
Identifying Defects Related to the
Order in which Messages are

Received in Message-Passing Systems

by

Milad Irannejad

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Milad Irannejad 2015



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Improving the quality of software artifacts and products is an essential activity for ev-
eryone working on the development of software. Testing is one approach to reveal defects
and faults in software. In recent years, message-passing systems have grown to a significant
degree due to the rise of distributed systems, embedded systems, and so forth. In message-
passing systems, components communicate with each other through sending and receiving
messages. This message-passing mechanism introduces new opportunities for testing pro-
grams due to the fact that the time a message is delivered is not guaranteed, so the order
in which messages are delivered is also not guaranteed. This non-determinism introduces
interleaving and parallelization and subsequently a new source of software defects like race
conditions. In this thesis, we have explained a new approach to testing a given component
for identifying software faults related to the order in which messages are received by that
component. We reorder messages coming to a certain component and deliver them in a dif-
ferent distinct ordering each time. We have three different methods for achieving message
reordering: Blocking, Buffering, and Adaptive Buffering. We evaluate the effectiveness of
our new testing methods using four metrics: Ordering Coverage, Coverage Rate, Slowdown
Overhead, and Memory Overhead. We have implemented our Reordering Framework on
QNX Neutrino 6.5.0 and compared our reordering methods with each other and with the
naive random case using our experiments. We have also showed that our testing approach
applies to real programs and can reveal real bugs in software.

iii



Acknowledgements

I would like to thank my supervisor, Professor Sebastian Fischmeister, for his guidance.
I would also like to thank Zack Newsham for his prior contribution to the implementation.
Additionally, I should thank QNX Software Systems for giving us access to the source code
of QNX Neutrino micro-kernel.

iv



Dedication

This is dedicated to my family, especially my beloved mother who has been always the
source of love and support for me.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Overview of our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

vi



2 Background 6

2.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Testing Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Testing Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Coverage Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Test Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Testing vs. Formal Verification . . . . . . . . . . . . . . . . . . . . 10

2.2 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 13

3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Messages Dependency Graph . . . . . . . . . . . . . . . . . . . . . 15

3.2 Reordering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Blocking Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Buffering Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Adaptive Buffering Method . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Topological Sort of Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Survival Analysis Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Non-Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Weibull Regression Model . . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation 33

4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Ordering Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Coverage Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



4.1.3 Slowdown Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.4 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Reordering Methods Comparison . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Implementation 40

5.1 QNX Neutrino 6.5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Development Environment and Toolchain . . . . . . . . . . . . . . . . . . . 41

5.2.1 Development Operating System . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Installing QNX SDP 6.5.0 . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.3 Setup Host Workstation . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Reordering Framework Implementation . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Compiling Source Code . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Using Reordering Framework . . . . . . . . . . . . . . . . . . . . . 45

5.4 Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Runtime Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Experiments and Case Studies 59

6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.3 Evaluation Metric Measurements . . . . . . . . . . . . . . . . . . . 64

6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Case Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.2 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 A Potential Bug in Photon . . . . . . . . . . . . . . . . . . . . . . . 66

viii



7 Discussion and Conclusion 72

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Single Receiver vs. Multiple Receivers . . . . . . . . . . . . . . . . . . . . 73

7.3 Achievements and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Future Works and Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDICES 75

A QNX Machines 76

B Reordering Experiments 77

C Slowdown Measurements 79

D Reordering Case Studies 80

E Artifacts 81

References 82

ix



List of Figures

1.1 An example of possible message orderings in a message-passing system. . . . . . 2

2.1 The V-Model which shows software development and testing activities hand-in-hand. 7

3.1 An example of message-passing without any reordering method. . . . . . . . . . 15

3.2 An example graph which shows dependencies between messages. . . . . . . . . 16

3.3 An example of linear dependency graph for enforcing a specific order. . . . . . . 17

3.4 An example of blocking method for reordering messages. . . . . . . . . . . . . 18

3.5 An example of buffering method for reordering messages. . . . . . . . . . . . . 20

3.6 An example of buffering method which does partial reordering. . . . . . . . . . 21

3.7 An example of a dependency graph in topological order. . . . . . . . . . . . . . 23

3.8 An example of adaptive buffering method for reordering messages. . . . . . . . 30

3.9 Examples of probability, survival, and hazard functions for Exponential distribution. 31

3.10 Examples of probability, survival, and hazard functions for Weibull distribution. 32

5.1 The reordering framework architecture. . . . . . . . . . . . . . . . . . . . . . 44

5.2 Adding the reordering library to a QNX Momentics project. . . . . . . . . . . 46

5.3 An example of tokenized processes, registered events, and added notifications. . 49

6.1 The configuration of reordering experiments. . . . . . . . . . . . . . . . . . . . 61

6.2 The configuration of reordering case studies. . . . . . . . . . . . . . . . . . . . 66

6.3 The results of running 6 reordering experiments for 10 procesess on physical QNX

machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



6.4 The results of running 6 reordering experiments for 10 processes on physical QNX

machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 The results of running 6 reordering experiments for 7 processes on virtual QNX

machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 The results of running 4 reordering case studies on physical QNX machine. . . . 70

6.7 The results of running 4 reordering case studies on virtual QNX machine. . . . . 71

xi



List of Tables

3.1 Definitions for an example in a hypothetical message-passing system. . . . . . . 14

3.2 Common parametric models for parametric survival analysis [58, 38]. . . . . . . 27

4.1 Summary of quantitative criteria for evaluating the reordering framework. . . . 33

4.2 Summary of qualitative comparison of reordering methods. . . . . . . . . . . . 38

5.1 The toolchain for development and deployment. . . . . . . . . . . . . . . . . . 41

5.2 The specification of QNX SDP environmental variables. . . . . . . . . . . . . . 43

6.1 Different configurations of all reordering experiments. . . . . . . . . . . . . . . 62

6.2 The results of running reordering experiments multiple times. . . . . . . . . . . 63

6.3 The calculated statistics for replicated reordering experiments. . . . . . . . . . 64

6.4 The measured metrics for evaluating reordering methods quantitatively. . . . . . 64

A.1 Specifications of physical QNX machine. . . . . . . . . . . . . . . . . . . . . . 76

A.2 Specifications of virtual QNX machine. . . . . . . . . . . . . . . . . . . . . . 76

B.1 List of configurations of all reordering experiments. . . . . . . . . . . . . . . . 78

C.1 List of measured running times for reordering experiments on virtual QNX machine. 79

D.1 List of configurations of all reordering experiments. . . . . . . . . . . . . . . . 80

xii



List of Abbreviations

DAG Directed Acyclic Graph

API Application Programming Interface

RTOS Real-Time Operating System

POSIX Portable Operating System Interface

IEEE Institute of Electrical and Electronics Engineers

xiii



Chapter 1

Introduction

1.1 Motivation

Consider a message-based software system such as a distributed system or a micro-kernel.
In such a system there are some components that communicate and collaborate with each
other by sending and receiving messages. Some of the software errors and defects become
apparent only when the order in which messages are received changes. As a result of
design errors or programming mistakes, components may assume a firm order for receiving
messages. This order may hold most of the times, but it is not always guaranteed. In
these cases, enforcing an order different from the assumption and seeing how the target
component reacts to it is an important part of testing, and it is not easily achievable due
to the specific context of an application.

1.1.1 An Example

Figure 1.1.1 shows a case of a message-passing system in which messages can happen in
any order. Assume that we have a component R, which receives messages from other
components. We have other components, A, B, and C, which send their messages, a, b,
and c to R frequently. There is no generic mechanism in place for enforcing a full order or
partial order between different messages.

We are interested to see if R can respond to all possible message orderings consistently.
For instance, does it make any difference if R receives messages first from A, second from B,
and third from C or first from B, second from C, and third from A? Our aim is to present

1



Figure 1.1: An example of possible message orderings in a message-passing system.

a method or some methods that enable us to test as many different message orderings as
possible or ideally all message orderings possible to find any software defect (bug) caused
by these various message orderings.

Instead of three sender components, imagine we have ten sender components. Assume
that the receiver component R sees four distinct message orderings every second on average
(we will later on show in our experiments that this assumption can be real). Now, let’s
calculate how long does it take for R to see all possible message orderings.

Total no. of message orderings:

10! = 3628800

Total time for seeing all message orderings:

3628800

4
= 907200 seconds = 252 hours = 10.5 days

Now, let’s only add 5 more sender components to our example, and calculate how long
does it take for R to see all message orderings in this case.

Total no. of message orderings:

15! = 1.3076744e+ 12

2



Total time for seeing all message orderings:

15!

4
= 326918592000 seconds = 3783780 days = 10366.5 years

What if we have hundreds of components interacting which each other in our message-
passing system?

1.2 Definitions

Before formally defining and explaining our problem, we will first go through a set of
definitions that we are going to use in the subsequent sections and chapters.

Software Component
A software component is a part of a software application, which can run indepen-
dently, and represents a single uniform unit of computation [43, 23].

Software Defect
A software defect is an error or flaw either in designing or development of a software
component, which can lead the integral component to an incorrect result, unexpected
behaviour, or a failure [43, 23].

Message-Passing System
A message passing system consists of a number of components, which only commu-
nicate and interact with each other through sending and receiving messages [35].

Message Order
Each message-passing event is associated with a timestamp. Using these timestamps,
we can define a total order relation among messages [18].

1.3 Problem Statement

Having defined our terminology in the previous section, we are now able to characterize
our problem as follows:

“Given a software component in a message-passing system, efficiently identify
defects related to the order in which messages are received.”

3



Based on the above definition, we are going to consider all messages received by a
particular component in our message-passing system, and then we should change the order
in which messages are received and try as many different orderings as possible. Afterwards,
we are interested in finding software defects caused by these various orderings.

1.4 Overview of our Approach

The general approach is to enforce as many different orderings as possible for messages
that are sent to a particular component in a message-passing system during the execution
time. For this purpose, we should identify all components of interest which are going to
interact and communicate with each other. Then, we need to specify those interactions in
which we are interested in terms of source and destination components. We then provide
a mechanism or a set of mechanisms that let us compel a different ordering between mes-
sages rather than the one which is the default. For this purpose, we need to be able to
stop a message and continue it later on. This would be a critical accomplishment in our
methodology.

1.5 Contributions

• First, we propose two methods, the blocking method and the buffering method, for
enforcing different orderings of interest for messages between distinct components in
message-passing systems.

• We utilize a statistical technique in the name of reliability analysis (survival analysis)
to adjust the time-window for our buffering method in an adaptive manner.

• We implement a framework inside the QNX Neutrino 6.5.0 microkernel which estab-
lishes a foundation for re-ordering messages between any set of processes.

• We provide a user-space library for QNX application developers which lets them
make use of our framework for trying different message orderings as quickly and easy
as possible.

• More interestingly, we also equip the QNX user shell with a utility tool that lets
testers and system administrators enforce different message orderings between pro-
cesses without even having access to their source codes.

4



1.6 Thesis Organization

This thesis consists of seven different chapters each focusing on an independent aspect of
my work. In this section I outline my thesis and sequence of proceedings through the rest
of this dissertation. One can skip various parts of this document as needed.

In order to understand the work presented in this thesis an adequate amount of back-
ground knowledge in different areas is indispensable for any reader. Much of the pertinent
topics are discussed in Chapter 2. We start the chapter with an overview of software test-
ing and then we explicate the concept of software coverage criteria and test oracles. We
will provide a concise discussion about software testing alongside formal verification and
compare these two different approaches for finding software defects. We proceed to explain
message-passing systems and their architectures. Next, we present a statistical method in
the name of reliability analysis that we will use later on in our work. Finally, at the end
of Chapter 2, we will review the related work has been done so far.

In Chapter 3 we shed light on our methodology to approach our problem, which is
stated in Section 1.3. More specifically, we will present three different methods for our
problem: the blocking method, the buffering method, and the adaptive buffering method.

In Chapter 4 we first define the metrics we are going to use for evaluating our proposed
methods. These metrics are Coverage, Coverage Rate, Slowdown, and Memory Usage.
With respect to these criteria, we can compare our methods in a quantitative way. Fur-
thermore, we bring a qualitative comparison between our different methods and their pros
and cons at the end of this chapter.

In Chapter 5 we will go through the implementation aspects of our work. We first
introduce the QNX Neutrino microkernel as an example of message-passing systems, ex-
plain its architecture. Next, we will determine our development toolchain and development
environment. Finally, we will elucidate how we have implemented our framework both in
kernel space and user space.

In Chapter 6 we will illustrate the design of our experiments and how they are setup.
After that, we will bring forward our experiment results, and examine them.

Finally, in Chapter 7, we revisit and discuss our problem and the methods proposed
in order to summarize our work and provide a succinct conclusion. We will wrap up our
dissertation by suggesting extension points for future work.

5



Chapter 2

Background

In this chapter we will revisit the theories and concepts that we are going to use in our
work. More precisely, we briefly review software testing, we explain coverage criteria, we
compare software testing with formal verification, and finally we review approaches that
are aligned with our own solution.

2.1 Software Testing

With many programming languages, agile frameworks, and code-generation tools emerg-
ing every day, development of software applications has grown rapidly and exponentially.
Today software includes millions of lines of codes. These expansions alongside the rise of
various hardware architectures, platforms, frameworks, and environments make software
testing more significant. More importantly, software testing has become a complex process
that needs its own expertise [40]. We will define software testing as follows taken from [40]:

“Testing is the process of running a program
with the intention of finding faults.”

Software testing involves a number of different activities such as deciding on test inputs,
designing test cases, running test plans, and reporting results. Although some people are
focusing specifically on testing, software testing is an essential task for all. Every developer,
engineer, tester, and manager should practice software testing on a regular basis. All
software artifacts should come with associated tests. Nowadays, every large organization
or group of people has a dedicated test team. Usually, a test manager sets testing policies
and directs a number of test engineers who design, run, and analyse test cases [1].

6



2.1.1 Testing Levels

Software testing can be done at different levels. These levels are usually isolated. Within
each level, we design our tests with respect to development level. These levels are as follows
[1].

