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Abstract

Roth’s theorem, proved by Roth in 1953, states that when A ⊆ [1, N ] with A dense
enough, A has a three term arithmetic progression (3-AP). Since then the bound originally
given by Roth has been improved upon by number theorists several times. The theorem
can also be generalized to finite abelian groups. In 1994 Meshulam worked on finding an
upper bound for subsets containing only trivial 3-APs based on the number of components
in a finite abelian group. Meshulams bound holds for finite abelian groups of odd order.
In 2003 Lev generalised Meshulams result for almost all finite abelian groups. In 2009 Liu
and Spencer generalised the concept of a 3-AP to a linear equation and obtained a similar
bound depending on the number of components of the group. In 2011, Liu, Spencer and
Zhao generalised the 3-AP to a system of linear equations. This thesis is an overview of
these results.
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Chapter 1

Introduction

1.1 Main results

This thesis is a collection of research done over the last twenty years on generalizing Roth’s
theorem on finite abelian groups. This introduction includes content which will be repeated
later on, so that each chapter may be read independently from the others with relative
ease.

Definition 1.1.1. Let G be an abelian group. A three term arithmetic progression (or
3-AP) is a subset {x, y, z} ⊆ G with x+ z = 2y. If x = z, we say that the 3-AP is trivial,
and that it is non-trivial otherwise.

For k ∈ N = {0, 1, 2, ...}, let Zk denote the cyclic group of order k. Let G be a finite
abelian group with

G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn ,

where ki ∈ N, ki ≥ 2 for i ∈ {1, . . . , n} and k1 | k2 | · · · | kn. Each finite abelian group can
be decomposed uniquely in this form [4]. We denote the number of components of G by
c(G), thus, here c(G) = n.

Definition 1.1.2. Let G be a finite abelian group. Define

D(G) = sup
A⊂G

A contains no
non-trivial 3-APs

|A|.

Definition 1.1.3. Given non-negative functions f(x), g(x) defined on a subset of the real
numbers, we say that

f(x) = O(g(x)) or f(x)� g(x),
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if there is some C > 0 and x0 > 0 with f(x) ≤ Cg(x) for each x ≥ x0. We say that

f(x) = o(g(x))

if for any ε > 0, there exists x1 > 0 with f(x) ≤ εg(x) for each x ≥ x1.

In 1953 Roth [9] proved that D(Zm) = O(m/ log logm). From Heath-Brown’s [3]
work in 1987 and Szemeredi’s [11] work in 1990 this bound was improved to D(Zm) =
O(m/(logm)α) for any fixed α with 0 < α < 1

20
. The best current bound on Roth’s

theorem is by Tom Sanders, and gives D(Zm) = O(m(log logm)5/ logm). It has also been
shown by Brown and Buhler [1] and Frankl, Graham and Rodl [2] that when G is any finite
abelian group of odd order that D(G) = o(|G|).

In 1994 Meshulam [8] used his result bounding D(G) by the number of components
of a finite abelian group G with odd order to improve the asymptotic bound on D(G).
Intuitively, it seems that D(G) depends on the size of G and also the number of components
of G, with a large number of components decreasing the size of D(G). Indeed, consider the
two finite abelian groups Z81 and Z3⊕Z3⊕Z3⊕Z3. These two groups have the same size,
but the latter gives us very little room to build subsets while avoiding non-trivial 3-APs.
Meshulam’s result gives us a formal verification of this intuition. In 1994 Meshulam [8]
proved the following.

Theorem 1.1.1. Let n ∈ N and define

d(n) = sup
c(G)≥n
|G| odd

D(G)

|G|
.

Let n ∈ N. We have

d(n) ≤ 2

n
.

By definition we see that d(n) ≤ d(n− 1) for each n. Meshulam’s proof uses induction
on d(n). It shows that if G is a finite abelian group with odd order and c(G) ≥ n, and
A ⊆ G with no non-trivial 3-APs, then |A|/|G| is bounded above by 2/n. Notice that
this theorem only holds for groups which have odd order. Indeed, for Meshulam’s proof
to work, we require that the finite abelian group G has odd order (in particular we need
that 2a = 2b implies a = b). In 2003 Lev [5] adapted Meshulam’s proof for finite abelian
groups with the condition that 2G = {g + g : g ∈ G} is non-trivial, i.e. G is not a direct
sum of Z2.

Before stating Lev’s result, we need to re-examine our definition of a non-trivial 3-AP.
Previously, we called a subset {a, b, c} ⊆ G a 3-AP if a + c = 2b. It was a trivial 3-AP if
a = c and a non-trivial 3-AP otherwise. When G has odd order, the condition that a = c
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implies that a = b = c, so that each 3-AP is a set of either 1 or 3 elements. When G has
elements of order 2, this distinction becomes more subtle. For example, in Z10, the subset
{1, 6} is a 3-AP since 6 + 6 = 2 · 1 and 1 + 1 = 2 · 6. This 3-AP is not necessarily trivial
since it consists of two different elements, but it does not consist of three distinct elements.
Notice that if we define φ : G → 2G by φ(g) = 2g, then when G = Z10, φ(6 − 1) = 0. In
general, if a− b ∈ kerφ, then a + a = 2b and so {a, b} is a 3-AP. The choice of defining a
trivial 3-AP as one in which a = c was motivated by this. When a 6= c, this implies that
the 3-AP has 3 distinct elements. Lev’s generalization of Meshulam’s result is below.

Theorem 1.1.2. Let G be a finite abelian group so that the group 2G = {g + g : g ∈ G}
is non-trivial. Then we have that

D(G) ≤ 2|G|
c(2G)

.

For n ∈ N define

d(n) = sup
c(2G)≥n

D(G)

|G|
,

so that we may equivalently state,

d(n) ≤ 2

n
.

When G has odd order, 2G = G and thus c(2G) = c(G). In this case Lev’s result

reduces to D(G) < 2|G|
c(G)

, which is exactly Meshulam’s result.

Lev’s result gives a very good bound on sizes of subsets containing only trivial 3-APs
for most finite abelain groups. The subsequent research looked at generalizing the concept
of a 3-AP. In 2009 Liu and Spencer [6] generalized Meshulam’s result to subsets which
contain no trivial solutions to a linear equation.

Let s ∈ N with s ≥ 3. Let r = (r1, r2, . . . , rs) ∈ (Z \ {0})s be a vector satisfying
r1 + r2 + · · ·+ rs = 0. Given a finite abelian group G,

G ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn

with ki ∈ {2, 3, . . .} for each i ∈ {1, . . . , n} and ki|ki+1 for i ∈ {1, . . . , n − 1}. We say G
has n constituents, and denote this by c(G) = n. We let |G| denote the cardinality of G.
We say that G is coprime to r if gcd(ri, |G|) = 1 for each i ∈ {1, . . . , s}.

Here, we have that a 3-AP {a, b, c} ⊆ G is generalized to a solution to the linear
equation r.

Definition 1.1.4. Let x = (x1, . . . , xs) ∈ Gs. We say x is a solution to r if r1x1+· · · rsxs =
0. A solution x ∈ Gs is trivial if there is some subset {j1, . . . , jl} ⊆ {1, . . . , s} with
xj1 = · · · = xjl and rj1 + · · ·+ rjl = 0. Otherwise we say a solution x ∈ Gs is non-trivial.
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Theorem 1.1.3. Let r = (r1, . . . , rs) ∈ (Z \ {0})s so that r1 + · · ·+ rs = 0, with G a finite
abelian group coprime to r, and let A ⊆ G. If every solution x ∈ As is trivial, we say that
A is free of non-trivial solutions and write A ∈ NTSFr (non-trivial solution free subsets).
Define

Dr(G) = max
A⊆G

A∈NTSFr

|A|

and

dr(n) = sup
G coprime to r

c(G)≥n

Dr(G)

|G|
.

Then there exists a constant C = C(r) > 0 such that

dr(n) ≤ C(r)s−2

ns−2
.

This indeed generalizes Meshulam’s result. If we let r = (1,−2, 1), then a non-trivial
solution is a 3-AP, and C(r) = 2. Note however, that this does not generalize Lev’s result.
A group which has even order is not coprime to r = (1,−2, 1). Similar to the proofs written
by Meshulam and Lev, the proof of this result uses induction on dr(n) and a bound on
|A|/|G|, where A ⊆ G contains only trivial solutions.

The final result this thesis examines generalizes the previous result from bounds on
sets containing no solutions to a linear equation to bounds on sets containing no solutions
to systems of linear equations. This bound, depending of course on the system of linear
equations being considered, was found in 2011 by Liu, Spencer and Zhao [7]. It is necessary
to re-define a trivial solution, and to find a requirement on G similar to that of it being
coprime. Below the result is outlined in all its technicality.

Definition 1.1.5. Let R, S ∈ N such that S ≥ 2R + 1. Let Y = (yi,j) ∈ ZR×S be a
matrix satisfying yi,1 + yi,2 + · · · + yi,S = 0 for each i ∈ {1, . . . , R}. Let L ∈ N with
R ≤ L ≤ S −R− 1. Let G be a finite abelian group.

Then we say G is L-coprime to Y if there exists L columns of Y satisfying the following
conditions:

• Upon choosing any R of these L columns, we obtain an R × R matrix Z ∈ ZR×R
with gcd(det(Z), |G|) = 1, where det(Z) denotes the determinant of Z.

• Upon removing any L − R + 1 of these L columns from Y , there exist within the
remaining columns two disjoint sets of R columns which form R×R matrices Z1, Z2 ∈
ZR×R with

gcd(det(Z1), |G|) = gcd(det(Z2), |G|) = 1.
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When a matrix G is L-coprime to Y ∈ ZR×S, the indices of the L columns satisfying
the above conditions are denoted by lY (G;L), i.e. if the L columns of Y satisfying the
conditions of L-coprimality are


y1,j1

y2,j1
...

yR,j1

 ,


y1,j2

y2,j2
...

yR,j2

 , · · · ,


y1,jL

y2,jL
...

yR,jL


 ,

then lY (G;L) = {j1, j2, . . . , jL}.

Definition 1.1.6. Let R, S ∈ N, and Y ∈ ZR×S be defined as above. Let G be a finite
abelian group. We say that x = (x1, . . . , xs) ∈ GS is a solution to Y if Y x = 0, i.e.
x = (x1, . . . , xS) is a solution if

y1,1x1 + y1,2x2 + · · ·+ y1,SxS
y2,1x1 + y2,2x2 + · · ·+ y2,SxS

...
yR,1x1 + yR,2x2 + · · ·+ yR,SxS

 =


0
0
...
0

 .

We say that a solution x ∈ GS is trivial if there are i 6= j, i, j ∈ {1, . . . , S}, with xi = xj.
Otherwise, when each xi is distinct, we say that x is a non-trivial solution.

Definition 1.1.7. Let R, S ∈ N, L ∈ N, and Y ∈ ZR×S be defined as in Definition 5.1.1.
Let G be a finite abelian group which is L-coprime to Y , and let A ⊆ G. If every solution
x ∈ AS to the equation Y x = 0 is trivial, we say that A contains only trivial solutions to
Y , and write A ∈ TRIVY . Define

DY (G) = max
A⊆G

A∈TRIVY

|A|

and

dY (N ;L) = sup
G is L-coprime to Y

c(G)≥N

DY (G)

|G|
.

Theorem 1.1.4. Let R, S ∈ N such that S ≥ 2R + 1. Let Y = (yi,j) ∈ ZR×S be a
matrix satisfying yi,1 + yi,2 + · · · + yi,S = 0 for each i ∈ {1, . . . , R}. Let L ∈ N with
R ≤ L ≤ S − R − 1. Then there exists a constant C = C(Y ;L) > 1 such that, for any
N ∈ N,

dY (N ;L) ≤
(
C

N

)L−R+1
R

.
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1.2 Fourier Analysis Preliminaries

The proofs explained in this thesis use a substantial amount of Fourier analysis on fi-
nite abelian groups. Proposition 1.2.3 is particularly useful. Assume that G is a finite
abelian group. This section contains results on the Fourier analysis of G which are rele-
vant throughout the thesis.

Definition 1.2.1. Let Ĝ denote the character group, or dual group, of G, i.e.

Ĝ =
{
γ : G→ C | |γ(x)| = 1 ∀x ∈ G, γ(x+ y) = γ(x)γ(y) ∀x, y ∈ G

}
.

We call elements of Ĝ characters on G.

