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Abstract: 

 Alzheimer’s disease is a late-onset neurological disorder characterized by extracellular 

aggregates of Aβ plaques and neurofibrillary tangles of hyperphosphoryated tau protein resulting 

in neuronal dysfunction, cognitive decline and death. Some of the molecular mechanisms which 

cause neuronal dysfunction in Alzheimer’s disease are oxidative stress, excitotoxicity and 

hypoxia. PDGF-BB is a neurotrophic factor which is neuroprotective against these molecular 

events. However, PDGF-BB failed to be neuroprotective against Aβ42 toxicity in SH-SY5Y 

neuroblastoma cells. Rather, Aβ42 actually inhibited PDGF-BB signalling and reduced the 

phosphorylation level at multiple phosphotyrosine sites on the PDGFβ receptor. Aβ42 inhibition 

of PDGF-BB signalling also inhibited a downstream effector, Akt, a neuroprotective protein. 

Thus, Aβ42 inhibition of PDGF-BB signalling could worsen oxidative stress, excitotoxicity and 

hypoxia observed in Alzheimer’s disease. Indeed, Aβ42 treatment prevented PDGF-BB 

neuroprotection against excitotoxicity. Aβ42 mediated inhibition of PDGF-BB signalling was 

not due to Aβ42 interaction with PDGFβ receptor. However, it remains inconclusive whether 

Aβ42 binds to PDGF-BB to prevent PDGF-BB binding to PDGFβ receptor.  

 



  iv 

 

Acknowledgements 

 This work was supported by the Natural Science and Engineering Research Council 

(NSERC) of Canada. I acknowledge the School of Pharmacy at the University of Waterloo for 

supporting this research.  

 I thank my supervisor Dr. Michael Beazely for his continuous academic guidance and 

academic counselling, his patience in supporting the various stages of my project and for giving 

me the opportunity to conduct this research in his laboratory. I would also thank my committee 

advisors, Dr. Roderick Slavcev and Dr. Shawn Wettig for their support and advice for the last 

two years.  

 I would also like to thank Lucy Liu for giving me the opportunity to continue her project 

regarding involvement of Aβ42 in PDGF-BB signalling as well as teaching me various 

techniques in cell culture. I would also like to thank my colleagues Maryam Vasefi, Jeff Kruk 

and Azita Kouchmeshky for their support, helping in lab maintenance and teaching me various 

techniques.    

 

 

 

 

 



  v 

 

Dedication 

I dedicate this thesis to my mother, Shaheen Afroz, for supporting me during the two years of 

this project and my father, Golam Moula, for providing me information regarding graduate 

studies which greatly helped me in my research.  

 

 

 

 

 

 

 

 

   

 

 

 

 



  vi 

 

Table of contents 

List of figures..............................................................................................................................viii 

List of tables..................................................................................................................................ix 

List of Abbreviations.....................................................................................................................x 

Chapter 1: Introduction................................................................................................................1 

1.1 History of Alzheimer’s disease.............................................................................................1 

1.2 Alzheimer`s disease pathology.............................................................................................1 

1.3 PDGF as a neurotrophic factor.............................................................................................7 

1.4 PDGF and Alzheimer’s disease............................................................................................9 

1.5 The role of Aβ interactions with neuronal receptors Alzheimer’s disease..........................9 

1.6 Hypothesis, methodology and project outline....................................................................11 

Chapter 2: Results........................................................................................................................12 

   2.1 Aβ inhibits PDGF-BB signalling..........................................................................................12 

      2.1.1 Aβ42 inhibits PDGF-BB-induced PDGFβ receptor phosphorylation at site Tyr1021     

              in SH-SY5Y cells.............................................................................................................12 

      2.1.2 Increasing the concentration of PDGF-BB is not able to overcome the inhibition  

               by Aβ42 oligomers..........................................................................................................13 

      2.1.3 Aβ42 oligomers also inhibits PDGF-BB induced PDGFβ receptor phosphorylation  

              at other tyrosine residues.................................................................................................15 

   2.2 Aβ42 inhibits effectors downstream of the PDGFβ receptor...............................................17 

   2.3 Mechanism of Aβ inhibition of PDGF-BB signalling..........................................................19 

      2.3.1 Aβ42 oligomers do not physically interact with the PDGFβ receptor...........................19 

      2.3.2 Aβ42 oligomers may bind to the PDGF-BB ligand........................................................21 

 



  vii 

 

Chapter 3: Discussion..................................................................................................................26 

   3.1 Mechanism of Aβ42 inhibition of PDGF-BB signalling..................................................... 26 

   3.2 Aβ modulation of tyrosine kinase receptors and AD............................................................28 

   3.3 PDGF neuroprotection against excitotoxicity, hypoxia, oxidative stress in relation  

         to AD.....................................................................................................................................31 

   3.4 AB42 inhibition of downstream effectors of PDGFβ receptors...........................................34 

   3.5 Does Aβ42 inhibition of PDGF-BB signalling lead to neurotoxicity...................................37 

   3.6 Future directions...................................................................................................................39 

Chapter 4: Materials and methods.............................................................................................41 

   4.1 SHSY-5Y cell culturing........................................................................................................41 

   4.2 Aβ42 oligomer preparation...................................................................................................41 

   4.3 Western Blot.........................................................................................................................41 

   4.4 Immunoprecipitation.............................................................................................................42 

Chapter 5: Conclusion.................................................................................................................45 

References.....................................................................................................................................46 

 

 

 

 



 viii 

 

List of figures 

Figure 1: APP cleavage to Aβ..........................................................................................................2 

Figure 2: Amino acid sequence of Aβ40 and Aβ42.........................................................................3 

Figure 3: PDGF-BB is neuroprotective against NMDA toxicity.....................................................8 

Figure 4: Aβ42 inhibits PDGF β receptor Tyrosine 1021 phosphorylation in presence of PDGF-

BB in SH-SY5Y cells....................................................................................................................12 

Figure 5: Aβ42 inhibits PDGFβ Receptor Tyr1021 phosphorylation in presence of PDGF-BB in 

SH-SY5Y cells at all concentrations of PDGF-BB tested.............................................................14  

Figure 6: Aβ42 inhibits multiple PDGFβ receptor tyrosine phosphorylation sites in presence of 

PDGF-BB.......................................................................................................................................16 

Figure 7: Aβ42 inhibits pAKT Ser473 phosphorylation in the presence of PDGF-BB in SH-

SY5Y cells.....................................................................................................................................18 

Figure 8: Aβ42 does not bind to PDGFβ receptor in SH-SY5Y cells...........................................20 

Figure 9: In vitro immunoprecipitation experiment to test for interaction between PDGF-BB and 

Aβ42 oligomer...............................................................................................................................22 

Figure 10: Reverse immunoprecipitation experiment to evaluate interactions between Aβ42 and 

PDGF-BB.......................................................................................................................................24 

Figure 11: -amyloid prevents PDGF-BB-induced neuroprotection against NMDA excitotoxicity 

........................................................................................................................................................38 

 

 

 

 

 

 

 

 



  ix 

 

List of tables 

Table 1: impact of interaction of beta amyloid with various receptor/ligands..............................10 

Table 2: Beta amyloid interaction with receptor ligands...............................................................28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  x 

 

List of Abbreviations 

α7nAChRs = α7-containing nicotinic acetylcholine receptors            

Aβ = Beta-amyloid 

ABAD = Aβ-binding alcohol dehydrogenase 

AD = Alzheimer’s disease 

ADDLs = Aβ-derived diffusible ligands 

AGEs = advanced glycation end products 

AICD = APP intracellular domain 

AMPA receptor = α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 

AMY-3 = Amylin receptor        

Aph-1 = anterior pharynx-defective 1 

APP = amyloid precursor protein 

BACE = β-APP cleaving enzyme 

beta(2)AR = Beta (2) adrenergic receptor 

cAMP = cyclic AMP 

CNS = central nervous system 

DMEM = Dulbecco's Modified Eagle Medium   

DMSO = dimethyl sulfoxide  

EDTA = Ethylenediaminetetraacetic acid 

EGTA = ethylene glycol tetraacetic acid       

ERK = Extracellular signal-regulated kinases     

ER = endoplasmic reticulum 

GSK3β = glycogen synthase kinase β 

HBD = heparin-binding domain 



  xi 

 

HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HIF-1α = hypoxia inducible factor-1α 

HNE = 4-hydroxynonenal 

IGF1R = Insulin-like growth factor receptor type 1  

JNK = c-Jun N-terminal kinases    

LTD = long-term depression 

LTP = long-term potentiation 

MAPK = mitogen-activated protein kinase 

NGF = nerve growth factor 

NMDA receptor = N-methyl-D-aspartate receptor 

p75
NTR

 receptor = p75 neurotrophin receptor   

PBS = phosphate buffered saline                   

PDGF = platelet-derived growth factor 

PEN-2 = presenilin enhancer 2 

PI3K = phosphoinositode 3-kinase 

PKA = protein kinase A 

PLCγ = phospholipase Cγ 

PTEN = phosphatase and tensin homolog 

RAGE = receptor for advanced glycation end products 

ROS = reactive oxygen species 

RTK = receptor tyrosine kinase 

SDS PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TGF = Transforming growth factor 

TrkA = tyrosine kinase receptor A 



1 

Chapter 1: Introduction 

 

1.1      History of Alzheimer`s disease: 

 Dr. Alois Alzheimer in 1906, while performing post-mortem examinations of the brain of 

an individual with dementia, identified neuropathological features including neurofibrillary 

tangles and neuritic plaques
1
. This dementia was later named Alzheimer’s disease (AD). Almost 

80 years later (1984), Glenner and Wong isolated a small peptide, beta-amyloid (Aβ), from 

neuritic plaques of brains afflicted with AD
 2

.  

