

refer to the number of stages in the pipeline. Therefore the latency of one block of

data can be calculated by length×width, and the throughput of one block of data

can be given simply by the width.

One assumption that is made is that the datapath width of the pipeline must

be one full block of 8 × 8 pixels. This assumption is made due to the nature of

the transform and inverse transform operations. Since the transform of one pixel is

dependent on the values of all 64 pixels in that block, the complexity of processing

pixels individually is qualitatively far greater than the complexity of processing

one full block at a time. Furthermore, processing pixels individually would result

in greatly reduced parallelism and a great number of duplicated memory accesses.

Therefore it is assumed that each pipeline stage will process 64 pixels.

The challenge of allocating operations to pipeline stages can be seen as sim-

ilar to a knapsack problem [GJ79]. The knapsack problem is a well-known non-

deterministic polynomial (NP-complete) problem, which is described by trying to

maximize the possible value of a subset of objects while observing a given cost con-

straint. In this case, the goal is to maximize throughput while minimizing physical

area. A primary way of decreasing area is to decrease parallelism, lowering the

circuitry required to perform multiple tasks simultaneously. A primary way of in-

creasing throughput is decreasing the pipeline width. So, one way in which this

optimization goal can be expressed is to minimize pipeline width while minimizing

parallelism.

CHAPTER 4. IMPLEMENTATION 37

The variables to be decided when designing the pipeline are the number of

pipeline stages, the width of the pipeline, and the optimal arrangement of operations

within these stages. As defined above, there are two primary objectives to consider:

maximizing throughput and minimizing area.

First, to maximize throughput, the pipeline width should be minimal, allowing

a fast rate in the data exiting the system. The width should be reduced as much

as possible: it will be limited in this respect by the longest single block operation,

which can be assumed at this point to be memory access as all other operations

can theoretically be optimized to be as short as required (without considering area

costs).

Second, reducing physical area is required in order to fit the design on the

FPGA. Once the minimum pipeline width is set – it is convenient to estimate it to

be 64 clock cycles, allowing 1 cycle per pixel for memory operations – it is difficult

to quantify the remaining tradeoffs that occur in allocating pipeline stages. The

allocation of deblocking operations to the stages is influenced by several factors in

regards to area (which conflict with high throughput), as shown in Table 4.1.

Since a 64-pixel block of data is being manipulated at each stage, each stage

requires at least 64 registers, each between 8 bits and 31 bits wide, simply for storage

of the pixel data. These registers are a considerable area cost that can be reduced

by designing a pipeline with a fewer number of stages. However this smaller length

is not optimal for throughput, since having fewer pipeline stages implies that these

stages will be longer, resulting in a large pipeline width and lower throughput.

An important note is that clock cycles can be “wasted”. This term (which uses

nm to denote to the number of wasted clock cycles in stage m of the pipeline) refers

to the difference in clock cycles between the pipeline width (PW) and the time

CHAPTER 4. IMPLEMENTATION 38

P
ro

p
os

ed
T

h
ro

u
gh

p
u
t

E
ff
ec

t
A

re
a

E
ff
ec

t
L
im

it
at

io
n
s

O
ve

ra
ll

E
ff
ec

ts
T
ra

d
eo

ff
D

ec
re

as
in

g
pi

pe
lin

e
w

id
th

B
en

efi
ci

al
:

In
cr

ea
se

d
th

ro
ug

hp
ut

re
su

lt
s

di
-

re
ct

ly
fr

om
de

cr
ea

se
d

w
id

th
.

P
os

si
bl

y
de

tr
im

en
-

ta
l:

D
ec

re
as

ed
w

id
th

im
pl

ie
s

an
in

cr
ea

se
d

nu
m

be
r

of
st

ag
es

,
w

hi
ch

re
qu

ir
es

ad
-

di
ti

on
al

st
or

ag
e

re
gi

st
er

s.

M
em

or
y

ac
ce

ss
es

re
qu

ir
e

an
es

ti
-

m
at

ed
m

in
im

um
of

64
cl

oc
k

cy
cl

es
.

In
cr

ea
si

ng
th

e
w

id
th

al
lo

w
s

m
or

e
op

ti
on

s
fo

r
al

lo
ca

ti
ng

m
ul

ti
pl

e
op

er
at

io
ns

to
on

e
st

ag
e,

bu
t

al
so

pr
ov

id
es

th
e

po
te

nt
ia

l
fo

r
m

or
e

w
as

te
d

cl
oc

k
cy

cl
es

.

D
ec

re
as

in
g

pi
pe

lin
e

le
ng

th

P
os

si
bl

y
de

tr
im

en
ta

l:
D

ec
re

as
ed

le
ng

th
im

-
pl

ie
s

in
cr

ea
se

d
w

id
th

,
re

su
lt

in
g

in
lo

w
er

th
ro

ug
hp

ut
.

B
en

efi
ci

al
:

Fe
w

er
st

or
-

ag
e

re
gi

st
er

s
w

ill
be

re
-

qu
ir

ed
.

A
m

in
im

um
of

3
st

ag
es

ar
e

re
-

qu
ir

ed
:

2
fo

r
m

em
or

y
ac

ce
ss

an
d

1
fo

r
co

m
pu

-
ta

ti
on

.

A
s

ad
di

ti
on

al
st

ag
es

ar
e

ad
de

d,
th

e
ar

ea
ov

er
he

ad
co

ns
um

ed
by

st
or

ag
e

re
gi

st
er

s
be

co
m

es
in

cr
ea

si
ng

ly
m

or
e

co
st

ly
.

In
cr

ea
se

d
pa

ra
lle

lis
m

B
en

efi
ci

al
:

In
cr

ea
se

d
pa

ra
lle

lis
m

al
lo

w
s

pi
pe

lin
e

w
id

th
to

de
cr

ea
se

,
im

pr
ov

in
g

th
ro

ug
hp

ut
.

D
et

ri
m

en
ta

l:
G

en
er

-
al

ly
,

in
cr

ea
se

d
pa

ra
l-

le
lis

m
re

qu
ir

es
gr

ea
te

r
ar

ea
.

T
he

L
E

s
an

d
m

ul
-

ti
pl

ie
rs

av
ai

la
bl

e
lim

it
th

e
am

ou
nt

of
pa

ra
lle

lis
m

po
ss

ib
le

.

P
ar

al
le

lis
m

re
du

ce
s

la
te

nc
y

of
op

er
at

io
ns

,
al

lo
w

in
g

m
ul

ti
pl

e
op

er
at

io
ns

pe
r

st
ag

e,
an

d
po

s-
si

bl
y

in
cr

ea
si

ng
th

e
nu

m
be

r
of

w
as

te
d

cl
oc

k
cy

cl
es

in
ot

he
r

st
ag

es
.

Table 4.1: Implementation tradeoffs for throughput and area

CHAPTER 4. IMPLEMENTATION 39

required to complete the operations in a given stage (cm), as shown in Equation 4.1.

