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Abstract

A Hybrid of Stochastic Programming Approaches with Economic and Operational
Risk Management for Petroleum Refinery Planning under Uncertainty

The current situation of fluctuating high petroleum crude oil prices is a manifestation that
markets and industries everywhere are impacted by the uncertainty and volatility of the
petroleum industry. As the activity of petroleum refining is at the heart of the downstream
sector of the petroleum industry, it is increasingly important for refineries to operate at an
optimal level in the present turbulent, dynamic nature of the world economic
environment. Refineries must assess the potential impact of significant primary changes
that are posed by market demands for final products and their associated specifications;
costs of purchasing the raw material crude oils and prices of the commercially saleable
intermediates and products; and crude oil compositions and their relations to product
yields; in addition to even be capable of exploring and tapping immediate market
opportunities. Hence, this calls for a greater need in the strategic planning, tactical
planning, and operations control of refineries in order to execute operating decisions that
satisfy conflicting multiobjective goals of maximizing expected profit while
simultaneously minimizing risk, on top of sustaining long-term viability and
competitiveness. These decisions have to take into account uncertainties and constraints
in factors such as the source and availability of crude oils as the raw material; the
processing and blending options of the desired refined products that in turn depend on the
uncertainties of the components’ properties; and economic data such as prices of
feedstock, chemicals, and commodities; production costs; distribution costs; and future
market demand for finished products. Thus, acknowledging the shortcomings of
deterministic models, this work proposed a hybrid of stochastic programming
formulations for the optimal midterm production planning of a refinery that addresses
three major sources of uncertainties, namely prices of crude oil and saleable products,
product demands, and product yields. A systematic and explicit stochastic optimization
technique was employed by utilizing slack variables to account for violations of

constraints in order to increase model tractability. Four different approaches were
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considered to ensure model and solution robustness: (1) the Markowitz’s mean—variance
(MV) model to handle randomness in the objective function coefficients of prices by
minimizing the variance of the expected value or mean of the random coefficients,
subject to a target profit constraint; (2): the two-stage stochastic programming with fixed
recourse via scenario analysis approach to model randomness in the right-hand side and
the left-hand side or technological coefficients by minimizing the expected recourse
penalty costs due to constraints’ violations; (3) incorporation of the Markowitz’s mean—
variance approach within the two-stage stochastic programming framework developed in
(2) to minimize both the expectation and the variance of the recourse penalty costs; and
(4) reformulation of the model developed in the third approach by utilizing the Mean—
Absolute Deviation (MAD) as the measure of risk imposed by the recourse penalty costs.
In the two-stage modelling approach that provided the framework for the proposed
stochastic models, the deterministic first-stage planning variable(s) determined the
amount of resources for the refinery production operations, that is, the crude oil supply.
Subsequently, once the value of the planning variable had been decided and the random
events had been realized, the corrective action or the recourse were implemented by
selecting the random second-stage variables associated with operating decisions for
improvements. Therefore, the overall objective in the bilevel approach to decision-
making under uncertainty was to choose the planning variable of crude oil supply in such
a way that the first-stage planning costs and the expected value of the random second-
stage recourse costs were minimized. A representative numerical study was then
illustrated, with the solutions compared and contrasted by several metrics derived from
established relevant concepts, as follows. We found that the resulting outcome of the
stochastic models’ solutions consistently proposed higher expected profits than the
deterministic model and the fuzzy linear fractional programming approach of Ravi and
Reddy (1998) who worked on the same problem. Additionally, the stochastic models
demonstrated increased robustness and reliability (or certainty) as measured by the

coefficients of variation in comparison with the deterministic model.
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CHAPTER 1

Introduction and Review of Current Modelling Practices and Related

Literature

Chemical process design, planning, and operations problems are usually treated as
deterministic problems with defined models and known constant parameters. In the real
world, however, the chemical process industry is typically ridden with uncertainties in a
multitude of factors spanning a wide range. These include market demands for products;
prices of raw materials and saleable products; lead times and availabilities in the supply
of raw materials as well as lead times or rates in the processing, production and
distribution of final products; product yields; product qualities; capital, technology,
competition, equipment, and facilities parameters such as reliability, availability, and
failures (Subrahmanyam et al., 1994; Applequist et al., 2000; Jung et al., 2004; Sahinidis
et al, 1989). Uncertainties might even arise in aspects as fundamental as
thermodynamics, kinetics, and other modelling parameters, as noted by Ahmed (1998).
These uncertainties could be present in the form of incomplete information, data
variability, randomness, and others (Shapiro and Homem-de-Mello, 1998). Thus,
uncertainties are inevitable and prevalent in mathematical models, parameters, and also in
enforcing the planning model itself to specifications. Consequently, this renders models
based on deterministic consideration to not always be optimal or even operable. In fact,
Ben-Tal and Nemirovski (2000) stress that optimal solution of deterministic linear
programming problems may become severely infeasible even if the nominal data is only
slightly perturbed. This is supported by Sen and Higle (1999) who affirmed that under
uncertainty, the deterministic formulation in which uncertain random variables are
mathematically and statistically replaced by their expected values may not provide a
solution that is feasible with respect to the random variables. Hence, the need to model
uncertainty in process design, planning, scheduling, and operations activities has long
been recognized as essential in the realm of chemical process systems engineering (PSE).

As a consequence of operating in such a rapidly changing dynamic and risky
environment, in making planning decisions, a firm must not only be restricted to

consideration of short-term economic criteria but ought to also identify and assess the

1



impact of vital uncertainties aforementioned to its business in order to be able to develop
coping strategies through implementation of contingency plans, to be effected as the
uncertainties unfold. Since the selection of current decisions depends on decisions taken
in previous time periods, it is essential to formulate planning decisions that not only
maximize the expected profit, but also ensure future feasibility. This can be achieved by
accounting for the minimization of economic risk involved in implementing a supposed
optimal plan besides sustaining long-term viability and competitiveness (Cheng et al.,
2003; Applequist, 2002; Applequist et al., 2000).

In fact, virtually all decision-making processes involve uncertain information,
particularly when future events are considered. Apart from production planning and the
related activity of process scheduling, other common engineering examples include
applications in optimal control, real-time optimization, and capacity planning with the
objective of expansion. Production planning applications are of particular interest due to
their inherently uncertain nature, high economic incentives, and strategic importance.
Furthermore, realistic production planning applications can be developed with well-
established linear programming models, which can be extended to include uncertainties
in parameters characterized by probability distribution functions, giving rise to the two-
stage stochastic linear program, which forms the underpinning framework in the models
proposed in this work.

In the chemical process systems engineering (PSE) literature, problems associated
with the design, planning, and operations of process systems under uncertainty have been
attracting considerable attention especially during the period of 1990s (Jung et al., 2004).
Over time, from early works in the chemical engineering field addressing issues of
uncertainties (for examples, see Grossmann and Sargent, 1978 and Malik and Hughes,
1979) to more recent works, numerous ideas have been proposed to formulate planning
(and design) problems dealing with uncertain model parameters. In general, the solution
approaches have proceeded along two main directions: (1) deterministic methods in
which the emphasis is on ensuring the feasibility of the solutions over a given domain of
the uncertain parameters, and (2) stochastic or probabilistic optimization techniques in
which the objective is to optimize solutions that anticipate uncertainty of parameters that
are described by probability distribution functions (Ierapetritou and Pistikopoulos, 1994b;
Tarhan & Grossmann, 2005).



In the deterministic approach, the description of uncertainty is provided either by
specific bounds on variables or by a finite number of fixed parameter values in terms of
scenarios or time periods, transforming the process model to a deterministic
approximation. These methods include:

(a) the “wait-and-see” approach, or sometimes referred to as scenario analysis or

what-if analysis. It is characterized by discretization over the uncertain parameter
space (for example, see Brauers and Weber, 1988);

(b) the use of multiperiod models, which is characterized by discretization over the
time horizon (for examples, see Grossmann and Sargent, 1979; Grossmann et al.,
1983; Sahinidis et al., 1989; Bok et al., 2000).

The model approximation can often be coupled with flexibility test or flexibility index
problems as employed by Pistikopoulos and Grossmann (1988, 1989a, 1989b).

On the other hand, the more sophisticated stochastic optimization techniques take into
account the detailed statistical properties of the parameter variations. These methods have
evolved around two traditional forms of approaches, namely:

(a) the “here-and-now” approach of two-stage stochastic programming with recourse
framework, originally proposed by Dantzig (1955) and Beale (1955) that is
extendable to multiple stages. It is based on the postulation of general probability
distribution functions describing process uncertainty with the objective of cost
minimization or profit maximization due to violation of constraint(s) (examples of
early work include Walkup and Wets, 1967; Wets, 1974; Grossmann and Sargent,
1978; Pai and Hughes, 1987, to mention only a few);

(b) the probabilistic modelling approach or also known as chance-constrained
programming, originally introduced by Charnes and Cooper (1959), which
includes in the constraints, the requirement that the probability of any constraint
to be satisfied must be greater than the desired level (Gupta et al., 2000; Aseeri
and Bagajewicz, 2004, again to mention only a few).

In addition, in a fairly more recent development, Ben-Tal and Nemirovski (2000)
propose a robust optimization methodology for linear programming problems with
uncertain data. In the realm of PSE, this approach has been adopted by Lin et al. (2004)
to mixed-integer linear program (MILP) scheduling problems under bounded uncertainty

in the coefficients of the objective function, the left-hand side parameters, and the right-
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hand side parameters of the inequalities considered via the introduction of a small number
of auxiliary variables and constraints to determine the optimal schedule.

The two-stage stochastic programming approach has been proven to be most useful as
a source of reliable design and planning information (Johns et al., 1978; Wellons and
Reklaitis, 1989; Petkov and Maranas, 1998). As the name indicates, decisions are made in
two stages in this modelling framework by loosely dividing time into “now” and “the
future”. The decision maker makes the first stage decision(s)\ prior to the realization of
the uncertainty now and then makes the second stage recourse decision(s) contingent on
the revealed information upon resolution of the uncertainty in the future. The first-stage
decision variables are fixed while the second-stage operating variables are adjusted based
on the realization of the uncertain parameters. Note that the stages do not necessarily
correspond to periods in time. Each stage represents a decision epoch where decision
makers have an opportunity to revise decisions based on the additional available
information. For example, one can formulate a two-stage stochastic program for a
multiperiod problem in which the second stage represents a group of periods in the
remaining future (Cheng et al., 2005). Despite differences in individual details, most of
the representative works in production planning of processes (see, for example, Ahmed &
Sahinidis, 1998; Liu & Sahinidis, 1996; Petkov & Maranas, 1998; Ierapetritou &
Pistikopoulos, 1994c, 1996¢), including recent works in refinery planning (see, for
example, Pongsakdi et al., in press; Neiro and Pinto, 2005; Aseeri and Bagajewicz, 2004),
have followed the general structure of the two-stage stochastic programming framework,
which provides an effective formulation for chemical process planning under uncertainty
problems as will be demonstrated in this work.

It might be of interest to point out the differences between formulations of stochastic
optimization problems that are derived from statistics and those that are motivated by
decision-making under uncertainty. The analysis of “wait-and-see” solutions is mostly of
interest in mathematical statistics in which information is collected and used during the
decision process. Decision-making under uncertainty through stochastic programming is
mostly concerned with problems that require a “here-and-now” decision, without making
further observations of the quantities modelled as random variables. The solution must be
found on the basis of the a priori information about these random quantities (Wets,

1989). Thus, the emphasis of stochastic programming lies in the methods of solution and
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the analytical solution properties whereas statistical decision theory stresses on

procedures for constructing objectives and updating probabilities (Birge, 1997).
Additionally, two other notable approaches have also been proposed to deal with

uncertainties in model parameters:

1. fuzzy programming as originally conceived in the seminal paper by Bellmann and
Zadeh (1970) and popularized by Zimmermann (1991) with examples of application
in PSE by Liu and Sahinidis (1997) and Ravi and Reddy (1998); and

2. the flexibility index analysis and optimization approach in design and operational
planning problems. In the latter approach, flexibility is defined as the range of
uncertain parameters that can be dealt with by a specific design or operational plan
(Sahinidis, 2004). Flexibility thus refers to the ability of a system to readily adjust in
order to meet the requirements of changing conditions. Some examples include the
works of Pistikopoulos and Mazzuchi (1990); Straub and Grossmann (1993); and
Ierapetritou and Pistikopoulos (1994a). This is a very much active major research area
in PSE under the theme of integration of process design and control systems design

and will not be addressed within the scope of this work.

1.1 APPROACHES TO MODELLING AND DECISION MAKING UNDER
UNCERTAINTY IN OPERATIONS-PRODUCTION PLANNING AND
SCHEDULING ACTIVITIES IN CHEMICAL PROCESS SYSTEMS
ENGINEERING (PSE)

Operations and production planning activities in an industrial setting are crucial
components of a supply chain. In fact, in his excellent review on single-site and multisite
planning and scheduling, Shah (1998) considers medium-term or midterm planning as a
special case of supply chain planning. In general, planning involves making optimal
decisions about future events based on current information and available future
projections. In the context of the chemical processing industry (CPI), typical decisions
pertain to selection of new processes, expansion and/or shutdown policies of existing
processes and facilities, and optimal operating patterns for production chains. These
decisions have to be made in the face of the present inherently turbulent nature of

business economic environments due to increasing competition, stringent production
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quality, fluctuating commodity prices and customer demands, and obsolescence in
technology. In addition, companies ought to constantly recognize the potential benefits of
new resources to be incorporated in conjunction with existing processes and facilities.
The interaction of these situations provide incentives for companies in CPI to be
concerned with the development of effective and efficient quantitative techniques and
solutions for planning, as these are necessary tools in hedging against future
contingencies for the eventual successful operation of even any modern-day enterprise,
for that matter (Ierapetritou and Pistikopoulos, 1996; Sahinidis et al., 1989).

It is a well-recognized problem that production—-manufacturing systems are subject to
uncertainties presented by random events such as raw material variation, demand
fluctuation, and equipment failures. The dynamic and random nature of product demands
alone results in their forecasting being very difficult or sometimes even impossible.
Despite the existence and availability of various planning models, managers often could
not find one that is suitable for their needs. As a result, production is planned following
an everyday practice without concern for achieving optimality. It is desirable to shift such
experience-based decision making to an information-based data-driven decision-making
model (Shapiro, 2004; 1999). This will require a systematic use of historical data and a
theoretically sound mathematical model that is applicable to the real situation, with
consideration for various possible operational and production uncertainties (Yin, K. K. et
al., 2004). The present work is intended to contribute in these directions via the utilization
of mathematical programming or optimization.

In the planning of chemical processes such as the vast array present in the operations
of a petroleum refinery, we often have to deal with parameters that can vary during the
operation and with parameters whose values are uncertain at the design stage. At this
juncture, as stressed earlier, determining the right modeling tools is one of the most
technologically challenging problems that operators and decision makers face today, as
corroborated by Escudero et a. (1999). Probabilistic or stochastic methods and analyses
have been demonstrated to be useful for screening the alternatives on the basis of the
expected value of the economic criteria, typically the maximum expected profit or the
minimum expected cost, and also the economic and financial risks involved. Several

approaches have been reported in the literature addressing the problem of production



planning under uncertainty. Extensive reviews addressing various issues in this area are

available, for example, by Applequist et al. (1997) and by Cheng et al. (2005).

According to Gupta and Maranas (1999, 2003) and Vidal and Goetschalckx (1997),
models of planning systems (with the term “planning” used here reflecting a general
broad sense) can be broadly categorized into three distinct temporal classifications based
on the addressed time frames or time horizons, namely strategic, tactical, and operational.
A discussion of their features and characteristics from a practical perspective is provided
by Shobrys and White (2000). The following aims to condense these views.

1. Long-range planning of capacity expansion and design models are termed as strategic
or planning models (contrary to the aforementioned, the term “planning” is used here
in a strict context to denote a long-term time horizon). They aim to identify the
optimal timing, location, and extent of additional investments in processing networks
over a relatively long time horizon ranging from the order of five to ten years. Thus,
the decisions executed may affect access to raw materials, product slates,
geographical markets, and obviously, production or distribution capacity. The
strategic level requires approximate and aggregated data. For examples, see Sahinidis
et al., (1989), Sahinidis and Grossmann (1991), and Norton and Grossmann (1994).

2. On the other extreme of the spectrum of planning models are short-term models
classified as scheduling or operational planning models. These models are
characterized by short time frames and therefore involve short-term decisions,
typically less than one hour or one day, but could also stretch to a few days to one-to-
two weeks to even two-to-three months. They address the exact full sequencing
(timing) and volumes of the multifarious manufacturing tasks while accounting for
the various resource and timing constraints, for instance, in the determination of the
qualities of commodities to be produced by an oil refinery. Specifically, key decision
variables involve the start time of an operation, and the duration and processing
volume of the associated operating unit, under consideration for product demand,
possible desire to keep major units operating continuously, and issues of containment.
This operational level requires transactional data. For examples, see Shah et al.

(1993), Xueya and Sargent (1996), and Karimi and McDonald (1997).



3. Medium-term or midterm or tactical planning models make up the third class of
planning models. They are intermediate in nature and characteristically address
planning horizons involving months, in a typical aggregation of two-to-six months,
and up to one-to-two years. They execute the company-wide function of setting
targets for operating performance, and coordinate activities across sales, materials
management, manufacturing, and distribution. They consolidate features from both
the strategic and operational models, including the amount and accuracy of data
required. For instance, they account for the carryover of inventory over time and
various key resource limitations, much like the short-term scheduling models; of
which, an example within a petroleum refinery would be in deciding the type of crude
oils to buy and the timing. On a contrasting note, similar to strategic planning models
and unlike the operational models, they account for the presence of multiple
production sites in the supply chain. In fact, refineries, with their typically large and
complex manufacturing facilities, may also have a tactical planning process for each
manufacturing site in order to coordinate activities across major units. The midterm
planning models derive their value from this overlap and integration of modelling
features. For examples, see McDonald and Karimi (1997) and Gupta and Maranas
(2000).

A number of key decisions must be made during each of these time frames of days,
months, and years in terms of the process operations. The crucial challenge is in
providing the necessary theoretical, algorithmic, and computational support to aid
optimal decision making accounting for future uncertainty primarily in product demands
and other parameter variability.

As highlighted earlier, problems of design and planning of chemical processes and
plants under uncertainty have been treated in the process systems engineering (PSE)
literature using the well known decision problem model of two-stage stochastic
programming with recourse. The two-stage programming strategy has been considered as
an effective approach to the solution of process engineering problems such as production
planning as it naturally differentiates between the following two sets (Acevedo and

Pistikopoulos, 1998; Ruszczynski, 1997; Grossmann et al., 1983):



(i) the first-stage deterministic planning variables of resources representing the plan,
that is, decisions that have to be made in advance and which remain fixed once
selected, and

(ii) the second-stage stochastic operating or production variables, which are flexible
and can be adjusted to represent operational decisions to achieve feasibility,
depending on the observed event.

Under this framework, we pose the decision problem as one of maximizing (or
minimizing, accordingly) an objective function consisting of two terms. The first
corresponds to a contribution by the global or planning variables whose values are chosen
independent of the uncertain parameters. The second term represents and quantifies the
expected value of the contribution due to local or production variables, whose values will
be adjusted in response to realization of specific values of the uncertain parameters.
Generally, the objective function is a net present value of the associated investment,
operating cost, and revenue streams. Thus, the objective in the two-stage modelling
approach to decision under uncertainty, as reflected and defined in the objective function,
is to choose the planning variables in such a way that the sum of the first-stage design
costs and the expected value of the random second-stage recourse costs is minimized.
Approaches differ primarily in how the expected value term is computed.

Moreover, the classification of the variables and constraints of a production planning
problem (such as that addressed in this work) into two distinct categories, resulting in a
two-stage hierarchical decision-making framework, can be effectively utilized for
incorporating uncertainty in the dominant random parameter of product demands as
dictated by market requirements, in addition to other parameters such as prices and
yields, on a simultaneous basis, as will be demonstrated in this work. In this bilevel
decision-making framework, the planning decisions are made “here-and-now” prior to the
resolution of uncertainty, while the production decisions are postponed to a “wait-and-

see” mode (Gupta and Maranas, 2000).



1.2 CLASSIFICATIONS OF UNCERTAINTY

According to Li (2004), uncertainty can be categorized based on different criteria. From
the time horizon point-of-view, uncertainty can be present in short term, mid term, and
long term. Short-term uncertainty typically involves day-to-day or week-to-week
processing variations, for example in flow rates and temperatures; cancelled or rushed
orders; and equipment failure; which requires the plant to respond within a short period
of time (Subrahmanyam et al, 1994). Midterm uncertainty addresses time horizons
spanning one to two years and incorporates features from both short-term and long-term
uncertainties (Gupta and Maranas, 2003). Long-term uncertainty includes raw material or
final product related issues of unit price fluctuations, seasonal demand variations, and
production rate changes, occurring over longer time frames ranging from five to ten years
(Sahinidis et al., 1989)

Li (2004) and Wendt et al. (2002) also classified uncertainties from the point-of-view
of process operations, into two categories: external uncertainties and internal
uncertainties. As indicated by its name, external uncertainties are exerted by outside
factors but impacts on the process. Examples include feedstock condition such as feed
composition and feed flowrate (for a petroleum refinery, this would be dictated by the
type of crude oil intake for processing from the upstream exploration and production
activities) and recycle flowrates as well as flows of utilities, the temperature and pressure
of coupled operating units, and market conditions. Internal uncertainties arise from
deficiency in the complete knowledge of the process. Some examples include yields of
reactions, especially in processes with multiple reactions such as in a petroleum refinery;
the kinetic parameters of reactions in units such as the fluidized-bed catalytic cracker
(FCC); and the transfer rate of units such as the crude distillation unit (CDU). According
to Goel and Grossmann (2004), Jonsbraten (1998) termed this class of uncertainty for
planning problems as project exogenous uncertainty and project endogenous uncertainty
to refer to external and internal uncertainties, respectively. As an aside, it is further noted
that the scenario tree employed in modeling project exogenous uncertainty is independent
of decisions made at preceding stages whereas the converse is true for its counterpart, that
is, the scenario tree is dependent on prior decisions in modeling project endogenous

uncertainty.
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Uncertainties due to unknown input parameters are identified as (1) uncertain model
parameters and (2) variable process parameters from the observability point-of-view
(Rooney and Biegler, 2003). The exact values of uncertain model parameters are never
known exactly for the design or planning problem although the expected values and
confidence regions may be known. These include model parameters determined from
(offline) experimental studies such as kinetic parameters of reactions as well as
unmeasured and unobservable disturbances such as the influence of wind and sunshine.
On the other hand, variable process parameters, although unknown at the design or
planning stage, can be specified deterministically or measured accurately at later
operating stages. Examples of these are (i) internal unmeasured disturbances such as feed
flow rates, product demands, and process conditions and inputs (for example
temperatures and pressures) and (2) external unmeasured uncertainty such as ambient
conditions where an operation-of-interest takes place.

Table 1.1 summarizes the salient points on the three different categories to classify

uncertainties and some associated examples.

1.3 MANAGEMENT OF PETROLEUM REFINERIES

1.3.1 Introduction to Petroleum Refinery and Refining Processes

Petroleum refining is a central key component and crucial link in the oil supply chain. It
is where crude petroleum is transformed into products that can be used as transportation
and industrial fuels, and for the manufacture of plastics, fibres, synthetic rubbers and
many other useful commercial products. In general, a refinery is made up of several
distinct parts as outlined in the following (Favennec and Pigeyre, 2001):

» the various processing units that separate crude oil into different fractions or cuts,
upgrade and purify some of these cuts, and convert heavy fractions to light, more
useful, fractions;

 utilities that refer to the systems and processes providing the refinery with fuel,
flaring capability, electricity, steam, cooling water, effluent treatment, fire water,
sweet water, compressed air, nitrogen, etc., all of which are necessary for the

refinery’s safe operation;
11



* the tankage area or tank farm where all crudes, finished products, and
intermediates are stored prior to usage or disposal; and
o facilities for receipt of crude oil and for blending and despatch of finished
products.
A simplified process flow diagram for a typical refinery is shown in Figure 1.1 while
Table 1.2 provides a summary of the general processes that make up crude oil refining

activities.

Table 1.1. Classification of Uncertainties (Li, 2004; Subrahmanyam et al., 1994; Rooney and Biegler,
2003; Dantus and High (1999))

Time-Horizon

Short Term

* Process variations, e.g., flow rates and temperatures
* Cancelled/Rushed orders

* Equipment failure

Mid Term (intermediate between short-term and long-term planning horizon)
LongTerm

*  Unit price fluctuations

* Seasonal demand variations

e Production rate change

e Capital cost fluctuation

Process Operations

External (Exogenous)

» Sales uncertainty, e.g., unpredictable changes in prices and levels of demand of products

* Raw material purchase uncertainty, e.g., unpredictable changes in prices and levels of availability of
raw materials (or feed stream), including raw material composition (i.e., feed composition)

» Economic factors, e.g., capital costs, manufacturing costs, direct costs, liability costs, and other less
tangible costs

» Equipment purchase uncertainty, e.g., difficulties in predicting the cost and availability of equipment
items

» Discrete uncertainty involving equipment reliability, e.g., uncertainty associated with the availability of
an equipment item for normal operation, including other discrete random events

* Environmental impact, e.g., release factors and hazardous levels/values

* Regulatory uncertainty concerning laws, regulations, and standards, e.g., modification in emissions
standards and new environmentally-motivated regulations

* Technology obsolescence

* Time uncertainty, e.g., delays in investment (perhaps due to projection that a project might hold
promise of a better return/profit in the future in consideration of the current economic, political, and
social situations)

Internal (Endogenous)

Manufacturing uncertainty, i.e., variations in processing parameters, e.g., yields and processing times

Observability (Rooney and Biegler, 2003)

Uncertain (process) model parameters

* From (offline) experimental studies, e.g., kinetic parameters (constants) of reactions, physical
properties, and transfer coefficients

* Unmeasured and unobservable disturbances, e.g., influence of wind and sunshine

Variable process parameters

e Internal unmeasured disturbances, e.g., feed flow rates, stream quality, and process conditions and
inputs (e.g., variations in temperatures and pressures)

» External unmeasured uncertainty, e.g., ambient conditions of operation

12



¢l

(661 M1ompueH pue L1e0) <6007 ‘0€ 10quaidag U0 Passadde ‘[unY'g Al WIO/AI W)0O/UN0,/e}S0/SIP/A0S BYSO Mmmm//:dNy
‘Tenuelq BOTUYL ], VHSO) Arungar wndjonad 1eord4) € 10y weiderp mofj sso001d pagrduns v 1°T 91n31g

NOILOVILXd
soxop < | ONIANTTE Xep pafoaq j LNIATOS N
SOSBAID) <« k) D ONIXVMHA < B
ONILVHIL (¢ LNAATOS djeuLyRy
SHOOHANT € AH (reutyey) [10 paxemdQ F
ONILVAILOYdAH <«
anpsay Jomo], duoydsow)y
" onprsoy wnnoe A jeydsy 4
anpIsay padorI) A[[ewIoy], %
ONILTVHISVAd npIsay
[ <
STIO 1o ONIAVHILSIA DONIXA0D LNAATOS TomoL, anpisoy
<«—— DNIANATd I wnnoe A 10MO],
[enpIsay d
3 suoydsouny
ONILVAYL (1O s€D) ARSI PIIYOBID [BWLIDY T, 1YSI'T
1vNaisdd [0 PAYIE[D) PavyorI) dnk[ere) 7
"equsIq padyoel) JnA[eIe) AABOH <
< 7 QJe[[IISI(J WNNOB A AABSH
eI wnnoe A KASH ONIOVYD [« ] NOLLYTTLSIA
JOILATVLVD < IWNNDVA
SIIO [o1d B P U are[nsIg wnnoe A 1Sy
[osard dre[nsIg payoe1) snAere) 1ysr u
S110 ong ONIANATE ] <
ernsta » ore[nsia PN SaH
ONILVHIL <
sjuoAjoS <« | ONINALIAMS SerEsia
ousORY ALV TILLSIA < 1111 PUA IS U < <
QU0S0I0 10 s
SN 197 < A S ONILVERILOYAAH | [10 58D ¥S 110 opn1)
eyydeN /NOILVZIIdNATNSAA0OddAH pajesad
AAeoH SAH L ONIAOVIDOIAAH |
; 4 sueing DLLATVLVD le[[USI P[PPI S
eyyydeN poyoer)
SHATERD 19T quohing
SJUOATOS <«—| eyydeN QUAS0IoY YS
| Pa3oRIoIPKH YS! T ONILLVIMLOYAAH
ONINIOITT NOILVZIINATNSHAOYAAH
ONIANAT1d REIEITVER] JILATVLVO N M eyydeN IS Areoyq
® NOILVTILLSIA
ONILVAYIL 0 OIIAHISOWLV
surosen ONINALIAMS Fpyqden gs 19817 eqyydeN (J4S)uny 1uEEns 1ySI]
sAnowoy (VHLHIVN) NOILVZIYINOSI st
ANITOSVD  |e =
eyyydeN-0s] DILATVLIVD [10 9pm) 131
« NOILVIANTY |« ONLLTVSHA
QRIANY P34 uone[AN[Y IZIYNHdTNSHAOYdAH
autjose NOILVYIVdIS
UONBIAY Toueng-u SVD h H
ey deN NOILVZIddINATOd LNVIdSVD Y 10 °pnI)
T uonezuswkjog h % o op
(DdT) seD P
wnajonad paganbry poad sen
uonezuowA[og
sosen) [on «




14!

SOADIS
Ie[NOOOW/S9)I[09Z
onel o[okoay “9'1 ‘euruunye
[10 pajuedd( suostod 1sK[e1E) o _porpis  o1OYIUAS
[10 se3 AaeoH 18ATR1ED ouI[eIskI) o
[10 se3 ST uo uoqied jo a3ejusdiod SUOTIRUIqUIOD
‘eqyydeu— 100074 Sunyoel) eUTIN]E
‘suenqg— (Usoxy) AyIAOE oIS ONOYIUAS OpNId PIINPIY e
‘ouedord—  pue  odky  1sAere) snoydiowry « 10 [oNJ [ENPISOY o (ourjoses
‘sed 1ony— K3100[0A d0RdS sajeoI[IsouTwIN| e SJEIIISIP 0D o opeiddn “o1) sjonpoid
}0031Spagy [eorwdydoIed oner [1Q/1sA[ere) [eInjeu [10 9[9A)) » 0)ysy  pue ourosed SunpoeId
pue ourjose3 se osn I0j amjerodurd) Surpoe) PaIBOn-PIOY o [10 SeD) onhrereD UONBIO)Y  OJUI S[I0 AABIY }IOAUO)) onArere)
uonIsodurodd(q Jo $3s$330.14 UOISIIAUO))
wrea)s ss990.1d SuryoeId oYM Inq
wnnpIsay| Syer XnjFoy (uonemsip ouoydsoune
0031Spas) oqu] sammerodwa |, [enprsax se  owmes)  suonoey uone[msIp
[10 seD) oje1 931ey) (suou) 19m0) OuRYdsouny [ewIoy L, uoneredog ojul  sopnid  ojeredog  opnId  WNNOBA
wnnpISoY/[BNpISay
[10 se3 AaroH
[0 se3 Y31
oU0s010Y 10 [on] Jof
eqydeu AaeoH
(*2)
oueing woy eyydeu Jysr] Wrea)s $S300.1J Surugar yumy 103
(Od71) eI XN[JoY voneiedord ur suonoey
sed wmojonad pogonbry soajerodwd ], oSue1r Sur[loq JUSIOYIP  UOLE[[LISIP 9pNIO
ses [ang 9je1agrey) (ouou) [10 opnI) [euay uoneredag oyl sopnid  9jeredag orydsouny
$355920.1J UOnBUONIRI]
1onpoId o|qeLIe A 154T038)D 300ISpPa9,] POUION uonoy osoding $S0001J
$50001J Juonoun,g

(8661 WS1AS ¢SO0T ‘LT 1990320 U0 PISSAIIE /60PN AYD/Wod eanyddl//:dyy ‘eInyddf pe61 IIMpULH pue A1es) (507 ‘0€ 19quandog uo passddde
‘uiyy 7 Al W)0/AT WI)O/UI)0/8)SO/SIP/A0S BYSO MMAM//:d)IY ‘[enue]A] [edTUYII ], VHSO) Sururd.x wndjo)ad jo sassadoad [e1oudd jo Arewwing *7°1 d[qel,



Sl

K31S00STA

pue Ajsuop [0 sen
SONSLIOIORIRYO PUE
UOISIOAUOD  S3003ISPad]

uondwnsuos [ong

I} I93BIIQSIA Qwﬁﬁ_mu 1
Supuejq 10y  junoure ompip 0}  paxunbax
3J0)S  papnd  prepuelS ¥o03s Surynd Jo junowe
Ief o 9Inssald [enprIsax oonpax 10) syutod nod
e[DSI o aerodwo g, (suou) 19m0) OuRYdsouny [ewioy] uonisodwiood Ppue  A)SOOSIA  2oNPAY SuryeaIqsIA
(1950810 ONATRIRD
0} pagJ se) popeiddn
A[eonAeied oq Aew jey)
OeI 9003y (spro se3 pue eypydeu)
3O01SPAdJ [eITWAYI0I)dd o QHBNHQQEQH QJBINIISIP 0D SOJR[[USIPp OJUI STenpISAI
quUI[OSeD) o 2Inssaig (ouou) [10 SBD) [EWLRY], UONBZIIDWA[OJ WNNOBA AABIY }I9AUO)) Suryo)
(syuouodwod
snorrea 3uowre
(uonyisodap uoS0IpAy
[BNPISIY o o300 syuoad1d) paInqgLusIpaI
9YOD ¢ JOJBAI Ul QOUINQINT 0) uonoalox
AequsI o wed)s pajedyadns Ie[ISIP/[9NF AABdY uoqres) So[nos[oW
eqydeu poyoeI) « JO smyerddud T, (ouou) 1m0} OLYdSOUY [euoy], uonisodwoddq  u0qIed0IpAY d3Ie] JorI) Suryoemn weag
(wnuqrmba sauruelap) erpaw 110ddns
(Y0D) opIxOIp UOQIE) o WIBIIS SSOXH JjPUILINE  WNIO[RD wedls e
(OD) aprxouowr uoqIL)) o aInssalg Joeurwn[e—p Ud3LX(0) onkere) Sururioor
H . smyerddud T, Ue U0 Paseq-[oYPIN  SBS pazLmynso(g e /lewdy],  uonisodwoossg ud30IpAy 9onpord wed)s UdS0IPAH
1u03u09 (SH)
oprydins uo30IpAH
v pue (£)) suedoad JU9IU09 (TN)) uaSonIN
woxn  SAL[USIP  WSI[ . uondumnsuod [enpIsay e
‘se3 oy o (°H) ud30IpAH spelowr  QIR[[UISIP 10D .
‘eqpydeu . K310079A 90edg uonisuen snid [0 syonpod
82 ‘s1onpoxd omssoixd  purwnpe-eoIIs  Jo  PDPBID/IO L) . OH 101y31| pue durjosed
Aenb  1oySiy  xog8ry  pue dumjeroduwid) 1030vdY oIMIXIW  QUIJ[BISAI) 10 SBD) » onA[eie)  UONBUSSOIPAH OJUI S[I0 AABIY 1IOAUO)) SunyorI00IpAH




91

eqydeu
IONORIOOIPAH
‘I%0)D)
(004) 1orId
wnuryed onArere pmy
I pasn woxy ourjose3 1onpoad-Aq yuerroduur
suosiod 1sK[e1e) o [ejow yjoue “8 ‘$)[0018 ue se poonpoid st IH .
SONEWOTY o Ayianoe isA1eje) o 10 wniuoyy «  Jurpudlq durjosed 0038
ypuee) e ‘K3100[0A 20BdS » ‘aseq OYJ0 ‘sournouios Surpusyq surjosed
se3 [ong °f o ‘T yo amssaxd [enied . BUTUN[B—BOI[IS “o8uer (®D>) ouepo  y3m
9]BULIOJAI 1O Y00)S QINSSAIJ o IO BOI[IS Surpioq  ourosed voneIpAyd(q ® donpoid 01 eyydeu Suruioyoy
Swpud[q aurjosed 3) YSIH e Qmendwo], « ® U0 wnune[d ¢ JO eypydeN onhrere) JuoneId)y  dueloo-mo[  opeiddn . ankreIe)
JUIWIISUR.LIEIY J0 UONRIII[Y JO SISSII0.IJ UOISIIAUOD)
911 J[OAIIY
sed jonyg e KAnoe )sA1eIR)) o I5LLIE)
"D . uonsodwiod peo e prjos snoiod 19Y30 3003s Surpusiq
£ aImssald « jo zjenb poysnio sudking ourjose3 e 0) SouUdAINg uonjezrrowAod
3003s SUIPUI[Q SUI[OSBL) smperodwd], « uwo proe ouoydsoyq oudrAdoig uonezrowAijod pue oudAdoid j10AUOD ankreIe)
KITSOJSIA o wmnipaur 10
SoAnIppe pue sdeos ur SuneonIqn[ 0JUT SIARIPPE
("030 ‘w1 ‘wnrurwne [eowr [NV pue (sproe Anej paureyo
‘wnrpos ‘wnrofed) proe e -3uoy jo siyes) sdeos Surpunodwio))
osea13 Suneoriqn]  JUSWIDLR OI[eIOIN o (ouou) [1o aqn'T [euay L, UoneUIqUO))  OI[[BIOW PU[/QUIqUIO)) oseal1n
pP3uans
pue odAy (proe) IskTere) « ourjoses
(Surxtur pue uonoa(ur) (ySrom E_zwoﬁoa
Ie] o KjooA ooeds  uydIQ e Iysy “9°1) aueoo-ysiy
PoYy uonenuddUod dULINQOST o ojonpoid 03 sunggeredost
Ay} ur popnpur dueinq (ouayuad SULJ[0 I3IeI) s (sauopking
pue ouedord [eWLION . 10 ‘SOUdAING ‘QudrAdord) sudjAdoadosr + Aurewr) SUIyo[o
3003s Surpud[q durjoses uryd[o Jo odAT . poeoumyding « J0 SuSKINQoST + (ySrom JIenoajowr
(9re1A[R) qUR)I0-0S] o amieodwd) uoroeYY o  PIOB OLIONJOIPAH o QUBINQOSI IOMOT, onhrereD uoneuUIqWO))  MO[ “9'T) Y3 AU uonel Ny

UoONEBIIU[) JO SISSII0IJ UOISIIAUO))



L1

K10079A 90€dg

H Jo anssaxd [enied wnuspgAour [10 se3,/[enprsax SJUBUIUEBIUOD uonez-
sugajo pazumydnsaq srmerddwa], -1[eq0D mydins-y3iyg nkrere) wounedr]  ‘mydins orowdy  unydnsapoipAH
sopy[ns
[o¥o1u pue ‘udsSum) H
qnT e ‘oyepgAjowory)  s[enpisaz o3 (sOH) Sunoear  Aq  spalqo
e[BSIA [oyoru ‘apIxo SU0QIBI0IPAY 9[qeuo1}3[qO dAOWINY
P39 (DDA) Ay100704 doedg [YoIu ‘BUrUN[E UO PONYOBIO JO OpNIO lo/pue
IOYORID I0J “3'9 NO0)SPady H Jo amssaid [enred SOpIX0 wnuadpgAjowr  pasnpar 0} eyyydeu sweans wnojoxned
oaxp-uosiod paziiqels e srmerodwa pue 1[eqo) woy d3uel IPIM Y onArere)  uoneudSoIpA 9ZI[IqeIs A[[eduk[eie) e SuneanoipAHq
OReIIO/1ere My
srmerodwa
SopnId Jo ownjoA Jod
Iojem USem JO QWIN[OA [10 9pnId woyj (SpIos
[10 9pnId JO AJISOOSIA popuadsns  pue  jyes)
[10 OpnIo pojjesdq pue ‘Kyaei3 ‘Hd (ouou) [10 apni) uonydiosqy UONRIPAYS(] SIUBUIWIBIUOD  QAOWIDY gunesaq
$3SS9J0.1J JUIUNBALL,
sponpoid Aye10ads syonpoid Ajjeroads
SUSSOIY pue ‘oudsoroy jurod
yutod S3jows YSIH . oyows Y3y ‘pong 3ol
[Py I 10 Qjeuljel oneuore
SonjewWoIe + (6)) QUBUON e Pa93 Jo uonisodwo)) MO[ JO UONONPOI] e
OGONGOG—TAS«M . SoneI XNJoy AOHNEHOMO 1 mQOn—uNQOHU\mS
OUQAYX o JUOA[OS JO AOUSIOIFH AreuLiou) oy)o  Jo  suonnjos
ouan[o] o sonisuag wnajonad 10 woiy sonjewore uonoONpoId
oUOZUAY o samyeradwa |, (oUOU)  S90INOS UIAO AYO)) Ayund  ySry  ojeredag e SOBWOTY
(o3¢e pue ad4) 3sATeIBD
“o1)  Aanoe  sA[eie) JAJIS JRINIJ[OIA o
¢H 3o assaxd [enied oseq SUBXSH e oueliq 0} ureyd
3001 Surpudyq aurjoses 0] £3100[0A d0RdS eurNe—eoI[Is (D.081 ySrens  Sunioauod £q
ouexoyosr pue ‘ouejuadosr amssaxd Io BOI[IS 1e) ouBjudd e 003 SUIpudq JuIoses
‘Quanqost oeusorad ySig pue sijereduwio) 10joeay ® uo wnune[d e sueing onkeie) juoweSuelredy oueloo IYSIY  3onpoid UOTBZLIOWOS]




81

UOT}BIIUIIUOD
0D 00NpaYy e
ue)deoIou 119AUO))

suoneoyoads KJI[IqeIS UOT)BPIXO
ynpoid-puy pue  Inopo  “Ino[od
sopumduur aroxdur 03 ueydessowr
surjosed/arequsip  JO 2dAy pue junowry e aurjose3/a1e[nSIp pue ‘ouoydoryy
Kyenb Y31 UonORIJ JO INBN o (ouou) pajeanun) onkrere) jwounea1]  ‘SH QAOWIDY o Suruojoomg
SJe[LSIA »
Ky1soIod e eUWLIOJY o  uonedroard UoTORINX UoTORINX
ourjose3 auejo0-y3IH Anrqnios . (ouou) [I0 SBD) » suondiosqy JUOA[OS  STIO pajeanjesun djeredag JUDA[OS
Ariqniog .
SoIn)XTW
Jo UoOnNEBHRUIIUO)) o ouedoiq e
eydsy 2INSsAI] [enprsar Sunpeydseap
[10 oqn[ AABIH ormmerodwo ], (ouou) IOmO)}  WNNOBA e uondiosqy JUOUIBAIL], jeydse saowoy JUDA[OS
S)003S [eudy |, UOT}OBIIX InoJod pue UOT}OBIIX
s[1o aqn[ Aypenb ySrg Aqnios (ouou) oseq [0  oqng suondiosqy JUOA[OS  Xopurl A}1S09s1A dA01dw] ouayd
}001SPAd) AV e
DT - [eway spunodwos mydyns Suruojooms
SOH 199Mms pue AI(J Anngqnios (ouou) SOH pmbry . yuondiosqy JUOUNEII], puUB  IdJBM  JAOWY pue Swikiq
KIOA0221 JO 90139 e
2INSsa1d o SH
omyerodwd], . pue DD YIm
SOH QOGEOQEOQ . mEOn—umoOuU\mm . SjuRUIIRIUOD
pmbr pue sose3 oax-proy Q)BT MO (ouou) se3 Inog uondiosqy juoueal],  OIpIoR QAOWIY Suneon ourury
9JRI 9[0AJ1 JUIAOS o s[10 aqn]
[0031s3seq s[10 ONBIIO/UIAIOS om0} wWnnoeA Jo syutod anod 1ot s[to
oqn| (POxXeMop) 90L-XBA e KOUIIOIID JUSAOS '« UoIOBNXd  [RINLINJ g Suraordwr  snyp  ‘syro aqny Jo Surxemop
SOXBA\ omyerodwd], . (ouou) woxy oeurgey /100D JUOUNEBII],  oqN] WON XM JA0WY JUOAJOS
SYO0ISPadJ AqNT o
S[I0 J[OA)) e
D04 woy
[0 paIuERdd(J o
(3oenX9) Swonoq
sopundwr [0 oqnT . soje1 o3Ier) e nun wnnoeA s[io Suneoriqn|
(9reULgRI) OLRI [IQ/AUSAIOS o poyeydseap Jo opei3d SNOLIBA S$3[20)S [10 aqn|
}00)s [I0 dqn[ pue [ISIIP 0181 9[0A0Y o pue STIO uonoenxd oonpoid 03 saqn] pue Jo UOIOBIIXd
pogund  Auenb Y31y . yuarpeId oxeradwo ], « (ouou)  SES JIUN WNNOBA uondiosqy JUOA[OS  9Je[[usIp pru opeiddn [eanyan




Petroleum refining is undoubtedly, one of the most complex chemical industries,
comprising many different and complicated processes with various possible
configurations and structures, as evidenced from Table 1.2. The critical objective of a
refinery operation, as in any other business-oriented ventures, is to generate maximum
profit by converting crude oils into valuable products such as gasoline, jet fuel, and
diesel. Expectedly, there are many decisions to be considered to achieve optimal
operation for a refinery. At the planning level, managers and executives need to decide
the types of crude oil(s) to process, the types of products to produce, the operating route
to use, the best operation mode for each process, the type of catalyst to select for each
process, and others. At the process level, engineers and operators have to determine
detailed operating conditions for each piece of equipment, namely temperatures,
pressures, detailed process flow, and other values of processing parameters. All these
decisions interact with one another; for example, temperature change in a reactor would
result in different product yields and distribution as well as different utility consumption,
hence different process performance would result. These are bound to implicate and
affect the decisions made at the planning level to select raw material feeds for the
processes involved and even possibly influence the overall operating scheme.
Consequently, integration of refinery planning, scheduling, and operations optimization,
or integrated (total) refinery optimization for short, is considered one of the most difficult
and challenging applications of large-scale optimization but the expected outcome would

be commensurable with the effort, time, and resources invested (Zhang and Zhu, 2000).

1.3.2 Production Planning and Scheduling

Production planning is the discipline related to the high level decision-making of macro-
level problems for allocation of production capacity (or production levels) and production
time (with less emphasis on the latter); raw materials, intermediate products, and final
products inventories; labour and energy resources; as well as investment in new facilities.
A coarse aggregation approach is typically employed, thus resulting in a loss of

manufacturing detail such as the sequence or the order in which specific manufacturing
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steps are executed (Pekny and Reklaitis, 1998). If follows then that the primary objective
of planning is to determine a feasible operating plan consisting of production goals that
optimizes a suitable economic criterion, namely of maximizing total profit (or
equivalently, of minimizing total costs), over a specific extended period of time into the
future, typically in the order of a few months to a few years; given marketing forecasts
for prices, market demands for products, and considerations of equipment availability and
inventories (Reklaitis, 1982; Birewar and Grossmann, 1995; Grossmann et al., 2001;
Bitran and Hax, 1977). In essence, its fundamental function is to develop a good set of
operating goals for the future period. In the context of the hydrocarbon industry, planning
requirements have become increasingly difficult and demanding arising from the need to
produce more varied, higher-quality products while simultaneously meeting increasingly
tighter environmental legislations and policies (Fisher and Zellhart, 1995).

On the other hand, production scheduling, in the context of the chemical processing
industry, deals with lower level decision-making of micro-level problems embedded in
the production planning problem that involves deciding on the methodology that
determines the feasible sequence or order and timing in which various products are to be
produced in each piece of equipment, so as to meet the production goals that are laid out
by the planning model. Its major objective is to efficiently utilize the available equipment
among the multiple types of products to be manufactured, to an extent necessary to
satisfy the production goals by optimizing a suitable economic or systems performance
criterion; typically over a short-term time horizon ranging from several shifts to several
weeks. Scheduling functions specify the task(s) of each stage of production and this
includes defining and projecting the inputs to and outputs from each production
operation. It is particularly required whenever a processing system is used to produce
multiple products by allocating the available production time between products. A key
characteristic is the dynamic and extensive information required in scheduling activities
to describe the manufacturing operations, the resource requirements, and the product
demands. The sources of information are diverse and extend outside of the boundaries of
the manufacturing organization itself since the information spans the technical, financial,
and commercial domains. Furthermore, the data changes rapidly over time as customer

orders, resource availability, and the manufacturing processes themselves undergo
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changes. Therefore, the resulting data complexity compels efficient management of
information resources a necessary prerequisite for effective scheduling (Reklaitis, 1982;
Birewar and Grossmann, 1995; Shobrys, 1995; Pekny and Reklaitis, 1998).

Hartmann (1998) and Grossmann et al. (2001) stresses the differences between a
planning model and a scheduling model. In general, process manufacturing planning
models consider economics of profit maximization of the operations by handling the
issues of what to do and how to do it within longer time horizons. Process manufacturing
scheduling models, on the other hand, consider feasibility of the operations for
accomplishing a given number of orders or on completing required tasks within the
shortest possible time, by addressing the question of when to do it. In particular, planning
models ignore changeovers and treat products grouped into aggregated families.
Conversely, scheduling models explicitly consider changeovers and consider products in
greater detail, including the shipment of specific orders for specific products to specific
customers.

Fisher and Zellhart (1995) also emphasizes that a planning model differs from a daily
scheduling model or an operational process controller. For example, they point out that
the product or process yields predicted or estimated in the planning model should not be
expected to be used exactly in executing operating conditions. This is because planning
models are almost always an average over time and not an accurate prediction of process
conditions at any particular instant. As opposed to planning models, operations are not
averaged over the scheduling period as time and operations move continuously from the
beginning of the particular period to the end. The schedule is revised as needed so that it
always starts from what is actually happening with revisions typically occur on each day
or on each shift.

Scheduling can be viewed as a reality check on the planning process. The objective of
scheduling is the implementation of the plan, subject to the variability that occurs in the
real world. This variability could be present in the form of feedstock supplies and quality,
the production process, customer requirements, or transportation. Schedulers assess how
production upsets and other changes will force deviations from the plan, and they
determine the actions to be taken in making corrections that would meet the plan

objectives
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Thus, scheduling appears to be the most active juncture of business and manufacturing
systems. Schedulers are continually assessing how the capabilities of the production
process compare to the needs of the business. On a daily basis, a scheduler has to react to
process variability as well as business variability that can impact feedstock arrivals and
product movements. Scheduling involves dynamic interactions with the business
(marketing and customer service) as well as the manufacturing process and distribution.
Additionally, human factors add unpredictability to these interactions. On the other hand,
planning activities consider both business and manufacturing but the plans are updated
less frequently and consider less detail. In addition to planning and scheduling functions,
the third dimension in process plant management concerns operations control, in which
applications focus on the manufacturing process with the deployment of distributed
control systems (DCS) providing control capabilities for specific parts of the overall
process (Shobrys, 1995).