 

1.2      Alzheimer`s disease pathology:  

Alzheimer’s disease is a late-onset neurological disorder resulting in neuronal dysfunction, a 

decline of cognitive and memory capabilities, and ultimately death. It affects 5.4 million 

Americans and is believed to cost $385 billion per year
3, 4

. It is characterized by extracellular 

aggregates of Aβ peptide in the brain and neurofibrillary tangles of paired helical filaments 

composed of hyperphosphorylated tau protein. The Aβ peptide is produced from processing of 

the amyloid precursor protein (APP), a type 1 integral membrane glycoprotein.  In the 

amyloidogenic pathway, β-secretases and γ-secretases sequentially cleave APP to produce the 

pathogenic Aβ peptides
5
. β-secretase (β-APP cleaving enzyme (BACE)) is a type 1 

transmembrane aspartyl protease
6
 and γ-secretase is a multicomponent complex composed of 

presenilin-1/presenilin-2, (anterior pharynx-defective 1) Aph-1, nicastrin, PEN-2 (presenilin 

enhancer 2)
7
. Cleavage of APP by β-secretase at the ectodomain results in the production of a 

soluble APP-β domain and membrane associated APP C-terminal fragment C99 which is 99 

amino acids long
8
. Then γ-secretase cleaves the C99 fragment to release the C-terminus of APP 
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known as APP intracellular domain (AICD) and Aβ peptides which spontaneously aggregate 

form fibrils, ultimately producing the plaques in the brain initially observed by Dr. Alzheimer 

(Figure 1). 

  

 

Figure 1: APP cleavage to Aβ. The type 1 integral membrane glycoprotein APP is cleaved by 

β-secretase to produce soluble APP-β domain (sAPPβ) and membrane associated APP C-

terminal fragment C99. C99 is cleaved by γ-secretase to produce APP intracellular domain 

(AICD) and Aβ peptides
9
. 

 

Aβ peptides are between 38-43 amino acids in length and the majority of the peptides are 40 

or 42 amino acids long
10, 11

. Aβ42 (and Aβ43) peptides are more neurotoxic than Aβ40. For 

example, mutations in the Aβ C-terminal of APP that increase the Aβ42/Aβ40 ratio are sufficient 
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to cause early onset Alzheimer’s
12, 13

. This suggests that the ratio of Aβ42/Aβ40 may be more 

important than the absolute quantity of Aβ40 and Aβ42. Aβ42 is more hydrophobic and more 

fibrillogenic and is involved in the assembly of Aβ into higher order structures, from dimers to 

insoluble plaques that are found as deposits in the brain
14

. The difference in amino acid sequence 

between Aβ40 and Aβ42 is found in Figure 2. In addition to ~ 40 residue Aβ, the 11-residue Aβ 

fragment representing amino acid sequences 25-35 of full length Aβ (Aβ25-35) is used in 

various studies because it is small, possesses all the characteristics including: 1) neurotoxic, 2) 

neuroprotective, 3) amphilic, 4) aggregation characteristics of the full length Aβ peptide
15

. 

 

 

Figure 2: Amino acid sequence of Aβ40 and Aβ42. The difference in amino acid sequence 

between Aβ40 and Aβ42 is shown
16

.   

  

Tau is a microtubule-associated protein (MAP) which is involved in the stability and 

assembly of microtubules. Microtubules are necessary for axoplasmic flow which is critical for 

neuronal function. The activity of the neuronal protein tau is regulated by its degree of 

phosphorylation: tau needs 2-3 mol of phosphate/mol of protein as a level of phosphorylation for 

its optimal activity. Hyperphosphorylation of tau, as observed in AD, results in decrease of 

microtubule assembly activity and binding of tau to microtubules. Hyperphosphorylation of tau 

during AD results in intraneuronal tangles of paired helical filaments (PHFs) which are 

correlated with dementia. Hyperphosphorylated tau in AD is found as; 1) polymerized into 

neurofibrillary tangles of PHF mixed with straight filaments (SF) and 2) non-fibrillized form in 
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the cytosol. Interestingly, tau polymerized as neurofibrillary tangles is inert whereas cytosolic 

hyerphosphorylated tau (P-tau) which may represent up to ~40% of total abnormal tau does not 

interact with tubulin/microtubules and sequesters normal tau, MAP1A/MAP1B and MAP2, 

resulting in inhibition and disassembly of microtubules
17-19

. Therefore, the toxic AD P-tau is 

involved in disassembly and inhibition of microtubule activity which is detrimental to 

microtubule-dependent neuronal activity
17-19

. It has been thought that production and/or 

deposition of Aβ precedes neurofibrillary tangle formation. However, studies suggest that tau is 

involved in mediating Aβ toxicity. For example, tau knock-out neurons are resistant to Aβ-

neurotoxicity and cognitive impairment were shown to be rescued upon crossing a APP 

transgenic mice with a tau knock-out line
20

.  

  

Aβ peptides spontaneously aggregate in solution and it is thought that small oligomers of Aβ 

exert their neurotoxic effects: the promotion of tau hyperphosphorylation, neuronal dysfunction 

and neuronal loss
14

. Oxidative stress can increase the production of Aβ and at the same time can 

worsen cell membrane damage, cytoskeleton alteration, and cell death. Reaction between ROS 

and Aβ produce phenoxy radicals of Aβ at Tyr10 and this result in increased neurotoxicity and 

further acceleration of Aβ aggregation. Increases in the level of lipid peroxidation in the brains of 

AD patients have also been observed. Lipids in cell membranes undergoing oxidative 

modification results in structurally damaged membranes and production of aldehydic end 

products such as 4-hydroxynonenal (HNE) which themselves are oxidative and can impair 

cellular function
21,

 
22

. Toxic forms of aggregated Aβ can also result in Ca
2+

 influx into neurons 

by inducing membrane associated oxidative stress, which results in the neurons being more 

vulnerable to excitotoxicity and apoptosis
23

. In addition, Aβ can bind to mitochondrial Aβ-
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binding alcohol dehydrogenase (ABAD) which is a mitochondrial protein that is up-regulated in 

the temporal lobe of AD patients. This interaction increased ROS production and cell death and 

caused spatial and learning impairments in 5-month old AβPP/ABAD double transgenic mice
24

. 

These molecular mechanisms result in cell death, and present as cognitive impairment and 

memory deficits at the macro level
25

.  

  

Glutamate-mediated excessive stimulation of N-methyl-D-aspartate (NMDA) receptors and 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors regulate synaptic 

activity and NMDA receptor activation results in calcium influx, and if excessive, causes free 

radical generation, mitochondrial dysfunction, and additional intracellular cascades which lead to 

neuronal death, termed excitotoxicity. NMDA receptors are overactivated by excess glutamate 

released in AD in a tonic manner and this is coupled in a “feed-forward” pathway that results in 

additional Aβ production. Extended activation of extrasynaptic NMDA receptors increase β-

secretase mediated cleavage of APP leading to increased Aβ production. Aβ can increase Ca
2++

 

influx through various mechanisms which make the neurons vulnerable to excitotoxicity. For 

example, Aβ and NMDA receptors can induce endoplasmic reticulum (ER) stress which alters 

calcium homeostasis. In addition, Aβ oligomers can induce NMDA receptor activation leading to 

cellular damage and excitotoxicity. Furthermore, Aβ can reduce glutamate uptake at the synaptic 

cleft leading to increased glutamate levels. The increase in glutamate levels would increase 

NMDA receptor activation, and the feed-forward relationship between Aβ and NMDA/glutamate 

continues
26

. 
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Patients with cerebral infarction and stroke have higher risks of developing AD. Severe and 

extended periods of hypoxia can lead to neuronal loss and memory impairment. Hypoxia can up-

regulate expression of BACE1 gene resulting in higher levels of β secretase activity. In addition, 

hypoxia increases Aβ production, neuritic plaque formation, and memory deficits. Hypoxia 

induces the expression of hypoxia inducible factor (HIF)-1α which binds to the promoter of 

APH-1 to up-regulate γ-secretase expression since APH-1 is a subunit of γ-secretase. These 

evidences indicate that hypoxia increases β- and γ-secretase activities which accelerate APP 

cleavage to increase Aβ production and plaque formation
27-29

. In addition, analysis of post-

mortem samples of human AD brain revealed that APP levels are increased after mild and severe 

brain ischemia
30

.   

 

Hyperglycemia which is involved in diabetes mellitus increases the risk of AD. 