Acceptance Testing evaluates software with respect to elicited requirements.

System Testing evaluates software with respect to architectural design.

Integration Testing evaluates software with respect to sub-system design.

Module Testing evaluates software with respect to detailed design.

Unit Testing evaluates software with respect to implementation and code.

These models are also referred as V-Model [60, 34]. Figure 2.1.1 illustrates the software
testing activities for each software development activity.

Figure 2.1: The V-Model which shows software development and testing activities hand-in-hand.

In another categorization, software testing levels have been classified based on maturity
of testing [5]. These levels are defined as follows:

7



Level 0 there is no difference between testing and debugging.

Level 1 the goal is to demonstrate that the software works.

Level 2 the intent is to show that the software does not work.

Level 3 the purpose is to reduce the risk of using the software.

Level 4 testing becomes a practice to improve the quality of software.

Our new testing approach, which we will elucidate it in Chapter 3, targets the level 2
in this model.

2.1.2 Testing Automation

Back to the discussion we brought in the beginning of this section, software testing has
grown and become more complex as platforms, frameworks, and tools for software devel-
opment have flourished. As a result, deciding which test inputs we should use and how to
develop test cases have become more demanding. Consequently, we need criteria that can
help automate the generation of test inputs and test cases. Coverage criteria are the tools
for this purpose.

2.1.3 Coverage Criteria

Most of the times it is not possible to test an actual software with all possible inputs due
to either huge or infinite input space. Coverage criteria provide a ground for determining
test inputs and test cases. We will first define some terms.

Definition 2.1. A test requirement is a particular aspect of a software artifact
which a test case must cover or satisfy [1].

We usually have a set of test requirements denoted by TR. As an example, assume
that we are given a control flow graph (CFG) [42] of a program, so we know the likely
execution paths. Testing a certain execution path can represent a test requirement.

Definition 2.2. A coverage criterion is a guideline or number of guidelines
that generates test requirements for a test set [1].

8



A coverage criterion imposes test requirements on a test set. In other words, it implicitly
determines the set of test requirements we need. In our example, the execution path
criterion says that all execution paths within a program should be tested. A coverage
criterion leads us to a set of test requirements which contains a test requirement for each
execution path in the program. We can now define the coverage concept as follows:

Definition 2.3. Given a set of test requirements TR for a coverage criterion C,
a test set T satisfies C if and only if for every test requirement tr in TR,

at least one test t in T exists such that t satisfies tr [1].

In other words, if for every test requirement we have at least one test case in our test
tests, our test set covers our coverage criterion. Again, in our example, if we have test
sets that can test all execution paths in the program, we have covered the execution path
criterion. The coverage level or percentage can be simply defined as follows:

Definition 2.4. Given a set of test requirements TR and a test set T , the coverage level
is the ratio of the number of test requirements satisfied by T to the size of TR [1].

We may have some test requirements which cannot be covered by any of our test cases.
These test requirements are called infeasible. Due to large space of test inputs in real
applications, achieving a coverage level of 100% is not practical.

2.1.4 Test Oracles

One question that may arise following the determination of our test inputs and test cases
is: how can we understand whether or not the software responds correctly to test cases?
Test oracles can provide the correct output for test inputs to a software. Testers can verify
the output of their tests using test oracles. A complete test oracle knows the expected
behavior for every possible input. Providing complete test oracles is not a straightforward
task, and it should be automated. Oracle problem is the challenge of finding expected
outputs and behaviors [52].

A Test oracle generator (TOG) automates and solves the test oracle problem. Given a
test execution < input, output > pair, TOG tells you if the output is the expected correct
output for the input or not [48].

In some application domains we programs for which we do not have a reliable test
oracle or automatic generation of test oracle is not doable. These programs are called

9



non-testable programs [66]. In this case pseudo-oracles are used. A pseudo-oracle makes
use of multiple implementations of an algorithm. For a given input the outputs from these
alternative implantations are compared for a conclusion [39].

2.1.5 Testing vs. Formal Verification

Another approach to finding errors and faults in software is using formal mathematical
methods to verify a program. Formal verification methods sometimes have been referred to
as static testing. These methods assume an execution model and analyze the mathematical
model of a program in order to show that it works with respect to its specification. Model
checking is one technique for formal verification [3].

Software testing techniques investigate programs at runtime while they are working
whereas formal verification techniques investigate programs statistically prior to execution.
Testing methods try to show that there exist a bug/defect in the program while formal
verification methods attempt to show that there is no bug/defect in the program. As a
result, if our testing process does not reveal any error in the program, it does not imply
that our program is defect-free [20].

Formal verification methods are not scalable. They soon face the state-explosion prob-
lem. On the other hand, software testing is applicable to big-scale real applications in use.
Moreover, assuming an execution model which corresponds to the actual execution model
brings more complexity into calculations. Another challenge with formal verification is that
the specification of a given program should be represented formally and mathematically
[20].

2.2 Reliability Analysis

Reliability analysis or survival analysis is statistical method predicting time-to-event vari-
ables. It is similar to regression analysis with time to occurrence of an event as a response
variable. In a population we have measured how long it take for an individual to experience
an event of interest alongside a number of other independent variables. We aspire to devise
a model that lets us predict the time-to-event for every individual based the values of its
independent variables.

The advantage of reliability/survival analysis over regression analysis lays down in
considering censored data. Censored data are those individuals that we do not know the

10



exact time-to-event for; however, we do know that the event of interest has not occurred
up until a certain point in time, or we know that the event of interest has occurred to them
before a certain point in time. Regression analysis techniques will dispose of these data
points; however, they are still carrying valuable information. Survival analysis methods
take these data points into account as well.

In Section 3.4, we will define and explain concepts and equations of reliability/survival
analysis in the context of our work (reordering framework).

2.3 Related Work

In this section we review approaches to reordering messages in message-passing systems
that are aligned with our own solution. Prior to reviewing these approaches we would
like to revisit our work briefly. We have provided a new approach for testing software
applications on message-passing systems by reordering the messages received by a given
component.

In [64, 65, 15] authors presented a new method for software failure recovery using
message reordering, message logging, and message replaying. They proposed a multi-stage
recovery method. In stage one, for example, they bypass the faulty process by regenerating
the messages it sent from its message logging. If that does not work, they reorder the
messages from message logging and replay them again in stage two. In each stage, they
increase the scope of recovery in the system. By reordering messages, they managed to
mask those bugs related to the ordering of messages.

In [62] authors recommended a perturbation technique that introduces timing-related
defects in message-passing systems. Their technique increases the message ordering cov-
erage in a non-deterministic way in order to disclose those bugs which are not easy to
test under normal circumstances. Their work is analogous to ours. Their work is mainly
focused on sender-based perturbation of messages which does not guarantee message re-
ordering. On the other hand, we have provided a receiver-based perturbation that ensures
message reordering.

Authors in [54] suggested a structural testing criteria and coverage for message-passing
applications. Their tool tracks the control flow and data flow of programs by distinguishing
the sequential and parallel parts of programs.

Detecting race conditions is another trend for testing message-passing systems. In
[41], authors proposed an algorithm for finding data race in message-passing systems using

11



logical clocks. MARMOT [29] is another tool for detecting deadlocks and race detections
in standard message-passing applications. It improves reproducibility of non-deterministic
faults.

There also a number of testing techniques for message-passing systems by profiling
and trace analyzing. In [61] authors have implemented a new tool for dynamically testing
message-passing systems. Their tool intervenes the message-passing APIs, profile message-
passing calls, and then runs an analysis in order to to detect errors such as deadlocks.

Model checking techniques and other formal verifications methods are other approaches
to find bugs in message-passing systems. Authors in [8] described a new tool for model
checking using the type information provided by the programmer from source. Authors in
[53] have reviewed works done on formal analysis of message-passing systems.

12



Chapter 3

Methodology

In this chapter we will explain our approach to the problem stated in Chapter 1, and then
we will illustrate our methods alongside some examples. We are going to present three
different methods for reordering the messages in a message-passing system as follows:

• Blocking method

• Buffering method

• Adaptive Buffering method

3.1 Our Approach

From our problem statement elaborated in Chapter 1, we have a number of components
that send messages to another component from time to time. So, the receiver components
see messages from sender components in a fixed or random order. Having secured these
components, we are interested in changing the order in which are sent to the receiver
component and systematically apply all message orderings possible.

For reordering messages we have to be able to intercept every message of interest and
pause it. Later on, we should also be able to release the paused message and resume
it upon fulfilment of some criteria. These criteria are dependencies between messages of
interest. As a simple example, assume that we have two components A and B which send
messages to component R. Without any mechanism for reordering in place, A usually sends

13



Sender Receiver Event Dependency

A R a b

B R b c

C R c -

Table 3.1: Definitions for an example in a hypothetical message-passing system.

a message to R first, and then B sends another message to R. Having a reordering method
in place, when A sends its message to R, we stop it and release only when B has sent its
message to R. So, in this case, we changed the order [AR, BR] to [BR, AR]. As a result, we
need to designate a message as a dependency for another message and by chaining these
dependencies we can define the desired ordering between messages. By having a pausing-
resuming mechanism implemented we can enforce our desired message order. So finally,
by changing the orders of interest on-the-fly we can systematically explore all message
ordering possible.

Before further exploring our methods we will consider a hypothetical message-passing
system in which we have a couple of sender components and a receiver component. We
define and denote what we are going to use in the rest of this chapter as follows.

A, B, and C are sender components, and R is receiver components in our message-
passing system. We call the message from A component to R component a, the message
from B component to R component b, and the message from C component to R component
c. The message from A to R (a) is dependent on the message from B to R (b), and the
message from B to R (b) is dependent on the message from C to R (c). So, this dependency
chain implies that the message c should happen first, and then the message b can happen,
and finally the message a is allowed to happen. So, we expect the component R to receive
messages in the order [c, b, a] instead of [a, b, c].

The other thing that we would like to make clear is the way that we illustrate our ex-
amples. We will use a diagram similar to sequence diagram in UML [44]. Each color relates
to a software component, each horizontal rectangle at the top of the diagram represents
a software component, each vertical slender horizontal rectangle denotes the lifetime of a
component, and each horizontal arrow connotes a message-passing from a source compo-
nent to a destination component. Moreover, each message passed is labeled with on of the
events represented in Table 3.1. Figure 3.1 shows an example of sending messages in our
hypothetical message-passing system.

In this example, there is no reordering mechanism in place. First, A sends a message to

14



Figure 3.1: An example of message-passing without any reordering method.

R, and it is delivered immediately. Second, B sends a message to R, and it is also delivered
immediately. Finally, C sends a message to R, and it is delivered instantly. As a result, the
ordering will be [AR,BR,CR] or [a,b,c]. We want to change this ordering to [CR,BR,AR]
or [c,b,a], so the receiver component can experience a different ordering for the sake of
testing. In the subsequent sections, we describe our various methods for this purpose.

3.1.1 Messages Dependency Graph

In our reordering framework we represent the dependencies between messages through
a dependency graph. Dependency graphs have been used in a variety of contexts and
applications. They have been used for static analysis and testing of programs [28, 63],
for program execution analysis and dynamic slicing [9, 4, 32], and for scheduling purposes
[30, 47].

Figure 3.1.1 shows an example of a message dependency graph that can be defined
in the reordering framework. In such a graph each node or vertex represents an event
that is a message from a source component to a destination component. These source
and destination components can be seen inside each node. The first capital letter implies
the source, and the second capital letter implies the destination. Each edge portrays

15



a dependency between two events (messages). For example, the edge from AR to BR
says that the occurrence of AR is dependent on the occurrence of BR, which means that
component B first has to send a message to component R, and then component A can send
its message to component R.

Figure 3.2: An example graph which shows dependencies between messages.

The dependency graph represents what we would like to see not what the application
does. A dependency graph only allows certain orderings for defined events (messages). The
following message orderings are valid with respect to the example graph shown in Figure
3.1.1:

• BS AS

• ER, DR, BR, BS, AR

• ER, BS, DR, BR, AR

• ER, DR, BR, BS, AS, AR

• BS, ER, DR, BR, AR, AS

As you may have inferred from this example, the dependency graph is a general way of
representing dependencies between messages, and we can potentially impose a dependency
between any pair of messages. However, we prevent cyclic dependencies from being created

16



in our dependency graph by disabling those dependencies, which causes the addition of a
cycle. A cycle in a dependency graph causes a deadlock in the system, and it should
thus be eliminated. In other words, the dependency graph should be a Directed Acyclic
Graph (DAG).

You may ask yourself where this dependency graph originates and how dependencies
should be decided upon in the graph. As we mentioned earlier, each dependency graph
filters all possible message orderings and only allows certain orderings to occur. So, if
we are interested in a specific message ordering to happen, we should define a number of
dependencies in such a way that the resulting dependency graph forces our ordering of
interest. Consider the linear dependency graph shown in Figure 3.1.1. If you interpret this
graph, you will conclude that this dependency graph can only allow the ordering [CR, BR,
AR], the same ordering we have defined in Table 3.1.

Figure 3.3: An example of linear dependency graph for enforcing a specific order.

To put in a nutshell, we will review our approach once more as follows:

1. We start by assigning available tokens to components of our interest using their PIDs
or names.

2. We specify those messages between tokenized components in which we are interested
in by registering as events.

3. We then consider those orderings between events (messages) we want to apply or
test.

4. Now, we enforce each ordering by defining the corresponding dependencies for the
given ordering.

In order to enforce all orderings of interest, we need the dependency graph to be con-
figurable on-the-fly during runtime.

17



3.2 Reordering Methods

In the subsequent sections we explain our three methods of reordering for reordering mes-
sages between components in a message-passing system. These methods are called blocking,
buffering, and adaptive buffering.