Nevertheless, despite the differences, it is obvious that production planning,
scheduling, and operations control are all closely-related activities. Decisions made at the
production planning level have a great impact at the scheduling level, while the
scheduling in itself determines the feasibility of executing the production plans with the
resulting decisions dictating operations control. Ideally, all three activities should be
analyzed and optimized simultaneously, thus calling for the need of the integration
between planning, scheduling, and operational activities, with the expectation that this
would greatly enhance the overall performance of not just the refinery or process plant
concerned, but the parent governing organization as well. However, this is in general a
difficult task given that for instance, even optimizing the scheduling problem in isolation
for fixed production demands is a nontrivial problem, as highlighted by Birewar and
Grossmann (1990) and emphasized in general by Bodington (19950. However, the recent
survey by Grossmann et al. (2001) pointed out that the distinction between planning and
scheduling functions is becoming increasingly blurred as evidenced by recent advances in
the capability of the simultaneous optimization of planning and scheduling decisions,
especially in the context of supply chain optimization problems. This has certainly
promises greater hope for addressing the issue of integrated planning, scheduling, and

operations, which provides the motivation for the following section.
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1.3.3 The Need for Integration of Planning, Scheduling, and Operations Functions

in Petroleum Refineries

For the process industry in general, Bassett et al. (1996) define the term process
operations as tasks that must be addressed in managing a process plant so as to safely and
efficiently manufacture a desired slate of products. As mentioned earlier, these tasks are
principally composed of planning, scheduling, and operations, with the latter consisting
of supervisory control, fault diagnosis, monitoring, regulatory control, and data
acquisition and analysis. The tasks are conventionally viewed to be related in a
hierarchical fashion with long-term strategic planning decisions imposing goals, targets,
and constraints on midterm tactical decisions, which are in turn, implemented and
supported via a number of operational execution functions. All these decision-making
activities draw upon the enterprise information systems base, which forms the necessary
foundation upon which other levels are grounded, as depicted in Figure 1.2, which is
tailored for a petroleum refinery, but is in fact, sufficiently generic across all
manufacturing entities. In addition, it is desirable to extend the scope of this hierarchy to
include the highest level of strategic decision making, that is, the planning and design of
production capacities required for future operation. While these levels can be viewed to
constitute a hierarchy, the requirements of hierarchy dictate that these levels
communicate bidirectionally, that is, in a two-way interactive dynamics between the
different levels, with the lower levels communicating suitably aggregated performance
limits and capacities to the upper levels. This is essentially the challenge of integrating
the planning, scheduling, and operations functions of a process plant, primarily the flow
of information between the various levels, in which petroleum refineries stand out as a
prime example for the multifarious tasks involved that typically span several business and
operation departments, handling large amount of data (Julka et al., 2002) in dealing with
activities such as crude oil procurement, logistics of transportation, and scheduling of

processes (for example, storage tanks and distillation units).
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Figure 1.2. Typical functional hierarchies of corporate planning activities (McDonald, 1998)
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Figure 1.3. Structure of management activities in an enterprise, typically for a petroleum refinery (adapted

from Li (2004) and Bassett et al. (1996))
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Additionally, over the past decade or so, many companies have become aware that
improvement in the performance of the supply chain from customer order to product
delivery is essential to their continued success and sustainability, or even their mere
survival as a business entity. In the petroleum industry, traditionally known for its
sceptical view and slow response towards shifts in contemporary business practices
(partly attributable to the high risk associated with its capital-intensive nature), there
exists an increasingly widening organizational and operational gap in the supply chain
between the activities of planning for the business (corporate planning) on one end and
the scheduling and control of processes (operational planning) to meet commitments on
the other end (Bodington, 1995). Julka et al. (2002) highlight one of the primary reasons
as the incapability of currently available refinery decisions support systems (DSSs) in
effectively performing the following functions of: (i) integrating all the decision-making
activities within a refinery; (ii) interfacing with other co-existing DSSs; (iii)
incorporating dynamic-state data from various sources within and outside of the refinery
(for instance, from suppliers and vendors); and (iv) assisting functions of other
departments concurrently.

In the wake of the onslaught of political and economic (and even social) globalization,
coupled with the inherent complexities in the management of petroleum refineries as
stressed earlier, there is immensely increased emphasis on integrated refinery
optimization. This is typically declared in the overall objective of both corporate planning
and operations planning activities to align production activities with business objectives
in realizing a single ultimate goal of profit maximization. In simple terms, this basically
trickles down to operating process units in such a way so as to generate maximum profit.
On the one hand, rapid development of computing, information and communications
technology (ICT (or just IT)), and its decreasing cost of deployment have tremendously
aided and improved the manner in which refineries are operated. But on the other hand,
they have triggered intense competition among refineries located both within the local
geographic region and abroad, in executing the core activities of purchasing of crude oils
and marketing of refined saleable commercial products. Moreover, refining activities are
subjected to increasingly stringent environmental regulations such as allowable limits of

sulphur content in gasoline and diesel. These regulations inevitably impose significant
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impacts on the profitability and the ensuing competitiveness of a refinery. These
challenges are prompting refineries to continuously seek, demand, and implement various
effective and efficient tools and technologies with the ultimate aim of total refinery
optimization through integrated planning, scheduling, and operations functions (Li, 2004;
Bodington, 1995). Of late, the current drive towards enterprise-wide optimization
(Grossmann, 2005; McDonald, 1998, with the latter apparently appearing to be
overlooked in related literature) offers an indication of renewed concerted effort towards
this end, aided especially with the explosive improvement (which is still revolving) in

scientific computing and information technology in recent years.

1.3.4 Planning, Scheduling, and Operations Practices in the Past

In the past, (strategic) planning in most non-integrated situations is performed by one
entity close to the marketing and supply functions, but not part of them. Planning
activities serve to consolidate feedstock purchases, commitments, and sales opportunities
by attempting to set achievable targets for the plant. Scheduling is undertaken by another
entity that stands between planning and operations. It attempts to produce a schedule that
is feasible, if not optimal, to meet commitments. Process operations are handled by yet
another entity, usually compartmentalized by processes, that operates the processes to the
best capability, given the information available from planning and scheduling activities.
The three entities have different objectives and possibly have different reward
motivations and reward structures, which lead to different philosophies of what
constitutes a job well done (Bodington, 1995)

On the whole, the petroleum industry has invested considerable effort in developing
sophisticated mathematical programming models to help planners provide overall
strategy and direction for refinery operations, crude oil evaluation, and other related
tasks. Likewise, there has been substantial and extensive development and
implementation of tools for scheduling. In addition, considerable efforts have been
assumed in advanced process control for process plants to enable plants to run close to

their optimal operating conditions. Unfortunately, a gap has existed between the three
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activities, with inadequate attention and effort invested to providing tools that aid the
planner, the scheduler, and the operator in an integrated environment, as reported by
Fisher and Zellhart (1995).

Typically, the refinery scheduler attempts to use the monthly linear programming (LP)
model strategic plan to develop a detailed day-to-day schedule for refinery operations
based on scheduled crude and feedstock arrivals, product liftings, and process plant
availabilities and constraints. The schedule usually includes details of the operation of
each process units, the transfer of intermediates to and from the tank farm, and product
blending schedules. However, the scheduling is performed for each tank instead of for a
pool. Moreover, most refinery schedulers have few extensive computing tools to
accomplish this task. Many use spreadsheets that contain individual operating modes for
the primary processes and for the main feedstocks, based on the same data employed in
the LP model. The scheduler utilizes the spreadsheet to generate manufacturing plans on
a daily or weekly basis. It has been reported that some even use just plain paper, pencil,
and calculators as the their only aids in daily scheduling (Fisher and Zellhart, 1995).
Compounding the problem is the fact that deficiencies in planning or operations often
create problems that appear in the scheduling process. Operating deficiencies or inferior
data on the status of the production process could potentially lead to customer service
problems. These problems may also occur due to either a planning activity with an overly
optimistic estimate of available capacity or a poor understanding of the production
capabilities. Additionally, operations staff may not be effective or well-trained enough in

executing activities as scheduled (Shobrys, 1995).

1.3.5 Mathematical Programming and Optimization Approach for Integration of

Planning, Scheduling, and Operations Functions in Petroleum Refineries

The chemical process industry, as pointed out earlier, has been increasingly pursuing the
use of computing technology to gather, organize, disseminate, and exploit enterprise
information and to closely coordinate the decisions made at the various levels of the

process operational hierarchy so as to optimize overall corporate objectives. In refinery
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management, computer software is commonly deployed nowadays to assist in terms of
planning, scheduling, and control functions by executing effective decisions chiefly
pertaining to crude oil selection, production planning, inventory control, and logistics of
transport and despatch management. Continuous research and development in these
aspects have gained important practical significance, as observed by Li (2004). In this
respect, we support the notion advanced by Li (2004), Zhang and Zhu (2000), Bassett et
al. (1996), and Bodington (1995), just to cite a few among many others, that the preferred
approach for achieving integration of planning, scheduling, and operations functions is
through the formulation and solution of suitably structured mathematical programming
models as they have been proven to offer the most effective tools. Indeed, it is the
governing theme of this work that mathematical optimization constructs offer the most
effective framework for integration at the strategic, tactical, and operational levels of
refineries. This shall provide the thrust for undertaking the current work in this thesis
research with the ultimate objective of developing better management tools for decision-
makers. In particular, we consider the mathematical programming approaches for
modelling under uncertainty in the problem parameters of the midterm planning of a
refinery.

As emphasized throughout the preceding discussion, the structure of the main
management activities of an integrated refinery consists of three layers: (1) planning at
the strategic level; (2) scheduling at the tactical level; and (3) unit operations at the
operational level, as illustrated previously in Figure 1.3. First, the planning office,
typically the head office, issues plans that are sent to the scheduling office as guidelines.
The scheduling office then decides on the detailed daily or weekly schedules for each unit
and subsequently sends these schedules to the unit operation office as operating
guidelines (Li, 2004).

The head office produces plantwide high-level strategic plans and tactical plans for the
refinery by considering plantwide factors in the form of market conditions, raw materials
availability, and operating capacities. These plans deal with business decisions such as
which units to run, which raw material(s) to process, and which products to produce. The
high-level strategic plans, in general, relate to a period of several years. On the other

hand, the tactical plans for local refinery management control are based on a refinery’s
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strategic business plan and are executed on a monthly, quarterly, and annual budget.
Further, according to Favennec (2001), the tactical plans include the use of management
monitoring processes and the regular calculation of the commercial results that are often
aligned with monthly accounting procedures.

On the whole, plantwide planning activities, with the underlying objective of seeking
optimal operating strategy than can maximize total profit, are obviously crucial to the
economics of a company (Li, 2004). In this work, several framework of midterm to long-
term strategic planning models are developed for a typical medium-sized refinery with
basic configuration.

The plantwide plans of the head office are then delivered to the scheduling office to
act as a guideline. The scheduling office then determines the detailed timing of actions
that are to be carried out in a plant within the specified ranges of the plantwide plans.
Generally, the scheduling time horizons stretch from one week to ten days. The objective
of scheduling is to seek feasible operating strategies that satisfy the planning
requirements while simultaneously minimize the operating cost. Li (2004) highlighted
that refinery scheduling pose one of the most challenging refinery management activities
simply because the currently available technology and knowledge-base is still immature
relative to the complexity that is demanded from it.

Refinery scheduling is further divided into three components as follows (Li, 2004):

* crude oil tankage area or tank farm scheduling that handles crude oil storing,

transporting, and charging activities;

* refining area scheduling that establishes the various unit operations’ operating

conditions and flow rates of stream flows; and

* blending area scheduling that decides blending recipe for intermediate streams to

produce products that meet quality specifications while maintaining appropriate
product inventory levels.

Subsequently, the detailed scheduling results are sent to the unit operations office
(which is typically housed in the plant’s main control room, often dubbed as the heart of
the plant) to enable the operators to run the units in such a way so as to realize the
outlined scheduling objective. Various tools and performance criteria of the operational

and logistical system for purposes of monitoring, diagnosis, control, and online

29



optimization (or also known as real time optimization, RTO) of systems and processes

are utilized to optimize the performance of the unit operations.

1.3.6 Current Persistent Issues in the Planning, Scheduling, and Operations

Functions of Petroleum Refineries

According to Fisher and Zellhart (1995), planning and scheduling for a refinery typically
encompass three areas: (1) crude oil management, (2) process unit optimization, and (3)
product scheduling and blending.

Crude management entails crude segregation and crude unit operation. Process unit
optimization deals with downstream (of the crude distillation unit (CDU)) process unit
operations that handle crude unit intermediates. Product scheduling and blending handles
the development of a product shipment schedule and an optimum blend recipe based on
information from process unit optimization and current operating data.

A major problem in refinery planning is prevalent even at the very foundation:
optimization of the CDU and its associated product yields. In addition to uncertainty
surrounding the future price of crude oils, the actual composition of crude oils (or crudes,
for short) is often only an educated guess. Crudes vary from shipment to shipment
because of the mixture of sources actually shipped. It is expected that the quality of
crudes does not significantly change over a short period of time, although this assumption
could also render a plan to be inaccurate or worse, infeasible. If the actual crude
composition does not closely agree with that modelled, then an error is committed that
often propagates through the rest of a refinery planning model.

A second, equally common source of error in optimizing the submodel for the CDU is
the assumption that the fractions from the distillation curve for the crude unit, or simply
referred to as the crude cuts or the swing cuts of distillates, are produced as modelled.
Frequently in practice, models are not even adjusted to show cut overlaps, all just because
of wishing to take the easy way out in developing crude cut yields and distillates. One of
the typical crude cutting procedures assigns distillation temperatures directly from the

true boiling point crude analysis, in which no adjustment is made for the actual refinery
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degree of fractionation. This is a particular bad procedure for certain types of gasoline
that have tight 90 percent point limits. The fractionation efficiency of gasoline and
distillate components from all processes would have a significant effect in controlling
aromatics and other types of hydrocarbons. Therefore, planners and decision makers
ought to be more diligent by constantly reviewing the supposed optimized plans and
comparing to actual situations in an effort to improve the prediction accuracy of their
models.

The third component of the refinery planning and scheduling functions involve
product scheduling and blending where this is usually handled by preparing both a short-
range and a long-range plan, using the same model for the blending process. The long-
range plan, typically covering 30 days, provides aggregate pools of products for a
production schedule. The short-range plan, typically spanning seven days, fixes the blend
schedule and creates recipes for the blender. Desired output from the long-range model
includes (i) detailed product blend schedule; (ii) optimal blend recipes; (iii) predicted
properties of blend recipes; (iv) product and component inventories; (v) component
qualities, rundown rates, and costs; (vi) product prices; and (vii) equipment limits. For the
short-range model, the desired output are: (i) a detailed product blend schedule; (ii)
optimal blend recipes; (iii) predicted properties of blend recipes; and (iv) product and

component inventories as a function of time (Fisher and Zellhart, 1995).

1.3.7 Petroleum Refinery Production and Operations Planning under Uncertainty

In the discussion in preceding sections, we emphasize our conviction in mathematical
programming techniques under uncertainty, specifically stochastic programming
methods, towards improvement in tools and methodologies for integrating the planning,
scheduling, and operations functions of a refinery. This stems from the fact that it has
long been recognized that traditional deterministic refinery planning models are not
suitable for capturing the dynamic behaviour of the highly volatile oil and gas industry
due to the presence of data uncertainties, in which exact information that will be needed

in subsequent decision stages is not usually available to the decision maker when a
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decision must be made. Although majority of the works on optimization of refinery

planning models are still based on deterministic programming, there has actually been

quite a substantial body of work that addresses the issue of uncertainty in market

conditions, mainly concerning product demands and prices (or costs) of crude oil and the

saleable refined products. Table 1 attempts to provide a brief survey of recent works in

the petroleum industry supply chain planning and optimization under uncertainty with

focus on works purely addressing refinery production—operations planning.

Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply
chain planning and optimization under uncertainty with focus on refinery production—operations

planning
Author (Year) Application Uncertainty Factor Stochastic Modeling Approach
Pongsakdi et al. Refinery production planning with Product demands Two-stage SP  with scenario
(in press) emphasis on financial ~ risk and prices analysis—a  full  deterministic
management model is run for parameters of each
scenario and the results are used to
fix the first-stage variables; then,
the same model is rerun for the rest
of the scenarios to obtain second-
stage values
Neiro & Pinto Multiperiod refinery production Prices and Two-stage SP with scenario
(2005) planning for selection of different demands of crude analysis for MINLP model
crude oil types under uncertainty and oil and products
crude oil handling constraints
Aseeri & Measures and procedures for Demand and prices Two-stage SP  with scenario
Bagajewicz financial risk management in the analysis for MILP model (by
(2004) planning of natural gas varying transport process selection,
commercialization (in the Asia expansion capacities, and
region) production rates)
Aseeri et al. Financial risk management of Oil prices and oil Two-stage SP with sampling
(2004) offshore oil (petroleum) production average algorithm (SAA) for MILP
infrastructure planning and (modelled via a model

scheduling to determine the sequence
of oil platforms to build and the wells
to drill as well as how to produce
these wells over a period of time
(with introduction of budgeting
constraints that follow cash flow of
the project, take care of the
distribution of proceeds, and consider
the possibility of taking loans against
some built equity)
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Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply
chain planning and optimization under uncertainty with focus on refinery production—operations
planning (continued)

Author (Year) Application Uncertainty Factor Stochastic Modeling Approach

Goel & Optimal investment and operational Size and initial Multistage SP as a sequence of
Grossmann planning of offshore gas field deliverability = of two-stage SP using conditional
(2004) developments under uncertainty in gas fields non-anticipativity constraints

Lababidi et al.

(2004)

Li et al. (2005);
Li (2004), Li et
al. (2004)

Jia

lerapetritou

(2003)

&

Hsieh & Chiang

(2001)

Dempster et al.

(2000)

Escudero et al.

(1999)

Guldmann
Wong (1999)

Bok
(1998)

et

&

al.

gas reserves

Supply chain of a petrochemical
company

Planning, scheduling, and economic
analysis of refinery management with
the integration of production and
energy systems

Mixed-integer linear programming
model for gasoline blending and
distribution scheduling

Manufacturing-to-sale planning
system for refinery fuel oil
production

Multiperiod supply, transformation,
and distribution (STD) scheduling
problem for strategic or tactical level
planning of overall logistics
operations in the petroleum industry

Multiperiod supply, transformation,
and distribution (STD) scheduling
problem

Optimal selection of natural gas
supply contracts by local gas
distribution utilities

Investment planning in the South
Korean petrochemical industry
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Market  demand,
market prices, raw
material costs, and
production yields

Raw material costs,
product demands,
and other changing
market conditions

Demand and cost

demands
supply

Product
and spot
costs/prices

Product demand;
product spot
market  supplying

cost; product spot

market selling
price
Weather variability

Product demand

incorporating decision-dependence
of the scenario tree via hybrid
mixed-integer/disjunctive
programming
Two-stage SP  with scenario
analysis for MINLP model

Two-stage SP  with  penalty
functions replaced by decision
maker’s service objectives of

confidence level (probability of
satisfying customer demands) and
fill rate (proportion of demands
met by plant) evaluated by loss
functions

Fuzzy possibilities linear

programming

Dynamic SP with scenario analysis

Two-stage SP  with scenario
analysis based on partial recourse
approach

Simulation and response surface
estimation via regression analysis
of a large MILP and a much
smaller NLP approximation of the
MILP

Two-stage SP for a multiperiod
MINLP model



Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply
chain planning and optimization under uncertainty with focus on refinery production—operations
planning (continued)

Author (Year) Application Uncertainty Factor Stochastic Modeling Approach
Liu & Sahinidis Process planning with example for a Material Fuzzy programming for MILP or
(1997) petrochemical complex availabilities, MINLP (depending on type of

product demands, uncertainty)
material costs,
product prices,

Liu & Sahinidis Process planning
(1996)

Bopp et al. Managing natural gas purchases
(1996)

Clay and Stochastic planning with example on
Grossmann refinery planning (based on Edgar et
(1994) al., 2001)

process yields

Prices, demands,
availabilities

Demands, frequent
price change

Market demands

Two-stage SP

Scenario analysis

Two-stage SP with fixed recourse

Nomenclature:

SP: stochastic programming

MILP: mixed-integer linear programming
NLP: nonlinear programming

MINLP: mixed-integer nonlinear programming

1.3.8 Factors of Uncertainty in Petroleum Refinery Production and Operations

Planning

In the spirit of the recent work by Goel and Grossmann (2004), we classify possible

factors of uncertainty in the planning of the production and operations of a petroleum

refinery into two classes, namely the exogenous or external factors and the endogenous or

internal factors, as shown in Table 1.4.

1.3.9 Production Capacity Planning of Petroleum Refineries

The planning and utilization of production capacity is one of the most important

managerial responsibilities for managers in the manufacturing industry, including

petroleum refineries. Such decisions have to be made in the face of uncertainty in several
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Table 1.4. Possible factors of uncertainty in a petroleum refinery planning problem (Maiti et al.,
2001; Liu and Sahinidis, 1997)

Exogenous (external) factors
* Availabilities of sources of crude oil (raw material) supply
* Economic data on feedstock, intermediates, finished products, utilities, and others
*  Prices of crude oil and chemicals
*  Production costs
= Distribution costs
»  Market demands
* Production demands: final product volumes & specifications
* Location
* Budgets on capital investments for capacity expansion and new equipment purchases or replacements
* Investment costs of processes (for example, licence fees to be paid to process licensors providing use of
a certain refining process technology such as UOP (Universal Oil Products)

Endogenous (internal) factors

* Properties of components

* Product/process yields

* Processing and blending options
* Machine availabilities

important parameters, with the most important of these uncertainties being market
demand for the products being manufactured. Hence, manufacturing capacity planning
has long attracted the attention of economists as well as researchers in the practice of its
traditional domain, namely operations research and management science.

According to Escudero et al. (1993), there are two types of capacity planning
problems. The more commonly discussed problem of deciding how much capacity to
acquire and how to plan its utilization is a strategic problem that deserves careful
analysis. On the other hand, in the tactical time horizon, the second-type of capacity
problems are normally resolved through inventory buffers, additional workloads, or
through alternate sourcing. Although new capacity cannot be acquired in this time
horizon, it is often possible to develop alliances with other manufacturers or vendors to
manage the production of uneven or unanticipated production volumes.

Sahinidis and Grossmann (1989) state that a considerable number of works has been
reported, particularly in the operations research literature, concerning capacity expansion
problems in several areas of application. A classic review on this subject can be found in
Luss (1982). In the chemical engineering literature, a variety of methods has been applied
to expansions of chemical plants, for example, (i) dynamic programming by Roberts
(1964); (i1) branch-and-bound procedure combined with generalized reduced gradient of

constrained nonlinear programming (NLP) algorithm by Himmelblau and Bickel (1980);
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(ii1) multiperiod mixed-integer linear programming (MILP) formulation by Grossmann
and Santibanez (1980); (iv) goal programming by Shimizu and Takamatsu (1985) via a
procedure of stepwise and subjective judgement process by the decision-maker by
relaxation of flexible constraints and sensitivity analysis of linear programming, and (v)
recursive MILP by Jimenez and Rudd (1987) to achieve an optimum integration sequence
for a petrochemical industry. However, they are often ineffective for large-scale problems
and are thus limited in the size of problems that can be handled. In addition to that, of
particular interest is the problem of capacity expansion under uncertainty via the scenario
analysis approach, of which Eppen et al. (1989) is a frequently-cited work that treats a
real-world problem in the automobile industry by accounting for the expected downside
risk.

However, capacity expansion will not be considered in this work since the primary
objective is to focus on developing methodologies and tools for planning under

uncertainty. It will therefore be left to future work.

1.3.10 Other Applications of Stochastic Programming Models in the Hydrocarbon
Industry

Wallace and Fleten (2003) briefly discuss the applications of stochastic optimization
models in the oil and gas (and petrochemicals) industry, in addition to the problem of
refinery planning addressed in this work. They include the following:

* optimum oil field development to determine platform capacity for well drilling
and production operations; number of wells including their placement and timing;
and the production profile of wells, with stochasticity in random future oil prices
(Jonsbraten (1998) described using scenarios;

* scheduling arrivals of tankers at a refinery for loading of gasoline for export;

* scheduling of gas fields production to decide on the location and timing of fields
that should be developed and the ensuing pipelines that should be constructed;

* planning of gas storage facilities for contracted delivery, participation in
potentially profitable spot markets, and others;

* portfolio management of natural gas contracts.
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1.4 STOCHASTIC PROGRAMMING (SP) FOR OPTIMIZATION UNDER
UNCERTAINTY

Stochastic programming (SP), as indicated by the section heading, is the subfield of
mathematical programming that considers optimization in the presence of uncertainty
(Dyer and Stougie, 2006). Within the context of modelling , it is the optimization branch
explicitly concerned with models with random parameters (Birge and Louveaux, 1997). It
is referred to as the study of practical procedures for decision making under the presence
of uncertainties and risks (Uryasev and Pardalos, 2001). Further, according to Roger J.-B
Wets (1996), arguably one of the most prominent theorists of the field, the motivation for
modelling decision problems as stochastic programs is derived mostly from the search for
a “robust” first-stage decision, that is, “a decision that will put the decision maker in a
rather good position in whatever, or almost whatever, be the outcome of future events.”
Even though 50 years have eclipsed since the pioneering seminal works of Dantzig
(1955) and Beale (1955), George B. Dantzig still considers planning under uncertainty as
the definitive open problem of utmost importance in the field of optimization (Horner,
1999). Thus, this augurs well for the consideration of uncertainty in the refinery
production planning problem addressed in this work.

Stochastic programming deals with optimization problems that are characterized by
two essential features: the uncertainty in the problem data and the sequence of decisions,
in which some of the model parameters are considered random variables that take values
from given or assumed discrete or continuous probability distributions. The decision must
be made before the actual values of these random parameters are realized. The need for
including uncertainty in complex decision models arose early in the history of
mathematical programming. The first forms of model, involving an action followed by
observation and reaction, that is, the two-stage stochastic programming with recourse,
appeared independently in Dantzig (1955) and Beale (1955) (as also referred to in the
preceding paragraph). (Dantzig uses the term “linear programs under uncertainty” while
Beale refers to it as “linear programs with random coefficients”. The identical year of
publication is a mere coincidence.) An alternative method, called chance- or

probabilistic-constrained programming, was also developed quite early, principally by
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Charnes and Cooper (1959). Both forms have their origin in statistical decision theory,
but in contrast to decision theory, stochastic programming has emphasized methods of
solution and analytical solution properties over procedures for constructing objectives
and updating probabilities (Dupacova, 2002).

Stochastic programming with recourse is often used to model uncertainty, giving rise
to large-scale mathematical programs that require the use of decomposition methods and
approximation schemes for their solution. Surveys of developments and applications of
stochastic programming can be found in Ermoliev and Wets (1988), Wets (1989), Birge
and Wets (1991), Kall and Wallace (1994), and Ruszczynski and Shapiro (2003). There
has been tremendous progress in stochastic optimization problems from both theoretical
and practical perspectives, especially in stochastic linear programming, matching almost
in parallel, its deterministic counterpart (Wets, 1996). This is illustrated by the successful
use of stochastic programming approaches in a number of areas such as energy
(particularly electricity generation) and production planning, telecommunications, forest
and fishery harvest management, engineering, and transportation. Uryasev and Pardalos
(2001) mention also that it was recently realized that the practical experience gained in
stochastic programming can be expanded to a much larger spectrum of applications
including financial modeling, asset-liability management, bond portfolio management,
currency modelling, risk control, and probabilistic risk analysis.

Figure 1.3 depicts some of the more well-established optimization techniques under
uncertainty with emphasis on chemical engineering applications, based on the recent
review article by Sahinidis (2004). Interested readers are referred to Kall and Wallace
(1994), Birge and Louveaux (1997), and Prekopa (1995) as standard basic references for
the theory and application of multistage stochastic programs, in particular the two-stage
program with fixed recourse that is widely adopted in model developments pertaining to

this work.
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OPTIMIZATION
UNDER UNCERTAINTY

Stochastic Fuzzy Stochastic
Programming Mathematical Programming Dynamic Programming

Programming Probabilistic Flexible Possibilistic
with Recourse Programming Programming Programming

Stochastic Linear Stochastic Non-Linear Stochastic Integer Robust Stochastic
Programming (SLP) Programming (SNLP) Programming (SIP) Programming (RSP)

Figure 1.4. Established optimization techniques under uncertainty (with emphasis on chemical engineering
applications as based on Sahinidis (2004))

1.4.1 Assessing the Need for Stochastic Programming Models: Advantages and

Disadvantages

The starting point for many stochastic programming models is a deterministic linear
programming (LP) model (or simply, a linear program). If some of the parameters in an
LP are uncertain and the LP appears to be fairly sensitive to changes in the parameters,
then it may be appropriate to consider an SP model (Sen and Higle, 1999). For example,
consider a blending model for the production planning of a petroleum refinery that uses
LP to recommend recipes to produce a crude oil blend with specific characteristics in the
mixing tank preceding the crude distillation unit (CDU), by combining different types of
crudes. In some instances, the content of these mixtures of crude oil may, or are even
bound to, vary. If the optimal blend remains relatively unaffected within the range of
variation, then we can justify the certainty assumption of LP. On the other hand, if the
variations cause the optimal blend to vary substantially (which should be justifiably
anticipated), then it may be worth pursuing the comparatively more complex and more
computationally demanding stochastic programming model. In such a case, we can use
LP sensitivity analysis for diagnostic purposes and stochastic programming to obtain an
optimal blend. In a more general context, the distinction between deterministic models
and stochastic programming models lies in the sense that in considering possible
scenarios of a certain problem or a phenomenon, multiple scenarios with their associated
data are optimized one at a time in deterministic models, as if they will occur with

certainty. In contrast, a stochastic model considers the ensemble of all scenarios
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simultaneously, each with an associated probability of occurrence, as a probabilistic
description of the future (Shapiro, 2004).

In many instances, we need stochastic programming models due to scant information
pertinent to executing decisions. Such a situation is likely to arise, for example, with the
introduction of new products or services. Consider the corporate planning or marketing
arm of an integrated oil and gas company that wishes to introduce a new lubricant
product from its refining activities. They may try to obtain information on the need for
this product in multiple ways. They may inspect usage data of an existing similar
product(s) in the market within their region and from a similar demographic region in a
different part of the country. They could also obtain surrogate data from a computer
simulation model. Finally, they could execute a market survey or perform a test within a
small segment of the region. All of these approaches provide estimates of market demand
for the new lubricant product, and these data estimates are likely to be different. With a
stochastic programming model, the company can include all these alternative forecasts
within one decision-making model to produce a more robust plan (Sen and Higle, 1999).

Moreover, stochastic programming has the additional benefit of allowing decision-
makers to impose constraints reflecting their judgement of the risks associated with the
firm’s performance under various possible business and even non-business (for example,
a socially-influenced event) scenarios. To illustrate this point, consider the set of
constraints that state that losses by a firm in year n cannot exceed US$M million under
any circumstance (or scenario). These constraints may alternatively be expressed as a
single probabilistic constraint requiring that the probability associated with losses
suffered by the firm surpassing US$M million in year » may not exceed a certain value p,
say 0.05 (for convenience sake). Decision-makers may of course view such targets as
being somewhat arbitrary, implying the need to apply methods of multiobjective
optimization to systematically explore the tradeoff of maximum expected net revenues
against risk targets. Therefore, by employing stochastic programming models, risk
management is translated into systematic procedures for identifying efficient frontiers
that describe the tradeoffs of expected return profit against explicit descriptions of risk

exposure faced by the firm and/or the decision-maker (Shapiro, 2004).
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From a computational point-of-view, stochastic programming provides a general
framework to model path dependence of the stochastic process within an optimization
model. Furthermore, it permits uncountably many states and actions, together with
constraints, time-lags, and others. One of the important distinctions that should be
highlighted is that unlike dynamic programming, stochastic programming separates the
model formulation activity from the solution algorithm. One advantage of this separation
is that it is not necessary for stochastic optimization models to all obey the same
mathematical assumptions. This leads to a rich class of models for which a variety of
algorithms can be developed. However, on the downside of the ledger, stochastic
programming formulations can lead to large scale problems, thus methods based on
approximation and decomposition becomes paramount for as measures of circumvention

(Sen, 2001).

1.4.2 General Formulation of Optimization Model for Operating Chemical

Processes under Uncertainty

Pintaric and Kravanja (2000) present a general formulation of the mathematical model for
optimization of chemical processes under uncertainty, presented here in the following in

a slightly revised form for a production planning problem:

maximize P(x,d,e)

subject to h(x,d,9)=0
g(x,d,G)SO
xOX,dl B0 TH

(1.1)

where P is an objective function that usually represents the economic potential, for
example, profit; x represents the vector of operating variables (for example, flowrates,
compositions, temperatures, pressures); d is the vector of design or planning (size)
variables (for example, area, volume, diameter, height, power); 6 is the vector of

uncertain parameters; and 4 and g are the vectors of process equality and inequality
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constraints, respectively. X, D, and TH are continuous feasible regions of operating
variables, design variables, and uncertain parameters, respectively, defined by the lower
and upper bounds. The most common approach in addressing the optimization problem in
equation (1.1) is the two-stage stochastic programming formulation and this is addressed

and elaborated later.

design or planning stage: EP = max EyP (d , G)
d

subject to: operating stage: P (d , 9) =max P (x, d, 9)
such that h(x,d,0) =0 1.2)
g (x, d, 9) <0

x0X,dl B TH

where Ep is the mathematical operator for the calculation of the expected value of the
objective function EP over 0. The objective of the design stage is to select an optimal
vector of design or planning variables, while the objective of the operating stage is to

determine an optimal vector of operating variables at fixed design or planning decisions.

1.4.3 Overview of the Concept and Philosophy of Two-Stage Stochastic
Programming with Recourse from the Perspective of Applications in Chemical

Engineering

Under the standard two-stage stochastic programming paradigm, the decision variables of
an optimization problem under uncertainty are partitioned into two sets according to
whether they are decided (or implemented) before or after an outcome of the random
variable(s) is observed. The first-stage variables are those that have to be decided before
the actual realization of the uncertain parameters. They can be regarded as proactive and
are often associated with planning issues such as capacity expansion decisions or in
aggregate production planning. Subsequently, once the random events have presented
themselves, further design, planning or operational policy improvements can be made by

selecting, at a certain cost, the values of the second-stage or recourse variables.
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Traditionally, the second-stage variables are interpreted as corrective measures against
any infeasibility arising due to a particular realization of uncertainty, hence the term
recourse. They allow the decision-maker to model a response to the observed outcome
that constitutes his or her desired (and appropriate) recourse. The second-stage problem
may also be operational-level decisions following a first-stage plan and realization of the
uncertainty; hence they can be regarded as reactive. The corresponding second-stage cost
is a random variable due to uncertainty. Thus, the overall objective is to choose the first-
stage variables in a way that the sum of the first-stage costs and the expected value of the
random second-stage recourse costs is minimized. This concept of recourse has been
applied to linear, integer, and nonlinear programming problems (Sahinidis, 2004; Cheng
et al., 2005).

For the two-stage stochastic recourse models, the expected value of the cost resulting
from optimally adapting the plan according to the realizations of uncertain parameters is
referred to as the recourse function. A problem is said to have complete recourse if the
recourse cost for every possible uncertainty realization remains finite, independent of the
nature of the first-stage decisions. In turn, if this statement is true only for the set of
feasible first-stage decisions (that is, they satisfy the first-stage constraints, or in other
words, the first-stage constraints are not violated), then the problem is said to have the
slightly less restrictive property of relatively complete recourse. To ensure complete
recourse in any problem, penalty functions (of costs) for deviations from constraint
satisfaction of prescribed limits are used (Sen and Higle, 1999).

For example, in recourse planning, we model a response for each outcome of the
random elements that might be observed. In actuality, this response will also depend
upon the first-stage decisions. This type of planning in practice involves setting up
policies that will help the organization adapt to the revealed outcomes. Specific to
production and inventory systems, the first-stage decision might correspond to resource
quantities, and demand might be modelled using random variables. When demand
exceeds the amount available in stock, policy may dictate that customer demand be
backlogged at the expense of some shortage costs. This policy constitutes a recourse
response; to be precise, it is a simple recourse policy as according to the explanation in

the preceding paragraph. The exact level of this response (that is, the amount backlogged)
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depends on the amounts produced and demanded. Under uncertainty, it is essential to
adopt initial policies that will accommodate alternative outcomes. Consequently, this
provides the conviction that modeling under uncertainty requires the incorporation of a
recourse policy model (Cheng et al., 2005).

Typically, a two-stage stochastic planning problem is derived from a deterministic
problem by identifying the decision variables that can be manipulated after the design,
planning, and construction stage, and deferring the decision with respect to those
variables until the operating stage. Since the manipulable variables or operating variables,
that is, the recourse variables can be controlled in a way such that the best outcomes are
obtained for the prevailing operating conditions established in the first-stage, a planning
problem reduces to one in which the remaining decision variables are to be determined
such that the expectation of an operationally-optimized economic objective is maximized
(Pai and Hughes, 1987).

According to Sen and Higle (1999), the presence of uncertainty affects both feasibility
and optimality of the optimization problem. In fact, formulating an appropriate objective
function itself raises interesting modelling and algorithmic questions. Furthermore, in
Section 1.1, we note that the many variants of the two-stage stochastic modelling
approach lies primarily in the distinct approaches taken to evaluate the expected value
term, which in principle (but not necessarily so) contains a multidimensional integral
involving (possibly) the joint probability distribution of the uncertain parameters.
However, this varies depending on the nature of the problem and information in the form
of historical data that is available to the decision maker (Applequist et al., 2000). Gupta
and Maranas (2003) rightly so pointed out that the main challenge in solving the two-
stage stochastic program lies in evaluating the second-stage expectation term. Various
techniques have been proposed in works addressing production planning under
uncertainty by employing the two-stage decision problem model. Ierapetritou and
Pistikopoulos (1994a, 1994b, 1996) proposed an algorithmic procedure using numerical
Gaussian quadrature integration to approximate the multiple integrals of the expected
profit with the corresponding quadrature points simultaneously obtained as a result of the
optimization procedure. Liu and Sahinidis (1996) use a Monte-Carlo sampling approach

to estimate the expectation of the objective function. Clay and Grossmann (1997) employ
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a sensitivity-based successive disaggregation algorithm without consideration of capacity
expansion. Another approach in an earlier work is the technique employed by Friedman
and Reklaitis (1975) that incorporates flexibility in the system by allowing for possible
future additive corrections on the current decisions and optimize the system by applying
an appropriate cost-for-correction in the objective function, which is essentially similar to
the recourse model approach. It is deeply encouraging to note that recent applications of
two-stage stochastic programming for solvinuncertainties and control risks explicitly,
particularly the stochastic programming technique of two-stage stochastic linear
programming with fixed recourse or in general also known as the scenario analysis
technique. The underlying idea is to simultaneously consideg large-scale chemical
production and process planning problems, as chronicled in Table 1.3, marvellously
spans the entire full range of mathematical programming problems from linear programs
(which no longer pose any serious computational complication with current availabilities
of efficient algorithms and hardware computing prowess) and mixed-integer linear
programs (MILP) to nonlinear programs (NLP) and mixed-integer nonlinear programs

(MINLP).

1.4.4 The Classical Two-Stage Stochastic Linear Program with Fixed Recourse

Birge and Louveaux (1997) reiterated that stochastic programming is an attractive option
for planning problems because it allows the decision maker to analyze r multiple
scenarios of an uncertain future, each with an associated probability of occurrence. The
model simultaneously determines an optimal contingency plan, due to the incorporation
of recourse actions, for each scenario and an optimal plan that optimally hedges against
these contingency plans. Optimization entails maximization of expected net profits or
minimization of various expected costs, in which the term ‘“expected” refers to
multiplying net profits or costs associated with each scenario by its probability of
occurrence (Lababidi et al., 2004).

On a more general note, a two-stage stochastic program with recourse is a special case
of multistage stochastic program. As observed by Romisch and Schultz (2001) and

Ahmed et al. (in press), much of the work in the area of multistage stochastic programs
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has focused on stochastic linear programs, which do not handle integer requirements or
nonlinearities. This is mainly due to the highly desired property of convexity of the value
function of stochastic linear programs; however, breaks down in the case of stochastic

integer programs (Balasubramanian and Grossmann, 2004).
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CHAPTER 2

Research Objectives

2.1 PROBLEM DESCRIPTION AND RESEARCH OBJECTIVES

The midterm production planning problem for petroleum refineries addressed in this
work can be stated as follows. It is assumed that the physical resources of the plant are
fixed and that the associated prices, costs, and market demand are externally imposed.
Thus, the following are all assumed to be known or given (Reklaitis, 1982):

* types and number of production units and inventory facilities;

* the product slate;

* the costs of materials, labour, and energy;

* the product prices; as well as

* the product demands.

With these assumed given information, the principal governing objective of this
research is to determine the optimal midterm (medium term) production planning of a
petroleum refinery by computing the amount of materials being processed at each time in
each unit and in each process stream, by explicitly and simultaneously accounting for the
three major factors of uncertainty, namely: (i) market demand or product demand; (ii)
prices of crude oil (the raw material) and the final saleable refining commercial products;
and (iii) product yields of crude oil from chemical reactions in the primary distillation
unit, or more commonly known nowadays as the crude distillation unit (CDU), of a
typical petroleum refinery. A hybrid of various stochastic optimization modelling
techniques within the framework of the classical two-stage stochastic programming with
recourse model structure are applied to reformulate a deterministic refinery production
planning problem into one that is both solution robust and model robust. This is
accomplished by adopting the Markowitz’s mean—variance approach in handling risk
arising from variations in profit and penalty costs that are due to the recourse actions
incurred as a result of violations of constraints subjected to the factors of uncertainty

aforementioned.
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A numerical study based on a representative example drawn from the literature is then
presented and solved to optimality to demonstrate the effectiveness of implementing the
stochastic models proposed. As indicated, we will achieve this through reformulating the
deterministic linear programming (LP) model developed by Allen (1971) for refinery
operations planning by introducing elements of uncertainty. Subsequently, the solutions
are provided by implementing four approaches or techniques for decision-making under
uncertainty, as elaborated in the following with a gradual increase of complexity:

* Approach 1: the Markowitz’s mean—variance (E—V or MV) model to handle
randomness in the objective function coefficients of prices by minimizing the
variance of the expected value (or mean) of the random coefficients, subject to a
target profit constraint;

* Approach 2: the two-stage stochastic programming with fixed recourse approach to
model randomness in the right-hand side and left-hand side (or technological)
coefficients by minimizing the expected recourse penalty costs due to violations of
constraints;

* Approach 3: incorporation of the Markowitz’s MV model within the two-stage
stochastic programming framework developed in Approach 2 to minimize both the
expectation and the variance of the recourse penalty costs; and

* Approach 4: reformulation of the model developed in Approach 3 by utilizing the
Mean-Absolute Deviation (MAD) in place of variance as the measure of risk imposed
by the recourse penalty costs.

Finally, the results obtained will be analyzed, interpreted, and compared and
contrasted; the latter primarily with the work reported by Ravi and Reddy (1998), who
made use of the fuzzy linear fractional goal programming approach in their proposed
solution on the same deterministic model of Allen (1971).

Acknowledging the shortcomings of deterministic production planning models as
addressed in the earlier section on review of the existing literature in the field, the novelty
of the approaches in this work lies in striving to present an explicit method of stochastic
programming under uncertainty by utilizing existing concepts of straightforward yet
effective modelling techniques in formulating tractable stochastic models for application

in the large-scale optimization problem of petroleum refinery production planning. In
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essence, the production plans are to be determined probabilistically within an
environment of incomplete information. As events materialize with the uncertainties
revealed, production rates of the refinery for the following planning period are to be
determined in conditional fashion, taking account of accumulating experience and future
possibilities, as denoted by the associated probabilities. The meaning and quantitative
consequences to be assigned to each such event is to be determined beforehand from the
scenario generation methodology that is applied, so that plans can be formulated and
evaluated in advance for each possible contingency. Finally, these efforts are undertaken
with the desirable intention of assessing potential future changes in the structure and
requirements of the decision-making activity of production planning within a petroleum
refinery (at least from a qualitative point-of-view, if not quantitatively through extending
the optimization models in future work).

As a final remark, Shapiro (1993) praised stochastic programming with recourse
models for offering rigorous formalism in evaluating the impact of uncertainty on
production planning and scheduling plans. However, it is rightly cautioned that a great
deal of artistry and problem specific analysis is required to effectively utilize the
formalism since it can easily lead to producing complex models demanding heavy
computational time. In line with this, justifications in using a specific modelling

technique will be provided and comparisons made with other forms and techniques.

2.2 OVERVIEW OF THE THESIS

A major part of the remainder of the thesis shall focus on the implementation of the four
approaches introduced in Section 2.1 for oil refinery planning under uncertainty and the
resulting proposed general models. This is followed by the application of the stochastic
models developed to a representative numerical example in order to test and demonstrate
their suitability, effectiveness, and robustness for decision-making activities.

In Chapter 3, we present an exposition on the methodology of problem formulation for
the planning of a large-scale process network under uncertainty, in view of application

for the production planning of petroleum refineries. Rigorous and detailed mathematical
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treatment of the associated theories underpinning the concept of two-stage stochastic
programming with recourse model is thoroughly discussed.

In Chapter 4, we demonstrate the general formulation of the deterministic production
planning model for petroleum refineries. The framework and structure of the
deterministic planning model is based mainly on the production planning model proposed
by McDonald and Karimi (1997) and on the refinery planning model in the work by
Ierapetritou and Pistikopoulos (1996).

Subsequently, in Chapter 5, we reformulate the deterministic model developed in the
preceding chapter with the addition of stochastic dimensions to address uncertainties in
commodity prices, market demand, and product yields. As elaborated in the previous
section, four approaches are adopted, resulting in four stochastic models with gradual
complexity and capability, especially pertaining to risk management.

We dedicate Chapter 6 for a discussion on the implementation of the models on the
General Algebraic Modeling System (GAMS) platform. Here, we strive to succinctly
justify and advocate the use of a high-level modelling language like GAMS (and its
counterparts such as AMPL) for the ease of constructing and implementing a large-scale
optimization model.

Chapter 7 then discusses the two metrics that we deem most suitable in evaluating the
performance of the stochastic models and hence, the value of the venture of adopting
stochastic programming itself. The first metric pertains to the concepts of solution
robustness and model robustness as introduced in the seminal work by Mulvey et al.
(1995) while the second metric employs the use of coefficient of variation, traditionally
defined as the inverse ratio of data to the noise in the data. From this definition, it follows
that a small value of C, is desirable as we strive to minimize the presence of noise. Thus,
C, can be adopted as an indicator of the degree of uncertainty in a stochastic model.

Chapter 8 forms the heart of the thesis as it is essentially the test bed of the
performance of the proposed stochastic models. Without loss of generality, we consider
the deterministic midterm production planning model for a petroleum refinery by Allen
(1971) and Ravi and Reddy (1988) as the base case or core model of our numerical study.
First, the deterministic model is solved to optimality using GAMS with the results

validated by LINDO. Then, based on the detailed steps outlined in Chapter 5, the base
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case model is reformulated according to the four approaches outlined to produce four
convex nonlinear quadratic stochastic models. We then proceed to compute the optimal
solution of the models and thereafter, a thorough analysis of the results obtained are
established in an effort to investigate the robustness of the solutions and the models, by
employing the aforementioned performance metrics.

Finally, we provide some concluding remarks with regards to the outlined research
objectives that we have managed to achieve, followed by recommendations of promising
future work to be undertaken, in Chapters 9 and 10, respectively. Miscellaneous
supporting information is collected under Appendix and the thesis is brought to a close by
a complete list of references detailing the multitude literature that has been cited in this
work, as a respectful acknowledgement of the vast contributions of previous and present

researchers to whom we owe our utmost gratitude.
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CHAPTER 3

Methodology for Formulation of Mathematical Programming Models

and Methods for Problems under Uncertainty

3.1 MOTIVATION FOR IMPLEMENTATION OF STOCHASTIC
OPTIMIZATION MODELS AND METHODS

Westerberg (1996) advocates the view that optimization is a tool to aid decision-making
through the selection of better values in solving a problem. In real-world applications,
optimization problems in practice depend mostly on several model parameters, noise
factors, uncontrollable parameters, and others, whose quantities are not given or even
known, least of all fixed, at the planning stage. Typical examples from engineering,
economics, and operations research include material parameters (for example, elasticity
moduli, yield stresses, allowable stresses, moment capacities, specific gravity), external
loadings, friction coefficients, moments of inertia, length of links, mass of links, location
of the centre of gravity of links, manufacturing errors, tolerances, noise terms, product
demand parameters, technological coefficients in input—output functions, and cost factors
(and many others). Owing to the existence of several types of stochastic uncertainties,
namely physical uncertainty, economic uncertainty, statistical uncertainty, and model
uncertainty, these parameters must be modelled by random variables having a certain
probability distribution. In most cases, at least certain moments of this distribution are
known.

In order to cope with these uncertainties, a basic procedure in the
engineering/economic practice is to replace first, the unknown parameters by some
chosen nominal values, for example, statistically-computed expected or mean values,
estimates, or merely guesses, of the parameters. Then, the resulting and mostly increasing
deviation of the performance (output, behaviour) of the system or structure from the
prescribed performance, that is, the tracking error, is compensated by (online) input
corrections. However, the online correction of a system/structure is often time-consuming

and causes mostly increasing expenses, typically in terms of correction or recourse costs.
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Very large recourse costs may arise in case of damages or failures of a manufacturing or
processing plant. This can be omitted to a large extent by taking into account upfront at
the planning stage, the possible consequences of the tracking errors and the known prior
and sample information about the random data of the problem. Hence, instead of relying
on ordinary deterministic parameter optimization methods based on some nominal
parameter values and then just applying some correction actions (conventionally via
sensitivity analysis or deterministic scenario analysis), stochastic optimization methods
should be applied. By incorporating the stochastic parameter variations into the
optimization process, expensive and increasing online correction expenses can be omitted

or at least reduced to a large extent (Marti, 2005).

3.2 AN OVERALL OUTLOOK ON FORMULATION OF STOCHASTIC
OPTIMIZATION MODELS AND METHODS FOR THE REFINERY
PRODUCTION PLANNING PROBLEM UNDER UNCERTAINTY

In principle, probabilistic or stochastic modelling is an iterative procedure that principally

comprises the following three steps, as outlined by Diwekar (2002, 2003):

1. specify the identified uncertainties or randomness in key input parameters in terms of
probability distributions;

2. perform sampling for the distribution of the specified random parameter in an iterative
fashion;

3. propagate the effects of uncertainties through the model and apply suitable statistical
techniques to analyze the results.

Planning under uncertainty requires the explicit representation of uncertain quantities
within an underlying decision model. When the underlying model is a linear program, the
representation of certain data elements as random variables results in a stochastic linear
program (SLP) (Higle 1998). This provides the underlying framework for the
deterministic refinery planning model problem considered in this work, subject to
uncertainties in commodity prices, market demand, and product yields from crude oil.

The fundamental idea behind SLP is the concept of recourse, that is, the ability to take
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corrective action(s) after a random event has taken place. Recourse models use corrective
actions, usually in the form of penalty functions, to compensate for the violation of
constraints arising during the realization of uncertainty. In other words, it is the
opportunity to adapt a solution to the specific outcome observed. The two-stage model is
one of the main paradigms of recourse models. The two-stage model divides the decision
variables into two stages. The first-stage variables are those that have to be decided right
now (or “here-and-now”) before future actual realization of the uncertain parameters so
as to accommodate any future uncertain parameter realizations or perhaps those that fall
within some specified confidence limits. Hence, the two-stage formulation is also referred
to as the “here-and-now” model. Then, the second-stage variables are those used as
corrective measures, that is, recourse against any infeasibilities arising during the
realization of the uncertainty. In the context of the refinery production planning problem
under uncertainty, the raw material supply of crude oil(s) and the production rates are
determined in the first stage or planning stage. Then, the effects of the uncertain
parameters on system performance is established in the second stage or operating stage,
in which decisions are made concerning the amount of production required to meet the
actually realized product demand and product yields, or the amount of raw material
required from other suppliers to meet production requirements, or the opposite situation
of determining the inventory cost and space required to contain production surpluses.

It is apparent that the second stage is the most important part of the model since this is
the stage at which the flexibility of the planning is checked, possibly by including
consideration of variations of the operating variables to accommodate the uncertain
parameter realizations. This part of the model is also the most computationally

demanding, as remarks by Wellons and Reklaitis (1989).

54



3.3 FORMULATION OF STOCHASTIC OPTIMIZATION MODELS

Ponnambalam (2005) categorizes stochastic optimization problems into three classes of
parameter randomness (in a loosely restricted order of increasing complexity) as follows:
(1) randomness in the objective function coefficients; (2) randomness in the right-hand-
side coefficients of constraints; and (3) randomness in the left-hand-side coefficients (also
referred to as technological coefficients). He further discusses at least three conventional
and widely-adopted methods of problem formulation and their associated challenges or
difficulties when coefficients in a linear programming (LP) problem are random, as in the
following.

1. In the Markowitz’s mean—variance formulation approach, the LP becomes a
quadratic programming (QP) problem that is somewhat harder to solve than an
LP.

2. In the two-stage stochastic linear programs with recourse method, two major
challenges are in (i) producing reasonable scenarios and their probabilities, and
(i) in the exponentially increasing size of the problem with the number of
uncertain parameters. However, the results obtained are quite practical and mean—
variance formulation can even be considered as a possible inclusion.

3. Inthe case of chance-constrained programming, the problem is quite easy to solve
in the case of right-hand side (RHS) coefficients randomness but becomes
nonlinear and increasingly difficult to solve in the case of left-hand side (LHS)
randomness. Moreover, if the constraints have to be satisfied with joint
probability, then the formulation becomes tedious and hard to solve. Furthermore,
the decision maker has to arbitrarily choose a probability value to satisfy.

