
Hurwitz Trees and Tropical Geometry

by

Garnet Jonathan Akeyr

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2015

c©Garnet Jonathan Akeyr 2015



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The lifting problem in algebraic geometry asks when a finite group G acting on a curve

defined over characteristic p > 0 lifts to characteristic 0. One object used in the study of

this problem is the Hurwitz tree, which encodes the ramification data of a group action

on a disk. In this thesis we explore the connection between Hurwitz trees and tropical

geometry. That is, we can view the Hurwitz tree as a tropical curve. After exploring

this connection we provide two examples to illustrate the connection, using objects in

tropical geometry to demonstrate when a group action fails to lift.
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Introduction

The goal of this thesis it to study the action of groups on algebraic curves defined over

fields of characteristic p > 0. Given a group acting on a curve defined over characteristic

0 we may reduce the curve to obtain a group action on a curve over characteristic p.

The lifting problem asks the opposite: If we start with a group action on a curve defined

over characteristic p, can we lift it to a group action in characteristic 0? In general this

is not true. Our approach to this problem is to establish a formal link between tropical

geometry and a combinatorial object called a Hurwitz tree. This will allow us to study

the lifting problem using tools from tropical geometry, and we demonstrate the usefulness

of this approach by providing examples of curves that fail to lift to characteristic 0.

0.0.1 Reduction of curves and lifting of curves

Let R be a ring of characteristic 0 with a maximal ideal m. We assume that k = R/m

is a field of characteristic p > 0. An algebraic curve C defined over R can be thought of

us the set of zeroes of a polynomial f(z) ∈ R[z]. We assume that we are given a finite

group G that acts on C, that is, one that maps C to itself.

By reducing the coefficients of f(z) modulo m, we end up with a curve C defined over

k. The action of G on C reduces to an action of G on the curve C.

Conversely, one may start with a curve C defined over a field k of characteristic p, along

with a group G acting on C. In the lifting problem, we ask if there exists a curve C
defined over a ring R of characteristic 0 along with an action of G on C such that the

action of G on C reduces to the action of G on C. If such a curve C exists we say

that the G action on C lifts to characteristic 0. In general this it is difficult to find

necessary and sufficient conditions on C and G in order for the group action to lift to

characteristic 0, and so most results on the lifting problem provide necessary but not

sufficient conditions.
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Introduction. 2

0.0.2 Our contributions

In this thesis we shall establish a formal connection between the Hurwitz tree obstruction

to lifting defined by Brewis [6] and vanishing functions on tropical curves defined by Katz

[17].

In his thesis, Brewis [6] defined a necessary condition that a group action of G on a curve

C over characteristic p must satisfy in order to lift to characteristic 0. This condition

states that there must exist a combinatorial object called a Hurwitz tree, and thus if

a Hurwitz tree does not exist then one may conclude the group action of G on C does

not lift. Hurwitz trees have the underlying structure of a graph in the graph-theoretic

sense, and have additional data on the leaves and edges of the graph. This data encodes

the group action of G on the lift of a curve C of C.

Katz, in his paper [17], studied the vanishing functions of elements of a ring on a tropical

curve. That is, suppose s ∈ R is an element of a ring R with a maximal ideal m. When

we reduce modulo R modulo a maximal ideal m it is possible that s reduces to 0. In

this case we say that s vanishes modulo m. Under good circumstances it is possible to

quantify the degree of vanishing of s. For example, if R = Z and m = (p) for a prime

number p, we may write an element s of R as s = pnq where p does not divide q. When

n > 0 then s vanishes modulo (p), and the degree to which it vanishes is defined to be

n.

The vanishing function of an element s as above is a function that measures the extent

to which s vanishes modulo the maximal ideals of R. It is defined on a special type of

graph called a tropical curve, which is related to the structure of the ring R.

We show that Hurwitz trees are tropical curves, and that the information on the leaves

and edges of a Hurwitz tree may be viewed as the vanishing functions of elements. By

making this formal connection, we are able to reinterpret the Hurwitz tree obstruction

from the perspective of tropical geometry. With this new perspective we then demon-

strate two examples where considering vanishing functions on tropical curves allows us

to conclude a group action on a curve fails to lift to characteristic 0.

0.1 Overview of thesis

Chapter 1 introduces the lifting problem. The first three sections are intended as back-

ground material. The reader is assumed familiar with ring and field theory, Galois

theory, and some basic commutative algebra such as modules. Section 1.1 covers rep-

resentation theory, which is fundamental to the Hurwitz tree obstruction. Section 1.2

2



Introduction. 3

covers discrete valuation rings, their completions, and Galois extensions of such rings.

Section 1.3 covers the basics of algebraic geometry, including the definition of schemes.

These sections are not intended as a complete introduction to the subjects mentioned

and many results are stated without proof.

Section 1.4 discusses automorphisms of curves, and Subsection 1.4.1 continues the theme

of automorphisms on curves and surfaces by looking at the fixed points of these auto-

morphisms. This is important to us as the fixed points will determine the structure of

the Hurwitz tree that will be attached to a group acting on a disk. In section 1.5 we

discuss the lifting problem proper. In particular, the global lifting problem of group

actions on curves will be shown to be equivalent to the local one of group actions on

power series.

Chapter 2 discusses the Hurwitz tree. Following some brief notation in Section 2.1 we

will define the Artin and depth characters associated to a finite group of automorphisms

acting on an open disk in Section 2.2. These two characters are shown to be closely

related in Theorem 2.7, which will be key for demonstrating their “piecewise-linearity”.

Hurwitz trees are defined in Section 2.3 as an object independent of a group acting on a

disk, and then in Section 2.4 we will show how any such group action has an associated

Hurwitz tree.

While Section 2.4 provides an elementary way of building a Hurwitz tree, the connection

with tropical geometry is best viewed from the point of view of semistable models. As

such, Section 2.5 will reiterate the construction of the Hurwitz tree associated with a

group action on a disk in terms of semistable models. That this alternate construction

is in fact equivalent to the one given before in Section 2.4 is shown in Section 2.6. The

way in which Hurwitz trees relate to the lifting problem will be discussed in Section 2.7.

Chapter 3 involves establishing the formal connection between the lifting problem and

tropical geometry. The elementary definitions we need from tropical geometry are given

in Section 3.1, and Section 3.2 discusses the notion of a function being piecewise linear on

a tropical curve. Section 3.3 introduces the vanishing functions of elements. These are

piecewise-linear functions that will play the role of both the Artin and depth character

on a Hurwitz tree. The connection between Hurwitz trees and tropical curves will be

formalized in Section 3.4.

We end the thesis in Chapter 4, which consists of two examples of the lifting problem.

The first example in Section 4.1 directly exploits the previous chapters connection be-

tween tropical curves and Hurwitz trees to demonstrate the failure of a group action to

lift to characteristic 0. The second example in Section 4.3 serves to illustrate a similar

purpose.

3



Chapter 1

The Lifting Problem

This chapter is focused on the lifting problem, which in turn will motivate the definition

of the Hurwitz tree in Chapter 2.

The first three sections are intended as background material. Section 1.1 covers represen-

tation theory and introduces important characters such as the augmentation character

that will appear later in the thesis in Section 2.3. Section 1.2 covers valued fields and

discrete valuation rings. The local lifting problem deals with complete discrete valu-

ation rings, and theorems such as the Cohen Structure Theorem (Theorem 1.16) and

the Weierstrass Preparation Theorem (Theorem 1.19) are fundamental to studying the

lifting problem. Section 1.3 covers the basics of algebraic geometry, such as the Spec

construction. Subsection 1.3.3 discusses the technical conditions on schemes that appear

in the thesis.

In Section 1.4 we look at automorphisms of schemes. Following this, in Subsection

1.4.1 we look at fixed points of automorphisms of rings k[[z]] and R[[z]] for k a field of

characteristic p > 0 and R a complete discrete valuation ring of characteristic 0. Lemma

1.37 and Corollary 1.38 in this section provide an important result on how a finite order

automorphism acts on the parameter z - this will be important in Section 2.4 when we

use group actions on a disk to build Hurwitz trees.

The lifting problem will be introduced in Section 1.5. We will begin by looking at the

global lifting problem involving group actions on curves, and then state a result that

shows the global problem is equivalent to the local lifting problem where groups act on

power series rings. Some elementary results on the structure of groups that can lift to

characteristic 0 are proved and and examples provided.

4



Chapter 1. The Lifting Problem 5

1.1 Representation Theory

This section serves as an introduction to representation theory. Group representations

will encode important information on how groups act on curves and surfaces, and are

integral to the study of the lifting problem. This section is not meant to serve as

a complete introduction, and no proofs will be provided. The primary source for this

section is Serre’s book Linear Representations of Finite Groups [22], especially Chapters

1, 2, and 3 of Serre’s book.

Representations are defined in Subsection 1.1.1. Subsection 1.1.2 introduce characters

of representations.

Finally, scalar products of characters are defined in Subsection 1.1.3. The augmentation

character is defined, which will play a crucial role in Section 2.3 in Chapter 2, where

Hurwitz trees are defined.

1.1.1 Group representations

Let V be a vector space over C. We assume V has finite dimension n over C. The

general linear group GL(V ) of V is the set of all invertible linear maps from V to itself.

By fixing a basis of V over K we may write any element of GL(V ) as an invertible n×n
matrix with coefficients in K.

Definition 1.1.1. A representation of a finite group G in V is a group homomorphism

φ : G→ GL(V ).

Thus for σ ∈ G, φ(σ) ∈ GL(V ), and if v ∈ V then φ(σ) acts on v as φ(σ)(v). When φ

is understood we will simply write σ(v) to denote the action of φ(σ) on v ∈ V .

The degree of a representation of G in V is the dimension of V over C.

Definition 1.1.2. Let φ and φ′ be two representations of G in vector spaces V and

V ′, respectively. We say that φ is isomorphic to φ′ if there exists a linear isomorphism

ρ : V → V ′ such that for all σ ∈ G

ρ ◦ φ(σ) = φ′(σ) ◦ ρ.

Remark 1.1. In particular, if φ and φ′ are isomorphic representations ofG then the degree

of φ is the same as the degree of φ′. One can show isomorphism of representations defines

an equivalence class of representations.

5



Chapter 1. The Lifting Problem 6

Example 1.1. The identity representation for any finite group G is the homomorphism

φ : G→ GL(C) defined by sending every σ ∈ G to 1 ∈ C. Its degree is 1.

Example 1.2. Let G be a finite group of cardinality |G|. Let V be the dimension |G|
vector space over C with basis eσ as σ ranges over all the elements of G.

Define ρ : G→ GL(V ) by sending τ ∈ G to the element of GL(V ) that sends eσ to eτσ,

then extending it C-linearly. This representation is called the regular representation of

G.

Example 1.3. Recall that given two vector spaces V and V ′ of dimensions n and m

over C, we may define the direct sum vector space V ⊕ V ′ of dimension nm over C.

Elements in this vector space are of the form v ⊕ v′ for v ∈ V and v′ ∈ V ′, and C acts

via x(v ⊕ v′) = (xv)⊕ (xv′) for all x ∈ C.

Let φ and φ′ be any representations of G in V and V ′, respectively. Then we may define

a new representation of G in V ⊕ V ′ by sending σ ∈ G to φ(σ) ⊕ φ′(σ), which acts on

an element v ⊕ v′ as (φ(σ)⊕ φ′(σ))(v ⊕ v′) = φ(g)(v)⊕ φ′(g)(v′).

Let W ⊂ V be a subspace of a vector space V for which we have a representation of G

in.

Definition 1.1.3. A subspace W ⊂ V is said to be stable under G if for all σ ∈ G and

for all w ∈W , σ(w) ∈W .

Remark 1.2. Trivially, one finds that W is stable under G if W = {0} or W = V .

Definition 1.1.4. A representation ρ of G in V is said to be an irreducible representation

of G if the only subspaces of V stable under G are {0} and V .

Remark 1.3. Notably, any representation of G of degree 1 is irreducible, such as the

trivial representation.

Example 1.4. Let φ and φ′ be any two representations of G in V and V ′, respectively.

As in Example 1.3 we may define the representation φ⊕ φ′ of G in V ⊕ V ′. Then both

of V ⊕{0} ⊂ V ⊕V ′ and {0}⊕V ′ ⊂ V ⊕V ′ are subspaces of V ⊕V ′, and both are stable

under G.

Example 1.4 shows that direct sum representations of the type in Example 1.3 are never

irreducible. In fact, we have the following result:

Theorem 1.4 (Theorem 8 of Serre [22]). Let φ be any representation of G. Then φ is

isomorphic to the direct sum of irreducible representations of G, and this decomposition

of φ is unique up to isomorphism.

6



Chapter 1. The Lifting Problem 7

Thus the irreducible representations of G determine all the representations of G. As we

will see in the following subsections, there are only finitely many irreducible representa-

tions of a finite group G.

We conclude this subsection by looking at induced representations, which allow us to

find representations of G given a representation of a subgroup of G.

Definition 1.1.5. Let φ : G→ GL(V ) be a representation of G, and for a subgroup H

of G let φH be the restriction of φ to H. Let W ⊂ V be a subspace of V stable under

H, W 6= {0}. Then ρ : H →W is a representation defined by ρ = φH acting on W .

Note that if σ ∈ G is any element, the subspace φ(σ)(W ) ⊂ V depends only on the left

coset σH of σ, as if τ ∈ H, then φ(τ)(W ) = W and so φ(στ)(W ) = φ(σ)(W ).

Let σ ∈ G be a set of representatives of the left cosets of H in G, and let Wσ = φ(σ)(W )

be as above. As the Wσ are permuted amongst themselves by elements of G, their sum∑
σ∈G/HWσ is a stable subspace of V .

We say that φ is induced by ρ if V =
⊕

σ∈G/HWσ.

The following theorem allows us to start with a representation of a subgroup H of G

and obtain a unique induced representation.

Theorem 1.5 (Theorem 11 of Serre [22]). Let H be a subgroup of G. Let ρ be a

representation of H in W . Then there exists a representation φ of G in a vector space

V containing W that is induced by ρ, and it is unique up to isomorphism.

1.1.2 Characters

Let M = (aij) be an n× n matrix over a field K. Recall that the trace Tr(M) of M is

the sum of the entries along its diagonal, i.e. Tr(M) =
∑n

i=1 aii. If V is a vector space

and M is a linear transformation from V to itself, we may then define the trace of M by

expressing M in matrix form and taking the usual trace. This definition can be shown

to be independent of the basis of V .

Definition 1.1.6. Let φ : G → GL(V ) be a representation of G in V . We define the

character of φ, χφ : G→ C∗, via

χφ(σ) = Tr(φ(σ)).

Example 1.5. Let φ be the trivial character of G. Then the character of φ, denoted

1G, takes value 1G(σ) = 1 for all σ ∈ G. Indeed, ρ(σ) is the identity element of GL(C),

and in any basis has matrix representation [1].

7



Chapter 1. The Lifting Problem 8

Example 1.6. Let φ be the regular representation of G from Example 1.2. Then the

character of φ, denoted rG, takes value |G| on 1 and 0 on any nontrivial element of G.

Indeed, φ(1) is the identity element of GL(V ), and the dimension of GL(V ) is |G| whence

rG(1) = |G|.

Let σ 6= 1 be an element of G. Then σ acts on any basis element eτ of V via σ(eτ ) = eστ .

By assumption on σ, this is not equal to eτ , and so in the matrix representation of σ all

the diagonal entries are 0. Thus rG(σ) = 0 for all σ 6= 1 in G for any representation φ

of G.

Remark 1.6. The above example illustrates a more general result, namely that χφ(1) = n

where n is the degree of the representation.

The next theorem allows us to find the character of an induced representation (see

Definition 1.1.5 for the definition of induced representation).

To state it we first make a definition.

Definition 1.1.7. Let f : H → R be a map defined on a subgroup H of G to a ring R.

We define the extension by 0 of f from H to G, denoted by f̂ , via

f̂(σ) =

f(σ) if σ ∈ H

0 if σ ∈ G \H.

Theorem 1.7 (Theorem 12 of Serre [22]). Let H be a subgroup of G, and let φ be a

representation of G induced by a representation ρ of H. Fix any system of representatives

{τ} of G/H. Then

χφ(σ) =
∑

τ∈G/H

χ̂ρ(τστ
−1) =

1

|H|
∑
τ∈G

χ̂ρ(τστ
−1).

This theorem will be used repeatedly when discussing Hurwitz trees in Chapter 2.

1.1.3 Scalar products of characters

Definition 1.1.8. Given any two representations φ and φ′ of G, we define the scalar

product between their characters as

〈χφ, χφ′〉G =
1

|G|
∑
g∈G

χφ(g)χφ′(g),

where χφ′(g) is the conjugate of χφ′(g) in C.

8



Chapter 1. The Lifting Problem 9

The following theorem gives us orthonormality relations on the irreducible characters of

G.

Theorem 1.8 (Theorem 3 of Serre [22]). Let φ and φ′ be two irreducible representations

of G. Then

〈

χφ, χφ′〉G =

1 if φ ∼= φ′

0 if φ 6∼= φ′.

From this theorem we obtain a number of corollaries that will be of use to us.

Corollary 1.9. • Two representations of G are isomorphic if and only if their char-

acters are the same.

• The regular representation of G is isomorphic to the direct sum of every irreducible

character of G, each with multiplicity the degree of the representation.

• There are only finitely many irreducible representations of G.

We now introduced a character for any group G that will prove key in Chapter 2 when

defining Hurwitz trees.

Let uG : G→ C be the function defined by

uG(σ) = rG(σ)− 1G(σ)

for all σ ∈ G, where rG and 1G are the characters of the regular and trivial represen-

tation of G, respectively. Then by the Corollary 1.9 we see that uG is a character of a

representation of G, and that it takes value −1 on nontrivial elements of G and |G| − 1

on the identity element.

Definition 1.10. The character uG of G defined above is the augmentation character

of G.

9



Chapter 1. The Lifting Problem 10

1.2 Valuation Rings

The local lifting problem looks at group actions on discrete valuation rings. As such,

these rings are of vital importance to this thesis, and this section serves as an introduction

to them.

Valuations and discrete valuation rings are defined in Subsection 1.2.1, and the associated

topology given by the valuation is discussed in Subsection 1.2.1.1. Notably, the ability

to view a discrete valuation ring as a unit disk will be used repeatedly in Section 2.5 of

Chapter 2.

In Section 1.2.2 we discuss completions of discrete valuation rings. Two key structure

theorems are the Cohen Structure Theorem (1.16) and the Weierstrass Preparation

Theorem (1.19). Complete discrete valuation rings are the type considered throughout

this thesis, and thus the structure theorems will be used throughout

Galois extensions of complete discrete valuation rings are discussed in Subsection 1.2.3.

This is important as it will form the basis of our understanding of automorphisms of

curves and surfaces in Section 1.4. Ramification (Subsection 1.2.3.1) and Witt vectors

(Subsection 1.2.3.2) are important in the local lifting problem. The former will give

meaning to both the depth and Artin character of a group acting on an open disk in

Section 2.2, and the latter is an important part of the statement of the local lifting

problem in Section 1.5.

There are many excellent introductory texts to the subjects in this section. We will

draw primarily on Serre’s book Local Fields [23] as well as Chapters 1 and 2 of Cassels

and Fröhlich’s book Algebraic Number Theory [1].

1.2.1 Valued fields and discrete valuation rings

The local lifting problem, to be discussed in Section 1.5, involves group actions on

discrete valuation rings, which we will define in this section. Before that we will discuss

valued fields.

Definition 1.2.1. A totally ordered abelian group (Γ,≥) is an abelian group Γ along

with a binary relation ≥ on Γ that satisfies

1. If x ≥ y and x ≥ y then x = y;

2. If x ≥ y and y ≥ z then x ≥ z;

3. For any elements x and y of Γ, we have x ≥ y or y ≥ x.

10



Chapter 1. The Lifting Problem 11

Remark 1.11. Given any set Γ and a binary relation ≥ on Γ that satisfies the above

three criteria, ≥ is said to be a total order on Γ. If ≥ only satisfies the first two criteria

then it is said to be a partial order.

