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Abstract

Vacuum harvested peatlands typically do not spontaneously regenerate peatland species
and more importantly the peat-forming Sphagnum mosses. Thus harvested and abandoned
peatlands require restoration to return the peat-forming Sphagnum moss to the ecosystem.
Restoration can create a hydrological environment that is suitable for peatland species’
regeneration and results in substantial Sphagnum moss growth. Bois-des-Bel was restored in the
winter of 1999 and studied in the following three years (2000-2002), then again after 10 years
(this study). Immediately following restoration the conditions were deemed favourable for
Sphagnum regeneration (i.e. soil water pressures and water tables, > -100 cm and -40 cm
respectively) (~ 15-20 cm in 10 years), while evaporation from the surface was reduced due to
the straw mulch that was applied as part of the restoration measures. Although the hydrological
conditions were suitable for peat revegetation, Bois-des-Bel was still a net exporter of carbon
during first three years. The purpose of this thesis is to understand the hydrological evolution of
Bois-des-Bel since the initial assessments and document the hydrophysical properties that could
limit net carbon sequestration. This is done with a combination of field and laboratory (monolith)
experiments through comparison of its hydrology and hydraulic parameters to that of a natural
reference site.

Since the initial assessment a water table rise of ~ 5-10 cm has occurred at the Restored
site with an average water table of -27.3 (+ 14.9) with respect to the cutover peat (pre-restoration
surface) and ~ -42.3 (x 20.9) cm with respect to the regenerated Sphagnum surface. This water
table is still much further from the capitula and more variable than at the Natural site (33.2 + 9.0
cm). Both evapotranspiration (242 mm) and runoff (7 mm) from the Restored site maintained the
same relationships in 2010 as during the initial assessments, compared to the Unrestored site
(290mm and 37 mm, respectively). Although lower evapotranspiration equated to less water lost
from the system, evapotranspiration at the Restored site was not indicative of the Natural site
(329 mm), chiefly due to limited surface Sphagnum moisture at the Restored site. After ten years
following restoration, the large scale hydrological processes are still controlled by the cutover
peat and not the regenerated Sphagnum moss; thus the Restored site is still divergent from the

Natural site.



Wells paired with the soil moisture measurements resulted in average water tables of -
53.7 £ 17.8 cm at the Restored site and -31.9 + 8.3 cm at the Natural site. In addition to much
lower water tables, the upper layers of regenerated Sphagnum (625 cm — 0.12 and 075 cm — 0.11) on
average were far drier than the same species at the Natural site (625 cm — 0.23 and 675 cm — 0.32)
under only Sphagnum. Furthermore the Restored site was very dry just above the cutover peat
(0175 cm — 0.19), compared to the same probe depth at the Natural site (0.57). At the Natural site
under ericaceous and Sphagnum the soil moisture contents were generally double that of the
Sphagnum-only site. In addition to poor soil water retention at the Restored site, high specific
yield was observed in the Restored site (0.44) monoliths while the water table fluctuated within
the Sphagnum compared to both the Natural (0.10) and Unrestored (0.05) monoliths. These
retention characteristics at the Restored site are due to far lower fraction of water filled pores for
a given pore diameter than the same species (S. rubellum) at the Natural site. The high
abundance of large pores do not generate the necessary capillary force to draw water from the
relatively wet cutover peat into the Sphagnum moss, resulting in a capillary barrier.

Although after ten years the Restored section of Bois-des-Bel had somewhat
representative bog peatland ecology, the hydrological conditions needed for net carbon
sequestration were not present. The lack of water transmission from the cutover peat to the
regenerated Sphagnum moss due to large pores and the inability of the Sphagnum moss to retain
water are both retarding the restoration. For Bois-des-Bel to become a net carbon sequestering
further lateral infilling of the Sphagnum leaves and branches along with decomposition of the
basal layer will be need. In addition to these two processes, planting of ericaceous shrubs could
lower the water loss through evaporation, thus increasing the capitula moisture content and
creating healthier mosses. If Bois-des-Bel continues on its current ecohydrological trajectory it is
likely that it will self-regulate and make the necessary structural changes to become a net carbon

sequestering system.
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1.0 Introduction

Canadian peatlands occupy 113 million ha, which is approximately 12% of Canada’s
landmass (Daigle and Gautreau-Daigle, 2001) and sequesters ~ 70 million tonnes of carbon per
year (Gorham, 1991; Daigle and Gautreau-Daigle, 2001). Carbon sequestration in peatlands
depends on high water tables (Hayward and Clymo, 1983; Strack et al., 2004; Strack et al., 2006;
Strack and Waddington, 2007; Dimitrov et al., 2010; Dimitrov et al., 2011), high soil moisture
contents (Waddington et al., 2001; McNeil and Waddington, 2003; Petrone et al., 2003; Lafleur
et al., 2005; Strack and Price, 2009; Dimitrov et al., 2010; Waddington et al., 2010; Dimitrov et
al., 2011) and decay resistant plant material (i.e. Sphagnum) (Clymo, 1984; Clymo, 1987; Clymo
et al., 1998; Belyea and Clymo, 2001). The water table (and associated capillary fringe) create
oxygen reduced conditions (Rydin and Jeglum, 2009), which limits microbial activity and plant
material is left in a relatively undegraded state, resulting in lower carbon emissions (Rydin and
Jeglum, 2009). Besides sequestering carbon, peatlands can have a regionally important economic
impact (e.g. St. Lawrence Lowlands, Quebec) through horticultural peat harvesting (Daigle and
Gautreau-Daigle, 2001). As of 2001, an estimated one million tons of peat was harvested
throughout Canada annually, which corresponds to < 0.02% of the total peatlands in Canada
(Daigle and Gautreau-Daigle, 2001). Harvesting peatlands for horticultural peat is a $SCDN 170
million business in Canada (Daigle and Gautreau-Daigle, 2001), especially important in Eastern
Quebec. In this region, the vacuum peat harvesting method has been the primary harvesting
method since 1960 (Lavoie and Rochefort, 1996; Girard, 2000; Girard et al., 2002), which
increased the size and rate of extraction operations compared to the block cut method (Price et
al., 2003). Gorham (1991) estimated that 0.0085 Pg of CO, and 0.046 Pg of CH, are released
from drained and harvested peatlands in Canada annually.

The vacuum harvesting method requires ditches to be dug ~ 30 m apart and connected to
a main drainage channel, which is used to export the water off site; resulting in low water tables
and a dry peat surface. The extraction process removes the existing vegetation (including the
peat forming Sphagnum moss), acrotelm and catotelm peat, resulting in relatively dense (deep)
catotelm peat at the surface (Lavoie and Rochefort, 1996; Girard, 2000; Girard et al., 2002;
Lavoie et al., 2003). Spontaneous revegetation of post vacuum harvested peatland is often
limited to vascular and non-peatland species (Girard et al., 2002; Lavoie et al., 2003; Poulin et

al., in press); whereas block-cut peatlands have a larger viable seed bank and more suitable



micro-habitats resulting in a higher diversity of peatland specific species (Price et al., 2003).
Vacuum harvesting is more damaging to the ecosystem as nearly all the plant material and the
seed bank are removed and thus requires extensive restoration measures (Gorham and Rochefort,
2003; Price et al., 2003; Rochefort et al., 2003).

1.1 Post Vacuum Harvesting Conditions

The vegetation that returns spontaneously after harvesting ceases is a reflection of the
hydrological conditions caused by draining and drying a peatland (Lavoie and Rochefort, 1996;
LaRose et al., 1997; Lavoie et al., 2003). The exposed peat has a much higher bulk density
(Price, 1996; Schlotzhauer and Price, 1999) and water retention (Price, 1997; Schlotzhauer and
Price, 1999; McNeil and Waddington, 2003; Waddington et al., 2011), lower specific yield
(Price, 1996; Price, 1997; Schlotzhauer and Price, 1999; Price, 2003; Waddington et al., 2011),
hydraulic conductivity (Price, 1996; LaRose et al., 1997; Price, 2003), and smaller pore sizes
(Schlotzhauer and Price, 1999; Price, 2003) than the typical surface peat (Sphagnum) in an un-
harvested peatland (Price, 2003). Furthermore, harvested peatlands will irrevocably oxidize
(Price, 2003) and partially compress (Schothorst, 1977; Schouwenaars and Vink, 1992) as the
peat dries resulting in a further decrease in the average pore size (Hobbs, 1986). Low water
tables (< -50 cm) are typical in harvested and abandoned peatlands due to the drainage network
installed for harvesting, which are generally still active post harvesting (Hobbs, 1986; LaRose et
al., 1997; Van Seters and Price, 2001). The low water tables in conjunction with hydrophysical
properties of the post harvested peat results in low soil water pressures, which is the primary
deterrent to Sphagnum regeneration and thus peat formation (Price and Whitehead, 2001;
Schouwenaars and Gosen, 2007). Unlike natural peatlands, which typically sequester carbon
(Gorham, 1991; Gorham, 2008), harvested peatlands emit carbon due to the altered hydrological
conditions (Waddington and Roulet, 1996; Waddington et al., 2001; Petrone et al., 2003; Petrone
et al., 2004a; Petrone et al., 2004b; Waddington, 2008; Waddington et al., 2010). It is unlikely
that peatlands will spontaneously regenerate the necessary hydrological condition post harvesting
to support natural peatland vegetation and sequester carbon; thus restoration measures are critical
to restore these peatland functions (Lavoie and Rochefort, 1996; Girard, 2000; Girard et al.,
2002; Gorham and Rochefort, 2003; Rochefort et al., 2003; Lavoie et al., 2005).



1.2 North American Peatland Restoration

Rochefort et al. (2003) proposed a specific set of restoration measures for North
American bog peatlands. These measures include ditch blocking and constructing bunds along
elevation contour line to retain and direct water flow over the site (Rochefort et al., 2003); and
creating microtopography variation to give the reintroduced vegetation localized habitat for
regeneration (Rochefort et al., 2003). Depending on the size of the restoration site, the donor
material is either grown in a greenhouse (smaller restoration sites) or the top ~ 10 cm are
harvested from one or several peatlands (larger restoration sites) (Gorham and Rochefort, 2003;
Rochefort et al., 2003). The donor material is spread over the site (Rochefort et al., 2003). Lastly
straw mulch and phosphorus fertilizer are added on top of the donor material to reduce
evapotranspiration from the restoration surface (Price et al., 1998) and to increase the nutrient
availability in the peatland (Campeau and Rochefort, 1996; Rochefort et al., 2003).