In addition to these three conventional approaches of stochastic optimization, the
alternative method of robust optimization is also available in which an assumption on the
perturbations of the uncertain coefficients are made.

The general approach for the formulation of stochastic optimization models can be

found in any of the standard texts in the stochastic programming literature. The
discussion here is based on Kall and Wallace (1994). First, the general form of the

mathematical programming model is introduced as the following:
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minimize g, (x)
subjectto g;(x)<0,i=1,2,---,m @3.1)
xOXxa o”

Here, it is understood that the set X as well as the functions g: 0 " -0 ,i=0, ..., m,
with [J " denoting the set of real n-vectors, are given by the modelling process.

If there are random parameters in (3.1), they may lead to the problem

"minimize" go(x,g)
subjectto g, (x,8)<0,i=1,2,--,m (3.2)
xOxd 0"

where & is a random vector varying over a set = [ [1¥. More precisely, it is assumed
throughout that a family F of events, which are subsets of =, and the probability
distribution P on F, are given. Hence, for every subset 4 [] = that is an event, as denoted
by 4 U F, the probability P(4) is known. Furthermore, it is assumed that the functions
gix, ) = -0 L, i are random variables themselves, and that the probability
distribution P is independent of x.

However, problem (3.2) is not well defined since the meanings of “minimize” as well
as of the constraints are not clear at all, if we think of taking a decision on x before
knowing the realization of & . Therefore, a revision of the modelling process is necessary,

leading to the so-called deterministic equivalent for (3.2) (Kall & Wallace, 1994).

3.3.1 The Deterministic Equivalent Model

If the following variable is defined:

(3.3)

8

. 0 if g (x,E)SO,
(x.€)= .
g; (x,E) otherwise
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then, the ith constraint is violated if and only if g, (x,E) > 0 for a given decision x and

realization & of & . Hence, we could provide for each constraint, a recourse or second-

stage activity y(&) that, after observing the realization ¢, is chosen so as to compensate
for the violation of a particular constraint, if there is one, by satisfying the condition

g; (x,E) - »;(§) <0. This extra effort is assumed to cause an extra cost or penalty of ¢;

per unit, in which the additional costs termed as recourse function amount to:

0(x,&) = min {i 4,5, (&)
L =

@)z g (x8), i= lm} (3.4)

Thus, this yields a total cost comprising first-stage and recourse cost of
ﬁ)(xaa) :gO (X’E)+Q(Xaa) (3‘5)

Instead of (3.4), we might consider a more general linear recourse program with a

recourse vector y(§)0¥1 0" (Y is some given polyhedral set, that is, a convex set with
linear inequalities, such as { y| y 2(} ), an arbitrary fixed mxn matrix W (the recourse

matrix), and a corresponding unit cost vector g0 ". This results in the following

recourse function for (3.5):
0(x.&)=min{q"s{Wy2 g (x.£).y07] (3.6)
+ + + T
where g ()C,E)Z(g1 (x,8).. g, (x,E)) :
If we consider a situation of a factory producing m products, g; (x,E) could be
understood as the difference between the demand and the output of a product i. Then,

g’ (x,E) > 0 means that there is a shortage in product i, relative to the demand. If the

factory is assumed to be committed to cover the demands, problem (3.4) could, for
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instance, be interpreted as buying the shortage of the products at the market. Problem
(3.6) instead could result from a second-stage or emergency production program, carried
through with the factor input y and a technology represented by the matrix 7. Choosing
W = I, the m x m identity matrix, (3.4) turns out to be a special case of (3.6).

We could also consider a nonlinear recourse program to define the recourse function

for (3.5); for instance, Q(x, E) could be chosen as:
Q(xaa)zmm{Q()’)‘Hl()’)Zg: (xaE)a lzlaamayDYD Dﬁ} (3‘7)

where ¢:0" -~ [0 and H,:0" - [ are supposed to be given.

In any case, if it is meaningful and acceptable to the decision maker to minimize the
expected value of the total costs (that is, consisting of the first-stage and the recourse
costs) then instead of problem (3.2), we could consider its deterministic equivalent, the

two-stage stochastic program with recourse:
min Ey , (&) = min £ { g, () + 0(x.E)} 3.8)

The above two-stage problem is immediately extendable to the multistage recourse

program as follows: instead of the two decisions x and y, to be taken at stages 1 and 2, we

are now faced with K + 1 sequential decisions x,,x;, -, Xx (xT o ET) , to be taken at the

subsequent stages T = 0, 1,---, K. The term “stages” can, but need not necessarily or
strictly, be interpreted as time periods (depending on the context and nature of the
problem addressed). However, an extensive discussion on the multistage recourse
problems will not be presented here as this formulation is not considered in the present

work.
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3.4 RECOURSE PROBLEMS AND MODELS

The term “recourse” refers to the opportunity to adapt a solution to the specific outcome
observed. Recourse models result when some of the decisions must be fixed before
information relevant to the uncertainties is available, while some of them can be delayed
until afterward to allow for the mentioned opportunity for recourse action to be taken. For
instance, in this problem of refinery planning under uncertainty, in addressing market
demand uncertainty, the resource quantities, that is, the crude oil supply, must be
determined fairly early, but the production quantities can be delayed until after the
demand is known. In this sense, the production quantities may be thought of as being
“flexible” or “adaptive” while the resource quantities of crude oil are not (Higle, 2005).
As elaborated earlier somewhat more mathematically, the general recourse model is to
choose some initial decision that minimizes current costs plus the expected value of
future recourse actions. With a finite number of second-stage realizations and all linear
functions, the full deterministic equivalent linear program or extensive form can always

be formed (Birge and Louveaux, 1997).

3.5 COMPONENTS OF A RECOURSE PROBLEM

Recourse problems are generally characterized by the following three properties: (1)
scenario tree, (2) scenario problems, and (3) nonanticipativity constraints. A scenario is
one specific, complete, realization of the stochastic elements that might appear during the
course of the problem, for instance, a possible sequence of demand over the duration of
the problem. The scenario tree is a structured distributional representation of the
stochastic elements and the manner in which they may evolve over the period of time
represented in the problem. A scenario problem is associated with a particular scenario
and may be looked upon as a deterministic optimization problem.

Nonanticipativity constraints are specific conditions that may be necessary to include
depending on the manner in which a problem is formulated so as to ensure that the

decision sequence honours the information structure associated with the scenario tree.
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They are the only constraints linking the separate scenarios (or linking decisions across
scenarios in each period). Without them, a problem would decompose into a separate
problem for each scenario, maintaining the structure of that problem (Birge & Louveaux,
1997). They impose the condition that scenarios that share the same history of
information until a particular decision epoch, should also make the same decisions. In
reality, the nonanticipativity constraints ensure that the solutions obtained are
implementable, that is, actions that must be taken at a specific point in time depend only
on information that is available at that time. The future is uncertain; therefore, today’s
decision cannot take advantage of knowledge of the future, thus, they are independent of
each other. Because of this, the terms “nonanticipativity” and “implementability” are
sometimes used interchangeably. These nonanticipativity constraints, which are derived
from the scenario tree, are a distinguishing characteristic of stochastic programs; solution
methods are typically designed to exploit their structure (Higle, 2005; http://www-
fp.mcs.anl.gov/otc/Guide/Opt Web/continuous/constrained/stochastic/index.html, accessed

November 2, 2005).

3.6 FORMULATION OF THE TWO-STAGE STOCHASTIC LINEAR
PROGRAM (SLP) WITH RECOURSE PROBLEMS

The classical two-stage stochastic linear program (SLP) with fixed recourse as originally

proposed in the seminal works of Dantzig (1955) and Beale (1955) has the following

general form:

minimize ¢’ x + E; [Q(x, E(w))}

subject to Ax =b 3.9
xOX= 0
where  Q(x,&() =minimize ¢" (6)y( W)
subject to W () () =h( @ —T( G (3.10)
y(w) =0
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where 31" is the vector of first-stage decision variables of size (n x 1);
¢, A, and b are the first-stage data of sizes (n x 1); (m % n); and (m X 1)
respectively;
w [0 Q represent random events;
q(w), h(w), and T(w) are the second-stage data of sizes (k x 1); (/ X 1); and (/ X k)
respectively;
W(w) is the random recourse coefficient matrix of size (/ X k);
y(w) is the vector of second-stage decision variables.

In this classical SLP model, the problem in (3.9) represents the first-stage model while
(3.10) corresponds to the second-stage model. x is also referred to as the “here-and-now”
decision. Note in particular that x does not respond to w as it is effectively determined
before any information regarding the random or uncertain data is obtained, that is, before
the actual realization of the uncertain parameters. In other words, x is characterized as
being scenario-independent and its optimal value is not conditional on the realization of
the uncertain parameters. Thus, they are the design or planning variables (depending on
the context of the problem addressed). Variables in this set cannot be adjusted once a
specific realization of the uncertain data is observed. ¢ is the column vector of cost
coefficient at the first stage. 4 is the first-stage coefficient matrix with b as the
corresponding right-hand side vectors.

In contrast, the second-stage variable y is determined only after observations regarding
w have been obtained. For a given realization of w, the second-stage problem data of ¢, 4,
and 7 become known. Each component of ¢, 4, and T is thus a possible random variable.
q is the vector of recourse cost coefficient vectors at the second stage. As stated, W is the
random second-stage recourse coefficient matrix with 4 as the corresponding right-hand
side vectors. 7 is the matrix that ties the two stages together while w denotes scenarios in

the future. If 7 (w) is the ith row of the matrix 7(w), then combining the stochastic
components of the second-stage data results in a vector of a particular realization of the

random data §(w) :(qT(u),hT( W, (W, T ( ())), which is also random with

potentially up to N =k + [/ + (I x n) components. In other words, a single random event or
state of the world w influences several random variables that are all components of a

single random vector &. This is one of the most profound feature of a two-stage stochastic
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program  (Birge and Louveaux, 1997; Higle, 2005; Uryasev, 2005,
www.ise.ufl.edu/esi6912/FALL2005/DOCS/notes8.ppt, accessed November 11, 2005;
Lai et al., 2005; Mulvey et al., 1995).

In the literature, the problem in (3.10) is variously termed as the second-stage
problem, the subproblem, or the recourse subproblem. It allows some operational
recourse or corrective actions to take place to improve the objective and correct any
infeasibility. Essentially, the goal of a two-stage model is to identify a first-stage solution
that is well-hedged or simply well-positioned against all possible realizations of w.

From an application point-of-view especially in the field of operations research and
management science, stochastic programs seek to minimize the cost of the first-stage
decision plus the expected cost of the second-stage recourse decision. (A contrasting
stand is usually taken in the financial engineering field in which the objective is typically
to maximize profit, hence leading to a stochastic maximization program.) The first linear

rogram minimizes the first-stage direct costs c¢'x plus the expected recourse cost
progr g p p

E; [Q (x,E(U)))] over all possible scenarios while meeting the first-stage constraints, Ax

> b. The recourse cost Q depends on both x and w. The second linear program describes
how to choose y in which a different decision is taken for each random scenario . It
minimizes the cost ¢’y subject to some recourse constraint 7x + Wy = h. As mentioned
earlier, this random constraint can be thought of as requiring some action to correct the
system after the random event occurs. It is the goal constraint in which violations of this
constraint are allowed, but the associated penalty cost as given by ¢’y will influence the

choice of x. Thus, ¢’y is the recourse penalty cost or the second-stage value function, or

just simply referred to as the recourse function, while FE; [Q(x,E(U)))] denotes the

expected value of the recourse function.

In the case of refinery production planning under market demand uncertainty, x;, for
example, might correspond to the resource levels of crude oil to be acquired and /4,
corresponds to a specific data scenario, notably the actual demands for the various
refining products. The decision y; adapts to the specific combination of x; and /X,
obtained. In the event that the initial decision x; is coupled with a “bad” outcome, the
variable y; offers an opportunity to recover to the fullest extent possible. For example, the
random constraint would require the purchase of enough mass or volume of products as
the second-stage recourse measure to supplement the original amount that has been
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produced in order to meet the demand, or it would require the expense cost of storage of
production surplus. Thus, recourse problems are always presented in the form of two or
more decision stages (Higle, 2005).

Additionally, Sen and Higle (1999) pointed out that this formulation emphasizes the
time-staged nature of the decision-making problem, that is, the selection of x is followed
by the selection of y, which is undertaken in response to the scenario that unfolds. Thus,
the first-stage decision x represents the immediate commitment made, while the second-
stage decision y is delayed until additional information is obtained. (For this reason, when
solving a recourse problem, one typically reports only the first-stage decision vector.)

Much of the difficulty associated with recourse models may be traced to difficulties
with evaluating and approximating the recourse function. In essence, the difficulty in

solving the recourse problem may be attributed to the evaluation of the expectation of the

random linear program value function Q(x,E((,o)) that involves multidimensional

integration. Notwithstanding the impracticality of the multidimensional integration of this
particular function, the recourse function possesses one of the most sought-after
properties in all of mathematical programming, namely convexity (Sen and Higle, 1999).

Higle (2005) made an interesting analytical remark that an optimal solution will tend
to have the property that x leaves the second-stage decision in a position to exploit
advantageous outcomes of  without excessive vulnerability to disadvantageous
outcomes. She further noted that in such a case, careful attention to the specific outcomes
used to model the uncertainty is necessary. An overly coarse model may result in a failure
to adequately represent outcomes that should influence the first-stage decision, leaving
the second-stage in an un-modelled state of vulnerability. On the other hand, an
excessively fine and detailed model may typically result in increased computational
burden.

As presented without assuming any additional properties or structure on (3.10), this
formulation is referred to as the two-stage SLP with “general recourse” problem. Further,
there is specific structure in the recourse subproblem that can be exploited for
computational advantage. The following section describes the specific subproblem
structure type of fixed recourse, which extensively forms the underpinning structure of

most models proposed in this work.
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3.7 FORMULATION OF THE TWO-STAGE STOCHASTIC LINEAR
PROGRAM (SLP) WITH FIXED RECOURSE PROBLEMS

A special case of the recourse model, known as the fixed recourse model, arises when the
constraint coefficients matrix W(w) in the second-stage problem is not subject to
uncertainty, that is, it is fixed and hence is denoted simply as the matrix W. This is by far,
the most widely used form of the recourse models since most of the theory and
computational methods have been developed for this class of linear two-stage problems

(Ermoliev and Wets, 1988). For this, the recourse subproblem becomes:

O (x,&(w)) =minimize ¢" () y( &)
subject to Wy(w) =h(w) —-T( Wx 3.11)
y(w) 20

Reduction of the classical two-stage SLP with fixed recourse to the deterministic

equivalent program (DEP) yields

minimize ¢’ x+0 (x)

subject to Ax = b, 3.12)
x20
where
0 (x) = Eg [ O(x.&(w)) ] (3.13)

with the recourse function given by

0(x&@) =min{g" (Wy Iy =h(& T( ow. y | (3.14)
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and
£ =(q" (WA (. ( . T 9 (3.15)

Since the expected value of the minimum recourse cost Q(x,E((,o)) modifies the

objective of the first-stage problem, the whole model has a certain internal dynamical
structure: in computing an optimal first-stage decision x, we have to take into account not

only the direct first stage profit ¢’x but also the expected value of the future recourse cost.
If there is no feasible solution to (3.11), we assume that Q(x, E(co)) — +oo, and this
should also be considered in the first-stage decision (Ermoliev and Wets, 1988).

Further to that, Ermoliev and Wets (1988) also highlighted the widespread interest in
stochastic programming problems with recourse due to their vast application to modelling
decision problems that involve random data. If some constraints, for example, 7x =k in a
linear programming problem include random coefficients in 7 or /# and a decision has to
be taken before knowing the realizations 7(w) and A(w) of 7 and A, it is generally

impossible to require that the equality
T(wW)x = h(w) (3.16)

be satisfied for each realization of the stochastic constraint parameters. The problem with

recourse is a way of overcoming these modelling difficulties; the recourse decision y may

be interpreted as a correction in (3.16), and the recourse cost Q(x,E((,o)) as a penalty for

discrepancy in (3.16).
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3.8 FORMULATION OF THE DETERMINISTIC EQUIVALENT PROGRAM
FOR THE TWO-STAGE STOCHASTIC LINEAR PROGRAM (SLP) WITH
FIXED RECOURSE AND DISCRETE RANDOM VECTORS

In the following, the framework of the two-stage SLP with recourse model for random

vectors with discrete distributions is considered and examined in more detail for the case
of a discretely distributed random vector & (or equivalently stated as discretely

distributed random elements), attaining values of:

& =(q./,T;) with probability p, >0,

&, =(42. 1, T;) with probability p, >0,

&, =(g,.h,.T,) with probability p, >0,
where > p =1 (3.17)

In this case, the two-stage problem of (3.9) and (3.10) takes on the form

L
minimize ¢’ x+ z PzQ(X, & )
=1

subject to Ax =b (3.18)
x20

where O (x, El) is the minimum objective value in the recourse problem

minimize (q;)" y
subjectto Wy =h —T)x 3.19)
y20,1=1,23,---,L
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If we denote the solutions to problem (3.20) at a given x as y,(x) for/=1,2,"", L, we

can express the first-stage objective as

L
x+Y pig) 3 (%) (3.20)

=1

Although the solutions y,(x) depend on x in a rather involved way, instead of

considering (3.19) and (3.20) as a bilevel problem, we can put together the first-stage
problem (3.19) and all realizations of the second-stage problem (3.20) into a large linear

programming model:

minimize ¢'x  + pg)' v+ Py * o+ p@)

subjectto  Ax + = b
Iix + Wy, = N
Tx + Wy, = h, B21)
Tx + Wy, = h
x20 »=20 y, 20 v, 20

Problems (3.19)—(3.21) are equivalent in the sense that they have the same set of
solutions for the first-stage decision vector x in (3.18) and in which the optimal values of
Vi, V2,-++, yr in (3.21) are solutions to the realizations of the second-stage recourse
problem (3.20) at the optimal x. Hence, (3.21) is referred to as the deterministic
equivalent program of the two-stage SLP of (3.19)—(3.20).

It is noted that the nonanticipativity constraint is met. There is only one first-stage
decision x whereas there are L second-stage decisions, one for each scenario. The first-
stage decision cannot anticipate one scenario over another and must be feasible for each
scenario, that is, the conditions imposed by Ax =»b and Wy =h —Tx for/=1,2,3,---, L.
Since all the decisions x and y; are solved simultaneously, x is thus chosen to be optimal,

in some sense, over all the anticipated scenarios.
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Another feature of the deterministic equivalent problem worth noting is that since the
T and W matrices are repeated for every scenario in the model, the size of the problem
increases linearly with the number of scenarios. Since the structure of the matrices
remains the same and because the constraint matrix has a special shape, solution
algorithms can take advantage of these properties. Taking uncertainty into account leads
to more robust solutions but also requires more computational effort to obtain the
solution (http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/
stochastic/index.html, accessed November 2, 2005). For further elaboration on the
properties of the deterministic equivalent program of stochastic programs with fixed
recourse, the interested reader is referred to the excellent extensive survey in the now

classical paper by Wets (1974).

3.9 NONANTICIPATIVE POLICIES

As emphasized earlier, one of the more important notions incorporated within a stochastic
programming formulation is that of implementability or nonanticipativity.
Nonanticipativity of the decision process is an inherent component of stochastic
optimization problems; this concept essentially and fundamentally distinguishes
stochastic from deterministic optimization problems (Wets,
http://www.math.ucdavis.edu/~rjbw/ARTICLES/ref2Circ.pdf, accessed on April 9,
2006). It reflects the requirement that under uncertainty, the design or planning decisions
x must be implemented before an outcome of the random variable is observed. That is,
the planning decision is made while the random variable is still unknown, and therefore,
it cannot be based on any particular outcome of the random variable. In the two-stage
SLP, this implies that the first-stage or first-period decision x is independent of which
second-stage or second-period scenario actually occurs. Thus, the wait-and-see approach,
which is anticipative, is not an appropriate decision-making framework for planning. On
the other hand, the adaptive here-and-now approach embodied in the two-stage SLP with
general recourse provides planning decisions x that are not dependent on any outcome of

the random variable and are hence nonanticipative (Sen and Higle, 1999).
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The scenario tree portrayed in Figure 3.1 illustrates this concept of nonanticipativity or
implementability. Since information is revealed sequentially, two or more scenarios may
share a common sequence of outcomes for the first ¢ periods, with # < T, where T denotes
the number of periods. For example, scenarios 1 and 2, which correspond to the paths a
b ->d - handa - b - d - i, share the same sequence of outcomes in the first two
periods, that is a — b, b — d and hence, these two scenarios are indistinguishable until
the third period. To maintain implementability, the decisions associated with these two
scenarios must be identical in the first two periods. In general, if two scenarios share the
same sequence of nodes during the first ¢ periods, they ought to share the same
information base during these periods. Consequently, decisions associated with these
scenarios must be identical through period ¢. This is essentially the requirement of the
nonanticipativity condition as implicitly honoured in the formulation of the scenario tree
in Figure 3.1.

In simple words, nonanticipativity indicates that today’s decisions cannot “anticipate”
specific occurrences of future random events. Therefore, careful consideration must be
given to the timing of all random events, hence rendering the stochastic structure as a
secondary characteristic that can only be defined after the temporal structure has been

determined (Gassmann, 1998).

Figure 3.1. The scenario tree is a useful mechanism for depicting the manner in which events may unfold.
It can also be utilized to guide the formulation of a multistage stochastic (linear) programming model (Sen
and Higle, 1999).

69



3.10 REPRESENTATIONS OF THE STOCHASTIC PARAMETERS

A key component in formulating stochastic optimization models for decision making
under uncertainty is the representation of the stochastic model parameters. According to
Escudero et al. (1999), three approaches are conventionally and widely employed to
represent and analyze uncertainty or randomness in this type of parameters or data: (1) by
its average or mean value, that is, its expected value, (2) in terms of the continuous
probability distribution that most aptly describe each item, or (3) based on a
representative collection of unplanned events, termed as scenarios, which in precise
probabilistic terms, corresponds to a discrete distribution given by a finite probability
space (Henrion et al., 2001).

The characterization of each of these parameters as a unique mean value appears to be
a vague exercise because it obviously could not be representative of the situation in all
cases. The alternative of considering the continuous probability distributions of the
parameters implicit in the model definition is a realistic and accurate approach (see for
example, Gupta and Maranas, 2003; Petkov and Maranas, 1998; lerapetritou and
Pistikopouskos, 1996¢; Wellons and Reklaitis, 1989). However, this approach usually
leads to a very complicated model because it typically requires the following information:
(a) statistical knowledge of a large number of historical data sets; (b) a given or known
continuous probability distribution assumption of estimation; (¢) knowledge of certain
types of relationships or correlations among the variables; (d) methods of complicated
algorithms to solve the formulated model, essentially to evaluate the numerical
integration of the expectation terms; and (e) sound knowledge of statistical theory.

Therefore, the third alternative of scenario analysis is advocated as the most promising
and practical alternative (within the refinery planning under uncertainty literature, see for
example, Neiro & Pinto, 2005; Pongsakdi et al. (in press); Dempster et al., 2000; and
Escudero et al., 1999; for a representative work in the operations research literature, see
Eppen et al, 1989). The scenario-based technique attempts to represent a random
parameter by forecasting all of its possible and likely future outcomes, typically in a
scenario tree (or other methods) A representative scenario tree can be constructed, in

general, by adopting the following approaches (among many other variants that have
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been proposed in the literature): (a) the decision-maker, who qualifies as an expert in
addressing the problem at hand, defines all the scenario items; (b) the decision-maker
defines the scenario set, and computer codes are written to select a representative subset;
(c) the decision-maker defines a typical basic scenario and the variability of the
parameters, and computer simulations, typically based on Monte Carlo methods, are
employed to create the scenario tree. This third option is also useful if a reduction of the
state space is desired (Bonfill et al., 2004).

The scenario analysis approach enables the user to define relationships among the
realizations of the parameters and between consecutive time periods (or groups of
periods), for instance, as joint distributions to account for correlations among parameters.
The likelihood of realization of each scenario depends on its assigned relative weight,
that is, in effect, its probability. A scenario is defined by a given realization of the
parameters along the time horizon. In the model developed in this work, a scenario is
given by values of the product demand, commodity prices, and product yields for three
possible representative outcomes generalized as the ‘realistic” event, the “optimistic”
event, and the “pessimistic” event, as well as its probability of happening, together with
the deterministic data (Escudero et al., 1999).

However, the infamous shortcoming of the scenario analysis or also known as the
progressive hedging approach (Birge and Wets, 1991) is that the number of scenarios
increases exponentially with the number of random parameters, resulting in an
exponential increase in the problem size. As a result, the computational strategy becomes
expensive because the computation time generally increases polynomially (quadratically
or even cubically) with the size of the optimization problem (Biegler, 1993). In this
aspect, continuous probability distributions for the uncertain parameters could be
considered to circumvent this difficulty, in which, a substantial reduction in the size of
the problem is usually accomplished at the expense of introducing nonlinearities into the
problem through multivariate integration over the continuous probability space. In
addition, the continuous distribution-based approach is used particularly in cases where a
natural set of discrete scenarios cannot be identified and only a continuous range of
potential futures can be predicted. By assigning a probability distribution to the

continuous range of potential outcomes, the need to forecast exact scenarios is obviated.
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Typically, the distribution-based approach is adopted by modelling the uncertainty as
being normally distributed with a specified mean and standard deviation.

Nevertheless, Subrahmanyam et al. (1994) argued that since in many cases in the
industry, no sufficiently detailed forecast is available anyway to adequately construct a
continuous distribution, a discrete distribution for the uncertain parameters in the form of
scenarios still emerges as the most realistic and practical approach. Furthermore,
realizations of the random variables in a refinery planning problem generally correspond
to a finite number of representative scenarios that need to be taken into account in the
search for a “hedging” solution for the optimization under uncertainty problem. This is
particularly so when no statistical information is readily available about the uncertain
unknown parameters. From the solution perspective, this is an advantageous approach as
it eliminates the cumbersome handling of the nonlinear terms introduced by continuous
distributions, as stressed earlier. If a continuous distribution is indeed available, it can be
approximated by a set of scenarios too, as depicted in Figure 3.2. The continuous
distribution may be discretized into a number of parameter values with the associated
probabilities given by the corresponding area under the probability distribution function.
It is important to note that consideration in selecting the number of scenarios to represent
uncertainty or randomness in the parameters is a trade-off between model accuracy and
computational efficiency in which a larger number of scenarios would give higher
solution accuracy but is computationally expensive at the same time.

Continuous probability distribution

P3

H=0
U in discrete representation

P2

pP3
D1

H=0
Figure 3.2. Discrete representation of a continuous probability distribution
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3.10.1 Accurate Approach for Representation of the Stochastic Parameters via

Continuous Probability Distributions

As mentioned in earlier sections, Gupta and Maranas (2003) identified the evaluation of
the expectation of the inner recourse problem as the main challenge associated with
solving two-stage stochastic problems. For a scenario-based description of uncertainty,
this can be achieved by explicitly associating a second-stage variable with each scenario
and solving the resulting large-scale extensive formulation (Birge & Louveaux, 1997) by
efficient solution techniques such as Dantzig—Wolfe (1960) decomposition and Benders
(1962) decomposition. For continuous probability distributions, this challenge has been
primarily resolved through the actually similar methodology of explicit/implicit
discretization of the probability space in approximating the multivariate probability
integrals. The two most commonly used discretization techniques in the chemical process
systems engineering (PSE) literature are Monte Carlo sampling techniques (Liu &
Sahinidis, 1996; Diwekar & Kalagnanam 1997) (which is also used for discrete
distributions) and the Gaussian quadrature formula for approximation of integral
evaluation of the expectation terms (Acevedo and Pistikopoulos, 1998; Ierapetritou and
Pistikopoulos, 1994c, 1996¢; lerapetritou et al., 1996a; Straub & Grossmann, 1990). The
primary advantage of these methods lies in their relative insensitivity to the form of the
underlying probability distribution of the uncertain parameter. The Monte Carlo approach
lacks in terms of accuracy but avoids the high-dimensional numerical integration since
the expectations can be expressed as finite sums, with each constraint duplicated for each
scenario, in which a second-stage variable can be associated with each realization of the
random parameters (Bonfill et al., 2004).

However, the major downside to them, as also in the scenario-based approach, is the
exponential increase in the problem size with the increasing number of uncertain
parameters and the scenarios considered due to the nested structure of the two-stage
formulation (Shah, 1998). This directly translates to an intensive and excessively large
increase in computational requirements, rendering a limit to the practical commercial
applicability of these techniques. Petkov and Maranas (1998) propose a methodology to

narrow this computational gap, whose work is extended by Gupta and Maranas (2003,
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2000). The approach explicitly solves the inner recourse problem analytically for the
second-stage variables in terms of the first-stage variables. This is followed by analytical
integration over all realizations of the random variables for the evaluation of the
expectation terms. By the explicit solution of the inner problem followed by analytical
integration over all product demand realizations, the need for discretization of the
probability space is obviated. The stochastic attributes of the problem are translated into a
resulting equivalent deterministic program at the expense of introducing nonlinearities
into the optimization problem. This obviated the need for discretization of the probability

space and hence, reduces the associated computational burden.

3.11 SCENARIO CONSTRUCTION

The issue of modelling the stochastic elements is perhaps the most crucial in stochastic
optimization. To accomplish this, scenario analysis offers an effective and easily
understood tool for addressing the stochastic elements in a multi-stage model. A scenario
can be defined as a single deterministic realization of all uncertainties over the planning
horizon. Ideally, the process constructs scenarios that represent the universe of possible
outcomes (Glynn and Iglehart, 1989; Dantzig and Infanger, 1993). This objective differs
from generation of a single scenario, for instance, as carried out in forecasting techniques
(or trading strategies in financial practices) (Mulvey et al., 1997).

Each scenario corresponds to a particular outcome of the random elements in a
random vector. It is largely a matter of notational convenience that we refer to these
vectors and matrices as being random. In most cases, only a small number of the elements
are actually random; the rest are constant (the latter are termed as degenerate random
variables). In defining the set of scenarios, it is necessary to identify all possible
outcomes of the random elements. This consists of identifying the values of those
elements that are fixed and the set of all possible outcomes of those random or uncertain
elements that vary. In undertaking the latter task, it is important to note the distinctions
between models of dependent and independent random variables, which are elaborated as

follows (Sen and Higle, 1999).
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From a modelling perspective, dependence results when the random elements are
subject to a common influence and are most easily described using joint distributions. For
example, in a hydroelectric-power-planning model, all hydrological reserves are
influenced by the weather. In wet years, reservoirs will tend to be full; in dry years, they
will tend toward lower levels. In such a case, it would be convenient to model wet
periods and dry periods (or even multiple degrees of wet and dry periods) and to specify
the set of reservoir levels that correspond to each type of period. By specifying the
probability with which each type of period occurs, one obtains a joint distribution on the
reservoir levels (Sen and Higle, 1999).

Independent random variables result when there is no apparent link between the
various elements. In this case, one can most easily describe the random elements
individually using marginal distributions. For example, in the telecommunication network
planning example, the number of calls initiated between any pair of nodes is generally not
influenced by the calls between any other pair. Thus, one models the pairwise demand as
independent random variables using distributions appropriate to the application. (For
example, if it is reasonable to assume that arrival of calls follow a Poisson process, then a
Poisson distribution is appropriate.) In this case, a scenario identifies a value for each
realization. With independent random variables, the set of all possible outcomes is the
Cartesian product of the elemental outcomes for each random variable. The probability
associated with any given outcome is the product of the corresponding marginal
probabilities. For example, if there are two random variables with five outcomes each and
one random variable with four outcomes and the random variables are independent, there
are 5 X 5 x 4 = 100 possible scenarios being modeled. It is easy to see that with
independent random variables, the number of possible scenarios grows exponentially in
the number of random elements (Sen and Higle, 1999).

For the refinery planning problem under uncertainty, consider, for instance, the case of
demand uncertainty for two products, gasoline and jet fuel as shown in Figure 3.3. The
demand for each is described by three discrete points with point probability associated
with each of them. A unique combination of two such points, one from each distribution
of gasoline or jet fuel, constitutes a scenario. Assuming that demands for gasoline and jet

fuel are completely independent, the associated joint probability of occurrence of both
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points are given by the product of the individual probabilities. Therefore, the number of
scenarios that can be generated is equal to the number of combinations that are possible
by considering every pair. Mathematically, this is given by the number of elements of
each scenario, that is, the number of possible states in each scenario, raised to the power
of the number of random parameters. In this example, a scenario incorporates the
possibility of the states of “average” (realistic), “above average” (the optimistic), and
“below average” (pessimistic) (number of states = 3) in demand uncertainty for products
gasoline and jet fuel (random parameters = 2). Therefore, the total number of scenarios is
given by 3 x 3 = 9 scenarios. Notice that the number of scenarios grows exponentially
with the number of random parameters and this presents a potential problem. A useful
technique is to generate scenarios by employing Monte-Carlo type sampling method for
the independent random parameters. A finite number of scenarios thus generated (which
will be small in number when compared to the total number of scenarios) is then included
in the planning analysis. The selection of scenarios is weighted by their probabilities in
which scenarios with higher probability are more likely to be realized. Additionally, the
scenario approach to uncertainty allows the designer to readily use intuitive forecasts in
the model where a realization of a scenario at any point of time may be easily
implemented, without having to cumbersomely deal with continuous distributions
(Subrahmanyam et al., 1994).

Demand for gasoline Demand for jet fuel

p3:0.2 p1:035
demand = 2835t/ - demand= 2565t/d demand= 2415t/
demand =2700t/

p3=02

p2F 0.45 demand =2185t/d

demand = 2300 t/s

Scenario Demand for gasoline (t/d) Demand for jet fuel (t/d) Probability
1 2835 2415 0.35x0.35 =0.1225
2 2835 2300 0.35x0.45 =0.1575
3 2835 2185 0.35x02 =0.07
4 2700 2415 0.45%0.35 =0.1575
5 2700 2300 0.45x0.45 =0.2025
6 2700 2185 0.45x02 =0.09
7 2565 2415 0.2x0.35 =0.07
8 2565 2300 0.2x045 =0.09
9 2565 2185 0.2 x0.2 =0.04

> (Probability) = 1.000

Figure 3.3. Scenario generation derived from discrete probability distributions (based on Subrahmanyam et
al., 1994)
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CHAPTER 4

General Formulation of the Deterministic Midterm Production

Planning Model for Petroleum Refineries

4.1 ESTABLISHMENT OF NOMENCLATURE AND NOTATIONS FOR THE
DETERMINISTIC APPROACH

4.1.1 Indices

i for the set of materials or products
Jj for the set of processes

t for the set of time periods

4.1.2 Sets

1 set of materials or products

J set of processes

T set of time periods

4.1.3 Parameters

diy demand for product i in time period ¢

dlb ,d,-lj lower and upper bounds on the demand of product i during period ¢,
respectively

k. pY lower and upper bounds on the availability of crude oil during period ¢,
respectively

Jimin sfmax - minimum and maximum required amount of inventory for material i at the

it oty

end of each time period
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stoichiometric coefficient for material 7 in process j

Vis unit sales price of product type 7 in time period ¢

A unit purchase price of crude oil in time period ¢

Vis value of the final inventory of material i in time period ¢

A value of the starting inventory of material i in time period ¢ (may be taken as
the material purchase price for a two-period model)

o variable-size cost coefficient for the investment cost of capacity expansion of
process j in time period ¢

B fixed-cost charge for the investment cost of capacity expansion of process j in
time period ¢

s, Oy cost per man-hour of regular and overtime labour in time period ¢

4.1.4 Variables

Xjs production capacity of processj (j =1, 2, ..., M) during time period ¢

Xj -1 production capacity of processj (j =1, 2, ..., M) during time period 7—1

Vi vector of binary variables denoting capacity expansion alternatives of
process j in period # (1 if there is an expansion, 0 if otherwise)

CE;; vector of capacity expansion of process j in time period ¢

Sis amount of (commercial) producti (i =1, 2, ..., N) sold in time period ¢

Li; amount of lost demand for product 7 in time period ¢

P; amount of crude oil purchased in time period ¢

L, Ilfz initial and final amount of inventory of material i in time period ¢

H;; amount of product type i to be subcontracted or outsourced in time period ¢

R, O regular and overtime working or production hours in time period ¢
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4.1.5 Superscripts

()" lower bound

()W upper bound

4.2 LINEAR PROGRAMMING (LP) FORMULATION OF THE
DETERMINISTIC MODEL

The basic framework for the deterministic linear production planning model for a
petroleum refinery will be mainly derived from models formulated by McDonald and
Karimi (1997) and Ierapetritou and Pistikopoulos (1994a), apart from the models specific
to refinery planning as proposed by Pongsakdi et al. (in press), Dempster et al. (2000),
and Escudero et al. (1999). In addition, we consider the remarks by Kallrath (2002) that a
refinery planning model should comprise the following constraints:

* flow of crude oil and components for blending operations (in the form of linear

material balances);

* proportional composition of flow streams (in the form of nonlinear equations);

* quality constraints and capacity limits of processing/production units and storage tanks

(in the form of inequalities denoting suitable lower and upper bounds); and
» assignment of processing/production units and storage tanks (in the form of equations

and inequalities involving binary variables).

Consider the production planning problem of a typical oil refinery operation with a
network of M continuous processes and N materials as shown in Figure 4.1. Let j 1 J =
(1, 2,..., M) index the set of continuous processes whereas i [1 7= (1, 2,..., N) index the
set of materials. These products are produced during » time periods indexed by ¢t U 7 =
(1, 2,..., n) to meet a prespecified level of demand during each period. Given also are the
prices and availabilities of materials as well as investment and operating cost data over a
time period. The problem then consists of determining (i) the production profiles; (ii)
sales and purchases of chemical products; and (iii) capacity expansions for the existing

processes over each time period that will maximize profit over the time period by also
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ensuring future feasibility. A typical aggregated linear planning model consists of the

following sets of constraints.

Intermediate Intermediate

l

\ 4

Raw Materials —» > » >
(Crude Oils/Crudes)—>»| > >
Process o o
Unit ] ” ) Products
; _>
” > —>
Process
> Unit
Process T
Units
Intermediate

Figure 4.1. A network of processes and materials of a typical oil refinery operation (based on Ierapetritou
and Pistikopoulos, 1994a)

4.2.1 Production Capacity Constraints
X, =x;,4 +CE,, oo J 4.1)
v,CE;,<CE, <y, CE;, 00 .00: T (4.2)

1 if there is an expansion

where L= 4.3
Vi {0 otherwise “.3)

where x;, denotes the production capacity of process j during time period t; CE;;

represents the (potential) capacity expansion of process j in #; y;, are binary variables

deciding on expansion of process j in period #; and CE;J and CE}JJ are the constant
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lower and upper bounds of the capacity expansion variables CEj, respectively. If

capacity expansion is not considered, then equation (4.1) becomes

XS Xj upl J “4.4)

4.2.2 Demand Constraints
S.+L,=d;,, U0 L0t T 4.5)
di,<S,,<d,, 00 150t T (4.6)

where S, denotes the amount of product 7 sold in time period #; L;, is the amount of lost
demand for product i in time period ¢; d;, is the demand for product 7 in time period ¢#; and
dL

., and dl.lj are the lower and upper bounds on the demand of product i during period ¢,

respectively.

4.2.3 Availability Constraints

pr<P<p’ i=12,.,N;t=12,.,T 4.7)

where P, denotes the amount of crude oil purchased in time period ¢ while p; and p.

are the lower and upper bounds of the availability of crude oil during period ¢,
respectively.

Note that an instance for which the bounds defined by (4.6) and (4.7) could arise is in
the case of long-term contracts in which fixed amounts of sales or
purchases/procurements are committed over several time periods (Iyer and Grossmann,

1998).
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4.2.4 Inventory Requirements

In addition to the amount of materials purchased and/or produced, a certain level of
inventory must be maintained at both time periods to ensure material availability. If the

starting (initial) and final amount of inventory of material i in time period ¢ is represented

S

with the variables /;, and Ii, , respectively, the following conditions hold:

Iit:l :Iis,l+l i:L"'aNa t= 7"'7T (4°8)

Mgt o< =12, N (4.9)

it it =4t

where 7™ and I7™ are the minimum and maximum required amount of inventory for
material i at the end of each time period. Equation (4.8) simply states that I7,,, the
starting inventory of material i in time period #+1 is the same as Ii, , the inventory of

material 7 at the end of the preceding period ¢ (if # = 1, then Ii, = Iil denotes the initial
inventory).
4.2.5 Material Balances (or Mass Balances)

P+L, +>b x;, =S, ~I;, =0, i0, 40T (4.10)
JaJ

where b;; is the stoichiometric coefficient for material i in process j. These balances can
be further classified into three categories, namely for (i) fixed production yields; (ii) for
fixed blends or splits; and (iii) for unrestricted balances, as accounted for explicitly by the

numerical example to be studied later.
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4.2.6 Objective Function

A profit function over the time horizon is considered as the difference between the
revenue due to product sales and the overall cost, which consists of cost of raw materials,

operating cost, investment cost, and inventory cost:

zvt,tSi,t +z~yi,z[it:z _z )Y,zpi,t _z ’}\',zlis,t _z Cj,zxj,z _zhi,zHi,z
Proﬁt:z a7 [Fi4 0 1 Oilr ojJ O il
AT —Z(GNCEN + Bj,,yj,l) —(r,R, +0[0[)

JoJ

@4.11)

where for the purpose of clearer presentation, the definition of each term is presented as

follows:

Vis = unit sales price of product type i in time period ¢;

Ai; = unit purchase price of product type i in time period #;

¥, = value of the final inventory of material / in time period 7,

)”\i,t = value of the starting inventory of material i in time period ¢ (may be taken
as the material purchase price for a two-period model);

C;; = operating cost of process j in time period ¢

hiy = unit cost of subcontracting or outsourcing the production of product type i
in time period ¢

H;, = amount of product type i to be subcontracted or outsourced in time period
5

a;, = variable-size cost coefficient for the investment cost of capacity
expansion of process j in time period ¢

B = fixed-cost charge for the investment cost of capacity expansion of process
Jj in time period #;

r, 0, = cost per man-hour of regular and overtime labour in time period ¢,
respectively;

R, = regular and overtime working or production hours in time period ¢,

O, respectively.
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CHAPTER 5

General Formulation of the Stochastic Midterm Production Planning

Model under Uncertainty for Petroleum Refineries

The refinery production planning problem under uncertainty differs from the
deterministic problem in that some (or even all) of the planning parameters or coefficients
are considered to be random variables. The production planning objective function must
now not only represent the net profit to be derived from the sales of refined products
(based on the amount of crude oil purchased); it must also reflect a measure of system
performance. The ultimate goal of the planning problem is then to determine the
maximum profit expected by implementing a production planning scheme that will
operate in a feasible manner while accounting for the expected revenue loss mainly due
to unmet demand and to a lesser degree, surplus of production (Wellons and Reklaitis,

1989).

5.1 STOCHASTIC PARAMETERS

The following are the uncertain or random parameters considered in this work:

* market demand or product demand (where similar meaning is implied in the

interchangeability of both terms);

» prices of crude oil (the raw material) and the final saleable products, referred to

collectively as the prices of commodities; and

* product yields of crude oil from chemical reactions in the primary distillation unit

of a typical petroleum refinery.

In spite of the resulting exponential increase in problem size, the scenario analysis
approach has been extensively applied and invoked in the open literature and has been
proven to provide reliable and practical results (Gupta and Maranas, 2003; 2000). Hence,
in this work, it is adopted for describing uncertainty in the stochastic parameters.

Representative ~ scenarios  are  constructed to  model  uncertainty in
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prices, product demand, and production yields. This is accomplished within one of the
most widely-used structures for decision making under uncertainty, that is, the two-stage
stochastic programming framework. To reemphasize, in this framework, the decision
variables of the problem are partitioned into two sets. The first-stage planning variables
correspond to decisions that need to be made prior to resolution of uncertainty (the “here-
and-now” decisions). Subsequently, based on these decisions and the realization of the
random events, the second-stage operating decisions are made subject to the restrictions

13

of the second-stage recourse problem (the “wait-and-see” decisions). The presence of
uncertainty is translated into the stochastic nature of the recourse penalty costs associated
with the second-stage decisions. Therefore, the objective function consists of the sum of
profits or costs determined by the first-stage decisions and the expected second-stage

recourse costs (Gupta and Maranas, 2000).

5.2 APPROACHES UNDER UNCERTAINTY

The stochastic model is developed with the objective of yielding a solution that is less
sensitive to the presence of uncertainties. The model attempts to minimize variation in
profits and costs that arise due to operation under unplanned events or scenarios. Two
methods to deal with uncertainty, discussed in light of the recent presentation by Nelissen
(http://www.gams.com/presentations/present _uncertainty.pdf, accessed December 17,
2005), are employed and combined in the proposed stochastic models in this work:

* the static model of Markowitz’s mean—variance (E—V or MV) approach to handle
randomness in the objective coefficients of prices by minimizing the expected
cost and the variance (for the given expected value or mean of the objective
function); and

* the dynamic approach of two-stage stochastic programming with fixed recourse to
handle randomness in the left-hand side (LHS) (or also known as technological
coefficients) and the right-hand side (RHS) coefficients by trading off between
maximizing profit and minimizing the impacts of the associated recourse penalty

costs through accounting for their expected values and deviations; deviations are
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representation of the risks taken and in this work, they are quantified by two
measures, namely the variance and the mean-absolute deviation (MAD).
The following four approaches and approximation schemes are implemented in the
formulation of the stochastic models:

1. Approach 1: the Markowitz’s mean—variance model to handle randomness in the
objective coefficients of prices by minimizing the variance of the expected value or
mean of the random coefficients subject to a target value constraint;

2. Approach 2: the two-stage stochastic programming with fixed recourse approach to
model randomness in the right-hand side and left-hand side (or technological)
coefficients by minimizing the expected recourse penalty cost due to violations of
constraints;

3. Approach 3: incorporation of the Markowitz’s E—V approach within the two-stage
stochastic programming framework developed in Approach 2 in order to minimize
both the expectation and the variance of the recourse penalty costs; this results in a
stochastic quadratic programming model with fixed recourse; and

4. Approach 4: reformulation of the model developed in Approach 3 by utilizing the
Mean—Absolute Deviation (MAD) as the measure of risk imposed by the recourse
penalty costs
As an overview, in the two-stage stochastic programming approach to a production

planning problem under uncertainty, the decision variables are classified into two sets.

The first-stage variables, which are often known as planning variables themselves, are

those that have to be decided before the actual realization of the uncertain parameters.

Planning variables depend only on the fixed and structural constraints that are

independent of uncertainty. These first-stage planning variables are typically the amount

of raw materials needed, the production rates required, and others. Subsequently, once the
values of the planning variables have been decided and the random events have presented

themselves, further operational policy improvements can be made by selecting, at a

certain cost, the values of the second-stage recourse variables, also known as the control

or operating variables for implementing corrective actions. Due to uncertainty, the
second-stage cost is a random variable. These second-stage recourse variables typically

determine the amount of products to be purchased from other producers (or to be
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outsourced) to meet the market demand actually realized or the amount of raw material

required from other suppliers to achieve production requirements (Li et al., 2004).

5.3 GENERAL TECHNIQUES FOR MODELLING UNCERTAINTY

In general, uncertainties in commodity prices, future product demand, and process yields
can be modelled in either of these two ways: first, by considering a specified range T

defined as follows:

007, 7= pp'<o<0 ") (5.1)
where o = oN-A0,
o' = oY+ A0,
B = vector of the nominal values of the uncertain parameters,
AB™, AB" = expected positive and negative deviations, respectively;

or second, by providing probability distribution functions (Ilerapetritou and
Pistikopouslos, 1994a; Ponnambalam, 2005). This work adopts the former technique
throughout.

5.4 ESTABLISHMENT OF NOMENCLATURE AND NOTATIONS FOR THE
STOCHASTIC APPROACH

5.4.1 Indices

s for the set of scenarios

k for the set of products with yield uncertainty
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5.4.2 Sets

1 set of materials or products

K set of products with yield uncertainty

5.4.3 Stochastic Parameters

Ds probability of scenario s
Vise  unit sales price of product type i in time period ¢ per realization of scenario s
Ars unit purchase price of crude oil in time period ¢ per realization of scenario s

dis;  demand for product i in time period ¢ per realization of scenario s
5.4.3.1 Recourse Parameters

et fixed unit penalty cost for shortfall in production (underproduction) of product type i
e fixed unit penalty cost for surplus in production (overproduction) of product type i
qr fixed unit penalty cost for shortage in yields from material i for product type &

g fixed unit penalty cost for excess in yields from material i for product type &

5.4.4 Stochastic Recourse Variables (Second-Stage Decision Variables)

Z* amount of underproduction of product type i per realization of scenario s
z amount of overproduction of product type i per realization of scenario s

y!., amount of shortage in yields from material i for product type k per realization of

scenario §

y, ., amount of excess in yields from material i for product type k per realization of

scenario §
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5.5 APPROACH 1: RISK MODEL I BASED ON THE MARKOWITZ’S MEAN-
VARIANCE APPROACH TO HANDLE RANDOMNESS IN THE OBJECTIVE
FUNCTION COEFFICIENTS OF PRICES

5.5.1 Uncertainty in the Price of Crude Qil

The rapid rise in world petroleum crude oil prices in years 2004 to 2005, which triggered
off a similar trend in petroleum-based fuel prices, has cast much uncertainty in the
forecasting of future oil prices. This is a direct result of various events of global impact
including (but certainly not confined to) increased demand from the emerging economic
power of China; political conflicts and instability in major hydrocarbon resources and
petroleum supplier countries in the Middle East; high gasoline demand from North
America; an all-time thirty-year low of oil stocks in the Organization of Economic Co-
operation and Development (OECD) countries; supply uncertainty from Iraq, Nigeria,
Russia, and Venezuela; and the disparity between crude availability and refining capacity.
Coupled with the peaking in the world oil production and consumption (Hirsch et al.,
20006), it has indeed become highly pertinent to take into account the factor of crude oil
price uncertainty in refinery production planning, arguably the heart of the downstream
processing sector of the petroleum industry, as equally emphasized by Neiro and Pinto
(2005). All these factors compounds the intricacies of the crude oil price determination
process, this inevitably necessitates extending the price analysis beyond the markets for
petroleum. Didziulis (1990) reports that crude oil prices are determined in two closely-
related markets, namely the crude oil markets and the refined products markets. As the
raw material used in refineries in joint-products processes, for a given level of supply, the
value of petroleum or crude oil lies in the value of refined products derived from it.
Further elaboration on this issue is obviously beyond the scope of this work and the
interested reader is referred to the rich literature available on this subject.

As readily recognized, a competing issue facing decision-makers in oil refineries is
cost, which is directly related to price. To guarantee supplies of crude oil and availability
of transportation, decision-makers must effectively pay a premium. They can purchase

crude on a “spot” basis in each period at spot prices that could be lower than market
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prices or firm prices. Spot prices, however, cannot be determined in advance. In addition,
crude availability at the spot price is by no means certain or guaranteed, nor can the
quantity of crude oil available be predicted. Similarly, transportation capacity can be
purchased in an “interruptible” basis in each period at a potentially lower cost than for
firm purchases, but again, availability and capacity are neither guaranteed nor predictable
in advance (Bopp et al., 1996).

The Petroleum Division of the Energy Information Administration (EIA) of the
Department of Energy (DOE), United States of America maintains an excellent website
providing recent and current information on price data of crude oil and its refined
products at http://www.eia.doe.gov/pub/oil_gas/petroleum/analysis_publications/
oil_market basics/Price_links.htm (accessed December 27, 2005) while historical price
data are accessible at http://www.eia.doe.gov/neic/historic/hpetroleum.htm (accessed
December 28, 2005). Specific information on crude oil price in chronological order dated
since 1970 until the daily present time is available at http://www.eia.doe.gov/emeu/cabs/
chron.html (accessed December 27, 2005). To model the uncertainty in crude oil price in
this work, historical data on a daily basis for the Brent crude oil and the West Texas
Intermediate (WTI) at Cushing crude oil for the years 2004 and 2005 is analyzed and is
considered to be representative for midterm production planning activities (the
justification for this reasoning follows). Figure 5.1 depicts the daily price for both types
of crude oil for the considered period of January 5, 2004—December 30, 2005. The
complete numerical data for this period and the associated computed analytical results are
provided in detail in Appendix B.