It is not expected that the number of wasted clock cycles can be reduced to zero, but

reducing this number implies a more efficient pipeline scheme, or in other words,

a more efficient balance between pipeline length and width. Wasting clock cycles

implies that area usage is not efficient, since the wasted cycles could potentially be

used for reducing parallelism in some operations, allowing area usage to decrease.

nm = PW − cm (4.1)

An example of pipeline tradeoffs can be observed by analyzing the transform

operation. It is fairly simple to break down the required calculations for each block

into a highly parallel sequence of additions, multiplications, and shifts, which lasts

18 clock cycles. Since the pipeline width cannot be any shorter than 64 clock

cycles, one approach is to add the thresholding operation to this stage. In fact,

since the thresholding is a fairly simple comparison operation, it would be possible

to combine not only these two operations but the inverse transform as well, with a

resulting 18 + 1 + 18 = 37 clock cycle latency, which still would allow 64− 37 = 27

clock cycles for additional operations or optimization.

In practice however, the above allocation is extremely inefficient, resulting in

area requirements far in excess of the available hardware. The difficulty occurs

in the area reduction process. To improve the area costs, these three operations

(transform, thresholding, inverse transform) should be optimized, which will in-

crease their latency and result in them being implemented in two or three pipeline

stages, resulting in the additional area overhead of the pipeline storage registers.

Ideally, each pipeline stage should have as few wasted clock cycles as possible, since

those clock cycles should theoretically be taken advantage of to improve the area

CHAPTER 4. IMPLEMENTATION 40

usage of that stage. However in the development effort it is often unclear as to

which optimizations will actually result in area improvements, and extra clock cy-

cles are only helpful up to a certain extent. In the end, trial and error was often

used for this kind of design work.

After several design and optimization cycles the final design consisted of a six-

stage pipeline [HWB07], shown previously in Figure 4.1. The first stage loads the

initial data from the first memory and the sixth stage stores the output data to the

second memory. The second and fourth stages perform the matrix multiplications

for the DCT and IDCT, respectively, and the intermediate (third) stage performs

the scalar matrix multiplications for both transform operations, as well as the

thresholding operation. Finally, the fifth stage is responsible for the averaging

processes.

4.2 Memory Access

Although the DCT and IDCT operations can be thought of as the most computation-

intensive parts of the implementation, memory access is by far the main throughput

bottleneck due to its finite bandwidth. The two main considerations in designing

the memory access scheme are: the selection of appropriate memories from those

available on the DE2 hardware, and the examination of the latency required to

transfer the data that is needed.

In analyzing the chosen deblocking algorithm it is apparent that the entire

first stage of the pipeline must be designed: there must be some process to fetch

data from memory and to manage the order in which blocks are processed and

in which shifts occur. Furthermore, in the algorithm it is implied that the entire

CHAPTER 4. IMPLEMENTATION 41

original image is accessible at the user’s convenience; clearly this is not the case.

For example, in the averaging stage the pixels from the original image are used in

conjunction with the shifted deblocked pixels.

These considerations are related to the broader issue of memory selection. It

is clear that to maximize throughput different physical memory should be used for

loading the initial pixels and for storing the processed data. This solution would

allow the input and output memories to function simultaneously: one pipeline stage

could read in new data in conjunction with another stage providing output to the

other memory, a feat that would be impossible if only one (single-port) memory

was being used.

4.2.1 Memory Selection

The DE2 board has four memory options: FLASH, SRAM, SDRAM, and an SD

card slot (as presented previously in Table 2.4). The SRAM was obvious as an

ideal choice due to its simplicity in interfacing and timing, its acceptable capacity

(512 kB), and its reasonable throughput (16 bits per clock cycle). It was chosen

as the output memory for the system. The choices for input memory were less

appealing. Because of its simplicity, the FLASH was used for the initial design but

was unacceptable in the long term due to the very low throughput of 8 bits every 5

clock cycles. This type of memory also has a limited lifespan, only being certified

for 100 000 program/erase cycles [Fuj03], which makes it undesirable for this type

of usage. Of the remaining two options, their complexity is comparable but the SD

card slot is slower and requires the added purchase of an SD card; thus the SDRAM

was chosen.

CHAPTER 4. IMPLEMENTATION 42

It should be mentioned that there is indeed one further option for memory

implementation: the on-chip M4K memory blocks. However the maximum storage

available by this means is only 52.5 kB. Although some of this space is useful for

other areas of the design such as read-only memory (ROM) lookup tables, the

images being processed are 307 200 bytes, and as such this option was discarded.

4.2.2 Maximum Throughput

Once the most appropriate memories for this project have been selected, an upper-

bound on the throughput of the entire system can be calculated. This bound will

not necessarily be achievable by the implementation, but can be used as a target, as

well as being used to demonstrate the suitability of the given hardware for real-time

usage (for this algorithm). The calculations are done for both input and output,

and the worst of these values will be the fastest theoretically achievable throughput

of the design.

First, the input memory will be considered. Being an SDRAM, this calculation

has several components. The basic case itself is fairly straight-forward: to read an

8 byte block (i.e. one row of pixels from an 8 × 8 pixel block), the memory row

must be selected, 4 words (of 2 bytes each) are read, and the row is precharged.

This process takes a minimum of 8 clock cycles. However, this case is the one most

seldomly used. Since most reads are for shifted blocks of pixels, and since all of

the shift values are odd, the bytes to be read overlap with the word boundaries

and therefore 5 words must be read instead of 4. This second case requires 9 clock

cycles.

The shift patterns cause another complication. Not only are the word bound-

CHAPTER 4. IMPLEMENTATION 43

aries compromised but the row boundaries are as well. When those cases occur, 5

words must still be read but the row selection and precharge operations must each

be done twice. The overhead latency in the read operation itself also increases,

since this pipelined operation is now done twice. This third case requires 13 clock

cycles. The three SDRAM accesses are summarized in Table 4.2.

Case Row Data Pre- Total Occurrences
Selection Transfer charge

Basic 2 5 1 8 All non-shifted rows
Shifted 2 6 1 9 63 of every 64 shifted rows
Boundary 4 7 2 13 1 of every 64 shifted rows

Table 4.2: SDRAM memory request latencies (durations in clock cycles)

To calculate a final throughput value, these three cases must be combined. The

first case, requiring 8 clock cycles, occurs for all loads of the original (non-shifted)

image. Since this operation loads 8 pixels, the cost is 1 clock cycle per pixel,

resulting in 307 200 clock cycles for the entire 640× 480 image.

The second and third cases both occur when loading the four shifted images.

Since each read operation fetches 8 pixels and since a row in the SDRAM contains

512 bytes (pixels), 1 out of every 64 reads will occur at a row boundary, comprising

the third read case. The other 63 reads in that memory row constitute the second

case. For one full shifted image, the total duration is 348 000 clock cycles (tCC), or

1.13 per pixel (tCC/P).

tCC = (1 (13) + 63 (9))× 640×480
64

= 348 000

tCC/P = tCC

640×480
= 348 000

307 200
= 1.13

(4.2)

An assumption can be made that the pipeline width should not be fixed. Since

CHAPTER 4. IMPLEMENTATION 44

read operations (for one row) vary between 8 and 13 clock cycles, the memory access

time for one pixel block will vary between (8 (8)) = 64 and (6 (9) + 2 (13)) = 80

clock cycles. If the pipeline scheme is event-driven as opposed to having fixed

timing, the pipeline width is not limited to the worst case, in this case 80 clock

cycles. The pipeline width can instead be determined by the memory access times

for that specific block. The other (internal) pipeline stages must then conform to a

maximum of 64 clock cycles, to keep up with the best-case memory time. It should

be noted that this best-case requirement is only necessary for the stages that are

actually used in those cases: since the best-case time calculated here is only relevant

to non-shifted blocks (which are not subject to the transform operations), stages 2,

3, and 4 are not subject to that specific best-case value.