Given γ a character on G, for each x in G,

γ(x) = γ(x+ 0) = γ(x)γ(0)

so that γ(0) = 1. Consider

γ(x)γ(−x) = γ(x− x) = γ(0) = 1,

so that γ(x)−1 = γ(−x). Since γ(x) is on the unit circle in C,

γ(x) =
1

γ(x)
= γ(x)−1.

Together this means
γ(x) = γ(−x).

Proposition 1.2.1. Let G be a finite abelian group. Then G ∼= Ĝ.

Proof. Let G be a finite abelian group with

G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn ,

where ki ∈ N, ki ≥ 2 for i ∈ {1, . . . , n} and k1 | k2 | · · · | kn. Let a = (a1, . . . , an) ∈ G and
x = (x1, . . . , xn) ∈ G, and define

Φ : G → Ĝ where γa : G → C
a 7→ γa x 7→ e

2πi
(
a1
k1
x1+···+an

kn
xn
)
.

Note that γa is indeed a character on G, since

γa(x+y) = e
2πi
(
a1
k1

(x1+y1)+···+an
kn

(xn+yn)
)

= e
2πi
(
a1
k1
x1+···+an

kn
xn
)
e

2πi
(
a1
k1
y1+···+an

kn
yn
)

= γa(x)γa(y).

6



Suppose that γa = γb. Then

e
2πi

a1
k1 = γa(1, 0, . . . , 0) = γb(1, 0, . . . , 0) = e

2πi
b1
k1

so that a1 = b1 mod k1. Similarly, ai = bi mod ki for each i ∈ {1, . . . , n}, and Φ is one

to one. To check Φ is onto, let γ ∈ Ĝ. Then γ(1, 0, . . . , 0) = e2πiz for some z ∈ [0, 1]. Let
a1 = zk1. Since γ(0) = 1, we have that

1 = γ(k1, 0, . . . , 0) = e2πik1z

so that a1 = k1z ∈ Zk1 . We can similarly define a2, . . . , an, and it is clear that γ = γ(a1,...,an).

As such, G ∼= Ĝ.

Definition 1.2.2. Let f : G→ C. Define the Fourier transform of f as

f̂ : Ĝ→ C

γ 7→
∑
x∈G

f(x)γ(−x).

Definition 1.2.3. Let f, g : G→ C. Define the convolution of f and g as

f ∗ g(x) =
∑
y∈G

f(y)g(x− y)

for x an element of G, and denote f ∗ f ∗ · · · ∗ f where f is convoluted with itself k times
by f ∗

k
.

Proposition 1.2.2. Let f and g be functions from G to C and γ be a character on G.

Then f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

Proof. From the definition,

f̂ ∗ g(γ) =
∑
x∈G

(f ∗ g)(x)γ(−x)

=
∑
x∈G

(
∑
y∈G

f(y)g(x− y))γ(−x).

Since γ is a character,

γ(−x) = γ(−x− y + y) = γ(−y)γ(−x+ y),

7



which produces

f̂ ∗ g(γ) =
∑
x∈G

∑
y∈G

f(y)g(x− y)γ(−y)γ(−x+ y)

=
∑
y∈G

f(y)γ(−y)
∑
x∈G

g(x− y)γ(−x+ y).

From the definition of the Fourier transform,

f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

Definition 1.2.4. Let A ⊆ G. Define

χA(x) =

{
1, if x ∈ A,
0, otherwise.

If γ(x) = 1 for all x ∈ G we denote γ by e.

Definition 1.2.5. Let δ : Ĝ→ C be defined as

δ(γ) =

{
1, if γ = e,
0, otherwise.

Proposition 1.2.3. (Orthogonality) (1) Let γ be a character on G. Then∑
x∈G

γ(x) =

{
|G|, if γ = e,
0, otherwise.

(2) Let x be an element of G. Then

∑
γ∈Ĝ

γ(x) =

{
|Ĝ| = |G|, if x = 0,

0, otherwise.

Proof. (1) When γ = e the above equality is clear. When γ 6= e then there is some y ∈ G
with γ(y) 6= 1. Consider∑

x∈G

γ(x) =
∑
x∈G

γ(x− y + y) =
∑
x∈G

γ(x− y)γ(y) = γ(y)
∑
x∈G

γ(x− y) = γ(y)
∑
x∈G

γ(x).

Since γ(y) 6= 1, the above equality holds if and only if
∑

x∈G γ(x) = 0.

8



(2) When x = 0, γ(x) = 1 for each γ in the dual group. Therefore∑
γ∈Ĝ

γ(0) = |Ĝ| = |G|.

When x 6= 0, there exists some γ0 in the dual group with γ0(x) 6= 1. Then∑
γ∈Ĝ

γ(x) =
∑
γ∈Ĝ

γ0(x− x)γ(x) = γ0(x)
∑
γ∈Ĝ

γ0(−x)γ(x).

Recall that for characters on G, γ(−x) = γ−1(x), and that the group operation of Ĝ is
pointwise multiplication. This means∑

γ∈Ĝ

γ(x) = γ0(x)
∑
γ∈Ĝ

γ−1
0 γ(x) = γ0(x)

∑
γ∈Ĝ

γ(x).

Since γ0(x) 6= 1, the above equality holds if and only if∑
γ∈Ĝ

γ(x) = 0.

Proposition 1.2.4. If f(x) = 1 for all x ∈ G then f̂(γ) = |G|δ(γ).

Proof. By Proposition 1.2.3(2), if f(x) = 1 for all x ∈ G then

f̂(γ) =
∑
x∈G

1(x)γ(−x) =
∑
x∈G

γ(x) =

{
|G|, if γ = e,
0, otherwise

so that f̂(γ) = |G|δ(γ).

Proposition 1.2.5. (Parseval’s Identity) Let ρ : G→ C. Then∑
γ∈Ĝ

|ρ̂(γ)|2 = |G|
∑
x∈G

|ρ(x)|2.

Proof. We first expand the Fourier transform of ρ:

∑
γ∈Ĝ

|ρ̂(γ)|2 =
∑
γ∈Ĝ

∣∣∣∣∣∑
x∈G

ρ(x)γ(−x)

∣∣∣∣∣
2

.
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The square of the absolute value of the Fourier transform of ρ on γ can also be expressed
as an inner product:

∑
γ∈Ĝ

|ρ̂(γ)|2 =
∑
γ∈Ĝ

〈∑
x∈G

ρ(x)γ(−x),
∑
y∈G

ρ(y)γ(−y)

〉

=
∑
γ∈Ĝ

∑
x∈G

∑
y∈G

〈ρ(x)γ(−x), ρ(y)γ(−y)〉

=
∑
γ∈Ĝ

∑
x∈G

∑
y∈G

(ρ(x)γ(−x))
(
ρ(y)γ(−y)

)
.

Recalling that γ(−y) = γ(y) and rearranging the sums produces∑
γ∈Ĝ

|ρ̂(γ)|2 =
∑
x∈G

∑
y∈G

ρ(x)ρ(y)
∑
γ∈Ĝ

γ(−x)γ(y)

=
∑
x∈G

∑
y∈G

ρ(x)ρ(y)
∑
γ∈Ĝ

γ(y − x).

By Proposition 1.2.3(2) ∑
γ∈Ĝ

γ(z) =

{
|G|, if z = 0,
0, otherwise.

In the above case the sum is only non-zero when x = y, resulting in∑
γ∈Ĝ

|ρ̂(γ)|2 =
∑
x∈G

ρ(x)ρ(x)|G| = |G|
∑
x∈G

|ρ(x)|2.
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Chapter 2

3-APs on Finite Abelian Groups of
Odd Order

2.1 Introduction

Definition 2.1.1. Let G be an abelian group. A three term arithmetic progression (or
3-AP) is a subset {x, y, z} ⊆ G with x + z = 2y. If x = y = z, we say that the 3-AP is
trivial, and that it is non-trivial otherwise.

For k ∈ N = {0, 1, 2, ...}, let Zk denote the cyclic group of order k. Let G be a finite
abelian group with

G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn ,

where ki ∈ N, ki ≥ 2 for i ∈ {1, . . . , n} and k1 | k2 | · · · | kn. Each finite abelian group can
be decomposed uniquely in this form [4]. We denote the number of components of G by
c(G), thus, here c(G) = n.

Definition 2.1.2. Let G be a finite abelian group of odd order. Define

D(G) = sup
A⊂G

A contains no
non-trivial 3-APs

|A|.

In 1994 Meshulam [8] used his result bounding D(G) by the number of components of
a finite abelian group G with odd order to improve the asymptotic bound on D(G).

Definition 2.1.3. Let n ∈ N and define

d(n) = sup
c(G)≥n
|G| odd

D(G)

|G|
.

11



By definition we see that d(n) ≤ d(n− 1) for each n. In 1994 Meshulam [8] proved the
following.

Theorem 2.1.1. Let n ∈ N. We have

d(n) ≤ 2

n
.

2.2 Proof of Meshulam’s Theorem

Meshulam’s proof is inductive on d(n). The base case is trivial since D(G) ≤ |G| always
holds. Therefore

d(1) = sup
c(G)≥1

D(G)

|G|
≤ 1 < 2.

Suppose that G is a finite abelian group with odd order with more than n components so
that c(G) ≥ n ≥ 2. Let A ⊆ G contain no 3-APs. Let B = −2A = {−2a : a ∈ A}. Define

f, g, h : Ĝ→ C as follows:

1. f(γ) = χ̂A(γ)

2. g(γ) = χ̂B(γ)

3. h(γ) = d(n− 1)|G|δ(γ)

and let u : G→ C be defined by u(x) = d(n− 1)− χB(x). We remark that

û(γ) =
∑
x∈G

u(x)γ(−x)

= d(n− 1)
∑
x∈G

γ(−x)−
∑
x∈G

χB(x)γ(−x)

= d(n− 1)|G|δ(γ)−
∑
x∈G

χB(x)γ(−x)

= h(γ)− g(γ).

Proposition 2.2.1.
max
γ∈Ĝ
|û(γ)| = d(n− 1)|G| − |A|.

Proof. Let γ ∈ Ĝ be arbitrary, and let W denote the kernel of γ. Note that since the image
of γ is on the unit disc, it is cyclic, and

c(W ) ≥ c(G)− 1 = n− 1.

12



Let x ∈ G, and suppose that W ∩ (x−B) has a 3-AP. Then {x− 2a1, x− 2a2, x− 2a3} is
a 3-AP, which gives us that

x− 2a1 + x− 2a3 = 2x− 4a2

so that
2a1 + 2a3 = 4a2.

Since G has odd order, we can reduce this to

a1 + a3 = 2a2.

Therefore {a1, a2, a3} ⊆ A is a 3-AP, which only contains the trivial 3-AP. Therefore
a1 = a2 = a3, and our 3-AP from W ∩ (x− B) is also trivial. From the definition of d(n)
we see that

|W ∩ (x−B)| ≤ |W |d(c(W )) ≤ |W |d(n− 1).

In particular
|W |d(n− 1)− |W ∩ (x−B)| ≥ 0.

We will use this fact to show that χW ∗ u(x) ≥ 0 for each x ∈ G:

χW ∗ u(x) =
∑
y∈G

χW (y)u(x− y) =
∑
w∈W

u(x− w).

Expanding the definition of u(x) = d(n− 1)− χB(x) we see that

χW ∗ u(x) =
∑
w∈W

(
d(n− 1)− χB(x− w)

)
= |W |d(n− 1)− |B ∩ (x−W )|.

Note that y is an element of B ∩ (x−W ) if and only if x− y is an element of W ∩ (x−B).
These sets have the same size, i.e. |B ∩ (x−W )| = |W ∩ (x−B)|. Therefore

χW ∗ u(x) = |W |d(n− 1)− |W ∩ (x−B)| ≥ 0.

Recall that W is the kernel of γ, which gives us

χ̂W (γ) =
∑
w∈W

γ(−w) =
∑
w∈W

1 = |W |.

This guarantees that

|χ̂W ∗ u(γ)| = |χ̂W (γ)||û(γ)| = |W ||û(γ)|.
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By expanding the Fourier transform of χW ∗ u, and recalling that γ ∈ Ĝ has magnitude
|γ(x)| = 1 for each x ∈ G, we get the following:

|χ̂W ∗ u(γ)| =

∣∣∣∣∣∑
x∈G

χW ∗ u(x)γ(−x)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
x∈G

χW ∗ u(x)

∣∣∣∣∣ .
Earlier we found an expression for χW ∗u which showed that χW ∗u(x) ≥ 0 for each x ∈ G.
As such, we can remove the absolute values:

|χ̂W ∗ u(γ)| ≤
∑
x∈G

χW ∗ u(x)

=
∑
x∈G

|W |d(n− 1)− |B ∩ (x−W )|

= |G||W |d(n− 1)−
∑
x∈G

|B ∩ (x−W )|

Given b ∈ B and w ∈ W , there is a unique x ∈ G with b = x − w. This justifies the
equality

∑
x∈G |B ∩ (x−W )| = |B||W |, giving us

|χ̂W ∗ u(γ)| ≤ |G||W |d(n− 1)− |B||W |.

