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Abstract

This thesis documents a heavy-tailed analysis of stable portfolios. Stock market crashes occur

more often than is predicted by a normal distribution,which provides empirical evidence that

asset returns are heavy-tailed. The motivation of this thesis is to study the effects of heavy-

tailed distributions of asset returns. It is imperative to know the risk that is incurred for

unlikely tail events in order to develop a safer and more accurate portfolio. The heavy-tailed

distribution that is used to model asset returns is the stable distribution. The problem

of optimally allocating assets between normal and stable distribution portfolios is studied.

Furthermore, a heavy-tail sensitivity analysis is performed in order to see how the optimal

allocation changes as the heavy-tail coefficient is altered. In order to solve both problems,

we use a mean-dispersion risk measure and a probability of loss risk measure. Our analysis

is done for two-asset stable portfolios, one of the assets being risk-free, and one risky. The

approach used involves changing the heavy-tail parameter of the stable distribution and

finding the differences in the optimal asset allocation. The key result is that relatively

more wealth is allocated to the risk-free asset when using stable distributions than when

using normal distributions. The exception occurs when using a loss probability risk measure

with a very high risk tolerance. We conclude that portfolios assuming normal distributions

incorrectly calculate the risk in two types of situations. These portfolios do not account for

the heavy-tail risk when the risk tolerance is low and they do not account for the higher

peak around the mean when the risk tolerance is high.
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Chapter 1

Introduction

In recent history, there has been vast growth in the field of quantitative financial analysis.

The rise of powerful computer systems has facilitated the implementation of an immense

number of complicated mathematical models. Many of the concepts in theoretical and

empirical finance that have been created over the last half century, however, incorrectly

rest upon the assumption that asset returns follow a normal distribution. More specifically,

one of the most important theories in portfolio construction was designed under the normal

assumption. This theory, known as mean-variance portfolio theory, or modern portfolio

theory, was developed by Harry Markowitz in the 1950s through the early 1970s, and is still

widely used in the financial world.

Historically, many crashes in the capital markets, including the 1987 stock market crash, the

2001 dot-com bubble collapse and the current financial crisis, are empirical evidence that

low probability negative returns are more likely to occur than is predicted by the normal

distribution. The fundamental work and investigation of Mandelbrot and Fama led them to

reject the normal assumption and to propose the stable distribution as a statistical model for

asset returns. This sparked considerable interest in the study of empirical distributions of

financial assets, and in subsequent years, Mandelbrot and Fama’s conjecture was supported

by numerous empirical investigations. Since it is well-known that asset returns are not

normally distributed, the models should be expanded to use heavy-tailed stable distributions

in order to correctly account for potentially large losses in a portfolio.

Unfortunately, the stable distribution poses several key obstacles, and is not entirely efficient

and effective for use in portfolio selection. The first difficulty lies in the fact that there is no

closed form probability density function (PDF) for a stable distribution. Consequently, it is
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very difficult to obtain an analytic solution to a stable portfolio, and even though approxi-

mation exists, numerical integration must be used for accurate results. The second difficulty

is that the stable distribution has an infinite variance, meaning that the variance cannot be

used as a measure of risk. Instead, a new measure of risk must be defined. Furthermore,

in modern portfolio theory, the set of efficient portfolios is defined as those portfolios which

have maximum expected returns for a given set of portfolio variances, however, in the case of

heavy tails, the efficient frontier loses its meaning and must be replaced so as not to depend

on the variance as a measure of risk.

Infinite variances displayed in the financial markets can be modeled very accurately with

the use of a non-Gaussian stable distribution. The practical and theoretical appeals of this

approach are given by its attractive properties that are similar to those of the normal distri-

bution approach. For the purpose of portfolio analysis, one of these key stable distribution

properties is that of stability. By definition, a stable distribution is any distribution that

is invariant under addition. That is, the distribution of sums of independent, identically

distributed stable variables is itself stable, and has the same form as the distribution of

the individual summands. This property is very appealing, as it broadens the central limit

theorem to include distributions of infinite variance. The property that stable distribution

the sum of stable distributions is a stable distribution makes them appropriate for use in

optimal allocation problems.

In this thesis we address the question of how the addition of heavy-tails affects optimal

asset allocation. Furthermore, we aim to obtain insight into how a change in the heaviness

of the tails of the stable distribution affects our optimal asset allocation. In other words,

we perform a heavy-tail sensitivity analysis of a stable portfolio. It is important to answer

these questions to get an idea of how much riskier an optimal asset allocation is without

the measurement of risk located in the heavy-tails. We also answer how much better our

portfolio is with respect to a risk to reward ratio.

The thesis is divided into two parts and has two objectives. The first part compares the

normal and stable assumptions with respect to the optimal portfolio, analyzes heavy tail

sensitivity on the portfolio models. We quantify the differences in the allocation of assets

when the data is fitted to the stable non-Gaussian distribution, rather than to the normal

distribution. The latter part of this thesis consists in determining the effects of changes in

the heavy-tail coefficient on the optimal asset allocation.

This thesis is conducted within the context of several portfolio optimization models that
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use stable distributions (and normal distribution in the limiting case) for asset returns. In

order to create the necessary framework for the analysis, we define two new portfolio risk

measures. The first asset allocation model considers the expected value of some power of

the absolute deviation of the portfolio from its mean as the measure of risk. In the case of

the power absolute deviation (also termed mean-dispersion) risk measure, when the power

is equal to two, we are left with the classical quadratic utility as is seen in modern portfolio

theory. The second asset allocation model’s risk measure assumes that the probability that

the portfolio return is less than the value at risk. This is known as a loss probability model.

With the aid of these two models, analysis is done for a two-asset portfolio and a multi-

asset portfolio. Empirical analysis for major US indices is used to show the results from the

developed theory.

This thesis consists of 5 chapters. Chapter 2 is a background chapter in which the basic

framework and problem definition for our portfolio models is stated. Stable portfolio models

in the form of Fama’s two separation model are outlined and introduced. The effects of

diversification within the framework of a stable portfolio are described. The stable distribu-

tion is defined, and the numerical methods used for stable distributions are explained. Data

fitting and sampling methods for these distributions are explained, as are modifications to

the maximum likelihood and quantile based parameter estimation technique which allow us

to fit the data to any amount of tail heaviness.

In the next two chapters of this thesis, two two-asset portfolio models are described, and

empirical results and analysis of the developed models are shown. These are the core chapters

of this thesis. The mean-dispersion model and the loss probability portfolio model are given

in Chapter 3 and Chapter 4, respectively. Finally, the conclusions are stated in Chapter 5.
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Chapter 2

Background

In this chapter we describe the framework and formulate the problem that is addressed in

the thesis. All of the assumptions and constraints are stated and the formulations of the

stable distribution that are used in the two subsequent chapters are shown. We give a brief

introduction to stable portfolios in the form of Fama’s two separation model which is used

to describe the diversification effects within these portfolios. We build a foundation for the

two models that are numerically analyzed in the following two chapters.

2.1 Basic Framework

Our portfolios are optimized and tested in a single investment period where money is invested

at an initial time and payoff is attained at the end of the period. We assume that the investor

optimizing the portfolio is risk-averse and therefore wants to minimize risk. The two main

constraints are that short selling is not permitted and that the problem is analyzed in

discrete time using daily returns of the stocks as the data points. Once the optimal portfolio

is determined, no reallocation of capital is allowed during the investment period for testing

purposes.
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2.2 Problem Formulation

We now define some terms and variables that are used to develop and analyze our portfolio

model. Although in general, portfolios consist of a large number of securities we focus on

two-asset portfolio models (one risky asset and one risk-free asset) for mathematical efficiency

and to be able to obtain useful insight into the effects of the addition of heavy-tails on the

optimal allocation. The following variables are used to construct our portfolios:

• W - portfolio return

• λ - percent of wealth allocated to the risk-free asset (λ ∈ [0, 1] for no short selling)

• z0 - risk-free asset return

• z ∼ Sα(βz, σz, µz) - stable distributed risky asset return

In general, we aim to solve the following problem

max E[W ]

subject to f(W ) ≤ q
(2.1)

where f(W ) is the function that specifies the risk measure for the portfolio, and W =

λz0 + (1 − λ)z is a linear combination of the risk-free asset and the risky asset. In other

words, the objective of this portfolio is to maximize the expected value of W subject to a

constraint of the risk measure. In the following two chapters, two different risk measure

functions are specified which constrain the amount of risk an investor wants to allow in the

portfolio. The next section describes the definition of the stable distribution, Sα(βz, σz, µz),

used to model the daily returns of the risky asset.

2.3 Stable Distribution

It is well documented in financial literature that asset returns are leptokurtotic. Stable

distributions are leptokurtotic distributions that are four-parameter functions with infinite

variance for which the generalized Central Limit Theorem holds and determines the domain

of attraction. That is, the importance of stable probability distributions is that they are
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attractors for sums of independent, identically distributed random variables. The normal

distribution is a limiting case of the general stable distribution and is the only special case

stable distribution that is not heavy-tailed. The probability theory of stable distributions

applicable to our portfolio model is described in the following section.

2.3.1 Definition & Properties

By definition, the distribution of any random variable X with distribution function F (x) is

said to have a heavy right tail if

lim
x→∞

eαx P(X > x) =∞ for all 0 < α < 2. (2.2)

In particular, for empirical equity data we observe that 1 < α < 2. In this case our random

variable X is heavy-tailed having finite mean and infinite variance. The tail condition in

Equation 2.2 also implies that this random variable X is in the domain of attraction of the

α−stable law. In other words, given t i.i.d. observations of stable random variables Xi, there

exist constants at and bt such that

t∑
i=1

Xi

at
+ bt

d−→ X as t→∞, (2.3)

where X ∼ Sα(σ, β, µ) is a stable random variable and is heavy-tailed. This convergence

result is a consequence of the stationarity of returns and of the generalized Central Limit

Theorem for normalized sums of i.i.d. random variables.