Example 1.7. Consider (Z,≥) where ≥ is the usual total order on Z. Then (Z,≥) is

a totally ordered abelian group.

Definition 1.2.2. Let K be a field, K∗ the multiplicative group of K and a map

val : K → (Γ,≥)∪ {∞} from K∗ to a totally ordered abelian group (Γ,≥) that satisfies

1. For x ∈ K, val(x) =∞ if and only if x = 0;

2. Given x and y in K, val(xy) = val(x) + val(y);

3. val(x+ y) ≥ min{val(x), val(y)} with equality if val(x) 6= val(y).

Then (K, val) is said to be a valued field with val the valuation.

Remark 1.12. The type of valuation defined above is a non-Archimedean valuation, which

is the only type of interest to us. For Archimedean valuations the third requirement in

the above definition is different.

Definition 1.2.3. Let (K, val) be a valued field. The ring R = {x ∈ K|val(x) ≥ 0} is

the valuation ring of K with respect to val. The set m = {x ∈ K|val(x) > 0} is the

maximal ideal of val and it is a prime ideal of R. The field k = R/m is the residue field

of val.

We are especially interested in the case where Γ is a discrete subgroup of R, such as Z,

and ≥ is the natural total order on Γ. In this case the valuation is said to be discrete, R

is a discrete valuation ring, and K is a discrete valuation field. Equivalently, a discrete

valuation ring may be defined as follows.

Definition 1.2.4. A discrete valuation ring is a ring R that is a principal ideal domain

with a unique non-zero prime ideal (π) and field of fractions K. The element π is referred

to as the uniformizer of R, and the field R/(π) is the residue field of R.

Remark 1.13. The following hold true in discrete valuation rings:

• If u ∈ R \ (π), then u is a unit of R.

• Any element of R may be written uniquely as uπn for n ∈ Z≥0 and u a unit.

• If K is the fraction field of R, any element of K may be written uniquely as uπn

for n ∈ Z and u a unit in R.

11
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• Any non-zero ideal I of R is of the form (πn) for some n ∈ Z≥1

Let x be an element of K, and write x = uπn. Define a function valπ : K∗ → Z by

valπ(uπn) = n. This is a surjective homomorphism between K∗ and Z that satisfies

valπ(x+ y) ≥ min(valπ(x), valπ(y)) with equality if valπ(a) 6= valπ(b). We set valπ(0) =

∞. It is clear from this definition of valπ that R is a discrete valuation ring as initially

defined. Conversely, the valuation ring of a valued field where the valuation is discrete

can be shown to be a discrete valuation ring as in Definition 1.2.4.

Example 1.8. Let R = Z(p), the localization of Z at a prime number p. This is a

principal ideal domain with unique non-zero prime ideal (p), and any element in R may

be written uniquely as upn for u = a
b ∈ Q with p 6 |a, b.

The residue field of Z(p) is k = Fp. The discrete valuation valp on R = Q is valp(x) = n

where n is the largest power of p dividing x.

Example 1.9. Let k be any field, and let k[[z]] be the ring of formal power series over k

in parameter z. This is a discrete valuation ring whose maximal ideal is (z) and residue

field is k. Given any element f(z) ∈ k[[z]] we may write f(z) = u(z)zn where z 6 |u(z)

and n ∈ Z≥0.

This example of a discrete valuation ring will arise frequently in this thesis. To distin-

guish the discrete valuation on such a ring from other valuations, we will denote the

discrete valuation ordz. Thus ordz(u(z)zn) = n.

1.2.1.1 The topology associated to a discrete valuation

Let R be a discrete valuation ring with uniformizer π. There is a natural topology on

K that arises from the discrete valuation valπ. Namely, the basis open sets are defined

to be sets of the form Ya,ε = {x ∈ K|valπ(x− a) > ε} for a fixed element a ∈ K and ε a

real number. One can show that open and closed sets coincide under this topology.

This topology is referred to as the π-adic topology on K. The homomorphism R×R→ R

defined by (x, y) → x − y is continuous with respect to this topology. Such an abelian

groupG (or a ringR in our case) with a topology for which the map sending (x, y)→ x−y
is continuous is referred to as a topological group.

In particular, the valuation ring R is the disk {x ∈ K|valπ ≥ 0}.

It is possible to associate to a discrete valuation a multiplicative valuation |−| : K → R≥0

by sending x ∈ K to |x| = e−valπ(x) where e is a fixed real number greater than 1. In this

case, R may be viewed as the set {x ∈ K||x| ≤ 1}. For this reason R is often referred

12
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to as the unit disk. Beyond this terminology we will not make use of multiplicative

valuations and instead work with discrete valuations as previously defined.

1.2.2 Completions of Discrete Valuation Rings

The local lifting problem, stated in Section 1.5, forces us to consider discrete valuation

rings that are complete with respect to the induced topology. The structure of complete

discrete valuation rings of the type we are interested in, as well as other necessary facts

on them, will be covered in this subsection.

Let R be a discrete valuation ring with uniformizer π. Let (xn)n be a sequence of

elements in K. We say that this sequence converges to a limit x ∈ K if for every n ∈ Z
there exists some m0 ∈ Z such that x − xm ∈ (π)n whenever m ≥ m0. Limits are

unique if they exist. We now define what it means for a discrete valuation field K to be

complete.

Definition 1.2.5. A sequence (xn)n of elements in a discrete valuation field K is said

to be Cauchy if for all n ∈ Z there exists some m0 ∈ Z for which

valπxm − xm0 ∈ (πn) whenever m ≥ m0.

Equivalently, valπ(xm − xm0) ≥ n whenever m ≥ m0. If every Cauchy sequence of

elements in K has a limit in K, we say that K is complete with respect to the valuation

valπ.

Remark 1.14. If K is complete, than any power series in the uniformizer π with coeffi-

cients units of R is Cauchy, and so converges to a limit. In fact, the Cohen Structure

Theorem 1.16 will show any element of K is of this form.

Definition 1.2.6. Let K be a discrete valuation field. The completion of K with respect

to valπ is a complete discrete valuation field K̄ along with a continuous homomorphism

φ of K into K̄ such that any other homomorphism of K into a complete valued field

factors uniquely through φ.

Proposition 1.15 (Chapter 2.5 of Cassels and Frölich [1]). Let K be a discrete valuation

field with valuation valπ. Then the completion K̄ of K exists, extends the valuation on

K, and is unique up to unique isomorphism.

The construction of the completion of a discrete valuation field K is as follows: Let A be

the ring of all Cauchy sequences of elements in K, where addition and multiplication are

defined entry-wise. A Cauchy sequence that converges to 0 is said to be a nullsequence,

13
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and one shows that the set all of nullsequences forms a maximal ideal m of A. Let

K̄ = A/m.

The map φ : K → K̄ sends x ∈ K to the constant sequence (x)n, where every entry

is x. The valuation on K̄ is again denoted by valπ and is defined by valπ((xn)n) =

limn→∞valπ(xn), which exists by the assumption (xn)n is Cauchy.

Example 1.10. Recall that Z(p), the localization of Z at (p), is a discrete valuation ring

with uniformizer p. To construct the completion of Q with respect to the valuation valp,

we let A be the set of all Cauchy sequences, i.e. sequences (an)n in Q such that for any

n ∈ Z there exists some m0 with pn|(am − am0) whenever m > m0.

After modding out by the nullsequences, we obtain the field Qp, which we refer to as the

p-adic numbers. Any element of Qp may be expressed as

∞∑
i=n0

aip
i,

where ai ∈ Fp, the prime field of characteristic p, and n0 ∈ Z. The valuation ring of Qp

is Zp, the p-adic integers, with maximal ideal (p). Note that Zp/(p) ∼= Z(p)/(p) = Fp.

Example 1.11. Let k be any field, and let k[t] be the ring of polynomials in variable

t over k. Given any maximal ideal (t − a) of k[t], we may localize k[t] at this to get

k[t](t−a). This is a discrete valuation ring with field of fractions k(t) and valuation ordz,

where ordz(f(t)) is the largest power of (t− a) dividing f(t).

The completion of k(t) with respect to this valuation yields the field k((z)) with valuation

ring k[[z]], z = (t− a). Thus any element of the completion of k[t] may be expressed as

a power series in z over k.

1.2.2.1 The Cohen Structure Theorem

We will state the Cohen Structure Theorem, which will allow us to express any element

of a complete discrete valuation field as a power series in the uniformizer π. The version

we state assumes that R, the valuation ring, is a discrete valuation ring, but more general

versions exist. See, for example, Singh’s notes [26].

Theorem 1.16 (The Cohen Structure Theorem). Let R be a complete discrete valuation

ring with uniformizer π and residue field k. Let A be a system of representatives of k in

R. Then we may write any element x of R as

x =

∞∑
i=0

aiπ
i,

14
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where ai ∈ A for all i. In the case that the characteristic of R and k are the same, then

we have R ∼= k[[z]].

1.2.2.2 Hensel’s Lemma

Hensel’s lemma will be important when discussing the construction of Hurwitz trees

from semistable models in Chapter 2, especially when discussing the reduction map of

a model to its special fiber in Section 2.5.

Theorem 1.17 (Hensel’s Lemma, Chapter 2 Theorem 4.6 of Neukirch [20]). Let R be

a complete discrete valuation ring with uniformizer π and residue field k. Let f(z) be

a polynomial in R[z], and let f̄(z) be the image of f(z) in k[z] = R[z]/(π). Assume

f̄(z) 6= 0. If ā ∈ k is a root of f̄(z) of multiplicity 1, then there is a unique root a ∈ R
of f(z) of multiplicity 1 such that a (mod π) = ā.

That is, we are able to lift roots of multiplicity 1 of a polynomial in k[z] to roots of a

polynomial in R[z].

Remark 1.18. The assumption that R is complete can be relaxed to the condition that

R is Henselian, which is weaker than complete. Notably, a discrete valuation ring is

Henselian if and only if it satisfies Hensel’s lemma.

Example 1.12. Suppose we would like to know whether or not the polynomial z3+3z−7

is irreducible in Z7, the 7-adic integers. The image of this polynomial in F7[z] is then

z3 +3z = z(z2 +3), and by inspection we find that 0, 2, and 5 are roots of this polynomial

in F7 with multiplicity 1. By Hensel’s lemma we conclude that z3 +3z−7 splits in Z7[z].

1.2.2.3 The Weierstrass Preparation Theorem

We conclude this subsection by looking at the Weierstrass Preparation Theorem. This

theorem will prove key when looking at the lifting problem, as we will very often be

working with rings of the form R[[z]] where R is a characteristic 0 complete discrete

valuation ring whose residue field is a field k of characteristic p > 0. We state it here

from Elliot [11].

Theorem 1.19. Let f(z) =
∑
anz

n ∈ R[[z]] be a power series over a complete discrete

valuation ring R with uniformizer π. Let N be the number defined by N = min{n ≥ 0 :

valπ(al) ≥ valπ(an)∀l}. Then there exists a polynomial

g(z) = b0 + · · ·+ bnz
N ∈ R[z]

15
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and a unit

u(z) = 1 + c1z + · · · ∈ R[[z]]

such that f(z) = aNg(z)u(z). The zeros of f(z) are exactly those of g(z).

The polynomial g(z) in the Weierstrass Preparation Theorem is the Weierstrass poly-

nomial of f(z).

Example 1.13. Let R be any complete discrete valuation ring of characteristic 0. Let

σ be a finite order R-linear automorphism of R[[z]] - that is, σ is an invertible R-linear

homomorphism from R[[z]] to itself. Then σz ∈ R[[z]], and we may write

σz − z = amσfmσ(z)u(z),

where mσ = min{n ≥ 0 : valπ(al) ≥ valπ(an)∀l} and fmσ is the Weierstrass polynomial

of degree mσ.

1.2.3 Galois extensions of discrete valuation fields

The goal of this subsection is to discuss ramification in extensions of discrete valuation

fields. First we recall the definition of a Dedekind domain.

Definition 1.2.7. Let R be a Noetherian integral domain. Then R is said to be a

Dedekind domain if for every non-zero prime ideal p of R, Rp is a discrete valuation

ring.

Example 1.14. We claim that Z is a Dedekind domain. Indeed, the non-zero prime

ideals are of the form (p) for a prime number p by the fact Z is a unique factorization

domain. From the previous subsections we know that Z(p) is a discrete valuation ring,

and so it follows that Z is a Dedekind domain.

Dedekind domains may not have unique factorization of their elements, however, the

ideals of a Dedekind domain do factor uniquely into prime ideals.

Proposition 1.20 (Chapter 1 Proposition 2.2 of Cassels and Frölich [1]). Let R be a

Dedekind domain. Then if I is any ideal of R, I factors uniquely as βn1
1 . . . βnrr where

the βk’s are prime ideals and ni ≥ 1.

When looking at finite field extensions, we will be interested in the integral closure of

rings. We define this here.
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Definition 1.2.8. Let R ⊂ K be a subring of a field K. An element a ∈ K is said to

be integral over R if a is the root of a monic polynomial f(z) ∈ R[z], where a monic

polynomial is one of the form xn +xn−1x
n1 + . . .+a0. If R ⊂ A is a subring of a ring A,

then A is said to be an integral extension of R is every element of A is integral over R.

Remark 1.21. Elements being integral over a ring R is a property preserved under addi-

tion and multiplication. Thus if R ⊂ K and L/K is a field extension, than the integral

closure of R in L is the largest subring of L integral over R.

Example 1.15. Let K = Q with subring Z, and let L = Q(i) be the Gaussian numbers.

Let Z[i] be the Gaussian integers, which is the set {x ∈ C|x = a+bi, a, b ∈ Z}. Note that

i is integral over Z with minimal polynomial f(z) = z2 − 1. Thus, by the above remark,

Z[i] is integral over Z, and in fact one may show that it is the integral closure of Z in

Q(i). A subring R in a field K is said to be integrally closed in K if whenever x ∈ K is

integral over R, we have x ∈ R.

Let R be a discrete valuation ring with fraction field K and uniformizer π. Let L/K

be a finite Galois field extension. Then the integral closure A of R in L is a finitely

generated R module, and furthermore A is a Dedekind domain.

Definition 1.2.9. Let β ⊂ A be a non-zero prime ideal such that β ∩ R = (π). Then

we will say that β divides π. Equivalently, (π)A ⊂ β.

Because A is a Dedekind domain, (π)A factors uniquely into a product of ideals. Let

eβ be the exponent of β in this decomposition. It is a positive integer referred to as the

ramification exponent of β in L/K. Thus,

(π)A = Πβ|(π)β
eβ .

Finally, note that R/(π) ⊂ A/β is a finite field extension. It’s degree fβ is the residue

field degree of β over (π).

Example 1.16. We return to looking at Q(i)/Q. In Q we will consider the subring

Q(2). Note that 2 = (1 + i)(1− i) in Z[i]. In fact, (1 + i) and (1− i) are the same prime

ideals in Z[i]. The integral closure of Z(2) in Q(i) can be shown to be Z[i](1+i), and by

definition of the ramification index we find e(1+i) = 2. Similarly, the residue fields are

found to be the same, and so f(1+i) = 1.

The following result places a strong constraint on the residue field degrees and ramifi-

cation exponents.
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Proposition 1.22 (Chapter 2 Proposition 10.1 of Cassels and Frölich [1]). Let L/K be

a Galois field extension of degree n, where K is a discrete valuation field with valuation

ring R and uniformizer π. Then

n =
∑
β|(π)

eβfβ.

In particular there are a finite number of ideals that divide (π).

An extension as in the proposition is said to be totally ramified if there is a prime ideal

β|(π) of A such that eβ = n. Thus, the above proposition ensures us that β is the only

prime dividing (π) and that the residue fields are the same.

An extension as in the proposition is said to be unramified if eβ = 1 for all β|(π) and

all the residue field extensions are separable.

1.2.3.1 Ramification over complete discrete valuation rings

We restrict our attention to complete discrete valuation rings R. If L/K is a finite Galois

field extension as before, the following theorem ensures us there is only one prime β|(π).

Theorem 1.23. [Chapter 2 Theorem 4.8 of Neukirch [20]] Let K be a field complete

with respect to a discrete valuation valπ with valuation ring R. Let L/K be a finite

Galois field extension. Then the integral closure of R in L, denoted by A, is again a

discrete valuation ring, and L is complete with respect to the topology defined by A.

Definition 1.2.10. Let R be a discrete valuation ring with maximal ideal (π), and

suppose R is contained in a discrete valuation ring A with maximal ideal m. We say

that A dominates R if m ∩R = (π).

Remark 1.24. Thus in the situation of Theorem 1.23 we see that A dominates R.

Let L/K be a finite Galois extension. We will assume henceforth that the residue field

extension is separable. There exists an element x ∈ A such that x generates A as an

R-algebra. Let valπ be the valuation on K, and valL the valuation on L. As we only

have one prime above (π), let e and f denote the ramification index and residue field

degree, respectively. We will define the ramification groups as in Chapter IV of Serre

[23].

Definition 1.2.11. Let iG : Gal(L/K)→ A be the function defined by

iG(σ) = valL(σ(x)− x).

18
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We define the ramification groups Gi of Gal(L/K) by

iG(σ) ≥ i+ 1 ⇐⇒ σ ∈ Gi.

The first ramification group is called the inertia group. It is the largest subgroup of

Gal(L/K) that acts trivially on the residue field of L.

One may show that iG satisfies iG(τστ−1) = iG(σ), so that it is constant on conjugacy

classes of G. From this we may define a character on G.

Definition 1.2.12. The Artin character of G is the character aG of G defined by

aG(σ) = −fiG(σ)

whenever σ 6= 1, and aG(1) = −
∑

σ 6=1 aG(σ) otherwise.

That this is a character is shown in Serre [23]. This character will be of importance in

discussing the lifting problem.

Consider the following case of field extensions: R will be equal to k[[z]], where k is a

field of characteristic p > 0. The valuation on R is then ordz. Let G be a finite group of

k-linear automorphisms. The fixed field of k((z)) under the action of G is itself a discrete

valuation field, and as G is k-linear the residue fields of both discrete valuation rings

are k. Thus k((z))/k((z))G is a totally ramified extension, and we have the following

theorem.

Theorem 1.25. G is isomorphic to the semidirect product of a p-group P and a cyclic

group C of order prime to p, i.e. G ∼= P o C.

Groups as in the above theorem are referred to as cyclic-by-p groups.

Proof. Our proof will follow that in Chapter IV of Serre [23]. Denote by U0 the group

of invertible elements of k[[z]], and for i ≥ 1, U i = 1 + (zi) = {a ∈ k[[z]]|a = 1 + zib, b ∈
k[[z]]}. It is straightforward to show that

U0/U1 ∼= k∗ and U i/U i+1 ∼= k,

where i ≥ 1, and where k∗ and k refer to the multiplicative and additive groups of the

residue field, respectively.
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Define a map from Gi/Gi+1 to U i/U i+1 that takes σ ∈ Gi to σ(z)/z. This map defines

an isomorphism of Gi/Gi+1 onto a subgroup of U i/U i+1, and thus G0/G1 is a finite

subgroup of the roots of unity of k and so is a cyclic group of order prime to p.

When i ≥ 1, Gi/Gi+1 is a subgroup of k and so is a vector space over Fp, whence it is a

direct sum of cyclic groups of order p. It follows that G1 is a p-group.

To finish the proof we will show that there is a subgroup H of G0 that maps isomorphi-

cally onto G0/G1.

Let σ ∈ G map to a generator of G0/G1, and let N be an integer so that pN ≡ 1

(mod |G0/G1|), which is possible as (|G0/G1|, p) = 1. We may assume pN > |G1|.
Let h = σp

N
. Then h has order dividing |G0/G1| by construction, but also maps to a

generator of |G0/G1| and so (h) = G0/G1. This completes the proof.

1.2.3.2 Witt vectors

Let k be a perfect field of characteristic p > 0. We would like to find a complete discrete

valuation ring R of characteristic 0 with uniformizer π whose residue field is k.