Putting it all together we get that

|W ||û(γ)| = |χ̂W ∗ u(γ)| ≤ |G||W |d(n− 1)− |B||W |

so that

|û(γ)| ≤ |G|d(n− 1)− |B|.

We will check that |B| = |A|. Clearly |B| ≤ |A|. Suppose that −2a1 = −2a2 so that
2(a1 − a2) = 0. Since G has odd order a1 = a2, giving us |B| = |A|. Our above inequality
becomes

|û(γ)| ≤ |G|d(n− 1)− |A|.
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Now we will check that the maximum is indeed attained by picking γ = e. Indeed

û(e) = h(e)− g(e)

= |G|d(n− 1)δ(e)− χ̂B(e)

= |G|d(n− 1)−
∑
x∈G

χB(x)e(−x)

= |G|d(n− 1)− |B|
= |G|d(n− 1)− |A|.

This completes the proof of the proposition.

Lemma 1. The following equalities hold.

1. χ∗
2

A ∗ χB(0) = |A|.

2.
∑

γ∈Ĝ f(γ)2g(γ) = |G||A|.

3.
∑

γ∈Ĝ f(γ)2h(γ) = |A|2|G|d(n− 1).

Proof. 1. Following the definition of convolution gives us

χ∗
2

A ∗ χB(0) =
∑
x∈G

χA(x)(χA ∗ χB(−x))

=
∑
x∈G

χA(x)
∑
y∈G

χA(y)χB(−x− y).

Suppose x, y ∈ A and −x− y = −2a ∈ B for some a ∈ A. Then we have that x+ y = 2a.
Since A has no 3-APs this only happens when x = y = a. Therefore∑

x∈G

χA(x)
∑
y∈G

χA(y)χB(−x− y) =
∑
x∈G

χA(x)χA(x)χB(−2x) = |A|.

2. Recall the orthogonality property of the dual group, so that∑
γ∈Ĝ

γ(−x) =

{
|G|, if x = 0,
0, otherwise.

From expanding the definition of f and g and using the commutativity of the Fourier
transform on convolutions, we see that∑

γ∈Ĝ

f(γ)2g(γ) =
∑
γ∈Ĝ

χ̂A(γ)2χ̂B(γ) =
∑
γ∈Ĝ

̂χ∗2A ∗ χB(γ).
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From the defintion of convolution,∑
γ∈Ĝ

f(γ)2g(γ) =
∑
γ∈Ĝ

∑
x∈G

χ∗
2

A ∗ χB(x)γ(−x)

=
∑
x∈G

χ∗
2

A ∗ χB(x)
∑
γ∈Ĝ

γ(−x).

Using the orthogonality property of the dual group along with the first result of this lemma
shows us that ∑

γ∈Ĝ

f(γ)2g(γ) = |G|χ∗2A ∗ χB(0) = |G||A|.

3. Note that
χ̂A(e) =

∑
x∈G

χA(x)e(−x) = |A|.

Thus when we expand the definitions of f and h,∑
γ∈Ĝ

f(γ)2h(γ) =
∑
γ∈Ĝ

f(γ)2|G|d(n− 1)δ(γ)

= f(e)2|G|d(n− 1)

= χ̂A(e)2|G|d(n− 1)

= |A|2|G|d(n− 1).

Proposition 2.2.2.
|d(n− 1)|A| − 1| ≤ d(n− 1)|G| − |A|

Proof. We start by multiplying |d(n− 1)|A| − 1| by |G||A| and using the previous lemma:

|G||A||d(n− 1)|A| − 1| = |d(n− 1)|G||A|2 − |G||A||

=

∣∣∣∣∣∣
∑
γ∈Ĝ

f(γ)2h(γ)−
∑
γ∈Ĝ

f(γ)2g(γ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ∈Ĝ

f(γ)2(h(γ)− g(γ))

∣∣∣∣∣∣ .
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It was noted earlier that h− g = û, so that

|G||A||d(n− 1)|A| − 1| =

∣∣∣∣∣∣
∑
γ∈Ĝ

f(γ)2û(γ)

∣∣∣∣∣∣ ≤
∑
γ∈Ĝ

|f(γ)|2(max |û(γ)|).

Using Proposition 2.2.1, expanding the defintion of f , and by Proposition 1.2.5 we have
that

|G||A||d(n− 1)|A| − 1| ≤ (|G|d(n− 1)− |A|)
∑
γ∈Ĝ

|χ̂A(γ)|2

= (|G|d(n− 1)− |A|)|G|
∑
x∈G

|χA(x)|2

= (|G|d(n− 1)− |A|)|G||A|.

The inequality |G||A||d(n− 1)|A| − 1| ≤ (|G|d(n− 1)− |A|)|G||A| reduces to

|d(n− 1)|A| − 1| ≤ d(n− 1)|G| − |A|,

finishing the proof.

Recall that G is a finite abelian group of odd order with n components. We chose A as
a subset of G with no 3-APs. Our goal is to show that d(n) ≤ 2/n, where d(n) = sup D(G)

|G| ,

and D(G) is the largest size of a subset of G with no 3-APs. If we can bound |A|/|G| by
2/n then we have finished the proof of Meshulam’s result. By Proposition 2.2.2,

d(n− 1)|A| − 1 ≤ d(n− 1)|G||A|.

We can rearrange these terms so that

|A|
|G|
≤ |G|

−1 + d(n− 1)

1 + d(n− 1)
.

Here we note that d(n−1) ≤ 2
n−1

from our induction hypothesis. We can also bound |G|−1.
We know that G is a finite abelian group of odd order with n components. The smallest
such group is Z3⊕Z3⊕ · · ·⊕Z3, n copies of Z3, and it has size 3n. Therefore |G|−1 ≤ 3−n.
Putting it together, we get that
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|A|
|G|

≤ |G|−1 + d(n− 1)

1 + d(n− 1)

≤ 3−n + d(n− 1)

1 + d(n− 1)

≤
3−n + 2

n−1

1 + 2
n−1

≤ 2

n
.

2.3 Corollaries

In 1990 Szemeredi and Heath-Brown showed that there exists some α > 0 with 0 < α < 1
20

such that D(Zm) = O(m/(logm)α). Meshulam combined his above result with this bound
to acquire the following corollary.

Corollary 2.3.1. For any β > 0 with 0 < β < 1
21

and any group G which is finite, abelian
and of odd order

D(G) = O

(
|G|

(log |G|)β

)
.

Proof. Let β = α
α+1

. If c(G) > (log |G|)β then we are done, since Meshulam’s result

D(G) ≤ 2|G|
c(G)

implies

D(G) ≤ 2|G|
(log |G|)β

.

Now we consider the case when t = c(G) ≤ (log |G|)β. Choose A ⊆ G so that A contains
no 3-APs. By the pigeonhole principle we can also choose a cyclic subgroup of H ≤ G (H

may be one of the components of G) with |H| ≥ |G|1/t. We know that G/H has |G||H| cosets.
Again we can use the pigeonhole principle to guarantee a coset x+H so that

|A ∩ (x+H)| |G|
|H|
≥ |A|

or

|A ∩ (x+H)| ≥ |A| |H|
|G|

.
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Szemeredi and Heath-Brown’s result gives us |A ∩ x+H| = O(|H|/(log |H|)α) so that

|A| � |G|
(log |H|)α

� |G|
(log |G| 1t )α

� |G|tα

(log |G|)α
.

Since t ≤ (log|G|)β,

|A| � |G|((log |G|)β)α

(log |G|)α
= |G|((log |G|)β−1)α = |G|((log |G|)

−1
α+1 )α =

|G|
(log |G|)β

.

In 2011, Tom Sanders [10] gave the most recent bound for Roth’s Theorem. He showed
that for m ∈ N,

D(Zm) = O

(
m(log logm)5

logm

)
.

Using a similar technique as in Corollary 2.3.1, we achieve the following Corollary.

Corollary 2.3.2. Let G be a finite abelian group of odd order, and let D(G) denote the
largest cardinality of a subset which contains no three term arithmetic progressions. It
holds that

D(G) = O

(
|G|(log log |G|) 5

2

(log |G|) 1
2

)
.

Proof. Fix a finite abelian group of odd order G, let A ⊆ G so that A contains no 3-APs,
and let t = c(G).

Case I: Suppose that

t >
(ln |G|) 1

2

(ln ln |G|) 5
2

.

In this case, we see by Theorem 2.1.1 that

D(G) ≤ 2|G|
t
� |G|

t
� |G|(log log |G|) 5

2

(log |G|) 1
2

,

as desired.

Case II: Suppose that

t ≤ (log |G|) 1
2

(log log |G|) 5
2

.
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Applying the pigeonhole principle, we can find a cyclic subgroup H of G so that |H| ≥ |G| 1t .
Applying the pigeonhole principle for a second time, we can find a coset x+H of G/H so
that

|A||H|
|G|

≤ |A ∩ (x+H)| = |(A− x) ∩H|.

Note that (A− x) ∩H ⊆ H contains no 3-APs. By Sanders’s bound, it holds that

|A| ≤ |G||(A− x) ∩H|
|H|

� |H||G|(log log |H|)5

|H|(log |H|)

� |G|(log log |H|)5

(log |G| 1t )

� |G|(log log |G|)5t

(log |G|)

� |G|(log log |G|) 5
2

(log |G|) 1
2

.
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Chapter 3

3-APs on Finite Abelian Groups of
Even Order

3.1 Introduction

In the previous chapter we saw how Meshulam bounded the size of a subset free of 3-APs
for a finite abelian group. For his proof to work, we require that the finite abelian group G
has odd order (in particular we need that 2a = 2b implies a = b). In 2003 Lev [5] adapted
Meshulam’s proof for finite abelian groups with the condition that 2G = {g + g : g ∈ G}
is non-trivial, i.e. G is not a direct sum of Z2. For the remainder of this chapter, assume
that G is a finite abelian group which is not a direct sum of Z2.

Before stating Lev’s result, we need to refine our definition of a non-trivial 3-AP. Pre-
viously, we called a subset {a, b, c} ⊆ G a 3-AP if a + c = 2b. It was a trivial 3-AP
if a = b = c and a non-trivial 3-AP otherwise. When G has elements of order 2, this
distinction becomes more subtle. For example, in Z10, the subset {1, 6} is a 3-AP since
6 + 6 = 2 · 1 and 1 + 1 = 2 · 6. This 3-AP is not necessarily trivial since it consists of
two different elements, but it does not consist of three distinct elements. Notice that if
we define φ : G → 2G by φ(g) = 2g, then when G = Z10, φ(6 − 1) = 0. In general, if
a − b ∈ kerφ, then a + a = 2b and so {a, b} is a 3-AP. When G has odd order, kerφ is
trivial, so every 3-AP consists of either 1 element (when it is trivial) or 3 elements (when
it is non-trivial).

Definition 3.1.1. Let G be a finite abelian group. We say that {a, b, c} ⊆ G is a 3-AP
when a+ c = 2b. If a, b and c are all distinct, we say that {a, b, c} is a true 3-AP.

Remark that in the above definition, requiring a, b and c to be all distinct is equivalent
to requiring a 6= c.
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We also need to redefine D(G) to address the subtlety of 3-APs in groups with even
order.

Definition 3.1.2. Let A ⊆ G be free of true 3-APs, i.e. if {a, b, c} ⊆ A with a + c = 2b,
then a = c. We denote the set of all such A ⊆ G by PF [G] (progression free subsets of
G). Then

D(G) = sup
A⊆G,A∈PF [G]

|A|.

Definition 3.1.3. For n ∈ N define

d(n) = sup
c(2G)≥n

D(G)

|G|
.

Lev’s generalization of Meshulam’s result is below.

Theorem 3.1.1. Let G be a finite abelian group so that the group 2G = {g + g : g ∈ G}
is non-trivial. Then we have that

D(G) ≤ 2|G|
c(2G)

.

Note that Theorem 3.1.1 is equivalent to

d(n) ≤ 2

n
.