Blocking the ditches and the creation of bunds raises the water table (LaRose et al., 1997;
Shantz and Price, 2006a) and subsequently the soil water pressures (Price and Whitehead, 2001)
creating conditions which can support typical peatland vegetation (Gorham and Rochefort, 2003;
Rochefort et al., 2003; Waddington et al., 2003). Price and Whitehead (2001) determined that
water tables > -40 cm and soil water pressures > -100 mb are required for successful
establishment of Sphagnum on a cutover peat surface. Initially, soil moisture increases and
evapotranspiration decreases due to the straw mulch cover (Petrone et al., 2004b). However, CO,
emissions remain high because the decomposition of the straw mulch increases the total soil
respiration (Petrone et al.,, 2003; Petrone et al., 2004b). A peatland can be considered
successfully restored when there is a dominance of peatland species and a net sequestration of

carbon (Poulin et al., in press).

1.3 Study Site: The Bois-des-Bel Peatland and Restoration

The Bois-des-Bel (BdB) peatland is located ~ 10 km northwest of Riviére-du-Loup,
Quebec in the Bas-Saint-Laurent region of the St. Lawrence Lowlands. BdB is located on a
narrow agricultural plain underlain by sand, silt and clay marine deposits (Fulton, 1995). These
deposits originated from the Goldthwait Sea which covered the region until ~9500 BP (Dionne,
1977). The marine clay underlies the majority of BdB (Lavoie et al., 2001). The peatland is ~

189 ha with a mean elevation 28 m above sea level. Mean annual precipitation is 962.9 mm



(29% snowfall) (Environment Canada, 2012) and the average temperature is 3.2°C with a
minimum average temperature in February of -10.9°C and a maximum average temperature in
August of 16.5°C (Environment Canada, 2012).

BdB is the last and largest peatland in Bas-Saint-Laurent region that has not yet been
extensively harvested (Lavoie et al., 2001). Peat harvesting occurred within an 11 ha area in the
northeast area of BdB and ceased in 1971. The harvested area was left abandoned and vascular
vegetation often found in forests or ruderal ecosystems dominated the site pre-restoration (Poulin
et al., in press). The residual peat depth at the post harvested site was ~1.8 m where high
concentrations of woody debris prohibited further peat extraction (Lavoie et al., 2001). A domed
section of the bog is located ~2 km away within BdB and has an average peat depth of ~2.2 m
with a maximum peat depth ~3.2 m (Lavoie et al., 2001). In the winter of 1999 restoration
measures were implemented on 8.1 ha of the 11 ha harvested site, with 1.9 ha left unrestored as a
comparison and a 30 m buffer strip was created between the restored and unrestored sections. It
was originally estimated it would take between 20-30 years for complete restoration (net carbon
sequestering) based on ecological succession (Rochefort et al., 2003), while Lucchese et al.
(2010) predicted complete restoration would occur in ~17 years based on peat decomposition
rates, net primary productivity and accumulation of organic matter.

As a result of the restoration measures, the water table increased ~30 cm to an average
water table of -32.5 cm during the growing seasons of 2000-2002 (Shantz and Price, 2006a). The
resulting soil water pressures were well above the limit of -100 mb (Price and Whitehead, 2001)
and had an average of -13 mb over the first three years (Shantz and Price, 2006a). Surface soil
moisture (-5 cm below surface) also increased to an average of 0.74 as a result of the restoration,
which is an increase of ~0.4 compared to the unrestored site (Petrone et al., 2004a; Petrone et al.,
2004b; Shantz and Price, 2006a). These hydraulic properties created conditions suitable for the
successful reintroduction of peatland vegetation at BdB (Shantz and Price, 2006a; Poulin et al.,
in press). The addition of bunds and blocking ditches led to an ~38 % decrease in total runoff
from the Restored site (Shantz and Price, 2006a; Shantz and Price, 2006b). Evapotranspiration
decreased by 25 % (Petrone et al., 2004b; Shantz and Price, 2006a) and these changes were
attributed to the presence of straw mulch decreasing the net radiation on the restoration surface
(Petrone et al., 2004a; Petrone et al., 2004b). BdB remained a net exporter of carbon during the

first three years due to high levels of total soil respiration caused by straw mulch decomposition



(Petrone et al., 2003; Petrone et al., 2004a; Petrone et al., 2004b). Seven years post restoration
(2007) Waddington et al. (2011) systematically sampled the upper (0-4 cm) and lower (8-12 cm)
of the ~15 cm regenerated Sphagnum carpet. Compared to a natural site located in BdB, the
restored section’s Sphagnum had lower bulk density, residual water contents, poorer water
retention properties and higher specific yields; particularly in the lower samples (Waddington et
al., 2011). As of 2010 the restored section of BdB was dominated by peatland species; however
had a much higher biodiversity than the natural site due to the presence of non-peatland wetlands
species (Poulin et al., in press). Furthermore the site remained a net carbon exporter, indicating

the restoration is yet to be successful (Strack, unpublished data).

1.4 Objectives
Although the majority of the vegetation is peatland vegetation, including a complete layer
of Sphagnum moss, the site does not sequester carbon and the ecohydrological conditions of BdB
are poorly understood. It is unclear which hydrophysical processes are retarding carbon
sequestration and how the ecohydrology of the Sphagnum functions. Furthermore, it is also
unknown how the site hydrology has evolved since the initial assessments of Shantz and Price
(2006a) and how divergent the Restored site is from the Natural site. Therefore the objectives
are:
1. Determine the current hydrological state of the Bois-des-Bel restoration and how it has
evolved since the initial assessments.
2. Determine the hydrological progression of Bois-des-Bel toward a natural system.
3. Characterize the ecohydrological properties of the regenerated Sphagnum moss and
compare to natural Sphagnum moss.
4. Define the limiting ecohydrological process preventing carbon sequestration.
5. Speculate on the hydrological trajectory and the implications for the outcome of the

restoration of Bois-des-Bel.

1.5 General Methods
This thesis comprises two distinct yet related manuscripts regarding the ecohydrology of
the Bois-des-Bel bog peatland restoration. | was primarily responsible for implementing and

carrying out the field work; designing, implementing and running the laboratory experiments;



and the writing of the manuscripts. The first manuscript (The hydrology of the Bois-des-Bel bog
peatland restoration: 10 years post restoration) details the changes in the large scale processes
(water table fluctuations, evapotranspiration, runoff, soil water pressure and soil moisture
content) since the initial assessments of Shantz and Price (2006a) and Shantz and Price (2006b).
Furthermore the first manuscript questions the connectivity between the cutover peat and the
regenerated Sphagnum moss, which is the focus of the second manuscript. The second
manuscript (The hydrology of the Bois-des-Bel peatland restoration: Hydrophysical properties
retarding restoration) further expands upon the limited connectivity theory of the first manuscript
and systematically evaluates the hydrophysical properties (specific yield, soil water retention,
saturated and unsaturated hydraulic conductivity, bulk density, porosity and pore size
distribution) of the cutover peat and Sphagnum moss and determines the ecohydrological
controls effecting the restoration. This thesis gives the first complete ecohydrological assessment
of a bog peatland restored using the North American peatland restoration approach beyond the
studies identifying the initial hydrological changes due to the restoration measures.



2.0 The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post
restoration

2.1 Overview

Restoration measures (ditch blocking, bund construction, etc.) were applied to the Bois-
des-Bel (BdB) peatland in autumn 1999; since then a complete cover of Sphagnum rubellum
(~15 cm) has developed over the old cutover peat, along with a suite of bog vegetation. This
research assesses the Restored site’s (RES) hydrological condition after 10 growing seasons
(May 15" — August 15", 2010) through comparison with an Unrestored site (UNR) and a Natural
site (NAT) located elsewhere in the peatland. Evapotranspiration (ET) from RES (242 mm) has
not noticeably changed since the first three years post-restoration (2000-2002) still maintaining
lower ET rates than UNR (290 mm). The highest ET occurred at NAT (329 mm), dissimilar to
RES despite similar vegetation cover. UNR generates more runoff (37 mm) than RES (7 mm),
similar to the initial assessments. However, since the initial assessments the average water table
has continued to rise, from -35.3 (x 6.2) cm (2000-2002) to -27.3 (x 14.9) cm (2010) below the
cutover peat surface but still fluctuates predominantly within the cutover peat and not the
regenerated Sphagnum. The regenerated Sphagnum at RES has increased the surface elevation
by ~ 15-20 cm, and with respect to its surface the average water table was at ~ -42.3 (£ 20.9) cm.
However, its water table was still lower (and more variable) than at NAT (33.2 £ 9.0 cm), with
respect to the moss surface. Average soil water pressures in 2010 were similar to the early post-
restoration condition at depths of 10 cm (-43.0 £ 12.2 and -44.1 £ 13.1 mb) and 20 cm (-41.4
13.0 and -40.6 + 10.5 mb) below the cutover surface at RES and UNR, respectively. Volumetric
soil moisture contents () at 2.5, 7.5 and 17.5 cm depths were higher in the Sphagnum moss at
NAT (0.23, 0.31, 0.71) compared to RES (0.12, 0.11, and 0.23), where the underlying cutover
peat had a relatively high 0 of 0.74. The low moisture in the new moss overlying the relatively
moist cutover peat indicates there was restricted connectivity between the two layers. Ten years
following the implementation of restoration measures and the development of a more-or-less
complete 15 cm thick Sphagnum moss layer, further time is required for the moss layer to
develop and more consistently host the water table, so that the average water content more

closely mimics NAT.



2.2 Introduction

Peatlands depend on a combination of large scale (water table, evapotranspiration, runoff,
etc.) and small scale (capillary flow, soil water retention, etc.) processes to function and
sequester carbon (Waddington et al., 2001; Waddington, 2008). The removal of Sphagnum and
peat through peat harvesting disrupts the hydrology (Price, 1996) that supports carbon
sequestration; turning a carbon sink into a source (Waddington et al., 2001). Spontaneous re-
vegetation can occur; however, this is often relegated to vascular plants and not the more
important peat forming Sphagnum mosses (Girard et al., 2002; Lavoie et al., 2003). Successful
peatland restoration is defined by not only the successful return of target species (generally
identified through the use of a natural reference site), but also the net sequestration of carbon
within a peatland (Poulin et al., in press). Both of these restoration milestones depend on specific
hydrological conditions. Target peatland plants (i.e. Sphagnum moss) require raised water tables
to suitably raise the soil water pressures for re-colonization. Price and Whitehead (2001)
suggested soil water pressures greater than -100 mb are needed for successful Sphagnum re-
colonization. To achieve this, ditch blocking, bund construction and straw mulch application
(Rochefort et al., 2003) has been used to raise the water table and soil water pressures to enable
Sphagnum regeneration (Williams and Flanagan, 1996; Gorham and Rochefort, 2003; Rochefort
et al., 2003; Price and Whitehead, 2004; Shantz and Price, 2006a; Strack et al., 2006). Lucchese
et al. (2010) and Waddington et al. (2011) suggest that a critical stage in the restoration process
will occur when the water table fluctuates primarily within the newly regenerated Sphagnum
moss layer, during which the conditions will be suitable for net carbon sequestration.