3.2.1 Blocking Method

One method we can use for changing the order in which messages are received by R is
making each message-pass dependent on another message-pass. So, in this method we
define each message as an event, and an occurrence of a certain event can be dependent
on occurrences of other events. Figure 3.2.1 shows an example in which we are interested
in forcing the order [CR,BR,AR] or [c,b,a]. To this end, we first define our events and
dependencies between them. We would like to emphasize the fact that it is not necessary
to know these dependencies upfront. These dependencies only impose a specific message
ordering that is [c,b,a] in this example. So, we simply represent every ordering of interest
using a set of dependencies which forms a linear dependency graph.

Figure 3.4: An example of blocking method for reordering messages.

Using the blocking method, if AR (a) arrives first, we block it since its dependency, BR
(b), has not yet happened. Similarly, when BR (b) arrives next, we block it again since its

18



dependency, CR (c), has not yet occurred. Ultimately, once c arrives, we let it continue,
and release all other events (messages) dependent on it which are blocked. It means we
first release BR (b), and then AR (a).

3.2.2 Buffering Method

Instead of blocking individual messages, we can buffer all messages by default and peri-
odically empty the buffer and release buffered messages based on order of interest. Figure
3.2.2 shows an example of this method. Once AR (a), BR (b), and CR (c) arrive, we buffer
all of them and then every 50ms we check all the buffered messages, and release them in
the order of interest which is CR (c) first, BR (b) second, and AR (a) last. In this case,
the order that the component R sees is [CR,BR,AR] or [c,b,a].

One challenge with the buffering method is the frequency of emptying the buffer. How
quickly must we empty the buffer and release messages? On the one hand, we prefer to
see and buffer all messages before a timeout. On the other hand, we should be careful
about not choosing a long timeout since it is not safe to delay messages more than a few
ten milliseconds roughly speaking. Delaying messages more than a certain threshold could
have serious consequences in some application domains like embedded software or safety-
critical software. But what if our timeout frequency is so short that we cannot see a new
message ordering? Consider the example shown in Figure 3.2.2.

In the example shown in Figure 3.2.2 we have the same set of components and the same
dependency. The components A, B, and C send their message AR (a), BR (b), and CR
(c) respectively. The natural order of messages is [AR,BR,CR] or [a,b,c], but we want to
force another ordering which is [CR,BR,AR] or [c,b,a]. In this example, only the message
AR (a) and BR (b) have happened before the first timeout. Since we have only seen two
(AR, BR) out of three messages (AR, BR, CR) of interest when the first timeout comes,
we partially reorder them and deliver messages in ordering [BR, AR]. The message CR
(c) has occurred after the timeout. When the second timeout comes, the message CR (c)
gets released. Thus, the message ordering that the component R has seen in this case
is [BR,AR,CR] or [b,a,c] which is a different message ordering, but not the one we were
interested in initially.

As the example above demonstrates, the problems with the buffering method are as
follows:

• Choosing a well-balanced timeout for every single application is a challenge.

19



Figure 3.5: An example of buffering method for reordering messages.

• The timeout value is fixed each time, and it does not consider the dynamic behavior
of an application.

In order to overcome these challenges and improve the buffering method, we introduce
another method that tries to adjust the timeout frequency dynamically on-the-fly with
respect to the behavior of the messages of interest.

3.2.3 Adaptive Buffering Method

We improve the limitations of the buffering method by dynamically adjusting the timeout
values. We start by the same example shown in Figure 3.2.2 and show how the adap-

20



Figure 3.6: An example of buffering method which does partial reordering.

tive buffering method can improve the problems mentioned. Figure 3.4.4 illustrate the
mechanism of the adaptive buffering method.

In this example, we have the same set of components, messages, and dependencies.
Components A, B, and C send their messages AR (a), BR (b), and CR (c) respectively,
and want to change the ordering from [AR,BR,CR] to [CR,BR,AR]. Akin to the buffering
method, we have the concept of a timeout in this method. We start with an educated
estimation for timeout values. In this example, we begin with the same timeout value we
have used in Figure 3.2.2, 50ms. As illustrated in the diagram, message AR (a) comes
and then message BR (b) comes. Subsequently, the first timeout happens and we again
partially reorder the messages and release them in the order [BR,AR]. After that, the
message CR (c) happens. The second timeout comes with the same value of 50ms, and

21



the message CR (c) gets released. So, the ordering that the component R sees is the same
order [BR,AR,CR] we have achieved in the previous example.

The power of the adaptive buffering method comes into effect from this point onwards.
Based on the results of the first and second timeouts we adjust the value of timeouts.
We accomplish this by carrying out a survival analysis in hope that we will see all of the
messages of interest the next time, and we can fully reorder them rather than doing partial
reordering. As a result, we increase the timeout value from 50ms to 100ms. When the
third timeout comes, all messages of interest AR (a), BR (b), and CR (c) have happened,
so we can release them in the order [CR,BR,AR], the same order we want to enforce.

Furthermore, we can bound the timeout value between a lower bound and upper bound.
The lower bound guarantees that our timeouts will not come too fast, and we will not incur
too much overhead to the system. The upper bound ensures that we will not delay the
release of messages too long, so we can guarantee the delivery of each message after at
most a certain amount of time.

3.3 Topological Sort of Messages

Earlier in this chapter, when we were explaining our buffering and adaptive buffering,
we mentioned that if we have seen all message of interest before a timeout, we partially
reorder messages and release them. This partial reordering is done through a topological
sort on dependency graph. Topological sort or toposort is an algorithm for ordering the
vertices of a directed acyclic graph in such a way that all edges are pointing in one direction
(outward), and no edge is pointing backward [51]. On-the-fly topological sort at runtime
has been also used in a number of applications [25, 46].

Consider the same dependency graph we have shown in Figure 3.1.1. If we do a topo-
logical sort on this graph and order its vertices, we will have the graph shown in Figure 3.3.
Notice that these two graphs are isomorphic, which means they are identical. As you can
see in the topologically sorted dependency graph, all edges point to one direction. This is
only possible if there is no cycle in the directed graph.

Now, based on the topological order of our dependency graph at any given time, we
can decide in what order we should release the messages with the intent of satisfying as
many dependencies as possible and providing a partial ordering. For example, imagine that
message AR, AS, BR, and DR have occurred before a timeout. At timeout, we follow the
topological order of vertices (messages) of the dependency graph and release each buffered
message with respect to this order. In the context of our example, we will follow the order

22



Figure 3.7: An example of a dependency graph in topological order.

ER, DR, BR, BS, AR, and AS and release each message as if it is in the buffer. From there
we will release the messages DR, BR, AR, and AS.

The topological sort algorithm is implemented by performing a depth-first search al-
gorithm on an acyclic directed graph [51]. It is worth mentioning that we do not need
to run the topological sort algorithm on every single timeout; we only need to compute
the topological order of our dependency graph whenever we change the configuration of
our dependency graph either by adding a new dependency or by removing an existing
dependency.

3.4 Survival Analysis Review

We just mentioned in Section 3.2.3 that the adaptive buffering method tries to dynamically
adjust the right value for timeouts on-the-fly. To this end, we need a precise and reliable
analysis to calculate a fit timeout using the past historical data. Such a method should
take context-specific properties of our data into account.

Survival analysis is a statistical technique used in a variety of contexts and domains
for predicting time to occurrence of an event of interest [58, 26, 38, 27]. Survival analysis
or reliability analysis [50] is similar to regression analysis in which the response variable
or dependent variable is time, and we are interested to know when an event will most
likely recur. Survival analysis can consider censored data [58, 27] which regression analysis
methods ignore as missing data.

In survival analysis, like any other statistical method, we sample from a select popu-
lation of individuals. For each individual in the sample, we measure some dependent or
predictor variables and a dependent or response variable. Based on these observations,

23



we want to infer a model that helps us to predict the response variable value using the
values of independent or predictor variables that ideally reflect every individual in the
entire population. This is how a regression analysis method functions without censored
observations.

In survival analysis, our response variable is always time-to-event T which is the time
takes for an individual until an event of interest happens for that individual. This event
of interest is called failure or death, but it can be any event of interest. It could be time-
to-failure, time-to-accident, time-to-restart, time-to-delivery, or any other event in which
we are interested. We measure T for each individual in our sample alongside dependent
variables, if any, and we report T either as a continuous or discrete measure [58].

There are some cases in which we may lose some individuals before they experience the
event of interest. For example, let’s say that we want to predict the time-to-accident for
beginner drivers. We select a number of novice drivers and follow up with them during a
certain period. We might lose track of some of our drivers. For example, an individual may
move out to another city before our experiment ends, or a driver may stop driving for some
reason. However, we know that the event of our interest (accidents) has not happened for
an individual before leaving the population. Furthermore, our experiment running time
may end for some reason, and there may still be accident-free drivers. Although we do
not know the actual time of an accident for these drivers, we know that the event of
our interest has not happened for them up to a certain point in time. These individuals
are called censored data. Regression analysis methods simply ignore these data because
their values for T are missing. However, these censored data are still carrying valuable
information, which can be taken into account and help us drastically improve the accuracy
of our prediction method.

In the context of our reordering framework, our population is the set of all registered
events that contain a message of interest. An individual is a single message from a source
component to a destination component. We want to predict the time it will take for a
certain message to recur.

3.4.1 Definitions

We define T as a non-negative continuous random variable which represents lifetime or
time-to-event for individuals in a population. We denote the probability distribution func-
tion (p.d.f.) by f(t) and the corresponding cumulative distribution function (c.d.f.) by
F (t) [58].

24



F (t) =

∫ t

0

f(x)dx (3.1)

By definition, F (t) is the probability that an individual experiences the event of interest
before time t. Likewise, we can define the probability that an individual survives or does
not experience the event of interest until time t as follows:

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞
t

f(x)dx (3.2)

S(t) is called survival function or reliability function. Note that F (t) is a cumulative
function which implies that F (t) is a monotonic increasing function. This yields that S(t)
is a monotonic decreasing function. At t = 0 the probability that an individual survives is
1, and at the t =∞, the probability that an individual survives is 0. From the equations
3.1 and 3.2, we can derive the following equation [58]:

f(t) =
dF (t)

dt
= −dS(t)

dt
(3.3)

Another important concept in survival analysis is hazard function. Given the fact that
an individual has survived up to time t, the hazard function (h(t)) gives you the immediate
rate of failure at t which is a number in [0,∞) range. It is defined as follows:

h(t) =
f(t)

S(t)
=
−dS(t)

dt

S(t)
= −d logS(t)

dt
(3.4)

It is important to know that hazard function is a rate function rather than a probability
function. The cumulative hazard function also can be simply described as follows:

H(t) =

∫ t

0

h(u)du = − log(S(t)) (3.5)

Using equations 3.4 and 3.5, we can define f(t) and (S(t) functions based on hazard
function in the following way:

S(t) = e−H(t) = e−
∫ t
0 h(u)du (3.6)

25



f(t) = h(t)e−H(t) = h(t)e−
∫ t
0 h(u)du (3.7)

The last thing we define is the mean for response variable T and mean residual life at
time t. The mean residual life for individuals at time t is the time left until an individual
experiences the event of interest [58].

E(t) =

∫ ∞
0

tf(t)dt =

∫ ∞
0

S(t)dt (3.8)

mrl(t) =

∫∞
t
S(u)du

S(t)
(3.9)

3.4.2 Non-Parametric Models

Non-parametric estimation of time-to-event T is used for expressive purposes. They are
helpful for investigating the general structure of survival function and hazard function. One
can then use a parametric survival analysis method with independent variables involved
in the calculations. Because we have not used any non-parametric estimators or models,
we do not bring any more explanation for them. For more information on and examples of
non-parametric survival analysis models, please refer to provided references [58, 26, 38, 27].

3.4.3 Parametric Models

Parametric models assume a parametric form for hazard and survival functions. They
also let us develop a regression model and include independent variables in calculations to
predict the time-to-event T variable based on the values of dependent variables. Table 3.2
summarizes the most frequent parametric models used for parametric survival analysis.

Figures 3.4.4 and 3.4.4 show probability density, survival, hazard functions for Expo-
nential and Log-Logistic distributions, respectively. These curves can be investigated more
thoroughly to interpret the survival probability and hazard rate as time passes. For ex-
ample, the Figure 3.4.4 illustrates that in exponential distribution, the chance of failure is
great at the beginning, and then, it drops down greatly. Figure 3.4.4 demonstrates different
shapes of survival or hazard functions for Weibull distribution. For example, if we have
λ = 1 and α = 3, the chance of failure is initially quite low, gradually rises, and eventually

26



Parametric Model h(t) S(t) f(t)

Exponential λ, λ > 0 e−λt λe−λt

Gompertz λeαt e−
λ
α
(eαt−1) λeαt−

λ
α
(eαt−1)

Weibull λα(λt)α−1 e−(λt)
α

λα(λt)α−1e−(λt)
α

Log-Logistic λα(λt)α−1

1+(λt)α
1

1+(λt)α
λα(λt)α−1(1 + (λt))−2

Table 3.2: Common parametric models for parametric survival analysis [58, 38].

falls. If we have λ = 1 and α 6 1, the distribution becomes similar to exponential dis-
tribution. We would like to mention that the Weibull and Log-Logistic distributions are
analogous.

One can investigate the shape of survival and hazard functions using a non-parametric
survival analysis before choosing a parametric model. We then approximate the parameter
values by optimizing the corresponding likelihood function.

For the sake of simplicity and coherency we have not included many details about
other distributions and the methods for estimating the parameters. For a more in-depth
explanation of survival analysis field and parametric models, please refer to the major
textbooks [58, 26, 38, 27].

3.4.4 Weibull Regression Model

The next step is developing a regression model for time-to-event response variables. To
recap, we have some observations. For each observation, we have measured a set of inde-
pendent variables denoted by x and a dependent variable T , time-to-event, which is the
lifetime of an individual until it experiences the event of interest. Based on these data we
are going to calculate a regression model which lets us predict the lifetime of any individ-
ual using its independent variable values. For each parametric model, we derive a slightly
different regression model.

Based on our observations provided in Chapter 6, we have chosen the Weibull distribu-
tion and corresponding parametric model. Thus, we will use a Weibull regression model.