When G has odd order, 2G = G and thus c(2G) = c(G). The result of Theorem 3.1.1

reduces to D(G) < 2|G|
c(G)

, which is exactly Meshulam’s result.

3.2 Proof of Lev’s Result

The proof of Theorem 3.1.1 is inductive on c(2G). The base case is trivial, since when
c(2G) = 1 we require that D(G) < 2|G| which always holds since D(G) ≤ |G| for all G.
Fix a finite abelian group G and suppose that c(2G) = n ≥ 2, and that A ⊆ G is free of

true 3-APs. Showing that |A| ≤ 2|G|
n

is enough to prove Theorem 3.1.1.

Let G be in the canonical form for finite abelian groups. As such, G can be expressed
as

G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkr
with ki ∈ N for each i ∈ {1, . . . , r} and ki−1|ki for each i ∈ {2, . . . , r}. Since n ≤ c(2G) ≤
c(G) = r, we have r ≥ n.
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Let φ : G → 2G with φ(g) = 2g. We let G0 denote kerφ = {g ∈ G : 2g = 0}, so that
G/G0

∼= 2G. Let s := |G0| and t := |2G| so that st = |G|. Let

G/G0 = {x1 +G0, x2 +G0, . . . , xt +G0}.

For each 1 ≤ i ≤ t, let
ni =

∣∣{a ∈ A : a− xi ∈ G0}
∣∣

so that 0 ≤ ni ≤ |G0| for each 1 ≤ i ≤ t and |A| = n1 + n2 + · · ·+ nt.

Recall from the previous chapter that for γ ∈ Ĝ,

χ̂A(γ) =
∑
x∈G

χA(x)γ(x) =
∑
a∈A

γ(a).

It is useful to note that

|χ̂A(γ)|2 =
∑
a,b∈A

γ(a)γ(b).

Since γ is in the dual group, it holds that γ(x) = γ(−x) and γ(c+d) = γ(c)γ(d). Therefore

|χ̂A(γ)|2 =
∑
a,b∈A

γ(−a)γ(b) =
∑
a,b∈A

γ(b− a). (3.1)

Lemma 2. We have ∑
γ∈Ĝ

(χ̂A(γ))2χ̂A(γ2) ≤ |G||A||G0|.

Proof. Since γ is in the dual group

(χ̂A(γ))2 =

(∑
a∈A

γ(a)

)(∑
c∈A

γ(c)

)
=

(∑
a∈A

γ(−a)

)(∑
c∈A

γ(−c)

)
=
∑
a,c∈A

γ(−a− c).

It follows that

∑
γ∈Ĝ

(χ̂A(γ))2χ̂A(γ2) =
∑
γ∈Ĝ

(∑
a,c∈A

γ(−a− c)

)(∑
b∈A

γ2(b)

)

=
∑
γ∈Ĝ

∑
a,b,c∈A

γ(−a− c+ 2b)

=
∑

a,b,c∈A

∑
γ∈Ĝ

γ(−a− c+ 2b).
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By Proposition 1.2.3 (2), we have that for fixed a, b, c ∈ A∑
γ∈Ĝ

γ(−a− c+ 2b) =

{
|G|, if − a− c+ 2b = 0,
0, otherwise.

Therefore

∑
γ∈Ĝ

(χ̂A(γ))2χ̂A(γ2) = |G|#{(a, b, c) ∈ A3 : a+ c = 2b}.

Since A ∈ PF [G], a = c and∑
γ∈Ĝ

(χ̂A(γ))2χ̂A(γ2) = |G|#{(a, b, c) ∈ A3 : 2a = 2b}

= |G|#{(a, b) ∈ A2 : a− b ∈ G0}.

Without loss of generality assume that a ∈ x1 +G0. This gives us n1 ways to pick a ∈ A.
Since we require that a− b ∈ G0, we also have b ∈ x1 +G0. As such, there are n1 ways to
pick b ∈ A once we have chosen a. There are n2

1 ways to choose (a, b) ∈ A2 with a− b ∈ G0

and a ∈ x1 + G0. Similarly, there are n2
i ways to choose (a, b) ∈ A2 with a − b ∈ G0

and a ∈ xi + G0 for each 1 ≤ i ≤ t. Since |A| = n1 + · · · + nt and ni ≤ |G0| for each
i ∈ {1, . . . , t}, this means∑

γ∈Ĝ

(χ̂A(γ))2χ̂A(γ2) = |G|(n2
1 + n2

2 + · · ·+ n2
t )

≤ |G|(n1 + n2 + · · ·+ nt) max
1≤i≤t

ni

≤ |G||A||G0|.

A character γ is called a real character if γ(x) ∈ R for each x ∈ G, and γ = γ. We now
split up the sum in Lemma 2 according to whether or not γ is a real character. We note
that since |γ(x)| = 1 for each x ∈ G, if γ is a real character then γ(x) ∈ {1,−1} for each
x ∈ G, so that γ is a real character if and only if γ2 = e.

Lemma 3. Let
S :=

∑
γ∈Ĝ,γ2=e

(χ̂A(γ))2

and let
M := max

γ∈Ĝ,γ2 6=e
|χ̂A(γ2)|.
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Then
|A|S − |G||A||G0| ≤M(|A||G| − S).

Proof. The inequality from Lemma 2 can be written as∑
γ∈Ĝ,γ2=e

(χ̂A(γ))2χ̂A(γ2) +
∑

γ∈Ĝ,γ2 6=e

(χ̂A(γ))2χ̂A(γ2) ≤ |G||A||G0|,

which implies that

−
∑

γ∈Ĝ,γ2 6=e

(χ̂A(γ))2χ̂A(γ2) ≥
∑

γ∈Ĝ,γ2=e

(χ̂A(γ))2χ̂A(γ2)− |G||A||G0|.

When γ2 = e,

χ̂A(γ2) =
∑
a∈A

1 = |A|,

so that

−
∑

γ∈Ĝ,γ2 6=e

(χ̂A(γ))2χ̂A(γ2) ≥ |A|
∑

γ∈Ĝ,γ2=e

(χ̂A(γ))2 − |G||A||G0|

= |A|S − |G||A||G0|.

We have

|A|S − |G||A||G0| ≤ −
∑

γ∈Ĝ,γ2 6=e

(χ̂A(γ))2χ̂A(γ2)

≤

∣∣∣∣∣∣
∑

γ∈Ĝ,γ2 6=e

(χ̂A(γ))2χ̂A(γ2)

∣∣∣∣∣∣
≤

∑
γ∈Ĝ,γ2 6=e

|(χ̂A(γ))|2|χ̂A(γ2)|

≤ M
∑

γ∈Ĝ,γ2 6=e

|(χ̂A(γ))|2.

When γ is a real character, we see that

χ̂A(γ) =
∑
a∈A

γ(a)
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is a real number since it is a sum consisting of 1s and -1s. As such χ̂A(γ)2 = |χ̂A(γ)|2, and

S =
∑

γ∈Ĝ,γ2=e

(χ̂A(γ))2 =
∑

γ∈Ĝ,γ2=e

|(χ̂A(γ))|2.

This means that

|A|S − |G||A||G0| ≤M

∑
γ∈Ĝ

|(χ̂A(γ))|2 − S

 .

By Proposition 1.2.5, we have∑
γ∈Ĝ

|(χ̂A(γ))|2 = |G|
∑
x∈G

χA(x) = |G||A|.

We can conclude that
|A|S − |G||A||G0| ≤M(|A||G| − S).

By the definition of M , there exists a character γ0 with γ2
0 6= e and M = |χ̂A(γ0

2)|. The
kernel of γ2

0 is a subgroup of G that we will call W , i.e.

W = {g ∈ G : γ2
0(g) = 1}.

We wish to calculate

χ̂A(γ0
2) =

∑
a∈A

γ2
0(a).

For a ∈ A and g ∈ G, notice that γ2
0(g) = γ2

0(a) if and only if a− g ∈ W . Therefore g ∈ G
is counted for each a ∈ A in the same coset as g. For a fixed a ∈ A, the number of g ∈ G
with a− g ∈ W is |W |. Therefore∑

a∈A

γ2
0(a) =

∑
a∈A

∑
g∈G

a−g∈W

γ2
0(g)

|W |

=
1

|W |
∑
g∈G

∑
a∈A

a−g∈W

γ2
0(g)

=
1

|W |
∑
g∈G

γ2
0(g)|(A− g) ∩W |.
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Since γ2
0 6= e, By Proposition 1.2.3 (1), we have

0 =
D(W )

|W |
∑
g∈G

γ2
0(g).

It follows that

1

|W |
∑
g∈G

γ2
0(g)|(A− g) ∩W | = 1

|W |
∑
g∈G

(−γ2
0(g))(D(W )− |(A− g) ∩W |).

Thus, we have

χ̂A(γ0
2) =

1

|W |
∑
g∈G

(−γ2
0(g))(D(W )− |(A− g) ∩W |).

Suppose that {x, y, z} is a 3-AP inside of (A− g)∩W . Then {x+ g, y+ g, z+ g} is a 3-AP
inside of A. Since A contains no true 3-AP, x = z and (A− g) ∩W is free of true 3-APs.
Therefore D(W )− |(A− g) ∩W | ≥ 0 for each g ∈ G. We have

M = |χ̂A(γ0
2)| =

∣∣∣∣∣ 1

|W |
∑
g∈G

(−γ2
0(g))(D(W )− |(A− g) ∩W |)

∣∣∣∣∣
so that

M ≤ 1

|W |
∑
g∈G

|(−γ2
0(g))(D(W )− |(A− g) ∩W |)|

=
1

|W |
∑
g∈G

D(W )− |(A− g) ∩W |

=
D(W )

|W |
|G| − 1

|W |
∑
g∈G

|(A− g) ∩W |.

Notice that for a fixed g ∈ G,

|(A− g) ∩W | = #{(a, w) ∈ A×W : g = a− w}.

We have ∑
g∈G

|(A− g) ∩W | =
∑
g∈G

#{(a, w) ∈ A×W : g = a− w}| = |A||W |.
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Therefore
1

|W |
∑
g∈G

|(A− g) ∩W | = |A|.

If we let k = D(W )/|W |, we have

M ≤ k|G| − |A|.

Combining the above inequality with Lemma 3, we see that

|A|S − |G||A||G0| ≤ (|A||G| − S)(k|G| − |A|) = k|A||G|2 − |A|2|G| − Sk|G|+ |A|S.

Rearranging terms and dividing by |G| results in

Sk + |A|2 ≤ k|A||G|+ |G0||A|. (3.2)

Lemma 4. Let S be defined as in Lemma 3. We have

S ≥ |A|2.

Proof. Recall that G/2G ∼= G0, and |G0| = s. Write

G0
∼= G/2G = {y1 + 2G, y2 + 2G, . . . , ys + 2G}.

Let
mi =

∣∣{a ∈ A : a− yi ∈ 2G}
∣∣

so that mi ≤ |2G| = t and |A| = m1 + m2 + · · · + ms. It is useful to note that for γ ∈ Ĝ
with γ2 = e, |χ̂A(γ)|2 = (χ̂A(γ))2. This holds since γ(a) is real for each a ∈ A.

By Proposition 1.2.3 we have

S =
∑
γ∈Ĝ

(
1

|G|
∑
g∈G

γ2(g)

)
|χ̂A(γ)|2

=
1

|G|
∑
g∈G

∑
γ∈Ĝ

γ2(g)|χ̂A(γ)|2.

For a fixed g ∈ G, consider the above inner sum. By (3.1), we have
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∑
γ∈Ĝ

γ2(g)|χ̂A(γ)|2 =
∑
γ∈Ĝ

γ2(g)
∑
a,b∈A

γ(b− a)

=
∑
a,b∈A

∑
γ∈Ĝ

γ(2g + b− a).

By Proposition 1.2.3,

∑
γ∈Ĝ

γ(2g + b− a) =

{
|G|, if 2g = a− b,
0, otherwise.

Therefore ∑
a,b∈A

∑
γ∈Ĝ

γ(2g + b− a) = |G|#{(a, b) ∈ A2 : a− b = 2g}.

Putting it together

S =
1

|G|
∑
g∈G

∑
γ∈Ĝ

γ2(g)|χ̂A(γ)|2

=
1

|G|
∑
g∈G

∑
a,b∈A

∑
γ∈Ĝ

γ(2g + b− a)

=
∑
g∈G

#{(a, b) ∈ A2 : a− b = 2g}.