Suppose such an R exists. Let valπ be the valuation on R. Let e = valπ(p). As p

(mod π) = 0, e is a positive integer, and we call it the absolute ramification index of R.

R is said to be absolutely unramified if e = 1, whence p may be taken as its parameter.

The following theorem tells us such an absolutely unramified ring exists for the field k.

Theorem 1.26 (Chapter III Theorem 3 of Serre [23]). If k is a perfect field of char-

acteristic p > 0, there exists an absolutely unramified complete discrete valuation ring

W (k) of characteristic 0 with residue field k that is unique up to unique isomorphism.

This ring is called the Witt vectors of k. Suppose R is some other complete discrete

valuation ring with residue field k and absolute ramification index e. Then there exists

a unique homomorphism of W (k) into R that commutes with the quotient maps to k,

and such that R is a free W (k)-moduloe of rank e.

Example 1.17. Let k = Fp. Then W (k) = Zp, the ring of p-adic integers. Indeed,

Zp is defined as the completion of the Z with respect to val(p), and so it is absolutely

unramified with residue field equal to Fp.
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1.3 The rudiments of algebraic geometry

This section covers elementary facts from algebraic geometry. We will define schemes

and in particular algebraic curves, which are the focus of the global lifting problem. The

definitions and constructions in this section closely follow those in Chapter 2 of Liu’s

book Algebraic Geometry and Arithmetic Curves [19].

Throughout this section, let R be a commutative ring with unity. Though the construc-

tions in this section do not require R to be Noetherian unless stated explicitly, all of the

rings considered in this thesis are Noetherian.

Subsection 1.3.1 defines the spectrum of a ring, as well as the underlying topology of

this set. The local lifting problem deals with the spectra of affine schemes, and so the

definitions here will be seen frequently throughout the thesis.

Subsection 1.3.2 aims to provide an accessible definition of schemes. This first involves

defining sheaves and locally ringed spaces in 1.3.2.1, and the definition of schemes follows

in 1.3.2.2.

Finally, in Subsection 1.3.3, we look at various conditions on schemes that arise through-

out the thesis. Many of these conditions, such as regular, are defined. These are impor-

tant as they allow us to provide explicit descriptions of the completions of the local rings

of smooth curves, which arise in the Local to Global Principle (Theorem 1.39) in Section

1.5. Other, more technical conditions such as mentioned, with the key point being that

all the schemes considered in the local lifting problem will satisfy these conditions.

1.3.1 Spec of a ring

We begin by defining the underlying set of an affine scheme.

Definition 1.3.1. Let R be a ring. We define the spectrum of R, Spec(R), to be the

set of all prime ideals.

This is made into a topological space as follows: For any ideal I of R, let V (I) = {p ∈
Spec(R)|I ⊂ p}. For any element f ∈ R, let D(f) = Spec(R)\V ((f)). Then the Zariski

topology on Spec(R) is the topology whose closed sets are sets of the form V (I) for an

ideal I, and the sets D(f) constitute a basis of open sets.

Example 1.18. Let K be a field. Then Spec(K) consists of one point corresponding to

the ideal (0), which is both open and closed in the Zariski topology.
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Example 1.19. Let R = Z. Then Spec(R) consists of all prime ideals (p) for p a prime

number, as well as the zero ideal. The closed points are of the form (p), and basic open

sets are of the form Spec(R) \ {(p1), . . . , (pk)} for a finite number of primes p1, . . . , pk.

Let φ# : A→ R be a ring homomorphism. Let p ∈ Spec(R) be a prime ideal, and note

that (φ#)−1(p) = {x ∈ A|φ(x) ∈ p} is a prime ideal of A. Let φ : Spec(R) → Spec(A)

be the map defined by φ(p) = (φ#)−1(p). This will be important for Lemma 1.30.

1.3.2 The definition of schemes

1.3.2.1 Sheaves

Sheaves are a fundamental notion in algebraic geometry, and are key to understanding

the local structure of algebraic curves. We start by defining presheaves.

Definition 1.3.2. Let Y be a topological space. A presheaf of abelian groups on Y ,

denoted by OY , consists of the following data:

• For every open set U ⊂ Y , an abelian group OY (U);

• For any pair of open sets U ⊂ V , a restriction homomorphism of abelian groups

φV U : OY (V )→ OY (U).

Furthermore, this data must satisfy

• OY (∅) = 0;

• φUU = idU for any open set U ⊂ Y ;

• For open sets U ⊂ V ⊂W , we have φWU = φV U ◦ φWV .

Remark 1.27. More generally, one may define presheafs of rings or other algebraic ob-

jects.

Definition 1.3.3. Let OY be a presheaf on Y . An element s ∈ OY (U) is a section of

OY over U .

If U ⊂ V and s ∈ OY (V ), the image of s under φV U is the restriction of s to U , denoted

s|U

Definition 1.3.4. Let OY be a presheaf on Y . We say that OY is a sheaf if it satisfies
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• If U ⊂ Y is open and has a covering by open sets {Ui}i, and if s ∈ OY (U) satisfies

s|Ui = 0 for all i, then s = 0.

• Suppose for every Ui in an open cover of U , we have a section si ∈ OY (Ui), and

these satisfy si|Ui∩Uj = sj |Ui∩Uj . Then there exists a section s ∈ OY (U) such that

s|Ui = si for all i.

Example 1.20. Let Y = R2 be the real plane with the standard metric topology. Define

OY by setting OY (U) to be the set of all continuous functions on U from R2 to R. The

restriction maps are the usual restriction of functions on the plane. One verifies that

this is a presheaf. If f is a function on an open set U of the plane that is the 0 function

on an open cover, then clearly f is itself 0.

Let Ui be an open cover of U , and let fi be continuous functions on the Ui that agree

on the overlaps. Define f as a function on U by setting f(x) = fi(x) if x ∈ Ui. This is

well-defined by assumption, and as f is locally continuous it is continuous. Thus OY is

a sheaf on Y .

Example 1.21. Let Y be any topological space, and let p ∈ Y . Define the tower sheaf

at p by setting OY (U) = R is p ∈ R and 0 if p 6∈ U . The restriction map from V to U

is the identity on R if both sets contain p, and is the 0 map otherwise. This defines a

presheaf on Y .

By definition of the restriction maps, if a section s ∈ OY is locally 0 then it must be 0.

Suppose we have sections si on open sets Ui that agree on overlaps. If U = ∪iUi doesn’t

contain p then set s = 0. Otherwise there is some i for which p ∈ Ui. Set s = si. By

assumption s|Uj = sj for all j, and we conclude that this defines a sheaf.

Definition 1.3.5. Let OY be a sheaf on Y , and let p ∈ Y . We define the stalk of OY
at p, OY,p, to be the set of all pairs (U, s), where p ∈ U for U an open set, s ∈ OY (U) is

a section of U , modulo the equivalence relation defined by (U, s) = (V, t) if there exists

some open set W ⊂ U ∩ V such that s|W = t|W .

Example 1.22. Let OY,p be the tower sheaf at p on a Hausdorff space Y . Then the

stalk at p, again denoted OY,p, is just R. If x 6= p is any point, the stalk OY,x is 0.

Let O1 and O2 be two sheaves on Y . A morphism of sheaves f : O1 → O2 is a group

homomorphism fU : O1(U) → O2(U) for every open set U that is compatible with the

restriction maps. It is an isomorphism if it has an inverse morphism.

Let f : X → Y be a continuous map of topological spaces, and suppose that we have a

sheaf OX on X. We may define a sheaf f∗OX on Y , called the direct image of OX , by

setting f∗OX(U) = OX(f−1(U)) for any open set U ⊂ Y .
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We may now define locally ringed spaces.

Definition 1.3.6. A locally ringed space OY on a topological space Y is a sheaf of rings

on Y such that for every p ∈ Y , the stalk OY,p is a local ring. The residue field of OY
at p is the field OY,p/mp, where mp is the maximal ideal of OY,p.

Definition 1.3.7. Let (Y,OY ) be a locally ringed space. A sheaf of modules over Y is

a sheaf M such that for every open set U ⊂ Y , M(U) is a module over OY (U).

Example 1.23. Let Y = Spec(Z). Let OY be the sheaf defined on the basis sets D(f)

by setting OY (D(f)) = Zf , i.e. the localization of Z at f . One extends this to a sheaf

on Y as follows. For any open set U , let (Ui)i be an open cover of U by basic open sets.

Then OY (U) = {(si)i|si|Ui∩Uj = sj |Ui∩Uj}.

The stalk at a point (p) ∈ Spec(Z) is Z(p) whenever p 6= 0, and is Q otherwise. Thus the

stalk is always a local ring, and in fact is a discrete valuation ring for any closed point

(p). We conclude that (Spec(Z),OSpec(Z)) is a locally ringed space.

Remark 1.28. The extension of a sheaf defined on a basis of open sets to all open sets

in the above example works more generally for any topological space Y .

Definition 1.3.8. Let (X,OX) and (Y,OY ) be two locally ringed spaces. A morphism

of ringed spaces is a pair (f, f#) such that f : X → Y is a continuous map, and

f# : OY → f∗OX is a morphism of sheaves that satisfies for every x ∈ X, the induced

homomorphism f#
x : OY,f(x) → OX,x is such that (f#

x )−1(mx) = mf(x).

1.3.2.2 Schemes

We now define affine schemes.

Let R be any ring, and let Spec(R) be the set of prime ideals of R with the Zariski

topology. For any basic open set D(f), f ∈ R, set OSpec(R) = Rf , the localization of R

at f . This defines a sheaf on the basic open sets of Spec(R), and one extends this to a

sheaf on Spec(R) as in Example 1.23 by setting OSpec(R) = {(si)i|si|Ui∩Uj = sj |Ui∩Uj}
for an open cover (Ui)i of U . This is referred to as the structure sheaf on Spec(R), and

the topological space with its structure sheaf is in fact a ringed topological space.

Definition 1.3.9. An affine scheme is a ringed topological space of the form (Spec(R),OSpec(R)).

A scheme is a ringed topological space (Y,OY ) with a cover by open sets Ui such that

each (Ui,OY |Ui) is an affine scheme. Each Ui is an affine open set.

For use in Chapter 3 we also define line bundles over schemes.
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Definition 1.3.10. Let Y be a scheme. A line bundle over Y is a sheaf of modules L
over Y such that there exists a cover of open sets (Ui)i of Y satisfying L(Ui) is a rank

1 module over OY (Ui) for all i.

Proposition 1.29 (Chapter 2 Proposition 3.1 of Liu [19]). Let Spec(R) be any affine

scheme, and let p be a prime ideal of R. The stalk OSpec(R),p of the structure sheaf at p

is Rp, the localization of R at p.

Example 1.24. Let R = C[x] be the ring of polynomials with coefficients in C. The

non-zero prime ideals of this ring are of the form (x− a) for some a ∈ C. Let O denote

the structure sheaf on Spec(R). For any non-zero prime (x − a), note that the stalk at

the corresponding point in Spec(R) is C[x](x−a), which is a discrete valuation ring. Then

(Spec(C[x]),O) is an affine scheme, and we will see that it is an example of an affine

curve.

As C[x](x−a) is a discrete valuation ring, the completion of this ring with respect to the

discrete valuation is a power series ring of the form C[[z]] as in Example 1.11.

More generally, Spec(k[x]) for any field k is referred to as the affine line over k.

Definition 1.3.11. A morphism of schemes is a morphism of the underlying ringed

spaces.

Recall from the discussion at the end of Subsection 1.3.1 that to a ring homomorphism

we may associate a continuous map between the spectra of the rings. In fact, the map

between spectra is a morphism of affine schemes.

Lemma 1.30 (Chapter 2 Proposition 3.25 of Liu [19]). Let X = Spec(A) and Y =

Spec(R) be two affine schemes. Then there exists a one-to-one correspondence between

morphisms φ : X → Y and ring homomorphisms φ# : R→ A.

Let Y be a scheme defined over a ring R, and let X be some other scheme defined over

R. Then there exists a scheme Y ×RX over both X and Y called the base-change of Y

by X.

Let φ : Y → Spec(R) be the morphism from Y to Spec(R). Given any point p ∈ Spec(R),

let kp denote the residue field of the local ring at p. The scheme Y ×R kp is called the

fiber of φ over p. This is a scheme over kp, and the points lying in this space are in

one-to-one correspondance with the set φ−1(p) ⊂ Y .
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1.3.3 Some technical conditions on schemes

There are numerous topological or algebraic properties that schemes may satisfy. In this

subsection we will look at the ones that are encountered in the local lifting problem.

These definitions may be found in Liu [19] in their full generality.

Definition 1.3.12. A scheme Y is connected if its underlying topological space is con-

nected. That is, Y cannot be written as the union of two nonempty disjoint open sets.

It is irreducible if it is nonempty and cannot be written as the union of two proper closed

subsets. The maximal irreducible subsets of Y are the irreducible components (or simply

components).

Definition 1.3.13. A scheme Y is Noetherian if there is a finite cover of Y by affine

open subsets that are the spectra of Noetherian rings. A Noetherian scheme Y is said to

be integral if it is nonempty, and every affine open subset is the spectrum of an integral

domain.

The point corresponding to the zero-ideal in an integral scheme is referred to as the

generic point.

Remark 1.31. Every scheme considered in this thesis is Noetherian. Integrality can also

be defined for non-Noetherian schemes, but we won’t consider this.

Example 1.25. The affine line over a field k, Spec(k[x]), is connected, irreducible, and

integral.

Example 1.26. Let Y = Spec(R[x, y]/((x+ y)(x− y))). This is an affine scheme with

two irreducible components corresponding to the minimal prime ideals (x+y) and (x−y).

Geometrically, these correspond to the lines y = −x and y = x in R2. Note that Y is

connected, but not integral.

Definition 1.3.14. A scheme Y is said to lie over a ring R if there is a morphism of

schemes from Y to Spec(R) (integral closure was defined in Subsection 1.2.3. It is of

finite type over R if there is a cover of affine open sets Ui = Spec(Xi) of Y such that

each Xi is a finitely generated R-algebra.

Recall that the Krull dimension of a ring R is the supremum of the lengths of chains

of prime ideals in R, where a chain p0 ( p1 ( . . . ( pn has length n. A local ring R

is said to be regular if the number of generators of its maximal ideal equals the Krull

dimension of R.

Definition 1.3.15. A scheme Y is said to be normal if the stalk at every point is an

integrally closed ring. A scheme Y is regular or non-singular at a point p if the local

ring at that point is a regular ring. Y is regular if it is regular at every point.
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Remark 1.32. Regularity implies normality.

Definition 1.3.16. Let Y be a scheme. The dimension of Y is the supremum of the

lengths of chains of irreducible closed subsets. Y has pure dimension n if all of its

components have the same dimension n. A curve is a scheme of pure dimension 1, and

a surface is a scheme of pure dimension 2. The codimension of an irreducible subset

X ⊂ Y is the largest chain of increasing irreducible closed subsets in Y beginning with

X̄.

Remark 1.33. Let R be a ring. Then one can show that the Krull dimension of R is

equal to the dimension of Spec(R).

Definition 1.3.17. Let Y be a Noetherian scheme of pure dimension n. The free abelian

group on the irreducible components of Y of codimension 1 is the group of Weil divisors

of Y , denoted by Div(Y ).

Example 1.27. Let k be any field, and let k[x] be the polynomial ring in variable x over

k. Then Spec(k[x]) is a regular curve over k. That its dimension is 1 follows from the

previous remark. It is clearly regular at the point corresponding to the zero ideal, and

we see it also regular at the other prime ideals. Indeed, we know from Example 1.24 that

the stalk at these points are discrete valuation rings, which are regular.

Remark 1.34. Let Y be an irreducible regular curve over a field k. Let p be a point on

the curve other than the generic point. Then we know that the stalk OY,p is a discrete

valuation ring. By the Cohen Structure Theorem (1.16), the completion of this ring

ÔY,p is a ring of the form k[[z]], a power series ring in the parameter z over k.

There are five other conditions on schemes that arise in this thesis that are more tech-

nical. Namely, a scheme may be proper, projective, smooth, flat, and excellent.

A scheme being proper over a ring R is analogous to the scheme being compact. Pro-

jective schemes over a ring R are isomorphic to closed subsets of certain schemes over

R called projective n-space over R for positive integers n ∈ Z. When R is Noetherian as

in this thesis, projective implies proper.

We care about smoothness as if a scheme over a field k is smooth, then it is regular and

hence normal.

Flat is only of relevance when defining arithmetic surfaces in Chapter 2. The surfaces

considered in this thesis are of the form Spec(R[[z]]) for R a complete discrete valuation

ring, and it is known that these rings are flat over R.

Excellent is a technical condition that says every affine open set of a scheme is the

spectrum of an excellent ring. We will not define excellent rings here, however, we
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note that the following rings are excellent: Complete Noetherian local rings; Dedekind

domains of characteristic 0; all localizations of excellent rings; and all finitely generated

algebras over excellent rings are excellent. In particular, as the local lifting problem

deals with complete Noetherian local rings and Dedekind domains of characteristic 0,

the assumption that rings are excellent is quite reasonable. Virtually all rings considered

algebraic geometry and algebraic number theory are excellent.
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1.4 Automorphisms of schemes

Having defined schemes in Section 1.3.2, we now turn out attention to automorphisms

of these schemes.

Definition 1.4.1. Let Y be a scheme defined over a ring R with morphism ρ : Y →
Spec(R). An R-automorphism of a scheme is an isomorphism of schemes σ from Y to

itself such ρ = ρ ◦ σ.

Remark 1.35. The set of R-automorphisms of a scheme Y form a group under compo-

sition, called the R-automorphism group of Y and denoted by AutR(Y ).

Example 1.28. We look at a concrete example of automorphisms, viz. the Möbius

transformations of CP1. Recall that we may identify CP1 with C∪ {∞}. Let a, b, c, d be

complex numbers such that ad− bc 6= 0. Then we define the function

f : CP1 → CP1 by f(z) =
az + b

cz + d
.

By identifying this function with the 2× 2 matrix

(
a b

c d

)

one can readily verify that the inverse matrix, which exists by the assumption ad−bc 6= 0,

gives the inverse morphism. Thus we have an entire family of automorphisms, where

composition is given by multiplication of the respective matrices.

This example shows that there is no limit on the size of the automorphism group of

a general scheme, however, we will restrict our attention to finite subgroups of the

automorphism group.

The local lifting problem deals with the stalks at closed points of a projective scheme.

Definition 1.4.2. Let Y be a scheme over a ring R and G a finite subgroup of AutR(Y ).

A point x ∈ Y is a fixed point of an automorphism σ ∈ AutR(Y ) if σ(x) = x. The

stabilizer subgroup of x is the group Gx ⊂ G such that σ(x) = x for all σ ∈ Gx.

By Remark 1.34, the completion of the local ring at a closed point x of a regular curve

Y over a field k is of the form k[[z]] for some parameter z. If Gx is the stabilizer of

x, then Gx also acts on k[[z]]. By Lemma 1.30, k-linear automorphisms of k[[z]] are in

one-to-one correspondance with R-automorphisms of Spec(k[[z]]).
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Let R be a discrete valuation ring of characteristic 0 with uniformizer π and residue field

k of characteristic p > 0. We will assume R is complete with respect to the associated

valuation. Let G ⊂ Autkk[[z]] be a finite group of k-linear automorphisms.

Note that, by passage to the quotient, we have a map

Ψ : G→ Autkk[[z]]

that may not be injective. In the local lifting problem we are interested in the case where

the map Ψ is injective, and so we will restrict our attention to cyclic-by-p automorphism

groups of R[[z]] by Theorem 1.25.

Example 1.29. Throughout this thesis we will consider the automorphism of F3[[z]]

defined by

σ(z) =
z

1 + z
= z(

∞∑
i=0

(−1)izi).

Notably, this automorphism has order 3, as one can check that σn(z) = z
1+nz for any

nonnegative integer n. Thus G = 〈σ〉 is a finite automorphism group of F3[[z]], and it

is of the form given in Theorem 1.25.

1.4.1 Fixed points of automorphisms

Let k be a perfect field of characteristic p > 0.

