
Guarded Evaluation: An Algorithm

for Dynamic Power Reduction in

FPGAs

by

Chirag Ravishankar

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Chirag Ravishankar 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Guarded evaluation is a power reduction technique that involves identifying sub-circuits

(within a larger circuit) whose inputs can be held constant (guarded) at specific times

during circuit operation, thereby reducing switching activity and lowering dynamic power.

The concept is rooted in the property that under certain conditions, some signals within

digital designs are not “observable” at design outputs, making the circuitry that generates

such signals a candidate for guarding.

Guarded evaluation has been demonstrated successfully for custom ASICs; in this work,

we apply the technique to FPGAs. In ASICs, guarded evaluation entails adding additional

hardware to the design, increasing silicon area and cost. Here, we apply the technique in

a way that imposes minimal area overhead by leveraging existing unused circuitry within

the FPGA. The LUT functionality is modified to incorporate the guards and reduce toggle

rates.

The primary challenge in guarded evaluation is in determining the specific conditions

under which a sub-circuit’s inputs can be held constant without impacting the larger

circuit’s functional correctness. We propose a simple solution to this problem based on

discovering gating inputs using“non-inverting paths” and trimming inputs using “partial

non-inverting paths” in the circuit’s AND-inverter graph representation.

Experimental results show that guarded evaluation can reduce switching activity by as

much as 32% for FPGAs with 6-LUT architectures and 25% for 4-LUT architectures, on

average, and can reduce power consumption in the FPGA interconnect by 29% for 6-LUTs

and 27% for 4-LUTs. A clustered architecture with four LUTs to a cluster and ten LUTs

to a cluster produced the best power reduction results.

We implement guarded evaluation at various stages of the FPGA CAD flow and analyze

iii

the reductions. We implement the algorithm as post technology mapping, post packing

and post placement optimizations. Guarded Evaluation as a post technology mapping

algorithm inserted the most number of guards and hence achieved the highest activity

and interconnect reduction. However, guarding signals come with a cost of increased

fanout and stress on routing resources. Packing and placement provides the algorithm

with additional information of the circuit which is leveraged to insert high quality guards

with minimal impact on routing. Experimental results show that post-packing and post-

placement methods have comparable reductions to post-mapping with considerably lesser

impact on the critical path delay and routability of the circuit.

iv

Acknowledgements

I am eternally grateful to Dr. Andrew Kennings, who has been more than a supervisor,

mentor and friend. This work would not have existed without his guidance and encour-

agement. I would like to thank Dr. Jason Anderson for his technical contributions to the

work and introducing me to the world of FPGA CAD research. My heartfelt thanks also

extend to Dr. Siddharth Garg and Dr. Hiren Patel for their support and encouragement

throughout my time at the University of Waterloo. I feel incredibly fortunate to have the

privilege of interacting with such great people. I simply would not be the person that I

am today without their unflinching support.

I would like to thank Dr. Alakananda Nath for giving me the gift of music and nurturing

my creative and spiritual side, which kept me sane and motivated through the difficult

periods of my degree.

I would like to acknowledge the people who have had a significant impact on my life:

I am forever indebted to my family for their unconditional love and support; Dr. Parham

Aarabi, for introducing me to Electrical and Computer Engineering at the University of

Toronto; Dr. Tarek Abdelrahman for his inspirational lectures and guidance when I needed

them the most; Dr. Jonathan Rose for his support and inspiration; and Mirel Giugaru for

the long talks that helped me gain a better sense of self.

Lastly, I want to specially acknowledge my aunt, Dr. Veena Shekar who always sup-

ported and encouraged me. I would like to thank her for always being there, nurturing my

creative side, and making me aware of the world. She will always be missed.

v

Dedication

Dedicated to my supporting and loving family.

My parents, Ravi and Chandrika; sister, Nidhi;

grandparents, Leela and Chandrashekar; aunt, Veena and uncle, Indushekar

Mooshika Vahana, Modhaka Hastha, Chaamara Karna, Vilambhita Sutra

Vaamana Rupa, Maheshwara Putra, Vigna Vinashaka Paada Namaste,

Paada Namaste, Paada Namaste

Om Gam Ganapathaye Namaha

vi

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 3

1.3 Algorithm Overview . 4

1.4 Thesis Organization . 6

2 Background 7

2.1 FPGA Architecture . 7

2.2 FPGA Technology Mapping . 10

2.3 Power Consumption in FPGAs . 13

2.4 Power-Aware CAD Algorithms . 14

2.4.1 Power-aware mapping . 14

vii

2.4.2 Power-aware packing . 15

2.4.3 Power-aware placement . 15

2.5 Guarded Evaluation . 16

2.6 Gating Inputs and Non-Inverting AIG Paths 17

2.7 Trimming Inputs and Partial Non-Inverting AIG Paths 19

3 Guarded Evaluation for FPGAs 22

3.1 Overview . 22

3.2 Creating Guarding Opportunities During Mapping 28

3.3 Post-Mapping Guarded Evaluation . 29

3.3.1 Leveraging Non-Obvious “Don’t Cares” 32

3.4 Post-Packing Guarded Evaluation . 34

3.5 Post-Placement Guarded Evaluation . 35

3.5.1 Multiple Step Guarded Evaluation 36

4 Experimental Results 39

4.1 Methodology . 40

4.2 Switching Activity Results . 43

4.2.1 Guarding Post Packing and Placement 51

4.3 Power Results . 54

4.3.1 Guarding Post Packing and Placement 58

viii

4.3.2 Critical Path Delay . 60

4.4 Discussion . 63

4.4.1 Use of Gating and Trimming Inputs 63

4.4.2 Use of OR Gates as Guard Logic . 63

4.4.3 Architectural Analysis . 67

5 Conclusions and Future Work 69

5.1 Future Work . 70

References 72

APPENDICES 79

A Circuit-by-circuit results for 6-LUT Architectures 80

ix

List of Tables

4.1 Power reduction results for different architectures (power given in Watts

reported by [26, 42]). 58

4.2 Critical path delays for several guarding strategies 61

4.3 Critical Path Delay for various flows . 62

4.4 Number of guarding options and inserted guards for two different guarding

strategies. 64

4.5 Comparison of the number of inserted guards using gating and trimming

inputs when using only AND gates versus using AND gates or OR gates to guard. 66

4.6 Increase of the average number of additional connections that require inter-

cluster routing due to guarding (depth-oriented mapping using only gating

inputs for guarding). 68

A.1 Switching activity reduction results for 6-LUT area-oriented mappings. . . 81

A.2 Switching activity reduction results for 6-LUT depth-oriented mappings. . 82

A.3 Switching activity reduction results for 6-LUT depth-oriented mappings

with depth-relaxation . 83

x

A.4 Interconnect Power reduction results on the 4x6 architecture for area-oriented

mapping . 84

A.5 Interconnect Power reduction results on the 4x6 architecture for depth-

oriented mapping . 85

A.6 Interconnect Power reduction results on the 4x6 architecture for depth-

oriented mappings with depth-relaxation 86

xi

List of Figures

1.1 Traditional FPGA CAD Flow . 3

2.1 Overview of FPGA Architecture . 8

2.2 3-input Look-up Table . 10

2.3 Cuts in circuit graph. 11

2.4 And-Inverter Graph (AIG) example. 12

2.5 Guarded evaluation (adapted from [48]). 17

2.6 Identifying gating inputs on LUTs using non-inverting paths. 18

2.7 Identifying trimming inputs on LUTs using partial non-inverting paths . . 20

3.1 Network before and after guarding . 23

3.2 Inserting guards based on static probability 24

3.3 Modified function internal to LUTs . 25

3.4 Guarding with re-convergent fanout . 26

3.5 Illustration of impracticable guards . 30

3.6 Modified FPGA CAD Flow . 38

xii

4.1 Normalized Reduction in Switching Activity for Area-Oriented Mapping . 44

4.2 Normalized Reduction in Switching Activity for Depth-Oriented and Depth-

Relaxed Mapping . 46

4.3 Impact of guarding for depth-oriented mapping 49

4.4 Post-packing statistics on LB count and fanin for depth-oriented mapping . 50

4.5 Average reduction in switching activity for 6-LUT architectures 53

4.6 Normalized Reduction in Interconnect Power for Area-Oriented Mappings . 56

4.7 Normalized Reduction in Interconnect Power for Depth-Oriented Mappings 57

4.8 Average reduction in interconnect power for 4x6 architectures 59

4.9 Comparing AND gating and OR gating for local signals. 65

xiii

Chapter 1

Introduction

1.1 Motivation

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices that can implement a

digital circuit. It can be programmed by the end-user using high-level hardware description

languages such as VHDL or Verilog. They have often been compared to Application

Specific Integrated Circuits (ASICs), where the user designs and implements the circuit

on a chip that is then fabricated. FPGAs offer quicker time-to-market as an FPGA can

be configured in the order of minutes to hours, while ASIC designs take the order of

months to reach the market. Furthermore, FPGAs are more cost effective for low volume

applications where the cost to produce custom masks for ASICs is not economically viable.

Modern FPGAs are widely used in diverse applications, ranging from communications

infrastructure, automotive, to industrial electronics.

However, their use in the mainstream market is often elusive due to their high power

consumption. Programmability in FPGAs is achieved through higher transistor counts and

1

larger capacitances, leading to considerably more leakage and dynamic power dissipation

compared to ASICs for implementing a given function [24].

Recent years have seen intensive research activity on reducing FPGA power through

innovations in CAD, architecture, and circuits. Circuits at the Register-transfer level

(RTL), synthesized from HDL, is transformed into the bitstream used to program the

FPGA through a number of steps in the CAD flow, which is illustrated in figure 1.1:

1. Logic Synthesis: The HDL is elaborated and synthesized into an optimized netlist.

2. Technology Mapping: The netlist is mapped to the target FPGA architecture.

FPGA architectures consist of look-up tables [17] which are able to implement any

K -input logic function.

3. Packing: Mapped LUTs are packed into clusters based on the target FPGA archi-

tecture.

4. Placement: The packed logic blocks (LBs) are physically placed on the device.

5. Routing: Necessary connections are made between LBs using physical wires.

We propose an algorithm to reduce FPGA dynamic power consumption. We mainly

target the technology mapping stage of the CAD flow using an approach known as Guarded

Evaluation, which has been used successfully in the custom ASIC domain [48]. We also

implement this algorithm in the packing and placement stages to make comparisons and

fully explore the benefits of the algorithm. Recall that dynamic power in a CMOS circuit

is defined by:

Pavg =
1

2

∑
i∈nets

Ci · fi · V 2 (1.1)

2

Logic Optimization

Technology Mapping

Packing

Placement

Routing

Bitstream

Generation

Circuit in

HDL

RTL Synthesis

Figure 1.1: Traditional FPGA CAD Flow

where Ci is the capacitance of a net i; fi is the toggle rate of net i, also known as net

i’s switching activity ; V is the voltage supply. In this work, we minimize the switching

activity of each net to reduce dynamic power consumption.

1.2 Summary of Contributions

A summary of contributions of this thesis are as follows:

3

1. A power-aware technology mapping cost function that is able to achieve dynamic

power reductions over the state-of-the-art [21].

2. An observation in the structure of the netlist (converted to an And-Inverter graph)

that allows for fast computation of observability don’t cares.

3. A post mapping optimization algorithm, called Guarded Evaluation, proposed and

implemented on a well known open source synthesis tool [1].

4. Guarded Evaluation extended to be implemented as post-packing and post-placement

optimizations.

5. Evaluation and Analysis of the algorithm on a power-aware FPGA CAD flow based

on a power model proposed by [42]

1.3 Algorithm Overview

Guarded evaluation seeks to reduce net switching activities by modifying the circuit net-

work. In particular, the approach taken is to eliminate toggles on certain internal signals

of a circuit when such toggles are guaranteed to not propagate to overall circuit outputs.

This reduces switching activity on logic signals within the interconnection fabric. Prior

work has shown that interconnect comprises 60% of an FPGA’s dynamic power [45], due

primarily to long metal wire segments and the parasitic capacitance of used and unused

programmable routing switches.

Guarded evaluation comprises first identifying an internal signal whose value does not

propagate to circuit outputs under certain conditions. A straightforward example is an

AND gate with two input signals, A and B. Values on signal A do not propagate to circuit

outputs when B is logic-0 (the condition). Thus, toggles on A are an unnecessary waste

of power when B is logic-0. Having found a signal and condition, guarded evaluation

4

then modifies the circuit to eliminate the toggles on the signal when the condition is true.

Returning to the example, the inputs to the circuitry that produce A can be held at a

constant value (guarded) when the condition is true, reducing dynamic power. The com-

putationally difficult aspect of the process is in finding signals (such as A) and computing

the conditions under which they are not observable, as these steps depend on an analysis

of the circuit’s logic functionality.

In this work, we propose several techniques which make guarded evaluation appropriate

for FPGAs. We modify the technology mapping stage of the FPGA CAD flow to produce

mappings with opportunities for guarded evaluation. After mapping, we modify the LUT

configurations (logic functions) and alter network connectivity to incorporate guards, re-

ducing switching activity of nets. We also implement guarding after the packing step as

well as after placement to reduce interconnect power. We further analyze the algorithm by

implementing guarded evaluation on a combination of steps in the CAD flow, namely post-

mapping and post-placement. Unlike guarded evaluation in ASICs, which involves adding

additional circuitry (increasing area and cost), our approach uses unused circuitry that is

already available in the FPGA fabric, making it less expensive from the area perspective.

Specifically, input pins on LUTs are frequently not fully utilized in modern designs (only

about 39% for 6-LUT architectures [21]), and we use the available free inputs on LUTs for

guarded evaluation. This implies that we do not add any additional LUTs to implement

guarding, but rather only add a minimal amount of extra connections into the network. In

our approach, identifying the conditions under which a given signal can be guarded is ac-

complished by analyzing properties of the logic synthesis network, which is an And-Inverter

Graph (AIG). In particular, we show that the presence of “non-inverting” and “partial non-

inverting” paths in the AIG can be used to drive the discovery of guarding opportunities.

This structural approach to determining guarding opportunities proves to be very efficient.

5

Finally, we consider the introduction of different types of guarding logic (as opposed to

transparent latches which are used for ASICs) where we force the guarded signals to logic-1

and logic-0 state based on static probability to reduce unnecessary transient switching.

Finally, we consider a variety of different FPGA logic block architectures. In particular,

we examine architectures with 4- and 6-input LUTs, as well as architectures with different

numbers of LUTs per logic block. Results show that the benefit of guarding on power

reduction depends strongly on the underlying architecture of the target FPGA’s logic.

Also, guarded evaluation implemented after later stages of the CAD flow (i.e. packing

and placement) provides more feedback to the algorithm which can be used to insert high

quality guards with minimal impact to routing resources.

1.4 Thesis Organization

Chapter 2 presents background and related work on technology mapping for FPGAs, power

optimization, and describes guarded evaluation in the ASIC context. The proposed algo-

rithm is described in Chapter 3. Experimental results with various FPGA LUT and cluster

architectures appears in Chapter 4. Conclusions and suggestions for future work are offered

in Chapter 5.