The key property of stable distributions is that of stability. A random variable X is stable

if for any independent copies of X, X1 and X2, and any a, b > 0 we have

aX1 + bX2
d
= cX + d (2.4)

for some c > 0 and d ∈ <. The distribution of sums of i.i.d. stable random variables is

stable and has the same form as the distribution of the individual summands. This property

tells us that stable distributions are the only possible limiting distributions for sums of i.i.d

distributed random variables with infinite variances.
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The general form of the univariate stable distribution is normally defined in most recent

literature as: X ∼ Sα(σ, β, µ) if the characteristic function of X is given by

φ(t) = E[eitX ] =

exp{−σα|t|α
[
1− iβ(tan πα

2
)(sign t)

]
+ iµt} α 6= 1

exp{−σ|t|
[
1 + iβ 2

π
(sign t) ln |t|

]
+ iµt} α = 1

(2.5)

The above stable distribution has four parameters, α, β, σ, µ. The first parameter 0 < α ≤ 2

determines the probability contained in the extreme tails of the distribution and is called

the characteristic exponent of the distribution. For α = 2, the stable distribution becomes

the normal distribution and for α < 2, the stable distribution is heavy-tailed with the

probability in the tails increasing as α decreases. When α ≤ 2 the variance is infinite.

The second parameter −1 ≤ β ≤ 1 is an index of skewness. For β = 0, the distribution is

symmetric. For positive and negative β the distribution is skewed right and left, respectively.

When β = 1 the left tail disappears completely and vice versa when β = −1 making the

distribution completely asymmetric. The third parameter σ determines the scale of a stable

distribution which determines the spread or dispersion. For α = 2, σ is one half the variance

and for α < 2, the variance is infinite and σ defines the scale but in a different manner than

the variance. The final parameter µ is the location parameter of the distribution. When

α > 1, µ is the expected value of the distribution, however, when α ≤ 1 the mean is infinite

and µ represents the location of the distribution differently.

From the above characteristic function, Equation 2.5, there are three special cases where the

formula simplifies to another distribution. For α = 2, the stable distribution becomes the

normal distribution. For α = 1 and β = 0, it becomes the Cauchy distribution and finally

for α = 1/2 and β = 1, it becomes the Lévy distribution.

In order to state the theoretical formulas which are used for numerical calculations required in

both data fitting and stimulation, we define a different parametrization of the characteristic

function. The standardized stable random variable has the following characteristic function

φ(t) = E[eitX ] =

exp{−|t|α
[
1 + iβ(tan πα

2
)(sign t)(|t|1−α − 1)

]
} α 6= 1

exp{−|t|
[
1 + iβ 2

π
(sign t) ln |t|

]
} α = 1

(2.6)

In order to define the computational formulas for the cumulative distribution function (CDF),

F(x;α, β), and the probability density function (PDF), f(x;α, β), for the above parametriza-

tion, we must define the following functions
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ζ = ζ(α, β) =

−β tan πα
2

α 6= 1

0 α = 1,
(2.7)

ξ = ξ(α, β) =

 1
α

arctan(β tan πα
2

) α 6= 1

π
2

α = 1,
(2.8)

c1(α, β) =


1
π
(π

2
− ξ) α < 1

0 α = 1

1 α > 1,

(2.9)

V (θ;α, β) =

cos(αξ)
1

α−1

(
cos θ

sinα(ξ+θ)

) α
α−1 cos(αξ+(α−1)θ)

cos θ
α 6= 1

2
π

(
π
2

+βθ

cos θ

)
exp

(
1
β

(
π
2

+ βθ
)

tan θ
)

α = 1, β 6= 0.
(2.10)

For a stable random variable, X, that has the characteristic function in Equation 2.6, the

PDF and CDF of X [11] are given by

(a) When α 6= 1 and x > ζ,

f(x;α, β) =
α(x− ζ)

1
α−1

π|α− 1|

∫ π
2

−ξ
V (θ;α, β) exp

(
− (x− ζ)

α
α−1V (θ;α, β)

)
dθ (2.11)

F (x;α, β) = c1(α, β) +
sign(1− α)

π

∫ π
2

−ξ
exp

(
− (x− ζ)

α
α−1V (θ;α, β)

)
dθ (2.12)

(b) When α 6= 1 and x = ζ,

f(ζ;α, β) =
Γ(1 + 1

α
) cos(ξ)

π(1 + ζ2)1/2α
(2.13)

F (ζ;α, β) =
1

π

(π
2
− ξ
)

(2.14)

(c) When α 6= 1 and x < ζ,

f(x;α, β) = f(−x;α,−β) (2.15)

F (x;α, β) = 1− F (−x;α,−β) (2.16)
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(d) When α = 1,

f(x; 1, β) =

 1
2|β|e

−πx
2β
∫ π

2

−π
2
V (θ; 1, β) exp

(
− e−

πx
2β V (θ; 1, β)

)
dθ β 6= 0

1
π(1+x2

β = 0
(2.17)

F (x; 1, β) =


1
π

∫ π
2

−π
2

exp
(
− e−

πx
2β V (θ; 1, β)

)
dθ β > 0

1
2

+ 1
π

arctanx β = 0

1− F (x;α,−β) β < 0.

(2.18)

.

Given the above formulation of the univariate stable distribution, it is important that accu-

rate and efficient parameter estimation and simulation of stable random variables is possible

in order to find the optimal distribution of wealth within the portfolio. The next two sections

describe the methods used to estimate the parameter of the stable distribution and simulate

random variables, respectively.

2.3.2 Parameter Estimation

There are many different methods for fitting data to stable random variables. Two of these

methods are commonly used and we employ them in this thesis. One of the easiest methods

to implement, and the least computationally intensive method for data fitting of stable dis-

tributions, is a quantile based estimation method (QBE) proposed by McCulloch (1986) [4].

It estimates all 4 parameters (for α > 0.5) using 5 quantiles. They are the 5th, 25th, 50th,

75th, 95th percentiles of the data. This method involves calculation of the five sample quan-

tiles and a simple linear interpolation of tabulated index numbers, and a simple continuity

correction for the β parameter. Most of the computation time is spent ordering the sample

observations to obtain the desired quantiles. Quantile based estimation is reliable and works

well for large sample sets and when the data is not too saturated. Some rounding errors in

the estimation of the quantiles occurs due to the discretization yielding inaccuracies in the

parameter estimates.

In our analysis, we use the QBE method for the heavy-tail sensitivity analysis due to its speed

since many computations have to be made to fit the stable distribution to the data for preset

α values. In order to fit the data for a specified α, a simple modification to the algorithm

developed by McCulloch must be implemented. Instead of obtaining the α parameter based

on interpolation of the tabulated index numbers which are obtained from the calculated
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quantiles, we simply use the chosen value of α. All of the subsequent calculations are then

carried out with this α value exactly the same way as if α were fitted correctly. This method

is fairly accurate and computationally fast, however, it does not perform quite as well as

the maximum likelihood estimation method (MLE) which is the most accurate estimation

method [6].

The MLE method is used for the normal distribution versus the stable distribution analysis

due to its accuracy and the fact that only one data fitting is required. This method yields

the highest probability of being correct and works well for any values of the parameters. The

parametrization used for this method of estimation, X ∼ S(µ, β, γ, δ1; 1), has the character-

istic function given in Equation 2.5. Given a family Dθ of stable distributions for unknown

parameters, θ, let the stable density be denoted by f(x;α, β) where the parameter vector θθθ

= (α,β,γ,δ). For the purpose of maximum likelihood estimation for a set of sample values,

x1, x2, . . . , xn, taken from the empirical data since the sample is i.i.d and since the maximum

is unaffected by the logarithm as it is a monotone transformation, it is more convenient to

use a trick and define the likelihood function as follows

L(θ) = logL(θ) = log
n∏
i=1

f(xi|θ) =
n∑
i=1

log f(xi|θ). (2.19)

Maximum likelihood estimation requires choosing a value for θ such that L(θ) is maximized

over the parameter space Θ = (0,2] × [-1,1] × (0,∞) × (∞,∞) [6]. The difficulty in

finding the optimum θ, denoted by θ̂, lies in the fact that no closed formulas exist for

stable densities. We employ the numerical methods for calculating the density of the stable

distribution described by Nolan (1997) [5]. The fitted parameters of the quantile based

estimation method are used to give the starting point for finding the maximum of the log-

likelihood function as they give an initial value which is a close approximation to the solution.

2.3.3 Random Sampling

The complexity of the problem of simulating α-stable random variables stems from the

fact that there are no analytic expressions for the cumulative distribution function or the

inverse. Therefore, all standard approaches like the rejection or inversion methods would

require tedious computations. Chambers, Mallows, and Stuck (1976) [1] devised an elegant

and superior method for efficiently stimulating stable distributions. The first step in the

algorithm is to generate a uniformly distributed random variable U on (−π
2
, π

2
) and an
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independent, exponential random variable W with unit mean. The following equation then

yields a random variable X ∼ Sα(1, β, 0)

X =

(1 + ζ2)
1
2α

sin{α(U+ξ)}
{cos(U)}1/α

[
cos{U−α(U+ξ)}

W

] 1−α
α

α 6= 1

1
ξ

{(
π
2

+ βU
)

tanU − β log
(
π
2
W cosU
π
2

+βU

)}
α = 1

(2.20)

where ξ is given by Equation 2.8 and ζ is given by Equation 2.7 [1]. Given the formulas for

simulation of a standard α-stable random variable, we are able to easily simulate a stable

random variable for all admissible values of the parameters α, β, σ, and µ using the following

property:

Y =

σX + µ α 6= 1

σX + 2
π
βσ log σ + µ α = 1

(2.21)

where X ∼ Sα(1, β, 0) and our resulting random variable Y ∼ Sα(σ, β, µ) [1]. This method

of simulating stable random variables is regarded as the fastest and most accurate. This

method is used for all of the required random sampling needed for the numerical results of

this thesis.

2.4 Related Work

This section of the thesis gives a general overview of stable distributions in the form of Fama’s

Two Fund Separation Model and uses this model to describe the diversification effects for

different cases within stable portfolios. This gives an overview of stable portfolios and insight

into how risk will be adjusted to be within a certain risk tolerance in the models given in

the following two chapters.