Restoration measures (Rochefort et al., 2003) applied to the previously harvested Bois-
des-Bel (BdB) bog in autumn 1999 included blocking ditches, constructing bunds along
elevation contour lines and reintroducing bog vegetation (see Rochefort et al. (2003) for a more
detailed description). Hence, we consider the first year post-reclamation (i.e. first growing
season) to be 2000. The donor material used in the restoration contained approximately the same
amount of S. fuscum and S. rubellum; however, S. rubellum dominates the site (Poulin et al., in
press). The high water tables that occurred initially after restoration created suitable conditions
for S. rubellum to outcompete other Sphagnum species (i.e. S. fuscum), which resulted in the
current species composition (Poulin et al., in press). Poulin et al. (in press) believe that S. fuscum

will become more prevalent as larger hummocks develop at the site, due to conditions becoming



better suited to S. fuscum than S. rubellum. Currently BdB is dominated by peatland species (see
Poulin et al. (in press) for a complete description) with some wetland species resulting in higher
a biodiversity than the natural reference site.

A detailed description of the hydrology during the first three years following restoration
(2000-2002) is provided by Shantz and Price (2006a). The construction of bunds and blocking of
ditches led to a decrease in runoff by 25% compared to the unrestored section during the post-
snowmelt period (Shantz and Price, 2006b). Although runoff decreased post-restoration, the
discharge peaks were greater due to wetter antecedent conditions compared to the unrestored
section (Shantz and Price, 2006b). Total growing season runoff from the restored and unrestored
sites maintained an average ratio of ~1:2.6 mm during the first 3 years following restoration
(Shantz and Price, 2006b) where the average growing season water tables were -32.5 cm and -
42.5 cm, respectively (Shantz and Price, 2006a). Evapotranspiration decreased at the restored site
by ~25% compared to the unrestored site, initially due to the straw mulch application covering
the plant material (Petrone et al., 2004b; Shantz and Price, 2006a). Both the soil water pressure
(greater than -100 mb) and soil moisture content (0.73 = 0.05) 5 cm below the peat surface were
significantly higher in the restored section of the peatland (Shantz and Price, 2006a), thus
providing greater water availability for the newly regenerated vegetation. Although only a few
cm of patchy Sphagnum had regenerated during the initial assessment, the conditions were
suitable for it to regenerate across the site in the ensuing years (Poulin et al., in press).

Notwithstanding the successful reintroduction of bog vegetation, the site remained a net
exporter of carbon in 2000 and 2001 (Petrone et al., 2003; Petrone et al., 2004b) and 6 years
(2006) after restoration (Waddington et al., 2010). Strack (unpublished data, 2012) found the
restored site was still a net carbon source in 2010, but so was the natural site in this relatively dry
summer. Rewetting has caused higher surface soil moisture during the growing season which has
resulted in enhanced photosynthesis; however, in the early post-restoration period this was offset
by high soil respiration due to low water tables and high carbon export from mulch
decomposition (Petrone et al., 2003; Petrone et al., 2004a; Petrone et al., 2004b; Waddington et
al., 2010).

It remains uncertain, therefore, whether the ecohydrological conditions in the moss have
recovered the potential for net carbon accumulation, and how the hydrology of Bois-des-Bel has

evolved since the initial assessment in 2000-2002 by Shantz and Price (2006a). With respect to



this last point, this study aims to determine 1) the current hydrological state of the Bois-des-Bel
restoration; 2) identify how it has evolved since the initial assessments; and 3) determine the

hydrological progression toward a natural bog peatland.

2.3 Study Site
BdB is located 10 km northwest of Riviére-du-Loup, Quebec (47°57°47 N, 69°26°23 W,

28 masl), with an average temperature and precipitation of 14.6°C and 366 mm, respectively,
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Figure 2-1 A map of the Bois-des-Bel peatland and the hydrological monitoring locations within the Restored, Unrestored
and Natural sites.

from May — August (Environment Canada, 2012). The ombrotrophic peatland is approximately

189 ha with ~2.2 m of peat thickness in the Natural (NAT) site (47°57°35 N, 69°27°00 W) and
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1.8 m in the cutover section (Restored (RES) and Unrestored (UNR) sites) (Lavoie et al., 2001).
The Unrestored (1.9 ha) and Restored (8.1 ha) sites are located adjacent to each other with a
buffer of ~30 m between them, whereas NAT is ~2 km away in the same peatland (Figure 2-1).
Since restoration a complete ~15-20 cm of Sphagnum moss, chiefly S. rubellum, has covered
RES; NAT is also dominated by S. rubellum (Poulin et al., in press). The interface depth (i.e.
where the regenerated Sphagnum and cutover peat meet) is variable over the site with small
hummocks being ~ 20 cm, while other areas ~ 15 cm below the top of the Sphagnum moss. In
contrast to NAT, where the dominant vascular vegetation are specific peatland plants, RES’s

vascular species are a mix of peatland and wetland plants (Poulin et al., in press).

2.4 Methods

Field monitoring at BdB occurred from day-of-year (D) 145 - 245 in 2010.
Meteorological data, water table depth and volumetric soil moisture (¢) were averaged every
thirty minutes (60 minutes for volumetric soil moisture) between D 145 - 245. Manual water
table measurements were made twice weekly. For the comparison to early post-restoration
results (2000-2002) reported by Shantz and Price (2006a), only twice-weekly manual well
measurements were used to determine average water table. Samples (4) of the cutover peat and
Sphagnum moss were taken from each site in 2.5 cm depth increments starting 1 cm below the
surface to determine bulk density. The top 1 cm was taken individually to determine the
evaporative surface (capitula) bulk density.

Micrometeorological stations were installed and instrumented at RES and NAT with net
radiometers, tipping bucket rain gauges, temperature/relative humidity probes, and two copper-
constantine thermocouples measuring soil temperature at 1 and 5 cm. Ground heat flux (Qg) was

determined using Fourier’s Law (Eq. 2-1).

Q, = —k, ((TZ—T1)) Eq. 2-1

(z2-21)

Where Qg (W m* ™) is the ground heat flux, ks (W m™ K™) is the thermal conductivity, T (K)
temperature, and z (cm) is the depth. 8 content reported from the 2.5 cm TDR probe. ks was
determined hourly based on the 2.5 cm TDR probe and an assumed thermal diffusivity of 0.12
m? s x 10 (Oke, 1987).

The Priestley - Taylor combination model (Eq. 2-2) (Priestley and Taylor, 1972) was

used in conjunction with soil lysimeters (Price and Maloney, 1994) to calibrate the coefficient of
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evaporability (a); (Unrestored — 1.72, Restored — 1.44, Natural — 1.63) to obtain unique
evapotranspiration (ET) values for all three sites;

ET=a [ (qu)] [(Q*L‘—:’f’)] Eq. 2-2

where Q" is net radiation, s is the slope of saturation vapour pressure-temperature curve (Pa °C”
1), q is the physchrometric constant (0.0662 kpa °C™ at 20 °C), L is the latent heat of
vaporization (J kg™), p is the density of water (kg m?). Four 30 cm diameter, 40 cm deep
lysimeters were installed at both NAT and RES; while two 12.5 cm diameter, 20 cm deep
lysimeters were installed at UNR (due to the high volume of roots and woody debris in the peat
that limited the practical size of the lysimeter). Lysimeters were weighed twice weekly.

Soil water pressure () was measured using tensiometers at both RES and UNR twice
weekly. Due to the poor contact surface in the upper portion of Sphagnum moss, the tensiometers
were unable to provide measurements at NAT or in the regenerated Sphagnum moss at RES. A
total of 12 tensiometers (6 at each site) were installed 10 and 20 cm below the level of the
cutover peat. The tensiometers were installed in 20 cm of Sphagnum moss at RES.

Two perpendicular ~200 m transects of 10 wells (70 m transects of 5 wells at UNR) (100
cm slotted intake, 2.54 cm 1.D. PVC pipes) were measured twice weekly at RES and NAT.
Averages of all manual well measurements were used to compare to Shantz and Price (2006a).
One logging pressure transducer was installed per site for a continuous record of water table
from D 145-245. Weirs were installed on culverts at both RES and UNR; a bucket and stopwatch
were used to derive a stage-discharge relationship for each site. Due to weir malfunction UNR
was unable to be measured until D 180.

6 content was measured using time domain reflectometry (TDR) with uniquely derived
calibrations for each peat type following the calibration method of Topp et al. (1980). Two pits
per micrometeorological station (RES and NAT) were dug in the Sphagnum moss (the
approximate cutover peat/Sphagnum interface was 20 cm below the surface at RES) and four
TDR probes per pit were installed horizontally at depths below the Sphagnum surface of 2.5, 7.5,
17.5, and 27.5 cm. The pits were backfilled with peat and covered with the intact Sphagnum
moss.

The differences in water table, soil water pressure and & were assessed between sites and
the differences in average water table and 0 between this study (2010) and the initial assessment
(2000-2002) were determined using One-way ANOVA.
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2.5 Results

The spring and summer of 2010 were unusually dry with 201 mm of rainfall compared to
the 30 year average of 366 mm; however, precipitation in 2010 was similar to the initial
assessment in 2000-2002 (Table 2-1) which was also relatively dry. Most of the precipitation fell
during large storm events >30 mm, with few smaller events in-between. ET was largest at NAT
(329 mm) followed by UNR (290 mm) and lastly RES (242 mm). Runoff at RES was less than
the UNR (Table 2-1 & Figure 2-2) as was also reported by Shantz and Price (2006a) for the early
post-restoration period. & in the cutover peat (i.e. 27.5 cm probe) at RES was not statistically
different (p > 0.05) than the initial study (Table 2-1), while & in the regenerated Sphagnum (i.e.
probes 2.5, 7.5 and 17.5 cm) at RES were statistically lower (p < 0.001) than same probes at
NAT (Table 2-1 & Figure 2-3). ¥ measured 10 and 20 cm below the level of the cutover peat
were not statistically different (p > 0.05) at RES and UNR (Table 2-1). The water tables from the
manual measurements (D 147 — 245) at NAT (-33.2 = 9.0 cm) were higher than both RES (-42.3
+ 14.9 cm) and UNR (-42.3 + 20.9 cm). Furthermore, both NAT and UNR had significantly
different average water tables than RES (p < 0.001) during the study period. Note that the depth
at RES is referenced to the new moss layer surface which is ~15 cm above the interface of the
cutover peat. Thus, with respect to the old cutover peat surface the water table depths at RES and
UNR were -27.3 + 14.9 and -42.3 £ 20.9 cm, respectively. The water table at RES fluctuated
almost entirely within the cutover peat and not within the regenerated moss layer (Figure 2-4).