6

Chapter 2

Background

This section provides some necessary background on FPGA architecture and technology

mapping. We summarize some of the recent works in FPGA dynamic power reduction

through CAD. This section also describes some related work on guarded evaluation in

both the ASIC and FPGA context. Finally, structural observations in And-Inverter sub-

graphs, necessary for this work, is described.

2.1 FPGA Architecture

Field-programmable Gate Arrays consist of programmable logic and storage elements that

are connected by routing fabric that is also re-configurable. This massively programmable

architecture is what allows the chip to be programmed by the end user to implement

virtually any digital circuit. Figure 2.1 gives an abstract overview of the island style

FPGA architecture, where logic blocks resemble isolated islands in a sea of interconnection

wires. This is the most common type of architecture in commercial FPGAs.

7

Figure 2.1: Overview of FPGA Architecture

Some top-of-the-line modern FPGAs have upto 2 million logic blocks, about 1000 I/O

pins, memory blocks, and other blocks with special features such as DSP, Analog-to-digital

converter, PCIe, etc [52]. The programmability is achieved through configuration memory

based on static RAM cells. The FPGA is essentially programmed with a serial bitstream

that controls every configurable routing track and logic cell. Other technologies exist to

implement configuration memory such as antifuses [15] and floating-gate transistors [10].

The focus of this work, however is on SRAM-based FPGAs since they are more prevalent

8

in the FPGA market.

As shown in figure 2.1, each logic block contains several logic elements that are packed

together and routed using local interconnect, which in this thesis is referred to as intra-

cluster routing. The output of each logic element can also span to logic elements in

different logic blocks. In these cases, routing outside the logic block is used which has

higher capacitance and impact on performance. In this thesis, this interconnect is referred

to as inter-cluster routing. The main objective of this work is to minimize the switching

frequency in these wires (both intra-cluster and inter-cluster) to reduce dynamic power

dissipation.

The basic logic element, shown in figure 2.1 is usually a Look-up Table and a Flip Flop

along with its own local interconnect. There are more complex logic element structures

such as fracturable LUTs and adaptive logic modules [19]. In this work, we assume a basic

logic element that contains a K-input look-up table. Guarded Evaluation primarily is a

post-technology mapping algorithm (post-packing and post-placement are also considered)

on a traditional K-LUT.

A K-input look-up table has the ability to implement any K-input logic function. This

flexibility is achieved using 2K configuration memory based on SRAM cells. The circuit of

the LUT is essentially a tree of multiplexers where the select lines are tied to the inputs of

the LUT, and each selection corresponds to a programmable SRAM cell. A 3-input LUT

is illustrated in figure 2.2. There are 23 SRAM cells, where any 3-input function can be

implemented by configuring the value in the cells.

9

0

1

0

1

0

1

0

1

0

1

0

1

0

1

i0 i1 i2

F

Figure 2.2: 3-input Look-up Table

2.2 FPGA Technology Mapping

FPGA Technology mapping is an important step in the CAD flow where the netlist is

mapped to the target architecture, which in this work is a K-LUT. The approach used by

modern FPGA technology mappers are based on finding cuts in Boolean networks [44, 13].

The first step is to represent the combinational portion of a circuit as a directed acyclic

graph, G(V,E). Each node in G represents a logic function, and edges between nodes

represent dependencies among logic functions. Before mapping commences, the number

of inputs to each node must be less than the number of inputs of the target look-up-table

(K). A primary input node is a node with an in-degree of 0; a primary output node has

an out-degree of 0. For a node z ∈ V in the graph, let Inputs(z) represent the set of

nodes that are fanins of z. A node x is said to be a predecessor of node z if there exists a

directed path in the graph from x to z.

A K-feasible cut at z, Nz, is defined to be a subgraph consisting of z and some of its

10

C1

C2

x

m

l

s

t

r

i0 i1

Figure 2.3: Cuts in circuit graph.

predecessors such that |Inputs(Nz)| ≤ K. Consequently, the technology mapping problem

for K-LUTs can be thought of as covering an input DAG with K-feasible cones. Usually,

there are many K-feasible cones for each node in the network, each having different area,

delay, or power characteristics.

Figure 2.3 illustrates cuts for a node x in a circuit graph. A cut for x is a partition,

(V, V), of the nodes in the subgraph rooted at x, such that x ∈ V . For x’s cut C1 in

figure 2.3, V consists of two nodes, x and m. For x’s cut C2 in the figure, V consists of

x,m, t, and l. A cut is called K-feasible if the number of nodes in V that drive nodes in

V is less than or equal to K. In the case of cut C1, there are 3 nodes that drive nodes

in V and, the cut is 3-feasible. For a cut C = (V, V), Inputs(C) represents the nodes in

V that drive a node in V . For the cut C1 in figure 2.3, Inputs(C1) = {l, s, t}. Nodes(C)

represents the set of nodes, V . In figure 2.3, Nodes(C1) = {x,m}.

For a K-feasible cut, C, the logic function of the subgraph of nodes, V , can be imple-

mented by a single K-LUT. The reason for this is that the cut is K-feasible and a K-LUT

can implement any function of up to K inputs. Hence, the problem of finding all of the

possible K-LUTs that generate a node’s logic function can be cast as the problem of finding

11

z

p q r s

complemented

edge

AND-inverter graph (AIG)

z

p q r s

Original circuit

Figure 2.4: And-Inverter Graph (AIG) example.

all K-feasible cuts for the node. There are generally many K-feasible cuts for each node

in the network, corresponding to multiple potential LUT implementations.

Enumerating all cuts for each node in the circuit graph is a well-studied problem with

an established solution: The cuts for each node in the network can be generated in a

topological network traversal, from inputs to outputs. As each node is visited in the

traversal, its complete set of K-feasible cuts is generated by merging cuts from its fanin

nodes, using the method described in [13, 44].

Having computed the set of K-feasible cuts for each node in the circuit graph, the

graph is traversed in topological order again. During this traversal, a “best cut” is chosen

for each node. The best cut reflects design optimization criteria, typically, area, power,

delay or routability. The best cuts define the LUTs in the technology mapped circuit.

As mentioned, the first step in technology mapping is to represent the network (com-

binational logic) as a directed acyclic graph such that the number of inputs to each node

is less than or equal to K, the number of inputs of the target LUT. A common data

structure for this representation is an And-Inverter Graph (AIG). In an AIG, the circuit

functionality is represented solely as a network of 2-input AND gates and inverters. An

example of an AND-inverter graph is shown in figure 2.4. Observe that inverters are not

represented explicitly as nodes in the graph, but rather as properties on graph edges.

12

Research has demonstrated the utility of AIGs for many logic synthesis transformations

(e.g., [38, 30]). AIGs have also shown value for FPGA technology mapping as exemplified

by the ABC tool [39, 37]. We therefore choose to investigate guarded evaluation within

the ABC framework and to exploit the properties of AIGs to aid in performing guarded

evaluation.

2.3 Power Consumption in FPGAs

FPGAs have two main types of power consumption: Static power and Dynamic power.

Static power occurs due to leakage current in the SRAM-based FPGAs. As transistor

technology scales (State-of-the-art FPGAs are currently being implemented at 22nm [54]),

the sub threshold leakage power grows significantly. Scaling causes the power supply volt-

age, Vdd, to be scaled down which impacts speed. To maintain the speed, the threshold

voltage, Vth, is reduced which increases the reverse biased PN-junction current and sub-

threshold channel conduction. Static power has been negligible in the past. The work in

[45] estimates static power contributes about 5-20% of total power dissipation, depend-

ing on temperature, device, frequency, and the implemented circuit. However, as scaling

continues, static power dissipation becomes more prevalent and needs to be considered.

There are several techniques proposed to minimize leakage power of a gate such as using

dual-threshold transistors [20, 27], or minimizing leakage power of a transistor in the OFF

state by supplying particular input vectors [40]. The focus of this work, however, is to

reduce dynamic power dissipation in FPGAs

As shown in equation. 1.1, dynamic power is directly proportional to the capacitance,

swing voltage and operating frequency of each net. Efforts have been made to reduce

each of these parameters. To reduce the overall swing voltage, dynamic voltage scaling

13

techniques [36] are popular where based on the workload and performance requirements of

sub-circuits, Vdd and Vth are modified using body biasing to reduce the power budget for

comparable performance. Furthermore, Vth can be reduced by intelligently sizing the tran-

sistors such that the circuit meets the timing requirements, while reducing Vdd [23, 11, 47].

These techniques are also applied to reduce sub-threshold leakage power. These methods,

however, require transistor level modifications which is an arduous task for FPGAs as it

warrants architecture level changes. Hence, there has been a significant effort to reduce

dynamic power consumption through the CAD flow. A brief overview of some of these

techniques is provided in the next section.

2.4 Power-Aware CAD Algorithms

2.4.1 Power-aware mapping

Power-aware cut-based technology mapping has been studied recently (e.g., [26, 22]). The

core approach taken is to keep signals with high switching activity out of the FPGA’s

interconnection network. Since the routing tracks used to implement the interconnection

network in FPGAs consist high capacitive load, charging and discharging consumes a sig-

nificant amount of power. This is achieved by costing cuts to encourage such high activity

signals to be captured within LUTs, leaving only low activity inter-LUT connections. A

second aspect of power-aware mapping pertains to logic replication. Logic replication is

needed to achieve mappings with low depth (high speed). However, replication can in-

crease power [26], as replication increases signal fanout and capacitance. Replications can

therefore be detected and cost accordingly, trading off their power “cost” with their depth

“benefit” [8]

14

2.4.2 Power-aware packing

Modern FPGAs [51] [4] “pack” LUTs and flip-flops into logic clusters that contain multiple

LUTs and registers. This has advantages from the delay and area perspectives [34] as well

as reduced compile time due to fewer number of blocks. The packing algorithm has two

objectives:

1. Minimize the area by packing the clusters to capacity.

2. Minimize the inputs to each cluster to minimize inter-cluster connections.

The algorithm proceeds by picking an unclustered LUT as the “seed”. Corresponding LUTs

are packed along with the seed LUT based on an attraction function, which is determined

by the number of inputs and outputs that the LUTs have in common. There has been

considerable work on modifying the attraction function to produce packed netlists with

minimal area, delay and power. [33, 14, 46]

Power aware packing has been proposed for clustered FPGA architectures. The idea

is to encapsulate high activity signals inside of clusters [26]. In [43] energy is targetted by

modifying the attraction function that is used to select the LUTs packed within the same

cluster. The function aims to reduce inter-cluster signals as well as the pin-utilization ratio

on each cluster.

2.4.3 Power-aware placement

Placement is a well-studied NP-complete problem [49, 28] with several heuristic based

approaches. Power can be reduced during placement by modifying the objective function

to account for the activity and capacitance in of signals, effectively trying to reduce the

length of high activity signals [50]. [25] uses post routing timing analysis to align arrival

times of signals to reduce extraneous toggling due to glitches.

15

It is clear that there is opportunity for dynamic power reduction at each stage of the

FPGA CAD flow. In this work, we implement the proposed power reduction algorithm as

a post-processing step at the end of each stage.

2.5 Guarded Evaluation

Tiwari et al. [48] first described important techniques for guarded evaluation in ASICs. The

key idea is shown in figure 2.5. Figure 2.5(a) shows a multiplexer receiving its inputs from

a shifter and a subtraction unit, depending on the value of select signal Sel. Figure 2.5(b)

shows the circuit after guarded evaluation. Guard logic, comprised of transparent latches,

is inserted before the functional units. The latches are transparent only when the output

of the corresponding functional unit is selected by the multiplexer, i.e., depending on

signal Sel. When the output of a functional unit is not needed, the latches hold its input

constant, eliminating toggles within the unit. Here, one can view Sel as the “guarding

signal”. Tiwari applied this concept to gate-level networks, where the difficulty was in

determining which signals could be used as guarding signals for particular sub-circuits.

Tiwari used binary decision diagrams to discover logical implications that permit certain

sub-circuits to be disabled at certain times.

Abdollahi et al. proposed using guarded evaluation in ASICs to attack both leakage and

dynamic power [2]. The guarding signals were used to drive the gate terminals of NMOS

sleep transistors incorporated into CMOS gate pull-down networks, putting sub-circuits

into low-leakage states when their outputs were not needed.

Howland and Tessier studied guarded evaluation at the RTL level for FPGAs [16].

Their approach produced encouraging power reduction results by exploiting select signals

on steering elements (multiplexers) to serve as guarding signals and is therefore limited to

16

Shifter

Subtract

Sel

0

1

A

B

data
registers

Shifter

Subtract

Sel

0

1

A

B

data
registers

Sel=1

Sel=0

guard logic

a)Beforeguardedevaluation b)After guardedevaluation

transparent latches

Figure 2.5: Guarded evaluation (adapted from [48]).

specific types of circuits; e.g., datapath circuits in which multiplexers are used for resource

sharing. Our approach is not directly comparable since we work on a synthesized LUT

network, avoid adding additional logic into the network, and are not limited to using only

the select lines on multiplexers to act as guarding signals.

In contrast to prior works, which discover only a limited number of candidate guard-

ing opportunities, our approach exposes many guarding opportunities through easy-to-

compute properties of the logic synthesis network. Furthermore, while prior approaches

required additional hardware to be added to the design (e.g., transparent latches in fig-

ure 2.5), our approach incurs no overhead (in terms of LUT count) by using existing yet

unused FPGA circuitry, although additional wires are required to perform guarding.

2.6 Gating Inputs and Non-Inverting AIG Paths

Technology mapping covers the circuit AIG with LUTs – each LUT in the mapped network

implements a portion of the underlying AIG logic functionality. A recent work suggested a

new FPGA architecture using properties of the AIG to discover gating inputs to LUTs [6].

A gating input to a LUT has the property that when the input is in a particular logic state

17

(either logic-0 or logic-1), then the LUT output is logic-0, irrespective of the logic states of

the other inputs to the LUT. We borrow the idea of gating inputs for guarded evaluation

and therefore briefly review the concept here.

LUT
Z

I J K Q M

Figure 2.6: Identifying gating inputs on LUTs using non-inverting paths.

Figure 2.6 gives an example of a LUT and the corresponding portion of a covered AIG.

The logic function implemented by the LUT is: Z = I · J ·K · Q ·M . Examine the AIG

path from the input I to the root gate of the AIG, Z. The path comprises a sequence of

AND gates with none of the path edges being complemented. Recall that the output of an

AND gate is logic-0 when either of its inputs is logic-0. For the path from I to Z, when I

is logic-0, the output of each AND gate along the path will be logic-0, ultimately producing

logic-0 on the LUT output. We therefore conclude that I is a gating input to the LUT.

The LUT in figure 2.6, in fact, has three gating inputs, I, J , and K. Input J is the same

form as input I in that there exists a path of AND gates from J to root gate Z and none of

the edges along the path are inverted.

Observe, however, that the situation is slightly different for input K. For input K,

the “frontier” edge crossing into the LUT is inverted, however, aside from this frontier

edge, the remaining edges along the path from K to the root node Z are “true” edges.

18

This means that when K is logic-1, the output of the AND gate it drives will be logic-0,

eventually making the LUT’s output signal Z logic-0. K is indeed a gating input, though

it is K’s logic-1 state (rather than its logic-0 state) that causes the LUT output to be

logic-0. In contrast with inputs I, J and K, LUT inputs Q and M are not gating inputs

to the LUT as neither logic state of these inputs causes the LUT output to be logic-0.