Hyperglycemia increases the production of advanced glycation end products (AGEs) which are 

senescent protein derivatives formed from the auto-oxidation of glucose and fructose. The link 

between AGEs and AD is that tau and Aβ are substrates for glycation. Increase of extracellular 

AGEs formation occurs in amyloid plaques in different cortical areas and it was speculated of the 

involvement of AGEs in Aβ conversion from monomers to oligomers. AGEs can interact with 

the receptor for advanced glycation end products (RAGE) to stimulate oxidative stress. In a 

study conducted by Kim, B. et al., glucose treatment of rat embryonic cortical neurons resulted 

in apoptosis, caspase-3 activation, tau cleavage and these effects were increased when co-treated 

with Aβ. In addition, the authors concluded that hyperglycemia is one of the major factors that 

induce tau phosphorylation in vitro and in vivo
31, 22

.      
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1.3 PDGF as a neurotrophic factor 

Taken together, there is substantial amount of evidence suggesting that ischemia, NMDA 

receptor overactivation, and ROS production promote or worsen AD. The platelet-derived 

growth factor (PDGF) is a mitogenic growth factor crucial to mammalian development. It 

contains two disulfide-bonded polypeptide chains, A and B, isoforms dimerize to bind α and β 

PDGF receptors. PDGFβ receptors are primarily activated by the PDGF-BB ligand dimer, 

resulting in receptor dimerization and subsequent receptor autophosphorylation and kinase 

activation
32

. PDGF-BB treatment of primary rat cell culture results in neurite outgrowth and 

prolonged survival
33, 34

.  In addition, PC12 neuronal cell differentiation is mediated by PDGFβ 

receptors, indicative of the role of this system in neuronal differentiation
32

. 

 

PDGF receptors (PDGFRs) are involved in activating various signalling pathways with 

numerous cellular beneficial outcomes. PDGFRs through the Grb2 and Shc activate the Ras-

MAPK pathway which leads to activation of Raf-1 and MAPK cascade
32

. MAPK signalling is 

involved in stimulating gene expression that leads to cell growth, migration and differentiation. 

In addition, PDGFRs can activate PI3K resulting in actin reorganization, directed cell movement, 

inhibition of apoptosis and cell growth
32

. Furthermore, PDGFRs can bind and activate PLCγ 

which stimulates cell growth and motility
32

. PDGFRs can activate integrins resulting in cell 

proliferation, migration and survival
35

.  

  

PDGF has been shown to be neuroprotective against oxidative stress and glucose 

deprivation
36, 37

. Other neuroprotective actions of PDGF include protection against 

glutamate/NMDA induced N-methyl-D-aspartate (NMDA) receptor excitoxicity. This 
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neuroprotection is through preferentially inhibiting NR2B-containing NMDA receptors, 

decreasing surface expression of NR2B subunits, and altering their phosphorylation level (Figure 

3)
38, 39

. The brain itself may use PDGF signalling as an endogenous neuroprotective system: after 

ischemic events in vivo the expression of PDGF-B chain mRNA and PDGFβ receptor protein 

levels rise and exert neuroprotective effects
40, 41, 42

. PDGF also has neuroprotective effects 

against HIV-1 Tat-induced neuronal apoptosis, possibly by decreasing extracellular glutamate 

levels, both of which lead to HIV-associated neurological diseases, including dementia
43

. Thus, 

in addition to being a growth factor, PDGF also promotes growth and survival of neurons; 

therefore it could also be described as a neurotrophic factor. Thus, promoting the activity of 

PDGF signalling has been demonstrated to be protective in models of neurodegenerative diseases 

both in vitro and in vivo. These lines of research resulted in the Beazely lab pursuing the 

possibility that the application of PDGF-BB might be neuroprotective against Aβ-induced 

neuronal cell death. 

 

Figure 3: PDGF-BB is neuroprotective against NMDA toxicity. Cultured hippocampal 

neurons were pretreated for 10 min with vehicle, 10 ng/ml PDGF-BB, 2.5 μM Ro25-6981 

(NR2B antagonist), or both after which they have been incubated with vehicle or 100 μM 

NMDA, 1 μM glycine for 3 min. After 24 hrs, cell viability was determined by enzyme-linked 

immunosorbent assay. (n=4, 
*
 = p < 0.05 compared with NMDA-treated cells)

39
.  
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1.4 PDGF and Alzheimer’s disease.  

Previously, Lucy Liu in the Beazely lab investigated whether PDGF-BB application to 

primary hippocampal neurons would be neuroprotective against Aβ42. Despite being 

neuroprotective against several neuronal insults, PDGF-BB failed to reverse Aβ42 toxicity and 

Aβ42 5µM was shown to maximally reduce cell viability in the absence or presence of PDGF-

BB for SH-SY5Y cells and primary hippocampal neurons. Preliminary evidence was also 

collected suggesting that Aβ42 oligomers might impair PDGF-BB-induced PDGFβ receptor 

phosphorylation.  Interestingly, similar to what is observed after cerebral ischemia, PDGF-BB is 

found in higher levels in patients of AD
44

. The PDGF system is also involved in APP processing. 

PDGFβ receptor activation by PDGF-BB induces cleavage of APP, which requires γ-secretase 

activity. PDGF receptor activation also leads to activation of non-receptor tyrosine kinase Src 

which increases Aβ production
45

. Thus, PDGF-BB can mediate Aβ production through Src 

activation.  

 

1.5 The role of Aβ interactions with neuronal receptors Alzheimer’s disease. 

 There is a growing body of evidence suggesting that the neurotoxic capabilities of Aβ-

derived diffusible ligands (ADDLs), i.e. Aβ oligomers, are due to their binding to neuronal cell 

surface receptors and membranes. These interactions may lead to synaptic dysfunction via 

impaired LTP or LTD facilitation and may negatively affect memory and cognition before cell 

death. Significant amount of evidence relates to the involvement of membrane proteins for Aβ 

binding to neuronal cell surfaces
46-49

. Examples of interaction between Aβ and receptors/ligands 

as well as the pathogenic consequences of such interactions are listed below in Table 1.  
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Table 1: impact of interaction of beta amyloid with various receptor/ligands  

Protein interaction           Phenotypic effect                       Form of Aβ               Cell type 

Amylin receptor                 increase cytosolic                         Aβ42 oligomer    HEK293 

(AMY-3)
51

                         cAMP, Ca(2+), cell death
50

 

 

VEGFR-2 (vascular          prevents binding of VEGF,            Aβ42 dimer        Endothelial cells 

Endothelial growth           inhibit migration of endothelial 

Factor receptor 2)
52

           cells, anti-angiogenesis  

 

p75 neurotrophin               neuronal cell death                        Aβ42                 F11 neuronal hybrid  

receptor (p75NTR)
53

                                                                                          cells 

 

Transforming growth        Enhanced Aβ oligomerization,     Aβ40 peptide      PC12 cells      

Factor-beta (TGF)
54

          neurotoxicity 

  

Beta (2) adrenergic          induces PKA dependent                   Aβ42 dimer      FC/HEK293 cells              

Receptor (beta(2)AR)
55

   AMPA receptor hyperactivity  

                                        causing Ca (2+) 

                                        influx and excitoxic neuronal cell death 

 

α7-containing                 neuronal cell death
56

                         Aβ42 (12-28)      Human   

nicotinic acetylcholine                                                                                         Neuroblastoma 

receptors (α7nAChRs)                                                                                         cells
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1.6 Hypothesis, methodology and project outline 

 Based on previous research findings, we hypothesized that Aβ42 inhibits PDGF-BB-

induced PDGFβ receptor phosphorylation (and downstream signalling pathways) by physically 

interacting with the PDGFβ receptor. We anticipated that this inhibition would be competitive 

and dose-dependent. To determine the effects of Aβ42 on effectors downstream of the PDGFβ 

receptor we chose to examine Akt activation (using phosphorylation at Ser473 as a readout)
57

. 

The primary method used was western blotting with anti-phosphotyrosine antibodies and 

immunoprecipitation experiments. Please refer to materials and methods sections for more detail 

about the protocols. 
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Chapter 2: Results 

2.1. Aβ inhibits PDGF-BB signalling 

2.1.1 Aβ42 inhibits PDGF-BB-induced PDGFβ receptor phosphorylation at site Tyr1021 in 

SH-SY5Y cells 

 Previous work in the Beazely lab by Lucy Liu suggested that Aβ42 oligomers were able 

to inhibit the activation of the PDGFβ receptor by its primary ligand, PDGF-BB. Therefore, this 

finding was validated by repeating the experiment with the same treatments under the same 

conditions using the same cell line SH-SY5Y cells, which is outlined in Figure 4.   

   

Figure 4: Aβ42 inhibits PDGF β receptor Tyrosine 1021 phosphorylation in presence of 

PDGF-BB in SH-SY5Y cells: SH-SY5Y cells were treated with vehicle, Aβ42 oligomer 5 µM 

for 10 min, PDGF-BB 1 ng/ml for 5 min, or Aβ42 oligomer for 10 min followed by PDGF-BB 1 

ng/ml for 5 min. (n = 3). Representative Western blots analyzed using a PDGFβ receptor 

Tyr1021 antibody followed by a PDGF β receptor antibody are shown. (*= p<0.05 compared to 

vehicle treated cells, #= p<0.05 compared to PDGF-BB treated cells)  
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2.1.2 Increasing the concentration of PDGF-BB is not able to overcome the inhibition by 

Aβ42 oligomers 

  SH-SY5Y cells were exposed to multiple concentrations of PDGF-BB for 5 min in 

presence or absence of Aβ42 oligomers to evaluate whether Aβ42 inhibits PDGF-BB-induced 

PDGFβ receptor Tyr 1021 phosphorylation across multiple concentrations of PDGF-BB 

treatment (Figure 5). The results show that Aβ42 was able to inhibit PDGFβ receptor Tyr1021 

phosphorylation across multiple concentrations of PDGF-BB and that even at high 

concentrations Aβ42 oligomers are still able to inhibit the activation of the PDGFβ receptor by 

PDGF-BB, further validating the absence of PDGF-BB induced PDGFβ receptor 

phosphorylation effects in presence of Aβ42.  
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A.   