27



For the purpose of our regression analysis, we define the hazard function as follows [58]:

h(t|x) = h(t)ex
′β = αλαtα−1ex

′β = α(λ(ex
′β)

1
α )αtα−1 = αλ̃αtα−1 (3.10)

This is the same form we used for the hazard function that is now replaced by λ̃. This
λ̃ has now the independent variables incorporated in it [58].

If T follows Weibull distribution with parameters λ and α, then Y = log(T ) follows an
extreme value distribution with µ = − log(λ) and σ = 1

α
. Consequently, we will have the

following equation [58]:

Y = log(T ) = µ+ σZ (3.11)

We can further incorporate our independent variables in the above equation simply as
follows in which we have µ̃ = − log(λ̃)

Y = log(T ) = µ̃+ σZ = − log(λ)− x′σβ = β∗0 + x′β∗ + σZ (3.12)

Now, we have a regression form which is very similar to the ordinary regression we
know. We can estimate the parameters λ, σ = 1

α
, and β by minimizing the error term Z.

It is worth noting that Z does not follow a normal distribution. Thus, we cannot use the
least-squares method.

As mentioned earlier in this section, we have considered the Weibull distribution and a
parametric model for our adaptive buffering method. We would like to clarify the survival
analysis we are using for our adaptive buffering method as follows:

Population
The set of all registered events/messages of interest.

Event of Interest
The occurrence of a registered event/message.

Time-to-event T
The period of time which takes for a registered event/message to happen again since
its last occurrence.

Independent Variables
The source component (x1) and destination component (x2) of a registered even-
t/message.

28



Finally, we can present our Weibull regression model for our reordering frame in the
following form:

log(T ) = − log(λ)− 1

α
β1x1 −

1

α
β2x2 (3.13)

For more information on regression analysis in survival analysis and measure of effect,
please refer to reference [58].

29



Figure 3.8: An example of adaptive buffering method for reordering messages.

30



Figure 3.9: Examples of probability, survival, and hazard functions for Exponential distribution.

31



Figure 3.10: Examples of probability, survival, and hazard functions for Weibull distribution.

32



Chapter 4

Evaluation

In this chapter, we will explain how we are going to evaluate our reordering framework.
We will consider and define some metrics that enable us to measure the effectiveness of our
reordering framework in a quantitative manner. These metrics also provide a ground for
the reordering framework to be compared with other similar approaches. After defining and
clarifying our metrics, we arrive at a solution for comparing different reordering methods.

4.1 Metrics

In this section, we will introduce, define, explain our criteria one by one. Before going
through these criteria more in-depth, we would like to introduce them briefly. Table 4.1
presents our criteria in short.

Criterion Measure Unit

Ordering Coverage Ratio of covered orderings to all orderings %

Coverage Rate Number of orderings per time 1
ms

Slowdown Overhead Extra run time in compare to naive case ms

Memory Overhead Extra memory usage in compare to naive case KB

Table 4.1: Summary of quantitative criteria for evaluating the reordering framework.

33



4.1.1 Ordering Coverage

The first and the most important metric in which we are interested is how many different
message orderings we can enforce for a given component. The more message orderings
we can enforce, the more thorough our testing will be, and the more software defects and
faults we can hopefully reveal.

We measure this criterion by keeping track of and counting distinct message orderings
among all possible message orderings. We then report the covered ratio of message ordering
in percentages. We will formally define our ordering coverage metric as follows:

Ordering Criterion [1]
Ordering criterion, C, requires all message orderings possible between a certain num-
ber of components to be tested.

Test Requirements [1]
The set of our test requirements, TR, is consisted of all possible message orderings
between a certain number of components to be tested.

Ordering Coverage Level [1]
Having defined our testing criteria and our test requirements set, the ordering cover-
age level is the ratio of the number of test requirements (message orderings) satisfied
to the size of test requirements set.

Consider the example we have shown in Chapter 3. We have three sender components
(A, B, and C) as well as a receiver component (R). We are only interested in message AR
(a), BR (b), and CR (c). Our ordering criterion implies the following test requirements set.
Using testing coverage criteria for analyzing the effectiveness of statechart-based testing
techniques is done in [6].

TR = {abc, acb, bac, bca, cab, cba}

If we manage to only force four message orderings such as abc, acb, bca, and cba, our
ordering coverage level will be calculated as follows:

Ordering coverage =
4

|TR|
=

4

6
= 66%

34



Testing coverage criteria have been presented in many of the works related to testing
software. Authors in [2] have investigated four data flow criteria and compared their cov-
erage levels. In [36], authors presented a new testing coverage criteria for testing graphical
user interfaces (GUIs). Various testing coverage criteria have been used in [33] to model
testing effort and software reliability. In [17], testing coverage criteria have been used for
validating software components.

4.1.2 Coverage Rate

It is also important how quickly we can cover the different message orderings. The faster
we can try as many message orderings as possible, the faster we can catch software defects
and errors. We may be able to enforce a large number of different message orderings in the
long run. But, if we managed to do the same thing in a shorter amount of time, it would
be more useful and practical. So, we can scale up our reordering framework for real big
applications.

We measure this criterion as the number of different message orderings we have covered
per unit of time. This measurement is done while we are simultaneously monitoring distinct
message orderings. We just need to keep track of time as well. In the example we brought
forth in the previous section, let us assume that we have covered four message ordering
after 100ms. The coverage rate would be calculated as follows:

Coverage rate =
4

100ms
= 0.04

1

ms

Authors in [49] have used testing coverage level versus time to predict the reliability
of software products in a quantitative manner. In another similar work [24], authors used
testing coverage for describing the software reliability growth process. In [67], different
coverage criteria have been measured within a certain amount of time.

4.1.3 Slowdown Overhead

Besides how quickly and effectively we can disclose software defects and faults in our
application, it is also significant to know how much overhead our testing method incurs to
applications compared to when we are running them without any reordering mechanisms
in place.

35



We measured this criterion once by running our target applications without any testing
mechanism implemented and once by running the same applications with our reordering
framework in place. We then reported the difference in running time between these two
scenarios. For instance, assume that the running time of a sample application without any
reordering testing method is 100ms. When we exert our reordering framework for testing
purposes, running time of the same application is now 120ms. We will report the slowdown
overhead metric as follows:

Slowdown overhead = 120ms− 100ms = 20ms

This metric has been the first and the most important evaluation metric for many
solutions and mechanisms which work during runtime. FastTrack [14], a race detection
tool which instruments programs, uses the slowdown measure for evaluating their solution.
Pulse [31], a dynamic mechanism for detecting deadlocks, uses this metric as well. Authors
in [68] have used slowdown overhead for evaluating their kernel-level logging mechanisms.
In [13], authors proposed a new way for detection of anomalies, and they have compared
their solution with other similar works in terms of runtime overhead. Slowdown metric
also was considered for comparing test suites using coverage criteria in [19].

4.1.4 Memory Overhead

Following up slowdown measurement, we are also interested in learning how much more
memory the target applications need if a reordering method is in place. This criterion
would become very important in embedded systems in which resources are limited and
precious.

Similar to slowdown measurement, we ran the target application one time natively
without any extra mechanism implemented and one time with our reordering framework
in place. Then, we measured the memory usage in both cases and reported the difference.
Assume that when we ran an application without any reordering testing methods, the
application used up 600KB of memory, and when ran the same application using our
reordering framework, it consumed 800KB of memory. We will then report the memory
overhead metric as follows:

Memory overhead = 800KB − 600KB = 200KB

This metric also has been presented and used in a variety of works. Authors have used
extra memory usage in [10] for evaluating their mTags framework for labelling processes

36



and tracking their interactions. In [11], authors have used memory use as one of their
evaluation metrics for their labeling framework. Authors in [68] used the memory overhead
to evaluate their kernel-level logging solution. In [13], authors have also compared their
solution with other similar solutions in terms of extra required space.

4.2 Reordering Methods Comparison

In this section, we will investigate the advantages and disadvantages of each of the re-
ordering methods we have presented in chapter 3 as part of our evaluation. In chapter
3, we portrayed three different approaches for reordering message-based communications
in message-passing systems. These methods are called blocking, buffering, and adaptive
buffering. For details about how each of these methods work, refer to section 3.2.1, section
3.2.2, and section 3.2.3.

4.2.1 Qualitative Comparison

In the qualitative comparison of reordering methods, we will discuss the pros and cons
associated with each method, and we will postpone the quantitative comparison of these
methods to next section. By qualitative comparison, we mean what a reordering method
can do, and what it cannot do.

Blocking Reordering

In the blocking method, each message/event gets blocked until all its dependencies take
place. Figure 3.2.1 illustrates this concept. One can argue what if one of the dependencies
for a blocked message/event does not happen at all. In this case, the blocked message/event
stays blocked forever, and the sender component starves! So, in the blocking method our
processes of interest may face deadlock or starvation. All messages should be released at
some point. This even becomes more critical in embedded systems in which we should
guarantee an upper bound for message delivery. So, the question remains: why do we need
the blocking method if it does not guarantee message delivery? If we know all messages
of our interest occurs frequently for certain and there is no circular dependency between
them, we can use the blocking method to guarantee enforcement of the exact ordering we
seek. The blocking method can guarantee a certain order between messages of interest.

37



Reordering Method Guarantee Ordering? Guarantee Upper Bound?

Blocking Fully No

Buffering Partially Yes

Adaptive Buffering Partially++ Yes

Table 4.2: Summary of qualitative comparison of reordering methods.

Buffering Reordering

In order to guarantee an upper bound for delivery of messages, we have introduced the
buffering method. In the buffering method, each message/event gets buffered and get re-
leased when a timeout comes. Figure 3.2.2 depicts the concept of the buffering method
for reordering messages. We have a set of timeouts which happen with a fixed period/fre-
quency, and at each timeout, we release all buffered messages partially reordered. The
buffering method solves the problem we had with blocking method. It guarantees an up-
per bound for messages. No message/event stays blocks forever, and there would be no
deadlock. However, as we discussed earlier, an appropriate value for timeout period/fre-
quency is a challenge and specific to running context of each application. The buffering
method does not guarantee the specific ordering we are interested in. We may not have seen
all messages of interest before a timeout. Figure 3.2.2 exemplifies this problem. Therefore,
we need a dynamic mechanism for adjusting the timeout values.

Adaptive Buffering Reordering

In the adaptive buffering method we dynamically change the timeout to accommodate
all messages of interest before the timeout, so we can reorder the messages fully rather
than partially. By observing the pattern of message occurrences and adjusting the time-
out period accordingly, we can hopefully enforce the exact ordering of interest between
messages. As we explained in chapter 3 and section 3.4, we perform a survival analysis
regression on-the-fly to determine the new timeout. The adaptive buffering method tries
to enforce orderings of interest exactly as it is specified, and consequently, it lets us test
more orderings. Like the basic buffering method, the adaptive buffering method prevents
deadlocks from happening and guarantees delivery of messages after a certain amount of
time. Yet, it does not guarantee that our ordering of interest will happen for certain. Table
4.2 summarizes the comparison of qualitative features of different reordering methods.

38



4.2.2 Quantitative Comparison

Our metrics defined in section 4.1 give us some measurements for comparing the reordering
methods in a quantitative manner. For each reordering method, we measure ordering
coverage, coverage rate, slowdown overhead, and memory overhead metrics. We expect
the buffering method to have more overhead than the blocking method due to its timeout
mechanism. We also expect the adaptive buffering method to have more overhead than
the buffering method due to its survival analysis mechanism. We will bring the actual
experimental results in chapter 6.

39



Chapter 5

Implementation

In this chapter, we review our reordering framework which implements our proposed meth-
ods for reordering messages in a message-passing system. We adopt the QNX Neutrino
6.5.0 as a message-passing system. In the context of QNX operating system our compo-
nents are system processes.

We will review the architecture of our reordering framework, the user-space program-
ming application interface, and the command-line utilities in a very general way. We do
not detail our implementation due to the fact that the QNX source code is proprietary.

5.1 QNX Neutrino 6.5.0

The QNX Neutrino is a fully POSIX-compliant and Unix-based Real-Time Operating
System (RTOS). Portable Operating System Interface (POSIX) is indeed a set of standard
specifications defined by Institute of Electrical and Electronics Engineers (IEEE) [22] for
promoting compatibility and portability for all operating systems. POSIX empowers third-
party applications to be easily portable to any other POSIX-compliant operating system
ideally only by recompiling the source code. POSIX documents are actively maintained
and developed by IEEE Computer Society [16].

QNX is an instance of message-passing systems in which we have some processes com-
municating only through message-passes. In QNX inter-process communications are done
via message-passing, even system calls are done using message-passing. The QNX Neutrino
microkernel (procnto) itself is a very minimal process. It only contains a set of basic objects
and fundamental functionalities like process and thread scheduling, memory management,

40



Software Tool Version Workstation

QNX Neutrino RTOS 6.5.0 Host/Target

Ubuntu 64-Bit 14.04 LTS Development

QNX Software Development Platform 6.5.0 Development

VirtualBox 4.0.0 + Development

Git (Version Control System) 1.9.1 + Development

Table 5.1: The toolchain for development and deployment.

interrupt handling, and so forth. All other services such as device drivers are implemented
as separate processes in user-space. QNX has been ported to a wide range of devices and
architectures and can scale up very well thanks to its unique architecture. [57, 21].

5.2 Development Environment and Toolchain

For developing our framework and implementing our proposed methods we require two
separate workstations as follows:

• Host/Target workstation

• Development workstation

The host or target workstation is set to run an instance of QNX Neutrino operating
system. The kernel or more precisely the microkernel of this QNX instance has been
modified and includes our framework implementation. Also, our framework library for
application developers and our shell utility tools for testers have been added to user-space
of this QNX instance. The development workstation is the main environment in which we
carry out the actual implementation of our framework and compile our modified version
of QNX Neutrino. Table 5.1 summarized the applications and tools we have used for
implementing the reordering framework.