The question of which inputs are gating inputs is also apparent by inspection of the LUT’s

Boolean equation.

In [6], the gating input idea was generalized and it was observed that the defining

feature of such inputs is the presence of a non-inverting path from the input through the

AIG to the root node of the AIG. Since by definition, an AIG contains only AND gates with

inversions on some edges, one does not need to be concerned with other gates appearing

in the AIG (e.g. EXOR). Non-inverting paths are therefore chains of AND gates without edge

inversions. Gating inputs to LUTs can be easily discovered through a traversal of the

underlying AIG. In [6], the notions of gating inputs and non-inverting paths were applied

to map circuits into a new logic block architecture that delivers improved area-efficiency.

Here, we apply the ideas for power reduction through guarded evaluation.

2.7 Trimming Inputs and Partial Non-Inverting AIG

Paths

As previously described, gating inputs are determined by searching for non-inverting paths

from the input to output of a LUT in the LUT’s underlying AIG representation. However,

more opportunities for guarding can be found by considering trimming inputs in addition

to gating inputs. Consider the logic function Z = (A ·B · C ·D) · (D · E · F) illustrated in

19

Figure 2.7: Identifying trimming inputs on LUTs using partial non-inverting paths

figure 2.7.

There is no non-inverting path from any LUT input to the LUT output, Z. However,

we can observe that a logic-0 on input A will still force the output on some AND gates to

be logic-0 as its value propagates towards Z. We can identify the AND gate that drives the

first inverted edge on the path from A to Z and, subsequently, find the fanout-free cone

rooted at the identified AND gate; the set of LUT inputs to this fanout-free cone (excluding

A) can be trimmed by A when A is a logic-0. In this example, this means inputs B and

C can be trimmed when input A is a logic-0. Note that input D cannot be trimmed since

it is not in the fanout free fanin cone of the affected AND gates. Input F can be used

to trim input E (but not input D) when F is a logic-0 following a similar analysis. We

refer to, and discover, trimming inputs by considering partial non-inverting paths which

are simply defined as non-inverting paths which are internal to the LUT’s underlying AIG

representation and begin at LUT inputs.

The idea of trimming and gating inputs are related to the Shannon decomposition of

a LUT’s logic function as described in [7]. Recall that any n-variable logic function f can

be co-factored with respect to variable xk as follows:

20

f = xk · f(x0, · · · , xk−1,1, xk+1, · · · , xn) + xk · f(x0, · · · , xk−1,0, xk+1, · · · , xn) (2.1)

Here, f(x0, · · · , xk−1, 1, xk+1, · · · , xn) is the 1-co-factor of f with respect to xk and

f(x0, · · · , xk−1, 0, xk+1, · · · , xn) is the 0-co-factor of f with respect to variable xk. Each

co-factor is itself a logic function with at most n−1 variables. In [7], a trimming input was

defined as an input to a n-variable function in which the Shannon decomposition produced

a co-factor having strictly less that n−1 inputs. In the case of a gating input, the Shannon

decomposition produces a decomposition in which one of the co-factors is logic-0. Hence,

with respect to [7], the use of non-inverting paths and partial non-inverting paths are

structural techniques to identify gating and trimming inputs, respectively.

21

Chapter 3

Guarded Evaluation for FPGAs

We now describe our approach to guarded evaluation, beginning with a top-level overview,

and then describing how guarding opportunities can be created during technology mapping,

and finally discussing the post-mapping guarding transformation. We also describe the

approach taken to implement guarded evaluation on post-packed and post-placed netlists.

3.1 Overview

Figure 3.1(a) illustrates how gating and trimming inputs to LUTs can be applied for

guarded evaluation. Without loss of generality, assume that logic-0 is the state of the

gating input, G, that causes LUT Z’s output to be logic-0. When G is logic-0, Z is also

logic-0, and any toggles on the other inputs of Z are guaranteed not to propagate through

Z to circuit outputs. Similarly, if G is a trimming input of, say, input L (i.e., a logic-0 on

G blocks toggles on signal L from propagating to signal Z), then L can also be guarded

by signal G.

22

. . .

.

. . .

LUT Z

LUT L

LUT N

LUT M LUT G

G

H

gating input
to LUT Z

original
logic function

of LUT L

f(H, …, N)

(a) Original LUT network

. . .

.

. . .

LUT Z

LUT L

LUT N

LUT M LUT G

G

H

NEW
logic function

of LUT L

G f(H, …, N)

NEW connection

^
(b) Network after Guarded Evaluation

Figure 3.1: Network before and after guarding

Since L’s single fanout is to Z, L’s output value will not affect overall circuit outputs

when G is logic-0. Toggles that occur in computing L’s output when G is logic-0 are an

unnecessary waste of dynamic power.

In figure 3.1(a), L is a candidate for guarded evaluation by signal G. If LUT L has

a free input, we modify the mapped network by attaching G to L, and then modifying

L’s logic functionality as shown in figure 3.1(b). The question is how to modify L’s logic

functionality. In [5], logic functions were modified to force the LUT output to a logic-0

when guarded. Here we also consider different types of guards based on signal probabilities

and guarding values. For a signal L, define its static probability, P (L), as the probability

that the signal is logic-1. Static probability is a property of logic signals widely used in the

power estimation domain [41]. Assume a guarding value of logic-0 for signal G; the new

logic function for L is determined based on L’s static probability, P (L), of signal L. If the

23

signal spends most of its time at logic-0 (i.e., P (L) ≤ 0.5), it is set equal to a logical AND

of its previous logic function and signal G. Hence, we force the signal to logic-0 when it

is guarded. If P (L) > 0.5, the logic function is set equal to the logical OR of the previous

logic function and the inverted version of signal G, hence forcing the signal to logic-1 when

it is guarded. This distinction is made to avoid inducing additional toggles on the guarded

signal. Consider the case where the output of LUT L in figure 3.1(b) was logic-1 the instant

prior to guarding. If it was guarded using a logical AND of its previous function and signal

G, then the gate would induce one additional toggle from logic-1 to logic-0. Hence, the

static probability of the guarded signal is examined prior to inserting the guarding logic

to avoid such additional (and unnecessary toggles).

Guard Static Probability

P > 0.5

Logic-0

Logic-1

P <= 0.5

Figure 3.2: Inserting guards based on static probability

Figure. 3.2 provides an illustration of the type of guarding used based on the static

probability and the guarding value1. No additional LUTs are required to perform guarding

since we are modifying the function of the guarded LUT, which is logic internal to the LUT,

as illustrated in figure 3.3. After guarding, switching activity on L’s output signal may be

reduced, lowering the power consumed by the signal. Note, however, that guarding must

1We note that, since we are using AIG representations, we do not insert explicit OR gates, but rather

AND gates with appropriate inversions on inputs and outputs.

24

be done judiciously, as guarding increases the fanout (and likely the capacitance) of signal

G. The benefit of guarding from the perspective of activity reduction on L’s output signal

must be weighed against such cost.

LUT

Z

I J K Q MG

0

0

(a) Guarding with AND

LUT

Z

I J K Q MG

0

1

(b) Guarding with OR

Figure 3.3: Modified function internal to LUTs

The guarded evaluation procedure can be applied recursively by walking the mapped

network in reverse topological order. For example, after considering guarding LUT L with

signal G, we examine L’s fanin LUTs and consider them for guarding by G. Since LUT

N in figure 3.1(a) only drives LUT L, N is also a candidate for guarding by signal G. We

traverse the network to build up a list of guarding options.

There may exist multiple guarding candidates for a given LUT. For example, if signal

H in figure 3.1(a) were a gating or trimming input to LUT L, then H is also a candidate

for guarding LUT N (in addition to the option of using G to guard N). Furthermore, if

a LUT has multiple free inputs, we can guard it multiple times. We discuss the ranking

and selection of guarding options in section 3.3. The ease with which we can use AIGs to

25

identify gating and trimming inputs (via finding non-inverting and partial non-inverting

paths) circumvents one of the key difficulties encountered by Tiwari et al. [48], specifically,

the problem of determining which signals can be used to guard which gates.

While we can guard L with G in figure 3.1, we cannot necessarily guard LUT M with

G. The reason is that M is multi-fanout, and it fans out to LUTs aside from Z. In

Section 3.3.1, we discuss using circuit “don’t cares” to enable guarding in some cases such

as M . Note, however, that there do exist multi-fanout LUTs in circuits where guarding is

“obviously” possible, such as LUT Q in figure 3.4. LUT Q fans out to two LUTs, however,

both fanout paths from Q pass through LUT Z. LUT Q is said to have reconvergent fanout.

If all fanout paths from a LUT pass through the “root” LUT that receives the gating input,

then guarding the multi-fanout LUT can be done without damaging circuit functionality.

A fast network traversal can be used to determine if all transitive fanout paths from a LUT

pass through a second LUT. Such a traversal is applied to qualify multi-fanout LUTs as

guarding candidates. In general, for a guarding signal G driving a LUT Z, we can safely

use G to guard any LUT within Z’s fanout-free fanin cone.

. . .

.

LUT Z

LUT L

LUT Q

LUT M LUT G

G

gating input
to LUT Z

. . .

Figure 3.4: Guarding with re-convergent fanout

26

It is worthwhile to highlight an important difference between our approach and the

prior ASIC approach, shown in figure 2.5. In figure 2.5, transparent latches are used to

hold inputs to blocks constant while the blocks are guarded. Our approach, on the other

hand, takes the logical AND or logical OR of an existing LUT function with the guarding

signal, making the LUT output logic-0 or logic-1 while guarded. Our method requires the

guarded LUT to have additional inputs that are free to insert the guarding signal, which

constrains some guarding opportunities. Nonetheless, our results show that a significant

number of guards were inserted effectively reducing dynamic power. Moreover, our method

has the advantage of adding no LUTs to the circuit. The only overhead is the wires added

to connect guarding signals to the fanin of the guarded LUTs.

It is also worth mentioning that LUTs in today’s commercial FPGAs have 6 inputs [4,

51], which provide better speed performance than the 4-LUTs used traditionally. Many

logic functions in circuits require less than 6 variables and consequently, LUTs in mapped

circuits commonly have unused inputs. A recent work from Xilinx demonstrated that in

commercial 6-LUT circuits, only 39% of the LUTs in the mappings use all 6 inputs [21].

A similar observation was made earlier in [29] when describing the Altera Stratix II ar-

chitecture where it was observed that only 36% of the LUTs in a mapped set of designs

required full 6-LUTs. The considerable number of LUTs with unused inputs bodes well

for our guarding scheme.

27

3.2 Creating Guarding Opportunities During Map-

ping

Having introduced how guarded evaluation can be applied to a mapped network, we now

consider the influence of the mapping step itself on guarding. We aim to encourage the

creation of LUT mapping solutions containing “good” guarding opportunities, while main-

taining the quality of other circuit criteria, such as area and depth. We propose a cost

function for cuts to reflect cut value from the guarding perspective.

For a set of inputs to a cut C, Inputs(C), define Gating[Inputs(C)] to be the subset of

inputs that are gating inputs, as defined in Section 2.6. We define a GuardCost for a cut,

such that minimization of GuardCost will encourage the creation of mapping solutions

containing high-quality guarding opportunities, while at the same time minimizing the

dynamic power of the mapped network:

GuardCost(C) =
1 +

∑
i ∈ Inputs(C) α(i)

1 + |Gating[Inputs(C)]|
(3.1)

where α(i) represents the switching activity on LUT input i. The numerator of equa-

tion 3.1 tallies the switching activities on cut inputs, minimizing activity on inter-LUT con-

nections in the mapped network. Higher input activities yield higher values of GuardCost.

A similar approach to activity minimization has been used in other works on power-aware

FPGA technology mapping [26, 22]. The denominator of equation 3.1 reflects the desire

to have LUTs with gating inputs (i.e., inputs that drive non-inverting paths in the AIG).

The signals on such inputs can naturally be used to guard other LUTs, as described in

Section 3.1. Cuts with higher numbers of such non-inverting path inputs will have lower

values of equation 3.1.

28

3.3 Post-Mapping Guarded Evaluation

Following mapping, the circuit is represented as a network of LUTs. Consider a guarding

option, O, comprising L as the candidate LUT to guard, and G being the candidate

guarding signal (produced by some other LUT in the design). The guarding option O is

scored as follows:

Score(O) =
|Outputs(L)| · α(L) · P (L,G)

1 + α(G)
(3.2)

where |Outputs(L)| represents the fanout of LUT L; α(L) and α(G) are the switching

activities on L and G’s outputs, respectively; and P (L,G) is the fraction of time that G

spends at the value that gates L. The numerator of equation 3.2 represents the benefit of

guarding, which increases in proportion to L’s fanout, its activity and the fraction of time

G serves to gate L. The more time that G spends at its gating value, the higher the likely

activity reduction on L. The denominator of equation 3.2 represents the cost of guarding,

which is an increase of G’s fanout (and likely capacitance). The cost is proportional to the

activity of signal G, as it is less desirable to increase the fanout of high activity signals.

Higher values of equation 3.2 are associated with what we expect will be better guarding

candidates.

For a mapped network, we capture all possible guarding options in an array and sort

the array in descending order of each option’s score, as computed through equation 3.2.

The guarding then proceeds as follows: We iteratively walk through the list of guarding

options and for each one, we consider introducing the guard into the mapping. To guard

some LUT L with some signal G, the following rules must be obeyed:

1. LUT L must have a free input (to attach G).

29

2. Attaching G to an input of L must not form a combinational loop in the circuit.

3. Signal G must not already be attached to an input of LUT L.

4. The guard should not increase the depth of the mapped network beyond a user-

specified limit.

5. The guard must not affect the circuit’s functional correctness (discussed in Sec-

tion 3.3.1 below).

A few of the conditions warrant further discussion. Rule #2 is illustrated in the LUT

network of figure 3.5(a). The candidate guarding option is illustrated by the dashed line.

If we were to introduce the guard, a combinational loop would be created, as the LUT

producing the guarding signal G lies in the transitive fanout of the LUT being guarded,

L. We detect and disqualify such guarding options.

G

LUT Q

. . . .

.

. . . .

LUT M LUT G

LUT Z

(a) Guard creating combina-

tional loop

G. . . .

.

LUT L

Level t

Level t-1 Level t-1

LUT Z

LUT M

(b) Guard increasing depth

Figure 3.5: Illustration of impracticable guards

In the case of rule #3, where G is already connected to an input of L, we can alter L’s

logic function to make G a gating input of L, if it is not already so. We can attain the

30

benefit of guarding without routing G to an additional load LUT (i.e., without increasing

G’s fanout).

Regarding rule #4, guarding can have a deleterious impact on network depth, as illus-

trated by the example in figure 3.5(b). In this case, a root LUT Z at level t receives inputs

from two LUTs at level t − 1: L and M . The candidate guarding option is again shown

using a dashed line. If the signal G produced by M is used to guard LUT L, the network

depth is increased to t+1. Generally, if the level of the LUT producing the guarding signal

G is less than the level of the guarded LUT L, the maximum network depth is guaranteed

not to increase. Conversely, if the level of the LUT producing G is greater than or equal to

the level of L, the network depth may increase, depending on whether the LUT L has any

slack in the mapping (i.e., depending on whether L lies on the critical path of the mapped

network). Naturally, if more flexibility is permitted with respect to increasing network

depth, more guarding options can be applied. The allowable increase to network depth is

a user-supplied parameter to our guarding procedure.