The water table at all sites generally decreased throughout the summer with the final
water table (D 245) at NAT (-50.3 cm) being the highest followed by RES (-60.9 cm) and lastly
the UNR (-86.3 cm) (Figure 2-4). Generally, NAT had a higher water table than RES and UNR
(Figure 2-4), and less variability (Figure 2-5). RES was most responsive to precipitation events
(Figure 2-4).

w at both 10 and 20 cm below the cutover peat show similar distributions and were
statistically not different at RES and UNR (Figure 2-6). There are no soil water pressure data for
NAT, however, average 6 within the moss layer at NAT was significantly higher (p < 0.001)
than in the moss layer at RES at all depths (Figure 2-3). Only the probes within the cutover peat
(27.5 cm) at RES retained a significant amount of moisture throughout the summer, yet were still
statistically different (p < 0.001) than the same probe depth at NAT.
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The regenerated Sphagnum moss (upper 12.5 cm) at RES had slightly lower average bulk
densities than the mosses at NAT (Figure 2-7). Although similar (p > 0.05) capitula bulk density
(NAT 0.027, RES 0.026 g/cm®) were observed, the regenerated mosses underneath the capitula
show statistically significant (except at 2.5 cm) lower bulk densities until 12.5 cm (Figure 2-7).
Around 15-20 cm (depending on microtopography) was where the average cutover
peat/Sphagnum interface resides and was apparent through the larger standard deviations in the
15 cm layer at RES. Within and below this region the bulk density of RES is statistically
different than NAT (p < 0.001), while not statistically different than UNR (p > 0.05).

Table 2-1 Comparison of 2010 data to first three years post restoration. All measurements referenced to the interface

between the new Sphagnum moss and cutover peat at the restored site, ~15 cm of moss growth has occurred on the
cutover surface. Water table n= 476, 201, and 248 for RES, UNR, and NAT, respectively. Measurements were taken from
D 147-245 (runoff D 181-245). RES ¥y ;m n=65, UNR Wg .y, =68, W50 ., 1=66, UNR ¥, ., N=67. * -42.3 cm from
Sphagnum surface. . © Indicates significantly different than RES at p= 0.05. " Indicates significantly different than RES at
p=0.001. ® Indicates data from Shantz and Price, 2006a,b

Year 2000° 2001° 2002° 2010
Site RES UNR RES UNR RES UNR RES ‘ UNR | NAT
Precipitation (mm) 220 254 210 201
ET (mm) 248 334 374 501 253 257 242 290 329
Runoff (mm) 15 18 13 43 2 17 7 37 -
Average ¥s.. | -6.8= | 418+ | -87+ | -290.8= | 248+ | 399+
(mb) 8.3 17.3 9.7 19.7 15.9 16.8 ) ) )
Average ¥Yioom ) i ) ) ) i -43.0 -44.1 )
(mb) +122 | £13.1
Average Y. _ i ) ) ) i -41.4 -40.6 i
(mb) +=13.0 | £10.5
Average Water |°-30.0= | -455= |°-304= | -404= |7-372+ | -443= | -273 |'-423 |'-332
Table (cm) 9.5 6.0 10.5 6.0 143 6.6 +£149% | £209 | £9.0
Average 0.12= 0.23=
Sphagnum 65, B ) B i B ) 0.01 B 0.01
Average Cutover 0.80= | 041= 0.72 0.37= 0.69 = 041+ | 0.74=
Peat 05 ,, 0.03 0.02 0.03 0.02 0.09 0.04 0.04 ) )
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Figure 2-2 Runoff depth (mm) over time from RES and UNR from D 140 — 245. UNR started on D 182 due to the site
outflow being blocked.
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Figure 2-3 Average volumetric soil moisture contents of the Sphagnum and cutover peat at RES and NAT. Measurements
centred at 2.5, 7.5, 17.5, and 27.5 cm below the Sphagnum surface. The dashed grey line represents the approximate
interface between the regenerated Sphagnum moss and the cutover peat. Error bars indicate 1 standard deviation. All
NAT measurements are significantly different than RES at p= 0.001.
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Figure 2-6 Histograms of soil water pressures at 10 and 20 cm below the cutover peat surface (~30 and 40 cm below the
regenerated Sphagnum surface). RES and UNR had similar average soil water pressures at both depths. The cutover
peat/Sphagnum interface was at ~ 20 cm below the surface.
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2.6 Discussion

Although being a drier than normal spring and summer, rainfall and ET were not distinct
from the first 3 years post-restoration (Table 2-1), which were also relatively dry. However,
these data show that ET from RES (242 mm) is 87 mm lower than from NAT (329 mm) and 48
mm lower than from UNR (290 mm). The difference in ET between RES and NAT occurred
despite both sites having a dominant vegetation cover of S. rubellum. The lower average 6 in the
upper 5 cm of Sphagnum at RES (0.12 + 0.01) compared to NAT (0.23 £ 0.01) (Figure 2-3) was
probably limiting ET compared to NAT. Given the relative close proximity of the sites (~ 2 km)
the incoming radiation, temperature and relative humidity were similar between sites (data not
shown) thus differences in ground heat flux and outgoing radiation would cause the differences
in ET between sites (Kellner, 2001). The low moisture contents observed at RES decreased the
water available for ET, thus lower ET was observed compared to NAT. The low ET and 6 at
RES signifies a limited connectivity between the wetter cutover peat (0.74 + 0.04) and

Sphagnum capitula (evaporating surface). Given the lower bulk density of moss at RES
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compared to NAT (Figure 2-7), the former likely had much poorer capillarity, hence limited
ability to retain and deliver water to the surface.

The flashy water table at RES (Figure 2-4) indicates it responds to precipitation events
more quickly and to a larger magnitude than both NAT and UNR due to wetter antecedent
conditions of the cutover peat. The rapid response and the persistently drained state of the
regenerated Sphagnum signify most of the precipitation was not retained in the loosely structured
moss, but infiltrated and saturated the cutover peat or potentially flowed along the cutover
peat/Sphagnum interface to generate runoff (Figure 2-2). The new moss had little water retention
capacity (Figure 2-3) and imparts a low hydraulic resistance, which explains the persistence of
flashy runoff hydrographs for RES (Figure 2-2) as was also noted by Shantz and Price (2006b).
We note, however, that the ratio of runoff between RES and UNR in 2010 was 1:5.2, compared
to 1:2.6 before the moss layer developed, signifying some water detention caused by the moss
layer. The water table at RES was statistically higher than at UNR, and since the initial
assessments increased by a further ~5-10 cm (Table 2-1). This may in part be explained by this
detention of runoff. Despite the higher water table, there was no evidence that ET increased in
2010 compared to 2000 — 2002 (Table 2-1), as the wetter cutover peat still had limited
connectivity with the regenerated Sphagnum.

The inability of the regenerated Sphagnum moss to retain water compared to NAT
signifies that the water table and runoff dynamics are still controlled by the cutover peat and not
the regenerated Sphagnum moss layer. Until the regenerated moss layer develops greater water
retention (i.e. through decay, collapse at the base, and lateral branch infilling (Waddington et al.,
2011)), it is unlikely that the water table will behave similarly to a natural peat forming system.
This includes its carbon sequestration function; although measurements for the dry 2010 season
were inconclusive since both RES and NAT experienced a net carbon loss (Strack, unpublished
data). Lucchese et al. (2010) postulated that a 19 cm thick regenerated Sphagnum layer would be
needed at BdB to provide sufficient water storage to maintain the water table above the old
cutover peat, requiring 17 years based on their measured moss accumulation rates.

The vertical growth of S. rubellum (~15 cm) was greater than the rise in water table (~5-
10 cm) since restoration leading to the current low average water tables of -42.3 cm. Although S.
rubellum is a hummock species it may not be as well suited to the low water tables observed at

RES as other hummock Sphagnum species (Rydin and McDonald, 1985). For example, S.
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fuscum can thrive with average water tables similar to those observed at RES (-42.3 cm), due to
its™ greater transport ability (Rydin, 1985; Clymo, 1987; Rydin, 1993), while S. rubellum is most
productive with higher water tables, typically between 10-20 cm below the capitula (Clymo,
1987). This indicates that the water table at RES still needs to rise by ~20 cm for the regenerated
S. rubellum to be in its optimal growth habitat. However, this assumes that the moss structure
(i.e. bulk density, water retention capacity, capillary conductivity etc.) is similar. Over time, we
anticipate that the base of the new moss layer will become partially decomposed and collapse to
result in a medium with a smaller pore-size distribution and better water retention properties.
Once the water table has risen further (i.e. primarily fluctuating within the regenerated
Sphagnum moss), it seems likely that it should be able to retain enough moisture to promote a

carbon accumulating system.

2.7 Conclusion

Although the restoration measures implemented in 1999 had a large and immediate effect
on the site hydrology of BdB (Shantz and Price, 2006a), after ten years of post-restoration
development the system is still primarily controlled by water relations in the cutover peat
beneath the regenerated Sphagnum moss. Although there is a 15-20 cm layer of regenerated
Sphagnum moss at BdB, its properties are still distinct from a natural system and must evolve
further for the hydrological variables to converge. The average water table depth is still outside
the optimal range for S. rubellum, which covers the site. As the system evolved and the moss
layer developed, the vertical growth outpaced the rise in water table, resulting in less favorable
conditions for S. rubellum, and may result in a shift to S. fuscum. The low water tables and
hydraulic properties of the moss has led to poor hydraulic connection with the (generally wetter)
cutover peat, hence the regenerated Sphagnum being ~50% drier than the same species at NAT.
The inability for the regenerated Sphagnum to transmit water from the wetter cutover peat to the
top of the Sphagnum is potentially limiting the available moisture for the Sphagnum itself, thus
possibly retarding the progress of the restoration (and net carbon sequestration). Assuming the
mosses can adapt or tolerate this in the short term, more favourable conditions will develop in
time as the water retention capacity of the mosses, particularly at the base of the profile,
increases with decomposition and compaction or a shift in species from S. rubellum to S. fuscum.