As stated earlier, the trend of oil price in this two-year period is considered to be
representative as it captured the four major events of spikes in oil price experienced since
the triggering of the rising oil price phenomenon, namely:

1. on October 22, 2004: the cumulative effects of the war on Iraq launched by the
government of the U.S.A. rapid increases in global demand for crude oil,
constrained capacity of the Organization of the Petroleum Exporting Countries
(OPEC), and low worldwide inventories resulted in an all-time high of $55.17 per
barrel for crude oil contract price as reported by the New York Mercantile

Exchange (NYMEX) for the WTI. The aftermath effects of Hurricane Ivan forced
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the temporary termination of natural gas and crude oil production from the Gulf
Coast;

. on April 4, 2005: Chevron-Texaco, the major oil company with ownership of the
fourth largest non-state-owned oil reserves in the world, agreed to buy Unocal, a
medium-size U.S.-based oil company. It was the largest merger—acquisition
exercise in the oil and gas industry since 2001;

. on July 5, 2005: Tropical storm Cindy interrupted oil and natural gas production
in the U.S.’s Gulf of Mexico region. The storm shut off oil and gas platforms,
forced the closure of the Louisiana Offshore Oil Port (the largest U.S. oil-import
terminal) and some refineries also ceased operations;

. on August 28, 2005: Hurricane Katrina hit the U.S. Gulf of Mexico region near
New Orleans, resulting in a severe impact on the local oil and natural gas
production: shut down of key hydrocarbons infrastructure including the Louisiana
Offshore Oil Platform, the Capline crude oil pipeline, and the Colonial and
Plantation oil products pipelines; and disruption in operations of oil refineries.
The U.S. government announced that it would loan out crude oil from the
Strategic Petroleum Reserve to alleviate the situation and members of the
International Energy Agency (IEA) pledged offers of emergency reserves to the
U.S..
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Figure 5.1. Daily crude oil price data for the period January 5, 2004—December 30, 2005
(Energy Information Administration (EIA), 2005)

From the data, the mean price of crude oil is determined. Three different statistics are
then employed to investigate and portray the degree of variations in the data that reflect
price uncertainty: (a) the standard error, that is, the percentage of difference from the
mean or average value; (b) the sample standard deviation, that is, the square root of
sample variance, which measures how widely values are dispersed from the mean (Ross,
2004); and (c) the maximum price. The statistical analysis computation is executed by
utilizing the Descriptive Statistics tool for Data Analysis in the Microsoft® Excel

spreadsheet software package (Microsoft Corporation, 2001). The results of the analysis

are summarized in Table 5.1.

Table 5.1. Statistics of daily crude oil price data for the period of January 5, 2004—December 30, 2005
(Energy Information Administration (EIA), 2005)

Crude Oil Mean Price Standard ~ Standard =~ Maximum
Type (US$/barrel) Error Deviation Price
Brent 47.04 0.4704 9.990 67.09
West Texas Intermediate (WTI) at Cushing 48.94 0.4325 9.671 69.82
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5.5.2 Uncertainty in the Prices of the Major Saleable Refining Products of Gasoline,
Naphtha, Jet Fuel, Heating Oil, and Fuel Oil

Table 5.2 provides statistics of daily price data for the period January 5, 2004—December
26, 2005 (Energy Information Administration (EIA), 2006) for the major saleable
refining products considered in the numerical study to be presented in the following

chapter. The products are gasoline, naphtha, jet fuel, heating oil, and fuel oil.

Table 5.2. Statistics of daily price data for the major saleable refining products of gasoline, naphtha,
jet fuel, heating oil, and fuel oil for the period of January 5, 2004—December 30, 2005 (Energy
Information Administration (EIA), 2005)

Mean Price Standard Standard ~ Maximum
Product (cent/gallon) Error Deviation Price Remark
Gasoline 210.46 3.139 32.01 311.7 Daily USA retail gasoline price
cent/gallon data for all grades and all

formulations
(Source: Retail Gasoline Historical Prices, http://www.eia.doe.gov/oil gas/petroleum/data_publications/
wrgp/mogas_history.html, accessed on January 23, 2006)

Naphtha $343/ton (not available)

MOPJ*
(Source: Naphtha Remained Firm at $340-350, ChemLOCUS Chem Journal: Korea Chemical Market
Information, http://www.chemlocus.com/news/daily read.htm?menu=D1&Sequence=6538

&cpage=14&sub=, accessed on January 24, 2006)

Jet Fuel 143.1909 1.800 172 40.091 74 313.03 Daily USA Gulf Coast kerosene-
(Kerosene- cent/gallon type jet fuel spot price FOB (free-
type) on-board)

(Source: Historical Petroleum Price Data—Other Product Prices,

http://www.eia.doe.gov/neic/historic/hpetroleum?2.htm#Other, accessed on January 23, 2006)

Heating Oil 204.4566 4902018 33.96218  269.159  Weekly USA No. 2 heating oil

cent/gallon residential price (excluding tax)
(Source: Heating Oil and Propane Update, http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on
January 23, 2006)

Fuel Oil 86.813 04 3.978 387 19.079 67 126.7 Monthly USA residual fuel oil
cent/gallon retail sales by all sellers

(until November 30, 2005)
(Source: Residual Fuel Oil Prices by Sales Type,

http://tonto.eia.doe.gov/dnav/pet/pet pri resid dcu nus m.htm, accessed on January 24, 2006)

*Note: MOPIJ stands for “Mean of Platts Japan”, one of the industry’s standards for reporting prices of
petroleum products. For further information, the reader is referred to Platts Methodology and Specifications
Guide for Asian Naphtha at http://www.platts.com/Content/Oil/Resources/
Methodology%20&%20Specifications/method _asian_naptha 2004.pdf (accessed on March 29, 2006).
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Figure 5.2. Weekly USA retail gasoline price (cents per gallon) for all grades and all formulations for the
period of January 5, 2004—December 26, 2005 (Energy Information Administration (EIA), Retail Gasoline
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accessed on January 23, 2006).
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Figure 5.3. Daily USA Gulf Coast kerosene-type jet fuel spot price FOB (free-on-board) for the period of
January 5, 2004-December 23, 2005 (Energy Information Administration (EIA), Historical Petroleum

Price Data—Other Product Prices, http://www.eia.doe.gov/neic/historic/hpetroleum2.htm#Other, accessed
on January 23, 2006).
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Figure 5.4. Weekly USA No. 2 heating oil residential price (cents per gallon excluding taxes) for the
period of January 5, 2004—December 26, 2005 (Energy Information Administration (EIA), Heating Oil and
Propane Update at http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on January 23, 2006).
(Additional note: The No. 2 heating oil is a distillate fuel oil for use in atomizing type burners for domestic
heating or for use in medium capacity commercial-industrial burner units.)
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Figure 5.5. Monthly USA residual fuel oil retail sales by all sellers (cents per gallon) for the period of
January 5, 2004—November 30, 2005 (Energy Information Administration (EIA), Residual Fuel Oil Prices
by Sales Type, http://tonto.eia.doe.gov/dnav/pet/pet pri_resid _dcu nus m.htm, accessed on January 24,
2006. Note that there is no data available for the following periods: (i) between March 16, 2004 and
October 3, 2004 and (ii) between March 15, 2005 and October 2, 2005.
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5.5.3 Reportage of QOil Prices

Agencies specializing in reporting prices of petroleum and petroleum products market
such as Platts Oilgram Journal (McGraw-Hill), Argus, and the London Oil Report obtain
price levels estimates from the trading houses. The resulting price estimates become the
market reference prices that are used to set prices for other transactions. Typically, prices
for more than 14 types of products are quoted daily. For certain products, there are three
forms of price quotations, depending on whether shipment is by cargo or by barge and
whether the price if on the basis of free-on-board (FOB) or cost, insurance, and freight
(CIF).

These published prices represent the estimated value at a particular time of a cargo of
a standard product of known characteristics; for instance, for gas oil, these properties
would be mass in tonnage, relative density, sulphur content, cetane index, and others.
Thus, the published quotations are far from being representative of the variety of products
that are actually traded.

The selling price for a cargo is agreed in terms of a differential from an agreed
quotation. This adjustment factor principally takes into account the tonnage, the method
of transportation, and the quality, plus all other aspects relevant to any commercial

transaction (Favennec, 2001)

5.5.4 Stochastic Modelling of Randomness in the Objective Function Coefficients of

Prices for the General Deterministic Model

The classical approach to model the tradeoffs between expectation and variability in a
stochastic optimization problem is to employ variance as the measure of variability or
dispersion. This gives rise to adopting the well-known mean—variance (E-V) portfolio
optimization model of Markowitz (1952, 1959), conveniently referred to as the MV or E—
V' approach. The goal of the Markowitz model consists of two criteria, namely to
maximize the first criterion of expected profit while appending a limiting constraint on

the magnitude of the second criterion of risk, which is measured by using variance
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(Eppen et al., 1989). Malcolm and Zenios (1994) presented an application of this
approach by adopting the robust optimization framework proposed by Mulvey (1995) to
the problem of capacity expansion of power systems. The problem was formulated as a
large-scale nonlinear program with the variance of the scenario-dependent costs included
in the objective function. Another application using variance is presented by Bok et al.
(1998), also within a robust optimization model, for investment in the long-range
capacity expansion of chemical process networks under uncertain demand. A brief review
of the Markowitz’s model is presented in Appendix A.

In his model, Markowitz (1952) introduced the concept of portfolio management
theory using a mathematical programming approach. An investor has a choice between
various financial instruments whose rate of return is uncertain. Theoretically, the investor
should maximize expected utility, but this utility function is not usually available.
Instead, the Markowitz approach is to “draw” the so-called efficient frontier, in which for
a given expected return, one solves a quadratic program that identifies the portfolio
minimizing variance. (Alternatively, the efficient frontier can be interpreted as the
solution that minimizes variance for an each expected return.) A plot of expectation
(typically, expected profit) versus variance is produced. The onus is then on the decision
maker to choose a point on this efficient frontier corresponding to the desired profit with
the associated bearable amount of risk (Wets, 1996).

It follows that the application of portfolio theory to the selection of production
planning programs will involve the determination of sets of programs that are efficient in
the return—risk (or profit-risk) space. In this approach, portfolio variance is used as the
measure of risk. An efficient portfolio is defined as the minimum variance portfolio that
yields a specified level of expected return or profit under relevant constraints
characterizing the decision space. The efficient frontier is obtained by solving the
problem for a set of exogenously specified expected income or profit levels and joining
the optimum solutions in the expected profit—variance (E—V) space. This framework,
which leads to a convex quadratic programming problem, is a widely used portfolio
management technique in the finance literature especially because of its desirable

theoretical properties (Cabrini et al., 2004).
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As argued in the previous section, since prices are likely to be uncertain and to show
variability due to a multitude of possible reasons, it is desired to assume a distribution of
possible prices rather than a fixed price (typically the expected value or mean) for each
product. The goal of the stochastic model then is to determine production quantities (as
given by the variables x;, with i indicating the product type) that meet specified
requirements, as dictated by market demand, by simultaneously minimizing the various

expected production costs.

5.5.5 Sampling Methodology by Scenario Generation for the Recourse Model under

Price Uncertainty

A collection of scenarios that best captures and describes the trend of prices of the
different types of crude oil as raw material feeds and prices of the saleable refining
products for a reasonable period of time are generated based on available historical data
as presented in Section 5.6.1. The solution is bound to be more robust and representative
with more scenarios considered; however, as cautioned earlier, the major pitfall with the
recourse problem via scenario analysis is the explosive nature of exponential increase in
problem size with the number of uncertain parameters. Weights representing an a priori
probability measure can be assigned to all possible outcomes w of the outcome space Q.
As scenarios represent every possible environment  that becomes an element of the
probability space, the associated probabilities of p; with index s = 1, 2, ..., NS denoting
the sth scenario are assigned to each scenario respectively to reflect the corresponding

likelihood of each scenario of state of the world being realized (Ermoliev and Wets,

1988), with z p, =1. Table 5.3 summarizes attributes of the scenarios constructed for
sS

modelling price uncertainty whereas Table 5.4 presents the scenario construction to
model price uncertainty for a refinery producing i = 1, 2, ..., N commercial products.
Note that the price of the raw material crude oil is expressed as a negative coefficient

because it is a cost term.
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Table 5.3. Attributes of the scenario construction for modelling price uncertainty for product i

Price Uncertainty: Objective Function Coefficient of Prices ($/ton)

Scenario 1 Scenario 2 Scenario NS
(s=1) (s=2) (s =NS)
f;fer (:eir;)t:(%teedo\t;aiilfg tation from +X1% X% +Xns%o
Price of product i in scenario s
($/t0n) Cis Cil Cin Ci NS
Probability p, )2 D2 o Dus

Table 5.4. Representative scenarios of price uncertainty in the refinery planning under uncertainty

problem

Material/ Price Uncertainty: Objective Function Coefficient of Prices ($/ton)

Product Scenario 1 Scenario 2 Scenario NS
Product 1
(typically the raw c1 C12 CINS
material, crude oil)
Product 2 C21 C22 cee C2 NS
Product 3 3 C3p C3 NS
Product N CN.1 CN2 CN.NS
Probability p, )21 D2 o Dns

5.5.6 Expectation of the Objective Function

As mentioned earlier, the classical mean—variance approach devised by Markowitz (1952,
1959) is adopted in an attempt to maximize profit by minimizing the variance for the
given expected value (mean) of the objective function. To represent the different
scenarios accounting for uncertainty in prices, the price-related random objective
coefficients comprising (i) A;, for the raw materials costs of different types of crude oil
that can be handled by the crude distillation unit of a refinery and (ii) V;, for the prices of
saleable refined products are added with the index s to denote the scenarios, taking into
account the probabilities of realization of each scenario. For ease of reference, both

groups of price (or cost) parameters are redefined as the parameter ¢;,, or ¢;,,, in which

18,t°
the only minor difference between the two is in the use of the index i’ and the
corresponding set of I to refer to “products” that are actually the raw materials crude oils

as distinguished from the index 7 used to indicate saleable products.

99



For any constants a and b, using the identity for expectations gives the following:
E(aX +bY)=aE[X]+bE[Y] (5.2)

Since the objective function given by equation (4.8) is linear, it is straightforward to show
that the expectation of the objective function with random price coefficients is given by

the following:

E[z,] = E[ Profi]

ZZPVIVI ZIZII ZZPVIVII z
:EZIDIES 0 7 Oi'cl's § o il
ar _zcjstxj zhth Z(GJICE + jlyjl) R +0,0,
JjaJ
S zzzpsc,,s,ts,,t}+E{zzv,,z,f,} —E{zzzpsc,u,s,,e}
t(Oro Iy S t(arm 1 r Di'r's S
S P XA TR C A |
LT 1 [y @i 1 olary; J
-E Z(FIRI +OzOz):|
LT
_ZZZPVIVI +zzyllll zz vclvtPl zz llll
(Orm s S t(arm 1 O 0i'd's S Ti I
_zzhi,zHi,z _ZZ(Gj,zCEj,z jlyj z) (rRz to, z)
aro 1 0r oy J OerrT
ZZPVIVI +zyllll ZZPVIVII_Z)\ZII zhi,lH,
E[ZO] _ 2 i0I8 S Oi 1 0/d's § i0l (5.3)
({ar _Z(aj,tCEj,z + Bj,zyj,z) +1R, +010[
JjaJ

It is pertinent to point out that consideration of the expected value of profit alone as
the objective function, which is characteristic of stochastic linear programs, is obviously
inappropriate for moderate and high-risk decisions under uncertainty since it is well

acknowledged that most decision makers are risk averse for important decisions. As
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stressed by Mulvey et al. (1995), the expected value objective ignores both the risk
attribute of the decision maker and the distribution of the objective values. Hence,
variance of the objective function ought to be considered as a risk measure of the
objective function, which is the second major component of the Markowitz’s mean—

variance approach adopted in this Risk Model I.
5.5.7 Variance of the Objective Function

For any constants a and b, using the identity for variances gives the following:
V(aX £bY)=a’V(x) +b’V(Y) (5.4)

Noting that it is the coefficients of the objective function that are random and not the
deterministic production mass variables x; for each product type i, thus variance for the

expected value of the objective function as shown in equation (5.3) is expressed as:

zylVlSll-I-ZIlll _z)\vtll _z lll z

iar 0 7 Oi 1 ojJ
V(z))=V (5.5)
(o) =112 - by H,, z(a CE,, +B,,v,,) ~(1R, +0,0,)

iar

Similar to the derivation of the expectation of the objective function, the random price
coefficients are collectively redefined as c;;; to give the following relation for the

variance of profit:

0 _
)= | EE e M 33 0n]
Arm 1 mi I Laril I

- 0 0 _ 0
+V ~i,t1is,t +V £, +V i,tHi,t
T rm 1 g R
0
v ZZ o B, ¥0,0,) (5.6)
J
_zz lt (IVI)+ t (szt)
t(aro 1 [ IDz I
V(ZO) = ZZSI%IV(CI‘,S,I) + z z H’z,tV(cz",s,t)
t(armo 1 o ni' I
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Although the above derivation is mathematically and statistically sound, it does not
explicitly evaluate variances of the random price coefficients as given by V(ci,w) and
V(ci',w) . We therefore consider an alternative formulation using the following definition

for variance of X from Markowitz (1952) (but the definition should be easily available in

any standard text on statistics):
V=p (xl _E)2 2 (x2 _E)2 *tD; (x3 _E)2 te tp, (xn _E)2 (3.7)

If we consider NS number of different scenarios in set S, then variation in profit is given
by the probabilistically-weighted summation of the squared deviation of the objective
function of a scenario from the expected value of the objective function, as depicted

below:

V(Zo) = zps (Zo,s _E[Zo])2

sOS

V(zo) = py (ZSI —E[ZO])2 +p,, (ZS2 —E[zo])2 +e g (Zsu —E[ZO])2 +-- (5.6)

+ Psys (ZSNS _E[ZO] )2

where s, refers to the average scenario or the “most likely” scenario in which the

coefficients take on the expected values, thus resulting in the expression z, ~E [zo]

equals to zero and yielding:

V(Zo) = zps (Zo,s _E[Zo])2

s0s 2 2 2 (5.7)
V(Zo) =Py (Zsl _E[Zo]) t D, (Zs2 _E[Zo]) o Dy, (st _E[ZO])
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5.5.8 Risk Model 1

In the spirit of the Markowitz’s mean—variance approach, the objective function for the

stochastic model can now be formulated as:

maximize z;, = E[zo] -8V (z,) 5.8
s.t. constraints (4.1) — (4.7)

that is, the model is subject to the same set of constraints as the deterministic model, with
0, as the risk parameter or risk factor associated with risk reduction for the expected
profit (for convenience, 0; will henceforth simply be referred to as the profit risk factor).

For the reason of obtaining a term that is dimensionally consistent with the expected
value term, the standard deviation of zy may be considered instead of the variance as a
risk measure to reflect dispersions of the random objective function. In the case of
variance, the difference in dimensionality is taken care of by the risk factor 0;. This is
concurred by Markowitz (1952) where it is stated that even though variance is the more
well-known measure of dispersion about the expected, if instead of variance, an investor
was concerned with standard error or with the coefficient of dispersion 0/E (also known
as the coefficient of variation in more recent literature), the choice would still lie in the
set of efficient portfolios. (As an aside, a very recent paper by Kristoffersen (2005)
discusses a variety of risk measures in the two-stage stochastic linear programming
approach.)

Therefore, the objective function considering standard deviation, which would require

a different risk factor @), is expressed as:

maximize z, = E[z,] = 6V (z,) (5.9)

Note that the solution convergence is expected to be different for models (5.8) and (5.9)

due to the presence of the square root operation of variance in computing standard
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deviation, which would be expected to increase the computation time. In this regard,
model (5.8) is preferred to model (5.9).
However, the primary difficulty in executing both models (5.8) and (5.9) is in

determining a suitable range of values for the profit risk factors 6, and 6/, respectively

that will cater to decision makers who are either risk-prone or risk-averse. An approach to
overcome this is proposed, among others, by Terwiesch et al. (1994) and Ponnambalam
(2005), in which the variance or the standard deviation of the objective function is

minimized as follows:

minimize z, =V (z,) (5.10)
or
minimize z; =4/V (z,) (5.11)

while adding the inequality constraint for the mean of the objective function (as given by

equation (5.1)) that sets a certain target value for the desired profit to be achieved:

E[zo] > Target objective function value (5.12)

The process of maximizing or minimizing one objective while specifying constraints on
another is a widespread practice in dealing with problems with two objectives (Eppen et
al., 1989) such as in this model, in which the two objectives considered are profit and the
risk associated with it.

In order to take advantage of the faster convergence rate in computing variance as
compared to standard deviation, the objective function given by equation (5.10) is
adopted in our model. Thus, in the model, the profit risk factor is now controlled by
specifying the desired profit that will give the target objective function value, with the
corresponding risk reflected by the variance expressed in the new objective function

(5.10). Mathematically, it is also noted that the target value constraint is needed;
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otherwise, the optimization problem would simply compute the objective function value
to be zero as that obviously corresponds to the minimum value of variance. Note that an
equivalent representation of the objective functions (5.10) and (5.11) is given by the

negative of the corresponding maximization problem, which thus gives Risk Model I:

maximize z; = —Var(z,)
s.t. E [Zo] > Target objective function value (5.13)
constraints (1) —(7)

while the equivalent expression for the inferiorly preferred objective function due to an

expected longer computation time is given by:

maximize z; = —/Var(z,) (5.14)

To determine the suitable range for the target objective function value (that is, the
desired profit), a test value is assumed and the corresponding solution is computed. Then,
the test value is increased or decreased, with the solution computed each time in order to
investigate and establish the range of target objective function values that ensures
solution feasibility. It is noted that the maximum target objective function value to
maintain solution feasibility should be fairly well approximated by the optimal objective
function value of the deterministic model.

As emphasized in the 1952 seminal paper by Markowitz, it is useful to keep in mind
that the decision with maximum expected return or profit is not necessarily the one with
minimum variance. There is a rate or trade-off at which an investor can gain expected
profit by taking on variance or risk, or reduce risk by giving up expected profit. In

essence, this trade-off will be demonstrated by the profit gained for different values of the

profit risk factor 8, (or 91') specified.

As an additional note, the formulated model is alternatively known as a two-stage risk-

based programming approach. The model is now complete and is solved to optimality
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based on a numerical example with the obtained results discussed, as to be found in the
subsequent part of the paper where a representative example is presented. In the
immediate following section on an alternative modelling approach, this Markowitz’s
mean—variance model as developed here, is implemented within a two-stage stochastic

programming framework and is extended to become a recourse model.

5.6 APPROACH 2: THE EXPECTATION MODEL AS A COMBINATION OF
THE MARKOWITZ’S MEAN-VARIANCE APPROACH AND THE TWO-
STAGE STOCHASTIC PROGRAMMING WITH FIXED RECOURSE
FRAMEWORK

In this approach, the existing deterministic model is reformulated in an attempt to
minimize the expected value of the recourse penalty costs due to violations of constraints
by incorporating the Markowitz’s mean—variance model within a two-stage stochastic
programming with fixed recourse framework. The model attempts to handle uncertainty
in the random objective coefficients of prices, the random left-hand side (LHS)
(technological) coefficients, and the random right-hand side (RHS) coefficients. One of
the primary motivations for adopting the recourse problem model of minimizing only the
expected penalty costs is to avoid the computationally more demanding nonlinear
quadratic programming problem that arises with the simultaneous minimization of both
the expected value and variance of the recourse penalty costs. (The latter, that is, the
approach of minimizing both the expected value and the variance of the penalty costs,
will be addressed in Approach 3 in the following section.) Additionally, as intended in
the model development of Approach 1 in the preceding section, the aim for the inclusion
of the Markowitz’s mean—variance Model 1 is to account for randomness in the objective
coefficients due to uncertainty arising in prices of crude oil and the commodities (which

comprises) gasoline, naphtha, jet fuel, heating oil, fuel oil, and cracker feed.
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5.6.1 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model
Randomness in the Right-Hand-Side (RHS) Coefficients of Product Demand

Constraints

With the onslaught of an impending energy crisis due to rising crude oil prices, energy
over-consumption, and depletion of hydrocarbon resources worldwide, the oil and gas
industry has become increasingly competitive with market demand, essentially driven by
customers consumption needs, imposing a significant complexity in production
requirements. Jung et al. (2004) noted that among the many factors contributing to
uncertainties in a typical example of the chemical process industry (of which the
production planning of a petroleum refinery is a chief example), product demand
uncertainty, as dictated by market demand, may well hold the dominant impact on profits
and customer satisfaction. This is equally emphasized by a series of papers addressing
chemical production planning under uncertainty by Gupta and Maranas (2000, 2003) that
identified product demand as one of the key sources of uncertainties in the wider context
of any production—distribution system. It is further noted that product demand
fluctuations over medium-term (1-2 years) to long-term (5-10 years) planning horizons
may be significant. Hence, deterministic planning and scheduling models may yield
unrealistic results by not capturing the effect of demand variability on the trade-off
between lost sales and inventory holding costs.

Demand uncertainty, leading to cause of failure in accounting for significant demand
fluctuations by incorporating a stochastic description of product demand, can result in
over- or under-production, with resultant excess inventories or unsatisfied customer
demand, respectively. The latter could also result in incurred cost due to outsourcing or
external purchasing for production make-up. Excess inventory incurs unnecessarily high
inventory holding charges, while the consequences of the inability to meet customer
needs eventually translates to both loss of profit and potentially, the long term loss of
market share. These are highly undesirable scenarios particularly in current market
settings where the profit margins are extremely tight. In terms of strategic corporate

planning, the former scenario results as a failure in effectively managing the downside
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risk exposure of a company while the latter corresponds to a failure in recognizing an
opportunity to capture additional market share (Gupta and Maranas, 2000; 2003).

Even though it has been increasingly common for firms to subcontract or outsource
certain amount of production in order to meet increasing customer demand, in general,
they are still viewed as an additional cost to firms, as mentioned earlier. The expected
value of the ability to meet the product needs of customers is traditionally called the
customer satisfaction index. Under competitive market conditions, customer satisfaction
level, also known as service level, is recognized as an important index that must be
monitored and maintained at a high level. Thus, deterministic planning models, which do
not recognize the uncertainty in future demand forecasts, can be expected to result in
inferior planning decisions as compared to stochastic models that explicitly considers

uncertainty (Gupta et al., 2000).

5.6.1.1 Rationale for Adopting the Two-Stage Stochastic Programming Framework

to Model Uncertainty in Product demand

From the arguments presented in the previous section, it is highly evident that in
production systems, demand forecasts are often critical to the planning process. When
demand is assumed to be known with certainty, an optimal deterministic production plan
can easily be obtained, which in turn leads to an optimal capacity plan. But, as readily
acknowledged, in reality, demand is rarely known with absolute certainty. Consequently,
production planning decisions are usually postponed until better information is available.
However, capacity plans cannot be postponed, and hence cannot rely on the production
plan. Indeed, as demand varies from week to week, there may not be a unique production
plan. Thus, the two-stage nature of the production planning process is apparent, as

advocated by Higle and Sen (1996).
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5.6.1.2 Sampling Methodology by Scenario Generation for the Recourse Model

under Market Demand Uncertainty

Uncertainty in market demand introduces randomness in constraints for production
demand, that is, the production requirements of intermediates and final saleable products
as given by equation (4.3). The sampling methodology employed for scenario generation
for the recourse model under demand uncertainty is similar to the case of price
uncertainty addressed in the previous section. Table 5.5 summarizes attributes of
scenarios constructed for modelling demand uncertainty.

Considering that there are numerous minor variations within the many complex
refining processes that cause random variations in the production of the major final
saleable commercial products, it is not unreasonable to assume by virtue of the Central
Limit Theorem that these cumulative minor random effects will be approximately
normally distributed. With demand d;; as the random variable where i denotes the
product type and s indicates the corresponding scenario considered, the following

relationship represents the random demand:

di, =20, T}, (5.15)

where z is the variable for the standard normal distribution with mean 0 and variance 1
while (s and O, are the mean and variance for the distribution of demand. Similar to
Approach 1, a collection of representative events or scenarios of market demand
uncertainty for i = 1, 2, ..., NS products with associated probabilities to indicate their
comparative frequency of occurrence (Ermoliev and Wets, 1988) are depicted in Table

5.6.

Table 5.5. Attributes of the scenario construction for modelling market demand uncertainty for
product i

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints
for Product i Demand (ton/day) under Scenario s

Scenario 1 Scenario 2
(s=1) (s=2) Scenario NS
Percentage of deviation from 0 o 0
the expected value 0% %% o s
Demand for product i
(ton/day) di,s di,l di,Z te di,NS
Probability p, D1 J2 o DNs
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Table 5.6. Representative scenarios of market demand uncertainty in the refinery planning under
uncertainty problem

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints for Product i Demand
(ton/day) under Scenario s, d;

Product type i Scenario 1 Scenario 2 Scenario NS
Product 1 dl,l dl,z dl,NS
Product 2 dz,l dz,z oo dZ,NS
Product 3 d3,1 d3,2 d3,NS
Product N dN,l dN,z oo dN,NS
Probability p, )2 D2 . Dns

5.6.1.3 Modelling Uncertainty in Product Demand by Slack Variables in the
Stochastic Constraints and Penalty Functions in the Objective Function due to

Production Shortfalls and Surpluses

As emphasized earlier, one of the main consequences of uncertainty within the context of
decision-making is the possibility of infeasibility in the future. The two-stage recourse
models provide the liberty of addressing this issue by postponing some decisions into the
second stage; however, this comes at the expense of the use of corresponding penalties in
the objective function, as reiterated by Sen and Higle (1999). Decisions that can be
delayed until after information about the uncertain data is available almost definitely
offer an opportunity to adjust or adapt to the new information received. Although it is
acknowledged that it is typically beyond our control whether decisions can or cannot be
delayed, there is generally value associated with delaying a decision, when it is possible
to do so, until after additional information is obtained; this is advocated by Higle (2005).
In devising the appropriate penalty functions, we resort to the introduction of some
compensating slack variables in the probabilistic constraints to eliminate the possibility of
second-stage infeasibility. In addition to that, the recourse-based modelling philosophy
requires the decision maker to impute a price as a penalty to remedial activities that are
undertaken in response to the randomness. For some applications such as in production
planning and inventory models, these costs are standard. (However, in some situations, it

may be more appropriate to accept the possibility of infeasibility under some
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circumstances, provided the probability of this event is restricted below a given
threshold) (Sen and Higle, 1999).

As pointed out by Clay and Grossmann (1997), compensating slack variables
accounting for shortfall and/or surplus in production are introduced in stochastic
constraints with the following results: (i) inequality constraints are replaced with equality
constraints; (i) numerical feasibility of the stochastic constraints can be ensured for all
events; and (iii) penalties for feasibility violations can be added to the objective function.
Since a probability can be assigned to each realization of the stochastic parameter vector
(that is, to each scenario), the probability of feasible operation can be measured. Further
according to Clay and Grossmann (1997), assigning penalties to the feasibility slack
activities in the objective function is similar to the “discrepancy cost” approach suggested
by Dempster (1980). Using Dempster’s approach, one assigns a cost to the violation of
any of the constraint conditions. In the production planning context, one example would
be to add a slack variable for producing less than the minimum demand for a product, and
then penalizing this slack based on the cost of purchasing this makeup product from the
outside market; likewise, for the condition of surplus production with respect to the
market demand, the slack variable is penalized based on the inventory cost for holding or
storing the excess of production.

In other words, the stochastic nature of a production requirement constraint is handled
accordingly by noting that there is an added cost associated with infeasibility of any
stochastic constraint, as equally noted, among others, by Evers (1967) and Wets (1983).
In addition, infeasibility requires appropriate action to be taken, hence, giving rise to the
notion of recourse and the subsequent construction of the desired recourse problems or
models. Thus, the principle that applies is that infeasibility due to violation(s) of the
constraints will be acceptable, but this is penalized through the introduction of slack
variables modelled as the expected shortfalls (or shortages) or surpluses in production.
The penalty for infeasibility is included in the objective function as a result of uncertainty
in market demand leading to randomness in production requirements. The penalty terms
in the objective function is handled by maximizing the expected profit while minimizing

the expected value or mean of the recourse penalty costs. (Later in Approach 3, the
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variance of the expected recourse penalty costs is minimized as well to reflect the level of
risk undertaken by a decision maker).

The use of penalty functions in the objective function for stochastic models was
pioneered by Evers (1967) as a technique of accounting for losses due to infeasibility. In
our context of production planning of chemical plants (such as an oil refinery) under the
exogenous uncertainty of product demand, a penalty term in the objective function is
employed to quantify the effect of missed revenues and loss of customer confidence. It

typically assumes the following form:

‘Vﬁ‘,Pi max| 0,(6 -Q,)] (5.16)

i=1

where Y is the penalty coefficient whose value determines the relative weight attributed to
production shortfalls as a fraction of the profit margins (Wellons and Reklaitis, 1989;
Birewar and Grossmann, 1990; Ierapetritou and Pistikopoulos, 1996; Petkov and
Maranas, 1998).

Based on the concepts presented, the penalty coefficients in the stochastic refinery
planning model are supposed to be proportional to the respective shortfalls or surpluses in
products. These penalties are interpreted and assumed accordingly, per unit of

undeliverable or overproduced products, as follows:
¢ : the fixed penalty cost paid per unit of demand d;, that cannot be delivered or

satisfied by production and thus, is considered as cost of lost demand, or if it is to be
obtained from other sources, then it is the cost of purchasing in the open market to

meet the shortfall in unsatisfied production requirement demand;

c; : the fixed penalty cost paid per unit of the products produced in excess of d;; and

is typically the cost of inventory to store the production surplus that exceeds demand.
It is noted that inventory cost should always be lower than the cost of purchasing a
commodity in the open market as otherwise, it would be comparatively more economical
for the refinery to outsource their production, thus defeating the purpose of setting up an
inventory system.

As pointed out by Kall and Wallace (1994), the penalty costs incurred due to

violations in the constraints are actually determined after the observation of the random
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data; hence, they are recourse costs that are imposed on the second-stage variables. Based
on statistical concepts, in a case involving repeated execution of the production as it is in
the operations of a refinery, it becomes appropriate to apply an expected value criterion.
More precisely, the objective of the model is to maximize the sum of the original first-
stage profit from sales terms while minimizing the expected recourse costs of the second-
stage variables. To accomplish this, Risk Model I developed in Approach 1 based on the
Markowitz’s MV approach is reformulated to incorporate the penalty terms. Accordingly,
the following non-negative second-stage recourse slack variables are introduced and

defined as follows:
z:S: the amount of unsatisfied demand of product i due to shortfall in supply or
underproduction (shortages in production) per realization of scenario s;

z, .. the amount of extra product i produced due to surplus in supply or

i,s8
overproduction (excesses in production) per realization of scenario s;
where z;, = max(0, z) is the positive part of z while z; , = max(0, —z) is the negative part

of z. Thus, the expected recourse penalty for the second-stage costs due to uncertainty in

product i demand for all considered scenarios generated is given by:

E, demand = z z Py (Ci+Zi1,—s + Ci_Zi,_s) (5.17)

arg s

To ensure that the original information structure associated with the decision process
sequence is honoured, for each of the products whose demand is uncertain, s new
constraints to model the s number of scenarios generated for each product are added to
the stochastic model in place of the original deterministic constraint. Herein lies a
demonstration of the fact that the size of a recourse model formulated to handle
uncertainty increases exponentially since the total number of scenarios grows
exponentially with the number of random parameters. This step ensures compliance with
the notion that while some decisions (as presented by the associated decision variables)
can respond to a specific scenario; other decisions represented by other constraints cannot

do so (Higle, 2005). In general, the new constraints are expressed as:

X +Zi+,—s _Zi:v :di,s’ lDI,S*j S (5‘18)
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or in graphical representation:

Deterministic model  Stochastic model
constraint constraints

- .

x; +z, —z; =d; Scenario 1
v - _ .

x;+z, —z;; =d,, Scenario 2

. —z,, =d,, Scenario s

Figure 5.6. Graphical representation of the transformation of a deterministic model’s
constraints into a correspondingly formulated stochastic model’s constraints that capture
its possible scenarios

5.6.1.4 The surplus penalty ¢ and the shortfall penalty c;

In general, the z;

s and z; - recourse variables are used in stochastic linear programming
with simple recourse framework to obtain equality for all stochastic constraints. These
variables appear only once in the formulation and must be dealt with in a manner that
recognizes their economic consequences (Wets, 1983). As highlighted earlier, the role of
the recourse variables in the formulation is to obtain feasibility for the various possible

realizations of the stochastic demand constraints. Any deviation from the equality of the
stochastic constraints will raise a net cost. Therefore, the surplus stock z;  that exists at

the end of a particular period is actually a liability since the cost of producing or
obtaining the surplus cannot be recovered. This excess production is dealt with by
assuming that the firm can realize a salvage value for it at the end of each period or is
simply sent to inventory. In the case of salvaging, the company will realize a cash inflow
from the sale of the surplus and the penalty will be negative since the total cost is reduced
(the cost of producing surplus has already been accounted for in the first-stage production
amount variables). The salvage value must be less than the cost of production or
subcontracting (or outsourcing) since otherwise, the refinery will always have an
incentive to overproduce, secure in the knowledge that the variable cost of production can

be later recaptured.
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When the refinery underproduces, it must scramble to fill excess demand and incurs a
cost approximately equal to the cost of producing the required stock through
subcontracting/outsourcing or overtime labour or by purchasing the product from the
open market. If the refinery is operating at a level that is close to capacity (or if it is not
close to capacity but has to incur an additional setup cost), this will usually result in the
firm incurring costs that exceed normal production costs. The size of the penalty will then
depend on the cost of the least expensive and available alternative production route or

method (Kira et al., 1997).

5.6.1.5 Limitations of Approach 2

It is well-acknowledged that the scenario approach adopted in formulating recourse
models results in an exponential growth in the problem size as the number of scenarios
increases exponentially with the number of uncertain parameters to be modelled.
Additionally, employing penalty functions in modelling violations of constraints with

random parameters is also large restricted in that many new non-negative slack variables

z' and z

i, i,8°

accounting for the constraints’ violations, must be added.

5.6.1.6 A Note on a More General Penalty Function for Production Shortfalls

Birewar and Grossmann (1990) pointed out that the penalty function described simply as
the product of the cost of production shortfall and the shortfall quantity (penalty;, = cost
Q; x shortfall;,, i = 1,2, ..., N,, t =1, 2, ..., T) may not be able to adequately represent
loss of consumer satisfaction due to the shortfalls in orders booked. For example, it is
more realistic to assume that the degree of consumer dissatisfaction will increase as the
percentage shortfall increases. In other words, the constant of proportionality would rise

as the percentage shortfall increases. For example, if the shortfall SF; for product i in

interval ¢ is less than Gll.,t , then the penalty is proportional to the shortfall and the constant
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of proportionality or the penalty constant is Qll.,t. For a shortfall between Gll.,t and Git ,

the penalty constant is given by Q.ZJ. For a shortfall greater than Git, the penalty

. . 3
constant is given by Q; .

The total penalty for each product i in interval ¢ is defined by the following three

groups of constraints:

PN,, =SF,Q;,, i=12,.,N,,t=12,.T (5.19)

PN,

i,t

20,0} +(SF, -0, )@, i=12,..N, 1 =12,..T (5.20)

PN,

i,t

20,0} +07,Q}+(SE, — 07, ) Q. i =12, N, 1 =127 (5.21)
provided

it — it —

Q,<Q,<Q!, i=12,..,N,,t=12..T (5.22)

Similarly, any such group linear constraints can be used to replace the penalty constraints

in the model(s). This approach will be considered in future work.

5.6.2 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model
Randomness in the Left-Hand-Side (LHS) or Technology/Technological Coefficients
of Product Yield Constraints

5.6.2.1 Uncertainty in Product Yields

The different types of petroleum crude oil and their associated values are defined,

identified, and distinguished according to their yields structure or pattern besides the
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qualities of their refined useful products (OSHA  Technical Manual,
http://www.osha.gov/dts/osta/otm/otm_iv/otm iv_2.html, accessed on September 30,
2005). Thus, different types of crude oil would lead to varying degrees of product yields.
The yield pattern is dependent upon complex interaction of feed characteristics and
reactor conditions that determine severity of operation (Gary and Handwerk, 1994;
http://jechura.com/ChEN409/, accessed on October 17, 2005).

To determine the value of crude oil, comprehensive compilations of laboratory and
pilot plant data that define the properties of the specific crude oil are undertaken. These
data are termed as crude assays. A similar method is also used to establish the processing
parameters of a particular crude oil. At a minimum, the assay should contain a true
boiling point curve and a specific gravity curve for the crude oil. Most crude oil suppliers,
however, extend the scope of the assay to include sulphur contents, viscosity, pour points,
and many other properties (Jones, 1995; Gary and Handwerk, 1994; Speight, 1998).

In the literature, the term product yields (as used in Li (2004), for example) is also
variably referred to as production yields (Pongsakdi et al., in press; Lababidi et al., 2004),
processing yields (Fisher and Zellhart, 1995), or process yields (Bassett et al., 1997).
Estimating the yields of the desired fractions that might be obtained from a single crude is
a fairly simple task. However, the refiner is rarely processing a single crude but a mixture
of a number of crudes. Assays are usually available for single crudes, but only for very
few blends, and these are unlikely to be the ones of interest. Performing a complete assay
of a crude is therefore an expensive and time consuming procedure. The blend being
charged to the crude distillation unit, typically the first processing unit encountered in
refining processes, could change significantly before an assay could be completed. The
refiner, therefore, must have some other means of estimating the amounts of the various
streams that he should gain (that is, the product yields) from his current blend of crude
oils. Fortunately, computer programs are available that can take crude assay data and
derive from them, a complex of pseudo-hydrocarbon components that will satisfactorily
represent the actual crude. For a complete treatment of this subject, the reader is referred
to the text by Maples (1993).

Liou et al. (1989) reported that uncertainties in yield of reactors, or more precisely,

product yield of chemical reactions that take place in reactors, are mainly due to the
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different impact of two factors, namely (1) nonideal flow and/or (2) catalytic pellet
transport limitations, on the performance of the laboratory or pilot plant reactors in the
scale-up procedure to commercial reactors. This problem is even more prominent and
demands increased attention when a large number of chemical reactions occur
simultaneously, as in the multiple unit operations that make up a petroleum refinery.

The factor of nonideal flow refers to deviation from ideal plug flow modelling used in
pilot plant studies during the scale-up procedure to industrial-standard reactors. The yield
in a relatively shorter laboratory reactor is affected by axial dispersion more than that of a
full-scale industrial reactor operating at the same residence time distribution. An a priori
estimate of the maximum deviation in the yield of a laboratory reactor from that of a full-
scale reactor is important in estimating the uncertainty involved in the scale-up practice.
This information is vital for predicting the minimum length of a laboratory reactor for
specified operating conditions so that the yield of a desired product will not deviate from
that of a commercial reactor by more than some specified value.

The second factor of transport limitations in catalytic pellets affects the yield of a
desired product when many isothermal reactions occur simultaneously. The yield in a
laboratory reactor is typically higher than that of an industrial unit as the catalytic pellets
used are usually smaller. Therefore, it is pertinent to model in order to predict the
maximum uncertainty that may be introduced by this difference. It is reported that
research has been carried out to determine the effect of diffusion on the local yield of a
desired product for a system with an arbitrary number of first-order isothermal reactions
in which the involved prediction requires knowledge of all rate constants.

As an example, the analysis and scale-up of a laboratory packed bed reactor is often
complicated by the presence of intraparticle diffusion resistance, which results in the
intrinsic kinetics becoming unclear. The difference in particle size and consequently, in
intraparticle diffusion, introduces an uncertainty in the scale-up procedure. Therefore, it
is crucial to be able to predict a priori, the maximum impact of both intraparticle
diffusion and axial dispersion on reactors with simultaneous multiple reactions (Liou et
al., 1989).

On the other hand, at the operational level, the phenomenon of catalyst deactivation

may affect the yield of reactions, thereby introducing significant uncertainties in
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modelling product yields. By definition, any process, chemical or physical, which
decreases the intrinsic activity of a catalyst, can be classified as deactivation. In many
cases involving more complex catalysts or reactions, deactivation can be accompanied by
large changes in selectivity as well and hence, lead to uncertainty in related products’
yields and conversion (Petersen and Bell, 1987). In general, catalyst deactivation can be
caused by coke formation; contamination of the active sites, agglomeration, and
poisoning of the catalyst. As an illustration, coke formation or coking, widely
experienced in the catalysis of hydrocarbon conversions, can deactivate both metallic and
acid catalytic active sites for hydrocarbon reactions. Accumulation of such carbonaceous
deposits affects selectivity in hydrocarbon conversions, thus resulting in uncertainty in
product yields (Sermon et al., 1996).

In addition, from the modelling point-of-view, Yang et al. (1996) remarked that
product yields for many reactions of organic species or compounds are known to be
relatively uncertain or random due to lack of data or to the lumping procedures used to
condense mechanisms of the reactions. For instance, feedstocks of fluidized catalytic
crackers, the major refinery unit operation for gasoline production, consist of thousands
of components, thus rendering the estimation of intrinsic kinetic constants to be very
difficult. Therefore, the lumping of components according to the boiling point range is
generally accepted, although as noted, this is bound to result in uncertainty of the product
yields (Alvarez-Ramirez, 2004).

Nevertheless, Fisher and Zellhart (1995) cautioned that planners and users of a
planning model must recognize that the developed planning model and the entailing plan
is a forecast for an uncertain future. Therefore, an excessive amount of time should not be
spent in trying to estimate product yields that are accurate to a very high degree.
Although product yields should always be as accurate as possible, it is not to the extent
that the curse of “paralysis of analysis” sets in due to concern that the yields are not
perfect. In general, it is acknowledged that yields within one percent of the actual
(correct) value are acceptable. Yields for each refinery process should be inspected for
mass balances, hydrogen balances, and balances for other significant materials such as

sulphur, where and when applicable.
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There is relatively few works addressing uncertainty in product yields of chemical
reactions in the process systems engineering (PSE) literature pertaining to production
planning. The recent work of Pongsakdi et al. (in press) mentions accounting for this
factor of uncertainty; however, neither an explicit representation in the stochastic model
formulation nor a detailed discussion of yield uncertainty is presented. Uncertainty in
yield from a process, termed as productivities, appears to be an active work in the
Grossmann and coworkers research group at Carnegie Mellon University, with Goel
(2004) classifying yield in a process network problem under uncertainty as an
endogenous parameter, an under-treated issue in uncertainty modelling in which the
implication is that the structure of the scenario tree generated is dependent of when

decisions are made. This work has been extended by Tarhan and Grossmann (2005).

5.6.2.2 Product Yields for Petroleum Refining Processes

As product yields from a process feature as one of the primary sources of uncertainty in
the midterm planning of a refinery, it is deemed worthwhile to attempt to identify the
factors that influence the outcome of the yield pattern of a specific refining process, and
which directly (or possibly indirectly) contribute to uncertainty in product yields for the

particular process. This information is summarized in Table 5.7.

5.6.2.3 Product Yields from the Crude Distillation Unit (CDU)

The crude distillation unit (CDU) is the primary unit operation for the initial fractionation
of crude oil. A representation of the true boiling point (TBP) distillation curve for the
CDU is obtained by associating the temperature scale and the distilled percentages as
shown in Figure 5.7. In this diagram, each rectangular area represents the yield of the
different cuts from the crude. With this representation, it is possible to situate the types of
petroleum cuts and the corresponding temperature limits or cut points as that obtained in

refineries. An alternative representation of boiling temperature against cumulative
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volume percentage, which is perhaps more commonly encountered, is shown in Figure

5.8 for the Arabian Light crude oil.

Table 5.7: Factors influencing the yield pattern of processes in petroleum refining (Gary and
Handwerk, 1994)

Refinery Process Factors influencing Yield
Crude distillation * Crude oil type
* Feed characteristics
» Reactor conditions/Operating severity, e.g., temperature and pressure

Coking *  Temperature (high)
e  Pressure (low)
* Feed characteristics especially carbon residue

Catalytic cracking Catalyst type

Catalytic hydrocracking ¢ Crude oil type
* Previous processing operations
* Catalyst type and activity
e Operating conditions, e.g., temperature and pressure

Catalytic reforming * Reactor pressure
* Catalyst type and activity
* Feed quality

Isomerization * Feed properties
* Operating severity

Alkylation * Isobutane/Olefin ratio
* Temperature

In current industrial practice of refinery planning and optimization using linear
programming, the CDU is modelled based on the stream TBP cut point scheme using the
technique of swing cut modelling. (Sahdev et al., 2004,
www.cheresources.com/refinery planning optimization.shtml, accessed February 22,
2006). Swing cuts are increasingly used in linear programming assay tables to represent
the refinery’s flexibility to alter cut-points for optimization of side-cut yields and
properties. (Tucker, Michael A, www.kbcat.com/pdfs/tech/tp 002.pdf, accessed February
22,2006).
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Figure 5.7. Representation of the true boiling point (TBP) distillation curve for the crude distillation unit
(CDU) (taken from ENSPM Formation Industrie, 1993)
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Figure 5.8. Fractions from the distillation curve for the Arabian Light crude oil (taken from Jechura,
http://jechura.com/ChEN409/, accessed on October 17, 2005)

5.6.2.4 Sampling Methodology by Scenario Generation for the Recourse Model

under Product Yields Uncertainty

Uncertainty in product yields introduces randomness in the mass balances as given by
equation (4.7). The sampling methodology employed for scenario generation for the
recourse model under product yields uncertainty is similar to the case of demand
uncertainty addressed in the previous section. Table 5.8 summarizes attributes of
scenarios constructed for modelling product yields uncertainty whereas Table 5.9
presents the scenario construction to model yield uncertainty of products k=1, 2, 3, ...,
N, from material i. Note that in order to ensure that the material balances are satisfied, the
summation of yields must equal to unity. Therefore, if there are N. number of products
with randomness in yield, then the yield for the N.th product considered is computed as

the difference of the summation of yields for the (N.-1) products subtracted from 1, that

N,

C
1S, Vin. s II—Z Yiks - In most situations pertaining to chemical processes planning,
k=1

doing so would not distort the physics of the problem as usually, there is provision to
account for yield losses. In the case of petroleum refining, the N th product usually refers
to a product at the “bottom of the barrel” of a certain processing unit, which possesses
relatively insignificant commercial value compared to the yields of the other products

produced by the same unit.
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Table 5.8. Attributes of the scenario construction for modelling product yields uncertainty from
material i

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for
Product & Yield from Material i (unitless) under Scenario s

Scenario 1 Scenario 2
(s=1) (s=2) Scenario NS
e oxpesedatue W% 0% el
Yield of product k from
material i (ton/day) y; s ikl Yika VikNS
Probability p, )2 D2 o Dus

Table 5.9. Representative scenarios of product yields uncertainty in the refinery planning under
uncertainty problem

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Product
k Yield from Material i (unitless) under Scenario s, y; xns

Product type j Scenario 1 Scenario 2 Scenario s
Product 1 Vil Yiln Ji,I NS
Product 2 Yi2 Yipn e Yi2,Ns
Product 3 Yisl Viz2 e Yi2,NS
Product N,

NC NC NC
1_Zyi,k,1 1_Zyi,k,2 1_Zyi,k,NS
k=1 k=1 k=1

Probability p, )21 D2 “ Dns

5.6.2.5 Modelling Uncertainty in Product Yields by Slack Variables and Penalty

Functions for Shortages and Excesses in Yields

To be consistent with the definitions of the variables accounting for production shortfalls

(z;) and surpluses (z; ;) in addressing demand uncertainty, variables to denote the

deviation from the expected value (mean) of the yield of product j from material i are

defined as follows. A positive deviation refers to a shortage in product yield; conversely,

a negative deviation denotes an excess in product yield. Therefore, the variables are

properly defined as below:

)’:k,s : the amount of shortage in yields from material i (from the expected value) for

product type k per realization of scenario s,
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Yirs - the amount of excess in yields from material i (from the expected value) for

product type k per realization of scenario s,
The amount of shortage of yields from crude oil can be equivalently interpreted as the
amount of material to be added to compensate for the associated shortage in product £; in
contrary, the amount of excess of yields indicates the amount of material to be reduced to
account for the associated surplus in product 4.