Second, the output memory is considered. The SRAM is considerably simpler

than the SDRAM, but as it is also comprised of 2 byte words it again suffers from

the word boundary issue. The initial image is easy to process, requiring 4 clock

cycles to write a pixel block row of 8 pixels. For the 307 200 pixels needed the

duration is 307 200/2 = 153 600 clock cycles. The latency for the shifted images

must be calculated as well; they take longer for two reasons.

The first issue is again the overlap in word boundaries. Each shifted row must

access 5 memory words instead of 4. The second issue is that the output data is

cumulative: new results are summed with the values from earlier iterations. Each

word must first be read, then the sum of the existing word and the new result is

written back to the same location. The fastest this process can be accomplished is

2 clock cycles per word. When saving pixel data for the shifted images, each pixel

block row of 8 pixels requires 2 × 5 = 10 clock cycles. For one full shifted image,

the total duration is 384 000 clock cycles, or 1.25 per pixel.

CHAPTER 4. IMPLEMENTATION 45

tCC = (2 (5))× 640×480
8

= 348 000

tCC/P = tCC

640×480
= 384 000

307 200
= 1.25

(4.3)

Now the total throughput of the system can be calculated from the worst-

case memory latency of each block (see Table 4.3). Considering only the non-

shifted image, it is clear that the input memory is slower and thus constitutes the

maximum latency of 64 clock cycles per block. For the shifted images, the input

memory requires either (8 (9)) = 72 or (6 (9) + 2 (13)) = 80 clock cycles, depending

on the block location, while the output memory consistently requires (8(10)) = 80.

Therefore for these cases the maximum duration is 80 clock cycles. Considering the

full algorithm which processes 4800 blocks for a 640 × 480 pixel image, the total

duration is 1 843 200 clock cycles (see Equation 4.4).

Memory Latency
Block Input Output Minimum

Non-Shifted Image Block 64 32 64
Shifted Image Block 72 and 80 80 80

Table 4.3: Minimum memory latency (in clock cycles)

tCC = 1
(

640×480
64

(64)
)

+ 4
(

640×480
64

(80)
)

tCC = 1 (4 800 (64)) + 4 (4 800 (80))

tCC = 1 843 200

(4.4)

These calculations serve two purposes. First they provide a concrete goal for

the pipeline implementation: the stages which process the unshifted image should

be no wider than 64 clock cycles, and those which process the shifted images should

be no wider than 80 clock cycles. Second they provide a concrete upper-bound on

CHAPTER 4. IMPLEMENTATION 46

the throughput of this algorithm on this hardware. With the given on-board clock

speed of 50 MHz the full algorithm can be completed in 36.864ms. Viewing this

result in terms of frequency, 27.1 images can be processed per second. Since for

real-time video processing a rate of 24 images per second is desired, it is now shown

that for this specific hardware, algorithm, and image size, real-time deblocking is

theoretically achievable.

T = 1 843 200
50×106 = 36.864 ms

f = 50×106

1 843 200
= 27.1 Hz

(4.5)

4.2.3 Memory Implementation

The implementation of the SRAM interface is fairly straight-forward and will not

be discussed. The SDRAM on the other hand is a more complex memory and

deserves some explanation.

Unlike most other memories, which can be accessed in one clock cycle simply

by putting appropriate control values on the few control pins (such as read/write

and chip enable), SDRAM operates an internal finite state machine (FSM) which

controls its behaviour. This FSM can be seen in Figure 4.2. The device accessing

this memory must understand the FSM, and keep track of the SDRAM’s state

in order to issue relevant commands. However, the SDRAM has no output pins

other than the bidirectional data bus; therefore verification of the current state is

a painstaking process.

Without the ability to perform this kind of verification and debugging, the mem-

ory’s documentation is indispensable in building a functioning interface. Although

the documentation for this component was incomplete, a module was eventually

CHAPTER 4. IMPLEMENTATION 47

Figure 4.2: SDRAM finite state machine [Int00]

CHAPTER 4. IMPLEMENTATION 48

constructed with a simplified state machine, to match the timing required by the

memory. The power-up time required was implemented using a simple timer, and

after issuing other set-up commands (precharge, refresh, and mode set-up), the

interface would wait in the idle state, as would, presumably, the memory. Upon re-

ceiving a read or write command, the appropriate row would be activated, the read

or write operation performed, and then the required precharge would be requested

before returning to the idle state.

Due to the complexity of the SDRAM, several non-functional cases were difficult

to repair. The first case was the usage of batch mode. In the initial mode set-up,

this SDRAM allows selection of a batch size; that is, selection of how many words

to read or write in one operation. Despite this functionality, only the one-word size

was made to operate. Therefore, to access the required batch of data, several read or

write operations had to be issued sequentially within one request, by incrementing

the memory address. This functionality for pipelined accesses was supported and

did indeed work. Later in the development process it was realized that this approach

would have been required regardless, due to the need for fetching five words at a

time, a batch size which is not provided.

The second case which caused difficulty was the transition from one row to

another. In all cases performing a read/write cycle on a different row than the

previous cycle would result in incorrect behaviour. Since no two consecutive read

instructions in this application are on the same memory row (since each row in a

given pixel block is adjacent in vertical space but not in memory), this issue was

a major problem. Initially every first operation on a new row was simply redone,

which would then give the correct result, but which would result in doubling the

latency of the first stage of the deblocker’s pipeline.

CHAPTER 4. IMPLEMENTATION 49

Further research revealed that the clock for the SDRAM was needed to lead

the clock for the rest of the design by 3 ns. To accomplish this offset one of the

on-board Phase-Locked Loops (PLLs) was used. Not only did the clock have to

lead, but the rest of the interface signals did as well. Once these changes were

made, the SDRAM behaved as expected.

Although the SDRAM does provide high capacity (8MByte), the interface con-

sumes additional development time as well as (more importantly) area on the

FPGA. It would be preferable for a second SRAM to be used instead, which, simi-

larly to the output memory, would provide acceptable capacity (512 kByte or more)

while retaining a great deal more simplicity in the interface.

4.3 Discrete Cosine Transform

The DCT and IDCT operations contain the bulk of the computations required for

the algorithm. Due to the similarity between these operations, only the DCT is

discussed, with the understanding that the IDCT can undergo the same analysis.

Any relevant differences are pointed out as they are encountered.