2.4.1 Two Fund Separation Model

Given the equations, data fitting and stimulation methods shown for stable random variables,

this section uses their properties and formulations to outline Fama’s two fund portfolio model

for a stable market [2]. The next chapters then build on this general portfolio model to
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develop optimal allocation models for different cases of stable assets. The main concept

demonstrated here is diversification within stable portfolios.

Let Zj, j = 1, ..., n, denote the daily returns of n securities where the return on each security

is a random variable with its own probability distribution. Assume that the returns on the

different securities, Zj, are related to each other by a common underlying factor which is the

market index number, a random variable M . Therefore, the daily return is Zj = aj+bjM+εj

where the coefficient aj is a measure of the return on the ithasset. It is the equivalent of

an asset’s α as defined in modern portfolio theory and is written as aj to avoid confusion

with the stable parameter α. The variable bj is a measure of the relationship between the

return Zj and the market index M . This parameter is the equivalent of the asset’s β as

defined in modern portfolio theory and again is written as bj to avoid confusion with the

stable parameter β. The random variable εj is the error or noise in the relationship and has

an expected value of zero.

In this model, if the distributions of all the random variables are normal then we simply

have the Markowitz security characteristic line [3]. We now assume that M and εj, j =

1, ..., n are independent, stable random variables. Then Yj = aj + εj is also a stable random

variable. Let the term bjM be the market component of the return on security j, then Yj

is the individualistic component which is the portion of the return due to factors affecting

component j alone. We have Zj = Yj + bjM and since Zj is a linear combination of the

stable variables Yj and M , the logarithm of its characteristic function can be expressed as

log fZj(t) = i(aj + bjµ)t− (σεj + σM |bj|α)|t|α. (2.22)

The location and scale parameters of the distribution of Zj are µZj = aj + bjµ and γZj =

σεj + σM |bj|α, respectively. The return on a portfolio of securities, Zp, can be expressed as

Zp =
∑n

j=1 λjZj and so the logarithm of its characteristic function of Zp will be

log fZp(t) = i
n∑
j=1

λj(aj + bjµ)t− [
n∑
j=1

|λj|ασεj + σM |b̄n|α]|t|α. (2.23)

The location and scale parameters of the distribution of Zp are therefore µZp =
∑n

j=1 λjAj +

b̄nµ and σZp =
∑n

j=1 |λj|ασεj +σM |b̄n|α [2]. It is clear that the scale parameter ,σZp , is a sum

of two components. This type of portfolio model is most naturally thought of as a series

of investments in individual securities plus an investment in the market. It is analogous to
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the mean-variance portfolio model. The model just described, however, can be applied to

0 < α ≤ 2 where as the mean-variance portfolio model requires α = 2. We now demonstrate

the effects of diversification within this simple stable portfolio framework.

2.4.2 Diversification within Stable Portfolios

Given the above model construction, we will show the effects of diversification on stable

portfolios. Instead of diversifying the portfolio to reduce the variance, we will diversify the

portfolio to reduce the dispersion, σ. However, diversification is not always effective and

does not reduce the dispersion for all α.

Assume that all securities have the same proportion of the total value of the portfolio, λj = 1
n
,

j = 1, ..., n. We then have

σZp =

(
1

n

)α n∑
j=1

σεj + σM |b̄n|α (2.24)

In Equation 2.24 as n is increased the behavior of σZp depends very definitely on the value

of α. The dispersion parameter σZp is made up of two terms. The first term depends on

the scale parameters of the distributions of the individual components of security returns,

and the second term depends on the scale parameter of the market index. Diversification

must affect the individual components of the portfolio since the market component of σZp is

independent of the number of securities.

There are three cases for which the effects of diversification need to be determined: 1) α > 1,

2) α = 1, and 3) α < 1. Note that for α < 1 we have (1/n)α
∑n

j=1 σεj > σ̄εjn and for α > 1

we have (1/n)α
∑n

j=1 σεj < σ̄εjn . Now from Equation 2.24, taking the limit as n goes to

infinity we have

lim
n→∞

σZp =


∞ α < 1

σ̄εjn + σM |b̄n| α = 1

σM |b̄|α α > 1

. (2.25)

From Equation 2.25, for α < 1, diversification has a negative effect on the portfolio, increases

the dispersion and creates more risk. For α = 1 diversification is in general ineffective in
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reducing the dispersion of the distribution of the returns of the portfolio, unless there is very

substantial uncertainty about the values of σεj and bj for the different securities. Finally,

diversification is effective only when the characteristic exponent α > 1. Moreover, when

α > 1 the rate of approach of σZp to σM |b̄|α will be greater the larger the value of α.

Since it is well known that α > 1 for all equities and indices, we are able to efficiently diversify

a portfolio and decrease the scale or dispersion parameter. The larger α is in this range,

the more diversification will decrease the dispersion of the distribution of returns on the

portfolio. The limiting case is where diversification has the greatest effect and returns follow

the Gaussian case, α = 2. However, α = 2 does not realistically account for the fact that

heavy-tails have been empirically observed in equities. The following two chapters create a

detailed portfolio optimization solution for two-asset models for both the mean-dispersion

risk measure and the loss probability risk measure.
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Chapter 3

Mean-Dispersion Portfolio Model

In this chapter, we analyze and present the solution to the problem of finding the optimal

asset allocation for a two-asset portfolio model with a mean-dispersion risk measure.

3.1 Model Formulation

The portfolio we analyze consists of two positions: one risky asset and one risk-free asset.

The returns of the risky asset follow a stable distribution, while the returns of the risk-

free asset are constant. In this analysis, we assume that no short sales are allowed, but

similar arguments can be made when short sales are permitted. A second assumption is that

any risk-averse investor chooses an optimal asset allocation that maximizes returns given a

specific risk tolerance. For this model, our risk measure of portfolio loss is given by [9]

E[|W − E[W ]|r]. (3.1)

where W = λz0 + (1 − λ)z is the portfolio return. Given the risk measure, we attempt to

maximize the expected value of wealth, E[W ], and minimize the defined risk measure. In

other words, we wish to solve the following constrained optimization problem

max E[W ]

subject to E [|W − E[W ]|r] ≤ q
(3.2)
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where W is the portfolio return, 1 ≤ r < α is the power of the mean-dispersion risk measure,

and the real number q > 0 is the maximum acceptable tolerance for the risk measure. The

coefficient α is the heavy tail parameter of the non-Gaussian stable distributed risky asset

returns.

In our problem definition, we attempt to maximize our returns given that our risk level

is within a certain maximum allowed tolerance, however, the inverse problem can also be

solved. We could attempt to minimize our risk level given that our mean attains a specific

requirement that an investor chooses at his discretion. Mathematically, the opposite problem

to the one we are solving is

min E [|W − E[W ]|r]

subject to E[W ] = w
(3.3)

Note that our risk averse investor always wants to maximize returns given a certain risk level.

In order to show that this investor will always choose a portfolio that maximizes the above

utility function, or solve the constrained optimization problem, we must apply the principle

of second-order stochastic dominance. By definition, W1 dominates W2 in the second-order

stochastic sense if and only if for a concave utility function we have E[u(W1)] ≥ E[u(W2)],

or alternatively, in terms of cumulative distribution functions F[W1] and F[W2], if and only

if

∫ t

−∞
FW1(u)du ≤

∫ t

−∞
FW2(u)du (3.4)

where strict inequality holds at some t. Assume that we have two portfolios, W1 and W2, and

suppose that W1 dominates W2 in the second-order stochastic sense. Because −c|W−E[W ]|r

is a concave utility function, then for r ∈ [1, α) it follows that

U[W1] = E[W1]− cE [|W1 − E(W1)|r] ≥ U[W2]. (3.5)

The above inequality shows that U[W1] ≥ U[W2] if and only if W1 stochastically dominates

W2 [9]. We know that all expected utility maximizers, who are risk averse, prefer a second-

order stochastically dominant portfolio to a dominated one. Therefore, the above inequality

implies that every risk-averse investor with the given utility function should choose a portfolio

that solves our optimization problem.
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From Equation 3.2 it is clear that we attempt to maximize returns while keeping the risk

measure less than or equal to q. In this case the risk measure is some power, r < α, of the

absolute deviation from the mean. The variable r must be less than α since the centralized

moment of r greater than α do not exist and tends to infinity. This is shown by the following

equation

E[|X|r] =

∫ ∞
0

P(|X|r > x)dx. (3.6)

where X is a stable random variable. From the equation above it follows that if r < α then

E[|X − E(X)|r] <∞, (3.7)

and if r ≥ α then we have the following result

E[|X − E(X)|r] =∞. (3.8)

From this statement it is clear that r must be such that r < α, otherwise, the risk measure

will be meaningless [9].

The main reason for choosing to solve Equation 3.2 as the allocation problem is that when r =

2 and a normal distribution is assumed for the risky asset, the solution to the optimization

problem reduces down to the mean variance approach for optimal asset allocation. For r = 2

and normal returns are assumed, we obtain the following optimization problem

max E[W ]

subject to E
[
|W − E[W ]|2

]
= Var[W ] ≤ q

(3.9)

From this equation we know that the mean and the variance of the portfolio would be the

following

E[W ] = λz0 + (1− λ)µz (3.10)

Var[W ] = (1− λ)2σ2 (3.11)
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where µz is the risky asset return, z0 is the risk-free asset return, and λ is the percentage

allocated to the risk-free asset. We assume that µz > z0 otherwise trivially λ = 1 is the

optimal solution. The above equation holds since if X ∼ N (µ, σ2), a linear transformation

aX + b follows the normal distribution aX + b ∼ N (aµ + b, a2σ2). Due to the short selling

restriction, we know that λ ∈ [0, 1]. Since the variance of W increases as the expected value

of W increases our inequality constraint in Equation 3.9 is in fact an equality constraint. The

new constraint Var[W ] = q allows for no addition of a complementary slackness variable for

this particular constraint function. Using the method of Lagrange multipliers, the Lagrangian

becomes

L(λ, k1, k2, k3) = λz0 + (1− λ)µz − k1

(
(1− λ)2σ2 − q

)
+ k2λ+ k3(λ− 1). (3.12)

After derivation and the addition of the two complementary slackness variables our system

of equations becomes

z0 − µz + 2k1(1− λ)σ2 + k2 + k3 = 0

(1− λ)2σ2 − q = 0.

k2λ = 0.

k3(λ− 1) = 0.