Given a pair (a, b) ∈ A2, it is counted in #{(a, b) ∈ A2 : a − b = 2g} if and only if
a − b ∈ 2G. When a − b ∈ 2G, since G/2G ∼= G0, there are |G0| different g ∈ G with
a− b = 2g. Therefore each pair (a, b) ∈ A2 which is counted in the above sum is counted
|G0| times, giving us

S = |G0|#{(a, b) ∈ A2 : a− b ∈ 2G}.

Recall we had
G0
∼= G/2G = {y1 + 2G, y2 + 2G, . . . , ys + 2G}

and mi = |{a ∈ A : a − yi ∈ 2G}|. To calculate #{(a, b) ∈ A2 : a − b ∈ 2G} suppose,
without loss of generality, that a − y1 ∈ 2G. We must also have that b − y1 ∈ 2G. There
are m1 ways to choose such an a ∈ A and m1 ways to choose such a b ∈ A. As such, there
are m2

1 pairs (a, b) ∈ A2 with b − a ∈ 2G and a − y1 ∈ 2G. Similarly, there are m2
i pairs
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(a, b) ∈ A2 with a− b ∈ 2G and a− yi ∈ 2G for i ∈ {1, . . . , s}. We have

S = |G0|(m2
1 +m2

2 + · · ·+m2
s)

≥ |G0|
1

s

(
s∑
i=1

mi

)2

= |A|2

since |G0| = s and |A| = m1 + · · ·+ms. This completes our proof.

By Lemma 4 and (3.2),we see that

k|A|2 + |A|2 ≤ |A||G0|+ k|A||G|,

which in turn reduces to
|A| ≤ k(|G| − |A|) + |G0|.

Now it is time to apply the induction hypothesis to find an upper bound on k = D(W )
|W | . For

a function f defined on a set X, and Y ⊆ X a subset, we let f |Y denote the restriction of

f to Y . Recall that W was chosen as the kernel of γ2
0 . Let γ1 = γ0|2G ∈ 2̂G. Since γ1 is in

the dual group of 2G, we have |γ1| = 1 which means that the image of γ1 is a subgroup of
the multiplicative group of the field of complex numbers. Since G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkr
with ki|kr for each 1 ≤ i ≤ r, it must hold that the image of γ0 consists of kthr roots of
unity. The image of γ1 is a subgroup of the image of γ0, so it too is a cyclic group. Since
γ2

0 6= e, the image of γ1 is non-trivial. Note that

γ1(2g) = 0 ⇐⇒ γ0(2g) = 0 ⇐⇒ γ2
0(g) = 0.

We defined W as the kernel of γ2
0 . Thus

γ1(2g) = 0 ⇐⇒ g ∈ W ⇐⇒ 2g ∈ 2W

and ker(γ1) = 2W . Therefore im(γ1) ∼= 2G/2W means that 2G/2W is either cyclic or
trivial. As such, 2G has one more component than 2W , so that c(2W ) ≥ n − 1. By the
induction hypothesis k = D(W )/|W | ≤ d(n− 1) ≤ 2/(n− 1). We have

|A| ≤ k(|G| − |A|) + |G0|

≤ 2|G|
n− 1

− 2|A|
n− 1

+ |G0|.
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We use this to bound |A| so that

|A| ≤ |G|
1 + 2

n−1

(
2

n− 1
+
|G0|
|G|

)
.

We now need to consider the size of |G0|/|G|. Recall that G0 = {x ∈ G : 2x = 0}, and also
that

G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkr
with ki−1|ki for each 2 ≤ i ≤ r. Let l = max{i ∈ {1, . . . , r− 1} : ki = 2}. If ki ≥ 3 for each
1 ≤ i ≤ r then we let l = 0. Let

G1 =
l⊕

i=1

Zki and G2 =
r⊕

i=l+1

Zki

so that G = G1 ⊕G2. It holds that c(2G) = c(G2).

Our proof now splits in two cases. In the first case, G1 = ∅, so that c(2G) = c(G2) =
c(G) ≥ n. We have

|G0|
|G|

=
1

|2G|
=

∏
i∈[1,r]:ki is odd

1

ki

∏
i∈[1,r]:ki is even

2

ki
≤ 1

2r
≤ 1

2n
<

2

n(n− 1)
.

Note that we require G2 = G for the first inequality: Since each even ki satisfies ki ≥ 4 if
and only if G2 = G, it is certain that 2

ki
≤ 1

2
. This upper bound on |G0|

|G| means that

|A| ≤ |G|
1 + 2

n−1

(
2

n− 1
+

2

n(n− 1)

)
=
|G|(n− 1)

n+ 1
· 2

n− 1
· n+ 1

n
=

2|G|
n

.

For the second case assume that G1 is non-empty, and suppose that B ⊆ G with |B| >
|G1|D(G2). We claim that B ∈ PF [G]. Consider the elements of B inside the quotient
group G/G2

∼= G1. There exists some coset g0 +G2 so that |B ∩ (g0 +G2)| > D(G2). This
is true since there are |G1| cosets in G/G2, and assuming that |B ∩ (g +G2)| ≤ D(G2) for
each coset g +G2 means that |B| ≤ |G1|D(G2), producing a contradiction.

Given that
|(B − g0) ∩G2| = |B ∩ (g0 +G2)| > D(G2),

there exists a true 3-AP inside of (B − g0) ∩ G2, say {b1 − g0, b2 − g0, b3 − g0} with each
element distinct and b1−g0+b3−g0 = 2(b2−g0). Then {b1, b2, b3} is a true 3-AP in B. Since
B was chosen arbitrarily as a subset greater than |G1|D(G2), we have D(G) ≤ |G1|D(G2).
Notice that G2 was chosen so that c(2G2) = c(G2) = c(2G) ≥ n, so as a group G2 falls
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into the first case from above, i.e. we have D(G2) ≤ 2|G2|/n. Since |G| = |G1||G2|,

D(G) ≤ |G1|D(G2) < |G1|
2|G2|
n

=
2|G|
n

as desired. This completes the proof of Lev’s result. Recall that with Meshulam’s result,
we were able to produce Corollary 2.3.2 which gave a bound for D(G) depending only on
|G| where G is a finite abelian group of odd order. The following Corollary uses Lev’s
result to achieve the same bound for a larger class of finite abelian groups. The proof is
similar to the one outlined for Corollary 2.3.2. We simply modify the first case by using
Theorem 3.1.1 instead of Theorem 2.1.1.

Corollary 3.2.1. Let G be a finite abelian group so that c(G) = c(2G), and let D(G)
denote the largest cardinality of a subset which contains no non-trivial three term arithmetic
progressions. It holds that

D(G) = O

(
|G|(log log |G|) 5

2

(log |G|) 1
2

)
.
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Chapter 4

Solutions to Linear Equations on
Finite Abelian Groups

4.1 Introduction

In the two previous chapters we outlined results by Meshulam and Lev which bounded the
size of subsets that are free of 3-APs. In 2009 Liu and Spencer [6] generalized Meshulam’s
result to subsets which contain no trivial solutions to a linear equation.

Let s ∈ N with s ≥ 3. Let r = (r1, r2, . . . , rs) ∈ (Z \ {0})s be a vector satisfying
r1 + r2 + · · ·+ rs = 0. Given a finite abelian group G,

G ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn

with ki ∈ {2, 3, . . .} for each i ∈ {1, . . . , n} and ki|ki+1 for i ∈ {1, . . . , n − 1}. We say G
has n constituents, and denote this by c(G) = n. We let |G| denote the cardinality of G.

Definition 4.1.1. Let r and G be defined as above. We say that G is coprime to r if
gcd(ri, |G|) = 1 for each i ∈ {1, . . . , s}.

Definition 4.1.2. Let x = (x1, . . . , xs) ∈ Gs. We say x is a solution to r if r1x1+· · · rsxs =
0. A solution x ∈ Gs is trivial if there is some subset {j1, . . . , jl} ⊆ {1, . . . , s} with
xj1 = · · · = xjl and rj1 + · · ·+ rjl = 0. Otherwise we say a solution x ∈ Gs is non-trivial.

Definition 4.1.3. Let r and G be defined as above, with G coprime to r, and let A ⊆ G.
If every solution x ∈ As is trivial, we say that A is free of non-trivial solutions and write
A ∈ NTSFr (non-trivial solution free subsets). Define

Dr(G) = max
A⊆G

A∈NTSFr

|A|
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and

dr(n) = sup
G coprime to r

c(G)≥n

Dr(G)

|G|
.

For simplicity we write D(G) for Dr(G) and d(n) for dr(n) when r is clear from the context.

Theorem 4.1.1. Let r = (r1, . . . , rs) ∈ (Z \ {0})s so that r1 + · · · + rs = 0. Then there
exists a constant C = C(r) > 0 such that

dr(n) ≤ C(r)s−2

ns−2
.

4.2 Preliminaries

Fix r ∈ (Z \ {0})s with r1 + · · ·+ rs = 0, let n ∈ N, and fix a finite abelian group G that is
coprime to r with c(G) ≥ n. Fix A ⊆ G so that A is free of non-trivial solutions to r. We
let T (A) denote the number of solutions to r inside A. Let riA = {ria : a ∈ A} and

χriA(x) =

{
1, if x ∈ riA,
0, otherwise.

By Proposition 1.2.3,

∑
γ∈Ĝ

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ) =
∑
γ∈Ĝ

(∑
x∈A

γ(−r1x)

)(∑
x∈A

γ(−r2x)

)
· · ·

(∑
x∈A

γ(−rsx)

)

=
∑
x1∈A

∑
x2∈A

· · ·
∑
xs∈A

∑
γ∈Ĝ

γ(−(r1x1 + r2x2 + · · ·+ rsxs))

= |G|T (A).

Recall from previous chapters that

δ(γ) =

{
1, if γ = e,
0, otherwise.

Lemma 5. Let G be a finite abelian group coprime to r with c(G) ≥ n. Suppose that
A ⊆ G contains no non-trivial solutions to r. Let W ⊆ G be a subgroup. Then for each
i ∈ {1, . . . , s} and for each x ∈ G, W ∩ (x− riA) contains no non-trivial solutions to r, so
that

|W ∩ (x− riA)| ≤ D(W ).
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Proof. First note that since W ⊆ G is a subgroup of G, we have that |W | divides |G|.
Since gcd(ri, |G|) = 1 for each i ∈ {1, . . . , s}, it follows that gcd(ri, |W |) = 1 for each
i ∈ {1, . . . , s}, and W is coprime to r. As such, D(W ) = Dr(W ) is indeed well defined.

Consider a solution (w1, . . . , ws) = (x− ria1, x− ria2, . . . , x− rias) so that

0 = r1(x− ria1) + r2(x− ria2) + · · ·+ rs(x− rias)
= x(r1 + r2 + · · ·+ rs)− ri(r1a1 + r2a2 + · · ·+ rsas).

Recall that r1 + r2 + · · ·+ rs = 0, so that the above equation reduces to

0 = ri(r1a1 + r2a2 + · · ·+ rsas).

Here we use the fact that G is coprime to r, (note that the 0 above is 0 ∈ G, not 0 ∈ Z).
Since |G| is coprime to ri for each i ∈ {1, . . . , s}, G contains no elements of order ri
except 0. Therefore r1a1 + r2a2 + · · · + rsas = 0, which means that (a1, a2, . . . , as) is
a solution to r. We chose A so that it only contains trivial solutions to r. As such,
(w1, . . . , ws) = (x− ria1, x− ria2, . . . , x− rias) is also a trivial solution. Since (w1, . . . , ws)
was chosen arbitrarily, we know that W ∩ (x− riA) ⊆ W contains no non-trivial solutions
to r.

Lemma 6. Let G be a finite abelian group coprime to r with c(G) ≥ n. Suppose that
A ⊆ G contains no non-trivial solutions to r. Then for each i ∈ {1, . . . , s},

sup
γ∈Ĝ
||G|d(n− 1)δ(γ)− χ̂riA(γ)| = d(n− 1)|G| − |A|.

In particular, since |G|d(n− 1)δ(γ) = 0 when γ 6= e, it follows that

sup
γ 6=e
|χ̂riA(γ)| = d(n− 1)|G| − |A|.