Definition 1.4.2 introduced the notion of a point x on a regular curve Y over k being

fixed by a k-automorphism of Y , and we saw that the stabilizer subgroup of x acts

on the completion k[[z]] of the local ring OY,x. Here we will look at fixed points of

automorphisms of Spec(R[[z]]), where R is a complete discrete valuation ring dominating

the Witt vectors W (k) of k. Witt vectors were defined in Subsection 1.2.3.2.

let σ be an R-linear automorphism of R[[z]]. Then by Lemma 1.30, σ corresponds

uniquely to an R-automorphism of Spec(R[[z]]), which we also denote by σ. We write

the action of σ on z as σ(z) =
∑∞

i=0 aiz
i, where ai ∈ R.

Definition 1.4.3. An element α ∈ R is fixed by σ if the prime (z − α) is sent to itself

under the action of the automorphism determined by σ.

Remark 1.36. This set of fixed points of R under σ will be denoted by ∆σ.
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Let us make this more explicit. By the Weierstrass Preparation Theorem (Theorem

1.19), write σ(z)− z = amσfmσ(z)u(z) where mσ = min{n ≥ 0 : valπ(al) ≥ valπ(an)∀l},
fmσ is a Weierstrass polynomial of degree mσ, and u(z) is a unit. The zeros of this

polynomial correspond to the fixed points of σ, and in particular we have that |∆σ| = mσ.

Fix σ and suppose that it is of finite order n. To obtain a somewhat more explicit form

of σ we note the following lemma:

Lemma 1.37. Suppose σ(z) ≡ z (mod z2). Then σ = id.

Proof. We follow Coleman as in [9]. Indeed, suppose otherwise, so that

σ(z) ≡ z + czm (mod zm+1),

where c 6= 0 and m ≥ 2. Then we have

σn(z) ≡ z + nczm (mod zm+1).

As n was the order of σ we must have that nc = 0, however, as the characteristic of R is

0, n is not a zero divisor and so we conclude that c = 0, a contradiction. Thus σ = id.

As a corollary of this lemma we have the following result:

Corollary 1.38. Let σ ∈ AutRR[[z]] have finite order n and suppose that its image in

Autkk[[z]] is non-trivial. Then we may express its action as

σ(z) = ζz

(
1 +

∞∑
i=1

aiz
i

)
,

where ζ is a primitive n-th root of unity.

This result will be crucial when discussing the leaves of Hurwitz trees in Chapter 2.
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1.5 The Lifting Problem

We now introduce the lifting problem.

Let k be an algebraically closed field of characteristic p > 0 and let W (k) be the ring

of Witt-vectors over k. Let R be a finite, totally ramified extension of W (k) and K =

Frac(R). Suppose we are given a smooth, proper curve C defined over k and a finite

automorphism group G of C.

Definition 1.5.1. The pair (C,G) is said to lift to characteristic 0 if there exists a

discrete valuation ring R exists that dominates W (k), a smooth projective R-curve C
and an R-linear action of G on C satisfying

1. C⊗Rk∼= C

2. The G action on C restricts to the G action on C.

The base change C ⊗R k of C by k was defined in Subsection 1.3.2.2.

The global lifting problem in algebraic geometry asks under what circumstances such a

pair (C,G) lifts to characteristic 0. A comprehensive introduction to the problem may

be found in the notes of Bouw and Wewers [5].

Closely related to the global lifting problem is the local lifting problem. The set-up for

the local lifting problem is as follows:

Definition 1.5.2. Let k be a field of characteristic p > 0 and let G be a finite group.

A local G action is a subgroup of Autkk[[z]] as in Section 1.4. This action is said to lift

to characteristic zero if there exists a ring R dominating the Witt vectors W (k) and an

R-linear G action on R[[z]] that descends to the given action on k[[z]]. The local lifting

problem asks such a pair (k[[z]], G) lifts to characteristic 0.

The global lifting problem can be solved locally via the local-global principle, the proof

of which is found in Green’s and Matignon’s paper [13].

Theorem 1.39. Let (C,G) be as above. This action lifts to characteristic zero if and

only if for all closed points y ∈ C the induced local action (ÔC,y, Gy) lifts. Here, ÔC,y is

the completion of the local ring OC,y with respect to its uniformizer, and Gy the stabilizer

of the point y.

From Remark 1.34, the assumption that C is smooth ensures that ÔC,y is a formal power

series ring k[[z]] over k.

We will frequently use the following lemma when discussing rings of the form R[[z]].
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Lemma 1.40. There is a one-to-one correspondence between the non-generic points of

the space Y = Spec(R[[z]]) and the set {x ∈ K̄|valπ(x) ≥ 0} modulo the action of the

absolute Galois group Gal(K̄/K). In particular, Y may be regarded as the open unit disk

in the topology defining R as the valuation ring of K.

Proof. Let p ∈ Y be a non-zero prime ideal of R[[z]]. By the Weierstrass preparation

theorem we may represent it as (f(z)) for some irreducible polynomial f(z) ∈ R[z], with

roots in the integral closure of R in K̄. All of these roots are Gal(K̄/K) conjugates. We

associate to (f(z)) these Galois conjugates.

Conversely, let x ∈ K̄ with valπ(x) ≥ 0. Then x is integral over R, and so has minimal

polynomial f(z) ∈ R[z], which is the same minimal polynomial of its Gal(K̄/K) conju-

gates. We associate to x the point (f(z)) ∈ Y , and we see that this is the inverse of the

above map from Y to {x ∈ K̄|valπ(x) ≥ 0}/Gal(K̄/K).

Remark 1.41. Lemma 1.40 lets us speak of rings of the form R[[z]] as disks being defined

by relations of the form {z ∈ K̄||z − a| < ε}. As the valuation is discrete, all such disks

are both open and closed in the π-adic topology.

In general the local lifting problem remains difficult to solve. Our main approach to

the local lifting problem will be to look at the conditions that the group action of G on

R[[z]] must satisfy supposing that the action lifts. Especially important is viewing how

G acts on the parameter z as well as any fixed points that arise under this action. By

Theorem 1.25 we know that G will be isomorphic to a cyclic-by-p group, viz. G ∼= P oC
where C is a cyclic group of order prime to p and P is a p-group.

If G is cyclic, a recently proven result in Pop’s paper [21] known as the Oort Conjecture

ensures us that the pair (k[[z]], G) lifts to characteristic 0.

Theorem 1.42 (The Oort Conjecture). Let G be a finite cyclic group of k-linear auto-

morphisms of a ring k[[z]], where k is a field of characteristic p. Then the pair (k[[z]], G)

lift to characteristic 0.

When G is abelian we have a particularly simple structure of it. For the proof the reader

is referred to Proposition 3.3 in Green’s chapter in Valuation theory and its applications

volume II [12].

Proposition 1.43. Let G ⊂ Autkk[[z]] be a finite abelian group that admits a lift to

characteristic 0. Then G is either cyclic or a p-group.

Remark 1.44. The Oort Conjecture provides a converse to this proposition when G is

cyclic.
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It is not difficult to find examples of group actions that fail to lift. The Hurwitz bound,

for example, states that given a curve of genus g defined over a field K of characteristic

0, the order of any automorphism group of the curve satisfies |G| ≤ 84(g − 1). This

bound fails to apply in general in characteristic p - it follows that there are curves with

group actions that cannot be lifted. The following example is taken from Bouw’s notes

[5].

Example 1.30. Consider the curve defined over F̄p given by yp − y = xp+1. One

checks that this curve has genus (p − 1)p/2 (see Section 4.3). Consider the group of

automorphisms acting on this curve defined as follows:

Let ζ be a primitive (p2 − 1)-st root of unity in F̄p and consider automorphisms σ, τ

defined by

σ(x) = x and σ(y) = y + 1;

τ(x) = ζx and τ(y) = ζp+1y.

Then one computes the order of σ to be p and of τ to be p2− 1. It follows that the order

of the group they generate has order ≥ p3 − p and so for large values of p will exceed

84(g − 1), whence the curve with the G-action cannot lift.

We will show in Chapter 4 that, except for the case p = 2, the above group action will

never lift even when Hurwitz bound is not violated.

Example 1.31. We will continue looking at the group action of G on F3[[z]] from

Example 1.29. Note that by the Oort Conjecture we know that this local G-action does

lift to characteristic 0.

Let R be the totally ramified extension of W (F3) given by adding the cubic roots of unity

to W (F3. We will let ζ3 denote a primitive cubic root of unity, and note that the image

of ζ3 in the residue field F3 of R is 1. Let σ̃ be an R-linear automorphism of R[[z]] given

by

σ̃(z) =
ζ3z

1 + z
.

Then σ̃ restricts to the action of σ on F3 under the reduction map, and furthermore

σ̃3(z) = z
1+z(ζ23+ζ3+1)

= z, whence it has order 3. This confirms that the local G-action

lifts to characteristic 0.
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Hurwitz Trees

As mentioned in Chapter 1, the local lifting problem is in general quite difficult. As

such, sufficient conditions for a group action to lift are not the focus of much of the

research surrounding the problem, but rather necessary conditions. That is, if we have

a finite group G acting on a ring k[[z]] where k is a characteristic p > 0 field, there are

certain conditions that must be satisfied in order for the group to lift. Ideally, we would

like these obstructions to lifting to be as strong as possible to further restrict the groups

we need to look at.

This chapter focuses heavily on the Hurwitz tree obstruction, with the first four sections

following much of the constructions in Chapter 3 of Brewis’ thesis [6]. Before delving

into the obstruction, we set up some notation in Section 2.1. Section 2.2 introduces two

characters that encode the ramification data of a group acting on a disk - the Artin and

depth characters. Following their definitions we will show in Theorem 2.7 that they are

closely related.

Hurwitz trees are actually defined in Section 2.3 once we introduce the multiplicative

character. The Hurwitz tree object, while complicated to define, is a metric tree with

characters on every vertex and edge that satisfy certain relations. The following section,

Section 2.4, relates the Hurwitz tree object to a group acting on a disk. We will use

results from the first chapter on fixed points of automorphisms. Each leaf of the Hurwitz

tree will correspond to a fixed point of the action, and the depth and Artin characters

of the tree encode the ramification of the group acting on increasingly small disks about

the fixed points.

An alternative construction of the Hurwitz tree is given in Section 2.5. After defining

semistable models, we will show that the underlying tree of a Hurwitz tree is just the

dual graph of a model of a curve.
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The main result of this chapter is given in Section 2.6, where we prove in Theorem 2.21

that the construction offered in Section 2.5 is equivalent to that of Section 2.4. The main

motivation for this theorem is that it will allow us to look at Hurwitz trees as tropical

curves of the type looked at in Katz’s paper [17].

We end the chapter in Section 2.7 by relating Hurwitz trees to the lifting problem.

Namely, if a group action lift to characteristic 0 then there must be a Hurwitz tree

related to its action on the disk it lifts to.
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2.1 Notation

We begin this section with some notation. Let K be a complete discrete valuation field

with uniformizer π, valuation valπ and ring of integers R. Furthermore, the residue field

k is assumed to be algebraically closed with positive characteristic p. The valuation on

K is assumed to be normalized so that valπ(π) = 1.

Given a finite group G we denote by 1G the unit character, rG the regular representation,

and uG the augmentation character, viz. uG = rG − 1G. These were defined in Section

1.1.

Finally, let Y denote the R-scheme Spec(R[[z]]).

As before, we will denote by G a finite subgroup of automorphisms of the ring R[[z]] that

induces an R-automorphism of Y . Recall from Lemma 1.40 that Y can be identified

with the unit disk {x ∈ K̄|valπ(x) ≥ 0} modulo Gal(K̄/K).
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2.2 Artin and depth characters

We associate to a G-action on the disk two characters that describe the action in terms

of ramification, both with respect to the uniformizer for the ring R (the depth character)

and with respect to the parameter z (the Artin character). The relation of the Artin

character of G acting on the disk to the Artin character of G acting on k[[z]] (defined

in Subsection 1.2.3.1) will be revealed in Section 2.7.

2.2.1 The depth character

We begin with some preliminary definitions.

Definition 2.2.1. Let valY be the Gauss valuation on R[[z]] defined by

valY

(∑
i

aiz
i

)
= mini{valπ(ai)}.

Definition 2.2.2. The depth character δGY associated to the pair (Y,G) is the class

function

δGY (σ) =

−|G|valY (σ(z)− z) if σ 6= e

−
∑

σ 6=e δ
G
Y (σ) otherwise.

Thus, the depth character measures the ramification with respect to π of G acting on

the disk.

Recall from Definition 1.2.11 that the inertia group of G is the largest subgroup of G

that acts trivially on the residue field k of R.

Remark 2.1. Note that it is not immediate from the definition that δGY is a true character

rather than a virtual character. It is clear that it is orthogonal to the identity character

1G. Furthermore, the depth character is everywhere zero if and only if the inertia

subgroup is trivial. Equivalently, the G-action on R[[z]] is unramified with respect to π.

That this is indeed a character is shown by Brewis and Wewers [7], as well as that this

definition is independent of the choice of parameter z.

Example 2.1. We will continue looking at the G-action on R[[z]] in Example 1.31 by

calculating the depth character associated to this action. Note that
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σ̃z − z =
z(−1 + ζ3)− z2

1 + z
= (ζ3 − 1)z + ζ3z

2 + z3(g(z)),

for some g(z) ∈ R[[z]]. In particular, because ζ3 is a unit, we see that valY (σ̃z − z) =

valπ(ζ3) = 0. Thus δGY (σ̃) = 0.

A similar calculation shows that δGY (σ̃2) = 0, whence δGY ≡ 0.

The depth and Artin characters both involve elements of R[[z]] of the form σ(z)− z. By

the Weierstrass Preparation Theorem (Theorem 1.19), we may write

σ(z)− z = amσfmσ(z)u(z),

where mσ = min{n ≥ 0 : valπ(al) ≥ valπ(an)∀l} and fmσ is the Weierstrass polynomial

of degree mσ.

Example 2.2. We continue Example 2.1 by finding the Weierstrass polynomial of σ̃z−z.

Namely, we may take mσ̃ = 2, amσ̃ = −1, and u(z) = 1
1+z . Hence we may take

fσ̃ = z2 + z(1− ζ3), whence the fixed points of σ̃ are z = 0 and z = 1− ζ3.

One finds the same Weierstrass polynomial for σ̃2, whence there are two fixed points of

the G-action, both of which are fixed by all of G.

2.2.2 The Artin character

The next character that will be important in the definition of the Hurwitz tree is the

Artin character. For an element f of R[[z]] we set

#Y (f) = ordz

(
f

πvalY (f)

)
,

where the overhead bar denotes the residue class of the term f

πvalY (f) modulo π. Here

ordz is the valuation function on k[[z]] with respect to z.

Definition 2.2.3. The Artin character aGY associated to the pair (Y,G) is the class

function

aGY (σ) =

−#Y (σz − z) if σ 6= e

−
∑

σ 6=e a
G
Y (σ) otherwise.
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Remark 2.2. Note that if the inertia group of G is trivial, then G maps isomorphically

onto a subgroup G′ of Autkk[[z]]. The Artin character as defined above coincides with

the Artin character defined in Subsection 1.2.3.1 associated to the G-action on the local

ring k[[z]] when this is the case.

Example 2.3. We continue Example 2.2. Namely, we will calculate the Artin character

of the action. Recall that σ̃z− z = −(z2− (ζ− 1))u(z) where the image of u(z) is a unit

in F3[[z]]. Thus

aGY (σ̃ = −ordz(−z2u(z)) = −2.

Similarly, one may show that aGY (σ̃2) = −2, and finally we find aGY (1) = 4.

This concludes the definition of the depth and Artin characters. We will now state an

important result about the Artin character that will provide us a nice interpretation of

it in terms of fixed points of the G-action.

Recall from Subsection 1.4.1 that for σ ∈ G\{e}, ∆σ ⊂ Y denotes the set of fixed points

of σ. Define ∆ = ∪σ 6=e∆σ, and let B = ∆/G be the orbit space. For each b ∈ B, let

y ∈ ∆ be an element belonging to b, and Gb the stabilizer of y.

Theorem 2.3. With the notation as above,

aGY =
∑
b∈B

u∗Gb .

Here u∗Gb denotes the induced character IndGGbuGb. Thus aGY is a true character.

See Subsection 1.1.2 for the definition of induced characters.

Proof. Write

σ(z)− z = amσfmσ(z)u(z)

where mσ = min{n ≥ 0 : valπ(al) ≥ valπ(an)∀l} and fmσ is the Weierstrass polynomial

of degree mσ. The zeros of this polynomial correspond to the fixed points of σ, and in

particular we have that |∆σ| = mσ. We may centre the disk about any such root and

thus assume that it is given by (z) and so that σ(z) = ζz(1 +
∑∞

i=1 aiz
i) (see corollary

1.38 in Chapter 1), whence we see that σ(z) − z has z = 0 as a simple root. It follows

that all such roots are simple. Thus, by definition of the Artin character,
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aGY (σ) = −#Y (σz − z) = −mσ = −|∆σ|.

As
∑

b∈B u
∗
Gb

evaluated at σ counts the number of elements in ∆σ, the result follows.

Remark 2.4. In the course of the proof it was shown that aGY = −|∆σ|. In particular,

the Artin character associated to the action of G on Y is determined by the set of fixed

points of the action of σ for all nontrivial σ ∈ G.

Example 2.4. We will continue Example 2.3. Note from Example 2.2 that the two fixed

points of the G-action, z = 0 and z = ζ3 − 1, are distinct modulo the G-action. Hence

the set B = ∆/G has cardinality 2.

Furthermore, each of the fixed points is fixed by all of G, so Gb = G for all b ∈ B. Thus

by the above theorem,

aGY =
∑
b∈B

u∗Gb = uG + uG = 2uG.

By the calculations in Example 2.3 we are able to confirm that this is the case, as by

definition uG(σ̃) = uG(σ̃2) = −2 and uG(1) = 4.

2.2.3 Relation between the Artin and depth characters

We end this section by relating the depth and Artin characters through a theorem that

will also be important when discussing vanishing functions on tropical curves. First we

make a definition.

Definition 2.2.4. Let a ∈ R[[z]] be a fixed but arbitrary element. We assume that

a 6= 0. By the residue class of a point y on the disk Y , we refer to the set of points

{x ∈ R[[z]]|x ≡ y (mod a)}.

Remark 2.5. Typically a will be chosen to be a power of π, so that the residue class of a

point y will be the set of points x ∈ Y such that x ≡ y (mod πk) for some non-negative

integer k.

Definition 2.2.5. Let Y = Spec(R[[z]]) be a unit disk. Let D ⊂ Y be a closed disk of

the form {x ∈ K̄|valπ(x − a) ≥ ε} modulo the Gal(K̄/K) action, where a ∈ R is fixed

and where ε > 0 is an integer. Then ε is the thickness of the annulus Y \D.

Remark 2.6. In the topology defined by a discrete valuation, it can be shown that any

point within a disk is at the centre of the disk. Thus in the above definition the disk D

is centred within Y , and the thickness of the annulus Y \D is well-defined.

41



Chapter 2. Hurwitz Trees 42

The example to keep in mind for the following theorem is the case where D is the residue

class of a fixed point of the G-action. This will be relevent in Section 2.5.

Theorem 2.7. Let D ⊂ Y be a closed disk which contains the set ∆ and is fixed by the

action of G. Then

δGD = δGY + |G|εsGY ,

where sGY = aGY − uG and where ε ∈ Z≥0 is the thickness of the annulus Y \D.

Proof. Without loss of generality we may assume that the point y corresponds to z = 0.

In this case we find that we may view D as elements in Y with valuation ≥ ε. Choose

an element a ∈ R with valY (a) = ε, and consider the new term z1 = z/a. From this is

it clear that z1 may be chosen as a parameter for the disks D ∼= Spec(R[[z1]]).