λ ≥ 0.

λ ≤ 1.

k2, k3 ≥ 0.

Given the first order conditions and the two complementary slackness conditions we have

the following cases:

λ =


0 k2 = 2k1σ

2 + µz − z0, k3 = 0

1−
(
q
σ2

) 1
2 k1 = µz−z0

2σ2 , k2 = 0, k3 = 0

1 k2 = 0, k3 = µz − z0

Summing up the previous equations, the solution to the optimization problem is
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λopt = max

(
0, 1−

( q
σ2

) 1
2

)
(3.13)

for a portfolio with r = 2 and normally distributed returns. Given these two assumption

our optimal portfolio is the same as one achieved by the mean-variance portfolio theory [13].

Modern portfolio theory is based on the quadratic utility for normal distributions with finite

variances [3]. Given the normal distribution assumption, finite expected returns and finite

variances, it is sufficient to use quadratic utility for asset choice to be completely described

in terms of a preference relation. However, an undesirable property of the quadratic utility

function is the implication that only the first two moments of a distribution are considered

to make the decision of asset allocation. For this reason, when r = 2, even if our optimal

allocation problem motivates the mean variance analysis in terms of preference relations, it

is more realistic to consider models which are motivated by accounting for the distribution

of returns.

Going back to the original constrained optimization problem given by Equation 3.2, the

return of the portfolio, W , is given by

W = λz0 + (1− λ)z. (3.14)

where µz is the risky asset return, z0 is the risk-free asset return and λ is the percentage of

allocation in the risk-free asset. We assume that the distribution of the risky return, z, is an

α−stable distributed random variable with α > 1 as defined in the previous chapter. That

is,

z ∼ Sα(σz, βz, µz)

where α is the index of stability, σz is the scale parameter, βz is the skewness parameter,

and µz is the parameter representing the mean of z when α = 2.

Since portfolio returns are given by W = λz0 + (1−λ)z, when λ = 1 we obtain that W = z0

and when λ 6= 1 all the portfolio returns admit the stable distribution where the parameters

of the distribution are dependent on λ. Since λ ∈ [0, 1], we obtain
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W
d
=

Sα((1− λ)σz, βz, λz0 + (1− λ)µz) λ ∈ [0, 1)

z0 λ = 1
(3.15)

From the above equation, the portfolio scale parameter is given by σW = (1− λ)σz and the

portfolio mean is given by µW = λz0 + (1− λ)µz. Since the portfolio skewness parameter is

fixed, all the solutions can be represented in the mean-dispersion plane by

µW = z0 +
µz − z0

σz
σW (3.16)

This equation is the efficient frontier for our optimization problem. Every risk averse investor

with the utility function given by Equation 3.2 should choose a portfolio that maximizes the

expected return, µW = λz0 + (1− λ)µz, while keeping the risk measure less than or equal to

q for some r ∈ [1, α). The following optimization problem

max
λ

E[W ]

subject to E [|W − E[W ]|r] ≤ q,
(3.17)

can be simplified to contain an equality constraint instead of an inequality constraint since

E[|W − E[W ]|r] increases with respect to E[W ] for all r > 1 and therefore our optimizing

problem can be rewritten as

max
λ

λz0 + (1− λ)µz

subject to σrz V(α, β, r)r(1− λ)r = q.
(3.18)

In the above equation [10],

V(α, β, r) =

(H(α, β, r))r 1 < α < 2 (stable distribution)
2r/2Γ( r+1

2 )√
π

α = 2 (normal distribution).
(3.19)

The function H(α, β, r))r [10] is represented by

H(α, β, r)r = G(r)
(

1 + β2
(

tan2
(απ

2

)))r/2α
cos
( r
α

arctan
(
β tan

(απ
2

)))
,
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where

G(r) =
2r−1Γ

(
1− r

α

)
r

∫ ∞
0

u−r−1 sin2 udu

.

The optimal allocation problem is considered for r ∈ [1, α) and we solve Equation 3.18 using

Lagrange multipliers. We make the assumption that µz > z0, otherwise all of the wealth

should be trivially allocated to the risk-free asset. The Lagrangian for Equation 3.18 is

L(λ, k1, k2, k3) = λz0− (1− λ)µz − k1 (σrz V(α, β, r)r(1− λ)r − q) + k2λ+ k3(λ− 1), (3.20)

where k1, k2, k3 are the Lagrange multipliers. Therefore, the first order conditions of the

problem along with the complementary slackness conditions are

z0 − µz + rk1σ
r
z V(α, β, r)r(1− λ)r−1 + k2 + k3 = 0,

σrz V(α, β, r)r(1− λ)r − q = 0.

k2λ = 0.

k3(λ− 1) = 0.

λ ≥ 0.

λ ≤ 1.

k2, k3 ≥ 0.

From the above equations, we obtain the following solution by cases

λ =


0 k2 = rk1σ

r
z V(α, β, r)r(1− λ)r−1 + µz − z0, k3 = 0

1−
(
q
σ2

) 1
2 k1 = µz−z0

2σ2 , k2 = 0, k3 = 0

1 k2 = 0, k3 = µz − z0

Therefore, our final solution to this asset allocation problem is the following
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λopt =


1 z0 > µz

max

(
0, 1−

(
q

V (α,β,r)rσrz

) 1
r

)
µz > z0.

(3.21)

The method for finding an optimal portfolio is simple for this two-asset case. The first step

is to choose a value for the risk tolerance, q, which the risk averse investor is comfortable

with. The second step is to use a data fitting technique to find the stable parameters given

the historical data for the risky asset. The third and final step is to use all of the obtained

variables and solve Equation 3.21 to find the optimal asset allocation.

The next two sections show empirical results for optimal asset allocations using this model.

The first section shows the differences between a portfolio based on the normal distribution

of returns versus the stable distribution of returns, while the second section uses a series of

different test cases to analyze the effects of altering the heavy tail coefficient on the optimal

asset allocation.

3.2 Numerical Results

The following two subsections show the numerical results for the mean-dispersion stable

portfolio model. We perform a comparison between the normal and stable distribution

optimal allocations as well as a heavy-tail sensitivity analysis of the mean-dispersion stable

portfolio model.

3.2.1 Normal Distribution and Stable Distribution Comparison

In this section, we compare portfolios optimized with the assumption of normal returns and

those optimized with the assumption of stable non-Gaussian returns. The portfolio analysis

is performed for three of the most common indices in North America. The S&P 500, Dow

Jones, and NASDAQ indices are used to show the differences between the two portfolios.

Table 3.1 and Table 3.2 show the estimated parameters of the risky asset, z, fitted to the

normal distribution and the stable distribution for the three different indices, respectively.

For this analysis daily close returns are used. The stable distribution are fitted to 1000 data

points. The maximum likelihood estimation technique is used for the stable parameter data

fitting as is shown in the previous chapter.
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Table 3.1: Estimated Normal Daily Index Parameters

Index
Normal Parameters

µ σ

S&P 500 0.0001494 0.01075

Dow Jones 0.0001038 0.01050

NASDAQ 0.0001518 0.01738

Table 3.2: Estimated Stable Daily Index Parameters

Index
Stable Parameters

α β σ µ

S&P 500 1.6119 -0.06149 0.006119 0.0001309

Dow Jones 1.6301 0.005661 0.005897 0.0001351

NASDAQ 1.4864 -0.1749 0.008236 0.0001770
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Using the above estimated parameters, the optimal asset allocation is calculated for the two-

asset mean-dispersion portfolio model and analysis of the differences in optimal allocations

is discussed and mathematically justified. Assuming a 2.5% risk-free rate, it is clear that

risk-free asset return is less than the risky asset return over the time period we are testing,

and thus the non-trivial optimal allocation holds. The risky asset parameter estimates in

the Table 3.1 and Table 3.2 are used to compute the optimal allocation, λopt. Consider the

optimal allocation when α > r ≤ 1 given by

max E[W ]

subject to E [|W − E[W ]|r] ≤ q
(3.22)

.

Table 3.3 lists the optimal allocation, λopt, given by 3.21, for both the normal and the stable

distribution portfolios. The choices for the values of r are r = 1, 1.05, 1.1, 1.15, 1.2. Various

risk tolerances, q, are used to show the effect on the differences between the normal and the

stable portfolio as the allocation changes from all wealth in the risk-free investment to all

wealth in the risky investment.
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Table 3.3: Optimal Allocation for the Two-asset Mean-dispersion Model

Index q
Normal Optimal Allocation Stable Optimal Allocation

r=1 r=1.05 r=1.1 r=1.15 r=1.2 r=1 r=1.05 r=1.1 r=1.15 r=1.2

S&P 500

0.00001 0.9988 0.9980 0.9968 0.9950 0.9925 0.9989 0.9982 0.9971 0.9956 0.9937

0.0001 0.9883 0.9822 0.9738 0.9628 0.9487 0.9890 0.9836 0.9765 0.9676 0.9569

0.001 0.8334 0.8402 0.7875 0.7244 0.6506 0.8903 0.8531 0.8095 0.7602 0.7062

0.002 0.7668 0.6909 0.6009 0.4965 0.3775 0.7807 0.7157 0.6423 0.5618 0.4765

0.003 0.6502 0.5451 0.4230 0.2837 0.1272 0.6710 0.5817 0.4828 0.3766 0.2660

0.004 0.5336 0.4018 0.2505 0.0800 0.0000 0.5613 0.4499 0.3283 0.1994 0.0672

0.005 0.4170 0.2601 0.0820 0.0000 0.0000 0.4517 0.3196 0.1772 0.0279 0.0000

0.006 0.3004 0.1198 0.0000 0.0000 0.0000 0.3420 0.1906 0.0289 0.0000 0.0000

0.007 0.1838 0.0000 0.0000 0.0000 0.0000 0.2323 0.0626 0.0000 0.0000 0.0000

0.008 0.0672 0.0000 0.0000 0.0000 0.0000 0.1227 0.0000 0.0000 0.0000 0.0000

0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0130 0.0000 0.0000 0.0000 0.0000