5.2.1 Development Operating System

For the development workstation the Ubuntu Linux distribution is preferred. Although
other Linux distributions like rpm-based distribution will work well, they are not recom-

41



mended. Furthermore, the 32-bit version of Ubuntu is preferred, but 64-bit version also
works fine. If you choose to use a 64-bit Ubuntu, you need to install the ”ia32-libs” pack-
age for running the Momentics IDE. If you are not able to install this package using your
default package manager, follow these steps:

sudo -i

cd /etc/apt/sources.list.d

echo "deb http ://old -releases.ubuntu.com/ubuntu/ raring main

restricted universe multiverse" > ia32 -libs -raring.list

apt -get update

apt -get install ia32 -libs

5.2.2 Installing QNX SDP 6.5.0

The core of our toolchain for compiling our source code and developing QNX applications
is QNX Software Development Platform 6.5.0. For acquiring this software package, go to
the http://www.qnx.com/download/, navigate to ”QNX Software Development Platform
6.5.x”, and download ”QNX Software Development Platform 6.5.0” for ”Linux Hosts”.

You need to follow instructions provided in a document named ”QNX Software Devel-
opment Platform Installation Guide [6.5.0]” [56]. It is recommended that you install the
binary package using sudo -E rather than installing it as root user. It is also recommended
that you install the package in the default path, emph/opt/qnx650/. The QNX SDP will
install the necessary libraries, headers, and tools for developing QNX applications on your
development workstation. It also includes an integrated development environment named
QNX Momentics IDE which lets you easily develop, test, run, and debug your applications.

After installing the package, make sure that you have your environmental variables set
in your .bashrc or .zshrc appropriately. These settings are certainly required if you want
to work with your development workstation through an ssh session. Table 5.2 outlines the
major environmental variables alongside their values.

5.2.3 Setup Host Workstation

For your host/target workstation, you have two options: you can either set up a real
physical workstation or a virtual machine which runs an instance of QNX Neutrino 6.5.0.
For running the host workstation as a virtual machine, you need to install the VirtualBox.

42

http://www.qnx.com/download/


Variable Value

QNX CONFIGURATION /etc/qnx

QNX JAVAHOME /opt/qnx650/ jvm

QNX HOST /opt/qnx650/host/linux/x86

QNX TARGET /opt/qnx650/target/qnx6

MAKEFLAGS -I/opt/qnx650/target/qnx6/usr/include

LD LIBRARY PATH /opt/qnx650/host/linux/x86/usr/lib

PATH /etc/qnx/bin:/opt/qnx650/host/linux/x86/usr/bin:$PATH

Table 5.2: The specification of QNX SDP environmental variables.

To this end, visit https://www.virtualbox.org and follow the instruction for installation.
Then, you can import a pre-configured QNX instance using the ”Import Appliance ...”
option. In your QNX instance settings section, set the network mode to Bridged Adapter.
Then, make sure that your virtual instance gets a valid IP address, and you can ping it
from another machine on your network.

It is highly recommended to allow ssh sessions from your host workstation to your
development workstation and vice versa without entering a password using public-private
key pairs. In your host workstation, which runs an instance of QNX Neutrino, you have
to enable the ssh server by running it from its full path, /usr/sbin/sshd.

5.3 Reordering Framework Implementation

The reordering framework has been implemented as a kernel module in QNX Neutrino
operating system and runs in kernel-space. The actual framework has been implemented
in a separate file, and the control is transferred to it from the kernel module. User-space
applications can access the kernel module and call its available operations indirectly using
a static library provided.

There is also another important component which is the service process. This process
implements some features of the reordering framework which cannot be run in kernel-space.
Any kernel-space code has a limitation that no POSIX API function can be called. Figure
5.3 shows the components and the architecture of the reordering framework.

43

https://www.virtualbox.org


Figure 5.1: The reordering framework architecture.

5.3.1 Compiling Source Code

If you have established your development environment correctly, and your environmental
variables are set to right values, compiling the source code for modified QNX Neutrino can
be easily accomplished. You only need to run the ”build.sh” script, and after about 20 to
25 minutes your source code will be completely compiled. You will find the final image
under the ”qmu” directory with ”ifs” extension.

If you get a compiling error related to ”trunk/lib/io-pkt/utils/r/route” sub-directory,
delete that path completely and compile the source code again! Under the ”doc” path,
you will find a much more detailed document in Latex format which can be helpful in
establishing proper working environment.

44



5.3.2 Using Reordering Framework

In order to make the reordering framework into effect, you need to copy the ”qnxtagging.ifs”
image under the ”qmu” in your source directory to the ”/.boot” directory in your host/-
target workstation. You can do this using scp command. Then, you can restart your
host machine, and you will see an entry for the new QNX booting image. If you boot
up your QNX instance with that image, you will have the reordering framework running
on your host workstation. Also, you will have access to reordering command-line utilities,
examples, and experiments.

If you make any change to user-space header files, you need to update their corre-
sponding files in host/target QNX instance as well. When you make such changes, you can
update all files by running the ”update.sh” script from ”script” path in your source code
directory. The ”load.sh” script does the same by being run on a host/target machine.

For developing applications enabled with reordering features, you can either do it on
your host or development workstations. When developing applications on a host/target
machine, you simply need to include the ”libtag.h” header file and link the ”/usr/lib/lib-
tag.a” library when compiling.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/neutrino.h>

#include <libtag.h>

#include <sys/tagging.h>

int main(int argc , char* argv [])

{

printf("Hello World!\n");

return EXIT_SUCCESS;

}

The above code snippet shows an example of C application which can make use of
reordering Application Programming Interface (API) functions. You should compile this
program as follows:

45



gcc example.c /usr/lib/libtag.a

You can also develop reordering-enabled QNX applications on your development ma-
chine and in QNX Momentics IDE. To this end, you have first to enable your QNX software
development platform with the reordering framework libraries. Again, running the ”up-
date.sh script propagates all changes to all targets you need. Then, you have to add
reordering library for building you project. Go to your project properties, select ”QNX
C/C++ Project”, navigate to ”Linker” tab, and select ”Extra libraries” from the drop-
down menu. Now, yo can add the library as ”tag”. Figure 5.3.2 pictures this step.

Figure 5.2: Adding the reordering library to a QNX Momentics project.

For directions regarding how to run and debug your application in Momentics IDE
remotely on a host operating system, you can refer to another document named ”10 Steps
to Developing a QNX Program: Quickstart Guide [6.5.0]” [55].

46



5.4 Application Programming Interface

We have also provided a programming library for developers. Developers can use our
reordering framework for testing purposes, enforcing message orders, or other intentions.
Basically, they need to include one header file before compiling their source code with
the corresponding library linked. We first introduce our programming library and the
APIs and then, we would like to go briefly through another header file which specifies the
configuration and structures for the reordering framework.

The reordering framework starts with tokenizing our processes of interest. Among all
existing processes in the system, we can narrow down our attention just to a limited set
of processes in which we are interested. There are limited number of tokens available for
assigning to processes. Tokens can be assigned and freed.

int tag_ reorder _available_tokens(char* tokens);

int tag_ reorder _set_token(char token);

int tag_ reorder _get_token(char* token);

int tag_ reorder _free_token ();

int tag_ reorder _set_token_for(int pid , int tid , char token);

int tag_ reorder _get_token_for(int pid , int tid , char* token);

int tag_ reorder _free_token_for(int pid , int tid);

int tag_ reorder _free_token_all ();

The first function gives you a list of available tokens for assigning. The tokens should
be an array of type char with size TAG_MAX_TOKEN. The next three functions are used for
assigning a token to the calling process, getting the token of the calling process, and freeing
the token of the calling process. The next three functions are used to assign a token to
any arbitrary process, get the token of any arbitrary process, and free the token of any
arbitrary process. The token argument in these six functions is a single char as token.
The combination of pid and tid arguments are actually specifying the process of interest.
Moreover, finally, the last function frees all assigned tokens.

Having tokenized the processes of interest, the next step is registering the events of
interest. An event is a communication between two processes. Each event is specified by a
source process (sender) and a destination process (receiver). An event could occur either
in form of a message-passing (synchronous) or in form of a pulse (asynchronous).

int tag_ reorder _register_event(char token_src , char token_dest , int* id);

47



int tag_ reorder _reset_event(int id);

int tag_ reorder _reset_event_all ();

int tag_ reorder _unregister_event(int id);

int tag_ reorder _unregister_event_all ();

The first function in this set registers an event. An event is specified by tokens of source
and destination processes. The id is an int variable which will have the id of the registered
event after returning from the function. The next two functions are used for resetting the
current state of an event and the state of all registered events, respectively. The current
state of an event says if the event has occurred and, if yes, when. Finally, the last two
functions void registration of an event or all of the registered events.

int tag_ reorder _lookup_event(char token_src , char token_dest , int* id);

int tag_ reorder _get_event(int id , TAG_REORDER_EVENT* event);

int tag_ reorder _get_event_all(TAG_REORDER_EVENT* events);

int tag_ reorder _get_event_state(int id , TAG_REORDER_EVENT_STATE* state);

int tag_ reorder _get_event_state_all(TAG_REORDER_EVENT_STATE* states);

The first function in this set looks up the id of an event by specifying the tokens of
its source and destination processes. The next function retrieves the specification of an
event by its id. The event is a single instance of the structure TAG_REORDER_EVENT. The third
function in this set retrieves the specification of all registered events. The events is an
array of the structure TAG_REORDER_EVENT with size of TAG_MAX_EVENT. The last two functions
provide the current state of an event or the current state of all events. The state is a
single instance of structure TAG_REORDER_EVENT_STATE and the states is an array of structure
TAG_REORDER_EVENT_STATE with a size of TAG_MAX_EVENT.

Every event can have an associated notification. A notification is a pulse from the
tagging process to a desired process on a desired channel with a desired code. Using this
mechanism you have the option of receiving notifications whenever your events of interest
occur.

int tag_ reorder _add_event_notif(int id , int pid , int chid , int code);

int tag_ reorder _get_event_notif(int id , TAG_REORDER_EVENT_NOTIF* notif);

int tag_ reorder _get_event_notif_all(TAG_REORDER_EVENT_NOTIF* notifs);

int tag_ reorder _remove_event_notif(int id);

int tag_ reorder _remove_event_notif_all ();

48



The first function adds a notification for an already registered event. The id specifies the
event of interest, the pid and chid specify a process and a channel that the process is waiting
on for receiving pulses, and the code specifies the code of pulse to be sent for notifying. The
next two functions retrieve the specification of notification for an event or notifications for
all events. The notif is a single instance of the structure TAG_REORDER_EVENT_NOTIF, and the
notifs is an array of the structure TAG_REORDER_EVENT_NOTIF with size of TAG_MAX_EVENT. The
last two functions remove associated notifications for an event or notifications for all events.
Figure 5.4 shows an example in which we have assigned some tokens to our processes of
interest, registered those message we are interested in as events, and added a notification
for one of the events to be sent to another process on a specified channel.

Figure 5.3: An example of tokenized processes, registered events, and added notifications.

Having registered the events of interest, the next step is specifying constraints for
events. A dependency is a form of constraint for events. The occurrence of an event could
be dependent on the occurrence of another event ahead. If AB is dependent on AC, it
implies that the communication from process A to process C should happen before the
communication from process A to process B.

int tag_ reorder _add_constraint(int id_dependent , int id_dependency);

int tag_ reorder _remove_constraint(int id_dependent , int id_dependency);

int tag_ reorder _clear_constraints(int id);

49



int tag_ reorder _clear_constraints_all ();

The first function in this set adds a constraint for an event in the form of a dependency.
The event with id id_dependent will be dependent on the event with id id_dependency. The
next function removes a constraint in the form of a dependency. Moreover, the last two
functions clear all dependencies of an event or all dependencies existing in the system.

int tag_ reorder _get_dependents(int id , TAG_REORDER_EVENT* dependents);

int tag_ reorder _get_dependencies(int id , TAG_REORDER_EVENT*

dependencies);

int tag_ reorder _get_dependencies_str(int pid , int tid , char*

dependencies);

The first function retrieves all events which are dependent on an event. The id specifies
the event that we want to make all events dependent on. The dependents is an array of the
structure TAG_REORDER_EVENT with size of TAG_MAX_CONSTRAINT. The next function similarly
retrieves all events which an event is dependent on it. The id specifies an event that
we want to get all its dependency events. The dependencies is an array of the structure
TAG_REORDER_EVENT with size of TAG_MAX_CONSTRAINT.

If an event has unsatisfied constraints (dependencies), the source process will yield the
processor, and its state is changed to TAG WAIT until all unsatisfied events get satisfied
at some point. The last function in the above set gives you all unsatisfied events for a
process to continue at any time. The pid and tid combination are actually specifying a
process as source of an event, and the dependencies argument is an array of type char.

As we have explained earlier in this chapter, one of the the reordering framework
component is a process named tagging. This process takes care of some of the tasks that
cannot be done in kernel space.

int tag_ reorder _service_set(int pid , int chid);

int tag_ reorder _service_get(int* pid , int* chid);

The tagging process can set and save its address for other processes using the first
function in the above set. The pid is the process id of the tagging process, and the chid

is the channel id which the tagging process is waiting on for receipt of commands. The

50



second function in the set lets the user-space applications to retrieve the address of the
tagging process. Developers do not need to deal with these functions at all.

int tag_ reorder _release_event(int id);

int tag_ reorder _release_dependents(int id);

int tag_ reorder _schedule_release_events ();

Here are more functions that developers typically find futile. The first function allows
an event to occur regardless of its unsatisfied constraints (dependencies). The second
function let all the events that are dependent on an event to occur. The id specifies the
event that we want to release the events dependent on it. Finally, the last function releases
all the events which are currently held due to unsatisfied events. This function breaks the
deadlock case, and it does the topological sort for the dependency graph of events. So, in
the case of deadlock, all the events will occur, and as many as constraints (dependencies)
possible get satisfied.

int tag_ reorder _enable_timeout(int timeout_ms);

int tag_ reorder _enable_adaptive_timeout(int initial_ms);

int tag_ reorder _disable_timeout ();

The first function in the last set of functions enables the buffering method. The
timeout_ms is the fixed timeout for the buffering method in milliseconds. Every timeout ms
milliseconds, all on-hold events get occurred to prevent deadlocks. The second method
enables the adaptive buffering method. The initial_ms is an initial timeout in milliseconds
for the adaptive buffering method. This timeout will be adapted to the context of running
processes dynamically.