Write σz − z = zkπnu where u is a unit in R[[z]]/π. By definition of z1 this may be

rewritten as

zkπnu = (z1a)kπnu,

whence the valuation of fσ = σz − z on Y and D are related by

valD(fσ) = valY (fσ) + kvalY (a) = valY (fσ) + #Y (fσ)ε,

by definition of both ε and the #Y function. Thus,

δD(σ) = −|G|valD(σz1 − z1) = −|G|valD(σz − z) + |G|ε (2.1)

= −|G|valY (fσ)− |G|ε(#Y (fσ)− 1) = δY (σ) + |G|εsY (σ) (2.2)
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2.3 Hurwitz Tree definition

In this section the notions of metric trees and multiplicative characters will be intro-

duced. These will then be used to properly define the Hurwitz tree. Some basic fa-

miliarity with the notion of a graph is assumed. For reference, see the first chapter in

Diestel’s book on graph theory [10].

We begin with the definition of a rooted tree.

Definition 2.3.1. Let T be a tree with edge set E and vertex set V . Let v0 ∈ V be

a distinguished leaf attached to edge e0. Then (T, v0) is a rooted tree with root v0 and

trunk e0. We will often denote such a rooted tree by T when v0 is understood.

Remark 2.8. Note that there is a natural partial order on the vertices of any such rooted

tree, where the root vertex is the initial vertex. Given any edge e, let the source vertex

s(e) be the unique vertex attached to e in the same component of v0 in the graph T \{e}.
Let the target vertex t(e) be the other vertex attached to the edge. This determines a

natural partial order on the vertex set, where v ≤ w if and only if there is an oriented

path starting from v and going to w.

Definition 2.3.2. The maximal vertices are referred to as the leaves, and the set of

leaves is denoted by B. If v is any vertex, we let Bv = {w ∈ B : v ≤ w}.

Remark 2.9. Note our definition of leaf is different from the standard definition because

the root vertex will have distinct properties from the set B.

Definition 2.3.3. A metric on a rooted tree is a map ε : E(T )→ Z≥0 such that ε(e) = 0

if and only if t(e) is a leaf. The pair (T, v0, ε) is a metric tree and it will often be denote

by T when the root and metric are clear.

Before we define a Hurwitz tree properly, we introduce the notion of a multiplicative

character.

Definition 2.3.4. Suppose that G = Z/pmZ = 〈σ〉, the cyclic group of order pm with

m ≥ 0. The multiplicative character, δmult
G , is the class function defined as follows: if

a 6≡ 0 (mod pm),

δmult
G (σa) = − pi+1

p− 1
valπ(p),

where i = ordp(a) < m.

Remark 2.10. One may show as in Brewis’ thesis [6] that δmultG is a character of G.
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As we will see later in Theorem 2.12, the multiplicative character as defined measures

the ramification of an automorphism group acting on a disk with one fixed point. We

also set

δmult
G (1) = −

pm−1∑
a=1

δmult
G (σa) = mpmvalπ(p).

The following result concerning the multiplicative character will be important when

looking at examples and follows by a direct computation.

Lemma 2.11. Let χ be an irreducible character of Z/pmZ of order pn (i.e. the image

of G under χ is a cyclic group of order pn). Then

〈δmult, χ〉 =


np−n+1
p−1 valπ(p) if n > 0

0 if n = 0.

The inner product 〈δmult, χ〉 was defined in Subsection 1.1.3.

We now define a G-Hurwitz tree.

Definition 2.3.5. A G-Hurwitz tree over K is a datum T = (T, [Gv], ae, δv) where

• T = (T, ε) is a metric tree with root v0, trunk e0 and set of leaves B,

• for every vertex v of T , [Gv] is the conjugacy class of a subgroup Gv ⊂ G,

• for every edge e of T , ae is a character of G defined over K,

• for all vertices v, δv is a character of G defined over K.

We refer to Gv as the monodromy group and δv the depth of vertex v. Analogously, ae

is the Artin character of edge e ∈ E.

We impose five conditions on the above datum:

1. Let v ∈ V . Then (up to conjugation)

Gv′ ⊂ Gv

for all v′ ≥ v such that v and v′ are adjacent. Also,
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∑
v→v′

[Gv : Gv′ ] > 1,

where v → v′ denotes v and v′ are adjacent vertices with v′ ≥ v, except in the case

v = v0. In this case Gv = Gv0 = G. Thus away from v0 we require that anytime

a vertex v has a unique vertex v′ directly following it on the tree, the monodromy

group of v′ is strictly contained in that of v.

2. The group Gb associated to any leaf is non-trivial and cyclic.

3. For all e ∈ E,

ae =


∑

t(e)=s(e′) ae′ if t(e) /∈ B

u∗Gb otherwise.

4. For all e ∈ E,

δt(e) = δs(e) + εese

where se = ae − u∗Gt(e) .

5. For b ∈ B,

δb = (δmult
Gb

)∗

The depth and Artin character of the tree T are defined to be δT = δv0 and aT = ae0 ,

respectively.

This completes the definition of the Hurwitz tree. One immediate consequence of the

definition is an alternate way of expressing the Artin character of an edge. Namely, for

e ∈ E let Be be the set of leaves that are greater than the terminal vertex t(e) of e with

respect to the partial order. Then we have

ae =
∑
b∈Be

u∗Gb .
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2.4 Hurwitz trees and group actions on the disk

We have now defined all we need to attach a Hurwitz tree to a group action on the disk.

Recall from Subsection 2.2.2 that ∆ = ∪σ∈G∆σ is the set of all points on the disk Y

fixed by a nontrivial element of G.

Theorem 2.12. Let Y = Spec(R[[z]]) be the unit disk and G ⊂ AutK(Y ) be a finite

p-group of automorphisms. Suppose that the set of fixed points ∆ ⊂ Y is nonempty and

finite. Then, after a possible finite extension of K there exists a G-Hurwitz tree T over

K with δT = δGY and aT = aGY .

2.4.1 Construction of the Hurwitz tree

We construct the Hurwitz tree associated to such a group action inductively. First we

will consider a small open set around each fixed point containing no other fixed points

and construct a Hurwitz tree in the case |∆| = 1, which turns out to be especially simple.

This allows us to break our unit disk into smaller regions and construct a Hurwitz tree for

each one. After modding out by the G action we may then patch together these smaller

Hurwitz trees, whereby all that will remain is to check the five conditions imposed in

the definition hold.

To that end, consider the case |∆| = 1. Without loss of generality we may assume the

fixed point y is z = 0. Every element of G must fix this point, for if gy = y′ for some

g ∈ G, y 6= y′, then it follows that some conjugate of the stabilizer of y fixes y′, and so

y′ is also a fixed point.

From this it follows that aGY = uG by Theorem 2.3.

For an element g ∈ G, we can write

gz = χ(g)z(1 + a1z + · · · ).

where χ is an injective character of G into K×. We note that the action of G must

send a generator of K((z)) to another generator, G being the Galois group of K((z))

over K((z))/G, hence why z|gz but z2 - gz. That χ is injective is a result of Green and

Matignon [13]. The injectivity of χ implies that G is cyclic. Finally, suppose that g has

order npm with (n, p) = 1. Define fg = gz − z and note that z = 0 is the only root of

fg. Thus #(fg) = 1 and thus valY (fg) is exactly the multiplicative character for G.

We define the Hurwitz tree in this case by giving T two vertices, v0 and v1, with one

edge between them. The metric for the tree is trivial, and we set the depth character
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Figure 2.1: Residue classes Ei (dashed circles) contained within closed disk D (solid
circle). The unit disk Y is the outer dashed circle. Note the residue classes are centred

at the fixed points (solid circles), and contain all of the fixed points.

of all vertices as δGY , the monodromy group to be G for both vertices, and the Artin

character of the single edge to be aGY . It follows from the above that this is a Hurwitz

tree.

Suppose now that |∆| ≥ 2. Let D ⊂ Y be the minimal disk containing all the fixed

points ∆, and note that D is fixed by all of G.

We may choose finitely many residue classes (Ej)j∈J of points in ∆ such that

1. ∆ ⊂ ∪j∈JEj ;

2. Ej ∩ Ei = ∅ whenever i 6= j;

3. Ej ⊂ D for all j ∈ J .

This can be achieved by letting n be the minimal power of π dividing all of the fixed

points such that at least two of the fixed points have distinct images modulo πn+1. Let

z1, . . . , zn denote the fixed points with distinct images modulo πn+1, and let Ej = {x ∈
KK̄|valπ(x− zj) ≥ n+ 1}. Then by how the zj were chosen we see that these Ei satisfy

the above three conditions. This is illustrated in Figure 2.1.

We obtain the final Hurwitz tree by choosing a set of representatives J ′ ⊂ J of J/G and

patching together the Tj at their roots. We label this patched vertex v1 and add another

v0 to the tree, connected to v1 by a unique edge e0. The monodromy group of both v0

and v1 are redefined to be the group G.

All vertices other than v0 and v1 retain their previous monodromy groups, and for these

vertices we redefine their depth characters as IndGGvδv.
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If an edge e is not equal to e0, it previously corresponded to an edge of some Tj and

so had an associated Artin character ae. We redefine the Artin character for edge e

by setting it equal to IndGae, induced from the subgroup that the Hurwitz tree Tj was

defined for.

All metrics on edges other than e0 remain as they were before.

Finally, set the metric of e0 to be |G| multiplied by the thickness of the annulus Y \D,

which was defined in Subsection 2.2.3. We set ae0 = aGY , δv0 = δGY , and δv1 = δGD.

2.4.2 Showing the construction yields a Hurwitz tree

It remains to show that the five axioms of the Hurwitz tree hold for this new tree.

Lemma 2.13. The object T = (T, [Gv], ae, δv) defined above is a Hurwitz tree.

Proof. Observe that the first axiom holds by the inductive hypothesis: for any vertices

v, w not equal to v0 or v1 this is immediate. For v1 we have Gv1 = G, and as |∆| > 1

we have in particular that there is more than one Hurwitz tree Tj being patched at the

root vertices. Thus,

∑
v1→v

[G : Gv] > 1.

The second and fifth axioms hold immediately by the inductive hypothesis, as if b ∈ B is

any leaf it belongs to one of the Tj and thus has a cyclic, non-trivial monodromy group,

with δb = (δmultGb
)∗, where the (δmultGb

)∗ denotes the induced character of δmultGb
.

For the third axiom, we note that as IndG(a1 +a2) = IndGa1 +IndGa2 for any characters

a1, a2, this axiom holds away from e0 by induction. For the edge e0 the third axiom

holds as a consequence of Theorem 2.3. Namely,

ae0 = aGY =
∑
b∈B

u∗Gb .

However, as the Ej were chosen to cover all the fixed points of our action and J ′ ⊂ J

was a complete set of representatives of J/G, we have

∑
b∈B

u∗Gb =
∑
j′∈J ′

a∗Tj′ =
∑

s(e)=v1

ae,
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whence the third axiom holds.

Similarly, the fourth axiom holds away from v0, so we need only check that δv0 =

δv1 + εe0se0 . This follows at once by Theorem 2.7.

This completes the proof of Theorem 2.12.

As a corollary to the above theorem, we may express aT and δT in a particularly simple

form through the use of the Weierstrass Preparation Theorem.

Corollary 2.14. Keep the notation of Theorem 2.12. Let σ ∈ G, σ 6= 1 and suppose

that we may write

σz − z = amσfmσ(z)u(z),

where amσ ∈ R with valπ(amσ) = n ∈ Z≥0, and fmσ(z) the Weierstrass polynomial as in

Theorem 1.19 a polynomial in z of degree m > 0. Then

aT (σ) = −m and δT (σ) = −|G|n,

where |G| is the cardinality of the group G.

Proof. By Theorem 2.12 we may write the Artin character for the Hurwitz tree T as

aT = aGY , and the depth character as δT = δGY .

The result follows immediately by the definitions of both aYG and δYG .
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2.5 Hurwitz trees in terms of semistable models

In this section we will present an alternative construction of the Hurwitz tree associated

to a group action on a disk in terms of semistable models of curves. Our motivation for

this is to better relate Hurwitz trees to tropical curves in the Chapter 3, however, such

a construction is also needed if one wishes to construct a G-action with a given Hurwitz

tree [6]. We will prove in the Section 2.6 that this definition is equivalent with the one

given in Section 2.4.

2.5.1 Arithmetic surfaces

Many of the definitions and results in this subsection are found in Chapter IV of Silver-

man’s book [25]. To begin, we will define an arithmetic surface. Hurwitz trees associated

to group actions on disks will be seen as the special fibers of such surfaces. Fibers of

morphisms were defined in Subsection 1.3.2.2.

Definition 2.5.1. Let R be a Dedekind domain with field of fractions K. An arithmetic

surface over R is an integral, normal, excellent scheme C, flat and of finite type over R,

whose generic fiber C = C ×R Spec(K) is a nonsingular connected projective curve over

K, and such that the special fibers (the fibers over closed points) are unions of curves

over their respective residue fields.

Remark 2.15. We refer the reader to Subsection 1.3.3 for the properties of the schemes

in the above definition. In particular, excellent is a technical condition that is satisfied

whenever R is a Dedekind domain of characteristic 0, as is the case in the local lifting

problem.

Definition 2.5.2. Let R be a Dedekind domain with field of fractions K. A model for

a nonsingular connected projective curve C/K is a pair (C, φ) of an arithmetic surface

C over R and an isomorphism φ between C and the generic fiber CK of C.

Example 2.5. For any Dedekind domain R of characteristic 0 the projective line P1
R

is a proper and smooth arithmetic surface over R. The generic fiber is P1
K and if kp is

the residue field over a prime p ∈ Spec(R) for a prime p 6= (0), the special fiber over

this point is given by P1
kp

. Note that as any Dedekind domain R of characteristic 0 is

excellent.

Definition 2.5.3. With the notation as above, fix a closed point p ∈ Spec(R). The

fiber Cp of a model C of C is said to be the reduction of C at p, or the reduction of C

modulo p.

We may define a map from the closed points C0 of C to the special fiber Cp.
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Definition 2.5.4. Keep the notation in the previous definitions. We define the reduction

map r : C0 → Cp by sending the closed point z ∈ C0 to ¯{z} ∩ Cp.

Remark 2.16. We will only work in the case where R is a complete discrete valuation

ring and C/R is smooth, i.e. the case of the lifting problem. In this case we may conclude

by Hensel’s lemma (Theorem 1.17)that the reduction map defined above is surjective.

It is not immediately evident that given a smooth projective curve C/K an arithmetic

surface C exists as above whose generic fiber over R is isomorphic to C. In fact it does

as shown in Silverman [25]. Such a model can be chosen to be minimal in the following

sense [24] [18]:

Theorem 2.17. Assume that the genus g of C is ≥ 1. Then there exists a proper

regular model Cmin/R for C/K such that given any other proper regular model C/R of

C/K and a fixed isomorphism from the generic fiber of C to the generic fiber of Cmin,

the induced birational map C → Cmin is an R-morphism. Cmin is unique up to unique

R-isomorphism.

As suggested by the Hurwitz tree set-up, we will be primarily interested in the case

when R is a discrete valuation ring with uniformizer π.

It is possible that distinct points on our minimal model may have the same reduction

modulo (π). To separate these points in the central fiber we may blow-up our model. The

theory behind blowing-up may be found in Hartshorne [14]. Beginning with a minimal

model we may take successive blow-ups to separate points in the central fiber, as in

Lemma 2.18.

Definition 2.5.5 (Hartshorne, Chapter 2.7 [14]). Let Y be a Noetherian scheme, I a

coherent sheaf of ideals on Y . Let J =
⊕

d≥0 Id, where I0 = OY . Define Ỹ = ProjJ
as the blowing-up of Y with respect to J .

Lemma 2.18. Let ∆ be a finite set of closed points of the unit disk Spec(R[[z]]). Then

after a finite number of blow-ups of Spec(R[[z]]) we may assume that the points in ∆

have pairwise distinct images in the reduction of Spec(R[[z]]) at (π).

Proof. Recall from the discussion in Section 2.1 that we may identify Spec(R[[z]]) with

the set of points {x ∈R|valπ(x) ≥ 0} modulo the action of the absolute Galois group of

K. Let ∆ = {z1, . . . , zm}.

Fix some i, and let n = minj 6=ivalY (zj − zi), and consider the blow-up of Spec(R) with

respect to the ideal (πn, z− zi). Denote by z̄j the image of zj under the reduction map,

where zj is viewed as a point on the blown-up scheme.
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We may write zi = a1π + . . .+ anπ
n + . . . where ai ∈ k by the completeness of R.

The blow-up of Spec(R[[z]]) at (z − zi, πn) = I is by definition Proj(J ), where J =⊕
m≥0 I

m is a graded module over R[[z]]. We may define a map R[[z]][x0, x1] → J by

sending x0 → z − zi and x1 → πn. From this we find that we may view the blow-up at

Spec(R[[z]]) at I to be the closed subset of P1
R[[z]] defined by the homogeneous polynomial

(x0(z − zi)− x1π
n).

When x0 6= 0, the defining equation is z − zi = x1π
n. In particular, the closed point in

Spec(R[[z]]) corresponding to the prime (z−zj) for any zj ∈ ∆ is then ((z−zi)+(zi−zj)).

By definition of n, we may factor out πn from this and write

(z − zi) + (zi − zj) = πn(x1 −
zi − zj
πn

).

Notably, the point image of zi under the reduction map to the special fiber is defined

by (x1), and we see that if zj ≡ zi (mod πn+1), then zj lies in the fiber over zi.

Thus the fiber above z̄i is the set {x ∈ πR|x ≡ zi (mod πn+1). Because the zi’s are

pairwise distinct, and by how n was chosen, this process ensures that there is at least

one pair (zi, zj) with distinct images in the reduction. As there are only finitely many

elements in ∆, this process may be repeated finitely many times to separate all the

points in the reduction.

Definition 2.5.6. When the special fiber is reduced and has only ordinary double-points

as singularities, we refer to the model as being semistable.

When the irreducible components of the special fiber are smooth we say the model is

strongly semistable [3].

2.5.2 Dual graphs

Fix a discrete valuation ring R and a smooth curve C/K, and suppose that we have a

strongly semistable model C/R for C. Let {C1, ..., Cn} be the irreducible components

of Ck, the special fiber of the model. We define the dual graph of the special fiber as

follows.

Definition 2.5.7. With the notation as above, the dual graph T of Ck is the graph on

n vertices where vertex vi corresponds to component Ci. An edge exists between each

vi and vj for each point of intersection between components Ci and Cj .
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The assumption that the model is strongly semistable implies that the dual graph is

well-defined with no loop edges, as seen in Baker’s paper [3].

Definition 2.5.8. In addition to the above definitions we will also say that a curve C

and a finite set of points ∆ ⊂ C, which we refer to as the marked points of the curve, is a

stably-marked curve if C is complete, semistable, connected, and that for every marked

point y ∈ C the stabilizer subgroup of y of the automorphism group of the curve is

finite.

2.5.3 Alternate construction of the Hurwitz tree

We will now construct an object T associated to the action of a finite group G on R[[z]].

Fix a finite group G acting on R[[z]]. Assume that for each σ ∈ G we have finitely many

points on the disk Spec(R[[z]]) fixed by σ, denoted by ∆σ. Let ∆ = ∪g∈G∆g.

Note that we have an induced action of G on the unit disk Spec(R[[z]]). Define Y to be

the minimal model of Spec(K[[z]]) embedded in projective space such that:

• The image of the points in ∆ under the reduction map from Y 0 → Y ⊗ k = Yk are

pairwise distinct, where Y 0 denotes the closed points of Y ;

• Yk is a semistable curve over k;

• If b0 is the image of the strict transform of the generic point of Spec(R[[z]])⊗ k in

Y , then (Y,∆ ∪ b0) is stably marked.

The existence of such a Y satisfying these properties follows from Lemma 2.18 above,

and the fact that as K is a one-dimensional function field and Y ⊗K is defined over K,

we may ensure Y has semistable reduction at the closed point of Spec(R) by Theorem

A.9.3.2. in Hindry and Silverman [16].