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Dow Jones

0.00001 0.9988 0.9980 0.9967 0.9949 0.9923 0.9988 0.9981 0.9969 0.9953 0.9932

0.0001 0.9881 0.9817 0.9732 0.9619 0.9475 0.9884 0.9826 0.9751 0.9656 0.9540

0.001 0.8806 0.8364 0.7824 0.7179 0.6423 0.8841 0.8444 0.7979 0.7449 0.6865

0.002 0.7613 0.6835 0.5914 0.4845 0.3627 0.7682 0.6990 0.6204 0.5339 0.4414

0.003 0.6419 0.5343 0.4093 0.2666 0.1065 0.6522 0.5571 0.4512 0.3368 0.2169

0.004 0.5225 0.3876 0.2327 0.0582 0.0000 0.5363 0.4175 0.2872 0.1483 0.0047

0.005 0.4032 0.2426 0.0602 0.0000 0.0000 0.4204 0.2796 0.1269 0.0000 0.0000

0.006 0.2838 0.0989 0.0000 0.0000 0.0000 0.3045 0.1430 0.0000 0.0000 0.0000

0.007 0.1644 0.0000 0.0000 0.0000 0.0000 0.1885 0.0074 0.0000 0.0000 0.0000

0.008 0.0451 0.0000 0.0000 0.0000 0.0000 0.0726 0.0000 0.0000 0.0000 0.0000

0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Nasdaq

0.00001 0.9993 0.9988 0.9980 0.9969 0.9953 0.9993 0.9989 0.9982 0.9974 0.9964

0.0001 0.9928 0.9890 0.9838 0.9770 0.9683 0.9931 0.9898 0.9857 0.9807 0.9752

0.001 0.9279 0.9012 0.8685 0.8295 0.7839 0.9307 0.9086 0.8839 0.8574 0.8308

0.002 0.8558 0.8088 0.7531 0.6886 0.6149 0.8613 0.8232 0.7919 0.7394 0.6984

0.003 0.7836 0.7186 0.6431 0.5569 0.4601 0.7920 0.7399 0.6847 0.6293 0.5772

0.004 0.7115 0.6300 0.5364 0.4309 0.3139 0.7226 0.6579 0.5905 0.5239 0.4627

0.005 0.6394 0.5423 0.4321 0.3091 0.1736 0.6533 0.5769 0.4984 0.4220 0.3529

0.006 0.5673 0.4556 0.3298 0.1904 0.0380 0.5839 0.4966 0.4080 0.3227 0.2467

0.007 0.4951 0.3695 0.2290 0.0743 0.0000 0.5146 0.4170 0.3189 0.2255 0.1434

0.008 0.4230 0.2840 0.1294 0.0000 0.0000 0.4452 0.3380 0.2310 0.1301 0.0426

0.009 0.3509 0.1990 0.0311 0.0000 0.0000 0.3759 0.2594 0.1441 0.0363 0.0000

0.01 0.2788 0.1144 0.0000 0.0000 0.0000 0.3065 0.1812 0.0581 0.0000 0.0000
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Figure 3.1: Optimal Asset Allocations of S&P 500 Two-asset Mean-dispersion Model

From Table 3.3 we observe that more capital is allocated to the risky asset in the normal

case in comparison to the stable case. These results are displayed visually in Figure 3.1,

Figure 3.2 and Figure 3.3 for the S&P 500, Dow Jones and Nasdaq indices, respectively.
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Figure 3.2: Optimal Asset Allocations of Dow Jones Two-asset Mean-dispersion Model
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Figure 3.3: Optimal Asset Allocations of Nasdaq Two-asset Mean-dispersion Model
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These three figures clearly show that in the stable non-Gaussian case, the wealth allocated

to the riskless asset is always greater than that allocated to the riskless asset in the normal

case. This amount varies significantly depending on several factors including r and α. A

key observation is that the greater the distance between r and α, the lower the maximum

difference in the allocation, and the closer r is to α, the larger the difference between the

portfolios. Moreover, the further α is from the normal case, α = 2, the larger the difference

between the normal and stable distribution portfolios. This occurs due to the heavy tails

of the stable distribution and due to the fact that their effects are exaggerated with smaller

α and larger r. This can clearly be seen from the equations in the previous section. From

Equation 3.21 it is clear that there is a positive relationship between r and λopt. As r

increases we note that λopt also increases. This occurs because the fraction containing r in

Equation 3.21 becomes smaller with increasing r > 1 and after applying the exponent is

reduced even further since the exponent is a positive number less than one. In a similar

fashion from the same equation we see that as α increases that V (α, β, r)r increases as well.

The relationship is easily seen from Equation 3.19. The effects of α on the allocation are

analyzed in detail in the following section.

3.2.2 Heavy Tail Sensitivity Analysis

In this section we study the effects of the α parameter on the optimal asset allocation. For

this analysis, we also use the three primary North American indices: the S&P 500, Dow

Jones, and Nasdaq. In order to fit the data for different values of the α parameter with the

stable distribution, we employ the modified quantile based estimation technique for fitting

data for different α. The other technique for fitting the data to different α coefficients is the

modified maximum likelihood technique. This maximum likelihood estimation technique is

more accurate, however, it takes significantly longer to fit the data and requires a lot more

computing power. For these reasons we will use the modified quantile based estimation

technique to fit the data. As in the previous section for this analysis daily close returns are

used and 1000 data points are used to fit each of the distributions.

The two-asset mean-dispersion optimal allocation problem is analyzed for various values of r.

The parameter r ranges from 1 to 1.2 in 0.05 step increments. The value of r is always chosen

such that α > r in order for the maximization of the utility function to be consistent. The

second parameter that changes throughout this test is the stable parameter, α. The value

of α ranges from 1.50 to 1.95 with a step size of 0.05. For this two-asset mean-dispersion
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Table 3.4: Fitted Stable Parameters with Fixed α Parameter

Index
Stable Parameters

α β σ µ

S&P 500

1.50 -0.0354 0.0059 0.0003

1.55 -0.0403 0.0059 0.0003

1.60 -0.0468 0.0060 0.0003

1.65 -0.0551 0.0060 0.0003

1.70 -0.0669 0.0060 0.0004

1.75 -0.0826 0.0060 0.0004

1.80 -0.1077 0.0060 0.0004

1.85 -0.1476 0.0060 0.0004

1.90 -0.2341 0.0060 0.0004

1.95 -0.4695 0.0060 0.0004

Dow Jones

1.50 0.0047 0.0057 0.0003

1.55 0.0053 0.0057 0.0003

1.60 0.0062 0.0057 0.0002

1.65 0.0073 0.0057 0.0002

1.70 0.0089 0.0057 0.0002

1.75 0.0109 0.0057 0.0002

1.80 0.0143 0.0057 0.0002

1.85 0.0195 0.0057 0.0002

1.90 0.0310 0.0058 0.0002

1.95 0.0619 0.0058 0.0002

Nasdaq

1.50 -0.1108 0.0079 0.0002

1.55 -0.1262 0.0079 0.0002

1.60 -0.1465 0.0079 0.0003

1.65 -0.1724 0.0080 0.0003

1.70 -0.2094 0.0080 0.0003

1.75 -0.2587 0.0080 0.0003

1.80 -0.3401 0.0080 0.0003

1.85 -0.4670 0.0080 0.0003

1.90 -0.7378 0.0080 0.0003

1.95 -1.0000 0.0080 0.0005

model, the optimal asset allocation does not depend on the mean of the data, but instead

depends only on the α, β, and σ coefficients. The two stable parameters, β and σ, are both

determined by the corresponding changing value of α. Table 3.4 shows the fitted parameters

for the stable distribution for α ranging from 1.5 to 1.95.
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Table 3.5: Heavy Tail Sensitivity Analysis of the Two-asset Mean-dispersion Model

Index Stable Parameter α
Optimal Allocation

r=1 r=1.05 r=1.1 r=1.15 r=1.2

S&P 500

1.50 0.8250 0.7477 0.6881 0.6261 0.5653

1.55 0.7896 0.7292 0.6622 0.5905 0.5170

1.60 0.7775 0.7120 0.6382 0.5576 0.4726

1.65 0.7664 0.6961 0.6159 0.5271 0.4316

1.70 0.7559 0.6812 0.5953 0.4989 0.3937

1.75 0.7462 0.6674 0.5760 0.4727 0.3585

1.80 0.7372 0.6545 0.5581 0.4483 0.3259

1.85 0.7287 0.6425 0.5415 0.4257 0.2956

1.90 0.7208 0.6312 0.5259 0.4045 0.2673

1.95 0.7134 0.6207 0.5113 0.3847 0.2410

Dow Jones

1.50 0.7935 0.7363 0.6739 0.6091 0.5456

1.55 0.7800 0.7169 0.6468 0.5718 0.4951

1.60 0.7674 0.6989 0.6217 0.5374 0.4485

1.65 0.7557 0.6822 0.5984 0.5055 0.4056

1.70 0.7447 0.6666 0.5767 0.4759 0.3659

1.75 0.7346 0.6521 0.5565 0.4484 0.3290

1.80 0.7251 0.6386 0.5377 0.4229 0.2948

1.85 0.7162 0.6260 0.5203 0.3992 0.2632

1.90 0.7080 0.6143 0.5041 0.3771 0.2337

1.95 0.7002 0.6033 0.4888 0.3564 0.2061

Nasdaq

1.50 0.8520 0.8109 0.7662 0.7196 0.6740

1.55 0.8423 0.7971 0.7468 0.6930 0.6379

1.60 0.8333 0.7842 0.7289 0.6685 0.6047

1.65 0.8250 0.7723 0.7123 0.6457 0.5741

1.70 0.8173 0.7613 0.6969 0.6247 0.5458

1.75 0.8100 0.7510 0.6825 0.6051 0.5196

1.80 0.8032 0.7412 0.6690 0.5867 0.4950

1.85 0.7968 0.7322 0.6564 0.5696 0.4721

1.90 0.7909 0.7237 0.6447 0.5538 0.4510

1.95 0.7852 0.7157 0.6337 0.5388 0.4310

Finally, the tolerance level of risk for the portfolio, q, is set to a value of 0.002. This value

is chosen because the optimal allocations calculated are spread out well across the range of

all possible allocations. Table 3.5 shows the optimal allocation for the three indices for a

varying stable parameter, α, and different powers of the absolute deviation risk measure, r.
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Figure 3.4: Heavy-tail Sensitivity Analysis of S&P 500 Two-asset Mean-dispersion Model

From Table 3.5 we observe that as the stable distribution inputted into the model is more

heavy-tailed. The percentage of the risky asset in the optimal portfolio is smaller. This

relationship is consistent for all three of the indices where the stable parameter α ranges

from 1.5 to 1.95. For r = 1, the change in the asset allocation differs by < 1% in all three

cases, while for r = 1.2, the change in the asset allocation differs by > 2% in all three cases.