Only then will the water table fluctuate primarily within the regenerated Sphagnum moss layer
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and be more effectively transmitted up the profile to the capitula to facilitate net carbon
sequestration.
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3.0 The hydrology of the Bois-des-Bel peatland restoration: Hydrophysical
properties retarding restoration

3.1 Overview

The Bois-des-Bel peatland was restored in the winter of 1999; since then a ~ 15-20 cm
Sphagnum moss carpet has regenerated over the site but it is currently unknown how the
hydrophysical properties of the regenerated Sphagnum moss and cutover over peat influence the
restoration of Bois-des-Bel. This study evaluates the hydrophysical properties of Bois-des-Bel,
based on a combination of field and monolith experiments, at a Restored (RES), Natural (NAT)
and Unrestored site (UNR). The lowest field soil moisture at RES was 0.09 in the Sphagnum
moss, while 0.20 at NAT. These results were similar in both the monolith experiments and
monolith parameterization. The low soil moisture and relatively large abundance of pores > 397
um in the RES Sphagnum resulted in low unsaturated hydraulic conductivity (0.23 cm day™ at y
= -35 cm), which limits the connectivity between the cutover peat and regenerated Sphagnum
moss, and high specific yield (0.45), which fails to retain precipitation, compared to NAT
Sphagnum (1.2 cm day™ and 0.10, respectively). Lateral infilling of the leaves and branches and
further basal decomposition is needed to create a larger abundance of small pores (< 397) to
increase soil water retention and generate stronger capillary forces to better store and transmit
water. To negate the difference in hydrophysical properties between the cutover peat and
regenerated Sphagnum, the water table might need to fluctuate almost entirely within the
Sphagnum and combined with a decrease in average pore size and growth of ericaceous shrubs

would create conditions suitable for net carbon sequestration.

3.2 Introduction

In bog peatlands, Sphagnum moss is the keystone and dominant genus (Rochefort, 2000)
and is the primary peat forming plant (Clymo et al., 1998). Peatland harvesting removes the
living Sphagnum in addition to the acrotelm and much of catotelm (Lavoie et al., 2003; Quinty
and Rochefort, 2003), resulting in dense decomposed peat at the surface (Price, 2003). Catotelm
peat typically has a relatively small pore size (Carey et al., 2007), low hydraulic conductivity
(Boelter, 1965; Price et al., 2003) and high soil water retention (Clymo, 1984; Schouwenaars and
Vink, 1992) due to a greater degree of decomposition (Clymo, 1984; Clymo et al., 1998).
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Natural regeneration of bog peatlands after harvesting is often limited to vascular vegetation and
non-peatland species (Girard et al., 2002; Lavoie et al., 2003; Poulin et al., in press). Rochefort
et al. (2003) proposed restoration measures for North American bog peatlands, which were
implemented on the Bois-des-Bel peatland (BdB) in the autumn and winter of 1999. Ten years
after restoration it is unknown what hydrological conditions present in the vadose zone of BdB
are and how they impact the restoration.

In natural bog peatlands, the surficial peat comprises undecomposed and living
Sphagnum moss (Rydin, 1985) with an abundance of large pores (Hayward and Clymo, 1982;
Quinton et al., 2008), that gives it a high hydraulic conductivity (Baird, 1997; Quinton et al.,
2008) and low soil water retention (Hayward and Clymo, 1982; Carey et al., 2007). Furthermore,
peat harvesting typically results in water tables far below that of an undisturbed bog (Clymo,
1984; LaRose et al., 1997; Price et al., 2003; Ketcheson and Price, 2011). The combination of
low water tables (below -40 cm) (Price and Whitehead, 2001; Ketcheson and Price, 2011) and
decreased pores size generates soil water pressures below the limit of Sphagnum regeneration of
-100 mb (Price and Whitehead, 2001). Harvested sites typically require restoration measures to
restored the necessary hydrological conditions (water table above -40 cm and soil water pressure
above -100 mb) for successful Sphagnum vegetation and the net subsequent carbon sequestration
(Campeau and Rochefort, 1996; Waddington et al., 2010).

The restoration measures applied to BdB include ditch blocking, constructing bunds
along elevation contour lines, milling to refresh the surface (it had been abandoned for ~20
years) and reintroducing bog peatland vegetation (Rochefort et al., 2003). Restoration measures
raised both the water table (> -40 cm) and soil water pressures (> -100 mb) creating conditions
suitable for Sphagnum recolonization (Shantz and Price, 2006a). The restoration measures were
implemented over the existing catotelm peat (the post-harvested surface) (Rochefort et al., 2003)
that is structurally unlike the acrotelm peat which Sphagnum moss naturally grows on (Price,
2003); however, few long-term studies on the hydrological effect of restoring Sphagnum moss on

catotelm peat and its effect on the outcome of restoration have been completed.

The restoration measures applied to BdB created hydrological conditions (Shantz and
Price, 2006a) suitable for the reintroduction bog peatland vegetation. Lucchese et al. (2010)

projected that the system would have its net carbon accumulation function restored within 17
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years of the initial restoration measures, based on rate of organic matter accumulation, net
primary productivity and decomposition rates. Carbon accumulation in peatlands requires
relatively high water tables (Strack and Price, 2009; Dimitrov et al., 2010), high soil moisture
contents (Lafleur et al., 2005; Waddington et al., 2010) and decay resistant plant material (i.e.
Sphagnum (Clymo et al., 1998; Belyea and Clymo, 2001). Once these ecohydrological
conditions are met the restored peatland will be suitable for net carbon sequestration.

In the three years following the implementation of restoration measures (2000-2002) at
the restored section at BdB the water table increased by ~ 30 cm to an average of 32.5 cm below
the surface (Shantz and Price, 2006a); well above the threshold for successful Sphagnum
regeneration (> -40 cm) proposed by Price and Whitehead (2001) at the nearby Cacouna
peatland. This led to an increase in soil water pressure 5 cm below the surface by ~ 55 mb to ~
13 mb compared to pre-restoration (1999) and ~ 24 mb compared to an adjacent Unrestored site
(UNR) (Shantz and Price, 2006a). This soil-water pressure is well above the -100 mb limit
suggested by Price and Whitehead (2001). Volumetric soil moisture at RES increased by ~ 0.22
(0.51 in 1999) and was typically ~ 0.40 above UNR (Petrone et al., 2004b; Shantz and Price,
2006a). This increase was due to the rise in water table along with the layer of straw mulch that
was added during the restoration process (Price et al., 1998). Although the hydrological
conditions were suitable for revegetation, the Restored site (RES) was still a net exporter of
carbon in 2001 (Petrone et al., 2003).

Six years post restoration (2006) a ~ 15 cm thick carpet of regenerated Sphagnum moss
covered BdB (Lucchese et al., 2010) and by 2007 Waddington et al. (2011) reported lower bulk
density, residual soil water content and higher specific yield at RES compared to a Natural site
(NAT) within the BdB peatland. These results indicated that although there is a near complete
cover of Sphagnum moss at the restored site, the structural (bulk density) and hydrological
(water retention) properties were dissimilar to natural Sphagnum (Waddington et al., 2011), and
the restoration could not yet be deemed complete.

Ten years post restoration (2010) RES was dominated by peatland species with some
non-peatland wetland species, resulting in a higher net biodiversity than NAT (Poulin et al., in
press). In addition at RES a 15-20 cm carpet of Sphagnum had regenerated, but the hydrology
was different from NAT with lower water tables, Sphagnum soil moisture contents and

evapotranspiration at RES (McCarter and Price, in review) and is still a net exporter of carbon

24



(Strack, unpublished data). A ~ 5-10 cm water table rise has occurred since the initial assessment
by Shantz and Price (2006a), however, by 2010 average near-surface (2.5 cm depth) Sphagnum
moisture contents observed at the Restored site (0.12) were much lower than at NAT (0.22)
(McCarter and Price, in review). This trend was exaggerated at 17.5 cm (just above the
regenerated Sphagnum/cutover peat interface at RES) with average water contents of 0.22 and
0.71 at the RES and NAT, respectively (McCarter and Price, in review). McCarter and Price (in
review) concluded that the hydrology of BdB is still controlled by the cutover peat and inferred
through soil moisture data that there was limited connectivity between the regenerated Sphagnum
and cutover peat.

For restoration to be successful (i.e. net carbon sequestering) the regenerated Sphagnum
needs to maintain suitable soil moisture contents by accessing the stored water in the cutover
peat and transfer it to the capitula. Currently it is unknown what hydrophysical processes are the
limiting the restoration at BdB and how the system needs to evolve in order to become net
carbon sequestering. Therefore the overall objective of this study is to determine why the
hydrology of RES does not function similarly to NAT through a combination of field
measurements and Sphagnum/peat monolith laboratory experiments; while the specific
objectives are 1) characterization the hydrophysical properties of RES, UNR and NAT and 2)

evaluating the limited connectivity theory proposed by McCarter and Price (in review).

3.3 Study Site

BdB is located 10 km northwest of Riviére-du-Loup, Quebec (47°57°47 N, 69°26°23 W,
28 masl) and contains three sites: UNR, RES and NAT. Since restoration measures were
implemented in fall 1999 a complete ~15-20 cm of Sphagnum moss, chiefly S. rubellum, has
covered RES within 10 years. NAT is also dominated by S. rubellum (Poulin et al., in press)
with an average peat depth of ~ 2.2 m (Lavoie et al., 2001). The harvested section of BdB (RES
and UNR) has a residual peat depth of 1.8 m (Lavoie et al., 2001). The interface between the
regenerated Sphagnum and the cutover peat is variable over the site with small hummocks being
~ 20 cm, while other areas are ~ 15 cm below the surface of the Sphagnum moss as of 2010. In
contrast to NAT, where the dominant vascular vegetation are specific peatland plants (e.g.
Chamaedaphne calyculata, Rhododendron groenlandicum, etc.), RES’s vascular species are a

mix of peatland and wetland plants, but most prominently Eriophorum vaginatum (Poulin et al.,
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in press). UNR is dominated by vascular plants typically associated with forests or ruderal
ecosystems (Poulin et al., in press) and bare (formerly) catotelm peat.