Introducing a guard on a LUT may reduce the switching activity on the LUT’s output

and may also reduce activities throughout the LUT’s transitive fanout cone. Consequently,

activity and probability values become “stale” after guards are introduced.

To deal with this, the activity and probability values are periodically updated during

guarding. This is akin to invoking regular timing analysis passes during routing (e.g., as

done in [35]). In particular, after introducing T guards into the mapped circuit, we recom-

pute the switching activities and probabilities for all circuit signals. We score the remaining

guarding options with the revised activities and probabilities using equation 3.2, and then

re-sort the list of guarding options. We resume iterating through the newly sorted list

and introducing guards. T is a parameter that permits a user to trade-off run-time with

guarding quality. Lower T values will result in better activity reduction, at the expense of

31

additional computation.

The overall post-mapping guarding process terminates when either there are no prof-

itable guards remaining, or there are no remaining guarding candidates with a free LUT

input. We will refer to this guarding flow as the PostMap flow in future sections.

3.3.1 Leveraging Non-Obvious “Don’t Cares”

“Don’t cares” are an inherent property of logic circuits that can be exploited in circuit

optimization. Combinational don’t cares are tied to the idea of observability. Under

certain input conditions, the output of a particular LUT does not affect overall circuit

outputs; that is, the LUT output is not observable under certain conditions. Sequential

and combinational don’t care-based circuit optimization has been an active research area

recently. Don’t cares were applied for power optimization in [22], wherein high activity

connections in a mapped network were removed from the network, or interchanged with

other low activity connections in the network. Don’t cares can also be used to achieve a

considerable reduction in the area of LUT mapped networks [37].

As noted in Section 3.2, guarding inputs on LUTs can be identified through non-

inverting and partial non-inverting paths in AIGs and the signals attached to such inputs

can be applied to guard certain single and multi-fanout LUTs in the mapped network. This

takes advantage of don’t cares that are easily discoverable through non-inverting paths.

We refer to these as obvious don’t cares. For cases like that of figure 3.1(b), where LUT

L is guarded with signal G, we can be confident that the transformation does not impact

the circuit’s overall logic functionality. The reason is that G is a gating input to Z in the

figure, and L is in the fanout-free fanin cone of Z.

Surprisingly, however, we have observed that due to don’t cares, it is possible to perform

32

guarding in additional non-obvious cases, such as guarding LUTs like M with signal G in

figure 3.1(a). Here, M is not in the fanout-free fanin cone of Z, so it is not obvious that

guarding M with G should be possible. If we can indeed guard M with G, we refer to

this as leveraging non-obvious don’t cares. We experimented with allowing non-obvious

guarding cases to be executed. Section 3.1 above describes the process by which guarding

opportunities are identified, namely, by identifying a gating or trimming input, G, to a

LUT, Z, and then walking the mapped network upstream from Z’s other inputs. The

same procedure is employed to discover non-obvious guarding options, except that the

uphill traversal is more extensive. Specifically, we consider using G to guard LUTs that lie

outside of Z’s fanout-free fanin cone.

For guarded evaluation with don’t cares, we use the same flow as described above,

namely, sorting all possible guarding candidates and iteratively implementing/evaluating

each one in the sorted order. We use simulation and combinational logic verification (cec

command in ABC) to check that guarding (in the case of non-obvious don’t cares) does

not damage functional correctness (we “undo” the guarding if needed). In particular, we

use a fast random vector simulation to ascertain if correct functionality was disrupted.

SAT-based formal verification is used if the simulation check was successful. Certainly,

performing a full circuit-wise verification after guarding is compute-intensive. However,

the aim of this work is to demonstrate the potential of guarded evaluation for activity and

power reduction. Moreover, recent work on scalable window-based verification strategies,

such as [37], can be incorporated to mitigate run-times for large industrial circuits. Power

optimization is frequently done as a post-pass conducted after other design objectives

are met, specifically, performance and area. Power optimization algorithms are likely not

executed during the initial iterative design process, making longer run-times acceptable for

such algorithms.

33

3.4 Post-Packing Guarded Evaluation

We investigate guarded evaluation on clustered netlists by implementing it after the pack-

ing stage of the FPGA CAD flow. Clustering information can be incorporated into the

algorithm and, possibly, improve the resulting guarding due to the additional information

available. Clustering information can be used to determine whether or not a new guard

will:

1. be inserted entirely within a Logic Block (LB);

2. use an existing connection between the pair of LBs; or

3. require a new connection between a pair of LBs.

When a guard is required entirely within a LB or can exploit an existing connection between

LBs, the new connection will require only additional intra-cluster routing. Intra-cluster

routing are shorter, have smaller capacitances and consume significantly less power com-

pared to inter-cluster connections. Further, an intra-cluster connection is expected to have

less impact on the overall usage of routing resources inside of the FPGA and reduce any

potential for routing issues such as congestion. With consideration to clustering infor-

mation, when guarded evaluation finds a guard that requires an additional inter-cluster

connection, the LBs must be checked to ensure that the input and output usage of the LBs

are not violated. In other words, even though a LUT may have a spare input to allow a

guard to be inserted, the LB containing the LUT to be guarded may not have a free input.

In such cases, the guard must be rejected in order to prevent the clustering solution from

becoming infeasible. Hence, when guarding after clustering, the guarding algorithm can

be enhanced to:

1. include design rule checks to avoid the creation of infeasible LBs.

34

2. include a term in the scoring function which prefers intra-cluster connections (either

through guarding entirely within a LB or through the use of an existing connection

between a pair of LBs).

To this end, we propose a modified scoring function compared to equation 3.2 as follows:

PackScore(O) = (IntraCluster)×GuardScore(O) (3.3)

where IntraCluster is set to number greater than 1 to “boost” the score if the intra-cluster

routing, otherwise it is set to 1; it is possible that other scoring functions could be con-

sidered. Given a modified guarding algorithm which accounts for clustering information,

we consider two flows which guard after clustering. First, we consider guarding with the

modified scoring function and design rule checking of LBs to ensure no infeasibilities are

created — this is referred to as the PostPack guarding flow. We also consider one modifi-

cation of this flow where we prevent any new inter-cluster connections (and therefore only

allow additional intra-cluster connections). We refer to this as the PostPack(NoNewWires)

guarding flow. The idea of the second post clustering flow is to prevent guarding from hav-

ing any impact on the number of inter-cluster connections in the design which affords a

minimum impact on placement and routing of the netlist. In either flow, re-clustering is

not required since all the LBs are guaranteed to be feasible.

3.5 Post-Placement Guarded Evaluation

It is also possible to implement guarded evaluation as a post-placement optimization with

additional information (when compared to guarding after mapping or after clustering).

Here, guarding can not only take into account the assignment of LUTs to LBs, but also

35

the physical separation between the LUTs involved in a guarding candidate. As in post-

clustering guarding, the scoring function used to rank candidate guards should be modified

to account for the positional information available for LUTs. In our experiments, we modify

the cost function in Equation 3.3 to account for the physical separation between LUTs in

a guarding candidate; the modification is given by

PlaceScore(O) = PackScore(O)× 1

1 + (6× distance(Z,G))
(3.4)

where distance(Z,G) represents the Manhattan distance between the LUT Z (the des-

tination of the guard candidate) and LUT G (the source, or controlling signal, of the

guard candidate). This scoring function is intended to encourage guarding opportunities

between nearby LUTs such that any new inter-cluster signals require short connections,

thereby minimizing the impact on routing resource usage. Of course, the cost function does

not prevent the insertion of guards when the LUTs are far apart, but only discourages such

connections. The constant of 6 in the denominator was found to be a good scaling factor

in our experiments. We note that more complicated scoring functions could be taken into

account; e.g., even though routing is not completed, it would be possible to estimate the

routing resources required by each signals to get a better estimation of the impact of a new

connection. However, as will see in our numerical results, encouraging guarding through

distance appears sufficient to illustrate the benefit of guarding after placement. We refer

to guarding after placement as the PostPlace flow.

3.5.1 Multiple Step Guarded Evaluation

Due to the added design rule check to prevent LB infeasibilites, several high-quality guards

are discarded in the PostPack and PostPlace flows. Hence, we also implemented guarded

evaluation in two stages of the CAD flow simultaneously, namely post tech mapping and

36

post placement. Only the guarding options that meet a certain score threshold according

to equation 3.2 were considered after mapping to ensure that a minimal number of high-

quality guards are inserted. We do a post-placement optimization where we again insert

guards considering packing and placement information. We refer to this as the PostMap-

Place flow.

Figure 1.1 is modified in figure 3.6 to summarize the different flows considered to

implement guarded evaluation in this work. Technology mapping is modified to Activity-

Driven Tech-mapping which corresponds to the equation 3.1 added to encourage LUTs with

low activity inputs and more guarding opportunities. PostMap, PostPack, and PostPlace

op 3.3timizations are represented by the green circles. PostMap-Place flow is omitted in

the illustration for clarity. u

37

Activity Driven
Tech- Mapping

Packing

Placement

Routing

Bitstream

Generation

PostMap

Guarding

PostPack

Guarding

PostPlace

Guarding

Figure 3.6: Modified FPGA CAD Flow

38

Chapter 4

Experimental Results

In this chapter, the experimental methodology used to implement the various guarding

strategies and flows is described and results are presented. Switching activity numbers refer

to the results obtained after the mapping and guarding step. We thoroughly explore the

different guarding strategies for the PostMap flow described above and make conclusions on

the various strategies based on these results. Then we pick the best two guarding strategies

in PostMap and implement them in the different guarding flows (i.e. PostPack, PostPlace,

etc). The Power reduction numbers are also thoroughly analyzed and discussed for the

PostMap flow. Power reduction results for the other flows are presented for a comparative

analysis. Hence, we analyze the results and try to answer two different questions:

1. Which guarding strategy is best?

The different guarding strategies are implemented in the PostMap flow and com-

pared with respect to switching activity and interconnect power reduction.

2. Which guarding flow is best?

The best deemed guarding strategies are chosen and the different guarding flows are

39

analyzed and compared with respect to switching activity and interconnect power

reduction.

4.1 Methodology

Guarded Evaluation is implemented on an open-source logic synthesis framework called

ABC [1] and targeted both 6- and 4-LUT architectures. We compare the results of guarded

networks with several different baseline mappings: 1) LUT mapping based on priority

cuts [39] (the if command in ABC), 2) WireMap [21], and 3) activity-driven WireMap.

Briefly stated, WireMap is a technique that reduces the number of inter-LUT connections

which tends to be beneficial for power. Activity-driven WireMap has its cut selection cost

function altered to break ties using the sum of switching activity on cut inputs, as described

in section 3.2. In all cases, prior to mapping, we execute the ABC choice command [12]

which provides added mapping flexibility and has been shown to provide superior results.

Guarded evaluation was applied to a modified WireMap mapper, where ties in cut selection

were broken with the values returned by equation (3.1) to improve guarding opportunities.

In all cases, guarded networks were verified using the ABC cec command. To determine

the benefits of guarded evaluation, we evaluate our ideas using two different power metrics:

1) total switching activity after technology mapping, and 2) power dissipated in the FPGA

interconnect after placement and routing1.

The activity across all nets of a circuit are summed to produce total switching activ-

ity. To generate switching activity information, we used the simulator built-in to ABC.

Each combinational input (primary input or register output) is assigned a random toggle

probability between 0.1 and 0.5. Random input vectors were then generated in a manner

1Prior work has shown that interconnect comprises ∼2/3 of dynamic power in FPGAs [45].

40

consistent with the input toggle probabilities. ABC’s logic simulator was used to produce

activity values for internal signals, considering the logic functionality. The same set of in-

put vectors were used for each circuit across all runs. All generated simulation and activity

information is used when performing packing, placement and routing to determine actual

power dissipation for consistent results throughout the experiments.

For dissipated power, we use the VPR framework described in [26], which is based on

VPR4.3, and integrates the FPGA power model of [42]2. Since guarding may adversely

impact circuit speed, and since circuits that run slower will naturally consume less dynamic

power, it is desirable to evaluate the power impact of guarding separately from the impact

of guarding on speed performance. With this in mind, in computing the power numbers, we

assume a constant clock frequency (40 MHz) for all circuits/implementations. Hence, the

power numbers for a benchmark represent the average power consumed by the benchmark

to perform its computations in a given (fixed) amount of time. Differences in observed

power for a benchmark across its various implementations (e.g. guarding off/on) are con-

sequently due to differences in switching activities on the benchmark’s logic signals and

not due to the implementations being clocked at different frequencies. Hence, the power

improvements reported in this thesis are essentially energy improvements, and energy is

the key metric in determining operational cost and battery life.

Since FPGA architectures are quite varied, we target three different sizes of clustered

FPGA architectures when performing both 6- and 4-LUT mapping. Specifically, we target

FPGA architectures in which each LUT is possibly paired (packed) with a flip-flop (FF).

Then, LUT/FF pairs are clustered into logic blocks (LBs) with 1, 4 or 10 LUT/FF pair(s).

In all cases, the routing architecture is composed of length-4 segments. Hence, the following

2Newer versions of VPR are available [31, 32], but these newer versions do not include a power model

which is required for our investigations.

41

architectures are targeted:

In all architectures the number of inputs, I, on the logic block clusters is set to I =

K/2 · (N + 1) where K is the number of LUT inputs and N is the number of LUT/flip-flop

pairs per cluster which is a typical value [3].

1. Logic blocks containing one 4-LUT/FF pair per block (flat architecture).

2. Logic blocks containing four 4-LUT/FF pairs per block with 10 inputs to each block.

3. Logic blocks containing ten 4-LUT/FF pairs per block with 22 inputs to each block.

4. Logic blocks containing one 6-LUT/FF pair per block (flat architecture).

5. Logic blocks containing four 6-LUT/FF pairs per block with 15 inputs to each block.

6. Logic blocks containing ten 6-LUT/FF pairs per block with 33 inputs to each block.

To be consistent, for each mapping strategy and each architecture, we force the number

of routing tracks to be same; we compute the minimum channel width W needed for

the priority cuts mapping and then increase this value by 30%. Therefore, the routing

fabric is invariant for each circuit/architecture regardless of the mapping algorithm used.

This allows for a fair comparison in terms of dissipated power. In this thesis, an N ×K

architecture refers to one with N K-LUT/FF pairs per logic block. Since the FPGA

mapper in ABC can operate in depth or area mode, we consider the consequences of

guarding on both area-oriented and depth-oriented mappings. For the case of depth-

oriented mapping, we also consider the trade-offs between power and depth.

To implement post-packing and post-placement Guarded Evaluation, the mapped netlist

is read back into ABC along with the respective packing and placement information.

Guarding is performed by considering the underlying AIGs of each LUT in the mapped

netlist. The scoring function is modified as described in sections 3.4 and 3.5 and feasi-

ble guards are inserted. Switching activities and functions implemented by each LUT are

42

modified to reflect the guarded solution and the netlist is finally routed. As stated previ-

ously, power aware T-V-Pack and VPR [26] are used to perform the packing, placement

and routing.