In summary, as r becomes further away from the coefficient α the changes in the optimal

asset allocation are smaller. Analyzing Table 3.5 more closely, we note that the relationship

is almost linear, with some curvature. This is seen more clearly for larger values of r. There

is a more significant change in allocation for changes in α when α is further away from the

normal distribution case, α = 2. Figure 3.4, Figure 3.5, and Figure 3.6 below graphically

depict the change in the optimal allocation, λopt, against the change of the stable parameter

α for the test cases previously conducted.
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Figure 3.5: Heavy-tail Sensitivity Analysis of Dow Jones Two-asset Mean-dispersion Model
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Figure 3.6: Heavy-tail Sensitivity Analysis of Nasdaq Two-asset Mean-dispersion Model
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We clearly see from the figures above that the relationship between the change in the stable

parameter α and the optimal allocation, λopt, is concave up. A change in the optimal

allocation is much larger the closer the stable parameter α is to the normal distribution case.

Overall, this sensitivity analysis shows that the stable parameter α plays a very significant

role in the optimal allocation and has a profound effect on the asset weights of a portfolio.

Analyzing the tail behavior of the stable non-Gaussian distribution can show the effect of

the heavy-tails on the portfolio. The tail behavior of every stable non-Gaussian distribution

X ∼ Sα(β, σ, µ), with 1 < α < 2 is given by

lim
x→∞

xα P(X > x) = σαCα
1 + β

2
(3.23)

where

Cα =
1− α

Γ(2− α) cos(πα
2

)
. (3.24)

Figure 3.7 below shows the tail behavior for 1.5 ≤ α ≤ 1.95, β = 0 and various σ values.

From Figure 3.7 it is clear that as α increases, the limiting tail behavior is lower in all cases.

The shape of the curves are concave up and they follow an inverse law for σ < 1 as seen in

the figure. As the value of σ becomes closer to being unitary, the curve becomes straighter.

It is linear for σ = 1. For σ > 1, the curve is concave down. No matter what the value of

σ is as α increases, going closer to the normal case, the size of the tail is smaller. It is very

important that accurate estimates of the stable parameters are made so that an accurate

portfolio is achieved because, as is shown by the tail behavior, a portfolio is very sensitive

to these parameters.

This heavy-tail analysis confirms that the weight of the risk measure for r ∈ [1, α), is greater

for investors who use the stable distribution for asset returns. In general, the effects of the

heavy-tails are very significant. It is imperative to account for their effects in order to have

a correct estimate of the risk of a large loss in the portfolio. An implication of the above

statement is that models that assume a normal distribution miss a component of risk. On

the contrary, models that assume stable returns account for and attempt to approximate

the component of risk in the heavy-tails of the distributions. For this reason, the stability

parameter plays a strategic role in the optimal portfolio selection. The empirical analysis

shows that the component of risk in the heavy-tails of the stable distribution has a large

importance and a significant effect on the optimal asset allocation of a portfolio.
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Figure 3.7: Asymptotic Heavy-tail Behavior of Stable Distributions
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In the next chapter, we perform a heavy-tail analysis of the two-asset loss probability optimal

portfolio model. This model uses the probability of incurring a portfolio loss equal to the

empirical value at risk as the risk measure for the portfolio. The empirical analysis of this

model is shown in the following as well.
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Chapter 4

Loss Probability Portfolio Model

In a similar format to the previous chapter, we perform a heavy-tail analysis and compare

the normal distribution and stable distribution portfolios. The difference is that the analysis

is done for a two-asset portfolio model where the risk measure is the probability of incurring

a certain loss.

4.1 Model Formulation

The portfolio that is analyzed is the same as that of the previous chapter. It consists of

two positions: one risky asset and one risk-free asset. The returns of the risky asset follow

a stable distribution while the returns of the risk-free asset are constant. Again for this

analysis, we assume that no short sales are allowed and that any risk averse investor would

like to choose an optimal asset allocation to maximize returns given a specific risk level. For

this portfolio, the risk measure of portfolio loss is [7]

P(W ≤ −V aR). (4.1)

where W is the portfolio return as defined previously. We attempt to maximize wealth, W ,

and minimize risk, P(W ≤ −V aR). The variable, V aR, is the empirical value at risk of

the portfolio. This is a commonly used measure of the risk of loss which is defined as a

threshold value such that the probability that the loss of the portfolio over the given time

horizon exceeds this value is the given probability level. We use the 1% and 5% daily VaR
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for our calculations. Mathematically, we wish to solve the following constrained optimization

problem

max E[W ]

subject to P(W ≤ −V aR) ≤ q
(4.2)

where W is the portfolio return, V aR is the estimated empirical value at risk, and the real

number q > 0 , as in the previous chapter, is the maximum acceptable tolerance for the risk

measure. Our optimization problem requires that returns are maximized given that the risk

measure is within a chosen tolerance, however, the opposite problem where we attempt to

minimize our risk measure given that our mean is equal to a specific requirement can also

be solved. This other optimization problem is given by

min P(W ≤ −V aR)

subject to E[W ] = w
(4.3)

Even though this problem can also be solved, we solve the optimization problem that was

originally defined and perform the analysis based on this problem for the remainder of this

chapter. Our optimization problem can be considered the inverse of typical VaR analysis.

This is the case since in VaR analysis, we analyze the VaR of a given portfolio for a fixed

probability of loss, while in our case we choose a portfolio that minimizes the probability of

loss.

In order to show that any risk averse investor who maximizes the above utility function

is maximizing returns while minimizing risk, we must show that for our utility function,

U(W1) ≥ U(W1) if and only if W1 dominates W2 in the second-order stochastic sense. Using

a similar argument to the one in the previous chapter, this can be easily shown.

There are many reasons for studying this particular allocation problem for stable distribu-

tions along with the allocation problem described in the previous chapter. One important

reason for using this allocation problem is can be considered a safety first optimal allocation

problem [8]. In fact, every non-satiable investor with increasing utility function

u(x) = x− cI[x≤−V aR](x) (4.4)

tends to choose portfolios that maximize the given utility function. At the same time, the
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investor, who uses the increasing utility function, Equation 4.4, maximizes the expected value

and the probability of survival of his portfolio, as is postulated in the safety first principles

[12].

Recent studies in portfolio selection have shown that there are many reasons for the consid-

eration of the safety first approach as an alternative to the classic mean-volatility approach.

Some of the main motivations leading to loss probabliity portfolio choices are that we can

consider a portfolio selection for returns with unknown distributions and that we can develop

a multi-parameter loss probability analysis of optimal choices in the market. Furthermore,

this analysis provides a representation of the efficient frontier in terms of the threshold V aR

which is very beneficial. There are also efficient programming methods to approximate loss

probability optimal portfolios.

The same formulation for the portfolio returns is made as in the previous chapter. That is,

W = λz0 + (1− λ)z, (4.5)

where z0 is the risk-free asset return and z is the risky asset return. The portfolio is α−stable

distributed, with α > 1, where

z ∼ Sα(σz, βz, µz). (4.6)

Here, α, σz, βz, and µz are defined as in the previous chapter. Since portfolio returns are

given by W = λz0 + (1− λ)z, we have

W
d
=

Sα((1− λ)σz, βz, λz0 + (1− λ)µz) λ ∈ [0, 1)

z0 λ = 1
(4.7)

The parameters of the portfolio are dependent on the value of λ. The portfolio scale param-

eter is given by σW = (1 − λ)σz and the portfolio mean is given by µW = λz0 + (1 − λ)µz.

Going back to the optimization problem we have

max
λ

λz0 + (1− λ)µz

subject to P(W ≤ −V aR) ≤ q.
(4.8)
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The distribution of the risk measure in the above optimization problem is the stable distri-

bution with the parameters defined above. In order to solve the allocation problem we use

the method of Lagrange multipliers as we did in the previous chapter. However, since our

risk measure is a monotonically increasing function with respect to E[W ] it can be seen that

the constraint in the optimization problem becomes an equality constraint rather than an

inequality constraint. Therefore, no complementary slack condition is necessary given that

the new constraint is P(W ≤ −V aR) ≤ q. The Lagrangian for Equation 4.3 is

L(λ, k1, k2, k3) = λz0 + (1− λ)µz − k1 (FW (−V aR)− q) + k2λ+ k3(λ− 1). (4.9)

where k1, k2, k3 are the Lagrange multipliers and FW (−V aR) is the cumulative distribution

function of W . We assume that the inequality, µz > z0, always holds, otherwise we get the

trivial solution, λopt = 1. The first order conditions and additional slackness equations are

the following

z0 − µz − k1 ((z0 − µz) fW (−V aR)) + k2 + k3.

FW (−V aR)− q = 0.

k2λ = 0.

k3(λ− 1) = 0.

λ ≥ 0.

λ ≤ 1.

k2, k3 ≥ 0.

From the above equations, we know that the following solutions corresponding to the com-

plementary slackness conditions when λ = 0, 1 are

λ =

0 k2 = k1 ((z0 − µz) fW (−V aR)) + µz − z0, k3 = 0

1 k2 = 0, k3 = µz − z0.