3.4 Methods

3.4.1 Field Methods

Volumetric soil moisture (¢) was recorded every 60 minutes from day-of-year (DOY)
145-290 at 2.5, 7.5, 17.5 and 27.5 cm below the Sphagnum surface at two locations in NAT and
RES. No # was recorded at UNR due to equipment malfunction. At RES the 27.5 cm probe was
completely in the cutover peat, while the 17.5 cm probe was at the interface region (15-20 cm
below Sphagnum surface). This region is comprised of a mix of new yet decomposing moss and
old cutover peat. Both the 2.5 and 7.5 cm probes were completely in the Sphagnum moss at RES.
The probes were installed where the Sphagnum mosses presented a flat surface to ensure
accurate depth placement. At NAT probes were installed in both a Sphagnum hummock with no
vascular vegetation and a hummock with ericaceous vegetation (C. calyculata & R.
groenlandicum) in close proximity to each other (< 3 m) and at the same elevation above the
water table, thus limiting the potential for dramatically different moss structures. At RES the
probes were installed in Sphagnum hummocks with only E. vaginatum due to its dominance at
the site and the paucity of the typical ericaceous species. The probes were calibrated following
the method of Topp et al. (1980) for each soil type (i.e. natural Sphagnum, regenerated
Sphagnum, cutover peat).

Pressure transducers were used to measure water tabled every 30 min in locations near
the TDR sites. Care was taken to ensure the wells were installed in similar depths of Sphagnum
moss to determine the water table depth below the Sphagnum surface. The height of the
regenerated Sphagnum at RES where the wells were installed was ~ 20 cm.

Field Sampling — Three moss/peat monoliths were sampled on DOY 291 & 292 per site
(RESn, NAT, and UNRy,). The monoliths were ~35 cm deep (~25 cm at UNR due to high
concentration of woody debris ~ 25 cm below surface) and 28 cm in diameter. The samples were
taken using a circular guide the same diameter, using a saw to cut around the guide to the
appropriate depth. The monoliths were placed in 23 | water filled buckets to prevent compression
of the sample during transport to the University of Waterloo’s Wetland Hydrology Laboratory

for further analysis. The monoliths were drained and frozen upon arrival at the laboratory. Once

26



frozen, the bottoms of the samples were cut to produce a monolith of the appropriate height (35
cm) and to ensure a flat bottom contact surface, and placed back in a 23 | bucket modified as
described below.

Three additional profiles at each site were taken in 5 cm depth increments by cutting,
with scissors, and gently sliding a 5 cm long section of 10 cm diameter PVC pipe into the moss.
The sampling follows a modified method outlined by McCarter and Price (in press). The sample
depths were centered at 2.5, 7.5, 12.5, 17.5, 22.5 and 27.5 cm at RES and NAT and to 22.5 cm at
UNR. When the 5 cm long tube was flush with the exposed moss the sample was cut along the
bottom of the PVC pipe and withdrawn to produce an undisturbed 5 cm core section. The cores
were frozen for transport to University of Waterloo’s Wetland Hydrology Laboratory where they
were cut in half making 2.5 cm high samples for bulk density and porosity measurements. One-
way ANOV A was performed between the RES and NAT/UNR.

3.4.2 Monolith Experiment

Before the monoliths were placed in the buckets, the bottom was filled with ~2 cm of
course sand to distribute water pressures evenly across the bottom of the monolith. A 25 um
Nytex screen was placed over the sand and covered with a ~2 cm of 56-76 um glass layer of
beads following a modified tension table method outlined by Paquet et al. (1993). This allowed
us to mimic a water table 10 cm below the base of the monolith (20 cm for UNRy,). At the base
of the buckets an outlet spigot was installed and attached to a Marriott system that supplied a
constant water supply and water table for the course of the experiment. A discharge valve was
installed between the bucket and Marriott system to allow collection and measurements of the
water drained from the sample when the water table was dropped. Once the monoliths were in
place, TDR probes were installed 7.5, 15.0 and 27.5 cm below the surface to measure 6, in two
monoliths per site. The TDR probes recorded every 20 minutes and individual calibrations for
each soil type were derived following the method of Topp et al. (1980). A 2.5 cm probe was
planned (to complement field measurements) but was not installed due to the high
compressibility of the upper 5 cm of the monoliths which would have torn the moss layer as it
dried. To estimate @ in capitula at the top of the sample (0 — 1 cm) the peatboard method outline
by Strack and Price (2009) was used. Briefly, three (1 x 2 cm) tabs made from calendared peat

board were placed equal distance apart along the centre of the monolith and left for 4 hours to
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reach equilibrium with the surrounding capitula water content. The tabs were then weighed and
calibrated using the method of Strack and Price (2009) to convert the measured weight to 6.
After the monoliths were set up they were filled from below with deionized water for 48
hours to saturate them. The water table was then progressively lowered (15, 20, 30, 35 and 45 cm
below the surface) and raised in reverse in stages (45, 35, 30, 20 and 15 cm). The specific yield
was determined for a given water table drop by collecting the discharge from the monoliths
during each water table change. The monoliths were left to equilibrate (typically 2-4 days) at
each water table which was determined when 6 was stable in a monolith for at least 24 hours. An
average of 6 hours of & measurements were used to determine the final average 6 at a given

water table.

3.4.3 Monolith Parameterization

Based on the limited variability of the monolith & data, only one monolith was chosen for
parameterization. The monolith was frozen after the monolith experiment (to facilitate
sectioning) and cut into 5 cm high (centered every 2.5 cm), 10 cm diameter pucks to a depth of
30 cm (25 cm for UNRp,) and when thawed, inserted into sections of PVC pipe of equivalent
size. Each sample was placed on a tension disk (Price et al., 2008) connected to an Erlenmeyer
flask whose position was used to control the soil water pressure (y), which was set at -5, -10, -
15, -25 and -35 cm (then reversed to measure hysteresis), centred at the midpoint of each sample.
This ensured the average w across the samples was consistent with the pressure tested. The
samples were covered to minimize water loss from evaporation and left to equilibrate (a net
weight loss of < 1 g d™) for ~ 7 days.

Once w was equilibrated, Kynsar Was determined based on the method of Price et al.
(2008), with y of -5, -10, -15, -25 and -35 cm. Two disks with 25 pm screens, one above and one
below the sample were used. The Erlenmeyer flask was lowered by half the sample height before
placing the upper disk on to thus ensuring the entire core was at the desired tension. Before
testing the w of -35 cm, 15 um screens were placed on the tension disks as the air entry pressure
of the 25 pum screens is greater than 35 cm of pressure. The screens were again replaced with 25
um screens once the sample was back at -25 cm on the hysteretic curve. The lower disk was
connected to an Erlenmeyer flask with a constant head connected to an overflow measured
discharge (Q), while the upper disk was connected to a constant head reservoir to ensure a

constant supply of water. This disk arrangement allowed for the sample to have an equally
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distributed pressure across the sample for testing. The samples were run for at least an hour
before measurement of Q began. Once Q was at a constant rate it recorded every 5 min for a
minimum of 30 min to determine an average value. Q was used in Darcy’s law to estimate Kynsat,
then the samples were weighed so that & could be determined.

Saturated hydraulic conductivity (Ksa) was measured using a Darcy parmeameter under
steady state flow conditions. Due to the porous nature of Sphagnum a modified wax method
(Hoag and Price, 1997) was used. Each sample was wrapped in two layers of plaster of paris to
prevent the melted wax from entering the porous sample. Once the plaster paris was dry, a coat
of paraffin wax was brushed on the plaster of paris to ensure a water-tight seal. This was then
installed in a Darcy parmeameter and sealed with a layer of paraffin wax to ensure no leakage
between the sample and the permeameter wall.

The theoretical pore size distribution (pore opening radius, r) was determined with the
capillary rise equation (Bear, 1972) based on a given pressure head (h), as

2ycos B
=27 Eq. 3-1
r pgh ' g-3

where y is the surface tension of water , S is the contact angle (40° for moderately hydrophobic
soils (Carey et al., 2007)), p is the density of water, and g is gravitational acceleration. The
calculated pore opening radius is the largest pore filled with water for a given pressure head. The

total fraction of water filled pores (¢.) was determined by

_Y% .
D= s Eq. 3-2

where ¢ is the porosity and 6, is the volumetric soil moisture content for a given w. Higher
fractions of water filled pores indicate more water is contained within the sample for a given
pressure head () (McCarter and Price, in press). The relationship between the pore diameter and
fraction of water filled pores illustrates both the pore size distribution and the relative abundance
of smaller pores. Although based on the 8(y) relationship, this analysis gives good insight into
the structure and distribution of the pores within the samples.

The cores were cut in half (2.5 cm high cores) and then the bulk density and porosity of
the samples was determined, for comparison with their respective field samples, using a one-way

ANOVA and added to the field samples to determine the site averages.
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3.5 Results

3.5.1 Field Measurements

Soil moisture and water table — RES had an average water table depth of 53.7 + 17.8 cm,
while at NAT was 31.9 = 8.3 cm (below the Sphagnum surface near the TDR probes). The
regenerated Sphagnum at RES remained much drier than NAT Sphagnum (Figure 3-1). 6 in the
Sphagnum at both NAT (except with ericaceous) and RES remained relatively consistent
throughout most of the study period, only varying substantially after DOY 270 (Figure 3-1). In
contrast, 6 under the ericaceous vegetation was higher and more variable during the study period
(Figure 3-1). 025cm and 75 cm in the regenerated Sphagnum at RES were nearly identical (~0.15),
while at NAT 675 cm was about 0.10 higher than 6,5 ¢m (Figure 3-1). Furthermore, 6175 cm at RES
was far drier than at the equivalent depth at NAT. Only brief increases in 6175 .m Were observed
(DOY 273 & 281) at RES and quickly decreased as precipitation ceased. In comparison, at NAT
the moss retained water rather than shedding it once precipitation ceased (Figure 3-1). NAT 6175
ericaceous was completely saturated during the entire study period, unlike that at the NAT site
without ericaceous (Figure 3-1). Additionally, both 6,5 ¢n and 675 cm ericaceous were ~ 0.20
higher than their counterparts under only Sphagnum at NAT, and showed greater response to
precipitation events (especially after DOY 270) (Figure 3-1).