Remark 2.19. The proof of Lemma 2.18 allows us an explicit description of the compo-

nents of the special fiber of the blown-up model Y . Namely, we begin by labeling the

elements of ∆ as {z1, . . . , zm}. The first blow-up on R[[z]] is done with respect to the

ideal (z − z1, π
n) where n is the minimal valuation needed to define the closed disk D

containing ∆.

This gives us an exceptional divisor attached to the generic point of the special fiber Yk,

and we obtain a new vertex v1 in the special fiber of the blow-up corresponding to this

divisor.
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For any zi, we then look at the fiber of the reduction of zi modulo π, which is the residue

class Ei = {x|x ≡ zi (mod πn)}. We may cover D by these residue classes Ei such that

∆ ∩D ⊂ ∪Ei, then repeat the construction for each residue class.

At this point, the dual graph has a new vertex v1 corresponding to our initial blow-up

that is adjacent to v0, where v0 corresponds to the disk Y . Leading away from v1 we

have an edge wi for each Ei that we have repeated the construction with.

Let ZK = (Spec(R[[z]]) ⊗K)/G denote the quotient scheme of YK under the action of

G. We have a set of closed points ∆/G ⊂ ZK , and we define Z to be the minimal model

of ZK with the same criteria as above. Let Zk = Z ⊗ k be the special fiber.

We define the following data from this construction:

• We let T be the dual graph of Zk.

• To a vertex v, let Zv be the residue class in Z about a fixed points in ∆/G defining

the blow-up from which we obtained v. That is, v was obtained after choosing a

residue class {x ∈ R|x ≡ zi (mod πk)} for some fixed point zi and blowing up

with respect to (z − zi, πk). Thus Zv = {x ∈ R|x ≡ zi (mod πk)}. Let Yv be any

residue class in Y whose image in Z is Dv, so that Yv is an open disk. We set Gv

to be the stabilizer of Yv.

• With Yv as above, define δv to be IndGGvδ
Gv
Yv

. Here, δGvYv is the depth character of

the action of Gv on the disk Yv.

• Let e be an edge oriented from v to w, so that w corresponds to a residue class Yw

contained within Yv with Yv as above. Set εe to be the thickness of the annulus

Yv \ Yw multiplied by |Gv|.

• Set ae for e as above to be IndGGva
Gv
Dv

. Here, aGvDv is the Artin character of the

action of Gv on Yv.

Remark 2.20. With the definitions as above, the root vertex v0 have Yv0 = Y and

v1 = D, where D is the smallest closed disk containing the fixed points. Any vertex v

other than v0 adjacent to v1 has Yv = Ej for some residue class Ej of a fixed point in ∆.
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2.6 Equivalence of the definitions of the Hurwitz tree

In this section we will prove that the data (T, [Gv], δv, ae, εe) defined in the previous

section is actually the data of a Hurwitz tree associated to the action of G on the disk

Y .

Theorem 2.21. Let R be a complete DVR with characteristic 0, uniformizer π, field of

fractions K and residue field k, where k has characteristic p > 0.

Let (T, [Gv], δv, ae, εe) denote the data defined in the previous section associated to a

finite group G acting on R[[z]].

Then (T, [Gv], δv, ae, εe) is the data of a Hurwitz tree associated to the action of G on

the disk Spec(R[[z]]), as in Section 2.3.

We need to check the five axioms of the Hurwitz tree hold.

First we prove a lemma showing equivalence in the case where ∆, the set of fixed points

of the G-action defined in Subsection 2.2.2, one element.

Lemma 2.22. Keep the notation of the previous theorem. If ∆ consists of one element

then the theorem holds true.

Proof. By assumption there is a unique fixed point x of G, which we may assume without

loss of generality is z = 0.

As in the construction of the previous section, we proceed by taking a closed disk in Y

containing ∆. We may take this disk to be Y itself, and as |∆| = 1 it suffices to take no

further blow-ups beyond the first.

This yields two vertices, v0 and v1, both corresponding to Y . By definition, εe = 0, and

the stabilizer of Y is G. Every element of G fixes x, and so we conclude as in the proof

of Theorem 2.12 that ae = uG, δv0 = δv1 = δmultG .

This data agrees entirely with the case |∆| = 1 of Theorem 2.12, and so the result

follows.

To conclude the proof of Theorem 2.21 we will show that the construction of Section 2.5

can be finished inductively in the same way as Theorem 2.12. As the two cases agree in

the case ∆ is a singleton the result will follow.

Proof of Theorem 2.21. Suppose that |∆| > 1.
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From Remarks 2.19 and 2.20, we begin by covering ∆ with a closed disk D and then

choosing at least two residue classes Ej , possible by our assumption on |∆|, such that

D ⊂ ∪Ej . Each Ej is an open disk, and we repeat this construction on each Ej until

the fixed points have distinct reductions on the special fiber.

Thus each Ej yields, by induction, a Hurwitz tree associated to the action of Gj on Ej .

These Hurwitz trees may all be viewed as having v1 as their root vertex corresponding

to the closed disk D, and v0 corresponds to Y .

The dual graph of Z that we obtain at the end of the construction in Section 2.5 is then

represented by choosing a system of representatives of the residue classes Ej modulo G.

Thus the inductive process is entirely the same as that of Theorem 2.12, and as the base

case |∆| = 1 agree the result follows.

Remark 2.23. This justifies viewing a Hurwitz tree as the dual graph modulo G of the

special fiber of a minimal model separating the fixed points of the G-action, as was

mentioned but not shown in Brewis’ thesis [6]. This will be key to viewing a Hurwitz

tree as a tropical curve in Chapter 3.

Example 2.6. We continue the work done in Example 2.4 by constructing a Hurwitz

tree for the action of G on R[[z]]. Here, G = 〈σ〉 and R is W (F3 adjoined the cubic

roots of unity, with σ acting on R[[z]] via

σz =
ζz

1 + z
.

We may regard Y = Spec(R[[z]]) as the unit disk on which G acts. Note that the two

fixed points of the G-action on R[[z]], namely z = 0 and z = ζ − 1, are both contained

in the closed disk D = {x|valY (x) ≥ valY (3)
2 }, where valY (3)

2 = valY (ζ − 1). In particular,

the thickness of the annulus Y \D is 3
2valY (3).

We have the following information:

• The first vertex v0 of the tree corresponds to the disk Y , and it is adjacent to vertex

v1 corresponding to D.

• The weight of e0 is the thickness of the annulus Y \D multiplied by |G|, whence

εe0 = 3
2valY (3).

• The two fixed points, distinct modulo G, correspond to the existence of two leaves

b1 and b2 with monodromy group G.
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Because the monodromy groups at the leaves are equal to G, the first axiom of the Hurwitz

tree implies that, in addition to v1 and v0, the leaves b1 and b2 are the only other vertices

of the tree. Notably, this corresponds to the fact that the two fixed points are distinct

modulo π2, and as choosing D corresponds to blowing up with respect to the ideal (z, 1−ζ)

we do not need to blow-up the disk beyond this. We set the depth character on v0 to be

0, and the depth on the other vertices to be δmultG , the multiplicative character of G.

Explicitly,

δmultG (σ) = δmultG (σ2) =
−3

2
valY (3),

and

δmultG (1) = 3valY (3).

The Artin character on e0 is the Artin character on the disk Y , given explicitly in

Example 2.3, and the Artin characters on the edges incident with the leaves are both uG,

the augmentation character of G.

The first, second, and fifth axioms of the Hurwitz tree follow by definition, and the third

axiom follows by Example 2.4. The fourth axiom requires that δmultG = εe0(ae0 − uG),

and this follows by a direct calculation.
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2.7 Hurwitz trees as an obstruction to lifting

The goal of this subsection is to explain in what capacity the Hurwitz tree functions as

an obstruction to the lifting problem. We will return to using the notation where k is

an algebraically closed field of positive characteristic and φ : G→ Autk(k[[z]]) is a local

G-action.

Recall from Subsection 1.2.3.1 that to such a G-action we may define a character aφ of

G, called the Artin character.

The Hurwitz tree obstruction is then

Theorem 2.24. Let φ be a local G-action with the notation as above. If φ lifts to char-

acteristic 0 then there exists a G Hurwitz tree T defined over a field K of characteristic

0 that satisfies

aT = aφ and δT = 0.

Proof. Suppose the action lifts. By definition of a lift of the local action, the G-action

on the ring R[[z]] for some ring R of characteristic 0 descends injectively to the action

of G on k[[z]].

Thus if H / G is the kernel of this quotient map from G acting on R[[z]] to G acting

on k[[z]], then H is trivial. In terms of the ramification groups as defined in Subsection

1.2.3.1, we have Gi = 0 for all i > 0, whence for any g 6= 1 in G we have

valY (gz − z) = 0 and gz − z = ḡz − z,

where ḡ is the image of g under the quotient map and the expression ḡz − z is in the

ring k[[z]].

In particular the depth character δT is 0 by definition, and the Artin character of the

root vertex aT coincides with the Artin character aφ of the G-action on k[[z]].

The existence of the Hurwitz tree with the above properties then follows from Theorem

2.12.

Example 2.7. From Example 2.6 it is clear that the Hurwitz tree constructed for the

action of G on F3[[z]] is of the type described in Theorem 2.24.
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Indeed, the depth character of this action was calculated in Example 2.1 to be 0, and the

Artin character of the tree was calculated in Example 2.3 to take value −2 on σ and σ2

and 4 on 1. We may calculate the Artin character aφ of our G-action on k[[z]] defined

in Example 1.29.

aφ(σ) = −ordz(σ(z)− z) = −ordz(
z

1 + z
− z) = −2,

and similarly we find that aφ(σ2) = −2. Thus the Artin character of the tree is the same

as that of the Artin character of G acting on k[[z]].
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Tropical Curves and Hurwitz

Trees

This chapter seeks to establish a formal link between tropical geometry and the lifting

problem in algebraic geometry.

Tropical geometry itself is a vast field that we will not attempt to provide a rigorous

introduction to. Rather, in Section 3.1, we provide only the necessary definitions that

pertain directly to the lifting problem.

An important part of tropical geometry is to view aspects of algebraic geometry in a

“Piecewise-linear” sense. In Section 3.2 we discuss rational functions on tropical curves

as well as what it means to be harmonic. This will be important for viewing the depth

and Artin character of a Hurwitz tree as harmonic functions away from the leaves.

Section 3.3 introduces the vanishing function, a term used in Katz’ paper [17]. This

function, defined on vertices of the tropical curve, describes the order of vanishing of

a section of a line bundle. It is a continuous piecewise linear function that satisfies

additional properties.

In Section 3.4 we draw together the previous sections and show that a Hurwitz tree

associated to a G-action on a disk is a tropical curve. The underlying tree is the tropical

curve, and the depth and Artin characters are analogous to the vanishing functions of

elements of the form σz − z for σ ∈ G and z a parameter on the disk.

60



Chapter 3. Tropical Curves and Hurwitz Trees 61

3.1 Tropical Geometry

In this section the fundamentals of tropical geometry will be highlighted so as to be able

to discuss the relation between tropical geometry and Hurwitz trees. This should not be

viewed as a complete introduction to tropical geometry - many definitions are omitted

in their generality for the sake of brevity. The reader interested in more is referred to

Introduction to Tropical Geometry by Maclagan and Sturmfels [28].

3.1.1 Definitions

Throughout this chapter, unless stated otherwise, R will refer to a complete discrete

valuation ring with field of fractions K, uniformizer π and residue field k.

Given a smooth, connected, projective curve C/K, we will let C denote a model for C as

defined in Section 2.5. G will only be used to denote a group. Graphs will be denoted

by other symbols such as T .

We will begin by generalizing our notion of a metric graph.

Definition 3.1.1. A weighted graph is one in which each edge is assigned a positive

number, which we refer to as the weight of the edge.

Definition 3.1.2. Given two weighted graphs T and T ∗ we say that T and T ∗ are

equivalent if they have a common subdivision of the edges, or a refinement, in a weight-

preserving manner. That is, the sum of the weights of any new edges refined from

an edge should be the same as the original weight. This is an equivalence relation on

weighted graphs.

Definition 3.1.3. An equivalent class of weighted graphs is a metric graph, and an

element of the equivalence class is a model for the metric graph.

Remark 3.1. Note that the use of the word model in the above definition bears no

relation to the models of curves discussed in Section 2.5. This will cause no ambiguity

and will be clear from the context.

Remark 3.2. Suppose we are given a weighted graph T . We may regard each edge as a

line segment [0, ε] ⊂ R where ε is the weight of the edge. This allows us to view a metric

graph as a compact, connected metric space T [3]. Note that a metric graph is oriented,

where an edge is oriented from 0 to ε.

Definition 3.1.4. A tropical curve T is a metric graph with a finite number of edges

of weight 0.
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Figure 3.1: An example of a model for a metric graph. Edges are oriented between
vertices with their weights displayed. Graph template from texexample.net [15].
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Thus, a tropical curve is a metric graph with some edges of length 0. This differs from

the definition found in Baker’s paper [3], where edges of length 0 are replaced by edges

of infinite length. As we will see in Section 3.3, this will not affect our results, but it will

allow us to regard Hurwitz trees directly as tropical curves without replacing the leaves

by unbounded edges.
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3.2 Piecewise linear functions and harmonicity

In the alternative construction of Hurwitz trees via semistable models in Section 2.5 we

associated to an arithmetic surface the dual graph of its special fiber. The theory of

divisors on schemes finds an analogue on graphs (see Subsection 1.3.3 for the definition

of divisors on a scheme), and we will see that divisors on a curve may be specialized to

give a divisor on the dual graph.

Suppose we have an arithmetic surface C/R for C/K. Let T denote the dual graph of

Ck as defined in Subsection 2.5.2.

Definition 3.2.1. Given a graph T with vertex set V and edge set E we define the free

abelian group on V to be Div(T ), the divisor group of T . An element in this group is of

the form

Θ =
∑
v∈V

nvv, where nv ∈ Z.

Remark 3.3. There exists a rich theory on divisor groups of graphs and how many clas-

sical results in algebraic geometry such as the Riemann-Roch Theorem have analogues

on graphs. The interested reader is recommended to read Baker and Norine’s paper [4]

for a robust look at the topic.

Definition 3.2.2. If Θ and γ are two divisors in Div(T ) we say that Θ ≥ γ if Θ(v) −
γ(v) ≥ 0 for all vertices v ∈ V (T ).

Definition 3.2.3. Rational functions f : T → R are piecewise affine functions on the

metric graph whose slopes between vertices are rational numbers. Given a model T for

a metric graph this is equivalent to assigning rational numbers to the edges and vertices

so as to be consistent with the underlying metric.

Remark 3.4. When T is a tropical curve we may still define rational functions. We add

the stipulation that if e is an edge of length 0 between v0 and v1, then f(v0) = f(v1).

Example 3.1. To illustrate this with an example, suppose that our model T for a metric

graph consists of two vertices v0 and v1 with a single edge e between them, oriented from

v0 to v1. Assign weight ε to edge e. Define f : T → R to take the value 0 on v0 and has

slope n on e where n ∈ Z. Then the value of f at v1 is uniquely determined to be εn.

We will now introduce the notion of a rational function being harmonic, which is closely

tied to the definition used in a paper by Baker and Norine [2].
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Definition 3.2.4. Let f be a rational function on an oriented metric graph, so that

each edge is directed from one vertex to another. Let f(e) be the slope of f on edge e.

We say that f is harmonic if for every vertex v we have

∑
e,t(e)=v

f(e) =
∑

e,s(e)=v

f(e)

where the first sum is over all edges with target vertex v, and the second sum is over all

edges with source vertex v.

Remark 3.5. By the third axiom of the Hurwitz tree, we may view the Artin characters

of the Hurwitz tree to be the slopes of a harmonic function away from the leaves and

root vertex for fixed σ ∈ G. That is, suppose f is a rational function defined in such a

way that the slope of f on edge e is ae(σ). As ae(σ) =
∑

e′,t(e)=s(e′) ae′(σ), we see that

f is harmonic away from the leaves and root vertex.

Definition 3.2.5. To a rational function on a graph T we associate a divisor via the

Laplacian operator Ω, defined as

Ω(f) = −
∑
v∈V

σvv,

where σv is the sum of all the slopes emanating away from vertex v. The group of

principal divisors on the graph is the set Prin(T ) = {Ω(f) : f is a rational function}.

In our above example we find that Ω(f) = −nv0 +nv1. Note that the orientation of the

edges are crucial.

Definition 3.2.6. We define the linear system L(Θ) of a divisor Θ on T to be the set

of all rational functions f that satisfy

Ω(f) + Θ ≥ 0.

We will be mostly interested in knowing how to specialize a divisor from a curve to its

dual graph T .

Let Div(C) and Div(C) denote the group of divisors on C and C, respectively. The

assumptions on C and C ensures that Cartier and Weil divisors are the same; see Baker’s

paper [3]. We may regard each component Ci of the special fiber of C as being in Div(C).
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Given any divisor Θ on C we have an intersection pairing with the Ci defined as

(Ci,Θ) = (Ci ·Θ) = deg(OC(Θ)|Ci) ∈ Z.

Definition 3.2.7. The specialization map, as defined in Baker’s paper [3], is a map

ρ : Div(C)→ Div(T ) given by:

ρ(Θ) =
∑
vi∈T

(Ci,Θ)vi,

and we may also define the action of ρ on Div(C) by composing ρ with the map taking

Θ ∈ Div(C) to its Zariski closure.

Remark 3.6. As mentioned in Baker’s paper [3], the specialization map sends vertical

divisors (those supported entirely on the special fiber) to principal divisors of the dual

graph. This will be relevant for the proof of Lemma 3.12.
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3.3 Vanishing functions

We will now define the vanishing function of a section of a line bundle of an arithmetic

surface. This section closely follows Chapter 7 of Katz [17].

Suppose we are given a line bundle L over C and a rational section s of L. Line bundles

were defined in Subsection 1.3.2.2.

Remark 3.7. Here, C is marked as in Section 2.5 with a finite number of points, and we

assume that it is the minimal model such that these marked points have distinct images

in the special fiber. That such a minimal model exists is shown in Lemma 2.18.

Let Ck denote the special fiber of C, and C̃k the normalization of the special fiber,

where the components of C̃k are {C1, ..., Cn}. We will denote the normalization map by

φ : C̃k → Ck.

If we have a point of intersection between Ci and Cj corresponding to an edge e of the

dual graph, let pe denote this point lying on the two components.

Remark 3.8. There is an important distinction between the dual graph T as given in

Section 2.5 versus that used by Katz in his paper [17]. Namely, the set of leaves B we

defined gives a one-to-one correspondence between the leaves and the fixed points ∆ of

the G-action on the disk, modulo the G-action. In Katz’s paper, the leaves are replaced

by unbounded edges, and so there is a one-to-one correspondence between unbounded

edges and marked points of the model. We will keep the leaves and prove the results of

Katz in this case.

Remark 3.9. The example most relevant to us is where L the trivial bundle and s is of

the form gz − z for g 6= 1.

Recall that each component of the special fiber has a valuation associated to it (or

more specifically to its generic point). It is the valuation of a section at each of these

components that defines the value of the divisor (s) at the Cv’s.

To simplify the situation we will always assume that the divisor (s) is supported on

C(K). After a possible extension of R this may always be assumed to hold in the case

s = gz − z. This is important as the image of K-rational points on the special fiber are

smooth. See, for example, Section IV.4 of Silverman [25].

Definition 3.3.1. We define the vanishing function $s : T → R∪∞ via $s(v) = (s)(v),

where (s)(v) is the coefficient of vertex v in the divisor (s). Furthermore, we extend $s

linearly on edges. For a vertex v ∈ V , set sv = φ∗
(

s
π$s(v)

)
|Cv .
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When an edge e is adjacent to a vertex v, let ordpe(sv) be the valuation of sv at the

point pe ∈ Cv. If the length of the edge e is 0, set the slope of $s along that edge to be

ordpe(sv). When s = 0 set $s =∞.

Remark 3.10. When an edge e between v0 and v1 has length 0, we have that $s(v0) =

$s(v1). This is implicit in the above definition, where $s is extended linearly on edges.