Two cases must now be considered for this asset allocation problem, the normal distribution

case and the stable distribution case. The trivial solutions above are the same for both of

the cases. The first case is the normal distribution case, α = 2. In this case, the solution

when λ ∈ (0, 1) is
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∫ −V aR−λz0−(1−λ)µz
(1−λ)σz

−∞

1√
2π
e−

t2

2 dt = q. (4.10)

Here W ∼ N (λz0 + (1 − λ)µz, (1 − λ)σz) and therefore from the above equation. The

optimal solution, λopt is found numerically. The second case that must be solved occurs

when α ∈ (1, 2). In this case, W ∼ Sα((1− λ)σz, βz, λz0 + (1− λ)µz). The solution is then

given by

Fα,β

(−V aR− λz0 − (1− λ)µz − (1− λ)βzσz tan(πα
2

)

(1− λ)σz

)
= q. (4.11)

The cumulative distribution function (CDF), Fα,β(x), of the stable random variable,

Sα (1, βz,−βz tan(πα/2)), is defined as

Fα,β(x) =


1− 1

π

∫ π/2

−θ0
exp

(
−(x− ζ)α/(α−1) V(θ;α, θ0)

)
dθ x > ζ

1
π

(
π
2
− θ0

)
x = ζ

1− Fα,−β(−x) x < ζ

(4.12)

where

ζ = ζ(α, β) = −β tan
(πα

2

)
,

θ0 = θ0(α, β) =
arctan

(
β tan

(
πα
2

))
α

,

V(θ;α, θ0) = cos(αθ0)1/(α−1)

(
cos θ

sin(α(θ + θ0))

) α
α−1 cos(αθ0 + (α− 1)θ)

cos θ
.

The above definition of the CDF of the α-stable distribution is a simplified formula of the

CDF of a stable distribution described in the previous chapter. This simplification occurs

because we are only considering α > 1. In order to the find the solution, we must numerically

search for the λopt that satisfies the above equations. Solutions for both non-trivial cases of

the loss probability allocation problem can be found numerically for both the normal and

stable non-Gaussian optimal allocation using Equation 4.10 and 4.11. The final solution is

λopt = min(max(0, λ∗), 1) where λ∗ is the numerical solution to Equation 4.10 and 4.11 for

the normal distribution case and the stable distribution case, respectively. The next two
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Table 4.1: Estimated Daily Value at Risk

Index
Value at Risk

95% 99%

S&P 500 0.0164 0.0283

Dow Jones 0.0160 0.0274

NASDAQ 0.0267 0.0504

sections describe the empirical results obtained by using the safety-first optimal allocation

portfolio model.

4.2 Numerical Results

The following two subsections show the numerical results for the loss probability stable

portfolio model. We perform a comparison between the normal and stable distribution

optimal allocations as well as a heavy-tail sensitivity analysis of the loss probability stable

portfolio model.

4.2.1 Normal Distribution and Stable Distribution Comparison

In order to compare the differences in allocation between the normal distribution and the

stable distribution, we use the same three indices as in the previous chapter, the S&P 500,

Dow Jones, and Nasdaq. Table 3.1 and Table 3.2 display the fitted normal and stable

parameters for the indices, respectively. However, given this probability of loss model, we

must find one more variable that is the empirical value at risk of the indices. All of our fitted

parameters are obtained from 1000 data points of daily close returns. For the analysis, 5%

and 1% daily VaR values are calculated from the most recent 1000 data points consisting

of the closing prices of the indices. We choose the 5% and 1% daily VaR since it is most

commonly used in VaR analysis. Table 4.1 shows the results.

From Table 4.1 we observe that the S&P 500 and the Dow Jones indices have very similar

V aR values of 1.6% and 2.8% for the 95% and 99% intervals, respectively. The Nasdaq index

has an empirical V aR that is approximately double that of the other two indices showing
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that it is likely to incur twice as large a loss as the other two indices given a bad trading day

in the markets.

Using the above empirical VaR value, the optimal asset allocation is calculated for the two-

asset loss probability portfolio model. We analyze the differences in optimal allocations when

the investor chooses the normal distribution assumption and the stable non-Gaussian distri-

bution as a model for the asset returns in the portfolio. For the risky asset, the parameter

estimates in Table 3.1 and Table 3.2 are used to compute the optimal allocation, λopt. The

mean of the risk-free asset returns is less than the mean of the risky asset returns over the

same time period and therefore the non-trivial allocation must occur. Consider the optimal

allocation for the 5% V aR and the 1% V aR for the problem

max E[W ]

subject to P(W ≤ −V aR) ≤ q
(4.13)

.

Table 4.2, Table 4.3 and Table 4.4 list the optimal allocation, λopt, for the normal and the

stable distribution assumptions for the S&P 500, Dow Jones and Nasdaq indices, respectively.

The V aR values are calculated using the same data set for which the parameters are fitted.

Various risk tolerances, q, are used to show the differences as the allocation changes from all

assets in the risk free investment to all assets in the risky investment. The yearly risk-free

rate in our calculations is 2.5%.
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Table 4.2: Optimal Allocation of S&P 500 Two-asset Loss Probability Model

Risk Tolerance q
Normal Optimal Allocation Stable Optimal Allocation

5% V aR = 0.0164 1% V aR = 0.0283 5% V aR = 0.0164 1% V aR = 0.0283

1−12 0.7913 0.6405 1.0000 1.0000

1−5 0.6401 0.3801 0.9954 0.9920

0.0001 0.5872 0.2889 0.9739 0.9557

0.0002 0.5663 0.2529 0.9600 0.9311

0.0004 0.5420 0.2111 0.9382 0.8936

0.0006 0.5258 0.1833 0.9205 0.8630

0.0008 0.5133 0.1617 0.9053 0.8368

0.001 0.5030 0.1439 0.8915 0.8131

0.0025 0.4527 0.0573 0.8116 0.6754

0.005 0.4034 0.0000 0.7125 0.5048

0.0075 0.3681 0.0000 0.6368 0.3744

0.01 0.3393 0.0000 0.5734 0.2652

0.015 0.2915 0.0000 0.4694 0.0860

0.02 0.2512 0.0000 0.3851 0.0000

0.025 0.2153 0.0000 0.3131 0.0000

0.03 0.1821 0.0000 0.2499 0.0000

0.035 0.1509 0.0000 0.1928 0.0000

0.04 0.1211 0.0000 0.1399 0.0000

0.045 0.0923 0.0000 0.0904 0.0000

0.05 0.0643 0.0000 0.0434 0.0000

0.055 0.0368 0.0000 0.0000 0.0000

0.06 0.0098 0.0000 0.0000 0.0000

0.065 0.0000 0.0000 0.0000 0.0000

0.07 0.0000 0.0000 0.0000 0.0000
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Table 4.3: Optimal Allocation of Dow Jones Two-asset Loss Probability Model

Risk Tolerance q
Normal Optimal Allocation Stable Optimal Allocation

5% V aR = 0.0160 1% V aR = 0.0274 5% V aR = 0.0160 1% V aR = 0.0274

1−12 0.7916 0.6438 1.0000 1.0000

1−5 0.6409 0.3861 0.9947 0.9910

0.0001 0.5881 0.2959 0.9704 0.9494

0.0002 0.5673 0.2603 0.9548 0.9228

0.0004 0.5431 0.2189 0.9305 0.8812

0.0006 0.5270 0.1914 0.9108 0.8476

0.0008 0.5145 0.1702 0.8940 0.8188

0.001 0.5042 0.1525 0.8789 0.7930

0.0025 0.4541 0.0669 0.7909 0.6425

0.005 0.4051 0.0000 0.6845 0.4606

0.0075 0.3699 0.0000 0.6039 0.3230

0.01 0.3412 0.0000 0.5374 0.2092

0.015 0.2937 0.0000 0.4300 0.0256

0.02 0.2536 0.0000 0.3447 0.0000

0.025 0.2178 0.0000 0.2730 0.0000

0.03 0.1849 0.0000 0.2102 0.0000

0.035 0.1538 0.0000 0.1539 0.0000

0.04 0.1242 0.0000 0.1019 0.0000

0.045 0.0956 0.0000 0.0533 0.0000

0.05 0.0677 0.0000 0.0074 0.0000

0.055 0.0404 0.0000 0.0000 0.0000

0.06 0.0136 0.0000 0.0000 0.0000

0.065 0.0000 0.0000 0.0000 0.0000

0.07 0.0000 0.0000 0.0000 0.0000
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Table 4.4: Optimal Allocation of Nasdaq Two-asset Loss Probability Model

Risk Tolerance q
Normal Optimal Allocation Stable Optimal Allocation

5% V aR = 0.0267 1% V aR = 0.0504 5% V aR = 0.0267 1% V aR = 0.0504

1−12 0.7903 0.6046 1.0000 1.0000

1−5 0.6386 0.3186 0.9965 0.9946

0.0001 0.5855 0.2185 0.9832 0.9682

0.0002 0.5645 0.1790 0.9727 0.9485

0.0004 0.5402 0.1331 0.9563 0.9176

0.0006 0.5240 0.1026 0.9426 0.8917

0.0008 0.5115 0.0789 0.9304 0.8687

0.001 0.5011 0.0594 0.9192 0.8476

0.0025 0.4507 0.0000 0.8503 0.7178

0.005 0.4013 0.0000 0.7621 0.5515

0.0075 0.3660 0.0000 0.6892 0.4140

0.01 0.3371 0.0000 0.6249 0.2927

0.015 0.2893 0.0000 0.5125 0.0809

0.02 0.2490 0.0000 0.4144 0.0000

0.025 0.2130 0.0000 0.3259 0.0000

0.03 0.1798 0.0000 0.2445 0.0000

0.035 0.1486 0.0000 0.1685 0.0000

0.04 0.1187 0.0000 0.0973 0.0000

0.045 0.0900 0.0000 0.0276 0.0000

0.05 0.0620 0.0000 0.0000 0.0000

0.055 0.0345 0.0000 0.0000 0.0000

0.06 0.0075 0.0000 0.0000 0.0000

0.065 0.0000 0.0000 0.0000 0.0000

0.07 0.0000 0.0000 0.0000 0.0000
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VaR = 0.0164 (Stable Dist.)
VaR = 0.0283 (Stable Dist.)
VaR = 0.0164 (Normal Dist.)
VaR = 0.0283 (Normal Dist.)