Based on the similar approach of adopting penalty functions for modelling demand

uncertainty, it is assumed that a fixed penalty cost of q:k is incurred per unit of )’Zk,s
amount of shortage of yield from material 7, and a fixed penalty cost of ¢, for per unit

of excess of yield from material i by the amounty,, .. Thus, the expected recourse

penalty for the second-stage costs due to uncertainty in yield of product k from material i

for all considered scenarios generated is given by:

Es,yield = z z ps (q:jy:k,s + qijjyi,_k,s) (5‘23)

ar sl s

As in the case of product demand uncertainty, to ensure that the original information
structure associated with the decision process sequence is honoured, N; new constraints
(in place of the original single deterministic fixed yield constraint) to account for the N
number of scenarios dealing with product yield uncertainty are introduced for each
product whose yield is uncertain (Higle, 2005). The general form of the new constraints

1S:
Tix +x; +J’Zk,s —yirs =0, OO0 OOk OK, s S (5.24)

To obtain realistic values for the yield deviation terms, upper bounds of five (5)
percent of the crude oil mass flowrate are imposed as an estimate of the maximum value
that these terms could sensibly assume.

The combination of Tables 5.4, 5.6, and 5.9 as given by Table 5.10 completes the

scenario formulation in order to simultaneously model uncertainties in commodity prices,
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product demand, and product yields as represented by randomness in the coefficients of
the objective function and the RHS and the LHS of the constraints, respectively. The
major assumption that prices, demand, and yields in each scenario are highly correlated
enables the combination of all the scenarios in a stochastic programming model with
discrete random variables. Otherwise, the computation would involve the construction of
joint probability distribution of random variables that are made up of scenarios depicting
all possible combinations of the three parameters of prices, demand, and yields. This will
be considered in future work.

The corresponding expected recourse penalty for the second-stage costs due to
uncertainties in both demand and yields is given by:

E =FE +E

s,demand T L, yield
=Y plez rezn ) v 2 Y b @y Yavin)
arsg S i s S
=¥ p (= +ez, ) +p, (a5, +a7v0)
arsg S 25)
E ZZP{ C+ZJr (q, yl ks qz'_yi,—k,s):| ®
arsg S
=22 p8, where§, = (c, 2 ez ) +Ha v, +a7v)
arsg S
E;=2 D Ei
arg S

The expression for E as given by equation (5.25) clearly formalizes and illustrates one

of the most profound concepts of the recourse model, that is, the sole random variable is
now redefined to be the scenarios and no longer the separate random variables of

coefficients denoting prices, demand, and yields as considered earlier. Mathematically,
single random vectors of the recourse variables & = ( Z} s Zigs ik Vik v) are used in place
of the four single random variables zl s Zigo J’:k,s , and y,; ., in which vectors § are
random variables themselves (denoted here by the wavy line above the symbol). & is

described by a finite discrete distribution of {(ES, ps),s =1,2,3,...,s|p, >0 Ds} as

depicted by the discrete probabilities in Table 5.10 (Kall and Wallace, 1994).
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Table 5.10. Complete scenario formulation for the refinery production planning under uncertainty in
commodity prices, market demand for products, and product yields problem

Material/Product Scenario 1 Scenario 2 Scenario NS
Price Uncertainty: Objective Function Coefficient of Prices ($/ton)
Product 1 C1,1 C12 C1,NS
Product 2 C2,1 €22 R C2NS
PI'OdUCt 3 C3,1 C32 C3 NS
PI'OdUCt N CN 1 CNp2 CN, NS

Demand Uncertainty: Right-Hand-Side Coefficient of Constralnts for Product i
Demand (ton/day) under Scenario s, d, s

Product 1 di dio . di s
Product 2 dy dr> e dns
Product 3 d3 | d d3,NS
Product N dN | dno . dN NS

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Product j Yield
from Material i (unitless) under Scenario s, y; 4

Product 1 Vil Yiln i, I NS
Product 2 Yi2 Yipgo e Yi2,Ns
Product 3 Vi1 Vi3 e Vi2,Ns
Product N,

NC NC NC
1_Zyi,k,1 1_Zyi,k,2 1_Zyi,k,NS
k=1 k=1 k=1

Probability p, 1 D2 o Dus

5.6.2.6 Expectation Model I

A new reformulated objective function z; is now proposed, consisting of the sum of the
following components: (1) maximization of the expected net profit from product sales
subtracting the raw material costs of purchasing crude oil and the operating costs; (2)
minimization of the sum of variance in profit; and (3) minimization of the sum of
expected recourse penalty costs due to shortfalls or surpluses in production and shortages
or excesses of product yields from certain materials. The mathematical expression for this

new objective function is presented as:
maximize z, = z; — E, :E[zo] -8V (zy)) -E, (5.26)

where
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Zzpylvtslt-l-zyltlll _zzpv ‘ ll

E — arsg s 0 7 O0rs S _ R + O
[Zo] % Z}\”” z Z(a CE ”y”) gT:(rt ; TO; t)
a7 il O J
V(z)=2 5, (m)—ZZBiV(M)
(Orm 1 Or i1
subject to

deterministic constraints (first stage):
(4.1) and (4.2) for production capacity;
(4.7) for mass balances except for fixed production yields (which are random);
(4.4) for availability constraints;
(4.5) and (4.6) for inventory requirements;
stochastic constraints (second stage):

(5.18) for demand constraints

x.+z -z~ =d

i i,s i,s i,5°

47, 41 8
(5.24) for mass balances for fixed production yields

7—;x1 +xi +yi+,—k,s _yl:k,S 207 ZD[’kD K’B S.

Solution of the first-stage variables provides decisions on the flowrate of production
streams. Historical data of actual commodity prices, market demand, and product yields
are considered, and depending on which scenario occurs, appropriate production will be
executed in order to satisfy the realized prices, demand, and yields. These are the second-
stage recourse decisions that are clearly constrained by what has been produced in the
first-stage (apart from being constrained or depended upon by the corresponding
scenario).

Theoretically, the solution is, in general, likely to be more representative or more
robust with more scenarios considered but at the expense of being computationally
expensive (that is, increase in computation time). Furthermore, with considerable number
of scenarios taken into account, typically in the hundreds (for example, Pongsakdi et al.
(in press) considered 600 scenarios), more “noise” is present in the data. A more practical
approach is perhaps to compute the expected values of the data obtained from the first

round of scenario generation, and then to subject these expected values to a second round
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of scenario generation in order to obtain a more robust solution, although with a trade-off
in the increment of solution time. Another approach that can be considered is the use of
the concept of principal component analysis (PCA) in distilling the hundreds of scenarios
into a smaller number of representative scenarios, thus reducing both the amount of

computational time and the presence of noisy data.

5.6.2.7 Expectation Model 11

As remarked in Approach 1, a potential complication with Expectation Model I lies in
computing a suitable range of values for the profit risk factor 8. Therefore, the proposed
alternative modelling strategy of minimizing the variance, or in keeping to the
maximization problem, becomes maximizing the negative of the variance, while adding a
target value constraint for the mean of the original profit objective function; this is

employed as follows for Expectation Model I1:

maximize z, =-V(z)) —Ey
subjectto E [zo] > Target objective function value (5.27)

deterministic and stochastic constraints (4.1) — (4.7)

5.7 APPROACH 3: RISK MODEL II WITH VARIANCE AS THE MEASURE OF
RISK OF THE RECOURSE PENALTY COSTS

5.7.1 Two-Stage Stochastic Programming with Fixed Recourse to Model Uncertainty
in Prices, Demand, and Product Yields by Simultaneous Minimization of the

Expected Value and the Variance of the Recourse Penalty Costs
As highlighted earlier, Mulvey et al. (1995) stress the inappropriateness of models with

the expected value objective since they ignore both the risk attitude of the decision-maker

and the distribution of the objective values &, (as given by equation (5.25) for
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Expectation Models I and II developed in the previous section). Higle (2005) equally
advocated this by noting that expected values are risk-neutral models; hence they do not
always provide a satisfactory model for decision-making under risk. This is especially so
in the settings of moderate and high-risk decision-making under uncertainty as most
decision-makers are risk-averse in making (relatively) important decisions.

Therefore, in this third approach, the expected value model developed in Approach 2
is extended to incorporate the measure of economic risk associated with an investment
alternative. This is accomplished by reformulating the recourse penalty terms, again in
the spirit of the Markowitz’s mean—variance approach, as similar to the profit terms. The
resulting risk model obtained is one in which in maximizing expected profit by
minimizing its deviation (as computed by its variance), the expected value of the recourse
penalty costs is minimized as well as its deviation by computing a parameterized function
of the variance of the penalty costs. In general, this is the classical approach long
favoured among financial planners in the field of financial engineering to enable
decision-makers to investigate the tradeoffs between expectations and variances of costs
associated with their decisions (although by stating this, we do not intend in any way to
conceal the fact that there has also been published works doubting the practicality of the
MV approach, among others, by Michaud and Michaud (2006), Michaud (1998), and
Jobson and Korkie (1981)). According to Luenberger (1998), this approach enables the
tradeoffs between the means and the variances to be explicit while Mulvey et al. (1995)
perceives the incorporation of the variance term as an indicator of model robustness, as
will be analyzed through the numerical example on refinery midterm planning. Note that
we did not consider adopting the robust optimization model in the form originally
proposed by Mulvey et al. (1995) following the argument made by Sen and Higle (1999)
that the robust models are, in general, structurally unrelated to solutions obtained from
the recourse model based on Markowitz’s mean—variance approach. Instead, they further
stressed that the robust optimization models are instead dominated by solutions derived
from the inferior least-cost model.

A brief review on the concept of variance for a random variable follows. If X is a
random variable (that is, a variable whose value is decided by chance) that can take on a

finite number of values x;, x2, x3, ..., x,, with the associated probability of such
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occurrences given by pi, p2, ps, ..., Pu, respectively, then the expected value or mean of X

1s defined to be:
E=px +px, +pyx; +-- +px, (5.28)

From the definition of variance of X introduced earlier in equation (5.5) (Markowitz,
1952), the parameterized function of the variance for the various expected recourse

penalty for the second-stage costs V; is thus derived as:

Vv = zpv (Ev _Es')z

sas

2
= zpv (Ev - z ps'Es'j (5‘29)
a8

sas

2

+_+ - - +_+ - -
(Ci zist¢ Zi,s) (C' z; ¢ t¢ Zi,s')

1

Vo=2P 2 DI 2

+ o+ - - el + o+ - -
s0s @1 +(% Viks T yz',k,s) b Os" § +(qz' Viks 14 yi,k,s')

Note that the index s' and the corresponding set S is merely used to denote scenarios for
the evaluation of the inner expectation term in order to distinguish from the original index
s used to represent the scenarios. The variance Vi is weighted by the risk tradeoff
parameter 0, that is varied over the entire range of (0, ©) to generate a set of feasible
decisions that have maximum return for a given level of risk. This feasible decisions set
is equivalent to the “efficient frontier” portfolios introduced by Markowitz (1952; 1959)
for financial investment applications. The parameter 0, can be seen as reflecting the
decision maker’s attitude towards variability, that is, in more explicit terms, the risk
attitude of the decision maker. Hence, the following is the mathematical description of
Risk Model 11, as a result of the recourse reformulation of Expectation Model I developed
in Approach 2, utilizing variance as the measure of risk by minimizing the variance in the

expected recourse penalty costs:
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maximize z; =z, —6,/, :E[Zo] —8V(z) —E, -8V

(5.30)
subject to deterministic and stochastic constraints (4.1) —(4.7)

As denoted, Risk Model II is subject to the same set of constraints as for Expectation
Model I outlined in Approach 2.

It is desirable to demonstrate Risk Model II as possessing robustness both in terms of
its solution (solution robust) as well as the model itself (model robust). According to
Mulvey et al. (1995), a solution to a stochastic optimization model is defined as solution
robust if it remains close to optimality for all scenarios of the input data; and model
robust if it remains almost feasible for all data scenarios. In refinery planning, model
feasibility is as pertinent as solution optimality. In mitigating demand uncertainty, model
feasibility is measured by expected surpluses and shortfalls in production, in which each
denotes situation of excess production and unmet demand, respectively. Values of
expected unmet demand should be minimized in order to gain customer demand
satisfaction, while excess production should be simultaneously minimized to contribute to
better inventory management.

Risk Model II is characterized by solutions in the multiobjective space as defined by
the expected recourse penalty costs and the variance of the recourse costs. In the model, a
measure of solution robustness is obtained by varying the penalty parameter 6, and
observing the corresponding changes in the expected value of recourse penalty costs and
expected feasibility. The model does not serve to present an absolute optimal solution
that corresponds to the best possible outcome (typically in terms of maximum profit and
minimum cost) desired by any decision-maker; it is merely a tool to facilitate a decision-
maker in determining the choice that constitutes the best decision. As pointed out by
Applequist et al. (2000), while the concept of using variance of the objective function
value as a measure of risk is sound, such an approach requires the specification of the
values of the one or more penalty of trade-off parameters (such as given by 6, and 6, in
this Risk Model II). It is therefore left entirely in the hands of the decision-maker to
effectively choose from a family of solutions corresponding to different values of these

trade-off parameters.
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5.7.2 Limitations of Approach 3

This approach results in an even larger nonlinear programming (NLP) problem than
Approach 2, involving quadratic terms introduced by variance of the expected recourse
penalty costs, which adds to the computational burden in the solution. Therefore, in
general, it is undesirable to consider higher moments (beyond variance) in stochastic
modelling approach as even the consideration of variance already requires the solution of
a nonlinear program.

It should also be pointed out that incorporating the variance of the recourse function as
part of the objective function could potentially cause the problem to lose convexity. Thus,
without employing the techniques of global optimization, one is liable to get trapped in
local optima solutions. In some models, incorporating the variance of the recourse
function into the objective function leads to poor design or planning for cases in which
the variance is small, but the design is unnecessarily expensive (Sen, 2001). Furthermore,
Sen and Higle (1999) remarked that this approach that has its roots in the Markowitz’s
model, which is based on assumptions such as normally distributed returns, that may not
necessarily hold in some applications.

In addition, since variance is a symmetric risk measure, profits both below and above
the target levels are penalized equally, when it is actually desirable to only penalize
profits of the former, that is, profits that are below the target (Barbaro and Bagajewicz,
2004). In other words, constraining or minimizing the variance of key performance
metrics to achieve robustness, which in this case are the profit and the recourse penalty
costs, may result in models that overcompensate for uncertainty, as reported by Samsatli
et al. (1998). They therefore propose a general approach to robustness that can be tailored
for various types of constraints to be imposed on the system and on specific suitable
performance metrics. Other potentially more representative risk measures should also be
considered with Kristofferson (2005) providing a recent review of a wide choice of risk
measures applicable within a two-stage stochastic optimization framework (as

highlighted earlier in Section 5.5.7).
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5.7.3 A Brief Review of Risk Modelling in Chemical Process Systems Engineering
(PSE)

The subject of risk modelling, mainly incorporated through stochastic optimization
models, has been receiving increasing attention from the chemical process systems
engineering (PSE) community since the publication of one of the earliest papers (if not
the earliest) addressing this issue by Applequist et al. (2000) of the PSE research group at
Purdue University. Of late, the Miguel Bagajewicz research group at University of
Oklahoma, for instance, has produced a steady stream of publications addressing research
problems related to financial risk management in planning under uncertainty, mainly with
applications in the oil and gas industry. This can be found in the works of Pongsakdi et al.
(in press), Barbaro and Bagajewicz (2004a, 2004b), and Aseeri and Bagajewicz (2004).
Other works from Bagajewicz and co-workers that also incorporate the concept of
financial risk management include Guillen et al. (2005), Aseeri et al. (2005), Bonfill et al.
(2004),), and Romero et al. (2003).

5.8 APPROACH 4: RISK MODEL IIT WITH MEAN-ABSOLUTE DEVIATION
(MAD) AS THE MEASURE OF RISK IMPOSED BY THE RECOURSE
PENALTY COSTS

In this proposed fourth approach, we attempt to formulate a two-stage stochastic
programming with fixed recourse framework to model the same three factors of
uncertainties (namely commodity prices, market demand, and product yields) by
minimizing the mean-absolute deviation (MAD) of the various expected recourse penalty
for the second-stage costs. In essence, this model replaces the variance term in the

objective function of Risk Model II with the MAD term.
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5.8.1 The Mean-Absolute Deviation (MAD)

The mean-absolute deviation (MAD) (often inaccurately called the mean deviation) is

defined as:
1 N
MAD =—>" fi|x, = x| (5.31)
N3

where N is the sample size, x; are the values of the samples, x is the mean, and f; is the
absolute frequency.

In their pioneering work, Konno and Yamazaki (1991) proposed a mean-absolute
deviation (MAD) portfolio model to formulate a large scale portfolio optimization
problem. This serves as an alternative measure of risk to the standard Markowitz’s mean—
variance portfolio selection model, which models risk by the variance of the rate of return
of a portfolio, thus leading to a nonlinear convex quadratic programming (QP) problem.
Although both measures are almost equivalent from a mathematical point-of-view, they
are substantially different from a computational point-of-view in the following ways.
First, the use of MAD, essentially as a proposed linearization method of the objective
function to produce an equivalent linear programming (LP) problem, serves to overcome
the computational difficulties of the QP portfolio model and therefore, enables large-scale
problems to be solved faster and more efficiently. This is a situation that held true at least
until the mid-1990s before greater advancements in computer technology increasingly
narrowed the gap in speed between the computational solution of an LP and a convex QP.
Second, since the model can be casted into a linear programming (LP) problem, it can be
solved much faster than a corresponding MV model. Third, the LP formulation has
computational advantages over the QP formulation when integer constraints and
nonconvex functions are considered. Thus, in the area of investment portfolios within the
financial engineering field, the LP formulation is more suitable in handling problems
associated with real transaction environments. Moreoever, it is further reported that the
minimization of MAD provides similar results as the Markowitz formulation if the return

is multivariate normally distributed (Konno and Wijayanayake,
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2002; Konno and Koshizuka, 2005). Appendix C presents a theoretical treatment of
MAD based on Konno and Yamazaki (1991).

Three additional fundamental difficulties also exist with the MV model: (i) the
assumption that returns are normally distributed about the mean, which is not required in
the MAD model, (ii) the required storage and calculation of a usually dense variance
covariance matrix; which again is not required in the MAD model formulation and
consequently, its estimation is avoided; and (iii) the use of variance as a measure of risk
equally penalizes both upside and downside variation; when it should only be the latter
that is undesirable and thus penalized, as stressed earlier in Section 5.7.2 and
demonstrated graphically in Figure 5.9 (Konno and Yamazaki, 1991; Simaan, 1997;
Speranza, 1996; Murtagh, http://www.esc.auckland.ac.n/Organisations/
ORSNZ/conf37/Papers/Murtagh.pdf, accessed on November 12, 2005).

Penalty Penalty
A A

» Return » Return
r r

Mean-Absolute Deviation(MAD) Variance

Figure 5.9. Penalty functions for mean-absolute-deviation (MAD) and variance minimization (based on
Zenios and Kang (1993) and Samsatli et al. (1998)).

Ogryczak and Ruszczynski (1999) further demonstrated that MAD is an authentic
measure of risk in view of its compatibility with von Neumann’s principle of
maximization of expected utility (MEU) under risk aversion; a result corroborated by
Speranza (1996). This substantiates the solid economic foundation of the theoretical

properties of MAD (Konno and Koshizuka, 2005).
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5.8.2 Two-Stage Stochastic Programming with Fixed Recourse to Model Uncertainty
in Prices, Demand, and Product Yields by Simultaneous Minimization of the

Expected Value and the Mean-Absolute Deviation of the Recourse Penalty Costs

Konno and Yamazaki (1991) present the absolute deviation function, denoted as L; risk,

as:

W(x)= E{Zn:ijj —E|:Zn:ijj:l
j=1 j=l

} (5.32)

From equation (5.25) of Approach 2, the expected recourse penalty for the second-stage
costs due to the combined uncertainties in market demand and product yields from crude

oil is given by:

E; = Z Z Py [(C;Z:s' teiz; ) +(qz'+yz'jrk,s' g Viks )} (5.25)

ar a8

Thus, the corresponding mean-absolute deviation (MAD) of the expected penalty costs
due to violations of constraints for maximum product demand and product yields as a

result of randomness in both demand and yields is formulated as:

W(ps‘) = ng ES - ES'
sOS
DN IR (5.33)
sOS a8

+ + - - + + - -
(c[ zi st G Z[,s) (c[ Zi ¢ G Z[,S’)

W(p)=>.p|>, =X > by

+ o+ - - — = + o+ - -
sOs |0 1 +(q[ Yis 14, yl',s) Ui Ds" § +(q[ Viks T y[,k,j")

Since this function is not linear, it is linearized by adopting the transformation
procedure proposed by Konno and Yamazaki (1991) and revisited in Papahristodoulou

and Dotzauer (2004). The variables Y;; > 0 are defined, in which these Y;; variables can be
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interpreted as linear mappings of the nonlinear expression given by

(C;Z; +C[_Z[;) +(%+y[: +q[_.y[s_) _Z Z Py [(Ci+zi,:' +C[_Zl,;’) +(ql' Tyth +q; Virs )} . Thus,
0l §1°8'
equation (5.33) is rewritten simply as
(c;rZ:S + Ci_Zi,_s) (Ci+Zz'jrs' +Ci_Zi,_s')
Y =W (p) =2 p,|2 R IPIY X Sy 639
ST @l eyl ) | BT et e )
subjected to the following three constraints:
(C;Z:s + Ci_Zi,_s) (Ci+Zz'jrs' +Cz'_Zi,—s') |
Y23 pa Y N D030 i (5.35)
S0 H(ahn e | GBS e ey )|
(C;Z:s +Ci_Zi,_s) (Ci+zijrs' +Cz'—Zi,_s')
DA RN D ID I X R (5.36)
sts @I +(qz' Yis 14, yi,s) 0i Os" 8 +(%’ Yirs T4 yi,k,s')
and the non-negativity constraints for Y
Y;20 (5.37)

Similar to the formulation of Risk Model II in Approach 3 that utilizes variance as the
measure of risk for the recourse penalty costs, the adoption of MAD introduces the risk
parameter 03, varied over the entire range of (0, o) to consider its trade-offs with the
expected profit term, the profit variability term, and the expected recourse term in the
objective function. Therefore, the reformulated mathematical program for Risk Model 111,

which utilizes MAD as the measure of risk, is given by:
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subject to the same set of constraints as for Expectation Model I and Risk Model II with
the addition of constraints (5.35)—(5.37).

Note that the risk parameters 0; and 63, in their dual role as the scaling factors for the
variance term and the MAD term respectively, would mathematically necessitate that the
value of 0; is (much) smaller than 6; (8, < 0;) since 8, is required to scale down the
squared operation involved in computing variance whereas the MAD term is in the same

dimension as the expectation terms.
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CHAPTER 6

Model Implementation on the General Algebraic Modeling System
(GAMYS)

In the past, users have to spend a substantial amount of time on computer coding to solve
mathematical programming problems. However, major progress has been achieved in
recent times in the development of mathematical optimization algorithms and computer
codes, thus reducing significant amount of time required to form and implement solution
procedures. This enables more time to be focussed on developing strong model
formulations rather than developing coding and solver development.

The formulation and solution of major types of mathematical programming problems
with increasingly larger scale can now be effectively performed with modelling systems
such as GAMS (General Algebraic Modeling System) (Brooke et al., 1998) and AMPL
(Fourer et al.,, 1992). While these require that the model be expressed explicitly in
algebraic form, they have the advantage of being automatically interfaced with codes of
solvers for solving the various types of problems that may be encountered. The modelling
platform GAMS, for instance, has a library of solvers with the capability of providing
global solutions for linear programs (LP), integer linear programs (ILP) and mixed
integer linear programs (MILP), as well as determining local optima of nonlinear
programs (NLP), integer nonlinear programs (INLP), and mixed integer nonlinear
programs (MINLP) that have nonlinearities in continuous variables (Rardin, 1999).
GAMS can also perform automatic differentiation and allow the use of indexed
equations, which greatly facilitates and enhances the generation of large scale models.
Furthermore, these modelling systems are now widely available on desktop personal
computers (PCs) (Grossmann et al., http://egon.cheme.cmu.edu/papers.html, accessed on
December 10, 2005).

In essence, GAMS allows the user to almost exclusively concentrate on modelling a
problem by making the setup simple: defining variables, equations, and data, and then
selecting an appropriate solver. In fact, GAMS possess the capability of providing a

default solver that is determined to be (most) suitable for the structure of the problem at
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hand. The problem formulation can be altered with speed and ease, and the specification
of different solvers to be tested requires only minimal effort of a single line coding. All
solution algorithms can be deployed without requiring any change in existing models,
thus resulting in significant reduction of time dedicated to developing and executing
computational experiments.

As explained, GAMS is a modelling system for optimization that provides an interface
with a variety of different algorithms of solvers. Models are supplied by the user to
GAMS in an input file in the form of algebraic equations using a higher level language.
GAMS then compiles the model and interfaces automatically with a solver, which is an
optimization algorithm. The compiled model as well as the solution computed by the
solver is subsequently reported back to the user through an output file. The simple
diagram below, taken from Grossmann (1991, http://www.che.boun.edu.tr/che477/gms-

mod.html, accessed on September 30, 2005), illustrates this process.

GAMS
Compilation
of Model

Input File
MODEL

Output File
RESULTS

Optimization
Solver

Figure 6.1. Framework of the GAMS modelling system

Note that in this work, the objective functions of the proposed stochastic models are
made up of convex functions as given by the expectation operation, the variance
operation, the recourse function, or the Mean-Absolute Deviation (MAD) expression, in
various forms of nonnegative-weighted combinations as stipulated in the formulation of
the respective models. We therefore conclude that all the models possess the highly
sought-after mathematical programming property of convexity based on the theorem that
states “any f(x) formed as the nonnegative-weighted (a; > 0) sum f(x)[] Zk:a .g;(x) of

=1

convex functions g(x), i = 1,..., k, is itself convex” (Rardin, 1998). Since the local
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optimal of a convex function is also the global optimal, a starting value to initialize the
solution in GAMS would not be required

Based on the established ease and advantages of using GAMS, numerical studies of
the deterministic model and the proposed stochastic models are coded and implemented
using GAMS Integrated Development Environment (IDE) version 2.0.19.0 (Module
GAMS Rev 130) for Windows platform. The models are then solved using CPLEX 9.0
(ILOG CPLEX Division, http://www.gams.com/dd/docs/solvers/cplex.pdf, accessed
February 12, 2006) for the linear deterministic case and CONOPT 3 (Drud, 1996,
http://www.gams.com/solvers/conopt.pdf, accessed on January 10, 2006) for the five
nonlinear stochastic cases on a Pentium IV, 1.40 GHz, 512 MB of RAM machine (a
notebook computer instead of a desktop, to be precise).

CPLEX is incidentally the default solver in GAMS for handling linear programs (LP),
whose algorithm is based on the interior point methods that were first introduced by
Karmarkar (1984). For nonlinear programming (NLP) problems, CONOPT 3 is also the
GAMS default solver, in which it is based on a feasible path generalized reduced gradient
method with restoration. The solutions generated for the deterministic equivalent
formulation of the stochastic problems consist of: (i) the first-stage decision variables of
production flowrates for all process streams and (ii) the second-stage recourse variables
of production deviations due to randomness in demands and yields. Due to the
nonlinearities of the stochastic models, starting values for the first-stage decision
variables have been initialized to the optimal solutions obtained from the deterministic
model in an effort to ensure solutions of global optimality. Although a global optimum
could not be guaranteed due to the general nonconvexities of the problems, multiple local
solutions have not been detected under tests of varied initial conditions. This also
indicates that CONOPT 3 is a robust solver for the nonlinear nonconvex stochastic
models.

In addition, it may be useful to note that nonlinear optimization algorithms often
search in the space defined by superbasic variables, which are variables that are not in the
basis but whose values are between the upper and lower bounds. If an infeasible solution
is found by the solver used in GAMS, it is most likely due to the non-existent of a

superbasic variable, in which the facility within GAMS would readily report.
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CHAPTER 7

Analysis of Results from the Stochastic Models

In the context of production planning, robustness can be generally defined as a measure
of resilience of the planning model to respond in the face of parameter uncertainty and
unplanned disruptive events (Vin and lerapetritou, 2001). For this, we propose the
adoption of two metrics that have previously been used in the optimization literature,
under similar and different contexts, to quantitatively measure and account for
characteristics of planning under simultaneous uncertainty in three different parameters
(namely commodities’ prices, market demands, and product yields). The two metrics are:
(1) the concepts of solution robustness and model robustness according to the pioneering
idea of robust optimization by Mulvey and co-workers (1995) and (2) the coefficient of

variation C.

7.1 SOLUTION ROBUSTNESS AND MODEL ROBUSTNESS

According to Mulvey et al. (1995), Bok et al. (1998) and Malcolm and Zenios (1994),
solution robustness of an optimization model with respect to optimality is indicated by
the optimal model solution that is almost optimal, or remains close to optimal, for any
realization of the uncertain scenarios. This implies solutions that are less sensitive to
changes in the data when different scenarios are considered. On the other hand, model
robustness refers to solution robustness with respect to feasibility, with the optimal model
solution that remains “almost” feasible for any realization of the scenarios. Thus, in
general, for production planning problems, model robustness or model feasibility is
represented by the optimal solution that has almost no shortfalls or surpluses in
production as reflected by the expected total unmet demand and total excess production,
respectively; both of which should be kept to a minimum. A trade-off exists between

solution optimality and model-and-solution robustness. In order to investigate these
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trends, the following parameters are tabulated and analyzed from the raw computational
results of the refinery production rates for the stochastic models:

* the expected deviation in profit as measured by variance V(z);

* the expected total unmet demand or production shortfall;

» the expected total excess production or production surplus; and

* the expected recourse penalty costs E;.

7.2 COEFFICIENT OF VARIATION

The concepts of the value of the stochastic solution VSS and the expected value of
perfect information EVPI (Birge, 1982; Birge, 2005; Birge and Louveaux, 1997; Gupta
and Maranas, 2000; Kall and Mayer, 2005; Uryasev, 2005) appear to be unsuitable in the
case of nonlinear quadratic programming problems such as in the present work.
Therefore, a different measure is sought to interpret the solutions obtained. One such
approach is to investigate the coefficient of variation C,. C, for a set of values is defined
as the ratio of the standard deviation to the expected value or mean, and is usually

expressed in percentage. It is calculated as:

_ Standard Deviation x100% _0 x100% zﬂ x10
Mean H E

C

v

0% (7.1)

Statistically, Cy is a measure of reliability, or evaluated from the opposite but equivalent
perspective, it is also indicative of a measure of uncertainty. It is alternatively interpreted
as the inverse ratio of data to noise in the data in most conventional textbooks on
statistics. Therefore, it is apparent that a small value of C, is desirable as it signifies a
small degree of noise or variability (in a data set, for instance) and hence, reflects low
uncertainty.

It follows then that in the realm of stochastic optimization, coefficient of variation can
be purposefully employed to investigate, denote, and compare and contrast the relative

uncertainty in models being studied. In a risk minimization model, as the expected value
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of mean is reduced, the variability in the expected value (as typically measured by
variance or standard deviation) is reduced as well. The ratio of this change can be
captured and described by the coefficient of variation. Conversely, a comparison of the
relative merit of models in terms of their robustness can also be represented by their
respective values of coefficient of variation (that is, in the sense that a model with a lower
coefficient of variation is favoured since there is less uncertainty associated with it, thus
contributing to its reliability; this is in tandem with the original definition of C, as a
measure of reliability).

In addition to these arguments, in the seminal paper of his Nobel Prize-winning work
(in the field of economics) of mean—variance model for optimization of investment
portfolio selection, Markowitz (1952) remarked that the use of coefficient of variation as
a measure of risk would equally ensure that the outcome of a decision-making process
still lies in the set of efficient portfolios.

In a data set of normally distributed demands, if the coefficient of variation C, of
demand is given as a case problem parameter, the standard deviation is computed by the
multiplication of C, with the deterministic demand (Jung et al., 2004) Increasing values
of C, result in increasing fluctuations in the demand and this is again undesirable.

Computation of the coefficient of variation is based on the objective function of the
formulated model. Table 7.1 displays the expressions to compute the coefficient of
variation for the respective models developed in the preceding section. Note that the
coefficient of variation for the corresponding deterministic case of each model is
determined based on the expected (E) result of using the deterministic expected value
(EV) solution, or EEV for short. In more elaborate terms, EEV is the solution obtained
from solving the stochastic models using results from the deterministic expected value
problem (that is, the deterministic model with the random parameters replaced by their

expected values or means).

(Please turn the page over for Table 7.1.)
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Table 7.1. Coefficient of variation for the deterministic and stochastic models developed

Coefficient of Variation

_o _\V
Approach Model Objective Function " uE
Deterministic c'x [Given by the expected (E)
result of using the
deterministic expected
value (EV) solution (EEV)]
1 Risk Model 1 max z; = —V(ZO) v (ZO)
C, =
_ E [ZO]
max z; = E[ZO] -0V (zy)
2 Expectation I: max z, = E[z,| -8V (z,) -E, %
Models I and 1T ’ [ 0] ’ ‘ C = (ZO)
Il: max z, = ¥(z)) - E, T E[Z]-E
3 Risk Model II max z; = E[Zo] -8V (z) —E, -8V, V(ZO) +V
C, = d
" E[z]-E,
4 Risk Model Il max z, = E[Zo] -8V (z) —E, —6W(p,) z) )+ W
Zo) T Ly
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CHAPTER 8

A Representative Numerical Example and Computational Results for
Petroleum Refinery Planning under Uncertainty—I: The Base Case
Deterministic Refinery Midterm/Medium-Term Production Planning

Model

As a representative numerical example for the purpose of computational experimentation
and testing, we consider the deterministic refinery production planning model proposed
by Allen (1971) as the base case or core model, without loss of generality. The model is
then reformulated with the addition of stochastic dimension according to the principles
and approaches that have been extensively outlined in the previous section on general
model development.

This model is also adopted in the work of Ravi and Reddy (1998), which employs the
fuzzy programming technique to account for uncertainty. This provides a further avenue

for us to analyze solutions from our work in light of the fuzzy approach solutions.

8.1 PROBLEM DESCRIPTION AND DESIGN OBJECTIVE

The base case models the planning of the operations of a petroleum refinery as an
ordinary single objective linear programming (LP) problem of total daily profit
maximization. Allen (1971) remarked that the LP approach is particularly useful in this

context it provides considerable flexibility in the way a plant could be operated.
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8.2 THE DETERMINISTIC REFINERY MIDTERM PRODUCTION PLANNING
MODEL

X2
»

} Gasoline
A X1 X16
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Figure 8.1. Simplified representation of a petroleum refinery for formulation of the deterministic linear
program for midterm production planning

Figure 8.1 is a simplified representation of a refinery that is essentially made up of a
primary distillation unit (or more commonly known nowadays as the crude distillation
unit or CDU) and a middle distillates cracker (more widely known as the catalytic cracker
in modern settings). The refinery processes crude oil to produce gasoline, naphtha (for
gas making), jet fuel, heating oil, and fuel oil. The primary unit splits the crude into
naphtha (13 weight percent, or 13 wt% yield), jet fuel (15 wt%), gas oil (22%), cracker
feed (20%), and residue (30%). Gasoline is blended from naphtha and cracked blend
stock in equal proportions. Naphtha and jet fuel products are straight run. Heating oil is a
blend of 75% gas oil and 25% cracked oil. Fuel oil can be blended from primary residue,
cracked feed, gas oil, and cracked oil in any proportions. Yields for the cracker (weight
percent on feed) are flared gas (5%), gasoline blend stock (40%) and cracked oil (55%).
This information along with the flow diagram of Figure 8.1 describes the physical
system. All the variables that are in the same units of tonne/day, or denoted symbolically

as t/d, are first assigned to process streams to represent the flow rate in each. Since in
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linear programming, decision variables cannot feasibly be negative, assigning a variable
to a stream also defines its direction of flow and prevents any possibility of flow reversal,
for instance, cracked blend stock going into naphtha product. In Figure 8.1, variables
have been assigned to all the streams.

The minimum number needed to define a system fully should be identified. In this
example, it is three since, for example, fixing x; determines x7, x4, X3, X9, and xjo; fixing x,
then determines x1, X6, X3, X14, X17, X20, and x;s;and finally fixing xs then determines x>,
X18, X13, X19, and xs. An LP model could be formulated using only these three structural
variables or any other suitable three variables. In this case, the solution would only give
values of the three variables and the remainder (if needed) would have to be calculated
from them afterwards. It is usually more convenient to include some additional variables
in the LP model over and above the minimum number. Each variable added needs an
additional mass balance constraint to define it. Instead of calculating a variable separately
from the solution, the means of finding its value is thus included in the model itself.

The next step is to construct linear constraints that describe the physical plant
relationships and define the amount of flexibility existing in plant operation. These

constraints are categorized as follows.

8.2.1 Limitations on Plant Capacity

In the example, the feed rates of crude oil to the primary unit and cracker, averaged over

a period of time, can be anything from zero to the maximum plant capacity. The

constraints are:

primary distillation unit: x1 < 15000 8.1)

cracker: x14 <2500 8.2)
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8.2.2 Mass Balances

Mass balance constraints are in the form of equalities. There are three types of such
constraints: fixed plant yield, fixed blends or splits, and unrestricted balances. Except in
some special situations such as planned shutdown of the plant or storage movements, the
right hand-side of balance constraints is always zero. For the purpose of consistency, flow
into the plant or stream junction has negative coefficients and flows out have positive

coefficients. The constraints are as follows:

8.2.2.1 Fixed Yields

For the primary distillation unit:

-0.13x, +x, =0 8.3)
-0.15x, +x, =0 8.4
-0.22x, +x3 =0 8.5
-0.20x, +x, =0 8.6)
-0.30x, +x,, =0 8.7
For the cracker:
-0.05x,, +x,, =0 (8.8)
-0.40x,, +x,, =0 8.9
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~0.55x,, +x,, =0 (8.10)

8.2.2.2 Fixed Blends

For gasoline blending:

0.5x, =x;;, =0 8.11)

0.5x, =x;4 =0 8.12)
For heating oil blending:

0.75x5 —x;, =0 8.13)

0.25x5 — x4 =0 (8.14)
8.2.2.3 Unrestricted Balances
Naphtha: —x; +x; +x,;, =0 8.15)
Gas oil: —xg +x12+tx;3=0 (8.16)
Cracker feed: —X9 T x14+x15=0 (8.17)
Cracked oil: —x17 t X138+ x19=10 (8.18)
Fuel oil: —X10—X13—X15—X19 + x6 =0 8.19)

151



8.2.3 Raw Material Availabilities and Product Requirements

The constraints considered so far are concerned with the physical plant. Constraints are
also needed relating to external factors such as the availability of raw materials and
product requirements over a time period. For this example, there are no restrictions on
crude oil availability or the minimum production required. The maximum production

requirement constraints (in t/d) are as follows:

Gasoline: X £2700 (8.20)
Naphtha: x3 <1100 (8.21)
Jet fuel: x4 <2300 8.22)
Heating oil: x5 < 1700 (8.23)
Fuel oil: X6 < 9500 8.24)

8.2.4 Objective Function

Although optimization can be stated in many different ways, the common optimization to
an industrial process is to maximize the profitability of the process, or to minimize the
overall costs, in which the former is adopted in this work. In this model, the whole
refinery is considered to be one process, where the process uses the given petroleum
crude oil to produce various petroleum products in order to achieve specific economic
objectives. Thus, the objective of the optimization at hand is to achieve maximum
profitability given the type of crude oil and the refinery facilities. No major hardware
change in the current facilities is considered in the optimization. The optimization tries to
find the optimal operation modes of units and stream flows that maximize the overall

profit of the whole refinery while observing all the possible process constraints.
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Thus, the economic objective function considered is the net profit or net revenue to be
maximized, in units of $/day. The cost of acquiring the raw material crude oil and
transforming it to finished products are subtracted from the gross revenues accruing from
the sale of finished products. Note that there is no cost associated with blending as this
cost is netted out of the unit sales price of the finished products. The sign convention
denotes costs as negative and realization from sales as positive. Each element in it
consists of the product of coefficient of unit cost or unit sales price ($/ton) and a
production flowrate variable (ton/day or t/d). Thus, the objective function is as follows

(Shapiro, 1993):

maximive = = 7,55 =035 L3 1835 *50% 25 1% 00

crude primary  cracker gasoline  naphtha jet fuel heating oil ~ fuel oil
oil unit

hence,

maximize z = —8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x, -1.5x,, (8.25)

X

Since linear programming variables cannot feasibly be negative, an additional constraint

to be specified is:
X1, X2, ..y X200 or x,>0,i=1,2,...20 (8.26)

It is noted that the constraints of production requirements is directly impacted by the
market demand for the final refinery products. Therefore, in the stochastic version of the
model, the random decision variables will be introduced into these constraints. Since the
objective function is to maximize profit, the production requirements are expressed in
terms of inequalities with an upper bound (“less than” inequalities) in order to ensure that
the optimization problem is bounded (otherwise, the maximum profit can be solved to an
infinite value). Conversely, if the objective function is to minimize production cost, then
the production requirements would be expressed in the form of inequalities with a lower

bound. This can be deduced logically, as a “less than” inequality would include the
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possibility of the solution of non-production (that is, the operations or production of the
refinery is halted or the entire plant is shut down) as cost is equals to zero in this

situation.

8.3 COMPUTATIONAL RESULTS FOR DETERMINISTIC MODEL

The deterministic LP model was set up on GAMS and solved using CPLEX version 9.0.2
(http://www.gams.com/dd/docs/solvers/cplex.pdf, accessed February 12, 2006). CPLEX
has been proven to be a very stable LP solver, and the default settings are almost always
sufficient to obtain an optimal solution within excellent solution times
(http://www.gams.com/solvers/solvers. tm#CPLEX, accessed February 12, 2006). The
solution computed was compared against the solution obtained using the computational
software package LINDO (Linear Interactive and Discrete Optimizer) (Schrage, 1990),
an easy-to-use engine for solving linear and integer optimization models. Both solutions
have been verified to be consistent with each other (with values generated accurate to
three decimal places for the computation with GAMS/CPLEX and to six decimal places
with LINDO) and is tabulated in Table 8.1.

In CPLEX, a normal run performs an iterative procedure analogous to the LP primal
simplex method until the optimal solution is reached. The optimal solution for this
deterministic model are obtained by CPLEX after three (3) iterations in a trivial CPU
time whereas nine (9) iterations are needed by using LINDO (also in within negligible

CPU time). Table 8.2 details the computational statistics for solving Deterministic Model.

8.4 SENSITIVITY ANALYSIS FOR THE SOLUTION OF DETERMINISTIC
MODEL

A sensitivity analysis for the objective function coefficients is performed using the

available facility in LINDO to determine lower and upper limits of each coefficient with

no change in the optimal solution. Table 8.3 displays the ensuing results of these limits in
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Table 8.1. Computational results for Deterministic Model from GAMS/CPLEX and LINDO

Value (ton/day) Dual Price/ Slack or Dual Price/

Decision  Lower Upper  Marginal Surplus Value Marginal

Variable  Limit Level Limit ($/ton) Variable  (ton/day) ($/ton)

X1 0 12 500 +00 0 1 2500 0
X2 0 2 000 +00 0 82 0 3.575
X3 0 625 +00 0 83 700 0
X4 0 1875 +00 0 S4 475 0
Xs 0 1700 +00 0 Ss 425 0
X6 0 6175 +00 0 S6 0 8.5
X7 0 1 625 +00 0 87 3325 0
X3 0 2750 +00 0 as 0 8.0
X9 0 2500 +00 0 ag 0 12.5
X10 0 3750 +o00 0 aio 0 6.0
X1 0 1 000 +00 0 an 0 9.825
X12 0 1275 +o00 0 ain 0 6.0
X13 0 1475 +o00 0 ais 0 0
X14 0 2 500 +o00 0 aig 0 29.0
X15 0 0 +o00 -3.825 ais 0 6.0
X16 0 1 000 +o00 0 aie 0 8.0
X17 0 1375 +o00 0 a7 0 29.0
X138 0 425 +o00 0 ag 0 6.0
X19 0 950 +o00 0 aig 0 6.0
X20 0 125 +o00 0 ajo 0 8.0
(2531 0 6.0
[25%) 0 9.825
ars 0 6.0
(2577 0 6.0
z ($/day) -0 23 387.50 +c0  (optimal objective function value = maximum profit)

Table 8.2. Computational statistics for Deterministic Model

Single continuous Resource usage/
Solver variables Constraints CPU time (s) Iterations
CPLEX 21 25 0.000 (trivial) 3

which the current solution or basis remains optimal. The allowable increase column
section indicates the amount by which an objective function coefficient can be increased
with the current basis remaining optimal, giving the lower limit value of the coefficient.
Conversely, the allowable decrease column section is the amount by which the objective
coefficient can be decreased with the current basis remaining optimal, thus determining
the upper limit.

We observe that nine out of the 20 decision variables have positive infinity as an upper
limit for their associated coefficients and this is deemed reasonable since all the decision

variables are positive; moreover, the objective is to maximize profit. For example, the
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Table 8.3. Sensitivity analysis for the objective function coefficients of Deterministic Model

Objective function coefficient ranges ($/ton)

Decision  Allowable Lower Current Upper Allowable
variable decrease limit value limit increase
X1 0.715000 —=8.715000 -8.000 000  -7.235 000 0.765 000
X 4.468 750 14.031 25 18.500 000 +00 +00
X3 14.300 000  —6.300 000 8.000 000 13.884 615 5.884 615
X4 4.766 667 7.733 333 12.500 000 17.600 000 5.100 000
Xs 8.500 000 6.000 000 14.500 000 +00 +oo
X6 1.134 921 4.865079 6.000 000 7.062 500 1.062 500
X7 5.500 000  -5.500 000 0.000 000 5.884 615 5.884 615
Xg 3.250000  -3.250 000 0.000 000 3.477 273 3.477 273
X9 3.575000 -3.575000 0.000 000 3.825 000 3.825 000
X10 2.383 333 -2.383 333 0.000 000 2.550 000 2.550 000
X1 8.937500 —8.937 500 0.000 000 +00 +00
X12 11.333 333 11.333 333 0.000 000 +00 +00
X13 3.250 000 3.250 000 0.000 000 3.477 273 3.477 273
X14 3.575000 -5.075000 —1.500 000 +oo 0
X1is +00 —00 0.000 000 3.825 000 3.825 000
X16 8.937500 —8.937 500 0.000 000 +00 +00
X17 6.500 000 -6.500 000 0.000 000 +00 +00
X1 34.000 000 -34.000 000 0.000 000 +00 +oo
X19 6.500 000  -6.500 000 0.000 000 34.000 000  34.000 000
X20 71.500 000 -71.500 000 0.000 000 +00 +oo

decision variable x, denoting the production mass flow rate of gasoline (in ton/day) has
current objective function coefficient value of price of $18.50/ton for profit. The price of
gasoline can be as low as $4.47/ton without altering the optimum profit. Therefore, if a
customer wishes to enter into a purchasing agreement or contract for the commodities
produced by the refinery, the trader or marketer, acting with the knowledge of the
management, can negotiate the trading price down to as low as the extent of the lower
limits of prices listed in Table 8.2 without affecting or “hurting” the company’s profit, so
to speak, as the optimal solution would not be changed. This boosts the refinery’s
flexibility to negotiate prices so long as it is within the bounds of each coefficient as
determined in Table 8.2, especially in the volatile market of spot trading of crude oil and
the commodities (Zayed and Minkarah, 2004).

As before, the sensitivity analysis for the right-hand side of constraints is executed as
well by utilizing LINDO with the corresponding results displayed in Table 8.4. The upper
limits for some of the constraints are positive infinity while the lower limits vary. Lower

limits for most of the constraints are observed to be of negative value. Constraints whose
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upper limits are allowed to go to positive infinity imply that they are not critical to the
production process. As an illustration, the right-hand side constraint for the production
requirement or demand of heating oil can be as low as none without inflicting a change in
the optimal solution. The other constraints can be analyzed in a similar manner (Zayed
and Minkarah, 2004).

The values of the slack or surplus variables and the dual prices in Table 8.1 provide
the most economical average operating plan for a 30-day period. For instance, it indicates
that the primary distillation unit is not at full capacity as the solution generates a
production mass of 12 500 tons/day against its maximum production capacity of 17 300
tons/day (as given by the summation of the right-hand-side values of constraints (8.20)—
(8.24)). Another analytical observation reveals that the maximum production requirement

is only met for heating oil.

Table 8.4. Sensitivity analysis for right-hand side of constraints of Deterministic Model

Right-hand side of constraints ranges (ton/day)

Allowable Lower Current Upper Allowable
Constraints decrease limit value limit increase
(8.1) 2 500.000 000 12 500.000 000 15 000.000 000 +00 +00
(8.2) 1340.909058 1159.09094 2 500.000 000 3 000.000 000 500.000 000
(8.3) 625.000 000 -625.000 000 0.000 000 475.000 000 475.000 000
(8.4) 1 875.000 000 -1 875.000 000 0.000 000 425.000 000 425.000 000
(8.5) 1 475.000 000 -1 475.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.6) 500.000 000 =500.000 000 0.000 000 961.538 510 961.538 513
(8.7) 3 750.000 000 -3 750.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.8) 125.000 000 =125.000 000 0.000 000 +00 +00
(8.9) 475.000 000 =475.000 000 0.000 000 350.000 000 350.000 000
(8.10) 950.000 000 =950.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.11) 625.000 000 —625.000 000 0.000 000 475.000 000 475.000 000
(8.12) 475.000 000 =475.000 000 0.000 000 350.000 000 350.000 000
(8.13) 1 475.000 000 -1 475.000 000 0.000 000 1 275.000 000 1 275.000 000
(8.14) 950.000 000 =950.000 000 0.000 000 425.000 000 425.000 000
(8.15) 625.000 000 —625.000 000 0.000 000 475.000 000 475.000 000
(8.16) 1 475.000 000 -1 475.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.17) 500.000 000 =500.000 000 0.000 000 961.538 510 961.538 513
(8.18) 950.000 000 =950.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.19) 6 175.000 000 -6 175.000 000 0.000 000 3 325.000 000 3 325.000 000
(8.20) 700.000 000 2 000.000 000 2 700.000 000 +00 +00
(8.21) 475.000 000 625.000 000 1 100.000 000 +00 +00
(8.22) 425.000 000 1 875.000 000 2 300.000 000 +00 +00
(8.23) 1700.000 000 0.000 000 1 700.000 000 3666.6666 1 966.666 626
(8.24) 3325.000 000 6 175.000 000 9 500.000 000 +00 +00
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By definition, the dual price or shadow price of a constraint of a linear programming
model is the amount (or rate) by which the optimal value of the objective function is
improved (increased in a maximization problem and decreased in a minimization
problem) if the right-hand-side of a constraint is increased by one unit, with the current
basis remaining optimal. A positive dual price means that increasing the right-hand side
in question will improve the objective function value. A negative dual price means that
increasing the right-hand side will have a reverse effect. Thus, the dual price of a slack
variable corresponds to the effect of a marginal change in the right-hand-side of the
appropriate constraint (Winston and Venkataramanan, 2003).

The dual prices of slacks on mass balance and product requirement rows can be

interpreted more specifically. Consider a mass balance constraint:

—x, =X, +x; =0 8.27)

where x3 is the product stream. Introducing the artificial slack variable a, and then

rearranging, we obtain:

-X; =X, +x; +a, =0 (8.28)
x tx, =x; ta,

The product stream is increased by a, and the feed streams x; and x, must increase
correspondingly. The dual price of a, indicates the effect of making marginally more
products without taking into account its realization (which is on x3), that is, it indicates
the cost added by producing one extra item of the product, or in other words, the marginal
cost of making the product. In addition to that, consider the product requirement

constraint;

x; <1100
= x; +s,, =1100 (8.29)
= x; =1100 -5,
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The dual price of the slack variable s,, on this constraint indicates the effect of selling this
product at the margin, that is, it indicates the marginal profit on the product. If the
constraint is slack so that the slack variable is positive (basic), the profit at the margin
must obviously be zero and this is in line with the zero dual price of all basic variables.
Since cost + profit = realization for a product, the sum of the dual prices on its balance
and requirement constraints equal its coefficient in the original objective function.