Notably, the slope of such an edge is assigned a definite value. As the length of the edge

is 0 the piecewise linearity of the vanishing function will not be impacted as long as the

vanishing function does not change between the vertices incident with this edge.

In general the support of (s) might involve more than just the Cv’s, and so we write

(s) = Θ̄ +
∑

$s(v)Cv,

where Θ̄ is a horizontal divisor, by which we mean a prime divisor whose image under

the structure morphism C → Spec(R) is Spec(R).

We now state two crucial results from Katz [17].

Lemma 3.11. Suppose s has K-rational zeros and poles. Let e ∈ E(T ) be an edge

adjacent to v ∈ V (t). Then ordpe(sv) is equal to the slope of $s along e away from v.

Proof. When the weight of the edge is 0, this follows directly from the definition of the

vanishing function.

For the case of an edge having positive weight, the reader is referred to [17].

For the second lemma, we define the divisor γ on T via

γ =
∑
v

deg(φ∗L|Cv)(v).

Lemma 3.12. If s is a section of L that is regular on the generic fiber C and has

K-rational zeroes, then Ω($s) + γ ≥ 0. Thus $s ∈ L(γ).

Of relevance to us is the case where L is the trivial bundle and s = σz − z for σ ∈ G.

As the proof of Lemma 3.12 helps to illustrate how a section of L provides us with a

piecewise-linear function on the dual graph of the special fiber, we include it here.

Proof. By definition of the specialization map and the fact that s is a rational section

of the trivial bundle in this case, we have that
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γ(w) = ρ((s))(w) ∼ ρ
(( s

π$s(w)

))
(w),

where ∼ denotes linear equivalence. This follows from the fact that the specialization

of a vertical divisor lies in the principal divisors of T ; see Chapter 2 of Baker [3].

Now,

( s

π$s(w)

)
= Θ̄ +

∑
v

($s(v)−$s(w))Cv,

whence

ρ((
s

π$s(w)
))(w) = deg((Θ̄ +

∑
v

($s(v)−$s(w))Cv) · Cw) (3.1)

≥
∑
e=vw

($s(v)−$s(w)) (3.2)

= −Ω($s)(w). (3.3)

The inequality follows from the fact Θ̄ is effective, and so intersects a component Cw of

the special fiber with non-negative multiplicity on smooth points of Cw.

This completes the proof.

Note that in the case s = σz − z we may conclude a stronger result. Namely, as the

divisor (σz − z) is a vertical divisor we may take Θ̄ = 0. This gives us

Corollary 3.13. Suppose s in the above lemma is replaced by σz − z. Then with the

notation as above, we have that Ω($s) + γ = 0.
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3.4 Hurwitz Trees as Tropical Curves

In this section we will explore the link between Hurwitz trees and tropical curves. Our

goals are two-fold. Suppose we have a Hurwitz tree T associated to the action of a finite

group G on R[[z]], as in Section 2.5 of Chapter 2.

• We first wish to view the underlying metric tree of our Hurwitz tree as a tropical

curve. This is more or less immediate from the definitions. There are some sub-

tleties, however, in how the Hurwitz tree as constructed by Brewis will differ from

that constructed by Katz, and this will be seen in the metric on the tree.

• Second, we will view the depth and Artin characters of a Hurwitz tree evaluated at

σ ∈ G as being closely related to the vanishing function for the section s = σz− z.
We will find that the difference between the former functions and the latter is

dependent upon the metric of the tree and can be explained in terms of rescaling

our parameter z on the disk Spec(R[[z]]) to be the uniformizer on progressively

smaller disks.

Once these two steps are complete we will be able to view Hurwitz trees associated to

group actions on disks as tropical curves with special vanishing functions that satisfy

certain axioms.

3.4.1 The underlying tree as a tropical curve

Let G be a finite group acting on R[[z]]. From Section 2.5 we may associate to this

group action a Hurwitz tree T with underlying tree T .

The metric ε on T on an edge e has already been defined in Section 2.5 as the thickness

of the annulus obtained when going from an open disk containing fixed points of the

G-action to the residue class of a fixed point on the disk.

Because the Hurwitz tree constructed in 2.5 has only finitely many leaves (corresponding

to finitely many fixed points modulo the G-action), the tree obtained in Section 2.5

satisfies the definition of a metric tree, as only finitely many edges have weight 0 and

the rest have positive weight.

Remark 3.14. One difference that appears between our Hurwitz trees and those used in

Katz’s paper [17] are that the metrics on our trees may differ from 1 on bounded edges,

whereas in Katz’s paper they are all equal to 1.

Two observations yield the explanation for this difference:
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• First, the weights on the Hurwitz trees are always rational numbers. Recall from

the proof of Theorem 2.7 that the annuli defining our metric are obtained after

possibly extending the field K by a totally ramified extension, and so the thick-

ness of the annuli may be in Q \ Z. One may choose a minimal totally ramified

field extension L/K and, after replacing K by L, assume that the weights are all

integers.

• Second, after assuming the edges of the Hurwitz tree all have integer weights, we

may subdivide any edge e of weight n > 1 to ensure that all edges have weight 1,

thus reducing to the situation of Katz’s paper.

We now have a tropical curve (T, ε) that serves as the underlying tree of the Hurwitz

tree.

3.4.2 Vanishing functions as depth / Artin characters

In this subsection we will explore the connection between the depth and Artin character

of a Hurwitz tree as defined in Brewis [6] and the vanishing function defined by Katz on

a tropical curve [17].

Definition 3.4.1. For every σ ∈ G with σ 6= 1, define fσ by

fσ = σz − z.

Remark 3.15. Consider the divisor (fσ) =
∑

v(fσ)(v)Cv, where (fσ)(v) is the coefficient

of (fσ) on the component Cv of the special fiber corresponding to vertex v. Thus we see

that (fσ)(v) = $fσ(v) by definition of the vanishing function for the section fσ.

Definition 3.4.2. Fix a vertex v ∈ T corresponding to a component Cv. Let f ∈ R[[z]]

be some element. Then

valv(f)

will denote the order of vanishing of f on component Cv.

Remark 3.16. Note that (fσ) is a vertical divisor on Spec(R[[z]]); that is, one supported

entirely on the special fiber, where by definition

(fσ)(v) = valvfσ.
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By definition of the depth character (see Section 2.2) and by Theorem 2.12, we note that

on the component v0 corresponding to Spec(R[[z]]) this is closely related to the depth

character δT = δYG . That is, −|G|valv0fσ = −|G|valY (σz − z) = δYG(σ).

We may extend the relation between δv(σ) and $fσ(v) for any vertex v of the Hurwitz

tree via a lemma.

From section 2.5 we know that the depth character δv of a vertex v corresponds to in-

duced character of the depth character δ′v on a residue class Ek of a fixed point contained

in Spec(R[[z]]). That is, δv = IndGGkδ
′
v, where Gk is the stabilizer of the residue class Ej .

Lemma 3.17. Suppose the unique path from v0 to vk on the Hurwitz tree goes through

edges e0, . . . , ek, with the weights of these edges ε0, . . . , εk, respectively. Then for σ 6=
1 ∈ Gk, Gk the monodromy group of vk, we have

δ′vk(σ) = −|Gk|$fσ(vk) + |Gk|(ε0 + . . .+ εk),

where fσ = σz0 − z0 for z0 = z the parameter defining C = Spec(R[[z]]). Here δ′vk is the

depth character on the residue class Ek to which vk corresponds.

Proof. As in the proof of Theorem 2.7, we may suppose that the parameter on Ek is

given by zk. Thus the depth character of vertex vk is given by

δvk(σ) = −|Gk|valvk(σzk − zk).

Suppose in general that vi precedes vi+1 for some vertex vi+1. Then, as in the proof of

Theorem 2.7,

−|Gk|valvi+1(σzi+1 − zi+1) = −|Gk|valvi+1(σzi − zi) + |Gk|ε,

where ε is the valuation of the element a defining the equivalence class to which vi+1

corresponds.

Iterating this, we may replace zi with zi−1 and so forth, where the next vertex is uniquely

determine by the partial order defined by the underlying tree. Thus, for a vertex vk as

in the statement of the lemma,
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δ′vk(σ) = −|Gk|valvk(σzk − zk) (3.4)

= −|Gk|valvk(σzk−1 − zk−1) + |Gk|εek (3.5)

= −|Gk|valvk(fσ) + |Gk|(εe0 + ...+ εek) (3.6)

= −|Gk|$fσ(vk) + |Gk|(εe0 + ...+ εek), (3.7)

where fσ = σz0 − z0.

Remark 3.18. Because δv = IndGδ′v, this provides a direct link between the depth char-

acter on a vertex and the vanishing function of fσ for σ 6= 1.

Recall from Lemma 3.11 that on an edge e, $s has slope ordpe(sv), where (from Sec-

tion 3.3) pe is the point of intersection between the components of the special fiber

corresponding to t(e) and s(e). In the case where s = fσ, we see that by definition of

ordpe

ordpe(fσ)v = ordzs(e)

(
fσ

π
valvs(e) (fσ)

)
= −#s(e)fσ, (3.8)

where ordzs(e) is the zs(e)-adic valuation on the disk corresponding to vertex s(e).

Thus, for a fixed edge, the function ordpe : G\{1} → Z defined by ordpe(σ) = ordpe(fσ)v

closely resembles the Artin character on that edge. In fact, we claim this is equal to

the Artin character of the residue class corresponding to a vertex v which an edge leads

from.

Lemma 3.19. For an edge e of T with weight ε and σ ∈ Gs(e) not equal to 1, we have

a′e(σ) = ordpe(fσ)v.

Here, a′e is the Artin character of the residue class Es(e), where Es(e) corresponds to the

vertex s(e) preceding edge e, and Gs(e) the monodromy group of s(e).

Proof. In the case where the weight of the edge is 0 (equivalently when t(e) is a leaf),

this follows directly from Equation 3.8. Namely, there is a unique fixed point of all the

elements in Gb for a leaf b, whence −#s(e)fσ = −1 = uGb = a′e(σ) for e the edge incident

with b.

To see this in the general case where ε 6= 0 we return to Theorem 2.7. Recall that in the

course of its proof we showed
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valD(fσ) = valY (fσ) + #Y (fσ)ε,

where D is a disk inside of Y such that the thickness of the resulting annulus is ε. Thus,

for σ 6= 1,

ordpe(fσ)v =
1

ε
$fσ(t(e))−$fσ(s(e)) by lemma 3.11 (3.9)

=
1

ε
valt(e)(fσ)− vals(e)(fσ) (3.10)

= −#s(e)(fσ) = a′e(σ) (3.11)

Remark 3.20. Thus the depth and Artin characters of the residue classes to which the

vertices correspond are closely related to the vanishing functions, with the Artin charac-

ter being equal to the slope of the vanishing function along edges and the depth character

being directly related to the vanishing function at vertices with a difference of the edge

lengths. In particular, for an edge e, we have that

ae(σ) = IndGa′e(σ) =
∑

g∈G/Gs(e)

̂a′e(gσg
−1) =

∑
g∈G/Gs(e)

ôrdpe(fgσg−1),

where f̂(gσg−1) equals f(gσg−1) if gσg−1 ∈ Gs(e) and is 0 otherwise (see Subsection

1.1.2 for definition of induced characters).

Example 3.2. We calculate the vanishing function of σz − z for σ ∈ G acting on

R[[z]] as in Example 2.7. This example showed that $σz−z(v0) = 0. We will calculate

$σz−z(v1), which by Lemma 3.17 is also the value of the vanishing function of σz − z
at the leaves.

By Theorem 2.7 we have

$σz−z(v1) = valD(σz − z) = valY (σz − z) + #Y (σz − z)valY (3)

2
= #Y (σz − z)valY (3)

2
.

Note that D is the disk corresponding to v1 and Y the unit disk corresponding to v0. By

the definition of the Artin character and the calculations in Example 2.3 we conclude

that
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$σz−z(v1) = valY (3).

We may then confirm Lemma 3.17 for $σz−z(v1). Namely,

$σz−z(v1) = εe0 −
δv1(σ)

|G|
=

valY (3)

2
+

valY (3)

2
= valY (3),

as desired.
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Examples

In this chapter we will explore examples that illustrate how the Hurwitz tree obstruction

can be approached from the point of view of tropical curves, namely in viewing the Artin

and depth characters as being closely related to to the vanishing function of sections of

the form σz − z, where σ ∈ G and z is a parameter on the disk. The examples are:

• the general quaternion group acting on a local power series ring in characteristic 2

• the lifting problem for certain metacyclic groups over fields of characteristic p > 2

The first example, in Section 4.1, is found in Chapter 3 of Brewis’ thesis [6], where it is

shown that the action does not lift due to the Hurwitz tree obstruction. In this section

we will make heavy use of the piecewise linearity of the vanishing function of sections

and thus the example will serve to illustrate the connection to tropical curves described

in Chapter 3.

The second example, in Section 4.3, is inspired by Bouw’s notes [5]. For general groups

of the type described in the notes, it is shown that the Hurwitz bound (discussed in

Section 1.5) prevents the group action from lifting once its cardinality is large enough.

Here we will show that even when the Hurwitz bound is not violated the action will not

lift due to a violation of the Hurwitz tree obstruction.
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4.1 Quaternionic actions

4.1.1 Goal of the quaternion example

The goal of the first example is to show that simple quaternionic actions on k[[z]] do

not lift to characteristic 0, where k = F2.

We will accomplish this by constructing piecewise linear functions Λχ0 , Λχ1 , and Λψ

on the Hurwitz tree associated to the G-action assuming it does lift to characteristic 0.

Here, χ0, χ1, and ψ are characters of G.

At a specific leaf b0 of the tree we will show in Lemma 4.15 that Λχ0(b0) + Λχ1(b0) ≥
1
2Λψ(b0), and in Lemma 4.17 that Λχ0(b0) + Λχ1(b0) < 1

2Λψ(b0), thus obtaining a con-

tradiction to the action lifting.

Simple quaternionic actions are defined in the following subsection, along with the char-

acters χ0 and χ1. Following this, we will show the existence of the leaf b0 by demonstrat-

ing an equivalent notion of simple actions. The character ψ is defined in Section 4.2,

along with the piecewise linear functions Λφ for a character φ of G. Our contradiction

will follow.

4.1.2 Set-up for the quaternionic action

Our set-up for this example is as follows. Let

G = Q2n+1 = 〈σ, τ |τ2n = 1, τ2n−1
= σ2, στσ−1 = τ−1〉

act on a local ring k[[z]], where k = F2, where the bar denotes the algebraic closure.

That is, we have an injection

φ : G ↪→ Autkk[[z]].

We will make heavy use of the following cyclic subgroups of G, which will be needed to

define the characters χ0 and χ1 that are used to show simple actions fail to lift:

H0 = 〈τ〉, H1 = 〈σ〉, and H2 = 〈στ〉.

Note that H0 has order 2n whereas the other two cyclic subgroups have order 4.
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Remark 4.1. It is easy to verify that up to conjugation by elements of G the only other

cyclic subgroups of G are of the form 〈τ2r〉 for r some integer.

We now define the characters χ0, χ1, and χ2. These are essential to the definition of a

simple quaternionic action.

Definition 4.1.1. We define 3 one-dimensional characters of G, χi : G → {±1} for

i ∈ {0, 1, 2} such that χi, when restricted to Hi, is trivial, i.e.

χi(g) = 1

whenever g ∈ Hi.

Explicitly, and keeping in mind that the χi are homomorphisms as they are characters

of one-dimensional representations,

χ0(τ) = 1, χ0(σ) = −1,

χ1(τ) = −1, χ1(σ) = 1,

χ2(τ) = −1, χ2(σ) = −1.

Remark 4.2. Note that χi defines a nontrivial character of the quotient group G/〈τ2〉 ∼=
Z2

2. Indeed, the χi are precisely the pullbacks to G of the three nontrivial characters of

G/〈τ2〉.

With these characters and subgroups in mind, we define what it is for a G-action on

k[[z]] to be simple. This definition makes use of the Artin character of a G-action on

k[[z]] for k a field, which was defined in section 2.7.

So as to simplify the notation, we will here define, for any two characters ψ and χ of G,

ψ(χ) = 〈ψ, χ〉,

where the inner product is defined as in Serre’s book [23] to be

〈ψ, χ〉 =
1

|G|
∑
g∈G

ψ(g)χ(g).

Definition 4.1.2. Keep the notation as above. We say theG-action is simple if aφ(χ0) =

2 and aφ(χ1) = aφ(χ2) ≥ 2.
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Remark 4.3. • Simple actions were introduced by Chinburg, Guralnick, and Har-

bater in [8], where it was shown that such actions satisfy the Bertin obstruction,

an obstruction strictly weaker than the Hurwitz tree obstruction.

• As we will see in the next subsection, this may be reinterpreted in terms of the

existence of certain fixed points of the G-action in the case of a lift to characteristic

0.

• It is shown in Chapter 3 of Brewis [6] that simple actions can always be defined

for G and k[[z]] as above.

Our aim is to show that simple actions do not lift by constructing piecewise linear

functions associated to the characters of G that are defined on the Hurwitz tree in the

case of a lift. We will do so in two broad steps:

• First, in the following subsection, we will show that the definition of the action

being simple is equivalent to the existence of certain fixed points under the G-

action in characteristic 0, assuming it lifts.

• Second, in section 4.2 we will construct piecewise linear functions corresponding to

the vanishing functions of the sections gz− z for g ∈ G. By the results of Chapter

3 these will be closely related to characters of G, and we can exploit this relation

to arrive at a contradiction to simple actions lifting.

4.1.3 Equivalent notion of simple actions

In this subsection we will provide an equivalent definition of the G action being simple,

and in doing so prove the existence of a leaf b0 of the Hurwitz tree on which the piecewise

linearity of certain functions will be violated.

Suppose the G-action on k[[z]] lifts to characteristic 0.

Definition 4.1.3. Denote by B the set of leaves of the Hurwitz tree, and Bi the set

of leaves with monodromy group Hi (up to equivalence by conjugation). Also, let B′ =

B0 ∪B1 ∪B2, and Bi = B′ \Bi.

Remark 4.4. Using the harmonicity condition on the Artin character of an edge (the

third axiom in the definition of the Hurwitz tree), we know that

aφ = ae0 =
∑
b∈B

ab.
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The first equality follows from Theorem 2.24, which says the Artin character of G acting

on k[[z]] is the Artin character of the Hurwitz tree.

Here, ab is the Artin character on the edge incident with leaf b. The third axiom tells us

that ab = u∗Gb , where Gb is the monodromy group of vertex b and u is the augmentation

character, which takes the value −1 for all g 6= 1 and |Gb| − 1 otherwise. In particular

the inner product of the augmentation character with the trivial character is 0. Thus,

we may rewrite the above as

ae0 =
∑
b∈B

u∗Gb .

We are now able to demonstrate an equivalent notion of the action being simple in the

case of a lift.

Lemma 4.5. Suppose a Q2n+1-action on k[[z]] lifts. Then the action is simple if and

only if |B0| ≥ 2 and |B1| = |B2| = 1.

Proof. Write

ae0(χi) =
∑
b∈B

u∗Gb(χi) =
∑
b∈B
〈u∗Gb , χi〉.

Using Frobenius reciprocity, this is equivalent to

∑
b∈B
〈uGb , χi|Gb〉Gb ,

where we have restricted χi to Gb and the inner product is with respect to Gb.

By construction, χi is trivial when restricted to Hi or any cyclic subgroup of the form

〈τ2r〉, and is a nontrivial irreducible character otherwise when restricted to Hj for j 6= i.

Thus, as uG may be written as the sum of all nontrivial characters of G for any group

G,

〈u∗Gb , χi〉 =

0 if [Gb] = Hi or [Gb] = 〈τ2r〉

1 if [Gb] = Hj for j 6= i.

Consequentially, we find that
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ae0(χi) = |Bi| = |Bj |+ |Bk|,

where k, i, j are pairwise inequivalent. The latter equality follows from the fact all the

Bj ’s are disjoint.