Proof. Let γ ∈ Ĝ and let W = ker(γ). Since γ(G) is a cyclic group and γ(G) ∼= G/W , we
have that c(W ) ≥ c(G)− 1 ≥ n− 1. Note that

|W |
∣∣|G|d(n− 1)δ(γ)− χ̂riA(γ)

∣∣ =

∣∣∣∣∣∑
y∈W

∑
x∈G

d(n− 1)γ(−x)−
∑
y∈W

∑
x∈G

χriA(x)γ(−x)

∣∣∣∣∣ .
For any y ∈ W = ker(γ), we have γ(−x) = γ(−x− y), and∑

x∈G

χriA(x)γ(−x) =
∑
x∈G

χriA(x)γ(−x− y) =
∑
x∈G

χriA(x− y)γ(−x).
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Therefore

|W |
∣∣|G|d(n− 1)δ(γ)− χ̂riA(γ)

∣∣ =

∣∣∣∣∣∑
x∈G

(∑
y∈W

d(n− 1)−
∑
y∈W

χriA(x− y)

)
γ(−x)

∣∣∣∣∣
≤

∑
x∈G

∣∣∣∣∣∑
y∈W

d(n− 1)−
∑
y∈W

χriA(x− y)

∣∣∣∣∣ .
Since

χriA(x− y) =

{
1, if x− y ∈ riA,
0, otherwise,

we have that ∑
y∈W

χriA(x− y) = |(x−W ) ∩ riA| = |W ∩ (x− riA)|.

By Proposition 1.2.3, it holds that W ∩ (x − riA) ⊆ W contains no non-trivial solutions
to r. By the definition of d(n− 1),

d(n− 1) ≥ |W ∩ (x− riA)|
|W |

and

|W |
∣∣|G|d(n− 1)δ(γ)− χ̂riA(γ)

∣∣ ≤ ∑
x∈G

∣∣∣∣∣∑
y∈W

d(n− 1)−
∑
y∈W

χriA(x− y)

∣∣∣∣∣ .
=

∑
x∈G

||W |d(n− 1)− |W ∩ (x− riA)||

=
∑
x∈G

|W |d(n− 1)− |W ∩ (x− riA)|.

To compute
∑

x∈G |W ∩ (x− riA)| notice that for a fixed ria ∈ riA, there are |W | different
x ∈ G with x − ria ∈ W . Since G is coprime to r, the function g 7→ rig is a bijection on
G and riG = G, with |riA| = |A| for any subset A ⊆ G. Therefore∑

x∈G

|W ∩ (x− riA)| = |riA||W | = |A||W |.

It holds that ∑
x∈G

|W |d(n− 1) = |G||W |d(n− 1),
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which results in

|W |
∣∣|G|d(n− 1)δ(γ)− χ̂riA(γ)

∣∣ ≤ |G||W |d(n− 1)− |A||W |.

Therefore, for each γ ∈ Ĝ,∣∣|G|d(n− 1)δ(γ)− χ̂riA(γ)
∣∣ ≤ |G|d(n− 1)− |A|,

so that
sup
γ∈Ĝ
||G|d(n− 1)δ(γ)− χ̂riA(γ)| ≤ d(n− 1)|G| − |A|.

Equality holds since∣∣|G|d(n− 1)δ(e)− χ̂riA(e)
∣∣ = |G|d(n− 1)−

∑
x∈riA

1

= |G|d(n− 1)− |A|.

This concludes the proof.

Lemma 7. Let G be a finite abelian group coprime to r with c(G) ≥ n. Suppose that A ⊆ G
contains no non-trivial solutions to r. Let Br = B denote the number of different subsets
∅ 6= {rj1 , . . . , rjl} ⊆ {r1, . . . , rs} with rj1 + · · ·+ rjl = 0. Let d∗(n) = d∗(n;A,G) = |A|/|G|.
Then

d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2 − Bd∗(n)s−2

|G|
≤ 0.

Proof. We saw in the beginning of this section that

|G|T (A) =
∑
γ∈Ĝ

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ)

= χ̂r1A(e)χ̂r2A(e) · · · χ̂rsA(e) +
∑

γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ).

For each i ∈ {1, . . . , s},

χ̂riA(e) =
∑
x∈G

χriA(x)e(−x) =
∑
x∈riA

1 = |riA| = |A|,

and we have
χ̂r1A(e)χ̂r2A(e) · · · χ̂rsA(e) = |A|s = d∗(n)s|G|s.
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By Cauchy’s inequality,∣∣∣∣∣∣
∑

γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ)

∣∣∣∣∣∣
≤ max

γ∈Ĝ,γ 6=e
|χ̂r3A(γ) · · · χ̂rsA(γ)|

 ∑
γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ)


≤ max

γ∈Ĝ,γ 6=e
|χ̂r3A(γ) · · · χ̂rsA(γ)|

 ∑
γ∈Ĝ,γ 6=e

|χ̂r1A(γ)|2
 1

2
∑
γ∈Ĝ

|χ̂r2A(γ)|2
 1

2

.

By Proposition 1.2.5, for i ∈ {1, 2},∑
γ∈Ĝ,γ 6=e

|χ̂riA(γ)|2 ≤ |G|
∑
x∈G

|χriA(x)|2 = |G|
∑
x∈riA

1 = |G||A|,

and by Lemma 6
max

γ∈Ĝ,γ 6=e
|χ̂riA(γ)| ≤ |G|d(n− 1)− |A|.

It follows that∣∣∣∣∣∣
∑

γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ)

∣∣∣∣∣∣ ≤ (|G|d(n− 1)− |A|)s−2 |G||A|

= |G|s−2(d(n− 1)− d∗(n))s−2|G||A|
= |G|d∗(n)(d(n− 1)− d∗(n))s−2.

We have

|G|T (A) = χ̂r1A(e)χ̂r2A(e) · · · χ̂rsA(e) +
∑

γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ)

≥ χ̂r1A(e)χ̂r2A(e) · · · χ̂rsA(e)−

∣∣∣∣∣∣
∑

γ∈Ĝ,γ 6=e

χ̂r1A(γ)χ̂r2A(γ) · · · χ̂rsA(γ)

∣∣∣∣∣∣
≥ d∗(n)s|G|s − |G|sd∗(n)(d(n− 1)− d∗(n))s−2.

This implies a lower bound on T (A), specifically

T (A) ≥ |G|s−1
(
d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2

)
.
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Since A contains no non-trivial solutions to r, if r1a1+· · ·+rsas = 0, then there is some ∅ 6=
{rj1 , . . . , rjl} ⊆ {r1, . . . , rs} with rj1 + · · ·+ rjs = 0 and aj1 = · · · = ajl . There are B ways
to fix indices {j1, . . . , jl} with rj1 + · · ·+ rjl = 0. We can assume without loss of generality
that {j1, . . . , jl} = {s − l + 1, . . . , s} so that {1, . . . , s} \ {j1, . . . , jl} = {1, 2, . . . , s − l}.
Notice that since r consists of non-zero integers, l ≥ 2 and s− l ≤ s− 2.

Consider the number of solutions in A with aj1 = · · · = ajl . There are |A| different
ways to pick aj1 , and since aj1 = · · · = ajl , this fixes each aji . Consider the indices
{1, . . . , s}\{j1, . . . , jl} = {1, 2, . . . , s−l}. There are |A| different ways to pick a1. Similarly,
there are |A| different ways to pick ai for i ∈ {1, 2, . . . , s− l − 1}. Since

r1a1 + r2a2 + · · ·+ rs−las−l = r1a1 + · · · rsas − (rj1aj1 + · · · rjlajl) = 0− 0 = 0,

it holds that
rs−las−l = −(r1a1 + r2a2 + · · ·+ rs−l−1as−l−1).

This means that either as−l is determined by the choices for a1, . . . , as−l−1 or there is no valid
choice for as−l ∈ A. Therefore, given ∅ 6= {rj1 , . . . , rjl} ⊆ {r1, . . . , rs} with rj1 + · · · rjs = 0,
there are at most |A||A|s−l−1 = |A|s−l ≤ |A|s−2 different solutions in A with aj1 = · · · = ajl .
We then have

T (A) ≤ B|A|s−2 = Bd∗(n)s−2|G|s−2.

Putting together the bounds on T (A), we see that

|G|s−1(d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2) ≤ Bd∗(n)s−2|G|s−2,

so that

d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2 − Bd∗(n)s−2

|G|
≤ 0.

4.3 Proof of Theorem 4.1.1

Let r = (r1, . . . , rs) ∈ (Z \ {0})s so that r1 + · · · + rs = 0, and let Br = B denote the
number of different subsets ∅ 6= {rj1 , . . . , rjl} ⊆ {r1, . . . , rs} with rj1 + · · ·+ rjl = 0. Let G
be a finite abelian group coprime to r with c(G) ≥ n. Suppose that A ⊆ G contains no
non-trivial solutions to r. Let d∗(n) = d∗(n;A,G) = |A|/|G|. The proof of Theorem 4.1.1
is inductive on n. First pick F ∈ R with F > 1. Let

E =
s−2

√
1− 1

F
,
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and let

C = max

{
(BF )

1
2s−4

(
2s− 4

e ln 2

)
,

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

}
.

We claim that this C satisfies

d(n) ≤ Cs−2

ns−2
.

To show that d(n) ≤ Cs−2

ns−2 it is enough to show d∗(n) ≤ Cs−2

ns−2 . To verify the base case recall
that D(G) ≤ |G| for every finite abelian group G, and

d(1) = sup
G coprime to r

c(G)≥1

D(G)

|G|
≤ 1.

It holds that

1 ≤ (E + 1)
1
s−2

(E + 1)
1
s−2 − 1

≤ C ≤ Cs−2,

so that d(1) ≤ Cs−2, as desired. Assume that

d(n− 1) ≤ Cs−2

(n− 1)s−2
.

By its definition, d(n) ≤ 1, so when n ≤ C the proof holds trivially. Assume that n > C,
and consider the following two cases:

Case I: Suppose that

d∗(n)2 ≤ FB

|G|
.

Since G is a finite abelian group with at least n constituents, it holds that |G| ≥ 2n.
Therefore

d∗(n) ≤
(
FB

|G|

) 1
2

≤
(
FB

2n

) 1
2

,

and

d∗(n)ns−2 ≤
(
FB

2n

) 1
2

ns−2.

Define

f(x) =
xs−2

2
x
2

,

so that the above inequality can be written as

d∗(n)ns−2 ≤ (FB)
1
2f(n).
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Since f(0) = 0 and limx→∞ f(x) = 0, f attains a maximum value on [0,∞). We have

f ′(x) =
xs−2(s− 2)

x2
x
2

− 1

2

xs−2 ln(2)

x2
x
2

so that the only zero of f ′(x) is x = (2s− 4)/ ln(2). Therefore, for each positive x ∈ R,

f(x) ≤ f

(
2s− 4

ln(2)

)
=

(
2s− 4

e ln 2

)s−2

.

By the definition of C,

Cs−2 ≥ (BF )
1
2

(
2s− 4

e ln 2

)s−2

,

so that

d∗(n)ns−2 ≤ (FB)
1
2f(n) ≤ (FB)

1
2

(
2s− 4

e ln 2

)s−2

≤ Cs−2,

and

d∗(n) ≤ Cs−2

ns−2

as desired.

Case II: Suppose that

d∗(n)2 >
FB

|G|
.

After multiplying both sides by d∗(n)s−2 and doing some rearranging, this implies

d∗(n)s

F
>
Bd∗(n)s−2

|G|
.

We have seen in Lemma 7

d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2 −Bd∗(n)s−2 ≤ 0.

Therefore

d∗(n)s

F
+

(
1− 1

F

)
d∗(n)s = d∗(n)s < d∗(n)(d(n− 1)− d∗(n))s−2 +

Bd∗(n)s−2

|G|

and (
1− 1

F

)
d∗(n)s < d∗(n)(d(n− 1)− d∗(n))s−2 +

Bd∗(n)s−2

|G|
− d∗(n)s

F
.
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Since
Bd∗(n)s−2

|G|
− d∗(n)s

F
< 0,

we have

Es−2d∗(n)s =

(
1− 1

F

)
d∗(n)s < d∗(n)(d(n− 1)− d∗(n))s−2. (4.1)

This gives us
Es−2d∗(n)s−1 < (d(n− 1)− d∗(n))s−2,

so that

Ed∗(n)
s−1
s−2 + d∗(n) < d(n− 1) ≤ Cs−2

(n− 1)s−2
.

Notice that Ex
s−1
s−2 + x is an increasing function of x. As such, if

Ed∗(n)
s−1
s−2 + d∗(n) ≤ E

(
Cs−2

ns−2

) s−1
s−2

+
Cs−2

ns−2
,

then it follows that d∗(n) ≤ Cs−2

ns−2 . By the definition of C, it holds that

C ≥ (E + 1)
1
s−2

(E + 1)
1
s−2 − 1

,

which leads to the following inequalities:

C ≥ 1

(E + 1)
1
s−2 − 1

+ 1

⇐⇒ 1

C − 1
≤ (E + 1)

1
s−2 − 1

⇐⇒ C

C − 1
≤ (E + 1)

1
s−2

⇐⇒
(

C

C − 1

)s−2

≤ E + 1

⇐⇒ Cs−1

(C − 1)s−2
≤ C(E + 1)

⇐⇒ Cs−1

(C − 1)s−2
− C ≤ CE.