     B.   

C.    

Figure 5: Aβ42 inhibits PDGFβ Receptor Tyr1021 phosphorylation in presence of PDGF-

BB in SH-SY5Y cells at all concentrations of PDGF-BB tested. SH-SY5Y cells were exposed 

to increasing concentrations of PDGF-BB ranging from 0-2.5ng/ml for 5 min in presence and 

absence of 5 µM Aβ42 oligomer 10min. (A) Expression levels of PDGFβ receptor Tyr1021 was 

normalized to PDGFβ receptor for different treatments of PDGF-BB in presence/absence of 

Aβ42 (n=5-7). Representative western blots analyzed using a (B) PDGFβ receptor Tyr1021 

antibody and (C) PDGFβ receptor is shown.  
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2.1.3 Aβ42 oligomers also inhibit PDGF-BB induced PDGFβ receptor phosphorylation at 

other tyrosine residues  

 In order to evaluate whether Aβ42 oligomers inhibit PDGF-BB-induced PDGFβ receptor 

phosphorylation at other tyrosine residues, we analyzed treated lysates with additional antibodies 

against tyrosines 740, 751, 771 (Figure 6). Aβ42 oligomers do indeed inhibit the phosphorylation 

of these tyrosine residues, in some cases to a greater extent to what we observed at tyrosine 

1021.  
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A. B.  

                      C.  

Figure 6: Aβ42 inhibits multiple PDGFβ receptor tyrosine phosphorylation sites in 

presence of PDGF-BB. Briefly, SH-SY5Y cells were treated with PDGF-BB 1ng/ml 5 min, 

Aβ42 oligomer 10 min + PDGF-BB 1ng/ml 5 min. Western blot was performed and all the 

membranes were incubated with PDGFβ receptor antibody. The membranes were stripped and 

rescreened with (A) PDGFβ receptor Tyr740 antibody (n=3), (B) PDGFβ receptor Tyr751 

antibody (n=3), (C) PDGFβ receptor Tyr771 antibody (n=3). Data shown is the fold inhibition of 

PDGF-BB-induced phosphorylation by Aβ42 oligomers. Data is (A) statistically significant for 

PDGFβ receptor Tyr740 phosphorylation inhibition (p<0.05), (B) statistically significant for 

PDGFβ receptor Tyr751 phosphorylation inhibition (p<0.05), (C) statistically significant for 

PDGFβ receptor Tyr771 phosphorylation inhibition (p<0.05). 
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2.2 Aβ42 inhibits effectors downstream of the PDGFβ receptor. 

 To determine if Aβ42 oligomers also inhibit the activation of effector proteins 

downstream of the PDGFβ receptor, we treated SH-SY5Y cells with PDGF-BB in the absence or 

presence of Aβ42. We first examined the phosphorylation of Akt at serine 473. The PDGFβ 

receptor is a tyrosine kinase and a component of the receptor intracellular signalling machinery is 

the PI3K (phosphoinositode 3-kinase)/AKT/mTOR pathway which is involved in regulating cell 

proliferation and cell survival
58

. Therefore, evaluating AKT phosphorylation at site serine 473 is 

an appropriate assessment of the downstream consequences of Aβ42 mediated inhibition of 

PDGF-BB-induced receptor phosphorylation. Similar to the results with PDGFβ receptor 

phosphorylation sites, Aβ42 reduced the activation of Akt across all concentrations of PDGF-BB 

treatment. This suggests that the observed changes in PDGFβ receptor phosphorylation by Aβ42 

results in changes to the activation state of downstream effectors.  
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               A.  

 

B.                         

Figure 7: Aβ42 inhibits pAKT Ser473 phosphorylation in the presence of PDGF-BB in SH-

SY5Y cells. SH-SY5Y cells were exposed to various concentrations of PDGF-BB (0-2.5ng/ml) 

for 5 min in presence and absence of 5µM Aβ42 oligomer for 10 min. Western blot was 

performed. Membranes were screened with pAKT Ser473 antibody, stripped, rescreened with 

AKT antibody, stripped and rescreened with β-actin antibody. (A) AKT expression was 

normalized to β-actin expression and pAKT Ser473 expression was normalized to the AKT/β-

actin normalized values. (n = 3-6). (B) illustrates western blot membranes of pAKT Ser473, 

AKT and β-actin expression respectively. Often different experiments were conducted with 

differing concentrations of PDGF-BB treatment in presence and absence of Aβ42. However, the 

total number of independent experiments is 3-6 as indicated in part (A).  
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2.3 Mechanism of Aβ inhibition of PDGF-BB signalling 

2.3.1 Aβ42 oligomers do not physically interact with the PDGFβ receptor 

 To evaluate whether or not the mechanism of PDGFβ receptor phosphorylation inhibition 

by Aβ42 oligomer was due to Aβ42 binding to PDGFβ receptor, an immunoprecipitation 

experiment was carried out. SH-SY5Y cells were incubated with Aβ42 oligomer 5µM for 10 min 

after which the cells were lysed and the protein lysates were exposed to PDGFβ receptor 

antibody in order to immunoprecipitate PDGFβ receptor protein from the lysate. After isolation 

of PDGFβ receptor, samples were analyzed by Western blotting to determine whether the 

PDGFβ receptor was pulled down and if so, whether Aβ42 was co-immunoprecipitated. The 

results in Figure 8 show that PDGFβ receptor did not bind to Aβ42 oligomer (6kDA) which 

suggests that the method of PDGFβ receptor phosphorylation inhibition in presence of ABβ42 

and PDGF-BB involves a mechanism independent of Aβ42 oligomer binding to PDGFβ 

receptor.  
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Figure 8: Aβ42 does not bind to PDGFβ receptor in SH-SY5Y cells.  Briefly, SH-SY5Y cells 

were incubated in the absence or presence of Aβ42 (5µM) for 10 min after which cells were 

lysed, exposed to PDGFβ receptor antibody. The samples derived during the process of 

immunoprecipitation, 1) lysate, 2) precleared pellet, 3) supernatant, 4) pellet were screened 

through western blot to detect (A) for the presence of PDGFβ receptor (180 kDA) in the samples  

and (B) if Aβ42 (6 kDA) bound to the PDGFβ receptor that was immunoprecipitated (n = 3). 
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2.3.2 Aβ42 oligomers may bind to the PDGF-BB ligand  

 To identify whether the inhibition of PDGF-BB-induced PDGFβ receptor 

phosphorylation was inhibited by Aβ42 due to Aβ42 oligomer binding to PDGF-BB to prevent 

ligand binding to the PDGFβ receptor, immunoprecipitation experiment was carried out in vitro. 

This immunoprecipitation experiment differed from the previous immunoprecipitation 

experiment since proteins were not extracted from cells. Rather, protein solutions generated from 

stock, PDGF-BB at 1ng/ml and Aβ42 at 5µM were used to evaluate possible interactions 

between PDGF-BB and Aβ42. (This modification is further explained in the materials and 

methods “immunoprecipitation” section.)  
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A.  

B.  

Figure 9: In vitro immunoprecipitation experiment to test for interaction between PDGF-

BB and Aβ42 oligomer. Briefly, Aβ42 5µM oligomer + PDGF-BB 1ng/ml + PDGF-BB 

antibody, PDGF-BB 1ng/ml + PDGF-BB antibody, Aβ42 5µM + PDGF-BB antibody were 

incubated overnight after which they were incubated with A/G agarose overnight. A/G agarose + 

PDGF-BB antibody were incubated overnight. A/G agarose + Aβ42 5µM oligomer were 

incubated 90mins to overnight. Western blot was performed on the supernatant and pellet 

samples obtained and the membranes were screened with (A) PDGF-BB antibody (n=3) and (B) 

Aβ42 antibody (n=3) to evaluate presence of PDGF-BB (14-18kDA in reduced form) in samples 

expected to have PDGF-BB in (A) and possible interactions between PDGF-BB and Aβ42 

(6kDA) in (B). 
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 A band in the 6kDA range in Figure 9B for the pellet sample of PDGF-BB 1ng/ml + 

Aβ42 5µM + PDGF-BB antibody + A/G agarose indicates a possible interaction between 

Aβ42 oligomer and PDGF-BB. However, in the pellet sample of A/G agarose + Aβ42 there 

was also a band in the size range of 6kDA. This indicates that Aβ42 oligomer might have 

been interacting directly with the A/G agarose IP beads. Since this negative control failed to 

work, we cannot make any claims about a potential PDGF-BB-Aβ42 interaction. In order to 

further evaluate for possible interactions between PDGF-BB and Aβ42, a reverse 

immunoprecipitation experiment was carried out which followed the same methodology as 

the in vitro experiment mentioned above but the IP was conducted using the Aβ42 antibody 

instead of PDGF-BB antibody to pull down Aβ42 to evaluate interactions between Aβ42 and 

PDGF-BB by screening western blot membranes with PDGF-BB antibody. This reverse 

immunoprecipitation experiment was carried out since if Aβ42 is binding to the A/G agarose 

beads, then pulling down Aβ42 with Aβ42 antibody is hypothesized to prevent interactions 

between Aβ42 and A/G agarose beads since Aβ42 would be binding to the antibody.      
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A. B.  