In this problem, there are two balance constraints on heating oil as given by equations
(8.13) and (8.14), the dual prices of which are both $6.00/ton. This is the marginal cost of
diverting gas oil and cracked oil from fuel oil to heating oil. The dual price for the
constraint on heating oil production as given by inequality (8.23) is $8.50/ton and this is
the marginal profit on heating oil, in line with the realization of $14.50/ton in the
objective function as given by the coefficient of xs (Allen, 1971).

From the economic interpretation viewpoint, the dual prices can be seen as prices for
the scarce resources that minimize the total accounting cost of these resources to the
refinery, and yet involve a scarce-factor cost of producing a unit of each commodity that
is no less than its unit profit yield. The dual prices indicate what proportion of its profits
that the refinery owes to each such scarce factor (Baumol, 1958).

As stated earlier, the solution for the deterministic model was verified with the
optimization software LINDO. Given that the numerical example presented as a case
study addresses only the three primary units of a typical oil refinery, it should be kept in
mind that while the example model is nonetheless representative, the results should be
viewed as a (preliminary) proof of concept rather than a well-tested planning model for
the operations of a refinery. The emphasis (and novelty) of this work lies chiefly in the
five stochastic models, to be presented in subsequent sections, for planning in the

downstream processing of the highly dynamic and uncertain hydrocarbon industry.
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8.5 DISADVANTAGES OF THE SENSITIVITY ANALYSIS OF LINEAR
PROGRAMMING AS MOTIVATION FOR STOCHASTIC PROGRAMMING

Sensitivity analysis is used with a pretext of an attempt to study the robustness of the
solution to a linear programming (LP) model. If there is cause for concern regarding the
accuracy of the data used, sensitivity analysis is undertaken to determine the manner in
which the solution might change if the data were different. When the solution does not
change (or when the nature of the solution does not change, as in when the basis remains
optimal), it is believed that the proposed solution is appropriate. Unfortunately, such is
not true if the solution is sensitive to the data. A question arises as to how to proceed if
the solution, or the nature of the solution, varies when the data is changed. Therefore,
although sensitivity analysis offers some sense of security, it is important to recognize
that in many cases, this is really somewhat a false sense of security. If there is some
uncertainty about the values of some data elements, it ought to be included in the model.
This is precisely the situation for which the stochastic programming modelling approach
are intended, that is, when we know that some of the data elements are difficult to predict
or estimate (Higle, 2005).

Furthermore, in most cases, the output of SA is misleading when used to assess the
impact of uncertainty. SA is most appropriate when the basic structure of the model is not
altered by the presence of uncertainty—for example, when all uncertainties will be
resolved before any decisions are made. When the decisions are to be made, a
deterministic model will be appropriate, but as long as the available data and information
remain uncertain, we will not know which deterministic model will be appropriate and
suitable. SA is merely able to help us appreciate the impact of uncertainty without
providing the measures to hedge against it. This is because sensitivity analysis based on
the output of a model constructed on the presumption of deterministic data as in an LP
will not reflect an ability to adopt to information that becomes available within a
sequential decision process, thus rendering it ineffectual for decision making under
uncertainty (Higle and Wallace, 2003).

This explains why Mulvey et al. (1995) argue that sensitivity analysis (SA) is a

reactive approach to controlling uncertainty in justifying the adoption of the stochastic

160



programming philosophy. As emphasized by Higle (2004), SA merely measures the
sensitivity of a solution to changes in the input data. It provides no mechanism by which
this sensitivity can be controlled. On the other hand, stochastic programming is a
constructive approach that is superior to SA. With stochastic linear programming (SLP)
models, the decision maker is afforded the flexibility of introducing recourse variables to
take corrective actions.

Nevertheless, the SLP model optimizes only the first moment of the distribution of the
objective value as it ignores higher moments of the distribution, in addition to the
decision maker’s preferences towards risk. These aspects are particularly important for
asymmetric distributions and for risk-averse decision makers. Therefore, in this work the
SLP formulation is extended by incorporating risk measures in the form of variance and
mean-absolute deviation (MAD), as will be demonstrated in the stochastic models
introduced in the following section.

In handling constraints, SLP models aim at finding the planning variable (x) such that
for each realized scenario, an operating variable setting () is possible in satisfying the
constraints. For systems with some redundancy, such a solution might always be possible.
The SLP literature even allows for the notion of complete recourse, whereby a feasible
solution y exists for all scenarios, and for any value of x that satisfies the recourse

constraints.
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CHAPTER 9

A Representative Numerical Example and Computational Results for
Petroleum Refinery Planning under Uncertainty—II: The Stochastic

Refinery Midterm/Medium-Term Production Planning Model

9.1 APPROACH 1: RISK MODEL I BASED ON THE MARKOWITZ’S MEAN—
VARIANCE (E-V) APPROACH

The deterministic objective function is given by:

z=-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x, —1.5x, 8.25)

where in the following the coefficients, with the associated variables of amount of
production in mass flowrate indicated in parentheses, denote the price of crude oil (x;) as
the raw material and the sales prices of the products or commodities, namely gasoline
(x2), naphtha (x3), jet fuel (x4), heating oil (xs), fuel oil (x6), and the feed to the cracking
unit (x14) (henceforth, referred to simply as the cracker feed), respectively. Therefore, if ¢
is a row vector consisting of the price (or cost) coefficients as its elements and x is the
column vector of production flowrate, then the objective function can simply be generally

represented as:

z=c'x O.1)

For the prioritized purpose of method demonstration of the validity of the
mathematical programming tools proposed (that is, without claiming that the model
captures all detailed aspects of the problem), three possible coefficients of variation
(defined as the ratio of standard deviation to mean) depicting three different scenarios are
considered to be representative of the uncertainty in the objective function coefficients of

prices, based on the trends of the historical data presented in Sections 5.5.1 and 5.5.2. The
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three representative scenarios are constructed as (i) the “above average” scenario
denoting a representative percentage of 10 percent positive deviation from the mean
value; (i) the “average” scenario that takes on the expected value or mean; and (iii) the
“below average” scenario, correspondingly denoting a representative 10 percent negative
deviation from the mean value.

Table 9.1 summarizes attributes of modelling uncertainty in the price of crude oil.
Subsequently, Table 9.2 displays details of all three scenarios for all materials where

price uncertainty is considered.

Table 9.1. Attributes of the scenario construction example for modelling crude oil price uncertainty

Price Uncertainty: Objective Function Coefficient of Prices ($/ton)

Scenario 1 (s=1) Scenario 2 (s = 2) Scenario 3 (s = 3)
Above Average Price Average Price Below Average Price
Percentage of deviation 0
+ 0, . — 0,
from the expected value 10% (i.e., the expected value) 10%
Price of crude oil ($/ton) Py P, =828 P, =8.0 Py=72
Probability p p1=0.35 p=0.45 p;=0.20

Table 9.2. Representative scenarios of price uncertainty in the refinery planning under uncertainty
problem

Price Uncertainty: Objective Function Coefficient of Prices ($/ton)

Scenario 1 Scenario 2 Scenario 3
Material/Product  Above Average Price Average Price Below Average Price
(@) (+10%) (Expected Value/Mean) (—10%)

Crude oil (1) -8.8 -8.0 -7.2
Gasoline (2) 20.35 18.5 16.65
Naphtha (3) 8.8 8.0 7.2

Jet fuel (4) 13.75 12.5 11.25
Heating oil (5) 15.95 14.5 13.05
Fuel oil (6) 6.6 6.0 5.4

Cracker feed (14) -1.65 -1.5 -1.35
Probability p, 0.35 0.45 0.2

As stressed in the general model development, since the objective function is linear,
the expectation of the objective function value is given by the original objective function

itself:
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E[z,| = E(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x; +6.0x, —1.5x,)
= E(-8.0x,) +E(18.5x,) +E(8.0x;) +E(12.5x,) +E(14.5x5) +E(6.0x5) +E( 4.5x4)
E[zy] = -8.0x, +18.5x, +8.0x; +12.5x, +14.5x5 +6.0x, -1.5x,, 9.2)

To represent the three scenarios accounting for uncertainty in prices, the objective
coefficients of the expected value of price in equation (9.2) are rewritten as follows,

taking into account the probabilities of realization of each scenario:

E[z] = E{[(o 35)(-8.8) +(0.45)(-8.0) +(02)( 7.2) ] }
+ E{[(0.35)(20.35) +(0.45) (18.5) +(0.2) (16.65) ]
+ E{[(035) (8:8) +(0:43)(8.0) #(02) (7.2) ]}
+ E{[(0.35)(13.75) +(0.45) (12.5) +(0.2) (11.25) ]} (9.3)
+ E{[(035)(15.95) +(0.45) (14.5) +(0.2) (13.05) ] ¢
+E{[(0.35)(6.6) +(0.45)(6.0) +(02) (5.4) ]
+ E{[(0.35)(~1.65) +(0.45) (-1.5) +(0.2)( 1.35) ] x4}

For a more explicit representation of the three scenarios considered, the terms in
equation (9.3) are rearranged and clustered into three expressions, with each denoting a

corresponding scenario:
E[z,] =(0.35)(-8.8x, +20.35x, +8.8x; +13.75x, +15.95x; +6.6x; ~1.65x,,)

+(0.45)(-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x; —1.5x;,) 9.4)
+(0.2)(=7.2x, +16.65x, +7.2x; +11.25x, +13.05x5 +5.4x; —1.35x,,)

or in a general compact representation as given below:

E[z) =YY pCx,, i={1,2,3,45614 0750 I {1,231 S (9.5

il o s
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To formulate the variance for the given expected value of the objective function, note
that it is the coefficients of the objective function that are random (as also emphasized
earlier in the model development) and not the deterministic design variables x;, x2, x3, X4,

Xs, X6, X14; thus, variance is expressed as:

V(zy) =V (-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x; —1.5x;,)
=V (-8.0x,) +V (18.5x,) +V(8.0x;) +V (12.5x,) +V (14.5x;)
+V(6.0x) +V (1.5x,) (9.6)
V(zy) = x(V (-8.0) +x3V (18.5) +x5V7(8.0) +x;V/ (12.5) +x5V (14.5)
+xV (6.0) + 7,V (-1.5)

or in a general compact representation:

price

Vi(zg) =Y. xV(Cy), i={1,2,3,4,5,6,14} OO [ 9.7)
a7

To evaluate the variance of the price coefficients, we use the formulation presented in
equation (5.7) by substituting the objective functions for each of the three scenarios with

its general form as given by equation (9.1), as follows:

2

V(zo) =D, (cSTlx —ETx)2 +p,, (cSsz —ETx) +pg, (c‘z;x —ETx)2 (9.8)

T —
where z, =cgx and E[z,]= c’x.

. . . T T _ .
Since Scenario 2 represents the average scenario, so ¢, x —¢" x =0 and yields

V(zo) =p, |:(CVT1 —ET)XT +p, [(CQ —ET)XT

2 ) (9.9)
V(ZO) - psl (CVTI _ET) x2 +p53 (CZ; _ET) x2
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Comparison between equations (9.6) and (9.9) reveals that the variances of the price
coefficients can be estimated as the variance for a sample consisting of the three
considered scenarios. As an example, variance for the price coefficient of crude oil is

given by:

V(-8.0)=p, (") +p, (&)
=py (e =) +py (=L )

(0.35)[(-8.8) =(-8.0)] +(02)[(7.2) «( 8.0)] 9.10)
=(0.35)[-0.8]" +(0.2)[ -0.8]
=(0.35+0.2)(0.64)

v (-8.0) =0.352

Similar variance calculation procedure is carried out for the other variance terms to yield

the results tabulated in Table 9.3.

Table 9.3. Variance of the random objective function coefficients of commodity prices

Product Type (i) Variance of Price

Crude oil (1) 0.352
Gasoline (2) 1.882375
Naphtha (3) 0.352
Jet fuel (4) 0.859375
Heating oil (5) 1.156375
Fuel oil (6) 0.198
Cracker feed (14) 0.012375

Substituting the values of price variances calculated and tabulated in Table 9.3 into

equation (9.6) yields:

V(zy) =(0.352)x7 +(1.882 375)x; +(0.352)x; +(0.859 375)x}

(9.11)
+(1.156 375) xz +(0.198) x; +(0.012 375)x7,

Therefore, Risk Model I is formulated as:
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maximize z; = -V (z,)
(0.352)x +(1.882375) x5 +(0.352)x; +(0.859 375)x;
+(1.156 375) x2 +(0.198) x; +(0.012 375)x7,

s.t
(0.35)(~8.8x, +20.35x, +8.8x; +13.75x, +15.95x; +6.6x, —1.65x,,) | €
objective
E[zy] =| +(0.45)(-8.0x; +18.5x, +8.0x; +12.5x, +14.5x; +6.0x, -1.5x,,) Z
nction
+(0.2)(=7.2x; +16.65x, +7.2x; +11.25x, +13.05x; +5.4x, —1.35x,,) value
constraints (8.1)—(8.24) and (8.26)
(9.12)

It is noted that the set of constraints for Risk Model I are the same as for the

Deterministic Model.

9.1.1 Computational Results for Risk Model I

Table 9.4 tabulates the computational results for the implementation of Risk Model I on
GAMS for a range of values of the target profit Y. Starting values of the first-stage
deterministic decision variables have been initialized to the optimal solutions of the
deterministic model presented earlier. From the raw computational results of Risk Model
I, the standard deviation 0 of profit is determined by taking the square root of the
computed values of variance 0> of profit as given by the objective values. The main
reason standard deviation is considered to be more representative for direct interpretation
is by virtue of it having the same dimension as the expected value term. Note that O is
calculated by taking the square root of the absolute values of variance, that is, with the
negative sign of variance disregarded. (Recall that the negative sign is present essentially
because we are dealing with an optimization problem of profit maximization, in which it
is desirable to minimize the effect of variation in profit by subtracting it from the profit-
or cost-related terms.) Subsequently, Table 9.5 presents representative detailed results for
two values of target profit: one that is equals to the profit computed by the Deterministic

Model (that is, $23 387.50/day) and the other, for target profit = $23 500, with the
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intention of investigating and thereafter, inferring observable general behaviours of Risk

Model L.

The problem size and the distribution of computational expense are noted in Table 9.6.

Figure 9.1 then shows the efficient frontier (of Markowitz’s mean—variance model) plot

of expected maximum profit for different levels of risk as represented by the profit risk

parameter 0, with standard deviation as the risk measure.

Table 9.4. Computational results for Risk Model 1

Standard

Target Optimal . -9
progﬁt ob?ective deviation < H
u value o Crude oil, Stochastic Deterministic
($/day) -y =VV)  x (ton/day) o u C.
15000  -14410603.5083 3 796.13007 4 606.231 0.253 0753 10002.129 23 738312 0.421 349 631
16 000  -16 396 064.4361 4 049.205408 4913.313 0.2530753 10002.129 23 738312 0.421 349 631
17000  -18509 619.6173 4302280 746 5 220.395 0.253 0753 10002.129 23 738312 0.421 349 631
18000  -20751269.0519 4 555.356084 5527477 0.253 0753 10002.129 23 738312 0.421 349 631
19000  -24 054 832.6088 4904.572 622 5970.926 0.258 1354 10002.129 23 738.312 0.421 349 631
20000  -35268 148.8569 5938.699 256 7 348.858 0.296935 10002.129 23738312 0.421 349 631
21000  -49 062 075.3823 7004.432552 8726.790 0.333 5444 10002.129 23 738312 0.421 349 631
22000  -65436 612.1851 8089.289968 10 104.723 0.367695 10002.129 23738312 0.421 349 631
23000 -84 391 759.2651 9 186.498749 11 482.655 0.399413 10002.129 23738312 0.421 349 631
23387.50  -92430619.3808 9 614.084428 12016.604 0.4110779 10002.129 23 738.312 0.421 349 631
23400  -92 696 388.9748 9 627.896394 12033.828 0.411448 6 10002.129 23738312 0.421 349 631
23500  -94 837 061.6591 9738.432197 12171.621 0.4144014 10002.129 23738312 0.421 349 631
23600  -97 003 540.4462 9 849.037 539 12309.415 0.4173321 10002.129 23738312 0.421 349 631
23700  -99 195 825.3361 9959.710 103 12447.208 0.4202409 10002.129 23738312 0.421 349 631
23730  -99 858 542.9931 9992.924 647 12488.546  0.421 1093 10002.129 23738312 0.421 349 631
23735  -99969221.7394 9998.460 969 12495436  0.4212539 10002.129 23738312 0.421 349 631
23736 —99 991 365.2304 9999.568 252 12496.814  0.4212828 10002.129 23738312 0.421 349 631
23737 -100013 511.3021 10 000.67554 12498.191 0.4213117 10002.129 23738312 0.421 349 631
23738 -100 035 659.9544 10001.782 84 12499.569 0.4213406 10002.129 23738312 0.421 349 631
23 738.50 (infeasible solution) (infeasible solution)
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Table 9.5. Detailed computational results for Risk Model I for (i) target profit =
deterministic profit = $23 387.50/day and (ii) target profit = $23 500/day

Stochastic Solution

Target Profit ($/day)
First-Stage Variable 23 387.50 23 500.00
X1 12 016.604 12 171.621
X 1 922.657 1 947.459
X3 600.830 608.581
X4 1 802.491 1 825.743
Xs 1 700.000 1 700.000
X6 5870.461 5968.122
X7 1 562.159 1582.311
Xg 2 643.653 2 677.757
X9 2 403.321 2 434,324
X10 3 604.981 3 651.486
X11 961.328 973.730
X12 1 275.000 1 275.000
X13 1 368.653 1 402.757
X14 2 403.321 2 434,324
X15 0 0
X16 961.328 973.730
X17 1 321.826 1 338.878
X1g 425.000 425.000
X19 896.826 913.878
X20 120.166 121.716

Table 9.6. Computational statistics for Risk Model I

Single continuous Resource usage/
Solver variables Constraints CPU time (s) Iterations
CONOPT 3 22 27 = (0.01-0.02) 3
25000
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Figure 9.1. The efficient frontier plot of expected profit versus profit risk measured by standard deviation
for Risk Model I
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9.1.2 Analysis of Results for Risk Model I

The risk—return curve in Figure 8.2 provides a graphical representation of the relation
between the expected profit and its associated risk as computed by standard deviation. It
depicts the range of possible levels of solution robustness. The trend follows the shape of
the efficient frontier proposed by the Markowitz’s mean—variance model. Thus, as
highlighted by Mulvey et al. (1995), the constructed efficient frontier provides an
opportunity for the decision-maker to achieve a robust recommendation, which is not
possible by means of traditional sensitivity analysis of the deterministic linear program
presented previously.

Note also that it is of interest to know the amount of crude oil to be purchased by a
refinery, as computed by the variable x;, in order to achieve the targeted expected profit.
Naturally, higher throughputs of crude oil commensurate with higher profits as this
translates to higher production volume, so long as the refining capacity is not exceeded.
With availability of information on the current price of crude oil, a decision-maker will
be in a good position to assess the trade-off between the raw material cost of purchasing
crude oil and the expected profit to be gained from sales of the production volume.

From Table 8.6, for a target profit equivalent to the deterministic profit, Risk Model I
computes a crude oil flow rate of 12 016.604 ton/day that is lower than the deterministic
model crude oil flow rate of 12 500 ton/day of crude oil. This exemplifies that for a lower
raw material purchasing cost for crude oil, the production plan proposed by the stochastic

Risk Model I is able to achieve the same amount of profit.

9.2 APPROACH 2: THE EXPECTATION MODELS I AND II

In this stochastic model, it is assumed that there is no alternative source of production and
hence, if there is a shortfall in production, the demand is actually lost. Thus, the
corresponding model considers the case where the in-house production of the refinery has
to be anticipated at the beginning of the planning horizon, that is, the production variables

x are fixed (which is essentially the underlying principle in adopting the two-stage
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stochastic programming framework.), no vendor production is allowed, and all unmet

demand is lost.

9.2.1 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model

Uncertainty in Product Demand

For the purpose of utilizing the techniques of introducing slack variables and penalty
functions in modelling randomness in the RHS coefficients of product demand
constraints, consider the constraint for the production requirement of gasoline, x; as given

by inequality (8.20) to be uncertain:

X2 <2700 (8.20)

As in the case of price uncertainty, three possible realizations are also equivalently
considered for the RHS coefficient random variable of inequality (8.20), with each
representing the demand scenario corresponding to the possibility of “average demand”,
“above average demand”, and “below average demand”. Details of the scenarios
constructed to model uncertainty in market demand for gasoline is depicted in Table 8.8.
A five (5) percent standard deviation from the mean value of market demand for gasoline
is assumed to be reasonable based on preliminary investigation of available historical

data.

Table 9.7. Attributes of the scenario construction example for modelling market demand uncertainty
for gasoline

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints for Gasoline

Demand (ton/day)
Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)
Above Average Demand Average Demand Below Average Demand
Percentage of deviation o 0 _co
from the expected value 5% (i.e., the expected value) 5%
Gasoline demand _ _ _
(ton/day) d; dy = 2835 drn=2700 dr3=2565
Probability p; p1=0.35 p>=0.45 p;=0.20
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Again, for the purpose of illustrating the validity and capability of the mathematical
programming methods involved and improvised (with less emphasis on the actual
feasibility of the data to capture the detailed aspects of the problem), the similar three
possible scenarios assumed for price uncertainty are applied to describe uncertainty in the
demands of naphtha, jet fuel, heating oil, and fuel oil as given by the maximum
production requirements inequalities of (8.21) to (8.24), respectively. The resulting Table
8.9 displays the three scenarios constructed for demand uncertainty for the five products
considered, with their corresponding probabilities equivalent to the probabilities for the

three scenarios generated to model price uncertainty.
Assuming that it costs ¢ =c, = $25 per unit of gasoline to purchase in the open

market to meet the production requirement demand if there is a shortfall, and that it costs

¢, =c, = $20 per unit of gasoline to be stored in inventory if supply (production)

exceeds demand, thus the expected recourse penalty for the second-stage cost due to

uncertainty or randomness in gasoline demand is given by:

gasoline __ + _+ - - + o+ - - + o+ _ -
Es,demand =D (Cz Zy ¢ 221) P (Cz Zy *e 222) P (Cz Zy; to,y 223)

Scenario 1 Scenario 2 Scenario 3 (9. 13)

=(035)(2523, +2023, ) +(0.45) (2523, +2023,) +(0.2) (2523; +2025;)

Table 9.8. Representative scenarios of market demand uncertainty in the refinery planning under
uncertainty problem

Demand Uncertainty: Right-Hand Side Coefficient of Constraints (ton/day)

Scenario 1 Scenario 2 Scenario 3

Above Average Demand Average Demand Below Average Demand
Product (type ©) (+5%) (Expected Value/Mean) (=5%)
Gasoline (2) 2835 2700 2565
Naphtha (3) 1155 1100 1045
Jet fuel (4) 2415 2300 2185
Heating oil (5) 1785 1700 1615
Fuel oil (6) 9975 9500 9025
Probability p 0.35 0.45 0.2

The penalty costs incurred due to shortfalls and surpluses in production for demand

uncertainty in the five products considered are listed in Table 8.10.
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Table 9.9. Penalty costs incurred due to shortfalls and surpluses in production under market demand
uncertainty

Penalty cost incurred per unit ($/ton)

Product Type (/)  Shortfall in production (¢, ) ~ Surplus in production (c;, )
ype (i)

Gasoline (2) 25 20
Naphtha (3) 17 13
Jet fuel (4) 5 4
Heating oil (5) 6 5
Fuel oil (6) 10 8

Therefore, the overall expected recourse penalty for the second-stage costs due to
uncertainty in market demand as represented by randomness in the right-hand-side

coefficients of the related constraints is given by:

I+ + - - +_+ - - +_ o+ - -\]

(Cz 221 +02221) +(C3 Z3 TG 231) +(C4 | +6'4241)
gasoline naphtha jet fuel

E =p
s,demand 1 + o+ o + o+ o

tleszg teszs ) Hleozg ez
5451 5451 6 <61 6 <61

L heating oil fuel oil |

[ + + - - + _+ - - + 4+ - -
(Cz Zy teo Zzz) + (C3 z3 T 232) +(C4 Zy tey 242)

+ _+ - - +_+ - -
+(Cs Zsp TCs Zsz) +(Cé Zgy 6 262)

+p, 9.14)

I+ + - - +_ - - - + + - -
(Cz Zn o 223) +(C3 Zy3 to 233) +(C4 Zgy Fey 243)

tp
3 - - - -
+(05+25+3 tes 253) +(06+26§ +cs 263)

Substituting the probabilities and the penalty cost terms with their actual values give:

Eo=(039) (2523, +2025, ) + (1723, #1325, ) +(524, +42,,)
s,demand — .

+(628, +523,) +(1025, +8z,)

(045) (2523, +2023, ) + (1723, +13255 ) +(5255 +4z;,) 015

(625 +525) #1025, +522)
(2523 +2025 )+ (1725 +1325 ) (5 + 43

+(0.2) +(6z;3 +525—3) .|_(1()26+3 +8z6_3)
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The general compact representation for the above is given by:

6 3
_ +_+ - -\ _ +_+ - -
E; demand = zzps (Ci zis t¢ Zis) _zzps (Ci Zi *¢ Zis)’

i=2 51 i8S (9.16)
i={2,3,4,5,¢ Ol Is {120 S

demand

As highlighted in the general stochastic mode development, to ensure that the original
information structure associated with the decision process sequence is honoured, three
new constraints to model the three scenarios generated for each product with uncertain
demand are added to the stochastic model in place of the original deterministic constraint.
It is noted that out of the three new constraints, the one representing the “average”
scenario, 1S identical to the deterministic constraint as it models the mean-value
constraint. Altogether, this sums up to 3 x 5 = 15 new constraints in place of the five
constraints in the deterministic model for those five products. The general form of the

new constraints is given by:

X +zy —zy =dy, 1={2,3,4,56} OO Lz {1,2,3) S (9.17)

i is is is demand

For the sake of completeness, the 15 constraints are listed below:

for the demand uncertainty of gasoline:

X, + Zgl —Zy =dy, (9.18)
X, + 252 —zy =dy (9.19)
X, + 253 —Zy; =dy (9.20)

for the demand uncertainty of naphtha:

Xy + Z3+1 —zy =dy (9.21)

Xy + Z3+2 —z3, =dy, (9.22)
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N
Xyt Z33 —

for the demand uncertainty of jet fuel:

+ - _
Xyt Zy T2y

N _
Xy tzy—

N
Xyt Zy

for the demand uncertainty of heating oil:

N
X5+ Zg

N
X5+ Zsy

N
Xs + Zs3

for the demand uncertainty of fuel oil:

N
Xe T Zg)

N
Xo ¥ Zgy —

N
Xo * Zg3

Z33

Zg

Zy3

T Zs5
T Zs

TZs3 —

T Zg1

Zg

T Zg3

(9.23)

(9.24)
(9.25)

(9.26)

(9.27)
(9.28)

(9.29)

(9.30)
9.31)

(9.32)

9.2.2 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model

Uncertainty in Product Yields

For the purpose of utilizing the techniques of introducing slack variables and penalty

functions in modelling randomness in the LHS technological coefficients of product

yields, consider the mass balance given by equation (3) for the fixed yield of naphtha

from crude oil in the primary distillation unit (PDU):
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~0.13x, +x, =0 (8.3)

To be consistent with the case of price and demand uncertainty, three possible scenarios
are also considered for the LHS coefficient random variable of x; in equation (8.3), that
is, 0.13 (the minus sign is used to indicate inlet flow as pointed out in the presentation of
the deterministic model), with each scenario corresponding to the depiction of “average
product yield”, “above average product yield”, and “below average product yield”. The
three scenarios constructed to model uncertainty in yield of naphtha from crude oil in the
PDU are detailed in Table 9.10. A five (5) percent deviation from the mean value of
naphtha yield is assumed to be reasonable based on preliminary investigation of available
historical data. Then, by using a similar approach, all three scenarios accounting for
uncertainty in the other product yields from crude oil (besides naphtha), comprising
yields of naphtha, jet fuel, gas oil, and cracker feed in the PDU, are tabulated in Table
9.11. As stressed in the previous section general model development, in ensuring that the
material balances are satisfied, yields for residuum is determined by subtracting the
summation of yields for the other four products from unity. As emphasized also, this does
not mispresent the physical meaning of the problem as the yield of the residuum (or

residual) is relatively negligible anyway in a typical atmospheric distillation unit.

Table 9.10. Attributes of the scenario construction example for modelling uncertainty in yield of
naphtha from crude oil in the primary distillation unit

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Naphtha
Yield from Crude Oil (unitless)

Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)
Above Average Yield Average Yield Below Average Yield
oy 0
Percentage of deviation +10% (i.e., the expected value -10%
from the expected value .
or mean itself)
Yield (?f naphtha from 0,143 013 0117
crude oil
Probability p; p1=0.35 p>=0.45 p3;=0.20
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Table 9.11. Representative scenarios of uncertainty in product yields from crude oil in the primary
distillation unit for the refinery planning under uncertainty problem

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balances for Fixed
Yields (unitless)

Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)
Above Average Yield Average Yield Below Average Yield

Product Type (i) (+1%) (Expected Value/Mean) (=1%)
Naphtha (x;) —-0.1365 -0.13 -0.1235

Jet fuel (x4) -0.1575 -0.15 —0.1425

Gas oil (xg) —-0.231 -0.22 -0.209
Cracker feed (x9) -0.21 -0.20 -0.19
Residuum (x10) -0.265 -0.30 -0.335
Probability p 0.35 0.45 0.20

It is further assumed that a penalty cost of ¢ is incurred per unit of shortage of crude

oil yields J’:s and a penalty cost of g; for excess of crude oil yields y; . Thus, the

expected recourse penalty for the second-stage cost due to uncertainty or randomness in

crude oil yield to naphtha is given by:

EMN = p (g3v3 +asvn ) + 2 (@505 +a590) 03 (0755 +a95)  933)

Scenario 1 Scenario 2 Scenario 3

The associated penalty costs incurred due to deviations in product yields from crude

oil are assumed to be as depicted in Table 9.12.

Table 9.12. Penalty costs incurred due to uncertainty in product yields from crude oil

Cost incurred per unit deviation ($/unit)

Product Type (i) Yield decrement (g, ) Yield increment (g, )

Naphtha (3) 5 3
Jet fuel (4) 5 4
Gas oil (xg) 5 3
Cracker feed (x9) 5 3
Residuum (x;0) 5 3

Therefore, the expected recourse penalty for the second-stage costs due to uncertainty
in product yields from crude oil as represented by randomness in the left-hand-side

coefficients of the mass balances for fixed yields is given by:
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(a7vi +asvn ) +Haivi +aiva) (a0 +a4)|

naphtha jet fuel gas oil

E ... = p
s,yield 1 o o
+(q;y;1 *+q J’91) +(Q1BY18,1 +%o)’1o,1)

cracker feed residuum

(v +a5vn)* @iy +aivn) +(asve +a57e)

+p (9.34)

_+(q;y;2 +qc)_J’9_2) +(Q1BY1B,2 +%6J’16,2)
. (a3is +asvs) +(aivs +aiva) +(asvs +a)
P3

_+(q9+ ¥ *+a5v) *(d03i0s *dovios)

Substituting the probabilities and the penalty cost terms with their actual values gives:

(593 +305 ) +(53 +4v5) +(505 +3041)
+(55 +395 ) +(5va +3v0)

(593 +3y5 ) + (535 +4v5) +(505 +3v22)
(55 +395 ) +(530 +3v0)

(593 +3v5) + (535 +4v5) +(55 +3v43)

+(5J’5+3 +3y5_3) + (5y6+3 +3J’6_3)

E, aq =(0.35

s,yield —

+(0.45) (9.35)

+(0.2)

The general compact representation for the above is thus given by:

10 3
Eyyoa =2 2 p (a7 vi +aT v ) =2 > v (0w +a7v0):

i=3 5=l i8S (9.36)
i={3,48,9,10 O™ Is {1,280 S

yield

To ensure that the original information structure associated with the decision process
sequence is honoured, three new constraints to account for the three scenarios dealing
with product yields uncertainty from crude oil are introduced for each affected product.

The general form of the constraints is:
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Tx, +x +y. -y, =0, i={3,4,89,10} OO0 I,z {1,2,3 S (9.37)

yield

For example, the three new constraints for the uncertainty in yield of naphtha from crude

oil is given by:

—0.143x, +x, +y;, —y;, =0 (9.38)
=0.13x, +x; +y3, =3, =0 9.39)
=0.117x, +x; +y3; —y5; =0 (9.40)

Again, for the purpose of completeness, the entire set of three new constraints for every
product yield uncertainty from crude oil for the other products comprising jet fuel, gas
oil, cracker feed, and residuum is listed below:

for the randomness in jet fuel yield from crude oil:

=0.165x, +x, +y;, =y, =0 (9.41)
—0.15x, +x, +y,, =y5, =0 9.42)
=0.135x, +x, +y5; —yg =0 (9.43)

for the randomness in gas oil yield from crude oil:

—0.242x, +x3 +yg; g =0 9.44)
—0.22x, + x5 + Vg, — Vg =0 (9.45)
—0.198x, +x3 +yg; — g =0 (9.46)

for the randomness in cracker feed yield from crude oil:

—0.22x; +xy + Y9, —Vg; =0 9.47)

—0.20x, + x5 + Y5, =Yg, =0 (9.48)
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—0.18x, + Xy + Vg3 Vo3 =0 (9.49)

for the randomness in residuum yield from crude oil:

=0.33x;, +x19 + 101~y =0 (9.50)
=0.30x, +xy5 *y10, ~ V102 =0 (9.51)
~0.27x, + X0 *+Yio3 ~Vio3 =0 (9.52)

The complete scenario formulation to simultaneously handle uncertainties in
commodity prices, product demand, and product yields is given by the combination of
Tables 9.2, 9.8, and 9.11. As stressed in the general stochastic model development, the
major assumption that enables the combination of the sub-scenarios is that demands,
yields, and prices in each sub-scenario are highly-correlated. This means that for instance,
the possibility of the scenario where prices are “average” with demands being “above
average” and yields being “below average” (or any other combination of sub-scenarios) is

not considered. The combined tables are presented as Table 9.13.

Table 9.13. Complete scenario formulation for the refinery production planning under uncertainty in
commodity prices, market demands for products, and product yields problem

Scenario 1 Scenario 2 Scenario 3
Above Average Below
Product Type (i) Average (Expected Value/Mean) Average
Price Uncertainty: Objective Function Coefficient of Prices ($/day)
Crude oil (1) -8.8 -8.0 -7.2
Gasoline (2) 20.35 18.5 16.65
Naphtha (3) 8.8 8.0 7.2
Jet fuel (4) 13.75 12.5 11.25
Heating oil (5) 15.95 14.5 13.05
Fuel oil (6) 6.6 6.0 54
Cracker feed (14) -1.65 -1.5 -1.35
Demand Uncertainty:

Right-Hand-Side Coefficient of Constraints for Production Requirement (ton/day)
Gasoline (2) 2835 2700 2565
Naphtha (3) 1155 1100 1045
Jet fuel (4) 2415 2300 2185
Heating oil (5) 1785 1700 1615
Fuel oil (6) 9975 9500 9025

Yield Uncertainty:

Left-Hand Side Coefficient of Mass Balances for Fixed Yields (unitless)
Naphtha (7) —0.1365 —0.13 —0.1235
Jet fuel (4) -0.1575 -0.15 —0.1425
Gas oil (8) —-0.231 -0.22 -0.209
Cracker feed (9) -0.21 -0.20 -0.19
Residuum (10) —0.265 —-0.30 —0.335
Probability p 0.35 0.45 0.20
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The corresponding expected recourse penalty for the second-stage costs due to

uncertainties in both demands and yields is:

Es' = Es,demand +Es,yield :plal +p262 +p3€3

E, =(0.35)

+(0.45)

(2523, +2025, ) + (1725, +1325,) +(524, +4z,,)
+(625, +523, ) +(1025, +8z4)

{

|

+(5y;1 +3J’9_1) +(5J’1+0,1 +3J’1?),1)

(SJ’3+1 +3J’3_1) +(521 +4J’4_1) +(5J’8+1 +3J’81)}

{(25252 +2025, )+ (1725, +1325,) +(52;; +42;)
+(623, +525,) +(102), +82;,)

(595 +3v5) + (535 +4v5 ) +(508 +303)
L(Sycfz +3y5) (5102 +33102) }
(2523, +2025, ) + (1725, +1323, ) + (523, +4z43)}
+(625 +525,) +(1028; +83)

+{(Sy; +3y5 )+ (S +4vn) +(5045 +3y83)}

+(5y;'3 +3y9_3) +(5J/1+o,3 +3y1?l3)

The general compact representation for the above is given by:

E, = Zzps [(C;Zitv +ci_Zi:v) +(ql'+yi-:v +ql'_yi,—s):|
i

kS

Thus, Expectation Model I is represented as the following:
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maximize z, = E[zo] -8V(z,) —E;

= z z p,Cix; =6, z xl'zV(Ci) z z Ps [(C;Z; +cz'_zz':v) +(qi+yi; +qz'_yi,_s )}

s s 0i 1 Odars S
(0.35)(—8.8x; +20.35x, +8.8x; +13.75x, +15.95x5 +6.6x; —1.65x,,)
maximize z, =| +(0.45)(-8.0x; +18.5x, +8.0x, +12.5x, +14.5x; +6.0x; —1.5x,,)

+(0.2)(=7.2x, +16.65x, +7.2x; +11.25x, +13.05x; +5.4x, —1.35x,,)
(e )5 (e () w00
-6, 75 600 75 24 600
+(0.015) x;,

{(25251 +20z;, ) + (1725, #1323 ) +(52;] +4z41)}

(035 +(625+1 +Sz;1) +(1026+1 +8zé‘1)

N _(5y3+1 + 3)’3_1) +(521 +4J’4_1) +(5J’8+1 +3J’81)}

_+(5y;'1 +3y9_1) +(5J/1+o,1 +3le,1)

(2523, +2023, ) +(172), +1325,) +(52); +423,)
+(625+2 +525_2) +(1026+2 +826_2)

—| +(0.45)1"
(595 +395) + (595 +4ve ) +(508 +303)
{+(5y92 +3y5) +(Sih2 #3905, }
(2523, +2023,) + (17255 +1323;) +(525; +42;7)
(02 L(&; +525,) +(1028; +825;) }

{(Syé #3353 ) + (5 +4vs) +(5045 +3y83)}
+(535, +395 ) +(5n10 +3303)
9.55)
s.t. deterministic constraints (first stage) (8.1), (8.2), (8.8)—(8.19), and (8.26),
stochastic constraints (second stage): (9.17)—(9.32) and (9.37)—(9.52).

The alternative Expectation Model II is given as follows:
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maximize z, = -V (zy)) —Ey

=-6, %V (C) —ZZPS[(C; 2, vz, ) v +q,-‘y,-,})}

07 bk S

A ) 2 o 33 o S w02
maximize z, = — 75 600 75 24 600

+(0.015)x7,

I {(25251 +2023,) +(1725, +1323,) +(52,, +4z41)] ]

(0 35) +(6Z;1 +525_1) +(1026+1 +8z6_1)

+—(5y;1 +3J’3_1) +(521 +4J’4_1) +(5J’8+1 +3J’81)]

_+(5y;1 +3J’9_1) +(5J’1+0,1 +3Y15,1)

(2523, +2023, ) + (1723, +132;, ) +(525, + 423.)
#(62 +525,) (1020, +82;)

-| +(0.45)1"
_{(5)’;2 +3y5 ) + (505 +4vn) +(5 +3J’82)]
(535 +355 ) +(5m1h2 +33052)
(2523, +2025, ) + (1725, +1325,) +(525; +4z,,) (9.56)
02) L(&; +525) +(1025; +82;,) ]
(59 +305) + (50 +4vi) +(505 +333)
i L(Sy«?g +3y53) (S5 +33103) ] |
5.t
(0.35)(-8.8x; +20.35x, +8.8x; +13.75x, +15.95x; +6.6x, —1.65x,,) Target

E[zy] =| +(0.45)(-8.0x; +18.5x, +8.0x; +12.5x, +14.5x; +6.0x, —1.5x,,) > objective
+(0.2)(-7.2x, +16.65x, +7.2x; +11.25x, +13.05x; +5.4x, —1.35x,)| function value
deterministic constraints (first stage) (8.1), (8.2), (8.8)—(8.19), and (8.26),

stochastic constraints (second stage): (9.17)—(9.32) and (9.37)—(9.52).
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9.2.3 Computational Results for Expectation Model I

Table 9.14 tabulates the computational results and some analytical outputs for the
implementation of Expectation Model I on GAMS for a range of values of the profit risk
parameter 0;. Starting values of the first-stage deterministic decision variables have been
initialized to the optimal solutions of the deterministic model. A representative detailed
results for profit risk factor 8; = 0.000 03 is presented Table 9.15. The problem size and
the distribution of computational expense are noted in the ensuing Table 9.16. Figure 9.2
then depicts the efficient frontier plot of expected profit versus profit risk as measured by
variance while an alternative representation of the computed results by plotting expected
profit against the profit risk factor 0; (also with variance as the risk measure) is shown in
Figure 9.3.

Note that the actual true expected profit that is of interest in a stochastic model is still
the original equation or expression for the deterministic profit as given by equation (9.4).

This fact extends to all other stochastic models as well.

(Please turn the page over for Table 9.14.)
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Table 9.15. Detailed computational results for Expectation Model I for 6, = 0.000 03

Production Shortfall z; or Surplus z; (t/d)

lsjgs'gte Stochastic Scenario 1 Scenario 2 Scenario 3
Variable Solution Product (i) z z z Z;, Z Z
X1 15 000.000 Demands RHS Coefficients Randomness
X 2 000.000 Gasoline (2) 835.000 0 700.000 0 565.000 0
X3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000
X4 3 637.500 Jet Fuel (4) 0 1222.500 0 1337.500 0 1452.500
Xs 3 835.000 Heating Oil (5) 0 2050.000 0.00 2135.000 0 2220.000
X6 9 500.000 Fuel Oil (6) 475.000 0 0 0 0  475.000
X7 2 155.000
X3 4 635.000 Production Yields LHS Coefficients Randomness
X9 4350.000 Naphtha (7) 0 107.500 0  205.000 0 302.500
X10 5475.000 Jet Fuel (4) 0 1275.000 0 1387.500 0 1500.000
X11 1 000.000 Gas Oil (8) 0 1170.000 0 1335.000 0 1500.000
X12 2 876.250  Cracker Feed (9) 0 1200.000 0 1350.000 0 1500.000
X13 1 758.750 Residuum (10) 0 1500.000 0  975.000 0  450.000
X14 2 500.000
X1s 1 850.000 E(Penalty Costs) 20 229.125 23 123.250 10 704.500
X16 1 000.000 Ea 54 056.875
X17 1 375.000
X1g 958.750
X19 416.250
X20 125.000
Expected Profit 81 774.744
zo ($/day)

Table 9.16. Computational statistics for Expectation Model I

Solver

Single continuous
variables

Resource usage/
Constraints CPU time (s) Iterations

CONOPT 3

91

85 = (0.03-0.11) 10

9.2.4 Analysis of Results for Expectation Model 1

Note that since this is a profit maximization problem, larger values of the risk factor 0;

correspond to lower profits, in contrast with the general notion that higher profits are

associated with higher risks, which is typically the case in cost minimization problems. The

difference arise since a profit maximization problem is the negative of a cost minimization

problem, hence the observed reverse in the trend of the relationship between risk (as

computed by variance for this model) and expected profit.
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It is observed that reducing values of 0, translate to increment in the expected profit, since
this generally leads to a reduction in expected production shortfalls but with increasing
production surpluses, in which the fixed penalty cost for the former is higher than the latter.
Thus, this reflects high model feasibility although not in the absolute sense since there is
increase in excess production. Nonetheless, this shows that a suitable operating range of 6,
values ought to be selected in order to achieve optimality between expected profit and
expected production feasibility. However, this observation appears to be somewhat
contradictory to Mulvey et al. (1991) who reported that the more robustness desired, the

higher is the cost or the lower is the profit.
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Figure 9.2. The efficient frontier plot of expected profit versus profit risk measured by variance for Expectation
Model I
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Figure 9.3. Plot of expected profit for different levels of risk as represented by the profit risk factor 8, with
variance as the risk measure for Expectation Model I

9.2.5 Computational Results for Expectation Model 11

Table 9.17 tabulates the computational results for the implementation of Expectation Model
IT on GAMS for a range of values of the target profit . Starting values of the first-stage
deterministic decision variables have been initialized to the optimal solutions of the
deterministic model. As in Risk Model I, a similar analytical procedure is adopted for
Expectation Model 11, in which the standard deviation 0 of profit is determined by computing
the square root of the absolute values of variance, obviating the negative sign.

Representative detailed results for the target profit equals to the deterministic profit of
$23 387.50/day is shown in Table 9.18 that immediately follows. Table 9.19 then displays
the associated problem size and the distribution of computational expense. Figure 9.4 is
plotted to show the efficient frontier plot of expected maximum profit for different levels of

risk as represented by the profit risk parameter 6, with standard deviation as the risk measure.
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Table 9.18. Detailed computational results for Expectation Model II for target profit = deterministic
profit = $23 387.50

Production Shortfall z; or Surplus z; (t/d)

lsjgs'gte Stochastic Scenario 1 Scenario 2 Scenario 3
Variable Solution Product (i) z z z Z;, Z Z

X1 2792.531 Demands RHS Coefficients Randomness
X 647.867 Gasoline (2) 2187.133 0 2052.133 0 1917.133 0
X3 300.197 Naphtha (3) 854.803 0 799.803 0 744.803 0
X4 677.189 Jet Fuel (4)F 1737.811 0 1622811 0 1507.811 0
X5 1150.523 Heating Oil (5) 634.477 0 549477 0  464.477 0
X6 177.052  Fuel Oil (6) 8797.948 0 8322.948 0 7847.948 0
X7 624.131
X3 862.892 Production Yields LHS Coefficients Randomness
Xo 809.834 Naphtha (7) 0 242.950 0 261.102 0 279.253
X10 1019.274  Jet Fuel (4) 0 237.365 0 258.309 0 279.253
X11 323.934 Gas Oil (8) 0 217.817 0 248.535 0 279.253
X12 862.892 Cracker Feed (9) 0 223.402 0 251.328 0 279.253
X13 0 Residuum (10) 0 279.253 0 181.515 0 83.776
X14 809.834
X1s 0 E(Penalty Costs) 60 733.785 73 530.470 30 655.398
X16 323.934 Ea  1.6492E+5
X17 445.409
X1g 287.631
X19 157.778
X20 40.492

Expected Profit 23 387.50

Z ($/day)

Table 9.19. Computational statistics for Expectation Model II

Single continuous Resource usage/
Solver variables Constraints CPU time (s) Iterations
CONOPT 3 92 87 = (0.07-0.081) 10-13

9.2.6 Analysis of Results for Expectation Model 11

Table 9.17 shows that the maximum expected profit, with a corresponding (very) high
risk taken, is proposed to be approximately $105 800/day. For a target profit equivalent to
the deterministic profit of $23 387.5, the detailed computational results displayed in
Table 9.18 for Expectation Model II propose a marginally lower raw material flow rate of
2792.531 ton/day of crude oil compared to the flow rate of 12 500 ton/day proposed by

the deterministic model. This augurs well for the stochastic model since for a lower
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purchasing cost of crude oil, the same amount of profit can be achieved by executing the

production plan proposed by Expectation Model II.

The value of the computed coefficient of variation is lower for Expectation Model II
compared to the value for the corresponding deterministic case for a same target profit,
indicating lower degree of uncertainty in the stochastic model, which is exactly what

Expectation Model II is intended to demonstrate.

120000

100000

80000

Maximum Profit under Uncertainty in
Price, Demands, and Yields

60000 -

Target Profit ($/day)

40000 -

20000 A Deterministic Profit = $23 387.50/day

0 2000 4000 6000 8000 10000 12000 14000
Profit Risk (Standard Deviation)

Figure 9.4. The efficient frontier plot of expected profit versus profit risk measured by standard deviation
for Expectation Model 11

(Please turn the page over for the next section of 9.3: Approach 3: Risk Model II.)
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9.3 APPROACH 3: RISK MODEL II

9.3.1 Two-Stage Stochastic Programming with Fixed Recourse of Minimization of

the Expected Value and the Variance of the Recourse Penalty Costs

Variance for the expected recourse penalty for the second-stage costs V; is given by:

Vs :P1(El _Es')z +P2(Ez _Es')2 +P3(E3 —E; )2

5 5 ) 9.57)
v, =(0.35)(& - E,) +(0.45)(&, —E,) +(02)(& —E;)
or in general representation:
2
(ci+Zitv +ci_Zi:v) (ci+Zij; +ci_Zz':v)
V=220, —2 2.0 (9.58)

i8S +(ql'+yitv +%'_yz':v) Hifls § +(q"+y"; +qi_yi’_s)

where &1, &, &3, and E is given by equation (9.53).

Therefore, Risk Model II is as follows:

maximize z; =z, =V,
= E[ZO] - el\]ar(zo) _ES _VS

= Zzpscixi - elzxizV(Ci) _Zzps [(C;Z:s +ci_Zi:v) +(qz'+yi,+s +q; Vs )J —-8r;

sl s 0i 1 O:ars S
(0.35)(~8.8x, +20.35x, +8.8x; +13.75x, +15.95x; +6.6x; —1.65x,,)

maximize z; =| +(0.45)(-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x; ~1.5x,,)
+(0.2)(=7.2x, +16.65x, +7.2x; +11.25x, +13.05x; +5.4x, —1.35x,)
(0.352) x7 +(1.882 375) x5 +(0.352) x5 +(0.859 375) x; +(1.156 375)x:
4 (0.198) 2 +(0.012 375) 2,

- ES - VS‘
(9.59)

s.t. deterministic constraints (first stage) (8.1), (8.2), (8.8)—(8.19), and (8.26),
stochastic constraints (second stage): (9.17)—(9.32) and (9.37)—(9.52).
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9.3.2 Computational Results for Risk Model 11

Tables 9.20, 9.22, and 9.24 tabulate the computational results for the implementation of
Risk Model I on GAMS for a range of values of the recourse penalty costs risk
parameter 0, for three distinct cases of the value of the profit risk parameter fixed at 6, =
0.000 000 000 1, 0.000 000 1, and 0.000 015 5, respectively. Starting values of the first-
stage deterministic decision variables have been initialized to the optimal solutions of the
deterministic model. Representative detailed results are presented in Tables 9.21, 9.23,
and 9.25 that immediately follow each of the three cases for suitable (or particular
meaningful) values of 8,.A number of different parameters are of interest in observing the
trends and patterns that contribute to robustness in the model and robustness in the

computed solution, as extensively analyzed in the ensuing discussion.

(Please turn the page over for Table 9.20.)
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Table 9.25. Detailed computational results for Risk Model II for 6; = 0.000 015 5, 6, = 0.001

First-

Production Shortfall z; or Surplus z; (t/d)

Stage Stochastic Scenario 1 Scenario 2 Scenario 3
Variable Solution Product (i) z z z Z;, Z Z

X1 15 000.000 Demands RHS Coefficients Randomness
X 2 000.000 Gasoline (2) 835.000 0 700.000 0 565.000 0
X3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000
X4 3 637.500 Jet Fuel (4) 0 1222.500 0 1337.500 0 1452.500
Xs 3599.262 Heating Oil (5) 0 1814.262 0 1899.263 0 1984.262
X6 9735.738  Fuel Oil (6) 239.262 0 0 235.738 0 710.738
X7 2 155.000
X3 4 635.000 Production Yields LHS Coefficients Randomness
X9 4350.000 Naphtha (7) 0 107.500 0  205.000 0 302.500
X10 5475.000 Jet Fuel (4) 0 1275.000 0 1387.500 0 1500.000
X11 1 000.000 Gas Oil (8) 0 1170.000 0 1335.000 0 1500.000
X12 2 699.447 Cracker Feed (9) 0 1200.000 0 1350.000 0 1500.000
X13 1 935.553 Residuum (10) 0 1500.000 0 975.000 0 450.000
X14 2 500.000
X1s 1 850.000 E(Penalty Costs) 18 991.502 24 003.364 10 845.943
X16 1 000.000 Ea 53 840.808
X17 1 375.000
X1g 899.816
X19 475.184
X20 125.000

Expected Profit 79 740.916

Z ($/day)

The problem size and the efficient distribution of computational expense are depicted

through the computational statistics shown in Table 8.30. Figure 8.6 then illustrates the

relationship between expected profit and the various levels of risk as dependent on the

tradeoff dictated by the profit risk factor 8; and the recourse penalty costs risk factor 6,

with variance as the risk measure.