Define, for x ∈ R with x > 1,

g(x) =
xs−1

(x− 1)s−2
− x.
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Then we have

g(x) = (x− 1)

(
1 +

1

x− 1

)s−1

− x

= (x− 1)
s−1∑
k=0

(
s− 1

k

)
1

(x− 1)k
− x

=
s−1∑
k=0

(
s− 1

k

)
(x− 1)1−k − x.

Therefore

g′(x) =
s−1∑
k=0

(1− k)

(
s− 1

k

)
(x− 1)−k − 1

= 1 + 0 +
s−1∑
k=2

(1− k)

(
s− 1

k

)
(x− 1)−k − 1

=
s−1∑
k=2

(1− k)

(
s− 1

k

)
(x− 1)−k.

We have that 1 − k < 0 for k ≥ 2,
(
s−1
k

)
> 0 for k ∈ {2, . . . , s − 1}, and (x − 1)−k > 0

for x > 1, so that g′(x) < 0 and g(x) is a decreasing function. Since we are considering
n > C, we have

ns−1

(n− 1)s−2
− n ≤ Cs−1

(C − 1)s−2
− C ≤ CE.

This leads to the following inequalities:

ns−1

(n− 1)s−2
− n ≤ CE

⇐⇒ 1

(n− 1)s−2
− 1

ns−2
≤ EC

ns−1

⇐⇒ 1

(n− 1)s−2
≤ EC

ns−1
+

1

ns−2

⇐⇒ Cs−2

(n− 1)s−2
≤ ECs−1

ns−1
+
Cs−2

ns−2

⇐⇒ Cs−2

(n− 1)s−2
≤ E

(
Cs−2

ns−2

) s−1
s−2

+
Cs−2

ns−2
.
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Therefore

Ed∗(n)
s−1
s−2 + d∗(n) < d(n− 1) ≤ Cs−2

(n− 1)s−2
≤ E

(
Cs−2

ns−2

) s−1
s−2

+
Cs−2

ns−2

and we can conclude that

d∗(n) ≤ Cs−2

ns−2
.

This completes the proof of Theorem 4.1.1.

4.4 Additional remarks

Remark 1. Minimizing C(r)

Fix r = (r1, . . . , rs), and notice that C(r) worked for any value of F > 1. Recall that

E =
s−2

√
1− 1

F
.

Therefore given any E ∈ (0, 1), we can find F > 1 so that E = s−2

√
1− 1

F
. Remark also

that

(BF )
1

2s−4 =

(
B

1− Es−2

) 1
2s−4

so that

C = max

{(
B

1− Es−2

) 1
2s−4

(
2s− 4

e ln 2

)
,

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

}
.

When we consider (
B

1− Es−2

) 1
2s−4

(
2s− 4

e ln 2

)
as a function of E defined on (0, 1), it is increasing. Indeed, B and 2s−4

e ln 2
are positive

constants depending only on r, and 1
1−Es−2 is increasing on (0, 1). When we consider

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

as a function of E defined on (0, 1), it is decreasing. Indeed, the function (E + 1)
1
s−2 is

increasing for E ∈ (0, 1) and gives values in (1, 2
1
s−2 ). The function x

x−1
is decreasing for

x > 1. Composing these two functions verifies that our function is decreasing on (0, 1). As
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such, to minimize our value of C, we may choose a value of E such that(
B

1− Es−2

) 1
2s−4

(
2s− 4

e ln 2

)
=

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

.

Since

lim
E→1−

(
B

1− Es−2

) 1
2s−4

(
2s− 4

e ln 2

)
=∞

and

lim
E→0+

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

=∞,

we are guaranteed the existence of such an E ∈ (0, 1). We saw earlier that the above
functions are increasing and decreasing, respectively, which tells us that this value of
E ∈ (0, 1) is unique.

Consider now the case when r = (1,−2, 1). We have G is coprime to r exactly when |G| is
odd. We also have that a solution (x1, x2, x3) ⊆ G is a three term arithmetic progression.
This is the case we examined in Chapter 1, where we saw that given n ∈ N,

d(1,−2,1)(n) ≤ 2

n
.

To apply Theorem 4.1.1 to r = (1,−2, 1), we have s = 3 and notice that B(r) = 1, since
the only subset of {1,−2, 1} which sums to 0 is {1,−2, 1}. We therefore have

d(1,−2,1)(n) ≤ C(r)

n

with

C(r) = max

{(
1

1− E

) 1
2
(

2

e ln 2

)
,
E + 1

E

}
.

Let C1 = 2
e ln 2
≈ 0.39049508, so that C(r) is minimized when(

C2
1

1− E

) 1
2

=
E + 1

E

⇐⇒ C2
1

1− E
=

(E + 1)2

E2

⇐⇒ C2
1E = −E3 − E2 + E + 1

⇐⇒ E3 + (C2
1 + 1)E2 − E − 1 = 0.

Solving the cubic equation gives us a unique zero at E ≈ 0.9632906555864345. This mini-
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mizes C(r) at 2.03810827418. Unfortunately, this is slightly larger than the constant given
in Meshulam’s bound in Theorem 2.1.1. We will address this in subsequent remarks.

Remark 2. Minimizing C(r) in special cases

The very general result of Theorem 4.1.1 can be adapted for more specific cases by mim-
icking the proof of Theorem 4.1.1. For example, consider the cases where r = (r1, . . . , rs)
has only one subset {rj1 , . . . , rjl} ⊆ {r1, . . . , rs} with rj1 + · · ·+ rjl = 0, namely the subset
{rj1 , . . . , rjl} = {r1, . . . , rs}. In this case, we have T (A) = |A| where A ⊆ G is free of
non-trivial solutions to r. We use this information to alter the general result of Lemma 7,
where we devised an inequality from two bounds on T (A). We previously had an upper
bound of

T (A) ≤ B(r)d∗(n)|G|s−2

and a lower bound of

T (A) ≥ |G|s−1
(
d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2

)
.

We can now write

|A| ≥ |G|s−1
(
d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2

)
with

0 ≥ |G|s−1
(
d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2

)
− d∗(n)|G|

= d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2 − d∗(n)

|G|s−2
.

This leads to the following result:

Corollary 4.4.1. Let r = (r1, . . . , rs) ∈ Zs with r1+· · ·+rs = 0 and for any {rj1 , . . . , rjl} (
{r1, . . . , rs}, we have rj1 + · · ·+ rjl 6= 0. Let

C = max

{
F

1
(s−1)(s−2)

(
s− 1

e ln 2

)
,

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

}
,

where F is any real number with F > 1 and E = (1 − F−1)
1
s−2 (so that F = 1

1−Es−2 ). It
therefore holds that

dr(n) ≤ Cs−2

ns−2
.
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Proof. Case I: Suppose

d∗(n)s−1 ≤ F

|G|s−2
.

Since G has at least n components, we have

d∗(n) ≤
(

F

|G|s−2

) 1
s−1

≤
(

F

(2n)s−2

) 1
s−1

,

so that

d∗(n)ns−2 ≤
(

F

(2n)s−2

) 1
s−1

ns−2 =

(
F

1
(s−1)(s−2)n

2
n
s−1

)s−2

.

We will verify that

F
1

(s−1)(s−2)n

2
n
s−1

≤ C,

so that we may conclude

d∗(n) ≤
(
C

n

)s−2

.

For non-negative x ∈ R, define

f(x) =
x

2
x
s−1

.

We have that f(0) = 0 and limx→∞ f(x) = 0, so that f attains its maximum value on
[0,∞). Notice that

f ′(x) =
1

2
x
s−1

− x

s− 1

ln(2)

2
x
s−1

=
1

2
x
s−1

(
1− x ln(2)

s− 1

)
.

It therefore holds that f contains only one critical point, and f attains its maximum at
x = s−1

ln(2)
, where

f

(
s− 1

ln(2)

)
=

s− 1

e ln(2)
.

As such,

F
1

(s−1)(s−2)n

2
n
s−1

= F
1

(s−1)(s−2)f(n) ≤ F
1

(s−1)(s−2)

(
s− 1

e ln(2)

)
≤ C

finishing our first case.

Case II: Suppose

d∗(n)s−1 >
F

|G|s−2
.

47



By our modified version of Lemma 7, we have

d∗(n)s

F
+

(
1− 1

F

)
d∗(n)s = d∗(n)s ≤ d∗(n)

(
d(n− 1)− d∗(n)

)s−2
+
d∗(n)

|G|s−2
,

so that(
1− 1

F

)
d∗(n)s ≤ d∗(n)s ≤ d∗(n)

(
d(n− 1)− d∗(n)

)s−2
+
d∗(n)

|G|s−2
− d∗(n)s

F
.

Since
d∗(n)

|G|s−2
− d∗(n)s

F
< 0,

we have (
1− 1

F

)
d∗(n)s = Es−2d∗(n)s < d∗(n)

(
d(n− 1)− d∗(n)

)s−2
,

which is identical to inequality 4.1. We saw in the proof of Theorem 4.1.1 that inequality
4.1, combined with the assumption that

C ≥ (E + 1)
1
s−2

(E + 1)
1
s−2 − 1

,

results in

d∗(n) ≤
(
C

n

)s−2

.

This completes our proof.

We notice, in a similar fashion to our observations on Theorem 4.1.1, that for any E ∈ (0, 1)
we may write,

C = max

{(
1

1− Es−2

) 1
(s−1)(s−2)

(
s− 1

e ln 2

)
,

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

}
.

To minimize C, we again notice that

lim
E→1−

(
1

1− Es−2

) 1
(s−1)(s−2)

(
s− 1

e ln 2

)
= lim

E→0+

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

=∞

with the two functions of E ∈ (0, 1) increasing and decreasing, respectively. Therefore C
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is minimized when (
1

1− Es−2

) 1
(s−1)(s−2)

(
s− 1

e ln 2

)
=

(E + 1)
1
s−2

(E + 1)
1
s−2 − 1

.

In the case examined by Meshulam, where r = (1,−2, 1) and s = 3, the above equality
reduces to (

1

1− E

) 1
2 2

e ln(2)
=
E + 1

E
.

We solved this earlier in this section where E ≈ 0.9632906555864345 gives us C ≈
2.03810827418. It should be expected that Corollary 4.4.1 does not alter the case when
s = 3: If (r1, r2, r3) ∈ (Z \ {0})3, then r1 + r2 = 0 implies r3 = 0, contradicting our
requirements for r.

Remark 3. The case r = (1,−2, 1)

To obtain Meshulam’s result, we can use the same modified version of Lemma 7 which was
used in Corollary 4.4.1, which states

0 ≥ d∗(n)s − d∗(n)(d(n− 1)− d∗(n))s−2 − d∗(n)

|G|s−2
.

In the case where r = (1,−2, 1), we have s = 3 and G coprime to r if and only if |G| is
odd. Therefore

d∗(n)3 − d∗(n)

|G|
≤ d∗(n)

(
d(n− 1)− d∗(n)

)
,

so that

d∗(n)2 + d∗(n)− 1

|G|
≤ d(n− 1).

Since c(G) ≥ n and |G| is odd, we have

d∗(n)2 + d∗(n)− 1

3n
≤ d∗(n)2 + d∗(n)− 1

|G|
≤ d(n− 1).

We can assume inductively that d(n − 1) ≤ 2/(n − 1). Notice that our base cases n = 1
and n = 2 are trivial since d(n) ≤ 1 for each natural number n. Consider n ≥ 3, and notice
that

1 ≤ n− 1

n− 2
≤ 2,
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so that
n− 1

(n− 2)3n
≤ 2

3n
≤ 2

n2
.

We therefore have

n− 1

3n
≤ 2(n− 2)

n2
=

2n2 + 2n− 4

n2
− 2 =

(2n+ 4)(n− 1)

n2
− 2,

which implies that
2

n− 1
≤ 2n+ 4

n2
− 1

3n
=

(
2

n

)2

+
2

n
− 1

3n
.

Therefore

d∗(n)2 + d∗(n)− 1

3n
≤ d(n− 1) ≤ 2

n− 1
≤
(

2

n

)2

+
2

n
− 1

3n
.