Figure 10: Reverse immunoprecipitation experiment to evaluate interactions 

between Aβ42 and PDGF-BB. Briefly, PDGF-BB (5µg/ml= 0.2µM) + Aβ42 1µM + 

Aβ42 antibody, Aβ42 1µM + Aβ42 antibody were incubated overnight. These samples 

and the following samples: Aβ42 1µM, Aβ42 1µM + PDGF-BB (5µg/ml= 0.2µM), 

PDGF-BB (5µg/ml= 0.2µM) were all incubated with A/G agarose for 90 to 150 mins. 

The supernatant and pellet samples were obtained and western blot was performed (n=2). 

The membranes were screened with (A) PDGF-BB antibody and (B) Aβ42 antibody to 

(A) detect for interactions between PDGF-BB (14-18kDA) and Aβ42 (6kDA) and (B) 

detect for presence of Aβ42 (6kDA) in supernatant samples containing Aβ42. The control 

was Aβ42 0.1µg to validate the efficiency of Aβ42 antibody.  
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During the in vitro reverse immunoprecipitation experiment, it was observed from Figure 

10B for the pellet sample in lane 2 of top membrane and the pellet sample in lane 1 of top 

membrane that the Aβ42 antibody failed to pull down Aβ42 due to absence of band within the 

size range of Aβ42 (6kDA). Therefore, the absence of a band within the size range of PDGF-BB 

in Figure 10A lane 2 of top membrane pellet sample could be due to failure of Aβ42 antibody 

being unable to pull down Aβ42. Moreover, in Figure 10B there was no Aβ42 (6kDA) detected 

in any of the pellet samples including Aβ42 + A/G agarose, Aβ42 + A/G agarose + PDGF-BB 

indicating the absence of interaction between Aβ42 with A/G agarose. The absence of such 

interaction might be due to low concentrations of Aβ42 used (1µM) in comparison to before 

where 5µm Aβ42 was used. Some reasons as to why the immunoprecipitation experiment could 

have failed is due to lack of a appropriate antibody to pull down Aβ42. According to a study 

conducted by Patel, N. S. et al. which followed a similar immunoprecipitation protocol as our 

lab, the Aβ42 antibody 6E10 antibody was used. This antibody effectively pulled down Aβ42 

from Aβ42 treated human umbilical vein endothelial cells (HUVEC) and was used to show the 

interaction between Aβ42 and VEGF receptor type 2 (VEGFR-2)
52

. Therefore, 6E10 antibody 

should be used to immunoprecipitate Aβ42 to evaluate interactions between Aβ42 and PDGF-

BB in the future.  
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Chapter 3: Discussion 

 

 Previous work in the lab suggested that Aβ42 was able to prevent activation of PDGFβ 

receptor by its ligand, PDGF-BB. This finding was confirmed (Figures 4-6): if cells were pre-

incubated with Aβ42, the application of PDGF-BB failed to maximally active the PDGFβ 

receptor. This is a particularly interesting and relevant finding with respect to the pathology of 

Aβ in Alzheimer’s disease. PDGF-BB is neuroprotective (in vitro and in vivo) against several 

CNS insults including oxidative stress, glucose deprivation, glutamate/NMDA receptor 

excitoxicity, ischemic events, and HIV-1 Tat-induced neuronal apoptosis
36-43

. Therefore, in 

addition to Aβ42’s other neurotoxic effects, it is able to inhibit a receptor tyrosine kinase (RTK) 

crucial for neuroprotection from other neuronal insults.  

 

3.1 Mechanism of Aβ42 inhibition of PDGF-BB signalling 

 We did not detect a physical interaction between Aβ42 and the PDGFβ receptor. With 

respect to a possible interaction between Aβ42 and PDGF-BB, the results were inconclusive. Aβ 

have been shown to interact with various ligands of receptors which will be summarized in Table 

2. For example, Aβ42 has been shown to interact with vascular endothelial growth factor 

(VEGF) which is an RTK ligand for VEGF receptor type 2 (VEGFR-2). VEGF is a growth 

factor for stimulating angiogenesis. VEGF expression is increased in the cerebral vasculature and 

cerebrospinal fluid of AD patients. In a study conducted by Yang, S. P. et al., VEGF was found 

to co-localize with amyloid plaques in AD patients and bind strongly to Aβ42 and Aβ40 (the 

disassociation constant between VEGF and Aβ40 was 50pM and the binding affinity for VEGF 

and Aβ42 was similar). VEGF was shown to bind to pre-aggregated Aβ under acidic conditions 
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and VEGF disassociated from VEGF/Aβ complex at a rate of 1.5% after 3 days. Interestingly, 

the binding of Aβ to VEGF does not appear to have a significant effect on VEGF binding to its 

receptor or the mitogenic activity of VEGF. These results indicate that VEGF co-aggregate with 

Aβ and does not affect the rate of Aβ aggregation, then binds to pre-aggregated Aβ and is 

released slowly from Aβ/VEGF complex
59-61

. In another study conducted by Yang, S. P. et al., 

Aβ was found to interact differentially with different forms of VEGF. Aβ42 did not bind to 

VEGF121 but bound to the heparin-binding domain (HBD) of VEGF165. Moreover, Aβ42 bound 

with greater affinity to the C-terminal end of HBD compared to the N-terminal end. The amino 

acid region 26-35 of Aβ42 was necessary for binding to VEGF165. VEGF and HBD can reduce 

Aβ42-induced cell death of PC12 cells and slow the aggregation of Aβ42. In addition, VEGF 

reduces Aβ42 mediated reactive oxygen species (ROS) production. These results suggest that 

VEGF165 is neuroprotective against Aβ42 due to VEGF165 mediated inhibition of Aβ aggregation 

and ROS formation since these mechanisms can lead to neuronal death
62

. However, in our 

studies the possible Aβ interaction with PDGF-BB could result in an inhibition of PDGF-BB 

signalling and inhibit downstream proteins such as Akt involved in proliferation and 

neuroprotection.  

 

In addition, transforming growth factor β (TGFβ) have been shown to interact with Aβ40 

and enhances Aβ40 oligomerization and Aβ40 mediated neurotoxicity
63

. Therefore, interactions 

between Aβ and ligands in AD can lead to neuroprotection or neurodegeneration and perhaps 

during the later stages of AD, Aβ interaction with ligands involved in neurodegeneration 

overcomes neuroprotective interactions such that neurodegenerative interactions become the 

cause of progression of AD pathology.    
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Table 2: Beta amyloid interaction with receptor ligands 

Ligand             Phenotypic consequence                 Form of beta amyloid            Cell type                         

VEGF              inhibition of Aβ42 cell death,          Aβ42                                      PC12 cells 

                         ROS production, Aβ aggregation
62 

 

TGFβ               Aβ40 oligomerization,                      Aβ40                                      PC12 cells          

                        Neurotoxicity
63

 

 

 

 3.2 Aβ modulation of tyrosine kinase receptors and AD 

Aβ42, in addition to inhibiting the tyrosine kinase PDGFβ receptor essential for 

neuroprotection, is also able to interfere with the signalling of other receptor tyrosine kinases and 

neurotrophic factor receptor. Aβ42 modulation of RTKs led to increase in p75
NTR

 expression and 

p75
NTR

 activity which is neurotoxic. Increases in p75
NTR

 receptor are thought to be involved in 

facilitating neurodegeneration by interacting with various ligands and co-receptors. For example, 

p75
NTR

 receptor interacts with Sortilin to facilitate apoptosis caused by pro-neurotrophins such as 

proBDNF, proNGF and proNT-3
64-67

. Further evidence relating to the neurotoxic potential of 

p75
NTR

 receptor is that there is an increase in the level of pro-neurotrophins in Alzheimer’s brain 

and pro-NGF isolated from human AD brains through interaction with p75
NTR

 receptor was 

shown to induce apoptotic cell death of neuronal cell cultures
68-69

. Moreover, p75
NTR

 receptor 
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expression has been shown to be up-regulated by Aβ in vitro in SH-SY5Y cells and primary 

human neurons and p75
NTR

 receptor is involved in Aβ oligomer-induced neuritic dystrophy and 

neuronal cell death in vivo and in vitro.  

 

Interestingly, Aβ42 does not always act as an antagonist in growth factor systems (in 

contrast to our findings). For example, nerve growth factor (NGF) is initially synthesized as a 

proneurotrophin that binds to p75
NTR

 receptor, and upon maturation of NGF it binds to tyrosine 

kinase receptor A (TrkA)
70

. TrkA undergoes a NGF-independent phosphorylation when 

exogenous Aβ42 is applied and this increased phosphorylation promotes neuronal cell death. The 

p75
NTR

 receptor and phospholipase Cγ (PLCγ) activation was also shown to be involved in TrkA 

mediated neuronal death
71

. Aβ42 mediated neuronal death through TrkA phosphorylation is yet 

another example of a case where the consequences of Aβ modulation of RTK activity are 

negative with respect to neuronal survival.  