Bulk Density and Porosity — Bulk density increased with depth at NAT and was relatively
uniform with depth in the regenerated Sphagnum at RES (Figure 3-2). Only the 5.0, 7.5 and 10.0
cm depths were significantly different than RES (p < 0.01, 0.001 and 0.001, respectively).
However, 15 cm below Sphagnum surface at RES the bulk density increased substantially in two
samples (the average of the two denoted by ?), and to a lesser extent in two samples (the average
of the two denoted by ®) (Figure 3-2). Between the dashed grey lines in Figure 3-2 is the
transition zone between regenerated Sphagnum and cutover peat, where the bulk densities
became more similar to UNR (~0.15 g/cm®) (p > 0.05) than NAT (~ 0.053 g/cm®) (p < 0.001).
All NAT samples at or below 17.5 cm had much lower bulk density than both RES and UNR
(Figure 3-2).

The porosity data exhibited the same general trends between the sites and depths (not
shown). From 0-12.5 cm below the surface, RES (0.97 + 0.01) had slightly higher porosity than
NAT (0.94 = 0.02), although only significantly different at 7.5, 10.0 and 12.5 cm (p< 0.01, 0.05
and 0.05, respectively). NAT porosity linearly decreased to 0.91 at 27.5 cm, while at RES
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porosity sharply declined 15 cm below the surface (0.87) near the transition zone, and decreased
further to 0.82 at 27.5 cm (average 15-27.5 cm 0.85 + 0.03). All UNR samples were similar (p >
0.05) and showed no trend in porosity, maintaining an average of 0.83 = 0.05.
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Figure 3-1 Time-series @ from in-situ measurements at 4 sites (2 RES and 2 NAT) from DOY 145-290. RES (bottom) show

limited variability between the 2.5 and 7.5 cm probes and overall low @ above the cutover peat/Sphagnum interface. NAT

probes were placed under a pure Sphagnum hummock and an ericaceous covered hummock and show large differences in
the @ of the upper 3 probes.
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3.5.2 Monolith Experiment

Water retention — The #-wt data from the monolith experiment (Figure 3-3) was
consistent with the field observations with respect to 6 (Figure 1), where RES, retained less
water than NAT, in the Sphagnum (075 cm and 150 ¢m), While remaining similar to UNR in the
cutover peat (6275 cm). Additionally, Gcapiuia Showed little difference in water retention (Figure
3-3) between NAT,, and RES,, this trend was also apparent in the bulk density and porosity
measurements. Regardless of the water table position, 675 m at RESp, remained very dry (< 0.20)
and showed limited hysteresis, unlike NAT .. Although near saturation with a water table of 15
cm, 0150 cm Was below saturation (most likely due to small errors (£ 1 cm) in placement of the
probes); however, 615 ¢m experienced a substantial drop (from 0.64 to 0.29) between the “zero”
and 20 cm water table position, and decreased to 0.16 at lower water tables. Hysteresis is
apparent in all retention tests (Figure 3-3). NAT, retained far more water through the range of
water table decline at both 675 ¢m (0.47 — 0.30) and 615 cm (0.88 — 0.48) compared to RES, (0.20 —
0.11, and 0.65 — 0.16, respectively) (Figure 3-3). UNRy, typically retained more water than both
NAT, and RES, (excluding 27.5 cm) but showed less hysteresis than NAT, (Figure 3-3). At
27.5 cm RES,, had a similar water retention and hysteresis curve than at equivalent depths at
UNRy, although retaining slightly less water at each water table position (~0.10). NAT, had the

strongest hysteresis effects at 27.5 cm.
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Specific yield — The monolith specific yield further illustrated the inability of the

regenerated Sphagnum at RES,, to retain water. Large specific yields (0.44) were observed in the

RES,, monolith when the water table was dropped from 15 to 20 cm compared to NAT,, and

UNR, (Figure 3-4). Once below the Sphagnum/cutover peat interface the specific yield of RES,
decreased and was more similar to UNRp, than NAT, (Figure 3-4). Both NAT,, and UNR, show
relativity consistent specific yield regardless of the water table drop (0.1 £ .03 and 0.05 £ 0.03,

respectively) (Figure 3-4).
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Figure 3-3 Average @ results from the monolith experiments for each probe (n=2) and the capitula peatboard (n=9). The
capitula, 7.5 and 15.0 cm measurements are within the Sphagnum at RES and the 27.5 cm measurements is within the

cutover peat at RES.
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3.5.3 Monolith Parameterization

Water retention — The monolith parameterization cores’ bulk density and porosity were
not statistically different (p < 0.001) from the additional field samples and were thus used to
determine the site averages. Soil water retention and hysteresis curves showed similar trends
between the monolith experiments (i.e. & vs wt) and water retention of the monolith samples (i.e.
0 vs y). Water retention was low in the regenerated Sphagnum at 2.5, 7.5 and 12.5 cm, typically
around 0.2 (Figure 3-5), which was similar to the reported field values (Figure 3-1) and the
monolith experiment at water tables below 15 cm (Figure 3-3). Higher 6 of the 17.5 cm sample
was observed (more similar to the 22.5 and 27.5 cm samples) at RES, however, the sample still
desaturated quickly and showed limited hysteresis (similar to the 2.5. 17.5 and 12.5 cm samples)
(Figure 3-5). RES 22.5 and 27.5 cm samples were more similar to UNR than NAT. RES 6 of the
capitula sample had lower water retention compared to NAT & of the capitula sample and showed
less hysteresis (Figure 3-5).

Hydraulic conductivity — The regenerated Sphagnum (excluding the capitula) at RES had
higher Ksa values (6681 cm d™) than NAT (4495 cm d™) but (once tension was applied) Kynsat at
RES decreased more quickly than at NAT, ultimately leading to lower Kynsat (typically nearly an
order of magnitude) at a given y, although still higher than UNR possibly due to the majority of

water filled pores not contributing significantly to flow in UNR samples (Figure 3-6).
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Pore size and porosity - The fraction of water-filled pores in the capitula, ¢ , was
similar although slightly higher in NAT than RES (~0.4) indicating a similar number of same
size pores. For pore sizes < 198 um there was a larger proportion of water-filled pores in the
capitula of NAT, suggesting the pores were typically smaller than at RES (Figure 3-7). The
regenerated Sphagnum moss at all depths (excluding the capitula) at RES had similar theoretical
pore size distributions (Figure 3-7), showed a relatively low proportion of water-filled pores
(~0.2), and changed little over the range of pore diameters tested (Figure 3-7). The 17.5 cm
sample (the transition zone between cutover peat and Sphagnum) showed an overall increase in
odw (0.69) but a similar limited decrease in ¢,y over the pressures tested. NAT had constantly
higher ¢ as depth increased (excluding the capitula). While NAT’s ¢, increased with depth,
the slopes of the lines were similar between 2.5, 7.5 and 12.5 cm samples and between the 17.5,
22.5 and 27.5 cm samples (similar slopes indicate pores of a similar size are draining). UNR’s
upper two samples (2.5 and 7.5 cm) differed in the actual ¢.w, but had a consistent decrease in
dw Of ~ 0.2 over the pressures tested (Figure 3-7). The bottom 3 UNR samples (12.5, 17.5 and
22.5 cm) all showed the same decrease (~0.1) in ¢w. Cutover peat from RES mimics UNR (i.e.
22.5 cm) (Figure 3-7).
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Figure 3-5 Soil water retention and hysteresis curves from the monolith parameterization for each sample depth. RES

22.5 and 27.5 cm are within the cutover peat and the 17.5 cm sample is within the transition zone between cutover peat
and Sphagnum moss.
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3.6 Discussion

The lower values of 6 measured in the field at NAT Sphagnum compared to NAT
ericaceous (Figure 3-1) are likely due to greater shading provided by the ericaceous shrubs
(Farrick and Price, 2009), subsequently reduced the evapotranspiration losses (McNeil and
Waddington, 2003). At RES there is also very limited ericaceous coverage and the dominant
vascular plant cover was Eriophorum vaginatum (Poulin et al., in press), a sedge species
predominantly located in hollows and not hummocks (Rydin and McDonald, 1985) in
undisturbed bogs. The limited canopy cover at RES would increase the incoming radiation on the
surface of the regenerated Sphagnum, further increasing evapotranspiration if moisture was not
limiting; however, 6 was limiting at RES which resulted in lower evapotranspiration than NAT
(MccCarter and Price, in review). This partially explains the low & of the regenerated Sphagnum
at RES, although we attribute a greater share of the difference to the structure of the mosses, as
described below.

RES and NAT capitula typically had higher 6 than the lower layers of unsaturated moss
(Figure 3-3) primarily due to their higher bulk density (Figure 3-2) and smaller proportion of
large pores (< 397 um) (Figure 3-7). This trend was most apparent at RES where the capitula ¢
under tension was higher in both the monolith wt experiment (Figure 3-3) and the monolith
parameterization of 6(w) (Figure 3-5), than it was in the underlying moss. Since the capitula is
the growing part of the plant, its higher & may allow the plant to remain photosynthetically active
for longer than it otherwise could, potentially explaining the success of RES Sphagnum
regeneration.

RES’s regenerated Sphagnum did not have high enough soil water retention (Figure 3-5)
to retain precipitation (Figure 3-1, DOY 273 & 281) and must rely on water transported from the
relatively wet cutover peat (Figure 3-1) and water table. However, the high 6 of the cutover peat
and the low @ of the regenerated Sphagnum (particularly at 17.5 cm just above the cutover peat)
indicated limited transfer between the two layers (McCarter and Price, in review). The cutover
peat at RES was similar to the peat at UNR in bulk density (Figure 3-2), pore size distribution
(Figure 3-7), water retention (Figure 3-3 & Figure 3-5) and specific yield (Figure 3-4). During
restoration the surface of RES was altered through removal of spontaneously regenerated
vegetation, tilling, grading, bund construction, mulch application and compaction from heavy

machinery; however, the results indicated that the hydrophysical properties (excluding Ksa: and
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Kunsat Which increased post restoration) remain unchanged through the restoration process. The
restoration measures created a growth surface that has sufficiently high soil water pressures (> -
100 mb) for Sphagnum recolonization but generated strong capillary forces due to a high
abundance of small pores, as illustrated by high ¢ with a pore diameter < 57 um. This two
layer capillary system (i.e. low capillarity strength of Sphagnum and high capillarity strength of
cutover peat) created a capillary barrier between the regenerated Sphagnum and cutover peat,
which potentially retards restoration.