Finally, for benchmarks, we use the larger designs from the MCNC suite [53] which are

distributed with the VPR package. When mapped to 4- and 6-LUT architectures, these

designs range in size from a few hundred to a few thousand LUTs.

4.2 Switching Activity Results

The reduction in total switching activity for area-oriented mapping (using all different

mapping techniques) is shown in figure 4.1(a) and figure 4.1(b) for 6-LUT and 4-LUT

architectures, respectively. Reported numbers represent the total switching activity aver-

aged across a benchmark suite of 20 circuits normalized to the results obtained using the

priority cut-based mapper.

In both figure 4.1(a) and (b), the left-most bar shows total switching activity for priority

cut-based mapping [39] and represents the baseline result. The second bar shows activity

values for WireMap [21]. On average, WireMap reduces total switching activity by 10%

and 3% on average for 6-LUT and 4-LUT architectures, respectively. The third bar shows

results for activity-driven WireMap; total switching activity is further reduced by 4% and

3% for 6-LUT and 4-LUT architectures, respectively.

The fourth bar in figure 4.1 shows results for guarding with only gating inputs (c.f. Sec-

tion 2.6) without any consideration of trimming inputs (c.f. Section 2.7) or non-obvious

don’t cares (c.f. Section 3.3.1). Further, the fourth bar does not consider the guard in-

sertion based on static probabilities, but only inserts AND gates (c.f. Section 3.1) to force

43

N
o
rm

a
li
ze

d
A
ct

iv
it
y
(g

eo
m

ea
n
)

1.00

0.90

0.86

0.82

0.78
0.80

0.70

0.68

0.73

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating TrimmingTrimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

(a) 6-LUT Architectures

N
o
rm

a
li
ze

d
A
ct

iv
it
y
(g

eo
m

ea
n
)

1.00
0.97

0.94

0.90

0.85

0.88

0.77
0.75

0.78

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating TrimmingTrimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

(b) 4-LUT Architectures

Figure 4.1: Normalized Reduction in Switching Activity for Area-Oriented Mapping

44

signals to logic-0 when guarded. Guarding with only gating inputs and AND gates reduces

the total switching activity by an additional 4% for both 6-LUT and 4-LUT architectures

when compared to activity-driven WireMap. The use of trimming inputs significantly im-

proves results as shown in the fifth bar in figure 4.1(a) and (b); the total switching activity

is further reduced by an additional 4% and 5% for 6-LUT and 4-LUT architectures, respec-

tively, when compared to guarding with only gating inputs. Significantly more guarding

opportunities were revealed when trimming inputs (i.e., partial non-inverting paths) are

considered.

The sixth bar shows guarding with gating and trimming inputs while considering the

guarding value and the static probability of the guarded LUT when determining whether

to guard with an AND gate or an OR gate (c.f. Section 3.1). Recall that, intuitively, by

considering different types of guarding logic, it should be true that unnecessary toggling

is reduced and, consequently, a further reduction in switching activity can be obtained.

However, as demonstrated by the sixth bar in figure 4.1(a) and (b), we see that results are

worsened by 2− 3% for both 6-LUT and 4-LUT architectures. This result is analyzed and

considered further in Section 4.4.

Finally, the last three bars (bars 7 through 9) in figure 4.1(a) and (b) shows results for

guarding with consideration for non-obvious “don’t cares” under the same conditions as the

previous three bars (bars 4 through 6). We see a similar pattern to bars 4 through 6 with

the exception that the use of non-obvious don’t cares serve to further improve results. If we

consider all different mapping strategies, we can see that it is possible to obtain significant

reductions in total switching activity compared to the priority cut-based mapper; with

minor modifications to WireMap and by proper selection of guarding techniques, average

reductions of 32% and 25% in total switching activity can be obtained for 6-LUT and

4-LUT architectures, respectively.

45

N
o
rm

a
li
ze

d
A
ct

iv
it
y
(g

eo
m

ea
n
) 1.00

0.95

0.90
0.88

0.85

0.88

0.82
0.80

0.84

0.79

0.74

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

Trimming

(+20%)

Trimming

(DC

+20%)

(a) 6-LUT Architectures

N
o
rm

a
li
ze

d
A
ct

iv
it
y
(g

eo
m

ea
n
)

1.00 0.99
0.97

0.95

0.89
0.91

0.87
0.86

0.88 0.87

0.80

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

Trimming

(+20%)

Trimming

(DC

+20%)

(b) 4-LUT Architectures

Figure 4.2: Normalized Reduction in Switching Activity for Depth-Oriented and Depth-

Relaxed Mapping

46

Figure 4.2(a) and (b) show the reductions in total switching activity for 6-LUT and

4-LUT architectures, respectively, once depth optimization is taken into account. During

the insertion of guards, an additional constraint is enforced such that the depth of the

network cannot increase due to the addition of a guard. Intuitively, this constraint will

restrict (reduce) the number of possible guards that can be successfully inserted and,

consequently, many guarding options are discarded.

Columns 1 through 9 in figure 4.2(a) and (b) show the depth-oriented results for the

different mappers in the same order as presented previously in figure 4.1(a) and (b) for

area-oriented mapping. Without further detail, we can see the same trend when comparing

the different mapping strategies; the obtained reductions in switching activity, however,

are less for depth-oriented mapping due to the enforcement of the additional constraint on

logic depth when inserting guards. The best reduction in total switching activity obtained

was, on average, 20% and 14% for 6-LUT and 4-LUT architectures, respectively. This

result was obtained when guarding was performed with both gating and trimming inputs,

and consideration of non-obvious don’t cares.

One final experiment was performed with respect to depth-oriented mapping to analyze

the impact of the depth constraint enforced during the insertion of guards. Network depth

was relaxed and allowed to increase by up to 20% of its optimal depth3. Depth relaxation

was allowed for the two best mapping strategies; namely (1) guarding with gating and

trimming inputs and (2) guarding with gating and trimming inputs and with consideration

to non-obvious don’t cares. The tenth and eleventh bars in figure 4.2(a) and (b) show the

results for 6-LUT and 4-LUT architectures, respectively. We can see that by allowing only

a small amount of depth relaxation, a further reduction in the total switching activity is

3That is, if the optimal mapped circuit depth was originally L levels, the depth was permitted to grow

to dL · 1.2e levels.

47

possible.

In summary, the best results in terms of total switching activity for all mappings (area

and depth) for both 6-LUT and 4-LUT architectures was produced when guarded with

gating and trimming inputs while always using AND gates for guarding. The use of non-

obvious don’t cares served to further improve results. Results for 6-LUT architectures are

generally better than those for 4-LUT architectures due to the availability of more free

inputs on LUTs which allow for the insertion of more guards.

For additional insight into the obtained reductions in total switching activity, Tables A.1

and A.2 present the circuit-by-circuit results for the 6-LUT architectures for area-oriented

and depth-oriented mapping, respectively4. The last two rows in both Tables A.1 and A.2

show the ratio (of geometric means) of the total switching activity for each mapping tech-

nique with respect to the baseline mappers (priority cuts and activity-driven WireMap).

Generally, on a per-design basis, the application of guarding aids in reducing the total

switching activity. In some cases (e.g., bigkey), guarding provided little benefit due to the

lack of free inputs on LUTs.

Figure 4.3 shows some additional network statistics to help evaluate the impact of

guarding for depth-oriented mapping (area-oriented results are omitted for brevity). The

bars in the figure represent LUT count and average number of fanins to each LUT, nor-

malized to the priority cuts mapping. The line in the figure represents the percentage of

fully-utilized LUTs (i.e. all inputs used). The bars should be interpreted using the left

vertical axis; the line goes with the right vertical axis. Observe that guarding does not

increase the LUT count with respect to activity-driven WireMap (see blue bars). Observe

also that the average LUT fanin is increased (as expected) due to guarding (see red bars)

and that naturally, guarding tends to increase the number of fully utilized LUTs (line).

4Circuit-by-circuit results are omitted for 4-LUT architectures for sake of brevity.

48

20

22

24

26

28

30

32

34

0.95

0.96

0.97

0.98

0.99

1

1.01

Priority Cuts Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming with

OR

Gating(DC) Trimming(DC) Trimming with

OR(DC)

Trimming

(+20%)

Trimming

DC(+20%)

P
er

ce
n
ta

g
e

R
a
ti
o

LUT Count

LUT Fanins

Fully Utilized LUTs

(a) 6-LUT Architectures

48

49

50

51

52

53

54

55

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Priority Cuts Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming with

OR

Gating(DC) Trimming(DC)Trimming with

OR(DC)

Trimming

(+20%)

Trimming

DC(+20%)

P
er

ce
n
ta

g
e

R
a
ti
o

LUT Count

LUT Fanins

Fully Utilized LUTs

(b) 4-LUT Architectures

Figure 4.3: Impact of guarding for depth-oriented mapping

The LUT count (blue bars) remain the same as guarding only adds additional connections.

Figure 4.4 shows how guarding affects characteristics of the post-packing netlist, i.e. the

netlist after LUTs have been packed into LBs. Part (a) gives results for depth-oriented

6-LUT mappings; part (b) gives results for depth-oriented 4-LUT mappings. The bars in

the figure illustrate geometric mean LB count for the various flows, normalized to priority

49

0

10

20

30

40

50

60

70

80

90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Priority Cuts Wiremap Activity

Driven
Wiremap

Gating Trimming Trimming with

OR

Gating(DC) Trimming(DC)Trimming with

OR(DC)

Trimming

(+20%)

Trimming

DC(+20%)

P
er

ce
n
ta

g
e

R
a
ti
o

1x6 LB Count

4x6 LB Count

10x6 LB Count

1x6 inputs/LB

4x6 inputs/LB

10x6 inputs.LB

(a) 6-LUT Architectures

0

10

20

30

40

50

60

70

80

90

100

0.9

0.95

1

1.05

1.1

1.15

Priority Cuts Wiremap Activity Driven

Wiremap

Gating Trimming Trimming with

OR

Gating(DC) Trimming(DC) Trimming with

OR(DC)

Trimming

(+20%)

Trimming

DC(+20%)

P
er

ce
n
ta

g
e

R
a
ti
o

1x4 LB Count

4x4 LB Count

10x4 LB Count

1x4 inputs/LB

4x4 inputs/LB

10x4 inputs.LB

(b) 4-LUT Architectures

Figure 4.4: Post-packing statistics on LB count and fanin for depth-oriented mapping

cuts mapping. The line shows average LB fanin (% of used LB inputs) for the architecture

having 1 LUT/LB, 4 LUTs/LB and 10 LUTs/LB respectively. Observe that for both

6-LUTs and 4-LUTs, guarding does not have an appreciable impact on LB count – the

swings lie within the range of 1-2%, at most. The line in both parts of the figure shows a

slight increase towards the more permissive guarding scenarios on the right, where greater

numbers of guarding connections are introduced. However, as with LB count, the impact of

guarding on LB fanin is evidently quite small. The statistics in the figure are encouraging,

as guarding adds connections to the mapped netlist, yet the additional connections appear

to have a modest impact post-packing.

50

We consider runtimes for guarding as follows. Without exploiting don’t cares, the

worst runtime encountered was 46 seconds5. The breakdown of runtime was 33.5% for

combinational loop checks, 62.2% for simulation, and 2.1% for guard identification. The

small amount of remaining runtime was overhead. Both the simulation runtimes and

combinational loop checking can be improved. For example, combinational loops could be

checked via node levels rather than via depth-first search in many cases. Similarly, less

simulation or incremental simulation could be used. Hence, guarding without don’t cares

is expected to scale to larger designs. When don’t cares are used, however, the runtime

situation changes. The worst runtime encountered was ∼8000 seconds. Here, only ∼3% of

the runtime was taken for simulation, combinational loop checking and guard identification.

Almost all the runtime was used to perform combinational equivalence checking (CEC) via

SAT solving. However, it is important to recognize that, as our goal was to evaluate the

power benefits of guarding, we made no effort to reduce runtime. The runtime situation

is straightforward to improve in a number of ways: In the present implementation, the

CEC is always performed on the entire network, but it in fact only needs to be performed

on certain points in the fanout of the guarded LUTs. More judicious application of don’t

cares can be considered. Finally, it is likely that the guarding with don’t cares could be

better integrated with scalable don’t care analysis.

4.2.1 Guarding Post Packing and Placement

This section briefly analyzes the impact of guarded evaluation implemented as a post-

packing and post-placement optimizations.

5The platform was a 3.2 GHz Intel i7 PC running Ubuntu Linux v11.10. The particular design was

clma which, when mapped to 6-LUTs, required ∼3000 LUTs.

51

Figure 4.5 shows a comparison of the switching activity reduction obtained by various

flows for 6-LUT architectures. The blue bar represents guarding with AND considering

Trimming and Gating inputs since this was deemed to be the best guarding strategy

from the analysis in the previous section. The Orange bar represents guarding with AND

considering Trimming and Gating with non-observable don’t cares leveraged. For depth-

oriented mappings, we also considered guarding with 20% depth-relaxation, represented by

the purple bar. The line graphs show the number of guards inserted for each flow. All the

numbers are normalized to activity-driven Wiremap (vs. Priority cuts, as in the previous

section).

For area-oriented mapping, PostMap achieves the most reduction for both guarding

strategies. This is the consequence of the number of guards inserted, which were also the

highest for this flow. PostMap-Place, which inserts high-quality guards post-mapping and

performs a post-placement optimization, is able to achieve comparable results with about

22% fewer guards inserted. PostPack(NoNewWires) inserts minimal guards due to the

added constraint of using only intra-cluster wires. PostPack and PostPlace are both able

to achieve some activity reduction, however due to the feasibility constraint, several guards

are discarded. Since at this point we are only considering switching activities post-guarding,

the benefits of PostPack and PostPlace are not visible. The next section, which presents

the interconnect power reductions, provides more understanding of the “real” benefits of

PostPack and PostPlace. The reductions are similar for depth-oriented mapping where all

guarding options that increase the critical path are discarded. Some additional reductions

are gained due to depth-relaxation. It is necessary to consider the number of new netlist

connections inserted due to guarding because these signals have impact during routing.

As explained previously, the cost of guarding is proportional to the increased fanout of

the guarding signal. Furthermore, increased netlist connections give rise to routability

52

0

20

40

60

80

100

120

140

160

Activity Driven

Wiremap

PostMap PostPack

(NoNewWires)

PostPack PostPlace PostMap-Place

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

N
u
m

b
er

o
f
G

u
a
rd

s

Guarding Techniques

S
w

it
ch

in
g
A
ct

iv
it
y

R
ed

u
ct

io
n

No Don't Cares

Don't Cares

Guards (No DC)

Guards (DC)

(a) Area-oriented Mapping

0

20

40

60

80

100

120

140

160

Activity Driven

Wiremap

PostMap PostPack

(NoNewWires)

PostPack PostPlace PostMap-Place

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

N
u
m

b
er

o
f
G

u
a
rd

s

Guarding Techniques

S
w

it
ch

in
g
A
ct

iv
it
y

R
ed

u
ct

io
n

No Don't Cares

Don't Cares

Don't Cares + 20

Guards (No DC)

Guards (DC)

Guards (DC+20)

(b) Depth Oriented Mapping

Figure 4.5: Average reduction in switching activity for 6-LUT architectures

issues such as congestion and maintaining a minimum routing channel width. Hence, the

problem lies in identifying high quality guards that have good activity reductions with

minimal impact to routing resources.