4.3.1 Matrix Multiplications

The main issue to be addressed for the DCT (see Equation 4.6) is the exorbitant

area usage that occurs when it is implemented without any modification from its

description in the algorithm. There are several ways in which this operation can be

optimized, the first one being the modification to the values of 206 and -206 in the

transform matrix P. As all the other values are multiples of 2, these unusual values

CHAPTER 4. IMPLEMENTATION 50

were rounded up to 256 and -256 respectively to make them consistent with the rest

of the matrix, after consultation with Wong. This change allows all multiplications

within the 2 matrix multiplications to be implemented as left bit shifts.

Y =
(
PXPT

)
⊗

(
E⊗ ET

)
>> (2 log2 α) (4.6)

Once all multiplicands are multiples of 2, calculating one data value after one

matrix operation becomes the sum of 8 shifted input data values. If all 64 data

values are calculated in parallel, one full matrix multiplication can be completed

in 8 clock cycles. However, this implementation does not allow all four matrix

multiplications (2 each for the DCT and IDCT) to fit in the FPGA’s available

area.

Thus, some algebraic manipulation is used to present the multiplications in a

way that consumes less area. Realizing that if the two operations can be manip-

ulated into the same form then only one implementation is needed and the area

will greatly decrease, the property of (AB) =
(
BTAT

)T
was used to make the

modifications shown in Equation 4.8.

PXPT = (PX)PT

= (XTPT)TPT

= Φ [Φ [X]] (4.7)

Φ [X] ≡ XTPT (4.8)

Now instead of computing two separate operations, the input pixels can be sent

CHAPTER 4. IMPLEMENTATION 51

into the Φ computation unit (a transposition followed by a multiplication), and the

result of that iteration can simply be sent into the same computation unit again

for the second iteration. Although the routing for this new scheme is possibly more

complex than for the previous, the great reduction in area is still a worthwhile

justification. The improvement is further justified by noticing that the matrix

transposition is a trivial operation in hardware.

Further area reductions are possible by optimizing routing. A noticeable con-

tribution to the routing area comes from the transition from the pixel block matrix

to the computation logic. This area can be reduced by noticing that for every data

value being calculated in the multiplication, all of their nth terms are in the same

row of the input matrix. Originally, every data value in the input matrix was routed

to the computation unit. If only one row is required at a time however, then the

entire pixel storage matrix can be implemented as a large rotation unit, with only

one row being routed to the logic. VHDL pseudocode of this optimization can be

seen in Figure 4.3.

A further improvement can be introduced by taking advantage of the extra clock

cycles available in this stage of the pipeline. By treating each (8×8)(8×8)=(8×8)

matrix multiplication as two (8× 8)(8× 4)=(8× 4) operations, the existing input

structure remains the same but the computation unit’s size is reduced, as well as

the routing area for the output of the computation unit. This change is further

improved by implementing a rotating matrix on the output as well, allowing the

output to be routed to 4 consistent columns and having the previous result rotated

over to the other 4 columns when new results are available. Although this overall

improvement is not able to halve the area of the computation unit (as additional

logic is now required in order to change multiplicands between the two operations),

CHAPTER 4. IMPLEMENTATION 52

-- pixel block rotation implementation
if (loopflag='1') then

for i in 0 to 7 loop
for j in 0 to 6 loop

PixelMatrix(i, j) <= PixelMatrix(i, j+1);
end loop;
PixelMatrix(i, 7) <= PixelMatrix(i, 0);

end loop;
end if;
-- routing to computation logic
for k in 0 to 7 loop

LogicInputBus(k) <= PixelMatrix(k, 0);
end loop;

Figure 4.3: VHDL pseudocode of rotation functionality

there is still a noticeable improvement.

4.3.2 Scalar Multiplication

There is little improvement to be had in the scalar multiplication for the DCT. To

increase efficiency, the optimized on-chip multiplication units are used. Customized

multiplication functions are created in the Quartus II hardware compiler with one

fixed multiplicand and one input multiplicand, allowing the compiler to take care

of the optimization itself. One multiplication function is created for each of the

data values requiring one, for a total of 28, while the data values to be multiplied

by one are simply passed on without modification (see Equation 3.5).

One design improvement can be noted. Since the scalar multiplications for

the DCT and IDCT both occur in the same pipeline stage and each contain the

same multiplication matrix (E⊗ E), the hardware for these two operations can be

CHAPTER 4. IMPLEMENTATION 53

reused, including all of the multipliers. This improvement is a major justification

for placing these two scalar multiplications within the same stage.

4.4 Additional Optimizations

In addition to the major components of the design (DCT, memory interfaces, etc),

many other optimizations are made throughout to reduce the physical area while

remaining within pipeline width (latency) limitations. These changes include uti-

lization of the on-chip M4K memory blocks and deparallelization of area-intensive

operations.

4.4.1 Thresholding

In software the thresholding operation is most simply described as a loop comparing

the data values against a set of threshold values, and changing the data values if

necessary. In hardware this operation can be described simply in two different

ways: either by using the same approach, or viewing it as an operation done in

parallel, simultaneously operating on all 64 matrix values. The former method is

more efficient in terms of area; the latter in terms of latency. Since the longer

latency is not long enough to affect the overall system throughput, and since area

is an important concern, the software-centric approach was taken.

Area usage can be improved beyond this initial selection. The first optimization

is to remove the threshold matrix from logic element storage and instead store it as

a ROM lookup table in unused M4K memory space. Although some logic is then

required to manage the ROM control signals, this area can be considered minor

CHAPTER 4. IMPLEMENTATION 54

in comparison to the logic elements required to store 64 9-bit values. Also, to

improve routing, the implementation uses a rotation mechanism for the data block,

similar to that used for the DCT. Since only one threshold value can be fetched

from the ROM at a time, only one frequency component can be thresholded at a

time. Therefore, routing to the required operation units can be greatly simplified

so that only one cell in the data block is routed, and the rest of the cells rotate so

that all values eventually pass through the one chosen cell. In comparison to the

previous implementation there is a tradeoff in where the area is consumed. As seen

in Table 4.4 there is indeed an improvement as expected.

Method Description Area Memory LE Usage
1 Initial method 3 715 LEs 0 bits n/a
2 As 1, with ROM lookup table 2 613 LEs 1 984 bits 70%
3 As 2, with rotation mechanism 2 276 LEs 1 984 bits 61%

Table 4.4: Comparison of threshold matrix implementations

4.4.2 Averaging

The averaging to be done is a good demonstration of operations that are simple in

software but introduce additional complexity in hardware design. On the surface

these operations are quite simple: the pixels are weighted based on their distance

from the pixel block centre, a weight which can be pre-computed and stored on-chip.

However in practice there are several challenges.

The first challenge is to simplify the multiplication operations. One reason for

this simplification is that by this stage in the design all of the multiplication units

on the chip have been allocated to the scalar matrix multiplication in stage 3 of the

pipeline. Another is that a multiplier consumes logic elements, as opposed to alter-

CHAPTER 4. IMPLEMENTATION 55

nate implementations which could be designed to consume otherwise unused M4K

memory blocks. Implementing the multiplication in memory makes additional sense

when considering that M4Ks would likely be used regardless for implementing the

required weight matrix, as done for the comparison values used in the thresholding

operation.