Table 9.26. Computational statistics for Risk Model 11

Solver

Single continuous

variables

Resource usage/

Constraints CPU time (s)

Iterations

CONOPT 3

96

90 = (0.07-0.081) 10-13
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9.3.3 Analysis of Results for Risk Model 11

The values of 6, and 0, denotes the importance of risk in the model as contributed by
variation in profit and variation in recourse penalty costs, respectively, in comparison
with the corresponding expected values of the model’s objective.

Similar to the expected value models, smaller values of 0; correspond to higher
expected profit, as shown in Figure 9.5. With increasingly larger 0;, the reduction in
expected profit becomes almost constant as demonstrated for the cases of
8, = 0.000 000 1 and B; = 0.000 000 000 1; the converse is true as well, that is, with
increasingly smaller 0, the increment in expected profit becomes roughly constant.

Although the pair of increasing 0, with fixed value of 0, corresponds to reduction
expected profit, it generally leads to a reduction of expected production shortfalls and
surpluses as well. Based on the conceptual definition of model robustness presented
earlier for Expectation Model I, this reflects high model feasibility. Therefore, a suitable
operating range of 6, values ought to be selected in order to achieve optimality between
expected profit and expected production feasibility. Increasing 6, also reduces the
expected variation or deviation in the recourse penalty costs under different realized
scenarios. This in turn translates to increased solution robustness. It thus depends on the
policy adopted by the decision maker, as characterized by the values of the factors 6, and
8, chosen, in reflecting whether these tradeoffs are acceptable based on the desired
degree of model robustness and solution robustness, as reported by Bok et al. (1998).

In general, the coefficients of variation decrease with larger values of 8,. This is
definitely a desirable behaviour since for higher expected profits, there is diminising
uncertainty in the model, thus signifying model and solution robustness. It is also
observed that for larger values of 0, until approximately greater than 100, the coefficient
of variation remain at a static value of 0.5237 (correct to four significant figures),

therefore indicating stability and minimal degree of uncertainty in the model.
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Figure 9.5. The efficient frontier plot of expected profit versus risk imposed by variations in both profit
and the recourse penalty costs as measured by variance for Risk Model II. Note that the plot for 8, = 0.000
000 000 1 overlaps with the plot for 8; = 0.000 000 1.
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Risk Parameter 6, for Recourse Penalty Costs

Figure 9.6. Plot of expected profit for different levels of risk as represented by the profit risk factor 8, and
the recourse penalty costs risk factor 8, (with 8, and 8, in logarithmic scales due to wide range of values)
with variance as the risk measure for Risk Model II. Note that the plot for 8; = 0.000 000 000 1 overlaps
with the plot for 8; = 0.000 000 1.
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Figure 9.7. Investigating model robustness via the plot of expected total unmet demand (due to production
shortfall) versus the recourse penalty costs risk factor 6,
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Figure 9.8. Investigating model robustness via the plot of expected total excess production (due to
production surplus) versus the recourse penalty costs risk factor 6,
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Figure 9.9. Investigating solution robustness via the plot of expected variation in the recourse penalty costs
versus the recourse penalty costs risk factor 8,. Note that the plot for 8, = 0.000 000 000 1 overlaps with the
plot for 8, = 0.000 000 1.

9.3.4 Comparison of Performance between Expectation Model I and Risk Model 1T

As emphasized, the motivation for employing Risk Model II is to account for the
presence of risk in decision-making that is not considered by the risk-neutral Expectation
Model I. Although a robust mathematical (or statistical) approach for direct comparison
between the expected profit obtained by the proposed models of the two approach may
not be conventionally available, from the general trend computed, it is apparent that Risk
Model II consistently registers a higher expected profit, thus testifying to its superior
robustness in the face of multitude uncertainties. In fact, the average expected profit
registered by Risk Model II is a commendable $80 000/day for feasible pair of values of
(61, B,) whereas for Expectation Model I, the expected profit even dipped below the
deterministic profit (of $23 387.50/day, for profit risk factor O, that are approximately
larger than 0.0045), as evidenced from Table 9.14.
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9.4 APPROACH 4: RISK MODEL III

9.4.1 Two-Stage Stochastic Programming with Fixed Recourse for Minimization of
the Expected Value and the Mean-Absolute Deviation (MAD) of the Variation in

Recourse Penalty Costs

The mean-absolute deviation (MAD) for the expected variation in the recourse penalty

for the second-stage costs W(py) is given by:

+P2|Ez -k, +P3|E3 —E;
+(0.45)[&, - Ey[ +(0.2)[&; - E;

W(pv) = P |E'1 _Es'

(9.60)
W (p,)=(0.35)|& - E,

where &1, &, &3, and E is given by equation (9.53).

Therefore, Risk Model I1I is presented as follows:

maximize z, =z, — W (p,)
= E(z)) =8V () —E, =6 (p,)
= E(z9) =0V (z) =2, . [(c;rz; +c,.‘z,~;) +(q,~+y,§ 4 Vis }

i8S
+_+ - -
(Ci zi t¢ Zis) }

(C;Zi: +cl._zl.;) +(ql~+y,~;r +qi_yz's_) _ZZPS L_(qfryfr +qu,‘)

- 3221%

il &S Oills S

(0.35)(—8.8x; +20.35x, +8.8x; +13.75x, +15.95x5 +6.6x; —1.65x,)
maximize z, =| +(0.45)(-8.0x; +18.5x, +8.0x, +12.5x, +14.5x; +6.0x; —1.5x,)
+(0.2)(=7.2x, +16.65x, +7.2x; +11.25x, +13.05x; +5.4x, —1.35x,,)
(0.352)x7 +(1.882 375)x; +(0.352)x7 +(0.859 375)x;
) 1L(1.156 375) x5 +(0.198)x; +(0.012 375)x7, }

(e e ol o)

a1 & S
(C;Zi: +Ci_Zi;)
- 3221% (C;Zi: +Ci_Zi;) +(ql'+yi: +qi_yl's_) _Zzps P
i8S nres o+ (% Vis T4; yis)

(9.61)
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s.t.  deterministic constraints (first stage) (8.1), (8.2), (8.8)—(8.19), and (8.26),
stochastic constraints (second stage): (9.17)—(9.32) and (9.37)—(9.52).

where 0; < 6s.

9.4.2 Comment on the Implementation of Risk Model III on GAMS

Since the absolute deviation is not differentiable at the singularity occurring at the
inflection point, this calls for the use of a solver within the GAMS environment that is
able to execute local optimization of a nonlinear program (NLP) with nonsmooth
functions (Rardin, accessed on September 30, 2005). The default solver stipulated in
GAMS for this «class of problem is CONOPT 3 (Drud, 1996,
http://www.gams.com/solvers/conopt.pdf, accessed on January 10, 2006), which is also,
incidentally, the GAMS default solver for NLP. Hence, the default solve statement in
GAMS can be used without the need to specify the type of solver to be CONOPT 3.

9.4.3 Computational Results for Risk Model 111

Table 9.27 records the computational results for the implementation of Risk Model III on
GAMS for a range of values for 8, the tradeoff factor for variability in profit measured
by variance and for 03, the tradeoff factor for variability in the recourse penalty costs
measured by the mean-absolute deviation (MAD). This is followed by a set of detailed
results for which the case of 8; = 0.000 8 and 6; = 0.01 is considered to be representative,
with a number of different parameters enumerated to investigate particular trends and
patterns that potentially contribute to robustness in the proposed model and solution. The
associated computational statistics describing the problem size and the -efficient
distribution of computational expense is summarized in Table 9.28. Figure 9.6 then
depicts the Markowitz’s efficient frontier plot of expected profit versus risk imposed by
deviations in both profit and the recourse penalty costs. Finally, the results are analyzed

and discussed.
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Table 9.28. Detailed computational results for Risk Model III for 6, = 0.000 8, 6; = 0.01

Production Shortfall z; or Surplus z; (t/d)

lsjgs'gte Stochastic Scenario 1 Scenario 2 Scenario 3
Variable Solution Product (i) z z z Z;, Z Z
X1 10 282.158 Demands RHS Coefficients Randomness
X5 2 000.000 Gasoline (2) 835.000 0 700.000 0  565.000 0
X3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000
X4 2493.423 Jet Fuel (4) 0 78.423 0 193423 0 308.423
X5 1 700.000 Heating Oil (5) 85.000 0 0 0 0 85.000
X6 7 087.001 Fuel Oil (6) 2887.999 0 2412.999 0 1937.999 0
X7 2 155.000
X3 3177.187 Production Yields LHS Coefficients Randomness
X9 2 981.826 Naphtha (7) 0 751485 0 818.319 0 885.153
X10 3752.988 Jet Fuel (4) 0 873.983 0 951.100 0 1028.216
X11 1 000.000 Gas Oil (8) 0  802.008 0 915.112 0 1028.216
X12 1 275.000 Cracker Feed (9) 0 822.573 0 925.394 0 1028.216
X13 1 902.187 Residuum (10) 0 1028.216 0  668.340 0  308.465
X14 2 500.000
X1s 481.826  E(Penalty Costs) 22 500.614 25 607.063 10 091.340
X16 1 000.000 Eoa 58 199.017
X17 1 375.000
X1g 425.000
X19 950.000
X20 125.000

Expected Profit 59 451.117

Z ($/day)

Table 9.29. Computational statistics for Risk Model 111

Single continuous Resource usage/
Solver variables Constraints CPU time (s) Iterations
CONOPT 3 96 91 = (0.049-0.100) 14

9.4.4 Analysis of Results for Risk Model I11

As is the case with Risk Model II, the values of 8; and 05 denotes the importance of risk

in the model as contributed by variation in profit and variation in recourse penalty costs,

respectively, in comparison with the corresponding expected values of the model’s

objective.

From Table 8.31, similar trends with the expected value models are observed in which

reducing values of 8, implicates higher expected profit. With increasingly smaller 8,, the
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increment in expected profit becomes constant; the same constancy trend is also observed
in the initially declining expected profit for increasing values of 8.

One of the reasons the pair of reducing values of 8, with fixed value of 0; leads to
increasing expected profit is attributable to the general decrement in production shortfalls
but increasing production surpluses, in which the fixed penalty cost for the latter is lower
than the former. Based on its conceptual definition (as mentioned earlier), it certainly
augurs well to select a higher operating value of 0; to achieve both high model feasibility
as well as increased profit. Moreover, higher values of 6, alto decreasing variation in the
recourse penalty costs, which implies solution robustness. This argument is further
strengthened by the decreasing values of the coefficient of variation, which indicates less
uncertainty in the model on a whole. This again demonstrates that a proper selection of
the operating range of 6, and 0s is crucial in varying the tradeoffs between the desired
degree of model robustness and solution robustness, to ultimately obtain optimality

between expected profit and expected production feasibility.

100000

80000 1

Maximum Profit under Uncertainty in
Price, Demands, and Yields

60000 1o ¢

Expected Profit ($/day)

40000 -

Deterministic Profit = $23 387.50/day

20000 -

0 T T T T T T T T T T T T T T T T T T
7900 8100 8300 8500 8700 8900 9100 9300 9500 9700 9900 10100 10300 10500 10700 10900 11100 11300 11500 11700

Profit and Recourse Penalty Costs Risk

Figure 9.10. The efficient frontier plot of expected profit versus risk imposed by variations in both profit
(measured by variance) and the recourse penalty costs (measured by mean-absolute deviation) for Risk
Model III
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9.5 SUMMARY OF RESULTS AND COMPARISON AGAINST RESULTS FROM
THE FUZZY LINEAR FRACTIONAL GOAL PROGRAMMING APPROACH

Ravi and Reddy (1998) adopted the fuzzy linear fractional goal programming approach to
the same deterministic linear program for refinery operations planning by Allen (1971)
that is used for the present numerical example. Based on their arguments that a decision
maker is very often more interested in the optimization of ratios, they identified the ratios

or the fractional goals to be treated as fuzzy goals for optimization as the following:

rofit VA
h= . — : = fi== 9.62)
capacity of the primary unit (x,) X,
rofit VA
fi=— = f=Z (9.63)
capacity of the cracker (x,,) Xy

for which the deterministic model of Allen (1971) is then reformulated accordingly.
Table 9.30 presents a summary of the results obtained from the base case deterministic
model and the five different approaches adopted in applying the methods of stochastic
optimization, to be compared against results from the fuzzy linear programming
approach.

Ravi and Reddy (1998) advocated that their results, although registering 1.3 percent
less profit than the linear programming approach of Allen (1971), yielded higher optimal
fractional goal values, thus translating to better ratio values of profit/capacity of primary
unit capacity f; and profit/capacity of the cracker unit f; simultaneously. Following the
same premise, we conclude that the stochastic models, in addition to proposing midterm
plans that consistently register higher expected profits than both the deterministic and the
fuzzy programming models, assure the decision maker of good ratios for both f; and f>.
Maximization of these ratios lead to maximum or near maximum profit, with minimum
or near minimum capacities of the respective units simultaneously. As petroleum refiners
use the technology of fluidized bed catalytic crackers (FCC) to convert more crude oil to

blending stocks for producing gasoline, which is unarguably the most commercially
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attractive end product of the refining activity, it certainly augurs well for the stochastic
models to have a good ratio of maximum profit with regards to a minimum capacity of
the highly capital-intensive FCC unit. Moreover, about 45 percent of worldwide gasoline
production is contributed by FCC processes and its ancillary unit. Thus, the overall
economic performance of a refinery considerably hinges on a prudent investment in FCC
due to its large throughput, high product-feed upgrade, and mercantile importance
(Alvarez-Ramirez et al., 2004).

Table 9.30. Comparison of results obtained from the deterministic model, the stochastic models, and
the fuzzy linear fractional goal program by Ravi and Reddy (1998)

Stochastic Stochastic

Stochastic Risk Risk Fuzzy

Expectation Model 1T Model III Linear
First- Deterministic ~ Stochastic Model 1 Stochastic (for (for Fractional

Stage Linear Risk (for Expectation ~ 6;=0.000 0001, 6;=0.000 8, Goal
Variable Program Model 1 0, = 0.000 03) Model 11 0, =50) 0;=0.01)  Program*
X 12500 12 171.621 15 000.000 2792.531 15 000.000 10 282.158 12 054.59
X5 2 000 1 947.459 2 000.000 647.867 2 000.000 2 000.000 1 928.74
X3 625 608.581 1 155.000 300.197 1 155.000 1 155.000 602.73
X4 1875 1 825.743 3 637.500 677.189 3 637.500 2493.423 1 808.19
X5 1 700 1 700.000 3 835.000 1150.523 3 597.500 1 700.000 1 700.00
X6 6175 5968.122 9 500.000 177.052 9737.500 7 087.001 5894.39
X7 1625 1 582.311 2 155.000 624.131 2 155.000 2 155.000 1 567.09
X3 2750  2677.757 4 635.000 862.892 4 635.000 3177.187  2652.01
Xo 2500 2434324 4 350.000 809.834 4 350.000 2981.826  2410.92
X10 3750 3651.486 5 475.000 1019.274 5 475.000 3752988  3616.38
X1 1 000 973.730 1 000.000 323.934 1 000.000 1 000.000 964.37
X12 1275 1 275.000 2 876.250 862.892 2 698.125 1 275.000 1275.00
X13 1 475 1 402.757 1 758.750 0 1 936.875 1 902.187 1377.01
X14 2500 2434324 2 500.000 809.834 2 500.000 2 500.000 2410.92
X15 0 0 1 850.000 0 1 850.000 481.826 0.0
X16 1 000 973.730 1 000.000 323.934 1 000.000 1 000.000 964.38
X17 1375 1 338.878 1 375.000 445.409 1 375.000 1 375.000 1326.01
X18 425 425.000 958.750 287.631 899.375 425.000 425.00
X19 950 913.878 416.250 157.778 475.625 950.000 901.01
X20 125 121.716 125.000 40.492 125.000 125.000 120.55
Profit ($/day) 23 387.50 23 500.000 81 774.744 23 387.50 79 725.713 59451.117 23 069.06
f 1.871 1.931 5.452 8.375 5.315 5.782 1.914
1 9.355 9.654 32.710 28.879 31.890 23.780 9.569

* Taken from the work of Ravi and Reddy (1998)
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9.6 ADDITIONAL REMARKS

In retrospect, we mildly caution the respected reader that this work primarily intends to
demonstrate the validity of the stochastic concepts reviewed along with the methods
developed and improvised by using a typical and realistic refinery planning problem
under uncertainty. However, it is certainly not our claim that the model captures all
detailed aspects of the problem but rather, it demonstrates the capabilities of the proposed

tools.
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CHAPTER 10

Conclusions

10.1 SUMMARY OF WORK

This thesis research focuses on the methodology of developing effective yet
straightforward stochastic optimization models for the midterm production planning of a
petroleum refinery by accounting for three major factors of uncertainty simultaneously,
namely commodities’ prices, market demands, and product yields. In addition, we
consider the importance of risk in decision-making under uncertainty in the proposed
stochastic planning models by explicitly accounting for the tradeoffs between expected
profit and variation in both profit and the recourse penalty costs. These measures of risk
(in the form of variance for the price coefficients and variance or Mean-Absolute
Deviation (MAD) for the recourse penalty costs, adopted in different models) are
incorporated within the general framework of the proposed models with the aim of
achieving robustness in decision-making activities especially in view of the highly
volatile hydrocarbon industry in which the petroleum refineries operate. The following
four approaches are implemented, resulting correspondingly in four decision-making
models under uncertainty:

1. the Markowitz’s mean—variance (MV) model to handle randomness in the
objective function coefficients of prices by minimizing the variance of the
expected value or mean of the random coefficients, subject to a target profit
constraint;

2. the two-stage stochastic programming with fixed recourse via scenario analysis
approach to model randomness in the right-hand side and the left-hand side
(technological) coefficients by minimizing the expected recourse penalty costs
due to constraints’ violations;

3. incorporation of the Markowitz’s MV approach within the bilevel decision-
making framework developed in the preceding approach to minimize both the

expectation and the variance of the recourse penalty costs; and

212



4. reformulation of the model developed in the third approach by utilizing the Mean—
Absolute Deviation (MAD) as the measure of risk imposed by the recourse
penalty costs.

An exposition for justifying the rationale for adopting each of the four stochastic
modelling methods is undertaken in this work by comprehensively surveying past
successes in employing such approaches in the open literature, but in the light of the
limitations of the approaches.

As emphasized throughout, the novelty of these approaches lies in the explicit
modelling and formulation of uncertainties considered for the large-scale optimization
problem of petroleum refinery production planning. This has been accomplished through
the utilization of slack variables to account for violations of the stochastic constraints of
possible scenarios of product demands and product yields, primarily within a bilevel
decision-making framework of two-stage stochastic programming that incorporates the
Markowitz’s mean—variance model of portfolio selection optimization as a hedging tool
against the presence of risk that arises due to variation in profit and the penalty costs of

recourse actions.

10.2 MAJOR CONTRIBUTIONS OF THIS RESEARCH

The major contributions of this work are threefold. First, we formulate a slate of highly
tractable stochastic optimization models through an explicit modelling of the presence of
uncertainties for application in the production planning of petroleum refineries, primarily
within a two-stage stochastic programming framework. This is accomplished via the
systematic adoption of a hybrid of effective yet clear-cut stochastic optimization
techniques that obviates the use of the conventional brute force approach of Monte Carlo-
based methods.

Second, we consider the incorporation of the concept of Mean-Absolute Deviation
(MAD) as a measure of risk for the petroleum refining activities, instead of the traditional
measure using variance. The numerous benefits of doing so are elucidated in Section

5.8.1, with the most significant being the ability to linearize the MAD expression in the
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objective function, thus producing an equivalent linear programming problem that can be
solved accurately and competently by harnessing the combination of efficient algorithms
with the power of today’s modern computing technology.

Additionally, in an effort to establish the effectiveness of the proposed stochastic
models while simultaneously hedging against the various forms of uncertainties in
commodity prices, market demands, and product yields, we carry out a series of extensive
and rigorous computational experiments to investigate and interpret the behaviour and the
overall robustness of the multiobjective optimization models. This is executed in light of
similar methodologies that have been employed in previous works, notably the
applications of Mulvey et al. (1995)’s robust optimization approach by Bok et al. (1998)
for the capacity expansion of a petrochemicals processing network and by Malcolm and
Zenios (1994) for the capacity expansion of power systems. Oftentimes, we also take into
account many of the useful suggestions and guidelines that are offered by the now
classical paper by Rardin and Lin (1982) on issues and techniques concerning test
problems for computational experiments. Two performance metrics are thus considered,
namely: (1) the concepts of solution robustness and model robustness as introduced by
Mulvey et al. (1995) and (2) the coefficient of variation C,, in order to gauge the
performances of the four proposed stochastic models against each other, as well as
against the deterministic model and the fuzzy programming approach of Ravi and Reddy

(1998).
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CHAPTER 11

Recommendations for Future Work and Way Forward

11.1 SUMMARY OF RECOMMENDATIONS FOR FUTURE WORK

In this chapter, we intend to bring together and consolidate under one roof, the numerous
recommendations scattered over the main content of the dissertation. We are also inclined
to offer some personal thoughts and opinions on a promising research agenda for future
undertakings in this exciting area of developing stochastic programming tools and
applications, for petroleum refinery operations management in specific and the wider
spectrum of business decision-making in general. To provide a compact discussion, the
essence of the recommendations and suggestions for future work are enumerated as

follows:

1. to implement extensions to the present general deterministic midterm production
planning model for petroleum refineries by considering the the following features:

* rigorous modelling of advanced petroleum refining process unit such as the
hydrotreating and hydrocracking units that are instrumental especially in the
current drive towards clean fuels production;

* capacity expansion through the installation of multiple number of processing
units; an example with apparent economic value would be the installation of an
additional piece of the fluidized bed catalytic cracker (FCCU) to increase the
production of gasoline that is arguably the most profitable of refining end
products;

* modelling nonlinearities in blending operations as constraints for production of
fuels in satisfying the following operating objectives, which are typically
prioritized in this order as advocated by Bodington (19950: (i) quality
specifications; (ii) shipment schedule; (iii) quality giveaway; (iv) blending cost;

and () inventory targets;
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multiferinery modelling of a network of refineries, with consideration for inter-
refinery transfer or transportation of intermediates and products under
subcontracting agreements, with the addition of production (supply) and
distribution modelling; interactions with potential spin-off industries particularly
petrochemicals processing will also be examined;

incorporation of complex economic instruments such as royalties, taxes, and
tariffs in the objective function of net present value (van den Heever, 2001; van

den Heever et al., 2000; 2001);

2. improvements in methodology for dealing with uncertainty:

implementation of multi-stage stochastic programming framework with the stages
corresponding to time periods, hence effectively formulating multiperiod models,
which is an established alternative strategy in dealing with uncertainty;
incorporation of uncertainties in less-commonly considered but equally paramount
and planning-sensitive factors such as (i) process variations as indicated by
variable process parameters, for example, flow rates and temperatures; (ii)
cancelled/rushed orders; (ii1) equipment failure; (iv) technology obsolescence; and
(v) sales uncertainty;

improvement in effective procedures of scenario selection and generation, which
is a highly essential (if not the most essential) key component towards developing
stochastic programming models that are truly robust in the face of uncertainties; in
particular, we intend to pursue the incorporation of the scenario planning
paradigm (van der Heijden, 2005; Godet, 1987; Schoemaker and van der Heijden,
1992; Lindgren and Bandhold, 2003; Schwartz, 1991; Stokke et al., 1990; Huss
and Honton, 1987) that has been so successfully practised at Royal Dutch/Shell,
which is not only the leading oil-and-gas company worldwide but is even
arguably, one of the most successful corporations of modern times,

improvement in the theory and procedure for specifying the weights for
multiobjective optimization to account for the tradeoffs between expected profit

and risk;
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3. incorporation of advanced metrics for risk measurement and modelling since the
conventional metric of variance is a symmetric risk measure that desirably penalizes
profits below the target levels but also undesirably penalizes profits above the target
levels, other than the mean-absolute deviation (MAD) that is considered in this work
with much resulting promise; the alternative risk measures to be considered will
include the expected downside risk (Eppen et al., 1989), the Value-at-Risk (VaR)
(Barbaro and Bagajewicz, 2004a; Mulvey, 2001), and the Conditional Value-at-Risk
(CVaR) (Rockafellar and Uryasev, 2002).

11.2 FINAL REMARKS

We are convinced that there is still a plethora of research opportunities in this field with
directions of research problems themselves muddled with uncertainty (ironically) and
multitude of questions unanswered, as widely acknowledged by both academics and
practitioners of the field. In advancing this stand, we have the privilege of support from
none other than George (Bernard) Dantzig himself, fondly dubbed as the father of linear
programming (primarily for devising the simplex method) and one of the pioneers of
stochastic programming, with the following truly inspiring quote from Dantzig, which
has and will continue to serve to motivate researchers, both current and potential, in this
remarkably rich and fascinating field of stochastic optimization:

“Planning under uncertainty. This, I feel, is the real field we should all be working
on.” (http://www.e-optimization.com/directory/trailblazers/dantzig/
interview_planning.cfm, accessed on March 2, 2006; http://www2.informs.org/History/
dantzig/in_interview_irv10.htm, accessed on March 9, 2006).

Incidentally, to cap the wonderful journey of working on this thesis research, we take
this opportunity to pay our utmost respect and homage to Dantzig (November 8, 1914—
May 13, 2005), whose recent demise last year would certainly carve a legacy that will
long survive him in continuing to spur the area of mathematical
programming/optimization/operations research towards attaining greater heights and
meaning. (As an aside, “optimization” is the term strongly preferred and even advocated
by George L. Nemhauser, truly one of the giants of the field and co-author with Laurence
A. Wolsey of the biblical encyclopaedia of the discrete sub-area of this field entitled
Integer and Combinatorial Optimization (Nemhauser, 1994).)
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Appendices

APPENDIX A
A Review of the Markowitz’s Mean—Variance or Expected Returns—Variance of

Returns (E-V) Rule Approach

The following is a review of the widely-used Markowitz’s mean—variance model as

found in Konno and Yamazaki (1991). Let R; be a random variable representing the rate

of return (per period) of the asset S;
j=1, ..., n. Also let x; be the amount of money to be invested in S; out of the total fund
M.

The expected return (per period) of this investment is given by

n

r(xl,...,xn)=E|:iijj:| => E[R;]x, (A1)
Jj=l

J=1

where E[[ represents the expected value of the random variable in the bracket. An
investor prefers to have r(xl,...,xn) as large as possible. At the same time, he wants to

make the risk as small as possible.
Markowitz, in his seminal work (1959), employed the standard deviation of the (per

period) return:

o(x,...x,) = EHéijj —El:gijj:lH (A.2)

as the measure of risk and formulated the portfolio optimization problem as a parametric

quadratic programming problem, as presented in the following:
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n n
minimize Z z O, XX;
i=l j=l

subject to rx, 2pM,,
; I (A.3)

2% = M,
I=
Oij Su, j=1..,n
where r; = E[R)] and 0, =E [(Rl. —rl.)(R g —rj)] and p is a parameter representing the

minimal rate of return required by an investor. Also, u; is the maximum amount of money
that can be invested into S;. This model is known to be valid if (i) R;’s are multivariate
normally distributed and/or (ii) an investor is risk averse in the sense that he prefers less

standard deviation of the portfolio to more.
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APPENDIX B2

Weekly USA retail gasoline price (cents per gallon) for all grades and all
formulations for the period of January 5, 2004—December 26, 2005 (Energy
Information  Administration (EIA), Retail Gasoline Historical Prices,
http://www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/

mogas_history.html, accessed on January 23, 2006) (Note: n.a. = not available)

Gasoline price Gasoline price Gasoline price
Date (cent/gallon) Date (cent/gallon) Date (cent/gallon)

05/01/04 155.2 | 06/09/04 189.3 | 09/05/05 223.1
12/01/04 160.3 | 13/09/04 188.9 | 16/05/05 220.6
19/01/04 163.7 | 20/09/04 190.8 | 23/05/05 216.9
26/01/04 166.4 | 27/09/04 195.9 | 30/05/05 214.1
02/02/04 166 | 04/10/04 198 | 06/06/05 215.9
09/02/04 168.1 | 11/10/04 203.5 | 13/06/05 217.3
16/02/04 169 | 18/10/04 207.7 | 20/06/05 220.4
23/02/04 173 | 25/10/04 207.4 | 27/06/05 225.7
01/03/04 175.8 | 01/11/04 207.6 | 04/07/05 226.8
08/03/04 178 | 08/11/04 204.5 | 11/07/05 236.9
15/03/04 176.7 | 15/11/04 201.4 | 18/07/05 236
22/03/04 178.5 | 22/11/04 199.2 | 25/07/05 2333
29/03/04 180 | 29/11/04 198.9 | 01/08/05 233.5
05/04/04 182.2 | 06/12/04 195.6 | 08/08/05 241
12/04/04 182.7 | 13/12/04 189.3 | 15/08/05 259.2
19/04/04 185.3 | 20/12/04 186.1 | 22/08/05 265.4
26/04/04 185.3 | 27/12/04 183.8 | 29/08/05 265.3
03/05/04 188.4 | 03/01/05 182.4 | 05/09/05 311.7
10/05/04 197.9 | 10/01/05 183.7 | 12/09/05 300.2
17/05/04 205.5 | 17/01/05 186.3 | 19/09/05 283.5
24/05/04 210.4 | 24/01/05 189.6 | 26/09/05 285.1
31/05/04 209.2 | 31/01/05 195.3 | 03/10/05 297.5
07/06/04 207.5 | 07/02/05 195.2 | 10/10/05 289.6
14/06/04 202.9 | 14/02/05 194.1 | 17/10/05 277.5
21/06/04 198.1 | 21/02/05 194.8 | 24/10/05 265.2
28/06/04 196.5 | 28/02/05 196.9 | 31/10/05 252.8
05/07/04 193.9 | 07/03/05 204 | 07/11/05 242.4
12/07/04 195.9 | 14/03/05 209.8 | 14/11/05 234.2
19/07/04 197.1 | 21/03/05 2149 | 21/11/05 224.7
26/07/04 194.8 | 28/03/05 219.4 | 28/11/05 220
02/08/04 193 | 04/04/05 225.8 | 05/12/05 219.1
09/08/04 192 | 11/04/05 232.1 | 12/12/05 222.8
16/08/04 191.7 | 18/04/05 228 | 19/12/05 225.5
23/08/04 192.6 | 25/04/05 227.9 | 26/12/05 224.1
30/08/04 190.9 | 02/05/05 227.7
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APPENDIX B4

Weekly USA No. 2 heating oil residential price (cents per gallon excluding taxes) for
the period of January 5, 2004—December 26, 2005 (Energy Information
Administration (EIA), Heating Oil and Propane Update at
http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on January 23, 2006)
[Note: n.a. = not available. Also, there is no data available for the following periods: (i)
between March 16, 2004 and October 3, 2004 and (ii) between March 15, 2005 and
October 2, 2005.]

Heating oil price Heating oil price
Date (cent/gallon) Date (cent/gallon)

05/01/04 149.797 | 03/01/05 195.116
12/01/04 156.176 | 10/01/05 194.56
19/01/04 158.444 | 17/01/05 196.386
26/01/04 162.162 | 24/01/05 198.994
02/02/04 162.521 | 31/01/05 201.789
09/02/04 161.531 | 07/02/05 199.034
16/02/04 161.116 | 14/02/05 198.119
23/02/04 160.947 | 21/02/05 198.377
01/03/04 160.256 | 28/02/05 204.27
08/03/04 160.13 | 07/03/05 208.85
15/03/04 159.122 | 14/03/05 211.85
04/10/04 182.787 | 03/10/05 269.159
11/10/04 190.849 | 10/10/05 264.83
18/10/04 199.156 | 17/10/05 265.007
25/10/04 206.028 | 24/10/05 262.298
01/11/04 205.961 | 31/10/05 257.725
08/11/04 202.824 | 07/11/05 250.824
15/11/04 201.673 | 14/11/05 246.556
22/11/04 202.522 | 21/11/05 243.124
29/11/04 202.964 | 28/11/05 241.72
06/12/04 197.013 | 05/12/05 241.035
13/12/04 194.709 | 12/12/05 241.403
20/12/04 199.344 | 19/12/05 243.803
27/12/04 197.757 | 26/12/05 243.3
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APPENDIX BS

Monthly USA residual fuel oil retail sales by all sellers (cents per gallon) for the
period of January 5, 2004—November 30, 2005 (Energy Information Administration
(EIA), Residual Fuel Oil Prices by Sales Type,
http://tonto.eia.doe.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm, accessed on

January 24, 2006) (Note: n.a. = not available)

Fuel oil price

Date (cent/gallon)
Jan-2004 70.6
Feb-2004 69.1

Mar-2004 65.8
Apr-2004 67.6
May-2004 72.6
Jun-2004 73.4
Jul-2004 70.2
Aug-2004 72
Sep-2004 74.1
Oct-2004 81.3
Nov-2004 80.3
Dec-2004 74.4
Jan-2005 77.3
Feb-2005 81.4
Mar-2005 88.1
Apr-2005 96.5
May-2005 99.6
Jun-2005 99.5
Jul-2005 103.2
Aug-2005 109.6
Sep-2005 122.9
Oct-2005 126.7
Nov-2005 120.5
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APPENDIX C

The Mean-Absolute Deviation (MAD) Model for Portfolio Optimization (Konno and
Yamazaki, 1991; Konno and Wijayanayake, 2002)

Let R; be the rate of return of jth asset (j = 1, ..., n) and let x = (xi, ..., x,) be a portfolio, a

vector of proportion of investments into each asset. Let X be an investable set, i.e., a set

of feasible portfolios. For simplicity, it is assumed that X is a set defined below:

X={x=(x,,x,) ixj =1,0<x;<0,,j=1-,n} (C.1)

J=1

The rate of return R(x) of the portfolio x is given by
R(x)= ) Rx, (C.2)
=

Let 7; be the expected value of the rate of return R; of the jth asset. The absolute
deviation W(x) of the rate of return R(x) of the portfolio x is given by

W(x) = E[|R(x) — E[R(2)]]] (C.3)

It is assumed that R = (R, ..., R,) is distributed over a finite set of points {(71;,---, 7),
t =1,---,T} and that the probability of occurrence of (71,---, xu) 1s given by p;, t = 1,
.-+, T. Then:

T
=Pl (C4)

and

261



n

Z(rﬂ —rj)xj (C.5)

J=

T
Wx) =Y p,
t=1

The mean-absolute deviation (MAD) portfolio optimization model is defined as

follows:

n

Z(Fﬂ_rj)xj

J=

T
minimize W(x) = z D,

t=1

subject to erxj =p, (C.6)

I=

xX,

where p is a given constant representing the expected rate of return of the portfolio. The

MAD model can be formulated in an alternative way:

n
maximize z X,
Jj=1

n

> (r =),

j

T
subject to z D,

t=1

xOX

<w (C.7)

where w is a given constant representing the tolerable level of risk. Both (C.6) and (C.7)
can be used interchangeably to generate an efficient frontier.
By standard results in linear programming, the problem (C.7) can be converted to a

linear system of inequalities as follows:
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n
maximize z X,
=
T
) w
subject to z y, S—

t=1
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APPENDIX D
GAMS Program Codes for the Numerical Example

Appendix D1: The Deterministic Midterm Refinery Production Planning Model

$TI TLE Determi ni stic Mdel

Vari abl es

Z,

Positive Vari abl es

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20;

Equati ons

OBJ, CONI, CON2, EQN3, EQ\4, EQN5, EQN6, EQN7, EQNS, EQN9, EQNLO, EQN11, EQN12, EQNL3,
EQN14, EQNLS, EQN16, EQNL7, EQNLS, EQN19, CON20, CON21, CON22, CON23, CON24:

OBJ.. Z =E= -8.0*x1 + 18.5*x2 + 8.0*x3 + 12.5*x4 + 14.5*x5 + 6.0*x6 - 1.5*x14;

CONL.. x1 =L= 15000;

CON2. . x14 =L= 2500;

EQN3.. -0.13*x1 + x7 =E= 0;

EQN4. . -0.15*x1 + x4 =E= O;
EQN5. . -0.22*x1 + x8 =E= O;
EQN6.. -0.20*x1 + x9 =E= O;
EQN7.. -0.30*x1 + x10 =E= O;

EQN8.. -0.05*x14 + x20 =E= O0;
EQN9.. -0.40*x14 + x16 =E= 0;
EQN10.. -0.55*x14 + x17 =E= 0;
EQN11.. 0.5*x2 - x11 =E= O;
EQN12.. 0.5*x2 - x16 =E= O;
EQN13.. 0.75*x5 - x12 =E=
EQN14.. 0.25*x5 - x18 =E=
EQN15.. -x7 + x3 +x11 =E= O0;

EQN16.. -x8 + x12 +x13 =E= 0;

EQN17.. -x9 + x14 +x15 =E= 0;

EQN18. . -x17 + x18 +x19 =E= 0;

EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0;
CON20.. x2 =L= 2700;

CON21.. x3 =L= 1100;

CON22.. x4 =L= 2300;

CON23.. x5 =L= 1700;

CON24.. x6 =L= 9500;

eee

Mbdel Refinery / all /;

Sol ve Refinery using LP nmaxim zing Z
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Appendix D2: Approach 1—Risk Model I Based on the Markowitz’s Mean—
Variance (E-V or MV) Approach to Handle Randomness in the Objective Function

Coefficients of Prices

$TI TLE Approach 1: Ri sk Mdel | Based on the Markowitz's Mean-Variance Approach to Handl e
Randomess in the Objective Function Coefficients of Prices

Sets

i product type /1*21/
s scenarios /1*3/

Tabl e pc(i,s) price of product type i per realization s
1 2 3

1 8.8 8.0 7.2

2 20. 35 18.5 16. 65
3 8.8 8.0 7.2

4 13.75 12.5 11. 25
5 15. 95 14.5 13.05
6 6.6 6 5.4
14 1.65 1.5 1.35
Vari abl es

Z1;

Positive Vari abl es

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20
Ep;

Scal ar s

pl "probability for scenario 1" /0.35/
p2 "probability for scenario 2" /0.45/
p3 "probability for scenario 3" /0.2/

vl variance of price of crude oil /0.352/

v2 variance of price of gasoline /1.882375/

v3 variance of price of naphtha /0.352/

v4 variance of price of jet fuel /0.859375/

v5 variance of price of heating oil /1.156375/
v6 variance of price of crude oil /0.198/

v14 variance of price of cracker feed /0.012375/

Equati ons

OBJ, CONO, CON1, CON2, EQN3, EQN\4, EQN5, EQN6, EQN7, EQN8, EQN9, EQN10, EQN11, EQN12
EQN13, EQN14, EQN15, EQN16, EQN17, EQN18, EQN19, CON20, CON21, CON22, CON23, CON24
Eprofit;

oBJ.
Z1 =E= -((Vv1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (Vv4*SQR(x4)) + (Vv5*SQR(x5)) +
(v6*SQR(x6)) + (v14*SQR(x14)))

COND.

[pl*(-pc(' 1, 1" )*x1 + pc('2',"1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 +
pc(' 6, 1')*x6 - pc('14','1')*x14)]

+ [p2*(-pc(' 1, 2" )*x1 + pc('2'," 2" )*x2 + pc('3','2')*x3 + pc('4',' 2 )*x4 + pc('5,' 2" )*x5
+ pc(' 6, 2 )*x6 - pc(’ 14", 2" )*x14)]
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+ [p3*(-pc(" 1', 3 )*xL + pc(' 2°, 3 )*x2 + pc(' 3, 3 )*x3 + pc(' 4, 3 )*x4 + pc(' 5, 3 )*x5

+ pc(' 6,3 )*x6 - pc(' 14','3')*x14)] =G= 23500

CONL.
CON2.
EQN3.
EQ\4.
EQN5.

CON24. .

Eprofit..

+

+ + +

Model

x1 =L= 15000;
x14 =L= 2500;
-0.13*x1 + x7 =E= 0;

-0.15*x1 + x4 =E= 0;
-0.22*x1 + x8 =E= 0;
-0.20*x1 + x9 =E= 0;
-0.30*x1 + x10 =E= 0O;

-0.05*x14 + x20 =E= 0;
-0.40*x14 + x16 =E= 0;
-0.55*x14 + x17 =E= 0;
0.5*x2 - x11 =E= 0;
0.5*x2 - x16 =E= 0;
0.75*x5 - x12 =E=
0. 25*x5 - x18 =E=
-X7 + x3 +x11 =E= 0;

-x8 + x12 +x13 =E= 0;

-X9 + x14 +x15 =E= 0;

-x17 + x18 +x19 =E= 0;

-x10 - x13 - x15 - x19 + x6 =E= 0;
x2 =L= 2700;

x3 =L= 1100;

x4 =L= 2300;

x5 =L= 1700;

x6 =L= 9500;

eee

Refinery / all /;

Sol ve Refinery Using NLP Maxim zing Z1;

Ep =E= [pl*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1
pc('5','1')*x5 + pc('6','1')*x6 -
[p2*(-pc(' 1, 2" )*x1 + pe('2',"2' )*x2 + pc(' 3',"2')*x3 + pc('4',' 2')*x4 + pc('5',' 2" )*x5
pc(' 6,2 )*x6 - pc(' 14", 2')*x14)]
[p3*(-pc(' 1,3 )*x1 + pc(' 2,3 )*x2 + pc('3',"3')*x3 + pc('4',' 3 )*x4 + pc('5',' 3')*x5
pc(' 6,3 )*x6 - pc('14',' 3" )*x14)];

pc('14','1")*x14)]

)*Xx3 + pc('4',"'1")*x4 +
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Appendix D3: Approach 2.1—Expectation Model I as a Combination of the
Markowitz’s Mean—Variance Approach and the Two-Stage Stochastic

Programming with Fixed Recourse Framework

$TI TLE Approach 2: Expectation Mdel | as a Conbination of the Markowitz's Mean-Variance
Approach and the Two- Stage Stochastic Programming with Fi xed Recourse Franework

Set's

i product type /1*21/

s scenarios /1*3/

k production shortfall and surplus or yield decrenent or increnent /1, 2/

Tabl e pc(i,s) price of product type i per realization j
1 2 3

1 8.8 8.0 7.2
2 20. 35 18.5 16. 65
3 8.8 8.0 7.2
4 13.75 12.5 11. 25
5 15. 95 14.5 13.05
6 6.6 6 5.4
14 1.65 1.5 1.35

Table d(i,s) denand of product type i per realization j

1 2 3
2 2835 2700 2565
3 1155 1100 1045
4 2415 2300 2185
5 1785 1700 1615
6 9975 9500 9025

Table y(i,s) yield of product type i per realization j
1 2 3

3 -0. 1365 -0.13 -0.1235
4 -0. 1575 -0.15 -0. 1425
8 -0.231 -0.22 -0. 209
9 -0.21 -0.20 -0.19

10 -0. 265 -0.30 -0. 335

Table c(i,k) penalty cost for product type i due to production shortfall or surplus
1 2

1 55 50
2 25 20
3 17 13
4 5 4
5 6 5
6 10 8
Table q(i,k) penalty cost for product type i due to yield decrement or increnent
1 2
3 5 3
4 5 4
8 5 3
9 5 3
10 5 3

Positive Vari abl es

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20
z211, z212, z221, z222, z231, 2232
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2311, 2312, z321, 2322, 2331, 2332
7411, z412, z421, 2422, 7431, z432
z511, z512, z521, 2522, 2531, z532
2611, z612, 2621, 2622, 2631, 2632
y311, y312, y321, y322, y331, y332
y41l, y412, y421, y422, y431, y432
y811, y812, y821, y822, y831, y832
yo1l, y912, y921, y922, y931, y932
y1011, y1012, y1021, y1022, y1031, y1032

Vari abl es

Esl, Es2, Es3,
Z2,
Vp, Tshortfall, Tsurplus, Es, Vpsq, Ep, Ecv

Scal ar s

vl "variance of price of crude oil" /0.352/

v2 "variance of price of gasoline" /1.882375/

v3 "variance of price of naphtha" /0.352/

v4 "variance of price of jet fuel" /0.859375/

v5 "variance of price of heating oil" /1.156375/
v6 "variance of price of crude oil" /0.198/

v14 "variance of price of cracker feed" /0.012375/

pl "probability for scenario 1" /0.35/
p2 "probability for scenario 2" /0.45/
p3 "probability for scenario 3" /0.2/

Equati ons

OBJ "nmaximze profit",

CON1, CON2, EQN8, EQN9, EQN1O, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN1S,
EQN19,

Escenario, Escenariol, Escenario2, Escenari o3,
CONgas1l, CONgas2, CONgas3,

CONnapl, CONnap2, CONnaps3,

CON f1, CONjf2, CONf3,

CONhol, CONho2, CONho3,

CONf o1, CONfo2, CONfo3,

CONl hsnapl, CON hsnapll, CON hsnapl2,

CONl hsnap2, CON hsnap2l, CON hsnap22,

CONl hsnap3, CON hsnap31, CON hsnap32,

CON hsjf1, CON hsjfl1ll, CON hsjf12,

CON hsj f2, CON hsjf21, CON hsjf22,

CON hsj f3, CON hsjf31, CON hsjf32,

CONl hsgol, CON hsgoll, CON hsgol2,

CONl hsgo2, CON hsgo21, CON hsgo22,

CONl hsgo3, CON hsgo31, CON hsgo32,

CONl hscf1l, CON hscfl1l, CON hscf12,

CONl hscf2, CON hscf21l, CON hscf22,

CONl hscf3, CON hscf31, CON hscf 32,

CONl hsr1, CON hsr1l, CON hsr12,

CONl hsr2, CON hsr21, CON hsr22,

CONl hsr3, CON hsr31, CON hsr32,

Eprofit, Vprofit, Totalshortfall, Total surplus, Vpsqrt, Ecvar;

oBJ.. 72 =E=
[pl*(-pc(' 1, 1" )*x1 + pc('2',"1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 +
pc(' 6, 1')*x6 - pc('14','1')*x14)]

[p2*(-pc('1'," 2 )*x1 + pc('2'," 2" )*x2 + pc('3',"' 2" )*x3 + pc('4','2' )*x4 + pc('5',' 2" )*x5
pc(' 6,2 )*x6 - pc(' 14", 2')*x14)]

[p3*(-pc(' 1,3 )*x1 + pc('2','3 )*x2 + pc('3','3 )*x3 + pc('4','3 )*x4 + pc('5',' 3" )*x5
pc(' 6,3 )*x6 - pc(' 14", ' 3')*x14)]

+

+ + +
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- 0.0000000001*Vp

- Es;

Vprofit..

Vp =E= (V1*SQR(x1)) + (V2*SQR(x2)) + (V3*SQR(Xx3)) + (VA*SQR(x4)) + (v5*SQR(X5))

+ (v6*SQR(x6)) + (v14*SQR(x14));

CONL1.. x1 =L= 15000;

CON2.. x14 =L= 2500;

*EQON3.. -0.13*x1 + x7 =E= 0;
*EQN4. . -0.15*x1 + x4 =E= 0;
*EQN5.. -0.22*x1 + x8 =E= 0;
*EQN6. . -0.20*x1 + x9 =E= 0;
*EQN7.. -0.30*x1 + x10 =E= O;
EQN8.. -0.05*x14 + x20 =E= 0;
EQN9.. -0.40*x14 + x16 =E= O0;
EQN10 -0.55*x14 + x17 =E= O;
EQN11 0.5*x2 - x11 =E= 0;
EQN12 0.5*x2 - x16 =E= 0;
EQN13 0.75*x5 - x12 =E= 0;
EQN14 0. 25*x5 - x18 =E= 0;
EQN15 -X7 + x3 +x11 =E= 0;
EQN16 -x8 + x12 +x13 =E= 0;
EQN17 -x9 + x14 +x15 =E= 0;
EQN18 -x17 + x18 +x19 =E= O;
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0;
* CON20 x2 =L= 2700;

*CON21 x3 =L= 1100;

* CON22 x4 =L= 2300;

*CON23 x5 =L= 1700;

* CON24 x6 =L= 9500;

Escenariol. .

Esl =E= pl*(((c('2','1')*z211 + c('2','2')*2212) + (c('3','1')*z311 +

c('3','2')%2312) + (c('4','1)*z411 + c(' 4','2')*z412) + (c('5','1')*z511 +

c('5','2')*2512) + (c('6','1')*z611 + c('6','2')*2612))

+ ((q('3, 1 )*y311 + q('3',' 2" )*y312) + (q(' 4", 1')*y4ll + q(' 4',' 2')*y4l12) +
(q('8,"1')*y811 + q('8','2' )*y812) + (q('9','1')*y91l + q(' 9','2')*y912) +
(q(*10"," 1" )*y1011 + q(' 10','2')*y1012)))

CONgasl.. x2 + z211 - z212 =E= d('2','1");

CONnapl.. x3 + z311 - z312 =E=d('3','1");

CONj f1.. x4 + z411 - z412 =E= d('4','1");

CONhol.. x5 + z511 - z512 =E= d('5','1");

CONfol.. x6 + z611 - z612 =E= d('6','1");

CONl hsnapl.. y('3","1")*x1 + x7 + y311 - y312 =E= 0;
CONl hsnapll.. y311 =L= 0. 1*x1;
CONl hsnap12.. y312 =L= 0. 1*x1;

CONlhsjfl.. y('"4','1')*x1 + x4 + y41l - y412 =E= 0;
CONl hsj f11.. y411 =L= 0.1*x1;
CONl hsj f12.. y412 =L= 0.1*x1;

CONl hsgol.. y('8',"1")*x1 + x8 + y811 - y812 =E= O;
CONl hsgoll.. y811 =L= 0. 1*x1;
CONl hsgol12.. y812 =L= 0. 1*x1;

CONl hscfl.. y('9',"1")*x1 + x9 + y911 - y912 =E= O;
CONl hscf11.. y911 =L= 0. 1*x1;
CONl hscf12.. y912 =L= 0. 1*x1;

CONl hsrl1.. y('10','1")*x1 + x10 + y1011 - y1012 =E= 0;

CONl hsr11..
CONl hsr12. .

y1011 =L= 0. 1*x1,
y1012 =L= 0. 1*x1,

Escenario2.. Es2 =E= p2*(((c('2',"1")*z221 + c('2',"'2")*z222) + (c('3"',"1")*z321 +
c('3','2')*z322) + (c('4','1')*z421 + c('4','2")*z422) + (c('5','1")*z521 +
c('5','2")*z522) + (c('6',"'1')*z621 + c('6','2")*2622))

+ ((q('3","1')*y321 + q('3',"2")*y322) + (q('4',"1")*y421 + q('4','2")*y422) +
(gq('8',"1')*y821 + q('8','2')*y822) + (q('9',"1')*y921 + q('9',"'2")*y922) +
(q('10','1')*yl1021 + g('10','2')*y1022)));

CONgas2.. x2 + z221 - z222 =E=d('2','2");
CONnap2.. x3 + z321 - z322 =E=d('3','2");
CONj f2.. x4 + z421 - z422 =E= d('4','2");
CONho2.. x5 + z521 - z522 =E= d('5','2");
CONf 02.. x6 + z621 - z622 =E= d('6','2");
CONl hsnap2.. y('3","2")*x1 + x7 + y321 - y322 =E= 0;
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CON hsnap21..y321 =L= 0. 1*x1;
CON hsnap22.. y322 =L= 0. 1*x1;

CONl hsjf2.. y('"4','2")*x1 + x4 + y421 - y422 =E= 0;
CONl hsj f21.. y421 =L= 0.1*x1;
CONl hsj f22.. y422 =L= 0.1*x1;

CONl hsgo2.. y('8','2")*x1 + x8 + y821 - y822 =E= 0;
CONl hsgo21.. y821 =L= 0. 1*x1;
CONl hsgo22.. y822 =L= 0. 1*x1;

CONl hscf2.. y('9',"2")*x1 + x9 + y921 - y922 =E= O;
CONl hscf21.. y921 =L= 0. 1*x1;
CONl hscf22.. y922 =L= 0. 1*x1;

CON hsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= O;
CON hsr21.. y1011 =L= 0. 1*x1;
CON hsr22.. y1012 =L= 0. 1*x1;

Escenari03.. Es3 =E= p3*(((c('2',"1")*z231 + c('2','2")*2z232) + (c('3"',"1")*z331 +

c('3,'2')*z332) + (c('4',"'1')*z431 + c('4','2')*z432) + (c('5','1")*z531 +

c('5','2")*z532) + (c('6',"'1')*z631 + c('6','2")*2632))

+ ((q('3'","1')*y331 + q('3',"2')*y332) + (q('4',"1')*y431 + q('4','2")*y432) +

(gq('8,"1')*y831 + q('8','2')*y832) + (q('9',"1')*y931 + q('9',"'2")*y932) +

(q('10','1')*y1031 + g('10','2')*y1032)));

CONgas3.. x2 + z231 - z232 =E=d('2','3");

CONnap3.. x3 + z331 - 2332 =E=d('3','3");

CONj f3.. x4 + z431 - z432 =E= d('4','3");

CONho3.. x5 + z531 - z532 =E= d('5','3");
3")

CONf 03.. x6 + z631 - z632 =E= d('6',"'

CONl hsnap3.. y('3","3")*x1 + x7 + y331
CONl hsnap31..y331 =L= 0. 1*x1;
CONl hsnap32.. y332 =L= 0. 1*x1;

y332 =E= 0;

CONlhsjf3.. y('"4',"3 )*x1 + x4 + y431 - y432 =E= 0;
CONl hsj f31.. y431 =L= 0.1*x1;
CONl hsj f32.. y432 =L= 0.1*x1;

CONl hsgo3.. y('8","3 )*x1 + x8 + y831 - y832 =E= O;
CONl hsgo31.. y831 =L= 0. 1*x1;
CONl hsgo32.. y832 =L= 0. 1*x1;

CONl hscf3.. y('9',"3 )*x1 + x9 + y931 - y932 =E= O;
CONl hscf31.. y931 =L= 0. 1*x1;
CONl hscf32.. y932 =L= 0. 1*x1;

CON hsr3.. y('10','3')*x1l + x10 + y1031 - y1032 =E= O;
CON hsr31.. y1031 =L= 0. 1*x1;
CON hsr32.. y1032 =L= 0. 1*x1;

Escenario.. Es =E= Esl + Es2 + Es3;

Eprofit.. Ep =E=

[pl*(-pc('1","1")*x1 + pc('2',"1")*x2 + pc('3","1")*x3 + pc('4',"1")*x4 + pc('5","'1")*x5 +
pc('6',"1')*x6 - pc('14','1")*x14)]

[p2*(-pc('1","2")*x1 + pc('2',"2")*x2 + pc('3","2")*x3 + pc('4',"'2")*x4 + pc('5','2")*x5

+

+ pc('6',"2")*x6 - pc('14','2")*x14)]

+ [p3*(-pc('1',"3" )*x1 + pc('2',"3")*x2 + pc('3","3")*x3 + pc('4',"3" )*x4 + pc('5","'3")*x5
+ pc('6',"3")*x6 - pc('14',"'3")*x14)];

Total shortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 +

z431 + z511 + z521 + z531 + z611 + z621 + z631
+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 +
y1011 + y1021 + y1031;

Total surplus.. Tsurplus =E= z212 + z222 + z232 + z312 + 2322 + 2332 + z412 + z422 + z432 +
z512 + 2522 + z532 + z612 + 2622 + 2632

+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 +
y1012 + y1022 + y1032

*Vprofit2.. Vp2 =E= (v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) +
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14));

Vpsqgrt.. Vpsq =E= SQRT((v1*SQR(x1)) + (v2*SQR(x2)) + (Vv3*SQR(x3)) + (v4*SQR(x4)) +
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14)));
Ecvar.. Ecv =E= Ep - Es;
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*Covar. .