53

4.3 Power Results

While the results above demonstrate a benefit to switching activity, dynamic power scales

with the product of activity and capacitance. Guarded evaluation increases the fanout of

signals in the network, likely increasing their capacitance and power. Consequently, it is

not adequate to focus solely on activity reduction to evaluate the benefit of the technique—

actual power measurements after placement and routing are useful.

Furthermore, modern FPGA architectures cluster LUT/FF pairs into LBs. Since

guarded evaluation reduces the switching activity on wires with the cost of increased fanout

of some signals, it is relevant to analyze the impact of this approach on architectures with

different cluster sizes. The expectation is that more heavily clustered architectures would

benefit from guarding the most since LUTs with identical guards (in effect, shared input

signals) would tend to be placed into the same LB. The consequence is that the addi-

tional wires added by guarding will not impact inter-clustering routing significantly; i.e.,

the fanout when measured in terms of the number of logic blocks will not increase as much

when guarding is targeted towards heavily clustered architectures.

Figure 4.6(a) and (b) gives the average power consumed in the FPGA interconnect

for area-oriented mapping for 6-LUT and 4-LUT architectures of different cluster sizes,

respectively. The results consider post-routing interconnect capacitance on architectures

with cluster sizes of 1 (flat), 4 and 10. The pattern is similar to that shown when considering

total switching activity. The best results are obtained when both gating and trimming

inputs were used, with consideration to non-obvious don’t-cares, and guarding was done

using only AND gates. For 6-LUT architectures, figure 4.6(a) shows an average improvement

of 14%, 28% and 27% for cluster sizes of 1, 4 and 10, respectively, relative to priority cuts-

based mapping. For 4-LUT architectures, figure 4.6(b) shows an average improvement of

54

14%, 22% and 21% for cluster sizes of 1, 4 and 10, respectively. From these experimental

results, it appears that more heavily clustered architectures benefit the most from guarding.

This observation is considered further in Section 4.4.

Figure 4.7(a) and (b) show the results for depth-oriented and depth-relaxed mapping.

Once again, the best results are produced when guarding with gating and trimming inputs

while considering non-obvious don’t cares, which is consistent with the observations made

during the investigation of total switching activity. Similar to area-oriented mapping, the

most benefit is seen for the more heavily clustered architectures. Specifically, For 6-LUT

architectures, figure 4.7(a) shows reductions of 15%, 16% and 15% for clusters sizes of 1, 4

and 10, respectively, relative to priority cuts-based mapping. With depth-relaxation, these

results improved to 16%, 20% and 21% for cluster sizes of 1, 4 and 10, respectively For

4-LUT architectures, interconnect power was reduced by 10%, 14% and 14% for cluster

sizes of 1, 4 and 10, respectively. Similar to the 6-LUT result, further improvements

were obtained using depth relaxation; reductions of 11%, 17%, and 15% were obtained for

clusters sizes of 1, 4 and 10, respectively.

For reference, Table 4.1 provides the raw interconnect power results for area-oriented

and depth-oriented mappings across the different architectures. Each entry is produced

by taking the geometric mean of interconnect power across the 20 benchmark circuits.

Appendix A.4 provides the circuit-by-circuit interconnect results for the 4x6 architectures

for both area and depth-oriented mappings. Circuit-by-circuit results for 1x6, 10x6, 1x4,

4x4 and 10x4 are omitted for the sake of brevity.

55

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er
(g

eo
m

ea
n
)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating (DC) Trimming

(DC)

Trimming

with OR

(DC)

1x6

4x6

10x6

(a) 6-LUT Architectures

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er
(g

eo
m

ea
n
)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating (DC) Trimming

(DC)

Trimming

with OR

(DC)

1x4

4x4

10x4

(b) 4-LUT Architectures

Figure 4.6: Normalized Reduction in Interconnect Power for Area-Oriented Mappings

56

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er
(g

eo
m

ea
n
)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

Trimming

(+20%)

Trimming

(DC

+20%)

1x6

4x6

10x6

(a) 6-LUT Architectures

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority

Cuts

Wiremap Activity

Driven

Wiremap

Gating Trimming Trimming

with OR

Gating

(DC)

Trimming

(DC)

Trimming

with OR

(DC)

Trimming

(+20%)

Trimming

(DC

+20%)

1x4

4x4

10x4

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er
(g

eo
m

ea
n
)

(b) 4-LUT Architectures

Figure 4.7: Normalized Reduction in Interconnect Power for Depth-Oriented Mappings

57

Table 4.1: Power reduction results for different architectures (power given in Watts reported

by [26, 42]).

Guarding Strategy Architecture and Mapping Objective

1x4 4x4 10x4 1x6 4x6 10x6

Area Depth Area Depth Area Depth Area Depth Area Depth Area Depth

Priority Cuts 0.340 0.360 0.116 0.121 0.071 0.073 0.338 0.376 0.116 0.114 0.071 0.071

WireMap 0.316 0.339 0.104 0.114 0.065 0.071 0.313 0.336 0.097 0.106 0.061 0.068

Activity Driven

WireMap 0.317 0.335 0.104 0.113 0.065 0.070 0.313 0.333 0.096 0.103 0.060 0.066

Gating 0.316 0.334 0.104 0.112 0.065 0.069 0.311 0.332 0.094 0.102 0.059 0.065

Trimming 0.309 0.329 0.098 0.109 0.063 0.067 0.299 0.325 0.087 0.099 0.055 0.063

Trimming

with OR 0.308 0.330 0.099 0.109 0.061 0.068 0.304 0.325 0.089 0.099 0.057 0.062

Gating (DC) 0.295 0.320 0.097 0.105 0.056 0.065 0.291 0.320 0.084 0.096 0.053 0.060

Trimming (DC) 0.294 0.321 0.091 0.104 0.056 0.063 0.291 0.318 0.084 0.096 0.052 0.060

Trimming

with OR (DC) 0.297 0.323 0.093 0.107 0.057 0.065 0.294 0.321 0.087 0.100 0.054 0.061

Trimming (+20%) - 0.329 - 0.106 - 0.066 - 0.320 - 0.095 - 0.061

Trimming

(DC +20%) - 0.319 - 0.101 - 0.062 - 0.316 - 0.091 - 0.056

4.3.1 Guarding Post Packing and Placement

The guarding flows are evaluated on the 4x6 architecture, which gives a good idea of the

impact on clustered architectures as seen above. Figure 4.8 shows the average reduction in

interconnect power for both area and depth-oriented mappings. For area-oriented, Post-

Pack, PostPlace and PostMap-Place flows have comparable reductions to PostMap. Note

that this is a slightly different picture than what we saw in the switching activity results.

This is because the circuit has been routed and is a complete netlist that can be imple-

mented on an FPGA. As PostPack and PostPlace attempt to impact the final netlist,

the reductions are more visible. Wire usage for the different guarding strategies are also

reported. Note that PostMap has the most wire-usage, hence the most impact on routing

resources. For area-oriented, PostPlace is able to achieve 88% of the PostMap reduction by

inserting only about 35% of the guards. For depth-oriented with relaxation, PostPlace is

58

able to achieve 67% of the reduction through PostMap, while inserting 25% of the guards.

This is an important result because it means that a conservative approach to guarding

can achieve high power reductions with minimal impact to routability. The next sub-

section describes the impact to critical path delay which is also an important metric to

evaluate the performance of the final netlist.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Activity Driven

Wiremap

PostMap PostPack

(NoNewWires)

PostPack PostPlace PostMap-Place

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

N
o
rm

a
li
ze

d
W

ir
e
U
sa

g
e

Guarding Techniques

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er

No Don’t Cares
Don’t Cares
Wire-usage (No DC)
Wire-usage (DC)

(a) Area-Oriented Mapping

0.8

0.85

0.9

0.95

1

1.05

1.1

Activity Driven

Wiremap

PostMap PostPack

(NoNewWires)

PostPack PostPlace PostMap-Place

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
N
o
rm

a
li
ze

d
W

ir
e
U
sa

g
e

Guarding Techniques

N
o
rm

a
li
ze

d
In

te
rc

o
n
n
ec

t
P
o
w

er

No Don’t Cares

Don’t Cares
Don’t Cares + 20

Wire-usage (DC+20)

Wire-usage (DC)

Wire-usage (No DC)

(b) Depth Oriented Mapping

Figure 4.8: Average reduction in interconnect power for 4x6 architectures

59

4.3.2 Critical Path Delay

We report the impact of guarded evaluation on post-routed critical path delay (as re-

ported by VPR [9]) to understand the impact of guarding on performance. Table 4.2

shows the geometric mean (across all circuits) of critical path delay for different guarding

strategies. Results are presented only for 6-LUT architectures and different cluster sizes;

4-LUT results are similar and are omitted for brevity. Table 4.2(a) shows results for area-

oriented mappings. With respect to activity-driven WireMap, the critical path delay is

increased, on average, by ∼18% to 20% when using gating inputs, depending on the clus-

ter size. This increases to ∼23% to 30% when using gating and trimming inputs. When

non-obvious don’t cares can be exploited, critical path delay is further increased with re-

spect to activity-driven WireMap – anywhere from ∼31% to 43% depending on the cluster

size. Hence, although guarded evaluation is very effective when applied to area-oriented

mapping without any concern for circuit depth, a large performance penalty is incurred.

Table 4.2(b) gives results for several key depth-oriented guarding strategies. When a

depth constraint is enforced during guard insertion, the critical path increases only slightly

by ∼1% to 3%, on average, with compared to activity-driven WireMap. Some small

perturbation is to be expected due to the extra connections added into the network due

to the guarding. With depth relaxation (of up to 20%), the critical path increased, on

average, anywhere from ∼11% to 17%.

Table 4.3 compares the critical path delay for the different guarding flows described.

Results presented are evaluated for Trimming (DC) for area-oriented and Trimming (DC

+ 20%) for depth-oriented mappings on 4x6 architectures. These strategies were chosen

because they have the most impact to critical path delay, as shown in table 4.2. Post-

Pack(NoNewWires) has virtually no impact on critical path since there are very few new

60

Guarding Strategy Normalized

Critical Path Delay

1x6 4x6 10x6

Activity-Driven

WireMap 1.00 1.00 1.00

Gating 1.18 1.20 1.20

Trimming 1.23 1.27 1.30

Gating (DC) 1.31 1.37 1.42

Trimming (DC) 1.31 1.39 1.43

(a) Area-oriented Mapping

Guarding Strategy Normalized

Critical Path Delay

1x6 4x6 10x6

Activity-Driven

WireMap 1.00 1.00 1.00

Gating 1.01 1.00 1.01

Trimming 1.01 1.00 1.01

Gating (DC) 1.02 1.01 1.02

Trimming (DC) 1.03 1.02 1.02

Gating (DC +20%) 1.14 1.16 1.17

Trimming (DC +20%) 1.11 1.13 1.15

(b) Depth-Oriented Mapping

Table 4.2: Critical path delays for several guarding strategies

wires inserted. PostPack has about 26% increase for area-oriented and 11% increase for

depth-oriented. There are fewer new wires due to the added feasibility constraint, however

since the circuit is placed after the guarding step, impact on the critical path is caused due

to the placement solution where some guards may potentially span long distances, which is

detrimental to critical path. Since PostPlace attempts to encourage new connections that

are closer, the impact to critical path is minimized.

It is important to recognize that many FPGA designs do not need to run at the max-

61

Guarding Flows Normalized Critical Path Delay

Area-oriented Depth-oriented

Activity-Driven Wiremap 1.00 1.00

PostMap 1.39 1.13

PostPack(NoNewWires) 1.00 1.03

PostPack 1.26 1.11

PostPlace 1.10 1.08

PostMap-Place 1.30 1.13

Table 4.3: Critical Path Delay for various flows

imum possible device performance. Despite the reduction in maximum achievable circuit

speed, guarded evaluation does indeed produce implementations having lower power. We

believe that guarded evaluation is an important power reduction strategy that will be useful

in many applications where power consumption is a top tier concern.

In summary, in the 10×6 architecture which aligns closely with the logic block granular-

ity of the the Xilinx Virtex-6 FPGA and Altera Stratix IV FPGA, the “Trimming (DC)”

flow with delay-driven mapping provides about 11% reduction in interconnect power, with

just 1% increase in critical path delay, on average. Alternatively, the “Trimming (DC

+ 20%)” flow can be used to achieve 15% power reduction, with a higher, 15% increase

in critical path delay. The PostPack and PostPlace guarding flows had lesser impact on

the routing resources and the critical path, while having comparable interconnect power

reductions. The different flavors of guarded evaluation thus provide the user with a range

of implementation options within the power/speed design space.

62

4.4 Discussion

There were several interesting results seen during experimentation of the guarded evalua-

tion approach and these results are further investigated in this section.

4.4.1 Use of Gating and Trimming Inputs

The previous numerical results demonstrated that the use of trimming inputs found through

the consideration of partial non-inverting paths significantly improved results. Table 4.4

shows results on a per design basis when targeting depth-oriented mapping and 6-LUT

architectures. In particular, Table 4.4 shows the number of guarding options computed

and the number of actual inserted guards for: 1) guarding using only gating inputs; and

2) guarding using gated and trimming inputs. It can clearly be seen that the use of trim-

ming inputs found through partial non-inverting paths significantly improve the number

of guarding candidates and, in turn, results in the insertion of more guards leading to a

larger improvement in total switching activity and power dissipation. Although not shown,

the results are even more pronounced when non-obvious don’t cares are taken into account

during guarding.

4.4.2 Use of OR Gates as Guard Logic

An apparently counter-intuitive result was observed when attempting to account for the

static probability of a signal when inserting guards; recall the intention was to insert either

an AND gate or an OR where appropriate to avoid unnecessary toggles. Counterinituitively, it

did not prove effective to use OR gates, as demonstrated by the numerical results previously

presented. Analysis demonstrated that the insertion of an OR gate (when appropriate)

63

Table 4.4: Number of guarding options and inserted guards for two different guarding

strategies.

Design Gating Trimming

Options Inserted Options Inserted

alu4 3880 86 4071 95

apex2 6720 34 6873 36

apex4 1862 8 1866 10

bigkey 0 0 0 0

clma 5965 243 10403 843

des 153 6 184 9

diffeq 8 1 17 3

dsip 224 1 224 1

elliptic 658 49 658 49

ex1010 12125 15 12125 15

ex5p 812 15 812 15

frisc 641 15 662 18

misex3 3221 48 3270 54

pdc 9169 48 9312 72

s298 1252 18 1527 36

s38417 656 71 767 84

s38584.1 356 36 584 68

seq 2027 27 2111 34

spla 7192 51 7334 86

tseng 11 4 21 9

Average 2846.6 38.8 3141.1 76.9

based on static probability was having a positive effect, but only on a local level. In other

words, the selection of either an AND gate or an OR based on static probability resulted in

reduced switching activity for the current signal being guarded.