To simplify the averaging as much as possible, the entire operation is done with

a read of an 8-bit value from an M4K ROM lookup table, an improvement over

reading to only obtain the multiplicand. This one read operation replaces three

operations: the selection of the appropriate multiplicand based on the pixel’s loca-

tion, the multiplication itself, and the ensuing division (right bit shift) to normalize

the value. In the algorithm, the multiplicand is an 8-bit value and the division is

a shift right by 8 bits. In the implementation the accuracy of these operations is

much less, since the accuracy is limited by the 8-bit representation of the final value

itself.

Using a lookup table becomes even more suitable when noticing that there

are exactly 16 different multiplicands, if the multiplicands of 0 and 256 (out of a

maximum of 256) are not included. Therefore the table can be addressed using 12

bits: the multiplicand’s identifier being the most significant 4 and the pixel value

being the remaining 8. At this address in the lookup table is located the 8-bit

result of the pixel value (address bits 7 down to 0) being scaled by the appropriate

amount (identified by address bits 11 down to 8).

The second challenge is to address the issue of shifting. The problem here is

that most of the pixel blocks being processed are offset; however the pixel weights

are a function of the pixel’s distance from the center of a non-shifted block. That

is, each pixel’s weight depends on its location within the original image, not its

CHAPTER 4. IMPLEMENTATION 56

location in the shifted copies. To accommodate this requirement, each pixel block

arriving at the averaging stage is itself shifted back into a non-shifted state, and

then re-shifted to its appropriate position upon leaving the stage.

The third challenge comes in accommodating an undocumented truncation im-

posed after the IDCT completes. Because of the inexactness of the DCT and IDCT

implementations, result values can often occur that are either less than 0 or greater

than 255, which is outside of the 8-bit range for the pixel data. To check for these

cases, two flags can be added to each 8-bit pixel value at the start of the averaging

stage, resulting in a 10-bit value per pixel. The first bit is the underflow flag, which

can be taken directly from the sign bit of the previous stage, since the result of the

IDCT is a signed value whereas the pixel value itself is not. The second bit is the

overflow flag, which is the disjunction of the bits between the sign bit and the least

significant 8 bits (which represent the pixel itself). If the underflow flag is set, the

incoming value was negative and should be set to zero. If the overflow flag is set, the

incoming value required more than 8 bits and should be lowered to the maximum

value of 255. Although adding this functionality does not seem overly complex, in

practice the area and routing required is noticeable in the implementation of the

full system.

4.5 Summary of Final Design

The final design comprises a six-stage event-driven pipeline with SDRAM input to

the first stage and SRAM output from the last. A summary of the final design

can be seen in Figure 4.4. Each pipeline stage is composed of one or more state

machines which transition out of their idle state upon notification of the previous

CHAPTER 4. IMPLEMENTATION 57

state’s completion. The DCT and IDCT processes are contained within stages two,

three, and four; pixel blocks of the base (non-shifted) image transition directly

from stage one to stage five, while shifted blocks progress through all stages of the

pipeline.

The total area usage was 31 059 out of 33 216 available logic units. 35 multipliers

were also used, as well as 34 244 bits of on-chip M4K memory. A summary of

resource utilization can be seen in Table 4.5.

Resource Available Used Utilization
Logic elements 33 216 31 059 93.5%
Multipliers 35 35 100.0%
Memory bits 483 840 34 244 7.1%
Pins 475 79 16.6%
PLLs 4 1 25.0%

Table 4.5: FPGA resource utilization

4.6 Commentary on the Design Process

Even with the apparent suitability of the chosen algorithm for hardware, implemen-

tation was still a long and involved process. Implementation of the basic function-

alities was not difficult, but as optimization increased the timings and relationships

between units became increasingly more complex. The iterative optimization and

debugging process was a major contribution to the duration of the project. There

are four recommendations that are given based on the work done in this project, for

easing the transition from a software or algorithmic design to an efficient hardware

product:

1. reduction of operating units;

CHAPTER 4. IMPLEMENTATION 58

SDRAM

SRAM

SDRAM
Interface

Stage 1 – Shifting

Pixel Storage Block A

Stage 2 – Transform

Stage 3 – Thresholding

Stage 4 – Inverse Transform

Pixel Storage Block H

Stage 5 – Weighted Averaging

Stage 6 – Saving

Pixel Storage Block I

Pixel Storage Block B

Pixel Storage Block C

Pixel Storage Block D

Pixel Storage Block E

Pixel Storage Block F

Pixel Storage Block G

Computation
Logic

Multipliers

Thresholding

Computation
Logic

Averaging

Figure 4.4: Overview of final design

CHAPTER 4. IMPLEMENTATION 59

2. reduction of routing requirements;

3. analysis of dataflow bottlenecks; and

4. development of a smaller compilation testbed.

The first recommendations involve the design of the algorithm, or the percep-

tion of what constitutes a design that is “simple”. Using integer operations in place

of floating point, and simplifying multiplications and divisions are helpful improve-

ments, but there are further considerations that can be taken. Two improvements

that can be made are to reduce operating units and to reduce routing requirements.

Both of these can be addressed by analyzing the dataflow of the algorithm.

In this project, these improvements were made using the rotating matrix ap-

proach. Throughout the project, operations on an entire matrix were applied to a

minimal number of matrix values (often only one), and the matrix itself was imple-

mented to progressively rotate its values so that, for every clock cycle a new value

was present at the operating location. Thus, the hardware units required were sim-

ply the matrix storage registers and the minimal number of operating units, and

the routing required was from only one (or few) registers to those operating units,

as well as the rotation routing. It can be noticed that these routing paths should

require a very small number of multiplexors and gates, as well as traveling a very

small physical distance, since they only travel between nearby logic elements. In

general algorithm design, this approach can be taken by grouping operations in a

manner conducive to this style of implementation.

The other recommendations involve the implementation process. First, an ini-

tial analysis of the bottlenecks in the system is essential for determining both the

feasibility (best-case scenario) of the project, as well as establishing guidelines for

CHAPTER 4. IMPLEMENTATION 60

the timing and optimization goals for the system. This analysis can provide invalu-

able insight into efficient groupings of components and useful areas of optimization,

mostly from a timing perspective. Second, the debugging process, the most time-

consuming part of the development, can be improved by preparing an independent

development system which only operates the module(s) in question rather than the

full implementation. Reducing the on-chip area of a program being compiled offers

a great reduction in compile time, often eliminating 40 minutes from a one hour

compile for this deblocking project. Although much debugging still must be done

in the full program, days can still be saved using this method.

Chapter 5

Results

The real-time video deblocking algorithm was successfully implemented on the Al-

tera DE2 board. Further optimization is needed to attain the theoretically achiev-

able 24 frames per second data rate required for real-time applications. The final

results of the hardware implementation are shown in Table 5.1.

5.1 Speed

Achieving high throughput is an important goal for the system. Unfortunately, the

current implementation falls short of the 24 frames per second that were shown to

be attainable in Chapter 4. However, it is likely that a rate of 24 frames per second

can be reached with some minor optimizations.