When you include the ”libtag.h” as a developer, another header file, ”tagging.h”, is in-
cluded as well. This file contains the configuration and definitions needed for the reordering
framework. If you look at the ”tagging.h” file, you will find the following definitions and
decelerations. These definitions comes in three different forms:

• Configuration macros

• Input and output macros

• Structures and data types

51



#define TAG_MAX_TOKEN 256

#define TAG_MAX_EVENT 512

#define TAG_MAX_CONSTRAINT 16

#define TAG_MAX_ADAPT_DATA 512

These macros determine the configuration (length) of circular buffers needed for the
reordering framework. The first one says how many different tokens are available for as-
signing to processes/threads. The second macro defines the maximum number of events we
can register within the reordering framework context. The third macro similarly specifies
the maximum number of constraints that we can place on registered events. Finally, the
last macro determines the size of the buffer for data needed for adaptive analysis in the
reordering framework.

#define TAG_NULL 0

#define TAG_FALSE 0

#define TAG_TRUE 1

These three macros are general-purpose macros for null, false, and true values respec-
tively. You can pass them as input parameters or accept them as output parameters when
calling the reordering API functions.

#define TAG_REORDER_NO_EVENT -1

#define TAG_REORDER_NO_PROCESS -1

#define TAG_REORDER_NO_CHANNEL -1

#define TAG_REORDER_PULSE 1

#define TAG_REORDER_MESSAGE 2

These are reordering-specific macros which are self-descriptive. The first three macros
respectively say if there is no event, no process, or no channel. The last two macros say if
an event is a pulse or a message.

#define TAG_RET_YES 1

#define TAG_RET_OK 0

#define TAG_RET_NO -1

#define TAG_RET_ERROR -10

#define TAG_RET_NO_THREAD -23

52



#define TAG_RET_NO_PROCESS -24

#define TAG_RET_NO_CONNECT -25

#define TAG_RET_NO_CHANNEL -26

#define TAG_RET_NO_TOKEN -60

#define TAG_RET_TOKEN_TAKEN -61

#define TAG_RET_TOKEN_EXISTS -62

#define TAG_RET_NO_EVENT -63

#define TAG_RET_EVENT_EXISTS -64

#define TAG_RET_NO_NOTIF -68

#define TAG_RET_CYCLIC_CONST -69

#define TAG_RET_TIME_ERROR -70

#define TAG_RET_TIMER_ERROR -71

#define TAG_RET_INVALID_TOKEN -82

#define TAG_RET_INVALID_EVENT -83

#define TAG_RET_INVALID_CONST -84

#define TAG_RET_INVALID_SERVC -85

These macros are reordering-specific macros for returning from reordering API func-
tions. They are pretty straightforward. For example, TAG RET CYCLIC CONST says
adding the specified constraint will cause a cyclic dependency.

typedef struct tag_time

{

long sec;

long nsec;

} TAG_TIME;

This structure specifies a timestamp with nanoseconds precision.

typedef struct tag_ reorder _event

{

char token_src;

char token_dest;

} TAG_REORDER_EVENT;

This structure defines an event within the context of the reordering framework. Each
event is determined by a source and a destination. Source and destination can be any
process/thread with a token.

53



typedef struct tag_ reorder _event_state

{

int occurred;

TAG_TIME time;

} TAG_REORDER_EVENT_STATE;

This structure characterizes the last state of an event. It determines if an event has
ever occurred and, if yes, when.

typedef struct tag_ reorder _event_data

{

int src;

int dest;

int time;

} TAG_REORDER_EVENT_DATA;

This structure encapsulates event data needed for adaptive reordering analysis. It has
the specification of an event (source and destination) besides the last timestamp that the
event has occurred at.

typedef struct tag_ reorder _event_notif

{

int pid;

int chid;

int code;

} TAG_REORDER_EVENT_NOTIF;

Every event may have an associated notification as well. This structure defines a
notification for an event. A notification is simply an asynchronous pulse to a desired
process (pid) on a desired channel (chid) with a desired code (code).

5.5 Runtime Support

In addition to the programming application interface for developers, we have also provided
a command-line tool for system administers and application testers. The command for
using this tool is called reorder. All forthcoming commands and options are case-sensitive.

54



reorder help

reorder config

The help option prints the list of all commands and options alongside a brief description
for each. The config option prints the full configuration of the reordering framework. It
gives you a list of available macros and structures that you can use for programming
purposes. You do not need to remember any values; you only need to remember names.

reorder token list

reorder token set <PID > <TID > <TOKEN >

reorder token get <PID > <TID >

reorder token free <PID > <TID >

reorder token free all

These commands which start with token options manage tokens in the reordering frame-
work. The list option shows all the tokens available for assigning at any time. Currently,
all possible tokens are capital letters of English alphabet (A-Z). The set option assigns a
token to a process/thread. For this purpose you should refer to a process/thread by its
pid and tid, and then specify a token for assigning to that process/thread. The get option
shows the token assigned to a process/thread. You can again refer to a process/thread
by its pid and tid. The free option release the token of a process and frees that token for
assigning to other processes/threads. You specify a process/thread by its pid and tid, and
its token gets freed. Finally, the free all option releases and frees all assigned tokens.

reorder event reg <EVENT >

reorder event reset <EVENT >

reorder event reset all

reorder event unreg <EVENT >

reorder event unreg all

In the context of the reordering framework, an event is defined as a message from a
source process to a destination process. Among all process exist in the operating system,
we pin down our attentions only to a limited set of processes. We do this by assigning
tokens to those processes of interest; we refer to each process by its token. Similarly, among
all possible interactions between tokenized processes, we focus our attention on events of
interest. An event is specified using its source and destination tokens, and each registered

55



event has a unique id number.

The reg option registers a new event in the reordering framework. You specify an event
using its source and destination tokens. For example, AB implies a message from the
process with token A to the process with token B. The reset option resets the last state
of a given event. A state event comprises if the event has recently occurred and if yes,
the timestamp of the last occurrence. The reset all option resets the state of all registered
events. The unreg option unregisters a previously registered event, and the unreg all option
unregisters all registered events.

reorder event list

reorder event get <ID >

reorder event lookup <EVENT >

The list option shows all the registered events in the reordering framework. The get
option shows the specification of an event specified by its id number, and the lookup options
shows the specification of an event specified by its source and destination tokens.

reorder notif add <EVENT > <PID > <CHID >

reorder notif get <EVENT >

reorder notif list

reorder notif remove <EVENT >

reorder notif remove all

Within the context of the reordering framework, each registered event can have an
associated notification. A notification for a given event is consist of a process id, a channel
id, and a code. When that event happens, an asynchronous pulse will be sent to the
specified process, on the specified channel, and with the specified code.

The commands start with the notif option manage event notifications. The add option
adds a notification for an event. It is necessary to specify the events using their tokens
and the process and the channel through which the notification must be sent. The get
option shows the notification for an event if applicable. The list option shows all added
notifications in the reordering framework. The remove option removes the notification for
an event; the remove all option removes all added notifications.

reorder const add <EVENT > <EVENT >

56



reorder const remove <EVENT > <EVENT >

reorder const clear <EVENT >

reorder const clear all

reorder const list <EVENT >

Another important notion in the reordering framework is constrain. After tokenizing
processes and registering events, we can define constrains on event occurrences. Currently,
there is only one type of constraint which is the dependency constraint. We can potentially
have other types of constrains such as the delay constraint. A constraint makes occurrence
of an event conditional. Consequently, an event does not occur until all its constraints are
satisfied.

These commands, which start with the const option, manipulate constraints in the
reordering framework. The add options defines a new dependency constraint between two
events. The first event is dependent event and the second one is dependency event. For
instance, reorder const add AB AC implies that the event AB is dependent on the event
AC which means that the event AC should happen before the event AB. The remove
option removes a dependency constraint between two events. The clear option deletes all
dependency constraints for a given event, so the event become unconditional. You may
guess that the clear all option deletes all defined constraints in the reordering framework.

reorder release <EVENT >

reorder release depens <EVENT >

reorder release all

These commands, which start with the release option, are for administrative and testing
purposes. An event with unsatisfied constraints will be onhold until all its constraints are
satisfied. Using the first command we can force an event to happen regardless of its
constraints. The first command does this. The depens options releases all events which
are dependent on a given event. The release all option releases all events on hold.

reorder timeout enable <TIMEOUT >

reorder timeout adapt <INITIAL >

reorder timeout disable

As you may recall from previous chapters, one of the reordering features is buffering and
adaptive buffering methods for reordering messages. The timeout enable option enables

57



buffering method with a fixed timeout in milliseconds. The timeout adapt enables adaptive
buffering with an initial timeout in milliseconds. Finally, the timeout disable option disables
any buffering method.

reorder log

reorder log clear

These commands are for working with logging features of the reordering framework.
This feature is for debugging the reordering framework source code, and it may not be
available in final or production version of the reordering framework.

58



Chapter 6

Experiments and Case Studies

In this chapter, we introduce and explain our experiments and then our case studies in
which we apply our different reordering methods. We then demonstrate our results and
present them using diagrams and tables. Finally, we deliver the outcome of measuring our
quantitative metrics presented in Chapter 4.

6.1 Experiments

6.1.1 Experiment Setup

As we have implemented our reordering framework on the QNX operating system, our
experiments are designed and set to be run in QNX as well. Our message-passing system
is the QNX operating system, and our components are system processes in the operat-
ing system. In the QNX operating system, inter-process communications are done using
message-passing. Messages can be sent either synchronous or asynchronous.

Figure 6.1.1 shows how our experiments have been set up. We have one receiver process
R and ten other sender processes A to J. Each sender process sends messages to receiver
process R. More specifically, each sender process has a loop that requires a specified wait
time before it is able to send a message to process R. The amount of time each process
waits is calculated as follows:

delay = base+ random

59



The component base is a constant number which has been set to 100ms in our experi-
ments. The component random is a random number in a pre-specified range. We ran all
our experiments once with random in [0, 2] range and once with random in [0, 5]. Also, we
feed our random number generator with the same seeds each time we run the experiment.
A fixed seed ensures that our sender processes behave deterministically each time we run
them, so our results are consistent and comparable.

Tokens A to J have been assigned to sender processes, and token R has been assigned
to receiver process. Each message from a sender process to a receiver process is registered
as an event. Our experiment driver defines dependencies between these events on-the-fly
in such a way to generate all possible orderings between messages. So, the sequence of
orderings we are going to test will be similar to the following:

abcdefghij

abcdefghji

abcdefgihj

abcdefgijh

abcdefgjhi

abcdefgjih

...

Our experiment driver also keeps track of all message orderings seen by R. Basically,
each time the process R sees an ordering of messages from sender processes, the experiment
driver logs and writes that ordering in a data file. After our experiment is completed, we will
process the log files for distinct orderings. The timestamp at which an ordering completes
is also recorded.

6.1.2 Experiment Results

Figures 6.3 and 6.4 show the results of experiments we have conducted. Both of these
experiments have been carried out on a physical (non-virtual) QNX machine. You can find
the hardware and software specification of this machine in Appendix A.

In each diagram we have brought six different experiments. We ran the experiment
one time without any reordering method in place, one time using the blocking method,

60



Figure 6.1: The configuration of reordering experiments.

three times using the buffering method, and one time using the adaptive buffering method.
In the first diagram, all experiments have been done with base delay equal to 100ms
and a random delay in [0, 2ms] range. In the second diagram, all experiments have been
done with base delay equal to 100ms and a random delay in [0, 25ms] range. Table 6.1
summarizes all the experiment configurations. Each column is a configurable parameter
for an experiment. Each row shows a reordering method used for experimenting. Each cell
within each row shows the different options for that parameter. There are 24 experiments
in total, and the next two figures visualize the results of these experiments. You can find
the completed details of our reordering experiments in Appendix B.

You may ask why we chose the aforementioned configuration parameters. The base
delay does not make a difference in the final results and conclusion because in the long

61



Reordering Base Delay Random Delay Timeout (ms) Host

Random (Naive) 100 [0,2], [0,5] N/A Physical, Virtual

Blocking 100 [0,2], [0,5] N/A Physical, Virtual

Buffering 100 [0,2], [0,5] 50, 100, 200 Physical, Virtual

Adaptive Buffering 100 [0,2], [0,5] 200 Physical, Virtual

Table 6.1: Different configurations of all reordering experiments.

run each process has minimum delay regardless of how fast or how slow it sends its mes-
sages. What matters is the variance of each process delay. The random delay component
causes this variance. If you notice, our random delay values are small in comparison to our
base delay. This assumption is valid in fact since processes do not expose very stochastic
behaviors with high variance. In fact, since processes mainly follow a deterministic behav-
ior, we introduced our reordering framework to for testing them. Otherwise, if following
a completely random behavior, we would not require any reordering method for testing
purposes.

The only difference between experiments in Figure 6.3 and results in Figure 6.4 is that
in the former, the delay component is set to 2ms and in the latter, the delay is set to
5ms. The Random experiment is the naive case in which we do not apply any reordering
methods. So, the orderings are completely random. Then, we use the blocking method.
The buffering method is employed three times with three slightly different configurations
for fixed timeouts. Since adaptive buffering method adjusts its timeout dynamically, the
initial choice for timeout does not matter, and we used this method only once.

As you see in the result figures, the blocking method has the best performance, which
is no surprise given the blocking method systematically applies all orderings possible and
guarantees that each ordering. For the buffering method we see that if we increase the
fixed timeout value, the coverage will slightly increase. Finally, if the processes expose
a more random behavior with a higher variance, the performance of the random (naive)
experiment will obviously increase.