Figure 4.9 shows the results of an experiment where the static probability of the guarded

LUT was considered and if Pl > 0.5, it was guarded with an OR gate and activity of the

64

signal was examined. Subsequently, it was guarded with an AND gate. The experiment was

performed across all 20 MCNC circuits, where only one guard was considered to localize the

effect of guarding. Guarding with consideration of static probability was able to reduce the

corresponding signal activity by 29%, while without consideration, it was able to reduce

activity by 27%. This 2% additional reduction occurs because the static probability of

guarded LUTs were an average of 69% (i.e. signals are logic-1 more often than they are

logic-0). Notice that by guarding with an AND gate, this reduces to 28%, while guarding

with an OR gate increased it to 78%. These results intuitively make sense.

0.57

0.69

0.30 0.280.28

0.78

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Activity before

Guarding

Probability

before guarding

Activity after

Guarding

Probability after

Guarding

AND gates

OR gates

S
w
it
ch
in
g
A
ct
iv
it
y
an
d
P
ro
b
ab
il
it
y

Figure 4.9: Comparing AND gating and OR gating for local signals.

However, further investigation showed that the use of OR gates resulted in fewer total

inserted guards. Table 4.5 shows the number of guards inserted when signal probabilities

are taken into account; these results are presented for 6-LUT architectures and depth-

oriented mappings. In almost all cases, accounting for signal probabilities and choosing

an appropriate gate type (AND or OR) resulted in fewer inserted guards when compared to

simply inserting an AND gate and forcing a signal to logic-0. In the course of the algorithm,

we observed that the insertion of OR gates was creating a different ranking of guarding

65

Table 4.5: Comparison of the number of inserted guards using gating and trimming inputs

when using only AND gates versus using AND gates or OR gates to guard.

Design Trimming Trimming Trimming Trimming

with OR (DC) with OR (DC)

alu4 95 75 187 153

apex2 36 23 115 117

apex4 10 9 47 40

bigkey 0 0 0 0

clma 843 505 790 491

des 9 5 37 28

diffeq 3 3 81 46

dsip 1 1 1 1

elliptic 49 49 83 50

ex1010 15 95 95 148

ex5p 15 11 64 62

frisc 18 196 125 252

misex3 54 43 173 158

pdc 72 93 213 210

s298 36 69 96 155

s38417 84 88 128 142

s38584.1 68 69 105 131

seq 34 23 105 111

spla 86 87 209 170

tseng 9 2 64 24

Average 76.9 72.3 136 124.5

options resulting in a different order in which guards were inserted and free LUT inputs

were “used up”. It is a possibility that a different benchmark suite or a different scoring

function for guarding candidates would have resulted in a different outcome.

66

4.4.3 Architectural Analysis

Typically, clustered architectures tended to benefit more from the application of guarded

evaluation (c.f. Figures 4.6 and 4.7). To better understand this phenomenon, we con-

ducted an additional investigation. Despite not impacting the LUT count of the mapped

network, guarded evaluation does require the insertion of additional signals. Consequently,

guarded evaluation results in networks with additional connections that require routing.

For example, if we refer to Table 4.4, we see that guarding using only gating inputs (and

depth-oriented mapping) required, on average, an additional 38.8 connections per design

for 6-LUT architectures. Although not shown, guarding using only gating inputs (and

depth-oriented mapping) required, on average, an additional 45.3 connections per design

when considering 4-LUT architectures.

We considered how these additional connections were routed. In an architecture with a

cluster size of 1 (i.e., flat), these connections must be routed through global interconnect;

i.e., inter-cluster routing. However, in a clustered architecture, these additional signals

could be absorbed into the clusters; i.e., only intra-cluster routing is required. Clearly,

when inter-cluster routing is required, the additional power consumption of these additional

connections could out-weigh the benefits of guarding due to the increased capacitance of

inter-cluster versus intra-cluster routing.

Table 4.6 shows the average number of additional connections added to the networks due

to guarding (using only gating inputs) after clustering is performed and LUTs are packed

into LBs. In other words, Table 4.6 shows the actual number of additional connections

which require inter-cluster routing. Clearly, for flat architectures, the average number of

extra inter-cluster signals is equal to the average number of guards inserted. But, for

clustered architectures, the average number of inter-cluster signals is reduced. Referring

67

Table 4.6: Increase of the average number of additional connections that require inter-

cluster routing due to guarding (depth-oriented mapping using only gating inputs for

guarding).

Architecture Avg Num Avg Num

(Guards) (Inter-cluster)

Signals

1x6 38.8 38.8

4x6 38.8 33.5

10x6 38.8 33.1

1x4 45.3 45.3

4x4 45.3 11.6

10x4 45.3 12.1

back to figures 4.6 and 4.7 we can observe this trend; when those connections inserted due

to guarding are effectively absorbed into the LBs, more significant power reductions are

observed when compared to a flat architecture.

Furthermore, PostPack and PostPlace flows would benefit more with heavily clustered

architectures since the increased number of intra-cluster signals would result in an increased

number of feasible guards. Hence, more guarding can be done, while adding minimal inter-

cluster wires in the PostPack(NoNewWires), PostPack and PostPlace flows.

68

Chapter 5

Conclusions and Future Work

Guarded evaluation reduces dynamic power by identifying sub-circuits whose inputs can

be held constant at certain times during circuit operation, eliminating toggles within the

sub-circuits. We have proposed the adaption of guarded evaluation to make it suitable for

FPGAs. Specifically, we have shown that guarding can be applied after technology mapping

without any increase to the overall area (measured in terms of the number of LUTs) of the

network; it is only necessary to add extra connections into the network in order to perform

the guarding. Increases in area are avoided by exploiting the availability of unused inputs

on LUTs and the existing circuitry inside the LUTs to perform guarding. Numerical results

demonstrate the efficacy of our proposed techniques and show that guarded evaluation is

effective for FPGA designs.

Additionally, we have proposed a structural technique to identify guarding candidates

based on the ideas of non-inverting and partial non-inverting paths; the use of partial

non-inverting paths was demonstrated to significantly improve the availability of guarding

options and, in turn, improve the reduction in both total reduction in total switching

69

activity and reduction in total dynamic power dissipation. Finally, we considered the

impact of post-mapped guarded evaluation on different FPGA architectures. We discovered

that, more often than not, guarded evaluation was most effective for clustered architectures.

Analysis demonstrated that this was due to the guarding signals being “absorbed” into the

logic block clusters.

Guarded evaluation was implemented after various steps in the traditional FPGA CAD

flow to leverage the additional information. Guarding after the packing step allowed for the

algorithm to recognize the difference between inter-cluster and intra-cluster guards, which

was used to encourage guards that have minimal impact on routing resources. Guarding

after the placement step provided additional information, which was used to encourage

inter-cluster signals of smaller distances. Results show that while fewer guards are inserted,

there is comparable interconnect power reduction with minimal impact to routing resources.

5.1 Future Work

Possible directions for future work would include the consideration of alternative scoring

schemes to improve the guard selection. For example, the PostPlace scoring function is

currently used to rank the guarding options such that shorter guards are encouraged. This

can be modified such that options that do not meet a certain PlaceScore threshold are dis-

carded. Although the structural identification of guards is extremely fast, the scalability of

the algorithm — both without and with don’t cares — can be improved. Looking for addi-

tional techniques for easily identifying guarding candidates beyond the use of non-inverting

and partial non-inverting paths such as simulation or boolean satisfiability checking [18].

More guarding candidates, for example, might serve to improve guarding results during

depth-oriented mapping when many candidates are discarded due to violation of depth

70

constraints.

Lastly, it would be valuable to consider a newer version of VPR [31, 32] once power

calculation tools are available for these versions of VPR. This would enable an investigation

of guarded evaluation on even more realistic FPGA architectures (such as those supporting

fracturable LUTs) as well as enable larger sets of realistic designs to be considered. Various

architectural factors might require additional modifications to the scoring function and the

decision as to whether or not a guard should be inserted.

71

References

[1] Berkeley logic synthesis and verification group, ABC – a system for sequential synthesis

and verification. http://www.eecs.berkeley.edu/∼alanmi/abc/, 2009.

[2] A. Abdollahi, M. Pedram, F. Fallah, and I. Ghosh. Precomputation-based guarding

for dynamic and leakage power reduction. In IEEE Int’l Conf. on Computer Design,

pages 90–97, 2003.

[3] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicro FPGA

performance and density. In ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 85–94, Monterey, CA, 2002.

[4] Altera, Corp., San Jose, CA. Stratix-III FPGA Family Data Sheet, 2008.

[5] J. Anderson and C. Ravishankar. FPGA power reduction by guarded evaluation. In

Proc. FPGA, pages 157–166, 2010.

[6] J. Anderson and Q. Wang. Improving logic density through synthesis-inspired archi-

tecture. In IEEE International Conference on Field Programmable Logic and Appli-

cations, pages 105 – 111, Prague, Czech Republic, 2009.

72

[7] J. Anderson and Q. Wang. Area-efficient FPGA logic elements: Architecture and

synthesis. In IEEE/ACM Asia and South Pacific Design Automation Conference,

pages 369–375, 2011.

[8] J. H. Anderson and F.N. Najm. Power-aware technology mapping for LUT-based

fpgas. In IEEE International Conference on Field-Programmable Technology, pages

211–218, Hong Kong, 2002.

[9] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA

research. In Int’l Workshop on Field Programmable Logic and Applications, pages

213–222, 1997.

[10] S.D. Brown. An overview of technology, architecture and cad tools for programmable

logic devices. In Custom Integrated Circuits Conference, 1994., Proceedings of the

IEEE 1994, pages 69 –76, may 1994.

[11] B.H. Calhoun, A. Wang, and A. Chandrakasan. Device sizing for minimum energy

operation in subthreshold circuits. In IEEE Custom Integrated Circuits Conference,

pages 95–98, Orlando, FL, 2004.

[12] S. Chatterjee, A. Mishcenko, R. Brayton, X. Wang, and T. Kam. Reducing structural

bias in technology mapping. In Int’l Workshop on Logic Synthesis, 2005.

[13] J. Cong, C. Wu, and E. Ding. Cut ranking and pruning: Enabling A general and

efficient FPGA mapping solution. In Int’l Symp. on Field-Programmable Gate Arrays,

pages 29–35, 1999.

[14] M.E. Dehkordi and S.D. Brown. The effect of cluster packing and node duplica-

tion control in delay driven clustering. In IEEE International Conference on Field-

Programmable Technology, pages 227–233, Hong Kong, 2002.

73

[15] J. Greene, E. Hamdy, and S. Beal. Antifuse field programmable gate arrays. Proceed-

ings of the IEEE, 81(7):1042 –1056, jul 1993.

[16] D. Howland and R. Tessier. RTL dynamic power optimization for FPGAs. In IEEE

Midwest Symp. on Circuits and Systems, pages 714–717, 2008.

[17] H.-C. Hsieh, K. Dong, J.Y. Ja, R. Kanazawa, L.T. Ngo, L.G. Tinkey, W.S. Carter,

and R.H. Freeman. A 9000-gate user-programmable gate array. In Custom Integrated

Circuits Conference, 1988., Proceedings of the IEEE 1988, pages 15.3/1 –15.3/7, may

1988.

[18] Aaron P. Hurst. Sequential Optimization for Low Power Digital Design. PhD thesis,

EECS Department, University of California, Berkeley, May 2008.

[19] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu, G. Baeckler,

B. Ratchev, K. Padalia, and et. el. Improving FPGA performance and area using an

adaptive logic module. In International Conference on Field-Programmable Logic and

Applications, pages 135–144, Antwerp, Belgium, 2004.

[20] H.Veendrick. Deep Submicron CMOS ICs. Kluwer Academic, 1998.

[21] S. Jang, B. Chan, K. Chung, and A. Mishchenko. Wiremap: FPGA technology

mapping for improved routability and enhanced LUT merging. ACM Trans. on Re-

configurable Technology and Systems, 2(2):1–24, 2009.

[22] S. Jang, K. Chung, A. Mishchenko, and R. Brayton. A power optimization toolbox

for logic synthesis and mapping. In IEEE International Workshop on Logic Synthesis,

San Francisco, CA, 2009.

74

[23] M. Ketkar and S. S. Sapatnekar. Standby power optimization via transistor sizing and

dual threshold voltage assignment. In IEEE International Conference on Computer-

Aided Design, pages 375–378, San Jose, CA, 2002.

[24] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Trans. On

CAD, 26(2):203–215, February 2007.

[25] J. Lamoureux, G. Lemieux, and S. Wilton. GlitchLess: an active glitch minimization

technique in FPGAs. In ACM/SIGDA Int’l Symposium on Field Programmable Gate

Arrays, pages 156–165, Monterey, CA, 2007.

[26] J. Lamoureux and S.J.E. Wilton. On the interaction between power-aware FPGA

CAD algorithms. In IEEE/ACM Int’l Conf. on Computer-Aided Design, pages 701–

708, 2003.

[27] D. Lee and D. Blaauw. Static leakage reduction through simultaneous threshold volt-

age and state assignment. In ACM/IEEE Design Automation Conference, pages 191–

194, Anaheim, CA, 2003.

[28] Frank Thomson Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-

exchange graph and other networks. MIT Press, Cambridge, MA, USA, 1983.

[29] David Lewis and et al. The stratix II logic and routing architecture. In ACM Int’l

Symp. on FPGAs, pages 14–20, 2005.

[30] A. Ling, J. Zhu, and S. Brown. Delay driven AIG restructuring using slack budget

management. In ACM/IEEE Great Lakes Symp. on VLSI, pages 163–166, 2008.

[31] J. Luu, J. Anderson, and J. Rose. Architecture description and packing for logic blocks

with hierarchy, modes and complex interconnect. In FPGA, pages 227–236, 2011.

75

[32] J. Luu and et al. VPR 5.0: FPGA CAD and architecture exploration tools with

single-driver routing, heterogeneity and process scaling. In FPGA, pages 133–142,

2009.

[33] A. Marquardt, V. Betz, and J. Rose. Using cluster based logic blocks and timing-

driven packing to improve FPGA speed and density. In International Symposium on

Field-Programmable Gate Arrays, pages 37–46, Monterey, CA, 1999.

[34] A. Marquardt, V. Betz, and J. Rose. Speed and area tradeoffs in cluster-based fpga

architectures. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

8(1):84 –93, feb. 2000.

[35] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for FPGAs. In ACM

Int’l Symp. on Field-Programmable Gate Arrays, pages 203–213, 2000.

[36] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage

scaling and adaptive body biasing for lower power microprocessors under dynamic

workloads. In IEEE International Conference on Computer-Aided Design, pages 721–

725, San Jose, CA, 2002.

[37] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. Scalable don’t-care-based

logic optimization and resynthesis. In Proc. FPGA, pages 151–160, 2009.

[38] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewriting: A fresh

look at combinational logic synthesis. In ACM/IEEE Design Automation Conf., pages

532–536, 2006.

[39] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Combinational and sequential

mapping with priority cuts. In Proc. ICCAD, pages 354–361, 2007.

76

[40] S.R. Naidu and E.T.A.F Jacobs. Minimizing standby leakage power in static CMOS

circuits. In ACM/IEEE Design Automation and Test in Europe Conference, pages

370–376, Munich, Germany, 2001.

[41] F. Najm. Transition density: A new measure of activity in digital circuits. IEEE

Trans. on CAD, 12:310–323, February 1993.

[42] K. Poon, A. Yan, and S. Wilton. A flexible power model for FPGAs. In Int’l Conf.

on Field-Programmable Logic and Applications, pages 312–321, 2002.