The current throughput is measured experimentally as 21.28 fps with a 50MHz

clock speed. The compilation process reports a maximum clock frequency of 63.7MHz.

Without any further changes to the design, a rate of 27.1 fps can be reached simply

61

CHAPTER 5. RESULTS 62

P
a
r
a
m

e
te

r
R

e
su

lt
U

n
it

N
o
te

s

F
P

G
A

lo
g
ic

el
em

en
ts

u
se

d
3
1

0
5
9

el
em

en
ts

9
3
.5

%
u
ti
li
za

ti
o
n

F
P

G
A

m
em

o
ry

u
ti
li
za

ti
o
n

3
4

2
4
4

b
it

s
7
.1

%
u
ti
li
za

ti
o
n

F
P

G
A

m
u
lt

ip
li
er

s
u
se

d
3
5

u
n
it
s

1
0
0
%

u
ti
li
za

ti
o
n

M
in

im
u
m

F
P

G
A

p
in

s
re

q
u
ir

ed
7
9

p
in

s
1
6
.6

%
u
ti
li
za

ti
o
n

F
P

G
A

P
L
L
s

u
se

d
1

u
n
it
s

2
5
%

u
ti

li
za

ti
o
n

O
ff
-c

h
ip

m
em

o
ry

u
ti
li
za

ti
o
n

6
1
4
4
0
0

b
y
te

s
2
×

im
a
g
e

si
ze

P
ip

el
in

e
st

a
g
es

6
st

a
g
es

P
ip

el
in

e
w

id
th

9
8

to
1
2
1

cl
o
ck

cy
cl

es
V
a
ri

a
b
le

(e
v
en

t
d
ri

v
en

)
D

a
ta

p
a
th

w
id

th
8

to
3
1

b
it

s
V
a
ri

a
b
le

(s
ta

g
e

d
ep

en
d
en

t)
D

a
ta

p
a
th

st
o
ra

g
e

1
2

8
6
4

b
it

s
D

a
ta

re
g
is

te
rs

fo
r

p
ip

el
in

e
st

a
g
es

T
h
eo

re
ti
ca

l
th

ro
u
g
h
p
u
t

0
.1

2
9

p
ix

el
s

p
er

cl
o
ck

cy
cl

e
A

v
er

a
g
e,

d
u
e

to
v
a
ri

a
b
le

p
ip

el
in

e
w

id
th

C
lo

ck
sp

ee
d

5
0
.0

M
H

z
O

n
-b

o
a
rd

cl
o
ck

M
a
x
im

u
m

p
o
ss

ib
le

fr
eq

u
en

cy
(f

m
a
x
)

6
3
.7

M
H

z
C

o
m

p
il
a
ti
o
n

re
su

lt
T
o
ta

l
th

eo
re

ti
ca

l
ru

n
ti
m

e
4
7
.5

9
m

s
C

a
lc

u
la

te
d

b
a
se

d
o
n

th
eo

re
ti
ca

l
th

ro
u
g
h
p
u
t

T
o
ta

l
ex

p
er

im
en

ta
l
ru

n
ti
m

e
4
6
.9

9
m

s
O

b
ta

in
ed

u
si

n
g

a
h
a
rd

w
a
re

cl
o
ck

cy
cl

e
co

u
n
te

r
F
in

a
l
d
eb

lo
ck

in
g

ra
te

2
1
.2

8
fr

a
m

es
p
er

se
co

n
d

B
a
se

d
o
n

ex
p
er

im
en

ta
l
ru

n
ti
m

e
T

h
eo

re
ti
ca

l
m

a
x
im

u
m

ra
te

2
7
.1

fr
a
m

es
p
er

se
co

n
d

B
a
se

d
o
n

f
m

a
x

cl
o
ck

sp
ee

d

Table 5.1: Summary of final design characteristics and performance

CHAPTER 5. RESULTS 63

by increasing the clock speed.

There are several optimizations possible to increase throughput. The current

bottleneck is, as expected, the interface to the SDRAM in stage one of the pipeline.

For design simplicity, this interface is contained in a separate module and transfers

data to the main design through a request and acknowledge process. This module

can be optimized by integrating it into the main design, reducing some of the delay

in each memory access. For simplicity, the SDRAM interface always fetches blocks

of 5 words, as required by the worst case scenario of the shifted images where pixels

transgress the word boundaries in memory. For the sake of optimization, a 4-word

mode could be implemented, shortening the access time for the non-shifted image.

5.2 Area

The physical area required by this system is both a major consideration and a low

priority item. For the system to be successfully implemented at all, it must fit within

the 33 216 logic elements available on the Altera Cyclone II FPGA. Therefore, area

optimization is of major importance. However, additional area optimization beyond

this point is not an important concern. It can be noted that designs with smaller

area require less compilation time, which can be advantageous to the development

process.

As shown in Table 5.1 the design consumes 31 059 logic elements, or 93.5% of

those available. Of the other on-chip resources, the only ones heavily used are the

multiplication units, all of which are consumed in stage three of the pipeline for

executing the scalar matrix multiplication with the matrix (E⊗ ET). One PLL

is also used, as required for SDRAM interfacing, as well as 16.6% of the pins: 39

CHAPTER 5. RESULTS 64

for the SRAM, 38 for the SDRAM, 1 for the clock, and 1 for a pushbutton which

acts as an asynchronous reset signal. Finally, 7.1% of the on-chip memory is used

to implement the thresholding lookup table in stage three and the pixel averaging

lookup table in stage five.

It is also useful to note that pipeline storage registers for the pixel data account

for 12 864 bits, or 41.4% of the logic elements used, which is, as expected, a large

proportion of the area costs.

5.3 Quality of Deblocking

The deblocking algorithm produces a very noticeable improvement to the artifacts

in the original image. Examples of input (original) images and output (deblocked)

images are shown in Figure 5.1 and Figure 5.2.

5.4 Future Work

This project represents an excellent prototype for real-time video hardware de-

blocking, and has excellent potential for expansion. Some possible avenues of work

are:

1. optimization and modification of the design;

2. modification to the input and output mechanisms;

3. implementation as a real-time device; and

CHAPTER 5. RESULTS 65

(Original image)

(Deblocked image)

Figure 5.1: First sample result of hardware deblocking (shown at 75%)

CHAPTER 5. RESULTS 66

(Original image)

(Deblocked image)

Figure 5.2: Second sample result of hardware deblocking (shown at 75%)

CHAPTER 5. RESULTS 67

4. extension to colour deblocking and higher resolutions such as HDTV (720×

480).

As noted in Section 5.1 several optimizations can be implemented to improve

the throughput of the design. There is also the possibility of modifying the design

to correct the unwanted darkness that occurs at the outer edges of the image. A

simple solution is to simply ignore the outer edge of blocks over the entire image,

retaining them without any deblocking. This solution could result in some small

discontinuity at the edges, but it is estimated that it would still be an improvement,

as well as improving the throughput of the system by effectively reducing the area

to be deblocked from 640× 480 to 624× 464.