We repeated our reordering experiments using only seven sender processes (A to G).
Figure 6.5 shows the corresponding results. Using seven processes, the total number of
message orderings would be 7! = 5040. The random/naive experiment hits 1232 distinct
orderings (24% coverage) after 30 minutes whereas the blocking method hits 100% coverage,
and buffering methods (including adaptive buffering) hit 99% coverage.

62



Experiment Base Delay Random Delay Timeout Run time Orderings

Random (Naive) 100ms 2ms N/A 3600s 11835

Random (Naive) 100ms 2ms N/A 3600s 12164

Random (Naive) 100ms 2ms N/A 3600s 12007

Random (Naive) 100ms 2ms N/A 3600s 11947

Random (Naive) 100ms 2ms N/A 3600s 12159

Random (Naive) 100ms 2ms N/A 3600s 11731

Random (Naive) 100ms 2ms N/A 3600s 12313

Random (Naive) 100ms 2ms N/A 3600s 11192

Random (Naive) 100ms 2ms N/A 3600s 12262

Random (Naive) 100ms 2ms N/A 3600s 11672

Buffering 100ms 2ms 100ms 3600s 34214

Buffering 100ms 2ms 100ms 3600s 34208

Buffering 100ms 2ms 100ms 3600s 34220

Buffering 100ms 2ms 100ms 3600s 34208

Buffering 100ms 2ms 100ms 3600s 34212

Buffering 100ms 2ms 100ms 3600s 34206

Table 6.2: The results of running reordering experiments multiple times.

Data Replication

One more thing we could do to show that our results and thus our conclusions are consistent
is replicating experiments. For example, we could have run each experiment (random/-
naive, blocking, buffering, and adaptive buffering) ten times and include all of them in the
diagrams. However, our experimental results show that if we run our experiments many
times, they do not expose a different behavior; we almost get the same results every time
as expected.

Table 6.2 summarizes the results of replicating random/naive and buffering experi-
ments. We ran the random/naive experiment ten time and the buffering experiment six
times.

We can quantify the variation in this data set using the statistics presented in Table

63



Statistic Mean Median Variance Standard Deviation

Random (Naive) 5888.2 5971 137276.6 370.5086

Buffering 34211.33 34210 26.66667 5.163978

Table 6.3: The calculated statistics for replicated reordering experiments.

Experiment Coverage Coverage Rate Slowdown Memory Overhead

Random (Naive) 24.42% 0.684 s−1 N/A N/A

Blocking 100% 2.800 s−1 0.29% constant

Buffering (50ms) 99.64% 2.790 s−1 0.29% constant

Buffering (100ms) 99.98% 2.799 s−1 0.29% constant

Buffering (200ms) 100% 2.800 s−1 0.29% constant

Adaptive Buffering 99.72% 2.792 s−1 0.28% constant

Table 6.4: The measured metrics for evaluating reordering methods quantitatively.

6.3. As it can be seen in this table, the mean and median values are very close, especially
for the buffering experiment. Also, the variance and standard deviation values are enough
small in compare to corresponding ordering values in Table 6.2. As you may notice, the
variation in data related to the buffering experiments is very negligible.

6.1.3 Evaluation Metric Measurements

Table 6.4 shows the result of measuring evaluation metrics presented in Chapter 4. For
each experiment, we have measured four evaluation metrics. As you can see, the coverage
of our reordering methods is highly close to full coverage. More interestingly, the slowdown
overhead of our reordering methods is very negligible. The memory overhead is also con-
stant which means that regardless of the input size of a test case, the extra memory needed
is always the same. This is due to static memory allocation for our reordering framework.

The first two metrics, ordering coverage and coverage rate, are directly derived from our
experiment results depicted in figures 6.3 and 6.4. The details of slowdown measurements
are provided in Appendix C.

64



6.2 Case Studies

6.2.1 Case Study Setup

Our case studies design is similar to our experiments. We have monitored all message-
passing communications between all processes in QNX operating system for a certain pe-
riod. We discovered that frequent message-passing happens between processes of Photon
utility. Photon is a UI shell for QNX that enables a user to work with QNX in a graphical
environment. It is similar to GNOME, but very minimalistic. It is composed of a num-
ber of processes, each responsible for one specific aspect. The main process is usr/pho-
ton/bin/Photon, and other Photon processes send messages to this process intermittently.

In our case study we have selected five Photon sender processes and assigned tokens A
to F to these processes. We also assign token R to the Photon main process. Next, we
register messages from sender processes to receiver processes. We also add notifications for
these events to alert us whenever one of these events occurs. These notifications enable
us to track events and the order in which they occur. Likewise, the case study driver
keeps track of orderings between these messages and records the ordering alongside the
timestamps of occurrence. Figure 6.2.1 demonstrates this setup for our case study. The
only subtle point is that for some reason that we later on explain, we excluded the process
/usr/photon/bin/shelf from our case studies when running.

We would like to mention that the blocking method does not work for our case study
(Photon) since there are some underlying dependencies between message which were ex-
plicitly coded. Therefore, we are not able to force any ordering of interest. Instead, we use
our buffering method which is designed to deal with these cases.

We start running our case study and then we work with Photon UI as usual. We do
some interactions like typing in the terminal, clicking on the UI, and browsing the system.
We do our best to repeat these actions each time we run the case study driver. For the
purposes of our case study, we would like to show that our new methodology for testing
works and we can apply it to real applications in use.

6.2.2 Case Study Results

Figures 6.6 and 6.7 illustrate the outcome of our case studies. We once ran the case study
without any reordering method in place; we just watched the orderings seen by Photon
process R (black dots). We then repeated the case study with the buffering method in

65



Figure 6.2: The configuration of reordering case studies.

effect. We have tried the buffering method with three different fixed timeouts. As the
results implicate, this timeout value does not significantly impact the final coverage. A
short timeout is recommended to decrease the overall overhead.

6.2.3 A Potential Bug in Photon

Using our reordering framework, we might have found a bug in Photon utility. If we
include the Photon process /usr/photon/bin/shelf in our case studies, this processes stops
responding after seeing a few orderings. Remember that our reordering framework does
not override any explicit dependency between messages coded in the processes; it only
forces a different ordering if it is possible for the operating system to allow. Consequently,
we believe this could be a software defect in the Photon application. It could be due to
the fact that one of the processes may assume that it always receives a particular message
after receiving a message from another process without explicitly enforcing this order.

66



F
ig

u
re

6.
3:

T
h

e
re

su
lt

s
of

ru
n

n
in

g
6

re
or

d
er

in
g

ex
p

er
im

en
ts

fo
r

10
p

ro
ce

se
ss

on
p

h
y
si

ca
l

Q
N

X
m

ac
h

in
e.

67



F
ig

u
re

6.
4:

T
h

e
re

su
lt

s
of

ru
n

n
in

g
6

re
or

d
er

in
g

ex
p

er
im

en
ts

fo
r

10
p

ro
ce

ss
es

on
p

h
y
si

ca
l

Q
N

X
m

ac
h

in
e.

68



F
ig

u
re

6.
5:

T
h

e
re

su
lt

s
o
f

ru
n

n
in

g
6

re
or

d
er

in
g

ex
p

er
im

en
ts

fo
r

7
p

ro
ce

ss
es

on
v
ir

tu
al

Q
N

X
m

ac
h

in
e.

69



F
ig

u
re

6.
6:

T
h

e
re

su
lt

s
o
f

ru
n

n
in

g
4

re
or

d
er

in
g

ca
se

st
u

d
ie

s
on

p
h
y
si

ca
l

Q
N

X
m

ac
h

in
e.

70



F
ig

u
re

6.
7:

T
h

e
re

su
lt

s
of

ru
n

n
in

g
4

re
or

d
er

in
g

ca
se

st
u

d
ie

s
on

v
ir

tu
al

Q
N

X
m

ac
h

in
e.

71



Chapter 7

Discussion and Conclusion

7.1 Summary

In message-passing systems every communication between components of the system is
done by sending and receiving messages. The order in which messages are delivered is not
guaranteed. Thus, a component which receives messages cannot make an assumption about
the order of receiving messages. How can we test such a component without having access
to its source code to investigate the possibility of software defect? We proposed a new
approach for testing software components and finding software defects in message-passing
systems without even having access to source codes. For a given receiver component, we
can change the ordering of incoming messages. Furthermore, we can try as many distinct
orderings as possible and see how the receiver component reacts. If the receiver component
make an assumption about the message ordering without explicitly forcing it, our method
can reveal such a software defect.

Our reordering framework enables us to limit our attention to a number of components
and interactions. We can define dependencies between messages. If message a is dependent
to message b, message a does not occur until message b happens. We proposed three
different ways for reordering messages in a message-passing system. The blocking method
blocks each message until all its dependencies occur ahead. The buffering method buffers a
message until either its dependencies get satisfied or a pre-specified timeout happens. The
adaptive buffering method works similar to the basic buffering method as it dynamically
adjusts the timeout values on-the-fly.

72



7.2 Single Receiver vs. Multiple Receivers

Based on our problem statement declared in Section 1.3, we consider a given receiver com-
ponent and define the notion of ordering with respect to that component. It is worth
mentioning that our reordering framework is a general-purpose tool for enforcing depen-
dencies between events/messages in message-passing systems. A linear dependency graph
is only one use-case for our general dependency graph. So, in the future works we can
consider more than a single receiver component at the same time.

7.3 Achievements and Conclusion

We adopted QNX Neutrino 6.5.0 as our message-passing system. QNX is a micro-kernel
in which every inter-process communication is done by message-passing. We implemented
our reordering framework on QNX. We provided a programming application interface for
developers to use in their programs. We also provided a command-line utility that lets
system testers make use of our reordering framework without any programming required.

Our experiment results showed that our new methodology for testing increases the
coverage criteria to a significant degree in comparison to a random (naive) case. Our case
study outcomes showed that our reordering framework applies to real applications in use.
In particular, we believe we found a potential software fault in the Photon utility in QNX
Neutrino 6.5.0.

We believe our new approach for testing applications by changing the orderings of
messages in message-passing systems can reveal software defects which have not been
previously discovered or easily detectable using common testing methods and techniques.

7.4 Future Works and Suggestions

Our reordering framework distinguishes messages only by source and destination. Conse-
quently, we treat all messages from the same source to the same destination equally. In
real message-passing systems, messages from the same source and destination have more
characteristics like priority. We can take these properties into account as well. Another
area that we can extend our framework to is message dependencies. Currently, a message
dependency can be the occurrence of another message. We can extend dependencies to the
occurrence of other events in the system as well. More specifically, in the context of the
QNX operating system we suggest the following extensions:

73



1. Priority of messages should be taken into account. Those messages with high priority
should not be blocked or buffered too long.

2. Messages with the same source and destination can be further distinguished based
on their destination channels and their types.

3. SEGEVENTS can be employed for delivering event notifications asynchronously in-
stead of sending pulses.

4. The idea of stopping and continuing a message can be similarly applied to SEGEVENTS.
Consequently, we can reorder the SEGEVENTS as well.

5. Reordering tests can be designed using a graphical user interface. A more intuitive
interface would be more pleasurable for testers.

74



APPENDICES

75



Appendix A

QNX Machines

Specification Capacity Unit

Architecture x86 N/A

Processor 3198 MHz

Memory 2039 MB

Table A.1: Specifications of physical QNX machine.

Specification Capacity Unit

Architecture x86 N/A

Processor 3368 MHz

Memory 3584 MB

Table A.2: Specifications of virtual QNX machine.

76



Appendix B

Reordering Experiments

Reordering Senders Base (ms) Random (ms) Run Time (s) Host

Random 10 100 [0,2] N/A Virtual

Random 10 100 [0,5] N/A Virtual

Blocking 10 100 [0,2] N/A Virtual

Blocking 10 100 [0,5] N/A Virtual

Buffering 10 100 [0,2] 50 Virtual

Buffering 10 100 [0,5] 50 Virtual

Buffering 10 100 [0,2] 100 Virtual

Buffering 10 100 [0,5] 100 Virtual

Buffering 10 100 [0,2] 200 Virtual

Buffering 10 100 [0,5] 200 Virtual

Adaptive 10 100 [0,2] 200 Virtual

Adaptive 10 100 [0,5] 200 Virtual

Random 10 100 [0,2] N/A Physical

Random 10 100 [0,5] N/A Physical

77



Blocking 10 100 [0,2] N/A Physical

Blocking 10 100 [0,5] N/A Physical

Buffering 10 100 [0,2] 50 Physical

Buffering 10 100 [0,5] 50 Physical

Buffering 10 100 [0,2] 100 Physical

Buffering 10 100 [0,5] 100 Physical

Buffering 10 100 [0,2] 200 Physical

Buffering 10 100 [0,5] 200 Physical

Adaptive 10 100 [0,2] 200 Physical

Adaptive 10 100 [0,5] 200 Physical

Random 7 100 [0,2] N/A Virtual

Blocking 7 100 [0,2] N/A Virtual

Buffering 7 100 [0,2] 50 Virtual

Buffering 7 100 [0,2] 100 Virtual

Buffering 7 100 [0,2] 200 Virtual

Adaptive 7 100 [0,2] 200 Virtual

Table B.1: List of configurations of all reordering experi-
ments.

78



Appendix C

Slowdown Measurements

Experiment Rep. 1 Rep. 2 Rep. 3 Rep. 4 Mean

Random (Naive) 102.512 ms 102.511 ms 102.511 ms 102.511 ms 102.511 ms

Blocking 102.807 ms 102.808 ms 102.809 ms 102.809 ms 102.808 ms

Buffering (50ms) 102.806 ms 102.809 ms 102.804 ms 102.802 ms 102.805 ms

Buffering (100ms) 102.803 ms 102.804 ms 102.804 ms 102.804 ms 102.804 ms

Buffering (200ms) 102.806 ms 102.805 ms 102.807 ms 102.807 ms 102.806 ms

Adaptive Buffering 102.803 ms 102.800 ms 102.799 ms 102.800 ms 102.800 ms

Table C.1: List of measured running times for reordering
experiments on virtual QNX machine.