Returning to the original definition of our action being simple, we end up with four

inequalities:

|B1|+ |B2| = 2,

|B0|+ |B2| ≥ 2,

|B1|+ |B0| ≥ 2,

|B0|+ |B2| = |B1|+ |B0|.

Solving these, we find that the condition of our action being simple implies

|B0| ≥ 2, |B1| = |B2| = 1.

Conversely, if we assume the above equations, we end up with the original definition

by working backwards. Thus, our action being simple is equivalent to the existence of

leaves of the Hurwitz tree with monodromy groups Hi.

Remark 4.6. We will denote the unique leaf in B2 by b0.
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4.2 Piecewise linear functions from characters

Recall from section 3.4 that in the case of a lift to characteristic 0 of a local G-action

we get a Hurwitz tree with piecewise linear functions defined for all g ∈ G with g 6= 1.

Namely, we obtain functions $fg , the vanishing functions for sections of the form fg =

gz − z, which measure the order of vanishing of fg on components of the special fiber

(corresponding to vertices), and which have slopes ordpe(fg) along edge e.

Furthermore, ordpe(fg) = −ae(g), and we take this as a definition of ordpe(f1), i.e.

ordpe(f1) = −ae(1).

Similarly, for g = 1 we define

$f1 = −
∑
g 6=1

$fg .

Definition 4.2.1. We define for all vertices v ∈ T a function $∗v : G→ Q via $∗v(h) =∑
g∈Gv/G $̂fghg−1 (v).

Similarly, for all edges e ∈ T , define ord∗pe : G→ Q by ord∗pe(h) =
∑

g∈Gt(e)/G ôrd
∗
pe(fghg−1).

Here f̂ denotes a function that is 0 if gσg−1 6∈ Gv or Gt(e), respectively, and is otherwise

equal to f .

Remark 4.7. By what was shown in Section 3.4, we see that ord∗pe(h) = −ae(h).

Let φ be a character of G.

Definition 4.2.2. We define Λφ as a function on the vertices of the tree by setting

Λφ(v) = 〈φ,$∗G(v)〉 =
1

|G|
∑
g∈G

φ(g)$∗fg(v).

As well, the slope of this function on an edge e is given by

Λφ(e) = 〈φ, ord∗pe〉 =
1

|G|
∑
g∈G

φ(g)ord∗pe(fg).

Remark 4.8. We note that Λφ is a continuous, piecewise-linear function. That is, given

any vertex v on the Hurwitz tree and a unique path from v0 to v along edges e0 to ek,

Λφ(v) =
∑

e εeΛφ(ei) where the sum is over the unique edge path. This follows from the

continuity of the vanishing function. That is,
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Λφ(v) = 〈φ,$∗G(v)〉 = 〈φ,
∑
e

εeord∗pe〉 =
∑
e

εeΛφ(e),

where the sum
∑

e is over the unique path from edge e0 to the edge whose terminal

vertex is v.

Definition 4.2.3. To simplify the notation, for any subset A ⊂ B of the leaves we will

define #Ae = |{b ∈ B|b > t(ei) and b ∈ A}|.

By the results of the previous section, we have the following lemma.

Lemma 4.9. Keep the notation as above. We have that

Λχi(e) = −〈χi, ae〉 = −|{b ∈ B|b > t(ei) and b ∈ Bi}| = −#Bi
e.

The contradiction to the G-action lifting to characteristic 0 will be as follows:

By the piecewise linearity of the Λφ’s, we may calculate Λφ(b0) both directly and by

summing over all the slopes along edges leading up to b0. Here, b0 is the unique leaf

with monodromy group H2.

Though we will not be able to directly compare the two values due to terms that will

depend on the valuation of our ring R, we can construct another piecewise linear function

from a character ψ such that Λψ has a greater slope for every edge than the Λχi ’s, but

is less than the value of Λχ0 + Λχ1 at b0. This will contradict the piecewise linearity of

Λχi .

To that end, we define a character of G as follows:

Definition 4.2.4. Let χ : H0 = 〈τ〉 → C be any injective homomorphism. In particular

χ is a nontrivial character of H0. Define

ψ = IndGH0
χ

Lemma 4.10. For any nontrivial cyclic subgroup H of G, ψ|h is the sum of two non-

trivial characters.

Proof. By the normality of H0,

ψ(g) =

0 if g /∈ H0

2χ(g) if g ∈ H0.
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Thus ψ|〈τr〉 is 2χ|〈τr〉 and so is nontrivial for all r such that τ r 6= 1.

The only other cyclic subgroups of G up to conjugation are H1 and H2, both of which

are isomorphic to Z4. Note that it is sufficient to choose H1 and H2 as the monodromy

groups of the Hurwitz tree are only defined up to conjugation, and none of the results

are impacted by choosing a given representative of the conjugacy class.

By definition of ψ,

ψ(1) = 2, ψ(τ2n−1
) = −2, and ψ(στk) = 0.

In particular we see that ψ|H = λ1+λ2, where H is any subgroup of G that is isomorphic

to Z4 the λi’s are irreducible characters of Z4 satisfying λ1(1) = i and λ2(1) = −i.

Lemma 4.11. For any edge e of T ,

Λχ0(e) + Λχ1(e) = −#B0
e −#B1

e

and

Λψ(e) = −2#Be.

Proof. Because Gb is a nontrivial cyclic subgroup of G for all b ∈ B, by Lemma 4.10 we

have that

〈ψ, u∗Gb〉 = 2 for all b ∈ B,

whence

Λψ(e) = −2#Be.

By Lemma 4.9

Λχ0(e) + Λχ1(e) = −#B0
e −#B1

e ,

whence the result.
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Remark 4.12. We would like to conclude that, as B0 ∪B1 ⊂ B,

Λχ0(e) + Λχ1(e) ≥ 1

2
Λψ(e),

however, B0 ∩ B1 = b0 6= ∅, so we cannot immediately conclude this. To get around

this, we make a new definition.

Definition 4.2.5. Let Λ∗χi(e) = Λχi(e) + 1, and Λ∗ψ(e) = Λψ(e) + 2.

Remark 4.13. This eliminates any contribution from the vertex b0, as now we have that

Λ∗χi(e) = −#Aie, where Aie = Bi
e \{b0}. Similarly, Λ∗ψ(e) = −#Ae, where Ae = Be \{b0}.

Remark 4.14. The continuity of the vanishing function Λφ(v) for any character φ of G

is such that

Λφ(v) =
∑
e

εeΛφ(e),

where the sum is over the unique edge path from e0 to vertex v. If we replace the slopes

Λχi(e) by Λ∗χi(e), we obtain a new value Λ∗χi(v) at vertex v, namely

Λ∗χi(v) = Λχi(v) +
∑
e

εe.

We similarly have

Λ∗ψ(v) = Λψ(v) + 2
∑
e

εe.

Lemma 4.15. With the notation as above, we have

Λ∗χ0
(b0) + Λ∗χ1

(b0) ≥ 1

2
Λ∗ψ(b0).

Proof. As A0
e ∪A1

e ⊂ Ae and A0
e ∩A1

e = ∅ for all edges e leading up to b0, we have that∑
e εe(Λ

∗
χ0

(e) + Λ∗χ1
(e)) ≥

∑
e εe(

1
2Λ∗ψ(e)) holds true, whence the result.

Remark 4.16. The functions Λ∗φ are closely related to the density of a Hurwitz tree in

Chapter 3 of Brewis’s thesis [6]. Our functions emphasize the continuity of the vanishing

functions of elements of the form σz − z.

Lemma 4.15 compared the values of Λ∗χ0
(b0)+Λ∗χ1

(b0) to 1
2Λ∗ψ(b0) by using the continuous

piecewise-linearity of these functions to sum their values along the preceding edges. We

will now calculate directly the values of these functions at b0.
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Lemma 4.17. We have that

Λ∗χ0
(b0) + Λ∗χ1

(b0) <
1

2
Λ∗ψ(b0).

Proof. We will directly compute both of Λ∗χ0
(b0) + Λ∗χ1

(b0) and 1
2Λ∗ψ(b0) and compare

them.

Recall from section 3.4.2. that we can explicitly relate the depth character to the van-

ishing function at a vertex v once we know the metric on the tree. Namely, for g ∈ Gv,
g 6= 1,

δ′v(g) = −|Gv|$fg(v) + αv,

where

αv = |Gv|(εe0 + · · ·+ εek).

Here we assume that the unique path from v0 to v is given along edges e0, . . . , ek.

At the vertex b0 we have that αb0 = |Gv|(εe0 + . . . + εel), t(el) = b0, whence δ′Gb0
(g) =

−|Gb0 |$fg(b0) + αb0 by definition of the vanishing function.

As |Gb0 | = 4 the vanishing function is related to the depth character via

$fg(b0) =
−1

4
δ′b0 +

1

4
αb0 (4.1)

Thus,

Λχ(b0) =
−1

4
〈χ, δb0 + αb0u

∗
Gb0
〉 =
−1

4
〈χ, δb0〉 −

∑
e

εe,

and similarly

Λψ(b0) =
−1

4
〈ψ, δb0 − αb0u∗Gb0 〉 =

−1

4
〈ψ, δb0〉 − 2

∑
e

εe.

Thus, from Remark 4.14 we have Λ∗χi(b0) = −1
4 〈χ, δb0〉 and similarly Λ∗ψ(b0) = −1

4 〈ψ, δb0〉
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Recall that at the leaves of a Hurwitz tree the depth character is given by (δmult)∗.

By Lemma 2.1 we have that

1

2
Λ∗ψ(b0) =

−1

4
3valπ(2),

and

Λ∗χ0
(b0) + Λ∗χ1

(b0) =
−1

4
4valπ(2),

where valπ(2) is the valuation of 2 with respect to the uniformizer π of R.

Thus,

Λ∗χ0
(b0) + Λ∗χ1

(b0) <
1

2
Λ∗χ(b0),

as desired.

Our main theorem follows from the above two lemmas:

Theorem 4.18. Simple quaternionic G-actions on k[[z]] fail to lift to characteristic 0.

Proof. By Lemma 4.15,

Λ∗χ0
(b0) + Λ∗χ1

(b0) ≥ 1

2
Λ∗ψ(b0)

and by Lemma 4.17,

Λ∗χ0
(b0) + Λ∗χ1

(b0) <
1

2
Λ∗ψ(b0).

This is a contradiction, and so the action fails to lift.
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4.3 Metacyclic groups

4.3.1 Goal of the metacyclic example

A group is referred to as metacyclic if it is isomorphic to an extension of a cyclic group

by a cyclic group.

This example was inspired by Bouw’s and Wewer’s notes [5].

The goal of this example is to show that particular instances of metacyclic groups acting

on curves in positive characteristic fail to lift to characteristic 0. This will be done

through the Hurwitz tree obstruction. Namely, we will show that the harmonicity of

the Artin character of the Hurwitz tree (the third axiom of the Hurwitz tree) will be

violated if the action is assumed to lift.

In the following subsection we will define the group G and its action on a curve. For

every p > 2 we will have a different group and curve. The genus of the curve will be

calculated in Lemma 4.20, which will imply that the Hurwitz bound will be violated for

all p > 41 (see Section 1.5 for a discussion on the Hurwitz bound). This will imply in

particular that the action fails to lift for p > 41. Because the Hurwitz tree obstruction

will hold for all odd primes, this will serve to illustrate that the Hurwitz tree obstruction

is more informative than the Hurwitz bound for this example.

Following this we will use the theory in Serre’s book [23] on local field extensions to find

out the form of the Artin character of the G-action. This will allow us to show that

the Artin character of the Hurwitz tree - assuming it exists - will differ from the Artin

character of the G-action on the curve, thus contradicting Theorem 2.24.

4.3.2 Set-up for metacyclic group example

Let p > 2 be a prime.

G will be defined by its action on a curve in P2
k̄
, where k̄ is the algebraic closure of

k = Fp.

Definition 4.3.1. Let the curve C ⊂ P2 be defined by yp − y = xp+1.

G is generated by the elements σ and τ , where

σ(x) = x, σ(y) = y + 1
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and

τ(x) = ζx, τ(y) = ζp+1y

for ζ ∈ k̄ a fixed primitive (p2 − 1) root of unity.

Remark 4.19. Thus τστ−1(y) = y+ ζ−p−1 6= σ(y), whence G is a non-abelian group. In

fact, we have that G ∼= Z/pZ o Z/(p2 − 1)Z.

We may view G as the Galois group for a tower of fields

k(x) ⊂ k(x)[x1]/(xp
2−1

1 − x) ⊂ L = k(x1)[y]/(yp − y − xp+1
1 ).

This is a Kummer extension of k(x1)/k(x) followed by an Artin-Schreier extension of

L/k(x1) of degrees p2 − 1 and p, respectively.

We conclude this subsection by showing the Hurwitz bound is violated for p > 41. To

do so we must calculate the genus of C.

Lemma 4.20. The genus of the curve C = k[x, y]/(yp − y − xp+1) is p(p−1)
2 .

Proof. By Kummer’s Theorem [27] both field extensions k(x1)/k(x) and L/k(x1) are

totally ramified over ∞. Denote the unique point at ∞ in C by P , and in k(x1) by P ′.

We will calculate the ramification filtration above ∞ for these two extensions. We focus

on the Artin-Schreier extension with Galois group 〈σ〉 ∼= Z/pZ.

By proposition 3.7.8c in Stichtenoth [27] we find that the degree of the different d(P/P ′)

is (p+ 2)(p− 1). Combined with Hilbert’s different formula (Proposition 4.9 of Chapter

1 in Cassels and Frohlich [1]), we conclude that the ramification filtration for P ′/P is

Z/pZ = G0 = . . . = Gp+1 ⊃ Gp+2 = {1}.

This allows us to calculate the genus of k[x][y]/(yp−y−xp+1) by looking at the morphism

of it to P1
k̄

defined by the action of the Galois group 〈σ〉. Namely, by the Riemann-

Hurwitz equation and the fact that ∞ is the only place where the cover is ramified we

find that the genus of k[x][y]/(yp − y − xp+1) is p(p− 1)/2.

Corollary 4.21. For G and C as above, the action of G on C does not lift to charac-

teristic 0 for p > 41. In particular the Hurwitz bound is violated for such primes.
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Proof. Recall that the Hurwitz bound says that for any curve defined over characteristic

0, any automorphism group G of the curve satisfies |G| < 84(g− 1) where g is the genus

of the curve.

Suppose the G-action lifts to characteristic 0. The arithmetic surface for which C is

the special fiber is such that its generic fiber having the same genus as the special fiber.

This follows by the assumptions of the curves to which the lifting problem applies - see

Chapter 1 for the details.

Thus G acts on a curve in characteristic 0 of the same genus as C, and by inspection we

see that for p > 41 the Hurwitz bound is violated, whence the result.

4.3.3 Showing the metacyclic group action fails to lift

If the G-action define in the previous subsection lifts to characteristic 0, it must lift

locally about each closed point by the local-to-global principle (Theorem 1.39), and in

particular it must lift locally at the point at ∞ on C. Our aim is to show this fails.

Recall that we may view G as the Galois group for a tower of function fields

k(x) ⊂ k(x)[x1]/(xp
2−1

1 − x) ⊂ L = k(x1)[y]/(yp − y − xp+1
1 )

of the curves k̄[x], k̄[x1], and C, respectively.

Localizing these curves at ∞ and taking the completion gives us a tower of fields

k̄((x)) ⊂ k̄((x1)) ⊂ k̄((z)),

for which x, x1 and z are local parameters at ∞ for the respective curves.

To proceed further, we need a definition.

Definition 4.3.2. Let k((z))/k((x)) be a Galois extension with Galois group G. We

assume that the integral closure of k[[x]] in k((z)) is k[[z]]. Define iG : G→ Z by

iG(g) = valz(gz − z),

where valz is the valuation defining the DVR k[[z]] whose fraction field is k((z)).

Remark 4.22. • As shown in Chapter IV of Serre [23] this definition is independent

of a choice of uniformizer z of k[[z]].

89



Chapter 4. Examples 90

• Note that iG(g) = −aφ(g), where aφ is the Artin character of the G-action φ :

G→ Autkk[[z]].

To ease notation we will make a definition.

Definition 4.3.3. Keep the notation of the previous definition, and let H be a normal

subgroup of G. For g ∈ G and h ∈ G/H, we will write g → h to mean h = g (mod H).

That is, the image of g in the quotient group G/H is h.

The following lemma from Serre [23] is crucial to our main result:

Lemma 4.23 (Proposition IV.1.3 of [23]). Let H be a normal subgroup of G, where G

acts k-linearly on k[[z]]. For every h ∈ G/H,

iG/H(h) =
1

e′

∑
g→h

iG(g),

where e′ = ek((z))/K′ is the ramification index of k((z))/K ′ for K ′ the fixed field of H.

We will use the above lemma to determine the value of the Artin character of G acting

on k[[z]] for g /∈ 〈σ〉.

Lemma 4.24. For all g ∈ G \ 〈σ〉, iG(g) = 1.

Proof. Let H = 〈σ〉.

Note that k((x1))/k((x)) is a Galois Kummer extension, with Galois group G/H ∼=
Z/(p2 − 1)Z. By considering the cardinalities of the groups, for any h ∈ G/H we have

that

|{g ∈ G : g → h}| = p.

By the definition of G, for all h ∈ G/H, h(x1) = cx1 for some constant c, and so

iG/H(h) = 1 for all h 6= 1.

It follows that iG(g) = 1 for all g /∈ 〈σ〉. Certainly each g ∈ G satisfies iG(g) ≥ 1 by the

fact the extensions of the fields are totally ramified above ∞ (see the proof of Lemma

4.20), but it is at most one as by Lemma 4.23 and for g /∈ H

iG/H(h) = 1 =
1

e′

∑
g→h

iG(g) =
1

p

∑
g→h

iG(g).

Thus, as |{g ∈ G : g → h}| = p, we must have iG(g) = 1 for all g /∈ 〈σ〉.
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Remark 4.25. Thus the Artin character of a Hurwitz tree associated to the lifted action

of G takes value −1 for all g 6∈ 〈σ〉. We will use this to arrive at a contradiction. First

we will show σ ∈ Gb for some leaf b of the Hurwitz tree.

Lemma 4.26. Assume that the action of G on C lifts locally at the point at ∞, so that

we have an associated Hurwitz tree T .

There exists a leaf b0 ∈ B of the Hurwitz tree such that σ ∈ Gb0.

Proof. By the normality of 〈σ〉 we have that

gσg−1 ∈ 〈σ〉∀g ∈ G.

Thus if σ 6∈ Gb for all b ∈ B we would have

aT (σ) = 0

contradicting the fact that

aφ(σ) = −p− 1

from the ramification filtration for 〈σ〉 in the Artin-Schreier extension (i.e. Gi = Hi for

all subgroups of G).

Thus, without loss of generality σ is contained in Gb0 for some leaf b0 of the tree.

We may now prove our main result.

Theorem 4.27. The local G-action at ∞ does not lift to characteristic 0.

Proof. We consider two possibilities:

• Gb0 = 〈σ〉;

• Gb0 6= 〈σ〉.
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In the first case the normality of 〈σ〉, combined with the definition of the induced rep-

resentation, implies that

u∗Gb0
(σ) = −(p2 − 1) < −p− 1 = aT (σ).

As aT (σ) =
∑

b∈B u
∗
Gb

(σ), this is a contradiction.

In the second case there exists some g 6∈ 〈σ〉 that generates Gb0 of the form σmτn. By

left multiplying by σ we have that τn 6= 1 is in Gb0 , and as this must commute with σ

we have that n is some multiple of p− 1. In particular, we have 1 and τ are in separate

cosets of Gb0 as τ /∈ Gb0 . Letting 1 and τ be among the coset representatives of Gb0 in

G, we find that, by definition of the induced character and as 1 and τ commute with τn,

u∗Gb0
(τn) < −1,

contradicting Lemma 4.24.

In either case we arrive at a contradiction, and so the action cannot lift to characteristic

0.

Remark 4.28. Note that when p = 2, G is cyclic. In this case the Oort Conjecture

(Theorem 1.42)informs us that the action must lift.
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