The input and output of the design can be modified for several reasons. One

noticeable benefit would be the removal of the SDRAM, simplifying the first stage

of the pipeline. This memory could be replaced with a SRAM, allowing the first

stage, like the sixth stage, to adopt a minimalistic memory access scheme. The

existing single-port SRAM, accessed by the sixth stage, could be replaced with a

dual-port memory to streamline the required process of reading and writing data.

Beyond simplifying the two pipeline stages which interface the memories, input

and output modifications can be implemented to realize the initial goal of deblocking

video in real-time. The ethernet, USB, and VGA components on the DE2 board,

as well as the two parallel ports, could be used to receive and transmit video frames

from another device, allowing the system to operate in real-time as intended.

Finally, there is the potential to extend the design from greyscale deblocking

to colour deblocking. The core implementation can be replicated or expanded to

accommodate the larger data representations of colour pixels. Furthermore, differ-

ent resolutions can easily be accommodated by simply changing the global image

CHAPTER 5. RESULTS 68

size constants which are currently set at 640 and 480. These changes have a direct

effect on the throughput of the system, and as such increasing the workload will

require research into larger FPGAs (for replication) or those with faster attainable

clock speeds.

Chapter 6

Conclusions

Video and image data is heavily used in both professional and non-professional

contexts. Compression, primarily block-based lossy compression, is often used on

this data to reduce storage and transmission costs. Block-based compression can

result in undesirable blocking artifacts, which degrade the quality of the media.

These artifacts can be addressed by means of deblocking techniques, which can be

costly to implement for real-time video deblocking in particular due to the amount

of computation required.

This dissertation presents and analyzes a novel implementation of real-time

video deblocking on FPGA hardware. The implementation uses an Altera DE2

development board containing an Altera Cyclone II FPGA. The system meets all of

the project requirements with the exception of a throughput of 24 frames per second,

which can be attained either through further optimization or through the use of

a faster external clock. Specifically, the project requirements include achieving

throughput suitable for real-time video deblocking, reducing area as needed for

implementation in the given FPGA, and producing a noticeable reduction in the

69

CHAPTER 6. CONCLUSIONS 70

blocking artifacts present in the input frame of video.

6.1 Thesis Contributions

The hardware video deblocker described in this dissertation has many applications

in consumer electronics. Mobile devices as well as digital home entertainment

devices are well-suited for adoption of this system. The following contributions are

made by this thesis research:

1. selection of a deblocking algorithm that is suitable for implementation in

low-cost hardware;

2. description of the modifications necessary to the chosen deblocking algorithm

for the purpose of hardware implementation;

3. design and implementation of the algorithm on a low-cost FPGA;

4. description of the optimizations necessary to achieve the area and throughput

required for real-time applications;

5. analysis of the feasibility of the given implementation for real-time video

deblocking, including the feasibility for usage in high-definition television;

6. presentation of general techniques which can be used for future hardware

projects of a similar nature; and

7. presentation of enhancements and expansions which can be implemented in

the future.

CHAPTER 6. CONCLUSIONS 71

The shifted transform deblocking algorithm proposed by Wong provides many

benefits such as reduced computation: fewer multiplications and simplification of

divisions to bit-shifting. It also can be easily partitioned into sub-tasks which is

ideal for pipelining. Wong’s algorithm can be further optimized using matrix alge-

bra. It is then partitioned into pipeline stages to increase throughput. Operations

are grouped logically in an attempt to reduce area usage, such as by reusing the

multiplication units in stage three. The on-board SDRAM and SRAM are selected

as the input and output memories, respectively. Several techniques are used for

optimization of the algorithm within the area constraints of the FPGA and the

throughput constraints of the project, such as:

1. variable pipeline width (number of clock cycles per stage) and variable pipeline

datapath width;

2. reuse of operational units such as the DCT unit in stage two and the multi-

pliers in stage three;

3. partitioning of the DCT and IDCT operations to reduce wasted clock cycles

in stages two and four;

4. use of on-chip memory for ROM lookup tables in stages three and five; and

5. implementation of rotation mechanisms for data storage elements within most

stages.

The resulting system delivers a throughput of 21.28 frames per second. En-

hancements are described for improvement of this value to the desired rate of 24 fps,

including optimizations to the SDRAM interface in the first stage of the pipeline.

CHAPTER 6. CONCLUSIONS 72

The deblocked images exhibit remarkably fewer noticeable blocking artifacts than

the originals.

From the work on this project several techniques are suggested to improve the

transition from an algorithm to a full hardware implementation. For example,

optimization of operating units and routing requirements should be considered,

and both throughput analysis (for bottlenecks) and smaller compilation tasks can

be observed to streamline the development process.

Finally, there are opportunities for future work on this project. Further de-

velopment can be done to process video in real-time, as opposed to the current

single-frame operating mode. Changes to the input and output mechanisms can be

done towards this goal, as well as to simplify the memory interface in stage one.

The current design can easily be extended to operate on higher resolutions (such

as 720× 480) and colour media.

6.2 Thesis Applicability

The proposed real-time hardware video deblocking architecture is suitable for im-

plementation in many consumer devices. Mobile devices, having constraints on

data storage and transmission, are an ideal candidate for the use of the hardware

deblocking architecture. Digital home entertainment is another important venue:

real-time deblocking is used to cater to customer demand for high visual quality.

Deblocking allows transmission costs to be reduced, which allows bandwidth to be

used for other applications such as enhanced digital television content or higher

resolution television.

The proposed implementation is suitable for low-cost hardware, which is con-

CHAPTER 6. CONCLUSIONS 73

venient for use in consumer electronics. It allows a reduction in media file sizes

through block-based compression, while limiting visual quality degradation, pro-

viding to the end user a good balance between file size and media quality.

Bibliography

[Alt06] Altera Corporation. DE2 User Manual, Version 1.4, 2006.
http://www.altera.com/education/univ/materials/boards/

DE2_UserManual.pdf.

[Alt07] Dave Altavilla. ATi Radeon X800 XT & X800 Pro. World Wide Web
Document, May 2007. http://www.hothardware.com/viewarticle.

aspx?articleid=517.

[AM02] Ian Alston and Bob Madahar. From C to netlists: Hardware engi-
neering for software engineers? IEEE Electronics & Communication
Engineering Journal, 14(4):165–173, August 2002.

[CAGM94] Navin Chaddha, Avneesh Agrawal, Anoop Gupta, and Teresa H.Y.
Meng. Variable compression using JPEG. In Proceedings of the In-
ternational Conference on Multimedia Computing and Systems, pages
562–569, May 1994.

[CCR98] Jim Chou, Matthew Crouse, and Kannan Ramchandran. A simple algo-
rithm for removing blocking artifacts in block-transform coded images.
IEEE Signal Processing Letters, 5(2):33–35, 1998.

[CKL06] Jian-Wen Chen, Chao-Yang Kao, and Youn-Long Lin. Introduction to
H.264 advanced video coding. In Proceedings of the 2006 Conference on
Asia South Pacific Design Automation, pages 736–741, January 2006.