79



Appendix D

Reordering Case Studies

Reordering Timeout (ms) Run Time (s) Host

Random N/A 600 Virtual

Buffering 50 600 Virtual

Buffering 100 600 Virtual

Buffering 200 600 Virtual

Random N/A 600 Physical

Buffering 50 600 Physical

Buffering 100 600 Physical

Buffering 200 600 Physical

Table D.1: List of configurations of all reordering experi-
ments.

80



Appendix E

Artifacts

Artifact Requirements Description

qnx.ova VirtualBox 5.0.0+ QNX Virtual machine image

qnx-tagging.ifs QNX 6.5.0/6.6.0 Reordering-enabled QNX boot image

reorder experiment Reordering Framework Reordering experiments driver

reorder casestudy Reordering Framework Reordering case studies driver

qnx-reordering.git Git Complete QNX/Reordering repository

trunk QNX SDP 6.5.0 Modified source code of QNX Neutrino

doc LaTeX Quick start documentation

results Any Spreadsheet Experiments and case studies Results

README.md Any Text Editor Repository readme file

script/update.sh Bourne Shell Populating compiled files to targets

script/load.sh Bourne Shell Fetching compiled files to a QNX host

script/gencsv.js Node.js, MongoDB Generating CSV files from JSON files

script/genplot.r RStudio Generating plots from CSV files

81



References

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

[2] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. Using
mutation analysis for assessing and comparing testing coverage criteria. Software
Engineering, IEEE Transactions on, 32(8):608–624, 2006.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking, volume
26202649. MIT press Cambridge, 2008.

[4] Francoise Balmas. Displaying dependence graphs: A hierarchical approach. In Pro-
ceedings of the Eighth Working Conference on Reverse Engineering, WCRE’01, pages
261–270, 2001.

[5] Boris Beizer. Software testing techniques. Van Nostrand Reinhold, 2 edition, 1990.

[6] Lionel C Briand, Yvan Labiche, and Yihong Wang. Using simulation to empirically
investigate test coverage criteria based on statechart. In Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 86–95. IEEE Computer Society,
2004.

[7] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Addison-Wesley
Professional and Pearson Education Limited, 1 edition, 2003.

[8] Sagar Chaki, Sriram K Rajamani, and Jakob Rehof. Types as models: model checking
message-passing programs. In ACM SIGPLAN Notices, volume 37, pages 45–57. ACM,
2002.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

82



[10] Augusto Born de Oliveira, Ahmad Saif Ur Rehman, and Sebastian Fischmeister.
mtags: augmenting microkernel messages with lightweight metadata. ACM SIGOPS
Operating Systems Review, 46(2):67–79, 2012.

[11] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. Labels and event
processes in the asbestos operating system. In ACM SIGOPS Operating Systems
Review, volume 39, pages 17–30. ACM, 2005.

[12] Michael Factor, Eitan Farchi, Yossi Lichtenstein, and Yosi Malka. Testing concurrent
programs: A formal evaluation of coverage criteria. In Computer Systems and Software
Engineering, 1996., Proceedings of the Seventh Israeli Conference on, pages 119–126.
IEEE, 1996.

[13] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call stack information. In Security and Privacy,
2003. Proceedings. 2003 Symposium on, pages 62–75. IEEE, 2003.

[14] Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise dynamic
race detection. In ACM Sigplan Notices, volume 44, pages 121–133. ACM, 2009.

[15] Wesley K Fuchs, Yennun Huang, and Yi-Min Wang. Progressive retry method and
apparatus for software failure recovery in multi-process message-passing applications,
December 1996. US Patent 5,590,277.

[16] Bill Gallmeister. POSIX.4 Programmers Guide: Programming for the Real World.
O’Reilly Media, 1 edition, 1995.

[17] Jerry Gao, Raquel Espinoza, and Jingsha He. Testing coverage analysis for software
component validation. In Computer Software and Applications Conference, 2005.
COMPSAC 2005. 29th Annual International, volume 1, pages 463–470. IEEE, 2005.

[18] Hector Garcia-Molina and Annemarie Spauster. Message ordering in a multicast en-
vironment. In 9th International Conference on Distributed Computing Systems, pages
354–361, 1989.

[19] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. Comparing non-adequate test suites using coverage
criteria. In Proceedings of the 2013 International Symposium on Software Testing and
Analysis, pages 302–313. ACM, 2013.

83



[20] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing, and ver-
ification. IBM Systems Journal, 41(1):4–12, 2002.

[21] Dan Hildebrand. An architectural overview of qnx. In USENIX Workshop on Micro-
kernels and Other Kernel Architectures, pages 113–126, 1992.

[22] IEEE. Institute of electrical and electronics engineers.

[23] British Computer Society Specialist Interest Group in Software Testing
(BCS SIGIST). Standard for Software Component Testing. British Computer
Society, 2001.

[24] Shinji Inoue and Shigeru Yamada. Two-dimensional software reliability assessment
with testing coverage. In Secure System Integration and Reliability Improvement,
2008. SSIRI’08, pages 150–157. IEEE, 2008.

[25] Doug Kimelman and Dror Zernik. On-the-fly topological sorta basis for interactive
debugging and live visualization of parallel programs. In ACM SIGPLAN Notices,
volume 28, pages 12–20. ACM, 1993.

[26] John P. Klein, Hans C. van Houwelingen, Joseph G. Ibrahim, and Thomas H. Scheike.
Handbook of Survival Analysis. Chapman and Hall/CRC, 1 edition, 2013.

[27] David G Kleinbaum and Mitchel Klein. Survival Analysis. Springer, 3 edition, 1996.

[28] Bogdan Korel. The program dependence graph in static program testing. Inf. Process.
Lett., 24(2):103–108, 1987.

[29] Bettina Krammer, Matthias S Müller, and Michael M Resch. Mpi application devel-
opment using the analysis tool marmot. In Computational Science-ICCS 2004, pages
464–471. Springer, 2004.

[30] David J. Kuck, Robert H. Kuhn, David A. Padua, Bruce Leasure, and Michael Wolfe.
Dependence graphs and compiler optimizations. In Conference Record of the Eighth
Annual ACM Symposium on Principles of Programming Languages, pages 207–218,
1981.

[31] Tong Li, Carla Schlatter Ellis, Alvin R Lebeck, and Daniel J Sorin. Pulse: A dynamic
deadlock detection mechanism using speculative execution. In USENIX Annual Tech-
nical Conference, General Track, volume 44, 2005.

84



[32] Panos E. Livadas and Theodore Johnson. An optimal algorithm for the construction
of the system dependence graph. Inf. Sci., 125(1-4):99–131, 2000.

[33] Yashwant K Malaiya, Naixin Li, Jim Bieman, Rick Karcich, and Bob Skibbe. The
relationship between test coverage and reliability. In Software Reliability Engineering,
1994. Proceedings., 5th International Symposium on, pages 186–195. IEEE, 1994.

[34] Brian Marick. New models for test development. Testing Foundations, 1999.

[35] Oliver A. McBryan. An overview of message passing environments. Parallel Comput-
ing, 20(4):417–443, 1994.

[36] Atif M Memon, Mary Lou Soffa, and Martha E Pollack. Coverage criteria for gui
testing. In ACM SIGSOFT Software Engineering Notes, volume 26, pages 256–267.
ACM, 2001.

[37] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and Emmanuel
Stapf. Programs that test themselves. Computer, (9):46–55, 2009.

[38] Rupert G Miller Jr. Survival Analysis, volume 66. John Wiley & Sons, 2011.

[39] Christian Murphy, Kuang Shen, and Gail Kaiser. Automatic system testing of pro-
grams without test oracles. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 189–200. ACM, 2009.

[40] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley &
Sons, 2004.

[41] Robert HB Netzer, Timothy W Brennan, and Suresh K Damodaran-Kamal. Debug-
ging race conditions in message-passing programs. In Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools, pages 31–40. ACM, 1996.

[42] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Anal-
ysis. Springer, 2 edition, 2004.

[43] The Institute of Electrical and Inc. Electronics Engineers. IEEE Standard Glossary
of Software Engineering Terminology. IEEE, 1990.

[44] Object Management Group (OMG). Unified modeling language (uml), 1997-2015.

[45] Rahul Pandita, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux. Guided test
generation for coverage criteria. In Software Maintenance (ICSM), 2010 IEEE Inter-
national Conference on, pages 1–10. IEEE, 2010.

85



[46] David J Pearce and Paul HJ Kelly. A dynamic topological sort algorithm for directed
acyclic graphs. Journal of Experimental Algorithmics (JEA), 11:1–7, 2007.

[47] Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In Proceedings of the 2008
IEEE International Conference on Cluster Computing, pages 142–151, 2008.

[48] Dennis Peters and David L Parnas. Generating a test oracle from program documen-
tation: work in progress. In Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis, pages 58–65. ACM, 1994.

[49] Hoang Pham and Xuemei Zhang. Nhpp software reliability and cost models with
testing coverage. European Journal of Operational Research, 145(2):443–454, 2003.

[50] Rüdiger Rackwitz. Reliability analysis: a review and some perspectives. Structural
safety, 23(4):365–395, 2001.

[51] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional, 4
edition, 2011.

[52] Seyed Reza Shahamiri, Wan Mohd Nasir Wan Kadir, and Siti Zaiton Mohd-Hashim. A
comparative study on automated software test oracle methods. In Software Engineer-
ing Advances, 2009. ICSEA’09. Fourth International Conference on, pages 140–145.
IEEE, 2009.

[53] Stephen F Siegel and Ganesh Gopalakrishnan. Formal analysis of message passing. In
Verification, Model Checking, and Abstract Interpretation, pages 2–18. Springer, 2011.

[54] SRS Souza, Silvia Regina Vergilio, PSL Souza, AS Simao, and Alexandre Ceolin
Hausen. Structural testing criteria for message-passing parallel programs. Concur-
rency and Computation: Practice and Experience, 20(16):1893–1916, 2008.

[55] QNX Software Systems. 10 steps to developing a qnx program: Quickstart guide
[6.5.0], 2004-2007.

[56] QNX Software Systems. Qnx software development platform installation guide [6.5.0],
2004-2007.

[57] QNX Software Systems. Qnx software development platfrom 6.5.0 docs, 2004-2007.

[58] Mara Tableman and Jong Sung Kim. Survival Analysis Using S: Analysis of Time-
to-Event Data. Chapman and Hall/CRC, 1 edition, 2003.

86



[59] Juichi Takahashi, Hideharu Kojima, and Zengo Furukawa. Coverage-based testing for
concurrent software. In Distributed Computing Systems Workshops, 2008. ICDCS’08.
28th International Conference on, pages 533–538. IEEE, 2008.

[60] Richard Turner. Toward agile systems engineering processes. Crosstalk. The Journal
of Defense Software Engineering, pages 11–15, 2007.

[61] Jeffrey S Vetter and Bronis R De Supinski. Dynamic software testing of mpi appli-
cations with umpire. In Supercomputing, ACM/IEEE 2000 Conference, pages 51–51.
IEEE, 2000.

[62] Richard Vuduc, Martin Schulz, Dan Quinlan, Bronis De Supinski, and Andreas
Sæbjørnsen. Improving distributed memory applications testing by message perturba-
tion. In Proceedings of the 2006 workshop on Parallel and distributed systems: testing
and debugging, pages 27–36. ACM, 2006.

[63] Neil Walkinshaw, Marc Roper, and Murray Wood. The java system dependence
graph. In 3rd IEEE International Workshop on Source Code Analysis and Manip-
ulation (SCAM 2003), pages 55–64, 2003.

[64] Yi-Min Wang, Yennun Huang, and Kent W Fuchs. Progressive retry for software
error recovery in distributed systems. In Fault-Tolerant Computing, 1993. FTCS-23.
Digest of Papers., The Twenty-Third International Symposium on, pages 138–144.
IEEE, 1993.

[65] Yi-Min Wang, Yennun Huang, and C Kintala. Progressive retry for software fail-
ure recovery in message-passing applications. Computers, IEEE Transactions on,
46(10):1137–1141, 1997.

[66] Elaine J Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[67] Michael W Whalen, Ajitha Rajan, Mats PE Heimdahl, and Steven P Miller. Cover-
age metrics for requirements-based testing. In Proceedings of the 2006 international
symposium on Software testing and analysis, pages 25–36. ACM, 2006.

[68] Karim Yaghmour and Michel R Dagenais. Measuring and characterizing system be-
havior using kernel-level event logging. 2000.

87


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	An Example

	Definitions
	Problem Statement
	Overview of our Approach
	Contributions
	Thesis Organization

	Background
	Software Testing
	Testing Levels
	Testing Automation
	Coverage Criteria
	Test Oracles
	Testing vs. Formal Verification

	Reliability Analysis
	Related Work

	Methodology
	Our Approach
	Messages Dependency Graph

	Reordering Methods
	Blocking Method
	Buffering Method
	Adaptive Buffering Method

	Topological Sort of Messages
	Survival Analysis Review
	Definitions
	Non-Parametric Models
	Parametric Models
	Weibull Regression Model


	Evaluation
	Metrics
	Ordering Coverage
	Coverage Rate
	Slowdown Overhead
	Memory Overhead

	Reordering Methods Comparison
	Qualitative Comparison
	Quantitative Comparison


	Implementation
	QNX Neutrino 6.5.0
	Development Environment and Toolchain
	Development Operating System
	Installing QNX SDP 6.5.0
	Setup Host Workstation

	Reordering Framework Implementation
	Compiling Source Code
	Using Reordering Framework

	Application Programming Interface
	Runtime Support

	Experiments and Case Studies
	Experiments
	Experiment Setup
	Experiment Results
	Evaluation Metric Measurements

	Case Studies
	Case Study Setup
	Case Study Results
	A Potential Bug in Photon


	Discussion and Conclusion
	Summary
	Single Receiver vs. Multiple Receivers
	Achievements and Conclusion
	Future Works and Suggestions

	APPENDICES
	QNX Machines
	Reordering Experiments
	Slowdown Measurements
	Reordering Case Studies
	Artifacts
	References