 

Aβ42 can also indirectly modulate RTK activity in neurons. In another study by 

Bulbarelli, A. et al., treatment of hippocampal neurons with Aβ25-35 lead to increase in 

apoptotic cell death and these toxic insults may activate neurotrophin signalling pathways. Upon 

further investigation the researchers determined that Aβ25-35 treatment resulted in a significant 

up-regulation of NGF and TrkA mRNA expression. Ultimately, an increased amount of NGF 

protein was released into the media that increased TrkA activity in an autocrine-dependent 

manner. Aβ25-35 resulted in an increase in Akt phosphorylation at site serine 473 as well as an 

increase in serine 9 phosphorylation of glycogen synthase kinase β (GSK3β). Interestingly, the 
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increase in Akt phosphorylation was measured prior to NGF release, indicating that Akt was not 

being activated by NGF activation of TrkA. These findings are relevant to Alzheimer’s 

pathology because Akt is a serine-threonine kinase which phosphorylates and inactivates Gsk3β, 

a kinase thought to be involved in tau hyperphosphorylation
72-75

. 

 

Insulin-like growth factor receptor type 1 (IGF1R) is a RTK activated by ligands insulin-

like growth factor 1 and 2 (IGF-1, 2). IGF1R is an example of another RTK whose 

phosphorylation is modulated by Aβ. IGF1R is involved in controlling p75
NTR

 expression in SH-

SY5Y cells and primary mouse neurons
76-77

. The correlation between IGF1R, Aβ and p75
NTR

 

receptor was further evaluated by Ito, S. et al. ADDLs (Aβ-derived diffusible ligands) are Aβ42 

oligomers which induced p75
NTR

 expression in SH-SY5Y human neuroblastoma cells through 

phosphorylation of IGF1R. In vivo microinjection of ADDLs in mice increased p75
NTR

 

expression by 1.4-fold in the ispsilateral hippocampus compared to contralateral hippocampus. 

Furthermore, microinjection of ADDLs in the mouse hippocampi increased IGF1R 

phosphorylation within 30 mins. Further examination of the hippocampi of 6-month old 

AβPPswe/PS1dE9 AD model mice with accumulated Aβ42 showed higher levels of IGF1R 

phosphorylation and p75
NTR

 in comparison to age-matched wild-type mice. All of these findings 

indicate that Aβ42 stimulate IGF1R phosphorylation which leads to p75
NTR

 expression in the 

hippocampus. Moreover, since p75
NTR 

expression was found to be involved in Aβ-mediated 

neurodegeration and since p75
NTR

 can stimulate Aβ production in neurons through ceramide-

induced stabilization of β-site AβPP cleaving enzyme 1 (BACE1 or β-secretase), Aβ-mediated 

upregulation of p75
NTR

 expression via IGF1R phosphorylation leads to neuronal cell death and 

Aβ production, thus accelerating the development of AD during the early stages. Furthermore, 
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Aβ toxicity is decreased due to decreased IGF1R signalling in IGF-1R
+/-

, 2xTg AD model mice. 

Moreover, increasing IGF1R pathway activation in p44
+/+

 transgenic mice increased p75
NTR

 

expression in the brain which accelerated aging and shortened lifespan
78-80

.    

 

3.3 PDGF neuroprotection against excitotoxicity, hypoxia, oxidative stress in relation to AD 

Excitotoxicity can occur via excess stimulation of NMDA receptors by glutamate. There 

is considerable evidence of the involvement of excitotoxicity in AD
81-85

. NMDA receptors are 

tetrameric consisting of two obligate NR1 and two variable NR2 subunits. NR2A and NR2B are 

the dominant NR2 forms in hippocampus. NR2A containing NMDA receptors are mostly 

synaptic whereas NR2B containing NMDA receptors are extrasynaptic
86-90

. According to a study 

conducted by Beazely, M. A. et al., PDGF-BB selectively inhibited NR2B- and not NR2A-

containing NMDA receptor mediated currents in CA1 hippocampal neurons and facilitated long-

term depression in NR2B dependent fashion. Moreover, PDGF-BB treatment of hippocampal 

neurons decreased surface expression of NR2B subunits and their level of phosphorylation. 

Thus, PDGF-BB prevents over-stimulation of NMDA receptor. Furthermore, PDGF-BB and 

PDGFβ receptors are up-regulated following neuronal injury which resulted in PDGFβ receptor 

activation that was found to be neuroprotective against glutamate-induced neuronal damage and 

this neuroprotection was occluded by NR2B antagonist Ro25-6981, suggesting the involvement 

of NR2B-containing NMDA receptor in PDGFβ receptor mediated neuroprotection
39

. Therefore 

the mechanism whereby PDGF-BB exerts its neuroprotective effects is through PDGFβ receptor 

inhibition of NR2B-containing NMDA receptors, which results in an inhibition of excitotoxicity 

caused by overstimulation of NMDA receptors. Glutamate mediated neurotoxicity in AD is 
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widely accepted and this hypothesis relies on the assumption that glutamate receptors such as 

NMDA receptors are overactivated.  Since excitotoxicity is observed in AD, Aβ42 mediated 

inhibition of PDGF-BB activity resulting in over-activation of NMDA receptor could 

potentiate/worsen the excitotoxicity observed in AD. There is evidence that over-activation of 

extrasynaptic NMDA receptor results in Aβ production
91

. Furthermore, studies from our lab by 

Maryam Vasefi showed that Aβ42 inhibited PDGF-BB mediated neuroprotection against NMDA 

cytotoxicity. Thus, Aβ mediated inhibition of PDGF-BB activity resulting in overactivation of 

NMDA receptor could result in incremental Aβ production in a positive feedback manner which 

could result in Aβ accumulation and ongoing Aβ pathology.   

 

 The incidence of AD increases following cerebral ischemia and stroke where hypoxic 

conditions occur in affected brain areas. There is an increasing amount of evidence that hypoxia 

contributes to the pathogenesis of AD by increasing the accumulation of Aβ as well as 

hyperphosphorylation of tau, blood-brain barrier function impairment and promoting neuronal 

degeneration
92

. Hypoxia has been shown to activate intracellular death signalling pathways in 

neurons. To study the antiapoptotic mechanisms triggered by hypoxia, Zhang, S. X. et al. 

conducted a study where RN46A neuronal cells have been shown to induce apoptosis very late 

under hypoxic conditions (48hrs), indicative of neuroprotective mechanisms to protect against 

hypoxia induced cell death. Hypoxia induced a time-dependent increase in PDGF-B mRNA and 

protein expression as well as stimulated PDGFβ receptor phosphorylation. In addition, hypoxia 

induced a much prolonged increase in Akt phosphorylation resulting from PDGFβ receptor 

phosphorylation by endogenous PDGF-BB. Moreover, the induction of neuronal survival was 

due to endogenous PDGF-BB. In addition, the PDGF/PDGFβ receptor/Akt activation is involved 
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in inducing downstream hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene transcription which 

is a survival gene induced by hypoxia. Therefore, PDGF-BB and PDGFβ receptor expression is 

up-regulated during hypoxia and this activation triggers downstream signalling pathways 

involved in neuronal survival
93

. Since Aβ42 has been shown to inhibit PDGFβ receptor 

activation by PDGF-BB, this inhibition can lead to lack of PDGF-BB mediated neuroprotection 

against hypoxia and result in increase in Aβ accumulation, tau hyperphosphorylation and blood-

brain impairment resulting from hypoxia.      

 

 There is considerable evidence about the involvement of oxidative stress in AD. 

Oxidative stress occurs due to the net damaging effects of oxygen radicals which results in 

neuronal death in AD
94

. In a study by Zheng, L. et al., the neuroprotective effects of PDGF 

against oxidative stress was evaluated  using primary cultured mouse cortical neurons exposed to 

H2O2 mediated oxidative stress. PDGF-BB was shown to increase neuronal survival and 

suppressed H2O2-induced caspase-3 activation in wild type neurons, indicative of an 

antiapoptotic mechanism in PDGF-BB mediated neuroprotection against oxidative stress. PDGF-

BB activated Akt, JNK and p-38 indicative of the involvement of these proteins in PDGF-BB 

mediated neuroprotection against oxidative stress. The PDGF-BB mediated neuroprotection 

against oxidative stress was PDGFβ receptor dependent
95

. Therefore, PDGF-BB mediated 

neuroprotection via PDGFβ receptor against oxidative stress includes activation of Akt, ERK, 

JNK and p38. In a study conducted by Cheng, B. and Mattson, M. P., exposure of rat and mouse 

hippocampal cell cultures to the hydroxyl radical-promoting agent FeSO4 caused progressive 

neuronal loss. However, PDGF-BB pre-treatment attenuated FeSO4-induced neuronal 

degeneration. FeSO4 induced peroxide accumulation in neurons which was attenuated by 
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cultures pretreated with PDGF-BB. Moreover, PDGF-BB increased the expression of anti-

oxidant enzymes catalase and glutathione peroxidase. Therefore, PDGF-BB is involved in 

neuroprotection against oxidative insults
37

. Aβ42 inhibition of PDGF-BB signalling involved in 

neuroprotection against oxidative stress could result in decrease of PDGF-BB mediated 

neuroprotection against oxidative stress. Thus, Aβ42 inhibition of PDGF-BB signalling could be 

responsible for oxidative stress observed in AD.  