For most of the study period, the field 6,5 cm and 675 cm depths of the regenerated
Sphagnum at RES (Figure 3-1) are close to the residual water contents (&;) reported by
Waddington et al. (2011) (0.10 - 0.14). These water contents indicate that the mosses at the
restored site are potentially under moisture stress compared to the same mosses in a natural
peatland, whose field 6,5 cm and 675 cm (Figure 3-1) did not reach their residual water contents.
Regenerated Sphagnum’s low bulk density (Figure 3-2) and poor soil water retention (Figure
3-5) were almost identical between sample depths (2.5, 7.5 and 12.5 cm), indicating a similar
number of large pores (Figure 3-7) throughout all of the regenerated Sphagnum; in other words
its loose structure provided it with poor retention capabilities. Unlike other moss genera,
Sphagnum will devote resources to either sustained fast growth or structural growth (Turetsky et
al., 2008). Waddington et al. (2011) postulated that the limited retention and low &, observed at
RES was a result of the mosses devoting resources to sustain fast growth (vertical) over
structural growth. The similarity of the regenerated moss’ physical properties is consistent with a
sustained growth pattern. In comparison, NAT illustrates structural development as the
theoretical pores size is smaller, due to a combination of greater interlinking of branches and
leaves (Turetsky et al., 2008) within the living Sphagnum and partial decomposition and collapse
of older underlying layers. For RES to have conditions suitable for net carbon sequestration, the
regenerated Sphagnum must devote more resources to structural growth as opposed to sustained
fast growth, and more time for decomposition and collapse of the layer, which would result in
higher 6. At RES’s 17.5 cm layer there were some indications that decomposition had changed
the pore structure and thus water retention characteristics of the layer. The ¢y, is greater (0.69-
0.55) (Figure 3-7) at 17.5 cm than the above regenerated Sphagnum layer including the capitula.
The greater abundance of smaller pore (< 397 pum) imparted increased soil water retention

(Figure 3-1, Figure 3-3 & Figure 3-5) at 17.5 cm but did not generate enough capillary force to
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access the tightly held water in the cutover peat as seen by low field & in the regenerated
Sphagnum. Further decomposition of the basal layers (i.e. directly above the cutover peat) could
create pores small enough to generate the necessary capillary forces to access the water stored in
the cutover peat.

Another limitation to the upward transfer of water through the moss to the capitula was
due to relatively low Kynsat OF the regenerated Sphagnum (Figure 3-6). When the soil water
retention and hydraulic conductivity curves were extrapolated to 8 = 0.15 (the approximate 05 cm
of RES’s regenerated Sphagnum seen in Figure 1), Kusa = 0.002 cm d™. Given the average
evaporation (flux) reported by McCarter and Price (in review) at BdB (~ 0.5 cm d™), this would
require a large pressure gradient (dh/dl = 250) and a resulting surface pressure head of -4375 cm
to supply a steady-state flux (no change in water storage in the moss layer). Although surface
pressure head has been numerically simulated (c.f. McCarter and Price (in press)), no methods
exist to directly measure the surface pressure head in Sphagnum moss. In contrast at NAT,
whose 6 scm Kunsat = 0.20 (the lowest field & values recorded under only Sphagnum) is 0.48 cm d”
! could potentially supply the average evaporation at BdB under unit hydraulic gradient. Since
water cannot be readily transmitted from the cutover peat, and the soil water retention of the
capitula is limited, the regenerated Sphagnum could receive water from dew or distillation to
prevent desiccation (Carleton and Dunham, 2003). Consequently, further structural development
of the regenerated Sphagnum is required to increase its soil water retention and Kynsar. However,
even with this, the system could still be limited by the restricted water supply from the cutover
peat because of the capillary barrier effect and potentially restricted by Kynsat, Which here
dropped to 0.22 cm d™, under the pressure range tested. These results confirm the conclusions of
Waddington et al., (2011) that further lateral infilling and basal decomposition (McCarter and
Price, in review) of the regenerated Sphagnum is required before BdB will have suitable

hydrological conditions for net carbon sequestration.

3.7 Conclusions

Although providing suitable habitat for Sphagnum recolonization and subsequent growth,
the North American bog peatland restoration approach depends on undirected succession after
restoration. Essentially the species best suited for the habitat, in BdB’s case S. rubellum and E.

vaginatum, would thrive while other species in the donor seed pool would be outcompeted, such
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as S. fuscum and ericaceous species. Although S. rubellum and E. vaginatum were able to
successfully recolonize the site and form a substantial Sphagnum carpet, the specific
combination of the limited shading effects provided by E. vaginatum and the sustained vertical
growth of S. rubellum severely limits the ability of the restored peatland to remain adequately
wet for net carbon sequestration due to the loose structure (low bulk-density and relatively large
pores) these two conditions create. While this restoration approach relies on natural succession, it
might be prudent to plant ericaceous species once a suitable Sphagnum carpet has developed
which would increase the near surface moisture content and potentially allow the Sphagnum to
allocate more resources into structural growth. In turn this could result in increased water
retention and hydraulic conductivity of the Sphagnum, thus facilitate upward transfer of moisture
if the low hydraulic conductivity of the cutover peat are not limiting. To negate the dramatically
different hydrophysical properties between the cutover peat and Sphagnum moss the water table
would need to fluctuate almost entirely within the regenerated Sphagnum moss and not the
cutover peat. A combination of all three processes will probably be required for BdB to become
net carbon sequestering. Given its trajectory it seems likely that the system will self-regulate and
make the necessary structural changes over time; however, it is plausible that under severe
drought stress the regenerated Sphagnum will not survive, which would be catastrophic for the

restoration goal.
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4.0 Conclusions and Implications

Notwithstanding successful reintroduction of bog peatland vegetation and positive
hydrological changes at BdB, ten years posts restoration the cutover peat is still the primary
control on the hydrology. The regenerated S. rubellum does not have the hydrophysical
properties (i.e. water retention, hydraulic conductivity, pore geometry, porosity and bulk density)
needed to support conditions suitable for net carbon sequestration after ten years. These
hydrophysical parameters are reflected in the lack of change of the runoff dynamics and
evapotranspiration since the initial assessments. Despite a modest further water table rise of 5-10
cm since the initial hydrological assessment of Shantz and Price (2006a), the regenerated
Sphagnum cannot adequately access water in the cutover peat due to the weak capillary forces
generated by the abundance of larger pores, resulting in relatively dry Sphagnum directly above
the wet cutover peat. Effectively, a capillary barrier is formed between the cutover peat and the
regenerated Sphagnum moss due to the large difference in average pore-diameter. Further
compounding this, the regenerated Sphagnum is still unable to retain precipitation, and the
majority of precipitation becomes soil water in the cutover peat or generates runoff.
Additionally, the constantly dry conditions caused by the relative abundance of large pores of the
regenerated Sphagnum results in low unsaturated hydraulic conductivities, further retarding
water transfer from the cutover peat. The inability to obtain moisture from the cutover peat and
the incapacity to retain moisture from precipitation combined with the low unsaturated hydraulic
conductivity results in Sphagnum at the Restored site being ~ 50% drier than the same species at
the Natural site and creates conditions unsuitable to sequester carbon.

The poor connectivity between the regenerated Sphagnum and cutover peat is primarily
due to physiological and ecological processes rather than hydrological. The high abundance of
large pores at the Restored site was primarily caused by sustained vertical growth of the
Sphagnum following restoration, as opposed to structural growth, which results in a higher
density of leaves and branches; thus smaller pores. Increased abundance of smaller pores will
retain and transmit water more efficiently than larger pores. For S. rubellum to create net carbon
sequestering conditions, structural growth must occur to better retain and transmit water.
Although S. rubellum is the dominant Sphagnum species at BdB, other Sphagnum species, such
as S. fuscum, are better suited to the low water tables observed and it is possible that S. fuscum

will begin to dominate the site in the years to come. S. fuscum has slightly higher pore
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connectivity than S. rubellum and this shift in species could potentially result in conditions
suitable for net carbon sequestering at BdB. Moreover, higher near surface Sphagnum moisture
contents are observed under ericaceous shrubs compared to pure Sphagnum lawns, which are
more typical of the Restored site. Increasing the coverage of ericaceous shrubs at BdB could
increase the near surface moisture contents due to decreased evapotranspiration from the
capitula. It is possible that in the next few years ericaceous species might become more dominant
at the site, thus reducing moisture loss. However, it is also possible that the original seed bank
used during restoration is no long viable and planting will be required to return the ericaceous
species.

North American peatland restoration relies on restoring the necessary hydrological
conditions for the vegetation to re-establish itself with no further intervention. Given the current
state of BdB it might be prudent to intervene in future restorations to accelerate the return of net
carbon sequestering functionality to peatlands. Planting ericaceous shrubs to increase the shading
on the regenerated Sphagnum could decrease water loss from evaporation and potentially
produce healthier Sphagnum. Furthermore, targeting Sphagnum species in donor material
collection that include more drought avoidant species (i.e. S. fuscum) could increase the ability of
regenerated Sphagnum to access and transmit water from the cutover peat to the capitula.
However, it is unknown why the regenerated Sphagnum allocates more resources to vertical
growth rather than structural growth when grown on cutover peat and further research into the
mechanisms controlling growth dynamics of Sphagnum are needed.

Although after ten years this approach is partially successful (i.e. returned vegetation but
not hydrology nor net carbon sequestration), it is still unknown whether this approach will be
completely successful. There have been several estimated predictions to achieve complete
restoration but they have been made with partial information (i.e. just ecological succession or
decomposition rates). To fully grasp the complexities of peatland restoration a more holistic
approach is needed when attempting to predict how long restoration will take. Through
incorporating the hydrological, ecological and biogeochemical processes a better understanding
of peatland growth, development and function will arise and likely aid in restoration.

Through assessing the large scale (water table, evapotranspiration, runoff, etc.) in
conjunction with the small scale (soil water retention, hydraulic conductivity, pore size

distribution, etc.) a complete ecohydrological snap-shot of Bois-des-Bel ten years post
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restoration is observed and it is clear BdB is a site of two scales. The limited connectivity
between the cutover peat and the regenerated Sphagnum moss coupled with the cutover peat still
controlling much of the large scale hydrology results in a system that is partially restored; yet is
still on course for complete restoration. This research identifies how it is the structure of the
regenerated Sphagnum moss that inhibits the development of conditions suitable for net carbon
sequestration and gives some insight on how to improve upon the restoration techniques. Despite
the emphasis on the hydrology of BdB, this research has far reaching implications on both the

ecology and biogeochemistry of restored peatlands in North America.
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