[EPG+05] Mohammed Elbadri, Raymond Peterkin, Voicu Groza, Dan Ionescu,
and Abdulmotaleb El Saddik. Hardware support of JPEG. In Proceed-
ings of the Canadian Conference on Electrical and Computer Engineer-
ing, pages 812–815, May 2005.

[Fuj03] Fujitsu Limited, Tokyo, Japan. SPANSION Flash Memory Data Sheet,
2003. http://www.spansion.com/datasheets/e520888.pdf.

74

http://www.altera.com/education/univ/materials/boards/DE2_UserManual.pdf
http://www.altera.com/education/univ/materials/boards/DE2_UserManual.pdf
http://www.hothardware.com/viewarticle.aspx?articleid=517
http://www.hothardware.com/viewarticle.aspx?articleid=517
http://www.spansion.com/datasheets/e520888.pdf

BIBLIOGRAPHY 75

[GES+99] Steven Gringeri, Roman Egorov, Khaled Shuaib, Arianne Lewis, and
Bert Basch. Robust compression and transmission of MPEG-4 video.
In Proceedings of the Seventh ACM International Conference on Mul-
timedia (Part 1), pages 113–120, October 1999.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

[HCS95] Sung-Wai Hong, Yuk-Hee Chan, and Wan-Chi Siu. Subband adaptive
regularization method for removing blocking artifacts. IEEE Proceed-
ings on ICIP, 2:523–527, 1995.

[HLC+05] Pei-Yung Hsiao, Le-Tien Li, Chia-Hsiung Chen, Szi-Wen Chen, and
Sao-Jie Chen. An FPGA architecture design of parameter-adaptive
real-time image processing system for edge detection. In Proceedings of
the Emerging Information Technology Conference, August 2005.

[HWB07] Martin Hansen, Alexander Wong, and William Bishop. A hardware im-
plementation of real-time video deblocking using shifted thresholding.
In Proceedings of the Twentieth Canadian Conference on Electrical and
Computer Engineering, April 2007.

[Int00] Integrated Circuit Solution Inc., Hsin-Chu, Taiwan. 2(1)M Words x
8(16) Bits x 4 Banks (64-Mbit) SYNCHRONOUS DYNAMIC RAM
Data Sheet, 2000. http://www.icsi.com.tw/english/.

[ISO94] ISO/IEC. Generic coding of moving pictures and associated audio in-
formation, part 2: Video, 13818-2, Nov 1994.

[Kim00] Daijin Kim. An implementation of fuzzy logic controller on the recon-
figurable FPGA system. IEEE Transactions on Industrial Electronics,
47(3):703–715, June 2000.

[Nel00] Anthony Edward Nelson. Implementation of image processing algo-
rithms on FPGA hardware. Master’s thesis, Vanderbilt University,
Nashville, TN, 2000.

[Nos01] Aria Nosratinia. Enhancement of JPEG-compressed images by reappli-
cation of JPEG. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, 27:69–79, 2001.

http://www.icsi.com.tw/english/

BIBLIOGRAPHY 76

[OS95] T. P. O‘Rourke and R. L. Stevenson. Improved image decompression
for reduced transform coding artifacts. IEEE Transactions on Circuits
and Systems for Video Technology, 5(8):298–304, 1995.

[PH06] Mustafa Parlak and Ilker Hamzaoglu. An efficient hardware architec-
ture for H.264 adaptive deblocking filter. In First NASA/ESA Confer-
ence on Adaptive Hardware and Systems, pages 381–385, 2006.

[SCL06] Shen-Yu Shih, Cheng-Ru Chang, and Youn-Long Lin. A near opti-
mal deblocking filter for h.264 advanced video coding. In ASP-DAC
’06: Proceedings of the 2006 conference on Asia South Pacific design
automation, pages 170–175, New York, NY, USA, 2006. ACM Press.

[SVMJ95] Brian Schoner, John Villasenor, Steve Molloy, and Rajeev Jain. Tech-
niques for FPGA implementation of video compression systems. In
Proceedings of the 1995 ACM Third International Symposium on Field-
Programmable Gate Arrays FPGA ’95, pages 154–159, February 1995.

[SZZ04] Miao Sima, Yuanhua Zhou, and Wei Zhang. An efficient architecture
for adaptive deblocking filter of H.264/AVC video coding. IEEE Trans-
actions on Consumer Electronics, 50(1):292–296, February 2004.

[THAE00] Cesar Torres-Huitzil and Miguel Arias-Estrada. An FPGA architecture
for high speed edge and corner detection. Fifth IEEE International
Workshop on Computer Architectures for Machine Perception, pages
112–116, 2000.

[VIA07] VIA Technologies, Inc. World Wide Web Document, May 2007. http:
//www.via.com.tw/en/products/chipsets/p4-series/pn800/.

[Wal91] Gregory K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30–34, 1991.

[WB06] Alexander Wong and William Bishop. Efficient deblocking of block-
transform compressed images and video using shifted thresholding. In
Proceedings of the Eighth IASTED International Conference on Signal
and Image Processing, August 2006.

[WLY02] Chaminda Weerasinghe, Alan Wee-Chung Liew, and Hong Yan. Ar-
tifact reduction in compressed images based on region homogeneity

http://www.via.com.tw/en/products/chipsets/p4-series/pn800/
http://www.via.com.tw/en/products/chipsets/p4-series/pn800/

BIBLIOGRAPHY 77

constraints using the project onto convex sets algorithm. IEEE Trans-
actions on Circuits and Systems for Video Technology, 12(10):891–897,
2002.

[XOZ97] Zixiang Xiong, M. T. Orchard, and Ya-Qin Zhang. A deblocking al-
gorithm for JPEG compressed images using overcomplete wavelet rep-
resentations. IEEE Transactions on Circuits and Systems for Video
Technology, 7:433–437, 1997.

[ZRG+02] Paul S. Zuchowski, Christopher B. Reynolds, Richard J. Grupp,
Shelly G. Davis, Brendan Cremen, and Bill Troxel. A hybrid ASIC
and FPGA architecture. In IEEE/ACM International Conference on
Computer Aided Design, pages 187–194, November 2002.

	Introduction
	Motivation
	Statement of Thesis
	Contributions
	Thesis Outline

	Background
	Image Compression
	Implementations of Block Operations

	Image Deblocking
	Deblocking Techniques
	Comparison of Techniques

	Hardware Considerations
	Non-Application-Specific Devices
	Application-Specific Devices
	Hardware Implementation
	Hardware in Video Processing
	Altera DE2 Board

	Shifted Deblocking Algorithm
	Overview
	Image Shifting
	Transform and Inverse Transform
	Thresholding
	Reassembly
	Image Format
	Hardware-Beneficial Features

	Implementation
	Pipelining
	Memory Access
	Memory Selection
	Maximum Throughput
	Memory Implementation

	Discrete Cosine Transform
	Matrix Multiplications
	Scalar Multiplication

	Additional Optimizations
	Thresholding
	Averaging

	Summary of Final Design
	Commentary on the Design Process

	Results
	Speed
	Area
	Quality of Deblocking
	Future Work

	Conclusions
	Thesis Contributions
	Thesis Applicability

	Bibliography