Model

REFI NERY / ALL /;

* Starting val ues

x1.1
x2. 1
x3. 1
x4. |
x5. 1
x6. |
x7. 1
x8. |
x9. 1
x10.
x11.
x12.
x13.
x14.
x15.
x16.
x17.
x18.
x19.
x20.

12500;
2000;
625;
1875;
1700;
6175;
1625;
2750;
2500;
3750;
1000;
1275;
1475;
2500;
0;
1000;
1375;
425;
950;
125;

Option NLP = conopt 3;

Cv =E= Vpsq/ (Ep -

Es);

Sol ve Refinery Using NLP Maxim zing Z2;
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Appendix D4: Approach 2.2—Expectation Model II as a Combination of the
Markowitz’s Mean—Variance Approach and the Two-Stage Stochastic

Programming with Fixed Recourse Framework

$TI TLE Approach 3: Expectation Mdel |1 as a Conbination of the Markowitz's Mean-Variance
Approach and the Two- Stage Stochastic Programming with Fi xed Recourse Franework

Set's
i product type /1*21/

s scenarios /1*3/
k production shortfall and surplus or yield decrenent or increnent /1, 2/

Tabl e pc(i,s) price of product type i per realization s
1

3
1 8.8 8.0 7.2
2 20. 35 18.5 16. 65
3 8.8 8.0 7.2
4 13.75 12.5 11. 25
5 15. 95 14.5 13. 05
6 6.6 6 5.4
14 1. 65 1.5 1.35

Table d(i,s) denand of product type i per realization s
1

2
2 2835 2700 2565
3 1155 1100 1045
4 2415 2300 2185
5 1785 1700 1615
6 9975 9500 9025

Table y(i,s) yield of product type i per realization s
1 2 3

3 -0. 1365 -0.13 -0.1235
4 -0. 1575 -0.15 -0. 1425
8 -0.231 -0.22 -0. 209
9 -0.21 -0.20 -0.19

10 -0. 265 -0.30 -0. 335

Table c(i,k) penalty cost for product type i due to production shortfall or surplus
2

1
1 55 50
2 25 20
3 17 13
4 5 4
5 6 5
6 10 8
Table q(i, k) penalty cost for product type i due to yield decrement or increnent

1 2
3 5 3
4 5 4
8 5 3
9 5 3
10 5 3
Vari abl es
Z2,
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X2, X3, x4,
z211, z212,
z311, z312,
z411, z412,
z511, z512,
z611, z612,
y311, y312,
y41l, y412,
y811, y812, y821, y822, y831, y832,

y911, y912, y921, y922, y931, y932,

y1011, y1012, y1021, y1022, y1031, y1032,
Esl, Esl1l1, Es2, Es21, Es3, Es31,
Vpsq, x1, Tshortfall, Tsurplus,

x5, X6, x7,
2221, z222,
z321, z322,
z421, z422,
z521, 2522,
2621, 2622,
y321, y322,
y421, y422,

x8, x9, x10,
z231, z232,
z331, z332,
z431, z432,
z531, z532,
2631, 2632,
y331, y332,
y431, y432,

x11, x12, x13,

Es, Ep, Ecv;

Positive Vari abl es

X2, X3, x4,
z211, z212,
z311, z312,
z411, z412,
z511, z512,
z611, z612,
y311, y312,
y411, y412,
y811, y812, y821, y822, y831, y832,
y911, y912, y921, y922, y931, y932,
y1011, y1012, y1021, y1022, y1031, y1032,
Esl, Es1l, Es2, Es21, Es3, Es31,

x5, x6, X7,
2221, 2222,
2321, 2322,
z421, z422,
z521, 2522,
2621, 2622,
y321, y322,
y421, y422,

x8, x9, x10,
z231, z232,
z331, 2332,
z431, z432,
z531, z532,
2631, 2632,
y331, y332,
y431, y432,

x11, x12, x13,

Vpsq, x1, Tshortfall, Tsurplus, Es, Ep;

Scal ar s

vl variance of price of crude oil /0.352/

v2 variance of price of gasoline /1.882375/

v3 variance of price of naphtha" /0.352/

v4 variance of price of jet fuel" /0.859375/

v5 variance of price of heating oil" /1.156375/
v6 variance of price of crude oil" /0.198/

v14 variance of price of cracker feed" /0.012375/

scenario 1 /0.35/
scenario 2 /0.45/
scenario 3 /0.2/

pl probability for
p2 probability for
p3 probability for

Equati ons

OBJ "nmaximze profit",

CONO, CON1, CON2, EQN8, EQN9, EQN10, EQN11,
EQN18, EQN19,

Escenari o, Escenariol, Escenarioll,
Escenari 02, Escenario21l,

Escenari 03, Escenari o031,

CONgas1l, CONgas2, CONgas3,

CONnapl, CONnap2, CONnaps3,

CoN f1, CONjf2, CONf3,

CONhol, CONho2, CONho3,

CONf 01, CONfo2, CONfo3,

CONl hsnapl, CON hsnapll, CON hsnapl2,
CONl hsnap2, CON hsnap21, CON hsnap22,
CONl hsnap3, CON hsnap31, CON hsnap32,
CON hsjf1, CON hsjf1ll, CON hsjf12,
CON hsj f2, CON hsjf21, CON hsjf22,
CON hsj f3, CON hsjf31, CON hsjf32,
CONl hsgol, CON hsgoll, CON hsgol2,
CONl hsgo2, CON hsgo21, CON hsgo22,
CONl hsgo3, CON hsgo31, CON hsgo32,
CONl hscf1, CON hscfl1ll, CON hscf 12,
CONl hscf2, CON hscf21, CON hscf 22,

x14,

x14,

x15,

x15,

x16,

x16,

x17,

x17,

x18,

x18,

x19,

x19,

x20,

x20,

EQN12, EQNL3, EQN14, EQN15, EQNL6, EQNL7,
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CONl hscf 3, CON hscf31, CON hscf 32,

CONl hsr1, CON hsr11l, CON hsri12,

CONl hsr2, CON hsr21, CON hsr22,

CONl hsr3, CON hsr31, CON hsr32,

Total shortfall, Total surplus, Eprofit, Vpsqrt, Ecvar;
*Ecvar;

oBJ. .
Z2 =E= - ((V1*SQR(x1)) + (V2*SQR(x2)) + (Vv3*SQR(x3)) + (v4*SQR(x4)) + (Vv5*SQR(x5)) +
(v6*SQR(x6)) + (v14*SQR(x14))) - Es;

Vpsqgrt.. Vpsq =e= SQRT((v1*SQR(x1)) + (v2*SQR(x2)) + (Vv3*SQR(x3)) + (v4*SQR(x4)) +
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14)));

COND.

[pl*(-pc(' 1, 1" )*x1 + pc('2',"1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 +
pc(' 6, 1')*x6 - pc('14',' 1')*x14)]

+ [p2*(-pc(' 1, 2 )*x1 + pc('2'," 2" )*x2 + pc('3',' 2 )*x3 + pc('4','2' )*x4 + pc('5,' 2" )*x5
pc(' 6,2 )*x6 - pc(' 14", 2')*x14)]

[p3*(-pc(' 1,3 )*x1 + pc(' 2,3 )*x2 + pc('3','3 )*x3 + pc('4','3 )*x4 + pc('5',' 3 )*x5
pc(' 6,3 )*x6 - pc('14',' 3" )*x14)] =G= 23387.50

+ + +

*Ecvar.. Ecv =E= Ep - Es;

CONL1.. x1 =L= 15000;
CON2. . x14 =L= 2500;

*EON3.. -0.13*x1 + x7 =E= 0;
*EQN4. . -0.15*x1 + x4 =E= 0;
*EON5. . -0.22*x1 + x8 =E= 0;
*EQN6. . -0.20*x1 + x9 =E= 0;
*EQN7.. -0.30*x1 + x10 =E= O;
EQN8.. -0.05*x14 + x20 =E= 0;
EQN9.. -0.40*x14 + x16 =E= 0;

EQN10. . -0.55*x14 + x17 =E= 0;
EQN11.. 0.5*x2 - x11 =E= O;
EQN12.. 0.5*x2 - x16 =E= O;
EQN13.. 0.75*x5 - x12 =E=
EQN14.. 0.25*x5 - x18 =E=
EQN15.. -x7 + x3 +x11 =E= O0;

EQN16.. -x8 + x12 +x13 =E= 0;

EQN17.. -x9 + x14 +x15 =E= 0;

EQN18. . -x17 + x18 +x19 =E= 0;

EOQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0;
*CON20. . x2 =L= 2700;

*CON21.. x3 =L= 1100;

*CON22. . x4 =L= 2300;

*CON23.. x5 =L= 1700;

*CON24.. x6 =L= 9500;

eee

Escenariol.. Esl =E= pl*Esll;

Escenarioll.. Es1l =E= (((c('2',"1")*z211 + c('2','2")*2z212) + (c('3',"'1")*z311 +
c('3','2')*z312) + (c('4','1")*z411 + c('4','2")*z412) + (c('5','1")*z511 +
c('5','2")*z512) + (c('6','1')*z611 + c('6','2")*z612))

+ ((q('3","1")*y311 + q('3',"2")*y312) + (q('4',"1")*y41l + q('4','2")*y412) +
(gq('8',"1')*y811 + q('8','2')*y812) + (q('9',"1')*y911 + q('9',"'2")*y912) +
(q('10','1')*y1011 + g('10','2')*y1012)));

CONgasl.. x2 + z211 - z212 =E= d('2','1
CONnapl.. x3 + z311 - z312 =E= d('3','1
CONj f1.. x4 + z411 - z412 =E= d('4','1
CONhol.. x5 + z511 - z512 =E= d('5','1
CONfol.. x6 + z611 - z612 =E= d('6','1
CONl hsnapl.. y('3","1")*x1 + x7 + y311

CONl hsnapll.. y311 =L= 0. 1*x1;

CONl hsnap12.. y312 =L= 0. 1*x1;

) .
)
) .

y312 =E= O;

CONlhsjfl.. y('"4',"1')*x1 + x4 + y41l - y412 =E= 0;
CONl hsj f11.. y411 =L= 0.1*x1;
CONl hsj f12.. y412 =L= 0.1*x1;

CONl hsgol.. y('8',"1")*x1 + x8 + y811 - y812 =E= O;
CONl hsgoll.. y811 =L= 0. 1*x1;
CONl hsgol2.. y812 =L= 0. 1*x1;
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CONhscfL.. y('9 , 1 )*x1 + x9 + y9il - y912 =E= 0
CON hscf1l.. y91l1 =L= 0.1*x1
CON hscf12.. y912 =L= 0.1*x1

CON hsri.. y('10','1')*x1 + x10 + y1011
CON hsril.. y1011 =L= 0.1*x1
CON hsri12.. y1012 =L= 0.1*x1

- y1012 =E= 0

Escenario2.. Es2 =E= p2*Es21;

Escenari02l.. Es21 =E= (((c('2',"1")*z221 + c('2','2")*2222) + (c('3',"1")*z321 +
c('3','2')*z322) + (c('4','1')*z421 + c('4','2")*z422) + (c('5','1")*z521 +
c('5','2")*z522) + (c('6',"'1')*z621 + c('6','2")*2622))

+ ((q('3","1')*y321 + q('3',"2"')*y322) + (q('4',"1')*y421 + q('4','2")*y422) +
(gq('8',"1')*y821 + q('8','2')*y822) + (q('9',"1')*y921 + q('9',"'2")*y922) +
(q('10','1')*y1021 + g('10','2')*y1022)));

CONgas2.. x2 + z221 - z222 =E=d('2','2");

CONnap2.. x3 + z321 - z322 =E=d('3','2");

CONj f2.. x4 + z421 - z422 =E= d('4','2");

CONho2.. x5 + z521 - z522 =E= d('5','2");

CONf 02.. x6 + z621 - z622 =E= d('6','2");

CONl hsnap2.. y('3",'2")*x1 + x7 + y321 - y322 =E= 0;
CONl hsnap21..y321 =L= 0. 1*x1;
CONl hsnap22.. y322 =L= 0. 1*x1;

CONl hsjf2.. y('"4','2")*x1 + x4 + y421 - y422 =E= 0;
CONl hsj f21.. y421 =L= 0.1*x1;
CONl hsj f22.. y422 =L= 0.1*x1;

CONl hsgo2.. y('8',"2")*x1 + x8 + y821 - y822 =E= O;
CONl hsgo21.. y821 =L= 0. 1*x1;
CONl hsgo22.. y822 =L= 0. 1*x1;

CONl hscf2.. y('9',"2")*x1 + x9 + y921 - y922 =E= O;
CONl hscf21.. y921 =L= 0. 1*x1;
CONl hscf22.. y922 =L= 0. 1*x1;

CONl hsr2.. y('10','2")*x1 + x10 + y1021 - y1022 =E= 0;

CONl hsr21. .
CONl hsr22. .

y1011 =L= 0. 1*x1,
y1012 =L= 0. 1*x1,

Escenari 03..

Es3 =E= p3*Es31;

Escenario031.. Es31 =E= (((c('
c('3,'2")*z332) + (c('4,'1
c('5,"2")*z532) + (c('6','1

2',"1')*z231 + ¢
)*z431 + c(' 4, 2"
)*z631 + c('6'," 2"

+ ((q("3","1")*y331 + q('3",'2"')*y332) + (q('4'

2','2')*2232) + (c('3','1')*z331 +
)*z432) + (c('5','1')*z531 +
)*2632))

LU1T)*y431 + q(' 4, 2')*y432) +

(q('8,"1')*y831 + q('8','2' )*y832) + (q('9','1')*y931 + q(' 9','2')*y932) +

(g('10',"1")*y1031 + g('10','2')*y1032)));

CONgas3.. x2 + z231 - z232 =E=d('2','3");

CONnap3.. x3 + z331 - z332 =E=d('3','3");

CONj f3.. x4 + z431 - z432 =E= d('4','3");

CONho3.. x5 + z531 - z532 =E= d('5','3");

CONf 03.. x6 + z631 - z632 =E= d('6','3");

CONl hsnap3.. y('3","3")*x1 + x7 + y331 - y332 =E= 0;
CONl hsnap31..y331 =L= 0. 1*x1;
CONl hsnap32.. y332 =L= 0. 1*x1;

CONl hsjf3.. y('"4',"'3" )*x1 + x4 + y431 - y432 =E= 0;
CONl hsj f31.. y431 =L= 0.1*x1;
CONl hsj f32.. y432 =L= 0.1*x1;

CONl hsgo3.. y('8","3 )*x1 + x8 + y831 - y832 =E= O;
CONl hsgo31.. y831 =L= 0. 1*x1;
CONl hsgo32.. y832 =L= 0. 1*x1;

CONl hscf3.. y('9',"3 )*x1 + x9 + y931 - y932 =E= O;
CONl hscf31.. y931 =L= 0. 1*x1;
CONl hscf32.. y932 =L= 0. 1*x1;

CONl hsr3.. y('10','3")*x1 + x10 + y1031 - y1032 =E= 0;
CONl hsr31.. y1031 =L= 0.1*x1;
CONl hsr32.. y1032 =L= 0.1*x1;

Escenario.. Es =E= Esl + Es2 + Es3;

Eprofit.. Ep =E=

[p1l*(-pc('21","1")*x1 + pc('2","1")*x2 + pc('3","1")*x3 + pc('4'",'1")*x4 + pc('5","'1")*x5 +

pc('6','1')*x6 -

pc('14','1")*x14)]

+ [p2*(-pc('1'," 2" )*x1 + pc('2',' 2" )*x2
+ pc(' 6, 2 )*x6 - pc(’ 14", 2" ) *x14)]
+ [p3*(-pc('1','3 )*x1 + pc('2','3 )*x2

+pc(' 3, 2°)*x3 + pc(' 4, 2 )*x4 + pc(' 5, 2" ) *x5

+ pc('3','3')*x3 + pc(' 4,3 )*x4 + pc('5', ' 3')*x5
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+ pc(' 6, 3 )*x6 - pc( 14, 3 )*x1d)];

Total shortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 +
z431 + z511 + z521 + z531 + z611 + z621 + z631

+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 +
y1011 + y1021 + y1031

Total surplus.. Tsurplus =E= z212 + z222 + z232 + 2312 + 2322 + 2332 + z412 + z422 + z432 +
z512 + z522 + z532 + z612 + 2622 + 2632

+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 +
y1012 + y1022 + y1032

Ecvar.. Ecv =E= Ep - Es;

*di splay Eprofit;

*di spl ay Escenario

*di splay x1.1;

Mbdel Refinery / all /;

Option NLP = conopt3

Sol ve Refinery Using NLP Maxim zing Z2
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Appendix D5: Approach 3—Risk Model II with Variance as the Measure of Risk of

the Recourse Penalty Costs

$TI TLE Approach 3, Risk Mdel Il for Two-Stage Stochastic Programm ng with Fixed Recourse
of Mnimzation of the Expected Value and the Variance of the Recourse Penalty Costs

Set's

i "product type" /1*21/

s "scenarios" /1*3/
k "production shortfall and surplus or yield decrenent or increnent" /1, 2/

Tabl e pc(i,s) "price of product type i per realization s"
1 2 3

1 8.8 8.0 7.2
2 20. 35 18.5 16. 65
3 8.8 8.0 7.2
4 13.75 12.5 11. 25
5 15. 95 14.5 13.05
6 6.6 6 5.4
14 1.65 1.5 1.35

Table d(i,s) "demand of product type i per realization s"
1 3

2
2 2835 2700 2565
3 1155 1100 1045
4 2415 2300 2185
5 1785 1700 1615
6 9975 9500 9025

Table y(i,s) "yield of product type i per realization s"
1 2 3

3 -0. 1365 -0.13 -0.1235
4 -0. 1575 -0.15 -0. 1425
8 -0.231 -0.22 -0. 209
9 -0.21 -0.20 -0.19

10 -0. 265 -0.30 -0. 335

Table c(i,k) "penalty cost for product type i due to production requirenent shortfall or
surpl us conpared agai nst market demand"

1 2
1 55 50
2 25 20
3 17 13
4 5 4
5 6 5
6 10 8
Table q(i,k) "penalty cost for product type i due to yield decrenent or increnment"

1 2
3 5 3
4 5 4
8 5 3
9 5 3
10 5 3
Vari abl es
Z2, Ecv;

Positive Vari abl es
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x1l, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20
z211, z212, z221, z222, z231, z232

z311, z312, z321, z322, z331, z332

z411, z412, z421, z422, z431, z432

z511, z512, z521, z522, z531, z532

z611, z612, z621, z622, z631, 2632

y311, y312, y321, y322, y331, y332

y411l, y412, y421, y422, y431l, y432

y811, y812, y821, y822, y831, y832

y911, y912, y921, y922, y931, y932

y1011, y1012, y1021, y1022, y1031, y1032
Esl, Es1l, Es2, Es21, Es3, Es31

Vp, Tshortfall, Tsurplus, Es, Vs, Vpsq, Ep

Par anet er s

p(s) probability of the realization of scenario /1 0.35, 2 0.45, 3 0.2/

Scal ar s

V1 variance of price of crude oil /0.352/

V2 variance of price of gasoline /1.882375/

V3 variance of price of naphtha /0.352/

V4 variance of price of jet fuel /0.859375/

V5 variance of price of heating oil /1.156375/
V6 variance of price of crude oil /0.198/

V14 variance of price of cracker feed /0.012375/

Equati ons

OBJ "nmaximze profit",

CON1, CON2, EQN8, EQN9, EON10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN18
EQN19

Escenari o, Escenariol, Escenarioll, Escenario2, Escenario2l, Escenari o3, Escenari o3l
Vscenari o

CONgas1l, CONgas2, CONgas3,

CONnapl, CONnap2, CONnap3

COoNjf1l, CONjf2, CONf3

CONhol, CONho2, CONho3

CONf 01, CONfo2, CONfo3,

CONl hsnapl, CON hsnapll, CON hsnapl2

CONl hsnap2, CON hsnap21, CON hsnap22

CONl hsnap3, CON hsnap31, CON hsnap32

CON hsjf1, CON hsjfl1ll, CON hsjf12

CON hsj f2, CON hsjf21, CON hsjf22

CON hsj f3, CON hsjf31, CON hsjf32

CONl hsgol, CON hsgoll, CON hsgol2

CONl hsgo2, CON hsgo21, CON hsgo22

CONl hsgo3, CON hsgo31, CON hsgo32

CONl hscf1, CON hscfl1ll, CON hscf12

CONl hscf2, CON hscf21, CON hscf22

CONl hscf 3, CON hscf31, CON hscf32

CONl hsr1, CON hsr11l, CON hsr12

CONl hsr2, CON hsr21, CON hsr22

CONl hsr3, CON hsr31, CON hsr32

Eprofit, Vprofit, Totalshortfall, Total surplus, Ecvar

oBJ.

Z2 =E=

[p("1")*(-pc('1',"1")*x1 + pc('2',"1")*x2 + pc('3","1")*x3 + pc('4',"'1')*x4 +
pc('5,"1')*x5 + pc('6',"1")*x6 - pc('14','1")*x14)]

+ [p("2")*(-pc("1','2")*x1 + pc('2','2")*x2 + pc('3',"'2")*x3 + pc('4','2")*x4 +
pc('5,'2")*x5 + pc('6',"2")*x6 - pc('14','2")*x14)]

+ [p("3)*(-pc("1',"3")*x1 + pc('2,'3)*x2 + pc('3,'3)*x3 + pc('4,'3)*x4 +
pc('5,"3" )*x5 + pc('6',"3")*x6 - pc('14','3")*x14)]

- 0.0000000001*Vp

- Es - 50*Vs;
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Vprofit.. Vp =E= ((VI*SQR(x1)) + (V2*SQR(x2)) + (V3*SQR(x3)) + (VA*SQR(x4)) + (V5*SQR(X5))

+ (V6*SQR(Xx6)) + (V14*SQR(x14)));

Vscenario.. Vs =E= ((p('1")*SQR(Es1l - Es)) + (p('2")*SQR(Es21 - Es)) + (p('3")*SQR(Es31 -

Es)));

CONL1.. x1 =L= 15000;
CON2. . x14 =L= 2500;

*EON3.. -0.13*x1 + x7 =E= 0;
*EQN4. . -0.15*x1 + x4 =E= 0;
*EON5.. -0.22*x1 + x8 =E= 0;
*EQN6. . -0.20*x1 + x9 =E= 0;
*EQN7.. -0.30*x1 + x10 =E= O;
EQN8.. -0.05*x14 + x20 =E= O0;
EQN9.. -0.40*x14 + x16 =E= 0;

EQN10. . -0.55*x14 + x17 =E= 0;
EQN11.. 0.5*x2 - x11 =E= O;
EQN12.. 0.5*x2 - x16 =E= O;
EQN13.. 0.75*x5 - x12 =E=
EQN14.. 0.25*x5 - x18 =E=
EQN15.. -x7 + x3 +x11 =E= O0;

EQN16.. -x8 + x12 +x13 =E= 0;

EQN17.. -x9 + x14 +x15 =E= 0;

EQN18. . -x17 + x18 +x19 =E= 0;

EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0;
*CON20. . x2 =L= 2700;

*CON21.. x3 =L= 1100;

*CON22. . x4 =L= 2300;

*CON23.. x5 =L= 1700;

*CON24.. x6 =L= 9500;

eee

*Scenario 1: Hi gh dermand

Escenariol.. Esl =E= p('1')*Esll;;

Escenarioll.. Esll =E= (((c('2','1")*z211 + «c('2','2")*z212) + (c('3','1")*z311
c('3,'2")*z312) + (c(4',"1")*z411 + c('4','2")*z412) + (c('5","1")*z511
c('5','2")*z512) + (c('6','1')*z611 + c('6','2")*z612))

+  ((g("3,'"1')*y311 + qg('3','2')*y312) + (q('4','1')*y411 + q('4','2")*y412)
(q('8,"1")*y811 + q('8','2")*y812) + (g('9',"1")*y911 + q('9','2")*y912)
(q('10','1')*y1011 + g('10','2')*y1012)));

CONgasl.. x2 + z211 - z212 =E= d(' 2','1
CONnapl.. x3 + z311 - z312 =E= d('3','1’
CON f1.. x4 + z411 - z412 =E= d(' 4','1')
CONhol.. x5 + z511 - 2512 =E= d('5','1')

1)

CONfol.. x6 + z611 - z612 =E= d('6',"'

CONl hsnapl.. y('3","1")*x1 + x7 + y311
CONl hsnapll.. y311 =L= 0. 1*x1;
CONl hsnap12.. y312 =L= 0. 1*x1;

y312 =E= O;

CONlhsjfl.. y('"4',"1')*x1 + x4 + y41l - y412 =E= 0;
CONl hsj f11.. y411 =L= 0.1*x1;
CONl hsj f12.. y412 =L= 0.1*x1;

CONl hsgol.. y('8',"1")*x1 + x8 + y811 - y812 =E= O;
CONl hsgoll.. y811 =L= 0. 1*x1;
CONl hsgol12.. y812 =L= 0. 1*x1;

CONl hscfl1.. y('9',"1")*x1 + x9 + y911 - y912 =E= O;
CONl hscf11.. y911 =L= 0. 1*x1;
CONl hscf12.. y912 =L= 0. 1*x1;

CON hsri.. y('10','1')*x1 + x10 + y1011 - y1012 =E= O;
CON hsril.. y1011 =L= 0. 1*x1;
CON hsri12.. y1012 =L= 0. 1*x1;

*Scenario 2: Medi um demand

Escenario2.. Es2 =E= p('2')*Es21;

Escenario2l.. Es21 =E= (((c('2','1")*z221 + c¢('2','2')*z222) + (c('3','1")*z321
c('3",'2")*z322) + (c('4',"1")*z421 + c('4','2")*z422) + (c('5',"1")*z521
c('5','2")*z522) + (c('6','1')*z621 + c('6','2")*2622))

+ ((g('3,"1")*y321 + qg('3','2")*y322) + (q('4',"1)*y421 + q('4','2")*y422)
(g('8',"1")*y821 + q('8','2")*y822) + (g('9',"1")*y921 + q('9','2")*y922)
(q('10','1')*y1021 + g('10','2')*y1022)));

CONgas2.. x2 + z221 - z222 =E= d('2','2");

+

+ +
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CONnap2.. x3 + z321 - z322 =E=d('3','2");

CONj f2.. x4 + z421 - z422 =E= d('4','2");

CONho2.. x5 + z521 - z522 =E= d('5','2");

CONf 02.. x6 + z621 - z622 =E= d('6','2");

CONl hsnap2.. y('3"','2")*x1 + x7 + y321 - y322 =E= O;
CONl hsnap21..y321 =L= 0. 1*x1;
CONl hsnap22.. y322 =L= 0. 1*x1;

CONl hsjf2.. y('"4','2')*x1 + x4 + y421 - y422 =E= 0;
CONl hsj f21.. y421 =L= 0.1*x1;
CONl hsj f22.. y422 =L= 0.1*x1;

CONl hsgo2.. y('8',"2")*x1 + x8 + y821 - y822 =E= O;
CONl hsgo21.. y821 =L= 0. 1*x1;
CONl hsgo22.. y822 =L= 0. 1*x1;

CONl hscf2.. y('9',"2")*x1 + x9 + y921 - y922 =E= O;
CONl hscf21.. y921 =L= 0. 1*x1;
CONl hscf22.. y922 =L= 0. 1*x1;

CON hsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= O;
CON hsr21.. y1011 =L= 0. 1*x1;
CON hsr22.. y1012 =L= 0. 1*x1;

*Scenario 3: Low demand

Escenari03.. Es3 =E= p('3')*Es31;

Escenario31l.. Es31 =E= (((c('2','1")*z231 + «c('2','2")*z232) + (c('3",'1")*z331

c('"3,'2")*z332) + (c(4',"1")*z431 + c('4','2")*z432) + (c('5","1")*z531

c('5','2")*z532) + (c('6',"'1')*z631 + c('6','2")*2632))

+ ((g("3','"1')*y331 + qg('3','2')*y332) + (q('4','1)*y431 + q('4','2")*y432)

(q('8,"1")*y831 + q('8','2")*y832) + (g('9',"1")*y931 + q('9','2")*y932)

(q('10','1')*y1031 + g('10','2')*y1032)));

CONgas3.. x2 + z231 - z232 =E=d('2','3");

CONnap3.. x3 + z331 - 2332 =E= d('3','3");

CONj f3.. x4 + z431 - z432 =E= d('4','3");

CONho3.. x5 + z531 - z532 =E= d('5','3");

CONf 03.. x6 + z631 - z632 =E= d('6','3");

CONl hsnap3.. y('3","3")*x1 + x7 + y331 -
CONl hsnap31..y331 =L= 0. 1*x1;
CONl hsnap32.. y332 =L= 0. 1*x1;

y332 =E= 0;

CONl hsjf3.. y('"4',"'3 )*x1 + x4 + y431 - y432 =E= 0;
CONl hsj f31.. y431 =L= 0.1*x1;
CONl hsj f32.. y432 =L= 0.1*x1;

CONl hsgo3.. y('8","3" )*x1 + x8 + y831 - y832 =E= O;
CONl hsgo31.. y831 =L= 0. 1*x1;
CONl hsgo32.. y832 =L= 0. 1*x1;

CONl hscf3.. y('9',"3 )*x1 + x9 + y931 - y932 =E= O;
CONl hscf31.. y931 =L= 0. 1*x1;
CONl hscf32.. y932 =L= 0. 1*x1;

CON hsr3.. y('10','3')*x1l + x10 + y1031 - y1032 =E= O;
CON hsr31.. y1031 =L= 0. 1*x1;
CON hsr32.. y1032 =L= 0. 1*x1;

Escenario.. Es =E= Esl + Es2 + Es3;

Eprofit.. Ep =E=

[p(* 21" )*(-pc('1'","2")*x1 + pc('2','1")*x2 + pc('3,"'1')*x3 + pc('4','1')*x4
pc('5',"1')*x5 + pc('6',"'1")*x6 - pc('14',"'1")*x14)]

+ [p(r2")*(-pc('1','2")*x1 + pc('2','2")*x2 + pc('3,'2")*x3 + pc('4,'2")*x4
pc('5',"2")*x5 + pc('6','2")*x6 - pc('14',"'2")*x14)]

+ [p("3)*(-pc('1',"3")*x1 + pc('2,'3)*x2 + pc('3,"'3)*x3 + pc('4,'3)*x4
pc('5',"3" )*x5 + pc('6',"'3")*x6 - pc('14','3")*x14)];

Total shortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421
z431 + z511 + z521 + z531 + z611 + z621 + z631

+ y311 + y321 + y331 + y41l1 + y421 + y431 + y811 + y821 + y831 + y91ll + y921 + y931
y1011 + y1021 + y1031;

Total surplus.. Tsurplus =E= z212 + z222 + z232 + z312 + 2322 + 2332 + z412 + z422 + z432
z512 + 2522 + z532 + z612 + 2622 + 2632

+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932
y1012 + y1022 + y1032;

*Vprofit2.. Vp2 =E= (v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4))

+

+

+
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(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14));

*Vpsqrt. .

Ecvar. .
*Covar. .

Mod

* Starting val ues

x1.
X2
x3.
x4.
x5.
X6.
X7
x8.
x9

x12

x13.

x14

x15.
x16.

x17

x18.

x19

x20.

Opt

Sol ve REFI NERY USI NG NLP MAXI M ZI NG Z2;

el

up

.up

up
up
up
up

.up

up

.up
x10.
x11.

up
up
.up
up
.up
up
up
.up
up
.up
up

Refinery / all

Ecv =E=
Cv =E=

15000;
2700;
1100;
2300;
1700;
9500;
1950;
3300;
3000;
3000;
1350;
1275;
3300;
3000;
3000;
1200;
1650;
425;
1650;
150;

ions nlp =

Vpsa/ (Ep -

x1.
X2.
x3.
x4.
x5.
X6.
X7.
x8.
x9.
x10.
x11.
x12.
x13.
x14.
x15.
x16.
x17.
x18.
x19.

x20.

Es);

Vpsq =E= SQRT(Vp + Vs);

12500;
2000;
625;
1875;
1700;
6175;
1625;
2750;
2500;
3750;
1000;
1275;
1475;
2500;

1000;
1375;
425;
950;
125;
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Appendix D6: Approach 4—Risk Model IIT with Mean-Absolute Deviation (MAD)
as the Measure of Risk Imposed by the Recourse Penalty Costs

$TI TLE Approach 4: Risk Mdel Il of Two-Stage Stochastic Programm ng with Fixed Recourse
for Mnimzation of the Expected Value and the Mean-Absolute Deviation (MAD) of the
Variation in Recourse Penalty Costs

Set's
i "product type" /1*21/

s "scenarios" /1*3/
k "production shortfall and surplus or yield decrenent or increnent" /1, 2/

Tabl e pc(i,s) "price of product type i per realization j"
1

3
1 8.8 8.0 7.2
2 20. 35 18.5 16. 65
3 8.8 8.0 7.2
4 13.75 12.5 11. 25
5 15. 95 14.5 13.05
6 6.6 6 5.4
14 1.65 1.5 1.35

Table d(i,s) "demand of product type i per realization j"
1

2 3
2 2835 2700 2565
3 1155 1100 1045
4 2415 2300 2185
5 1785 1700 1615
6 9975 9500 9025

Table y(i,s) "yield of product type i per realization j"
1 2 3

3 -0. 1365 -0.13 -0.1235
4 -0. 1575 -0.15 -0. 1425
8 -0.231 -0.22 -0. 209
9 -0.21 -0.20 -0.19

10 -0. 265 -0.30 -0. 335

Table c(i,k) "penalty cost for product type i due to production shortfall or surplus"
2

1
1 55 50
2 25 20
3 17 13
4 5 4
5 6 5
6 10 8
Table q(i,k) "penalty cost for product type i due to yield decrenent or increnment"

1 2
3 5 3
4 5 4
8 5 3
9 5 3
10 5 3
Vari abl es
Z2, Ecv;
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Positive vari abl es

x1l, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20
z211, z212, z221, z222, z231, z232

z311, z312, z321, z322, z331, z332

z411, z412, z421, z422, z431, z432

z511, z512, z521, z522, z531, z532

z611, z612, z621, z622, z631, z632

y311, y312, y321, y322, y331, y332

y411l, y412, y421, y422, y431, y432

y811, y812, y821, y822, y831, y832

y911, y912, y921, y922, y931, y932
y1011, y1012, y1021, y1022, y1031, y1032
Esl, Es1l, Es2, Es21, Es3, Es31

MADs, MADs1,

Vp, Tshortfall, Tsurplus, Es, Ep

Par anet er s

p(s) probability of the realization of scenario /1 0.35, 2 0.45, 3 0.2/

Scal ar s

V1 variance of price of crude oil /0.352/

V2 variance of price of gasoline /1.882375/

V3 variance of price of naphtha /0.352/

V4 variance of price of jet fuel /0.859375/

V5 variance of price of heating oil /1.156375/
V6 variance of price of crude oil /0.198/

V14 variance of price of cracker feed /0.012375/

Equati ons

OBJ "nmaximze profit",

CON1, CON2, EQN8, EQN9, EON10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN18
EQN19

Escenari o, Escenariol, Escenarioll
Escenari 02, Escenario2l

Escenari 03, Escenari o3l

CONgas1l, CONgas2, CONgas3,

CONnapl, CONnap2, CONnap3

CONjf1l, CONjf2, CONf3

CONhol, CONho2, CONho3

CONf 01, CONfo2, CONfo3,

CONl hsnapl, CON hsnapll, CON hsnapl2
CONl hsnap2, CON hsnap21, CON hsnap22
CONl hsnap3, CON hsnap31, CON hsnap32
CON hsjf1, CON hsjfl1ll, CON hsjf12

CON hsj f2, CON hsjf21, CON hsjf22

CON hsj f3, CON hsjf31, CON hsjf32

CONl hsgol, CON hsgoll, CON hsgol2

CONl hsgo2, CON hsgo21, CON hsgo22

CONl hsgo3, CON hsgo31, CON hsgo32

CONl hscf1, CON hscfl1ll, CON hscf12

CONl hscf2, CON hscf21, CON hscf22

CONl hscf 3, CON hscf31, CON hscf32

CONl hsr1, CON hsr11l, CON hsr12

CONl hsr2, CON hsr21, CON hsr22

CONl hsr3, CON hsr31, CON hsr32
MADscenari o, MADconl, MADcon2, MADcon3
Eprofit, Vprofit, Totalshortfall, Total surplus, Ecvar

oBJ.

Z2 =e=

[p("1")*(-pc('1","1")*x1 + pc('2','21")*x2 + pc('3,"1')*x3 + pc('4',"'1')*x4 +
pc('5',"1')*x5 + pc('6',"'1")*x6 - pc('14','1")*x14)]

+ [p("2' )*(-pc('1','2")*x1 + pc('2','2")*x2 + pc('3,'2")*x3 + pc('4,'2")*x4 +
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pc('5, 2 )*x5 + pc(' 6, 2 )*x6 - pc( 14", 2 )*x14)]

+ [p("3)*(-pc('1,'3)*x1 + opc('2,'3)*x2 + pc('3,'3)*x3 + pc('4,'3)*x4
pc('5','3 )*x5 + pc(' 6,3 )*x6 - pc(' 14", 3')*x14)]

- 0.0008*Vp

- Es - 0.01*MADs;

+

Vprofit.. Vp =E= ((VI*SQR(x1)) + (V2*SQR(x2)) + (V3*SQR(x3)) + (VA*SQR(x4)) + (V5*SQR(X5))

+ (V6*SQR(x6)) + (V14*SQR(x14)));

CONL1.. x1 =L= 15000;
CON2. . x14 =L= 2500;

*EON3.. -0.13*x1 + x7 =E= 0;
*EQN4. . -0.15*x1 + x4 =E= 0;
*EON5.. -0.22*x1 + x8 =E= 0;
*EQN6. . -0.20*x1 + x9 =E= 0;
*EQN7.. -0.30*x1 + x10 =E= O;
EQN8.. -0.05*x14 + x20 =E= O0;
EQN9.. -0.40*x14 + x16 =E= 0;

EQN10.. -0.55*x14 + x17 =E= 0;
EQN11.. 0.5*x2 - x11 =E= O;
EQN12.. 0.5*x2 - x16 =E= O;
EQN13.. 0.75*x5 - x12 =E= O0;
EQN14.. 0.25*x5 - x18 =E= O0;
EOQN15.. -x7 + x3 +x11 =E= O;
EQN16.. -x8 + x12 +x13 =E= O0;
EQN17.. -x9 + x14 +x15 =E= 0;
EQN18. . -x17 + x18 +x19 =E= 0;
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0;
*CON20.. x2 =L= 2700;

*CON21.. x3 =L= 1100;

*CON22. . x4 =L= 2300;

*CON23.. x5 =L= 1700;

*CON24.. x6 =L= 9500;

*Scenario 1: Hi gh dermand

Escenariol.. Esl =E= p('1')*Esll;

Escenarioll.. Esll =E= (((c('2','1")*z211 + «c('2','2")*z212) + (c('3','1")*z311
c('3,'2")*z312) + (c(4',"1")*z411 + c('4','2")*z412) + (c('5',"1")*z511
c('5','2")*z512) + (c('6','1')*z611 + c('6','2")*z612))

+  ((g("3','"1')*y311 + qg('3','2')*y312) + (q('4','1')*y411 + q('4','2")*y412)
(q('8',"1")*y811 + q('8','2")*y812) + (g('9',"1")*y911 + q('9','2")*y912)
(q('10','1')*yl1011 + g('10','2')*y1012)));

CONgasl.. x2 + z211 - z212 =E= d('2','1
CONnapl.. x3 + z311 - z312 =E= d('3','1
CONj f1.. x4 + z411 - z412 =E= d('4','1")
CONhol.. x5 + z511 - z512 =E= d('5','1");
CONfol.. x6 + z611 - z612 =E= d('6','1")
CONl hsnapl.. y('3","1")*x1 + x7 + y311 -
CONl hsnapll.. y311 =L= 0. 1*x1;
CONl hsnap12.. y312 =L= 0. 1*x1;
CONLhsjfl.. y('"4',"1')*x1 + x4 + y41l - y412 =E= 0;
CONl hsj f11.. y411 =L=
CONl hsj f12.. y412 =L=
CONl hsgol.. y('8',"1")*x1 + x8
CONl hsgoll.. y811 =L=
CONl hsgol2.. y812 =L=
CONl hscfl1.. y('9',"1")*x1 + x9
CONl hscf11l.. y911 =L=
CONl hscf12.. y912 =L= 1*x1;
CONl hsrl1.. y('10','1")*x1 + x10 + y1011 - y1012 =E= 0;
CONl hsr11l.. y1011 =L= 0. 1*x1;
CONl hsr12.. y1012 =L= 0.1*x1;

y312 =E= O;

y811 - y812 =E= O0;

y91l - y912 =E= O0;

Co+00+00+
I
*
<
=

*Scenario 2: Medi um demand

Escenario2.. Es2 =E= p('2')*Es21;

Escenario2l.. Es21 =E= (((c('2','1")*z221 + c('2','2')*z222) + (c('3','1")*z321
c('3','2")*z322) + (c('4',"1")*z421 + c('4','2")*z422) + (c('5',"1")*z521
c('5','2")*z522) + (c('6','1')*z621 + c('6','2")*2622))

+ ((g('3,"1")*y321 + qg('3','2")*y322) + (q('4',"1)*y421 + q('4','2")*y422)
(gq('8',"1")*y821 + q('8','2")*y822) + (g('9',"1")*y921 + q('9','2")*y922)

+

+ +
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(q('10',"1')*y1021 + qg(' 10','2')*y1022)));

CONgas2.. x2 + z221 - z222 =E=d('2','2");

CONnap2.. x3 + z321 - z322 =E= d('3','2");

CONj f2.. x4 + z421 - z422 =E= d('4','2");

CONho2.. x5 + z521 - z522 =E= d('5','2");

CONf 02.. x6 + z621 - z622 =E= d('6','2");

CONl hsnap2.. y('3',"2")*x1 + x7 + y321 - y322 =E= 0;
CONl hsnap21..y321 =L= 0. 1*x1;
CONl hsnap22.. y322 =L= 0. 1*x1;

CONl hsjf2.. y('"4','2')*x1 + x4 + y421 - y422 =E= 0;
CONl hsj f21.. y421 =L= 0.1*x1;
CONl hsj f22.. y422 =L= 0.1*x1;

CONl hsgo2.. y('8',"2")*x1 + x8 + y821 - y822 =E= O;
CONl hsgo21.. y821 =L= 0. 1*x1;
CONl hsgo22.. y822 =L= 0. 1*x1;

CONl hscf2.. y('9',"2")*x1 + x9 + y921 - y922 =E= O;
CONl hscf21.. y921 =L= 0. 1*x1;
CONl hscf22.. y922 =L= 0. 1*x1;

CONl hsr2.. y('10','2")*x1 + x10 + y1021 - y1022 =E= 0;

CONl hsr21. .
CONl hsr 22. .

y1011 =L= 0. 1*x1,
y1012 =L= 0. 1*x1,

*Scenario 3:
Escenari 03. .

Low demand
Es3 =E= p('3')*Es31;

+
+

Escenario31.. Es31 =E= (((c('2',"1")*z231 + «c('2','2")*z232)
c('3,'2')*z332) + (c(4","1")*z431 + c('4','2")*z432)
c('5','2")*z532) + (c('6','1')*z631 + c('6','2")*2632))

+ ((g('3,"1')*y331 + qg('3','2")*y332) + (qg('4','1")*y431
(q('8,"1")*y831 + q('8','2")*y832) (g("9',"1")*y931
(q('10',"'1')*y1031 + g('10','2')*y1032)));

(c('3,'1')*z331
(c('5,'1')*z531

+
+

q('4','2")*y432)

+ q('9','2")*y932)

CONgas3.. x2 + z231 - z232 =E= d('2','3");

CONnap3.. x3 + z331 - 2332 =E= d('3','3");

CONj f3.. x4 + z431 - z432 =E= d('4','3");

CONho3.. x5 + z531 - z532 =E= d('5','3");

CONf 03.. x6 + z631 - z632 =E= d('6','3");

CONl hsnap3.. y('3","3")*x1 + x7 + y331 - y332 =E= 0;
CONl hsnap31..y331 =L= 0. 1*x1;
CONl hsnap32.. y332 =L= 0. 1*x1;

CONl hsjf3.. y('"4',"3 )*x1 + x4 + y431 - y432 =E= 0;
CONl hsj f31.. y431 =L= 0.1*x1;
CONl hsj f32.. y432 =L= 0.1*x1;

CONl hsgo3.. y('8',"3 )*x1 + x8 + y831 - y832 =E= O;
CONl hsgo31.. y831 =L= 0. 1*x1;
CONl hsgo32.. y832 =L= 0. 1*x1;

CONl hscf3.. y('9',"3 )*x1 + x9 + y931 - y932 =E= O;
CONl hscf31.. y931 =L= 0. 1*x1;
CONl hscf32.. y932 =L= 0. 1*x1;

CONl hsr3.. y('10','3")*x1 + x10 + y1031 - y1032 =E= 0;
CONl hsr31.. y1031 =L= 0.1*x1;
CONl hsr32.. y1032 =L= 0.1*x1;

Escenario.. Es =E= Esl + Es2 + Es3;

MADscenari o. . MADs =E= (p('1')*abs(Esll - Es)) + (p('2")*abs(Es21 - Es))

(p('3")*abs(Es31 - Es));

MADconl.. MADsl1l =G= - MADs;

MADcon2.. MADs1 =G= MADs;

MADcon3.. MADs1l =G= O;

*Vscenario.. Vs =E= (pl*SQR(Esl1ll - Es)) + (p2*SQR(Es21 - Es)) + (p3*SQR(Es31 - Es));

Eprofit.. Ep =E=

[p("1")*(-pc(" 1,7 1")*x1

+ pe('2,'1')*x2  + pc('3,'1)*x3 + pc('4,'1)*x4

pc('5','1')*x5 + pc('6','1')*x6 -
+ [p("2)*(-pc('1,"2")*x1 +
pc('5',' 2 )*x5 + pc(' 6,2 )*Xx6 -
+ [p("3)*(-pc('1,"3")*x1 +
pc('5','3 )*x5 + pc('6',' 3 )*x6 -

pc('14','1")*x14)]
pc('2',"2")*x2 +
pc('14','2")*x14)]
pc('2',"3" )*x2 +
pc('14','3")*x14)];

pc('3','2')*x3 + pc('4, 2 )*x4

pc('3','3)*x3 + pc('4,'3)*x4

Total shortfall..

Tshortfall

=E= z211 + z221 + z231 + z311] + z321 + z331 + z411 + z421

z431 + z511 + z521 + z531 + z611 + z621 + z631
+ y311 + y321 + y331 + y41l1 + y421 + y431 + y811 + y821 + y831 + y91ll + y921 + y931
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y1011 + y1021 + y1031;

Total surplus.. Tsurplus =E= z212 + z222 + z232 + z312 + z322 + z332 + z412 + z422 + z432 +
z512 + z522 + z532 + z612 + z622 + 2632

+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 +
y1012 + y1022 + y1032;

*Vpsqgrt.. Vpsq =E= SQRT(Vp + MADs);

Ecvar.. Ecv =E= Ep - Es;

Mbdel Refinery / all /;

* Starting val ues

x1.up = 15000; x1.1 = 12500;
X2.up = 2700; x2.1 = 2000;
x3.up = 1100; x3.1 = 625;

x4.up = 2300; x4.1 = 1875;
x5.up = 1700; x5.1 = 1700;
x6.up = 9500; x6.1 = 6175;
X7.up = 1950; x7.1 = 1625;
x8. up = 3300; x8.1 = 2750;
x9. up = 3000; x9.1 = 2500;
x10. up = 3000; x10.1 = 3750;
x11l.up = 1350; x11.1 = 1000;
x12.up = 1275; x12.1 = 1275;
x13.up = 3300; x13.1 = 1475;
x14.up = 3000; x14.1 = 2500;
x15. up = 3000; x15.1 = 0;

x16.up = 1200; x16.1 = 1000;
x17.up = 1650; x17.1 = 1375;
x18. up = 425; x18.1 = 425;
x19.up = 1650; x19.1 = 950;
x20.up = 150; x20.1 = 125;

Option dnlp = conopt 3;

Sol ve REFI NERY USI NG DNLP MAXI M ZI NG Z2;
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under review), 63 pages.

Brief Biographical Notes on the Author

Cheng Seong Khor is currently on study leave from a teaching position in the
PETRONAS University of Technology, the academic institution set up by PETRONAS,
the Malaysian state-owned national oil corporation, to pursue his graduate studies in the
Department of Chemical Engineering at the University of Waterloo, Ontario, Canada. His
general research interests concern the theory and application of the optimization approach
to chemical process systems engineering (PSE) problems, particularly in the hydrocarbon
industry. He holds a Bachelor in Chemical Engineering (Honours) degree from the

National University of Malaysia (Universiti Kebangsaan Malaysia).

287