 

3.4 AB42 inhibition of downstream effectors of PDGFβ receptors 

 PDGF receptors mediate downstream signalling pathways which include 

phosphoinositode 3-kinase (PI3K)/Akt (protein kinase B (PKB))/mTOR pathway. Abnormal 

activation of this pathway through mutation of any of multiple genes occurs in cancer. PI3K is 

involved in driving cell proliferation and cell survival. Akt is found to be activated frequently in 

cancer cells via PI3K. Negative regulation of PI3K/Akt/mTOR pathway occurs by tumor 

suppressor genes. Akt is flanked by two tumor suppressors which are: 1) phosphatase and tensin 

homolog (PTEN) which inhibits Akt from upstream and 2) tuberous schlerosis complex 1/2 

(TSC1/TSC2) heterodimer which inhibits Akt from upstream of mTOR and downstream of Akt. 

Phosphorylation of Akt leads to phosphorylation of TSC2 which disrupts the TSC1/TSC2 

complex which leads to high levels of Rheb-GTP and activation of mTOR. mTOR activation 

leads to regulation of ribosome biogenesis, protein synthesis and cell growth
57

. During the course 

of our study, evaluation of Akt phosphorylation at site Ser473 which is a downstream effector of 

PDGFβ receptor revealed that Aβ42 pre-treatment of SH-SY5Y cells inhibited PDGF-BB 

induced Akt Ser473 phosphorylation (Figure 7). Since the PI3K/Akt pathway is involved in cell 
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proliferation, inhibition of Akt activation can lead to inhibition of cell proliferation leading to 

loss of cell growth and thus result in neurodegeneration observed in AD.    

 

 Akt phosphorylation is neuroprotective since GSK3β is inhibited by activated Akt and 

GSK3β mediates tau hyper-phosphorylation to prevent long-term potentiation and negatively 

effect learning and memory. These findings led to the “GSK hypothesis of AD” since GSK3β 

activation leads to the previously mentioned pathological characteristics which are characteristic 

of AD
96-99

. Thus, Aβ inhibition of Akt Ser473 phosphorylation through inhibition of PDGF-BB 

signalling could lead to activation of GSK3β which would increase tau phosphorylation, worsen 

memory impairment and promote neuronal apoptosis. There is increasing evidence relating the 

neuroprotective capability of Akt in vivo. In a study conducted by Jimenez, S. et al., the AD 

mouse model PS1xAPP tg was used which develops Aβ plaques during early stages (3 to 4 

months) but does not undergo neurodegeneration. However, during the late stages (17 to 18 

months) hippocampal neurodegeneration coupled to Aβ oligomer formation occurs. The age-

dependent switch from neuroprotection to neurodegeneration was evaluated at the molecular 

level. GSK3β phosphorylation at Ser9 responsible for GSK3β inhibition was up-regulated in 6-

month old PS1xAPP tg mice hippocampus. However, GSK3β Ser9 phosphorylation was reduced 

in 18-month old PS1xAPP tg mice, indicative of GSK3β activation during later stages of AD. 

Using N2a and primary neuron cell cultures, it was shown that the soluble amyloid precursor 

protein-α (sAPPα) which was the predominant APP-derived fragment in 6-month old PS1xAPP 

tg mice acted through the neurotrophic insulin and/or IGF-1 receptors to activate the PI3K/Akt 

pathway leading to GSK3β Ser9 phosphorylation for GSK3β inactivation resulting in 

neuroprotection. However, various oligomeric Aβ forms found in the soluble fractions of 18-
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month old PS1xAPP tg mice inhibited PI3K/Akt activation leading to GSK3β activation due to 

lack to Akt mediated GSK3β Ser9 phosphorylation, leading to decrease in neuronal survival
100

. 

Thus, Aβ42 not only can inhibit Akt through PDGF-BB signalling, but also through various 

other neurotrophic pathways which can lead to GSK3β mediated inhibition of prosurvival 

pathways.      

 

 Even though various in vivo studies showed that Akt up-regulation may be 

neuroprotective in AD, there are contradictory findings with respect to Akt activity in the AD 

brain. In a study conducted by Griffin, R. J. et al. Akt activation was significantly increased in 

the human temporal cortex neuronal particulate fractions in AD brain samples (representing 

proteins in the plasma membrane of the temporal cortex). Akt is directed to the plasma 

membrane by PI3K resulting in subsequence Akt activation through phosphorylation. There was 

a total increase in activation of Akt in AD as measured by phosphorylated-Akt/total Akt ratio. In 

addition, particulate phospho-Akt levels were positively correlated with neurofibrillary tangle 

development indicative of involvement of phospho-Akt for AD pathogenesis.  PTEN which is a 

negative regulator of Akt activation was inhibited in the AD neurons and was negatively 

correlated with neurofibrillary tangles and senile plaques, indicative of Akt activation being 

responsible for AD pathogenesis
101

. Additional studies also suggest an up-regulation of Akt 

activity in human AD brain where Akt activity up-regulation was correlated with neurofibrillary 

tangle development
102-103

. Thus, multiple studies prove a positive correlation between Akt 

activation and AD disease progression. Nevertheless, the relation between Akt activation and AD 

disease pathology is controversial. One variable to consider is that AD mouse models showed 

neuroprotective potential for Akt activation whereas human AD brain models showed 



37 

neurodegenerative potential for Akt activation. Ideally, human AD brain models could more 

accurately portray what happens in a human AD brain. However, to avoid controversy perhaps 

more studies should be conducted with the same models which should ideally be human AD 

brain models to evaluate the relation between Akt activation and AD disease pathology.       

 

3.5 Does Aβ42 inhibition of PDGF-BB signalling lead to neurotoxicity  

Previously, studies in the Beazely lab showed that PDGF-BB failed to be neuroprotective 

against Aβ42 for SH-SY5Y cells and primary neurons. In our studies, 1ng/ml PDGF-BB 

treatment of SH-SY5Y cells for 5 min increased PDGFβ receptor Tyr1021 phosphorylation by 

155 fold and co-treatment with 1ng/ml PDGF for 5 min and 5µM Aβ42 for 10 min increased 

Tyr1021 phosphorylation by 94 fold. Even though there is a significant inhibition of PDGF-BB 

mediated PDGFβ receptor activation by Aβ42, there is still significant increase in receptor 

activation when SH-SY5Y cells are co-treated with Aβ42 and PDGF-BB. However, even though 

there is still a significant increase of PDGF receptor activation by PDGF-BB in presence of 

Aβ42, PDGF-BB mediated PDGFβ receptor activation still fails to be neuroprotective against 

Aβ42 toxicity. This may suggest that Aβ42 was lethal to neurons in a mechanism distinct from 

PDGF-BB signalling. Therefore, although Aβ42 inhibits neurotrophic PDGF-BB mediated 

PDGFβ receptor activation, this is not the primary mechanism through which Aβ42 was lethal to 

SH-SY5Y cells and primary neurons. In addition, PDGFβ receptor activation is not sufficient to 

protect against Aβ42 toxicity. Nevertheless, in our studies, Aβ42 mediated inhibition of PDGF-

BB signalling also led to inhibition of Akt activation which is involved in cell proliferation and 

cell survival. Furthermore, previous studies from our lab revealed Aβ42 inhibited PDGF-BB 
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protection against NMDA cytototoxicity on SH-SY5Y cells, indicative of Aβ42 mediated 

inhibition of PDGF-BB signalling to prevent PDGF-BB protection against NMDA toxicity 

(Figure 11). Therefore, Aβ42 mediated inhibition of PDGF-BB signalling contribute partially 

although not significantly to the cell death caused by Aβ42 toxicity.   

 

Figure 11: -amyloid prevents PDGF-BB-induced neuroprotection against NMDA 

excitotoxicity. SH-SY5Y cells were treated with 100 M NMDA/1 M glycine, 10 ng/mL 

PDGF-BB, or 5 M -amyloid alone or in combination for 10 min. Each condition was applied 

in triplicate. Cells were then incubated for 24 h before the remaining cell number was measured 

using the MTT assay. Cell viability was expressed as fold absorbance (change) relative to the 

cells treated with vehicle alone. Data represent the mean and standard error of 7-8 independent 

experiments. * p < 0.05 compared to vehicle, # p < 0.05 compared to NMDA alone, one way 

ANOVA with Tukey’s multiple comparison test. 
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3.6 Future directions. 