Figure 4.1: Optimal Asset Allocations S&P 500 Two-asset Loss Probability Model

Analyzing the three tables, we note that the optimal allocation of wealth in the risky asset

is usually greater in the normal case than in the stable case. The only case where this is

not true is for large tolerances (larger q). These results are displayed visually in Figure 4.1,

Figure 4.2 and Figure 4.3 for the S&P 500, Dow Jones and Nasdaq indices, respectively.
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VaR = 0.0274 (Normal Dist.)

Figure 4.2: Optimal Asset Allocations of Dow Jones Two-asset Loss Probability Model
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Figure 4.3: Optimal Asset Allocations of Nasdaq Two-asset Loss Probability Model
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These three figures show that the difference between the optimal allocation in the normal

case and in the stable case can be as much as 60%. In fact, for all except very large q,

in the optimal case, more capital is allocated to the riskless asset for the stable portfolio.

The opposite occurs for relaxed risk tolerances where the normal distribution allocates more

capital to the risk-free asset. There is a breaking point where a specific risk tolerance yields

the same portfolio for both the stable and normal distribution assumptions. There are two

explanations for why we notice such differences in allocation.

In the case of a high-risk tolerance, large q, less money is invested in the riskless asset in

the stable portfolio. This difference can be up to 20% in certain cases. This particular

difference in allocation occurs due to the kurtosis effect. That is, the stable distribution is

significantly more peaked around the mean than the normal distribution. Furthermore, the

stable distribution has a much narrower peak than the normal distribution. Consequently,

an investor with a very low risk aversion coefficient (i.e. high risk tolerance) who uses a stable

portfolio will put more importance on the mean than an investor with that same low risk

aversion coefficient who uses a normal portfolio. The latter investor prefers lower returns for

a lower potential drawdown. In this case, the normal investor loses some potential returns

due to the ill-shaped distribution and lower peak.

In the case of a low risk tolerance, small q, the opposite of the above situation occurs. More

capital is invested in the riskless asset in the stable portfolio than in the normal portfolio.

This difference occurs due to the heavy-tail effect. For the normal portfolio, the risk measure,

P(W ≤ −V aR), tends to zero exponentially and for larger V aR, the probability is essentially

zero. On the contrary, for the stable portfolio, the drop off at the tails is significantly slower,

in fact sub-exponential, and for higher values the probability is not almost zero. The optimal

allocation of the normal investor only improves as the risk tolerance becomes very large. The

capital invested by the normal investor in the risky asset is very dangerous since this investor

does not consider that returns have heavy tails. The normal investor prefers a larger mean

but he does not correctly estimate the potential loss since P(W ≤ −V aR) is almost null in

his model. He does not account for a portion of the returns that are away from the mean.

At the middle point between a high risk tolerance and a low risk tolerance, the effect of

the heavy tails and the difference in peaks offset themselves. Consequently, both the normal

portfolio and the stable portfolio have the same optimal allocation for a small set of moderate

risk tolerances.

A key observation is as V aR increases, the differences in the portfolio also become larger.

Moreover, the further α is away from the normal case, α = 2, the larger the difference between
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the normal and stable distribution portfolio for both the low and high risk tolerances. This

occurs due to the heavy-tails of the stable distribution and the fact that their effects are

exaggerated with α. This can clearly be seen from the equations in the previous section.

The effects of α on the allocation are analyzed in further detail in the following section.

4.2.2 Heavy Tail Sensitivity Analysis

In this section, we study the effects of the α parameter on the optimal asset allocation. As

in the previous section, we use the three primary North American indices: the S&P 500,

Dow Jones, and Nasdaq. For this analysis, the index data must be fitted to various stable

distributions with ranging α. The values of the parameters fitted for varying α are obtained

from the previous chapter.

The two-asset loss probability optimal allocation problem is analyzed for the 1% and 5%

empirical V aR. The second parameter that is changed for this test is the stable parameter

α. The value of α ranges from 1.50 to 1.95 with a step size of 0.05. Given a two-asset

loss probability model, the optimal asset allocation depends on the z0, V aR and all of the

parameters of the stable distribution. The values of all of the parameters except α is kept

constant and is fitted accordingly for the data. Again 1000 data points of daily close returns

are used for this empirical analysis. The parameters β, σ and µ vary slightly for each fitted

distribution with different α but this effect should be negligible on the optimal allocation.

The values of the fitted parameters are shown in Table 3.4 in the previous chapter. Finally,

the tolerance level of risk for the portfolio, q, is set to a value of 0.002 due to the fact that

this value will yield a nice variation between the portfolios. Table 4.5, Table 4.6 and Table

4.7 show the optimal allocation for the three indices.
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Table 4.5: Heavy-tail Sensitivity Analysis of S&P 500 Two-asset Loss Probability Model

Stable Parameter α
Optimal Allocation

5% V aR = 0.0283 1% V aR = 0.0162

1.50 0.8766 0.7848

1.55 0.8573 0.7511

1.60 0.8355 0.7131

1.65 0.8109 0.6703

1.70 0.7821 0.6201

1.75 0.7479 0.5604

1.80 0.7066 0.4883

1.85 0.6536 0.3959

1.90 0.5825 0.2720

1.95 0.4814 0.0956

Table 4.6: Heavy-tail Sensitivity Analysis of Dow Jones Two-asset Loss Probability Model

Stable Parameter α
Optimal Allocation

5% V aR = 0.0283 1% V aR = 0.0162

1.50 0.8694 0.7767

1.55 0.8485 0.7411

1.60 0.8248 0.7005

1.65 0.7979 0.6546

1.70 0.7658 0.5997

1.75 0.7271 0.5336

1.80 0.6789 0.4511

1.85 0.6152 0.3422

1.90 0.5239 0.1862

1.95 0.4046 0.0000

Table 4.7: Heavy-tail Sensitivity Analysis of Nasdaq Two-asset Loss Probability Model

Stable Parameter α
Optimal Allocation

5% V aR = 0.0283 1% V aR = 0.0162

1.50 0.8546 0.7259

1.55 0.8325 0.6842

1.60 0.8085 0.6389

1.65 0.7810 0.5870

1.70 0.7510 0.5306

1.75 0.7176 0.4677

1.80 0.6780 0.3929

1.85 0.6289 0.3003

1.90 0.5649 0.1796

1.95 0.4249 0.0000
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Figure 4.4: Heavy-tail Sensitivity Analysis of S&P 500 Two-asset Loss Probability Model

From the three tables, we observe that as the stable distribution inputted into the model

is more heavy-tailed, the percentage of the risky asset in the optimal portfolio is smaller.

This relationship is consistent for all three indices where the stable parameter α ranges from

1.5 to 1.95. Figure 3.4, Figure 3.5, and Figure 3.6 below graphically show the change in

the optimal allocation λopt against the change of the stable parameter α for the test cases

described.
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Figure 4.5: Heavy-tail Sensitivity Analysis of Dow Jones Two-asset Loss Probability Model
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Figure 4.6: Heavy-tail Sensitivity Analysis of Nasdaq Two-asset Loss Probability Model
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From the three figures, we note that for the 1% V aR, the change in the asset allocation

differs by up to 80% for all three cases, while for the 5% V aR, the change in the asset

allocation differs by up to 50% for all three cases. In summary, as the value of V aR becomes

smaller, the changes in the optimal asset allocation are smaller for varying α. Examining

the figures more closely, we see that the relationship is non-linear and concave down for

q = 0.02. However, as q becomes larger, the curve becomes more linear. This occurs up until

the point described in the previous section, where the kurtosis effect and heavy-tail effect

cancel each other out. Once q becomes larger than this median point, the curve is concave

up. Therefore, given a low risk tolerance, the changes in the optimal portfolio are larger as

α increases. For a high risk tolerance, the changes in the optimal portfolio are smaller as

α increases. For the middle point, the relationship is linear. This shows us that there is a

more significant change in wealth allocation for changes in the value of α for a risk tolerance

that is further away from the point where the allocation for the normal and stable case is

the same.

Finally, we state the conclusions obtained from the results in this chapter and the previous

chapter.
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Chapter 5

Conclusion

The sensitivity analysis and comparison of normal and stable distributions of returns of

two portfolios clearly prove that a lot of risk lies in the occurrence of unlikely events. The

aim of this dissertation is to quantify the effects of a change in α on asset allocation and

to give a quantitative analysis of the difference in asset allocation given different levels of

tail heaviness. In order to perform the analysis required, two risk measures are defined.

The mean-dispersion risk measure and the loss probability risk measure are used for the

two portfolios. In order to perform the sensisitivity analysis, empirical data for 3 major

US indices are fitted with different heavy-tail coefficient values and then the optimal asset

allocation is found.

The most important result of this thesis is that in most cases, more capital is placed in

the risk-free asset. For the first portfolio, which contains a mean-dispersion risk measure,

more wealth is always allocated to the risk-free asset as α increases. On the contrary, in

the second portfolio which uses a loss probability risk measure, two different effects are

noticed which act in opposite directions, placing more or less capital in the risk-free aset as

α increases. When the investor assumes a low risk tolerance, the heavy-tail effect dominates

and once again more money is placed into the risk-free asset with an increase in the heavy-

tail coefficient due to the significance of the heavy-tails on portfolio risk. However, when

the investor assumes a high risk tolerance, the kurtosis effect dominates over the heavy-tail

effect and the fact that the probability close to the mean of a stable distribution is much

higher than it is in a normal distribution makes it more optimal to place more capital in the

risky asset as α increases. Overall, it should be noted that in both cases, the portfolio fitted

to the stable distribution correctly estimates and accounts for the risk in the tails as well as
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the gain in equity from the higher peak around the mean.

The main challenge of using stable distributions is that it is computationally difficult to

make accurate calculations since there exists no closed form probability density function.

This is overcome by the use of maximum likelihood estimation combined with quantile based

estimation for large analysis that required fast computation.

Overall, this thesis is successful in outlining the main point that risk is not correctly ac-

counted for when assuming normal asset returns. It also gives a very clear insight into the

relationship between α and the optimal allocation for two different types of risk measures.

The extension of the thesis is to perform a similar heavy-tail sensitivity analysis for the

multi-variate stable portfolios.
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