[43] S.T. Rajavel and A. Akoglu. Mo-pack: Many-objective clustering for FPGA CAD.

In Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 818

–823, june 2011.

[44] M. Schlag, J. Kong, and P.K. Chan. Routability-driven technology mapping for lookup

table-based FPGAs. IEEE Trans. on CAD, 13(1):13–26, 1994.

[45] L. Shang, A. Kaviani, and K. Bathala. Dynamic power consumption of the Virtex-II

FPGA family. In ACM Int’l Symp. on Field-Programmable Gate Arrays, 2002.

[46] A. Singh and M. Marek-Sadowska. Efficient circuit clustering for area and power

reduction in fpgas. In ACM International Symposium on Field-Programmable Gate

Arrays, Monterey, CA, February 2002.

[47] A. Srivastava, D. Sylvester, and D. Blaauw. Power minimization using simultaneous

gate sizing, dual-vdd and dual-vth assignment. In ACM/IEEE Design Automation

Conference, pages 783–787, San Diego, CA, 2004.

[48] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: pushing power management

to logic synthesis/design. IEEE Trans. on CAD, 17(10):1051–1060, October 1998.

77

[49] Jeffrey D Ullma. Computational Aspects of VLSI. W. H. Freeman & Co., New York,

NY, USA, 1984.

[50] K. Vorwerk, M. Raman, J. Dunoyer, Y.-C. Hsu, A. Kundu, and A. Kennings. A

technique for minimizing power during FPGA placement. In IEEE International

Conference on Field Programmable Logic and Applications, pages 233–238, Heidelberg,

Germany, 2008.

[51] Xilinx, Inc., San Jose, CA. Virtex-5 FPGA Data Sheet, 2007.

[52] Xilinx, Inc., San Jose, CA. Virtex-7 FPGA Data Sheet, 2012.

[53] S. Yang. Logic synthesis and optimization benchmarks. version 3.0. Technical report,

Microelectronics Center of North Carolina, 1991.

[54] Wei Zhao and Yu Cao. New generation of predictive technology model for sub-45 nm

early design exploration. Electron Devices, IEEE Transactions on, 53(11):2816 –2823,

nov. 2006.

78

APPENDICES

79

Appendix A

Circuit-by-circuit results for 6-LUT

Architectures

80

Table A.1: Switching activity reduction results for 6-LUT area-oriented mappings.

Activity Trimming

Priority Driven Trimming Gating Trimming with OR

Circuit Cuts WireMap WireMap Gating Trimming with OR (DC) (DC) (DC)

alu4 136.86 133.87 126.50 106.66 108.55 114.20 86.22 84.52 97.64

apex2 49.46 48.37 45.61 39.51 39.77 44.71 26.63 25.59 30.18

apex4 88.06 55.96 50.49 49.27 49.97 52.73 42.96 42.44 45.05

bigkey 219.98 223.58 223.82 223.82 223.82 223.82 223.82 223.82 223.82

clma 701.8 687.43 666.43 555.99 289.26 382.74 292.82 270.18 391.48

des 210.27 211.95 232.51 232.02 232.36 233.06 230.06 229.30 230.01

diffeq 242.29 250.77 253.89 253.89 248.50 248.50 251.30 238.46 247.84

dsip 260.17 261.92 261.92 261.89 253.10 253.13 261.89 261.89 261.97

elliptic 693.05 678.97 682.80 683.00 677.95 677.95 682.19 682.58 682.30

ex1010 219.88 111.47 91.21 88.95 83.63 73.81 73.38 73.38 76.92

ex5p 100.81 86.07 79.49 76.41 67.95 69.96 67.23 67.23 70.35

frisc 569.32 505.37 488.12 485.20 459.17 452.78 478.12 476.43 454.52

misex3 86.19 82.09 79.98 76.38 77.31 81.09 65.32 62.36 64.32

pdc 164.39 114.66 95.05 87.72 86.78 89.78 53.29 50.79 66.49

s298 80.47 75.91 73.92 72.43 68.05 68.00 62.64 57.90 58.57

s38417 740.14 798.36 802.79 799.78 794.92 787.83 796.99 795.57 791.77

s38584.1 744.16 675.73 674.81 671.86 668.85 662.26 671.46 668.59 660.72

seq 82.02 77.48 71.66 66.55 69.62 74.85 46.32 44.90 51.30

spla 190.19 154.84 131.25 118.63 115.35 130.42 90.67 84.88 113.70

tseng 248.43 248.09 247.98 247.82 238.30 232.23 245.72 245.38 246.21

Geomean 209.27 187.64 179.10 171.02 162.64 167.81 145.85 142.33 153.80

Ratio 1.00 0.90 0.86 0.82 0.78 0.80 0.70 0.68 0.73

Ratio 1.00 0.95 0.91 0.94 0.81 0.79 0.86

81

Table A.2: Switching activity reduction results for 6-LUT depth-oriented mappings.

Activity Trimming

Priority Driven Trimming Gating Trimming with OR

Circuit Cuts WireMap WireMap Gating Trimming with OR (DC) (DC) (DC)

alu4 144.35 147.12 124.59 121.93 119.37 122.28 115.07 111.09 113.57

apex2 56.26 54.53 47.46 45.39 44.84 47.55 37.46 35.32 40.95

apex4 98.73 58.62 54.37 53.28 52.95 58.40 52.59 52.46 55.16

bigkey 219.98 223.58 223.82 223.82 223.82 223.82 223.82 223.82 223.82

clma 685.31 688.05 695.13 601.22 432.92 538.79 347.17 333.66 416.01

des 272.98 262.79 256.77 255.28 255.22 256.22 255.85 253.35 254.37

diffeq 249.60 249.35 259.82 259.82 254.98 254.70 247.78 245.25 253.04

dsip 260.17 261.92 261.92 261.92 253.13 253.13 261.92 261.92 261.92

elliptic 692.56 697.87 708.61 707.54 705.60 705.49 706.44 705.85 706.50

ex1010 127.09 91.32 96.42 94.69 91.49 94.09 90.74 90.65 94.87

ex5p 102.07 98.67 85.08 82.76 71.70 73.54 78.38 78.38 81.54

frisc 562.33 512.07 489.53 486.60 482.34 468.51 477.42 477.21 456.48

misex3 92.17 91.00 83.21 80.99 80.31 82.63 75.20 73.19 76.93

pdc 138.38 129.19 111.29 105.19 96.71 112.42 93.69 85.81 99.18

s298 80.72 82.78 76.67 75.22 74.85 74.55 73.98 67.21 69.54

s38417 759.56 806.74 819.83 817.04 816.31 811.65 813.64 813.01 808.31

s38584.1 751.54 681.06 687.20 683.54 685.97 680.99 683.11 678.26 667.94

seq 84.08 86.28 85.07 82.40 82.22 87.72 69.42 64.59 72.64

spla 174.35 179.97 144.87 136.12 130.72 142.85 115.45 107.47 135.55

tseng 249.21 247.25 253.87 252.97 237.17 237.18 251.09 250.73 252.24

Geomean 208.12 197.57 188.22 183.57 176.26 182.93 170.05 165.67 174.87

Ratio 1.00 0.95 0.90 0.88 0.85 0.88 0.82 0.80 0.84

Ratio 1.00 0.98 0.94 0.97 0.90 0.88 0.93

82

Table A.3: Switching activity reduction results for 6-LUT depth-oriented mappings with

depth-relaxation

Trimming

Trimming (DC)

Circuit (+20%) (+20%)

alu4 107.32 96.27

apex2 36.31 30.32

apex4 51.48 46.94

bigkey 223.82 223.82

clma 379.43 292.68

des 252.65 251.91

diffeq 242.94 241.33

dsip 261.89 261.89

elliptic 706.28 706.01

ex1010 90.33 76.49

ex5p 81.46 72.10

frisc 485.61 476.69

misex3 68.96 67.53

pdc 78.83 77.02

s298 67.06 65.37

s38417 813.43 808.91

s38584.1 678.87 676.17

seq 58.67 52.01

spla 109.27 91.38

tseng 251.56 250.77

Geomean 165.02 154.33

Ratio 0.79 0.74

Ratio 0.88 0.82

83

Table A.4: Interconnect Power reduction results on the 4x6 architecture for area-oriented

mapping

Activity Trimming

Priority Driven Trimming Gating Trimming with OR

Circuit Cuts WireMap WireMap Gating Trimming with OR (DC) (DC) (DC)

alu4 0.114 0.093 0.089 0.062 0.059 0.059 0.052 0.055 0.057

apex2 0.122 0.083 0.078 0.058 0.056 0.057 0.050 0.048 0.049

apex4 0.100 0.087 0.084 0.076 0.070 0.076 0.058 0.057 0.062

bigkey 0.241 0.246 0.227 0.227 0.241 0.241 0.227 0.227 0.227

clma 0.218 0.195 0.192 0.137 0.119 0.137 0.107 0.103 0.125

des 0.226 0.216 0.223 0.207 0.201 0.204 0.187 0.198 0.216

diffeq 0.226 0.059 0.063 0.062 0.063 0.063 0.061 0.057 0.059

dsip 0.062 0.267 0.271 0.249 0.238 0.260 0.249 0.249 0.249

elliptic 0.179 0.162 0.170 0.158 0.161 0.163 0.159 0.159 0.180

ex1010 0.327 0.253 0.289 0.239 0.252 0.218 0.210 0.210 0.200

ex5p 0.079 0.067 0.064 0.060 0.050 0.047 0.041 0.041 0.041

frisc 0.165 0.133 0.131 0.129 0.131 0.133 0.116 0.115 0.104

misex3 0.094 0.083 0.074 0.056 0.051 0.058 0.042 0.045 0.045

pdc 0.251 0.230 0.224 0.197 0.183 0.160 0.159 0.148 0.156

s298 0.054 0.052 0.050 0.039 0.035 0.034 0.035 0.034 0.031

s38417 0.226 0.233 0.233 0.172 0.169 0.181 0.173 0.168 0.170

s38584.1 0.311 0.278 0.271 0.271 0.275 0.273 0.252 0.254 0.252

seq 0.106 0.078 0.079 0.071 0.067 0.067 0.049 0.042 0.044

spla 0.221 0.177 0.186 0.162 0.151 0.145 0.121 0.125 0.122

tseng 0.073 0.059 0.059 0.058 0.063 0.062 0.053 0.053 0.051

Geomean 0.148 0.131 0.130 0.113 0.108 0.109 0.097 0.096 0.097

Ratio 1.000 0.881 0.875 0.759 0.731 0.736 0.653 0.645 0.657

Ratio 1.000 0.868 0.836 0.841 0.746 0.737 0.751

84

Table A.5: Interconnect Power reduction results on the 4x6 architecture for depth-oriented

mapping

Activity Trimming

Priority Driven Trimming Gating Trimming with OR

Circuit Cuts WireMap WireMap Gating Trimming with OR (DC) (DC) (DC)

alu4 0.129 0.127 0.106 0.112 0.077 0.084 0.107 0.105 0.104

apex2 0.148 0.126 0.105 0.100 0.103 0.098 0.099 0.096 0.099

apex4 0.130 0.117 0.110 0.111 0.093 0.095 0.108 0.109 0.104

bigkey 0.241 0.246 0.227 0.227 0.241 0.241 0.227 0.227 0.227

clma 0.320 0.267 0.252 0.239 0.244 0.252 0.198 0.198 0.241

des 0.254 0.260 0.255 0.241 0.236 0.234 0.226 0.249 0.244

diffeq 0.101 0.094 0.093 0.089 0.095 0.096 0.084 0.084 0.086

dsip 0.263 0.266 0.271 0.271 0.262 0.262 0.271 0.271 0.271

elliptic 0.227 0.226 0.220 0.233 0.230 0.232 0.193 0.179 0.213

ex1010 0.368 0.357 0.338 0.322 0.328 0.311 0.321 0.320 0.317

ex5p 0.093 0.078 0.073 0.071 0.063 0.062 0.070 0.070 0.071

frisc 0.226 0.198 0.193 0.190 0.199 0.186 0.178 0.180 0.180

misex3 0.134 0.118 0.110 0.107 0.098 0.095 0.098 0.100 0.101

pdc 0.310 0.289 0.260 0.252 0.234 0.225 0.248 0.240 0.258

s298 0.070 0.066 0.064 0.065 0.058 0.057 0.063 0.062 0.060

s38417 0.324 0.310 0.315 0.314 0.321 0.327 0.308 0.294 0.299

s38584.1 0.406 0.377 0.385 0.370 0.360 0.363 0.377 0.364 0.393

seq 0.138 0.116 0.114 0.115 0.109 0.113 0.106 0.108 0.109

spla 0.271 0.252 0.206 0.215 0.197 0.189 0.211 0.209 0.194

tseng 0.092 0.072 0.076 0.077 0.080 0.189 0.072 0.069 0.075

Geomean 0.188 0.173 0.163 0.162 0.155 0.161 0.153 0.153 0.157

Ratio 1.000 0.918 0.869 0.862 0.824 0.856 0.815 0.815 0.836

Ratio 1.000 0.992 0.949 0.986 0.938 0.938 0.962

85

Table A.6: Interconnect Power reduction results on the 4x6 architecture for depth-oriented

mappings with depth-relaxation

Trimming

Trimming (DC)

Circuit (+20%) (+20%)

alu4 0.088 0.081

apex2 0.089 0.079

apex4 0.101 0.077

bigkey 0.227 0.227

clma 0.187 0.175

des 0.219 0.216

diffeq 0.082 0.075

dsip 0.249 0.249

elliptic 0.193 0.167

ex1010 0.310 0.297

ex5p 0.064 0.059

frisc 0.164 0.170

misex3 0.090 0.084

pdc 0.210 0.216

s298 0.055 0.054

s38417 0.273 0.269

s38584.1 0.317 0.289

seq 0.097 0.087

spla 0.177 0.173

tseng 0.066 0.065

Geomean 0.141 0.133

Ratio 0.750 0.707

Ratio 0.863 0.814

86

	List of Tables
	List of Figures
	Introduction
	Motivation
	Summary of Contributions
	Algorithm Overview
	Thesis Organization

	Background
	FPGA Architecture
	FPGA Technology Mapping
	Power Consumption in FPGAs
	Power-Aware CAD Algorithms
	Power-aware mapping
	Power-aware packing
	Power-aware placement

	Guarded Evaluation
	Gating Inputs and Non-Inverting AIG Paths
	Trimming Inputs and Partial Non-Inverting AIG Paths

	Guarded Evaluation for FPGAs
	Overview
	Creating Guarding Opportunities During Mapping
	Post-Mapping Guarded Evaluation
	Leveraging Non-Obvious ``Don't Cares''

	Post-Packing Guarded Evaluation
	Post-Placement Guarded Evaluation
	Multiple Step Guarded Evaluation

	Experimental Results
	Methodology
	Switching Activity Results
	Guarding Post Packing and Placement

	Power Results
	Guarding Post Packing and Placement
	Critical Path Delay

	Discussion
	Use of Gating and Trimming Inputs
	Use of OR Gates as Guard Logic
	Architectural Analysis

	Conclusions and Future Work
	Future Work

	References
	APPENDICES
	Circuit-by-circuit results for 6-LUT Architectures