 In order to validate for the presence of interaction between Aβ42 and PDGF-BB, perhaps 

a different well renowned antibody such as 6E10 antibody should be used to immunoprecipitate 

Aβ42, after which western blot can be used to evaluate whether PDGF-BB interacted with the 

immunoprecipitated Aβ42. Furthermore, if Aβ42 does not interact with PDGF-BB to inhibit 

PDGF-BB signalling, it would be worthwhile to evaluate whether Aβ42 inhibits PDGFβ receptor 

activation by blocking serotonin (5-HT) mediated transactivation of PDGFβ receptor
104

. Since 

Aβ42 inhibited Akt activation through BDNF and NGF pathway which activate TrkB and TrkA 

receptors respectively from a different study, it would be worthwhile to identify whether Aβ42 

inhibits TrkA and TrkB phosphorylation to prevent BDNF and NGF signalling which are both 

neurotrophic factors. In addition, in that study, Aβ42 also inhibited insulin and IGF-1 signalling 

which are both neurotrophic factors and ligands for RTKs, indicative of Aβ42 mediated 

inhibition of neurotrophic signalling
100

. Therefore, it would be worthwhile to identify whether 

Aβ42 inhibits other RTK neurotrophic signalling pathways, such as the neurotrophin-3 (NT-3) 

pathway which is a ligand for the RTK TrkC and neurotrophin-4/5 (NT-4/5) pathway which is a 

ligand for the RTK TrkB. Therefore, a novel hypothesis can be proven where Aβ42 inhibits 

multiple neurotrophic signalling pathways to inhibit cell survival and cell growth leading to cell 

death. Furthermore, the mechanism of Aβ42 inhibition of neurotrophic signalling could be 

elucidated by evaluating for the presence of interactions between Aβ42 with the RTK and/or the 

neurotrophic factors since such interactions could prevent interaction between the ligand and the 

receptor leading to loss of ligand activity. In addition, if there is an interaction between Aβ42 and 

the RTK/ligand and there is a modulation of receptor activation by Aβ42, the effect of such 
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modulation of receptor activation on downstream effectors AKT, extracellular signal-related 

kinase (ERK) and glycogen synthase kinase 3 (GSK3) should be evaluated.  
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Chapter 4: Materials and methods 

4.1   SHSY-5Y cell culturing 

 The SHSY-5Y human neuroblastoma cell line which is a present from University of 

Nebraska by Dr. Shilpa Buch and colleagues was supplemented with DMEM/F-12 media (1:1) 

containing glutamine and HEPES (Fisher). 10% fetal bovine serum (Sigma) was added to the 

media and the cell line was maintained in 5% CO2 at 37
0
C. The cells were serum starved by 

replacing the media with 10% fetal bovine serum with just media for 24hrs before treating the 

cells with various drugs.  

 

4.2    Aβ42 oligomer preparation: 

 Stine`s method with a slight modification was used for preparation of Aβ42 oligomers
105

. 

Aβ42 (rPeptide, Georgia, USA) was dissolved to 1mg/ml by immersing the peptide in 100% 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and aliquoted. HFIP was vacuumed out and the 

peptide without the HFIP was stored at -20
0
C. Before usage of Aβ42, the Aβ42 was dissolved by 

DMSO to 5mM, sonicated for 10 minutes, diluted to 100µM with serum free media and 

incubated at 4
0
C for 24 hrs prior to treatment.  

 

4.3     Western Blot: 

 Cells were exposed to drug, after which they were washed with cold PBS. The cells were 

lysed with cold lysis buffer (150mM NaCl, 1mM EGTA, 1mM EDTA, 30mM sodium 
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pyrophosphate, 1mM β-glycerophosphate, 20mM Tris-HCl pH 7.5, 1mM sodium orthovanadate 

and 1% triton-X; Halt protease and phosphatase inhibitor (Fisher) was added to the lysis solution 

before use). The cells were removed from the wells with a scraper, homogenized and centrifuged 

at 14,000g for 20 minutes at 4
0
C. The supernatant with the proteins were collected and the cells 

were discarded. The proteins were separated through SDS PAGE and the proteins were 

transferred from the polyacrylamide gel to the nitrocellulose membrane, blocked with 5% non-

fat dry milk in Tris-buffered saline with 0.1% Tween-20 (TBST) for 1hr at room temperature or 

overnight at 4
0
C. The membranes were incubated with the primary antibody for 1 hr at room 

temperature or overnight at 4
0
C, followed by washing the membranes 3 times with TBST with 

10 min intervals between each wash. The membranes were incubated with secondary antibody 

conjugated with horseradish peroxidase for 1 hr at room temperature, washed 3 times with TBST 

with 10 min intervals, and finally exposed with a chemiluminescent substrate (Millipore) to 

visualize positive interaction between primary antibody and target protein. The visualization and 

imaging were done using Kodak 4000MM Pro Imaging Station and the Kodak Molecular 

Imaging Software were used for densitometric analysis. Membranes were stripped and used 

again for screening with other antibodies.  

 

4. 4   Immunoprecipitation: 

 For immunoprecipitation, 3 wells per 6 well plate were used for one sample. The cells in 

the wells were drug treated, washed in ice cold PBS, and then lysis buffer (ingredients same as 

lysis buffer used for western blot except contained NP-40 1% instead of 1% Triton-X) were 

added and the rest of cell lysis protocol followed that of the same one used for western blot. A 
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BCA protein assay was performed to measure total protein concentration in the cell lysate. The 

total protein should be 1-2µg/µl. The samples were then normalized to the same protein 

concentration by adding additional lysis buffer. Equal volume of cell lysate from each sample 

was transferred to a fresh microfuge tube. The volume contained 100-1000µg of total protein. 

30µg from each sample were transferred to fresh microfuge tubes as lysate control, after which 

loading buffer were added to the samples and stored at -20
0
C.  

Next, 1.0µg of control IgG protein together were added with 40µl of suspended 25%v/v 

protein-A/G agarose conjugate for each sample and incubated at 4
0
C for 1-2hrs. The antibody-

agarose conjugate were centrifuged at 1,000g for 5 minutes at 4
0
C. The precleared pellet was 

saved. 30µl of 3X loading buffer were added to the pellet and stored at -20
0
C.  

The supernatant or approximately 100-1000µg of total cellular protein for each sample 

were transferred to fresh microfuge tubes and 0.2-2µg of primary antibody were added to each 

sample and incubated overnight at 4
0
C shaking. 40-50µl of appropriate antibody-agarose 

conjugate were added to the protein samples and incubated at 4
0
C on a rocker or rotating device 

for 1hr to overnight. The samples were centrifuged at 1,500g for 5minutes at 4
0
C and the 

supernatants were transferred to new microfuge tubes. 40µl of the supernatant were added to 

20µl 3X loading buffer and stored at -20
0
C. The pellets were washed 2-4 times with 1ml PBS 

and after each wash; the centrifugation step would be repeated. After the final wash, the 

supernatant was discarded and the pellet was resuspended in 30µl of 3X loading buffer. The 

samples that are in loading buffer were stored at -20
0
C until they are used.  

The samples were boiled at 100
0
C for 5 minutes and electrophoresed and immunoblotted. 

For each sample, there were four different variations of the sample running: 1) lysate control 
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mentioned in 1
st
 paragraph, 2) a precleared pellet mentioned in 2

nd
 paragraph, 3) supernatant and 

4) pellet mentioned in the 3
rd

 paragraph.   

This protocol was followed for immunoprecipitation experiments involving PDGFβ 

receptor isolation for evaluating PDGFβ receptor and Aβ42 interaction since SH-SY5Y cells 

expressed sufficient protein levels of PDGFβ receptor to be used for immunoprecipitations. 

However, SH-SY5Y cells did not express sufficient protein levels of PDGF-BB and thus SH-

SY5Y cells were not used for immunoprecipitation. However, this protocol was modified such 

that PDGF-BB diluted from stock solution to 1ng/ml and 5µg/ml and Aβ42 diluted from stock to 

5µM and 1µM were used to evaluate interactions between PDGF-BB and Aβ42. For this 

modified immunoprecipitation, the new protocol followed all the steps starting from the 3
rd

 

paragraph of the original immunoprecipitation protocol discussed above. Therefore, for this 

modified immunoprecipitation, there were no lysate of precleared pellet samples. There were 

only supernatant and pellet of samples.  
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Chapter 5: Conclusion 

 

 Aβ42 inhibits PDGF-BB mediated PDGFβ receptor activation at multiple sites including 

Tyr1021, Tyr740, Tyr751 and Tyr771. In addition, Aβ42 inhibited PDGF-BB mediate PDGFβ 

receptor Tyr1021 phosphorylation in a dose-dependent manner. PDGF-BB is neuroprotective 

against multiple insults including ischemia, oxidative stress, glucose deprivation and 

glutamate/NMDA receptor excitoxicity. Nevertheless, PDGF-BB failed to protect against Aβ42 

toxicity. Aβ42 mediated inhibition of PDGF-BB signalling led to inhibition of Akt activation 

which is involved in cell proliferation and cell survival. Aβ42 mediated inhibition of PDGF-BB 

signalling was not through interaction of Aβ42 with PDGFβ receptor, but perhaps through 

interactions between Aβ42 with PDGF-BB ligand which a conclusion inconclusive at this point. 

Although Aβ42 inhibits PDGF-BB signalling, there is still significant PDGFβ receptor 

activation. Nevertheless, the significant PDGFβ receptor activation is not sufficient for PDGF-

BB to be neuroprotective against Aβ42 toxicity. Aβ42 mediated inhibition of PDGF-BB 

signalling could contribute to Aβ42 toxicity.  
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