For fixed n, the function x2 + x − 1
3n

is increasing. As such, d∗(n) ≤ 2
n
, which provides

another proof of Theorem 2.1.1.
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Chapter 5

Meshulam’s Theorem on Systems of
Linear Equations

5.1 Introduction

In the previous chapter, we saw a generalization of Meshulam’s Theorem from 3-APs to
linear equations, and outlined the proof of Liu and Spencer. In 2011, Liu, Spencer and
Zhao [7] found a bound for sets containing only trivial solutions to a system of linear
equations.

In their work, they consider matrices Y = (yi,j) ∈ ZR×S satisfying R, S ∈ N with
S ≥ 2R+ 1 and yi,1 + yi,2 + · · ·+ yi,S = 0 for each i ∈ {1, . . . , R}. Given such a matrix Y ,
we can distinguish a class of finite abelian groups G for which we can bound the size of a
subset A ⊆ G containing ’trivial’ solutions to the equation Y x = 0, where x ∈ AS.

Given a finite abelian group G, we can write

G ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkn

with ki ∈ {2, 3, . . .} for each i ∈ {1, . . . , n} and ki|ki+1 for i ∈ {1, . . . , n − 1}. We say G
has n constituents, and denote this by c(G) = n. We denote by |G| the cardinality of G.

Definition 5.1.1. Let R, S ∈ N such that S ≥ 2R + 1. Let Y = (yi,j) ∈ ZR×S be a
matrix satisfying yi,1 + yi,2 + · · · + yi,S = 0 for each i ∈ {1, . . . , R}. Let L ∈ N with
R ≤ L ≤ S −R− 1. Let G be a finite abelian group.

Then we say G is L-coprime to Y if there exists L columns of Y satisfying the following
conditions:

• Upon choosing any R of these L columns, we obtain an R × R matrix Z ∈ ZR×R
with gcd(det(Z), |G|) = 1, where det(Z) denotes the determinant of Z.
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• Upon removing any L − R + 1 of these L columns from Y , there exist within the
remaining columns two disjoint sets of R columns which form R×R matrices Z1, Z2 ∈
ZR×R with

gcd(det(Z1), |G|) = gcd(det(Z2), |G|) = 1.

When a matrix G is L-coprime to Y ∈ ZR×S, the indices of the L columns satisfying
the above conditions are denoted by lY (G;L), i.e. if the L columns of Y satisfying the
conditions of L-coprimality are


y1,j1

y2,j1
...

yR,j1

 ,


y1,j2

y2,j2
...

yR,j2

 , · · · ,


y1,jL

y2,jL
...

yR,jL


 ,

then lY (G;L) = {j1, j2, . . . , jL}.

Definition 5.1.2. Let R, S ∈ N, and Y ∈ ZR×S be defined as above. Let G be a finite
abelian group. We say that x = (x1, . . . , xs) ∈ GS is a solution to Y if Y x = 0, i.e.
x = (x1, . . . , xS) is a solution if

y1,1x1 + y1,2x2 + · · ·+ y1,SxS
y2,1x1 + y2,2x2 + · · ·+ y2,SxS

...
yR,1x1 + yR,2x2 + · · ·+ yR,SxS

 =


0
0
...
0

 .

We say that a solution x ∈ GS is trivial if there are i 6= j, i, j ∈ {1, . . . , S}, with xi = xj.
Otherwise, when each xi is distinct, we say that x is a non-trivial solution.

Definition 5.1.3. Let R, S ∈ N, L ∈ N, and Y ∈ ZR×S be defined as in Definition 5.1.1.
Let G be a finite abelian group which is L-coprime to Y , and let A ⊆ G. If every solution
x ∈ AS to the equation Y x = 0 is trivial, we say that A contains only trivial solutions to
Y , and write A ∈ TRIVY . Define

DY (G) = max
A⊆G

A∈TRIVY

|A|

and

dY (N ;L) = sup
G is L-coprime to Y

c(G)≥N

DY (G)

|G|
.

Theorem 5.1.1. Let R, S ∈ N such that S ≥ 2R + 1. Let Y = (yi,j) ∈ ZR×S be a
matrix satisfying yi,1 + yi,2 + · · · + yi,S = 0 for each i ∈ {1, . . . , R}. Let L ∈ N with

52



R ≤ L ≤ S −R− 1. Then there exists a constant C = C(Y ;L) > 1 such that

dY (N ;L) ≤
(
C

N

)L−R+1
R

for any N ∈ N.

5.2 Generalizations to several dimensions

Before proving Theorem 5.1.1, we will prove a variation of Proposition 1.2.3.

Proposition 5.2.1. Let G be a finite abelian group, and let Ĝ denote the character group

as defined in Chapter 1. Then ĜR ∼= ĜR.

Proof. Let γ ∈ ĜR so that for (g1, g2, . . . , gR), (h1, h2, . . . , hR) ∈ GR, we have

• γ(g1, g2, . . . , gR) ∈ C

• |γ(g1, g2, . . . , gR)| = 1

• γ(g1 + h1, g2 + h2, . . . , gR + hR) = γ(g1, g2, . . . , gR)γ(h1, h2, . . . , hR)

Define φ : ĜR 7→ ĜR by φ(γ) = (γ1, γ2, . . . , γR), where

γ1(g) = γ(g, 0, . . . , 0)

γ2(g) = γ(0, g, . . . , 0)
...

γR(g) = γ(0, 0, . . . , g)

for any g ∈ G. Notice that γ1 is indeed in the character group Ĝ since

|γ1(g)| = |γ(g, 0, . . . , 0)| = 1,

and
γ1(g + h) = γ(g + h, 0, . . . , 0) = γ(g, 0 . . . , 0)γ(h, 0, . . . , 0) = γ1(g)γ1(h).

Similarly, γi ∈ Ĝ for each i ∈ {1, . . . , R}, so that (γ1, γ2, . . . , γR) ∈ ĜR. For γ, ζ ∈ ĜR,

φ(γζ) = ((γζ)1, (γζ)2, . . . , (γζ)R)
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where
(γζ)1(g) = γζ(g, 0, . . . , 0) = γ(g, 0, . . . , 0)ζ(g, 0, . . . , 0) = γ1(g)ζ1(g).

Similarly (γζ)i = γiζi for each i ∈ {1, . . . , R}, so that

φ(γζ) = ((γζ)1, (γζ)2, . . . , (γζ)R) = (γ1ζ1, γ2ζ1, . . . , γRζR) = φ(γ)φ(ζ)

and φ is a group homomorphism. Notice that for γ ∈ ĜR,

γ(g1, g2, . . . , gR) = γ(g1, 0, . . . , 0)γ(0, g2, . . . , 0) · · · γ(0, 0, . . . , gR) = γ1(g1)γ2(g2) · · · γR(gR).

Suppose that φ(γ) = φ(ζ) so that (γ1, γ2, . . . , γR) = (ζ1, ζ2, . . . , ζR) for γ, ζ ∈ ĜR. We have
for (g1, g2, . . . , gR) ∈ GR

γ(g1, g2, . . . , gR) = γ1(g1)γ2(g2) · · · γR(gR)

= ζ1(g1)ζ2(g2) · · · ζR(gR)

= ζ(g1, g2, . . . , gR),

so that φ is injective. Let (γ1, γ2, . . . , γR) ∈ ĜR, and define γ fromGR to C by γ(g1, g2, . . . , gR) =

γ1(g1)γ(g2) · · · γR(gR). We have that γ is indeed in ĜR, since

|γ(g1, g2, . . . , gR)| = |γ1(g1)γ(g2) · · · γR(gR)| = 1

and

γ(g1 + h1, g2 + h2, . . . , gR + hR) = γ1(g1 + h1)γ2(g2 + h2) · · · γR(gR + hR)

= γ1(g1)γ1(h1) · · · γR(gR)γR(hR)

= γ(g1, g2, . . . , gR)γ(h1, h2, . . . , hR).

Let φ(γ) = (ζ1, ζ2, . . . , ζR) ∈ ĜR, with

ζ1(g) = γ(g, 0, . . . , 0) = γ1(g)γ2(0) · · · γR(0) = γ1(g),

so that ζ1 = γ1. Similarly, ζi = γi for each i ∈ {1, . . . , R}. As such, φ(γ) = (γ1, γ2, . . . , γR)

and φ is surjective. Therefore ĜR ∼= ĜR.

Proposition 5.2.2. Let G be a finite abelian group, let Ĝ denote the dual group of G, and
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let R ∈ N. For γ = (γ1, γ2, . . . , γR) ∈ ĜR and g = (g1, g2, . . . , gR) ∈ GR, we have

1

|G|R
∑
γ∈ĜR

γ1(g1)γ2(g2) · · · γR(gR) =

{
1, if (g1, g2, . . . , gR) = 0,
0, otherwise.

Proof. It holds that

1

|G|R
∑
γ∈ĜR

γ1(g1)γ2(g2) · · · γR(gR) =
R∏
i=1

 1

|G|
∑
γi∈Ĝ

γi(gi)

 .

By Proposition 1.2.3, for each i ∈ {1, . . . , R}

1

|G|
∑
γi∈Ĝ

γi(gi) =

{
1, if gi = 0,
0, otherwise.

Therefore

1

|G|R
∑
γ∈ĜR

γ1(g1)γ2(g2) · · · γR(gR) =

{
1, if (g1, g2, . . . , gR) = 0,
0, otherwise.

We let e denote the trivial character of Ĝ, ĜR and ĜR. The implied dual group will be
clear from context. We let Γ(G) = ĜR \ {e}.

Lemma 8. Let G be a finite abelian group, and let R ∈ N. Let Z ∈ ZR×R be a matrix
satisfying gcd(det(Z), |G|) = 1. Then for x ∈ GR, we have Zx = 0 if and only if x = 0.

Proof. We have
G ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ ZkM

with ki ∈ N and ki ≥ 2 for each i ∈ {1, . . . ,M} and ki|ki+1 for each i ∈ {1, . . . ,M − 1}.
As such, for x ∈ GR,

x =


x1

x2
...
xR

 =


x1,1 ⊕ x1,2 ⊕ · · · ⊕ x1,M

x2,1 ⊕ x2,2 ⊕ · · · ⊕ x2,M
...

xR,1 ⊕ xR,2 ⊕ · · · ⊕ xR,M


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so that for each i ∈ {1, . . . ,M}, 
x1,i

x2,i
...

xR,i

 ∈ ZRki .

We have that

Z


x1

x2
...
xR

 = 0

if and only if, for each i ∈ {1, . . . ,M},

Z


x1,i

x2,i
...

xR,i

 = 0 ∈ Zki .

Given i ∈ {1, . . . ,M}, ki divides |G|. Since gcd(det(Z), |G|) = 1, it also holds that
gcd(det(Z), ki) = 1 for each i ∈ {1, . . . ,M}. Therefore, for each i ∈ {1, . . . ,M}, Z is
invertible over Zki , and

Z


x1,i

x2,i
...

xR,i

 = 0 ∈ Zki

if and only if 
x1,i

x2,i
...

xR,i

 =


0
0
...
0


which holds if and only if x = 0 ∈ GR. Therefore, given x ∈ GR, Zx = 0 if and only if
x = 0.

5.3 Preliminary Lemmas

In this section we outline a series of results which contribute to the proof of Theorem 5.1.1.
For the entirety of this section we fix R, S, L ∈ N with S ≥ 2R+1 and R ≤ L ≤ S−R−1,
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and Y = (yi,j) ∈ ZR×S a matrix satisyfing yi,1 + yi,2 + · · ·+ yi,S = 0 for each i ∈ {1, . . . , R}.
Fix N ∈ N. We subsequently fix G, a finite abelian group which is L-coprime to Y with
c(G) ≥ N , and A ⊆ G so that A contains only trivial solutions to the matrix Y .

Lemma 9. Let T (A) = |{x ∈ AS : Y x = 0}|. Then

T (A) ≤
(
S

2

)
|A|S−R−1.

Proof. Suppose x ∈ AS with Y x = 0. Since A contains only trivial solutions to the matrix
Y , we have that x = (x1, x2, . . . , xS) where xi = xj for some i, j ∈ {1, . . . , S} with i 6= j.
There are

(
S
2

)
ways to fix two distinct elements i and j from {1, . . . , S}. Having chosen

i, j ∈ {1, . . . , S} with i 6= j, we consider∣∣{x ∈ AS : xi = xj and Y x = 0}
∣∣.

Suppose that {i, j} ∩ lY (G;L) = ∅, i.e. neither i nor j indexes one of the L columns
which satisfies G’s L-coprimality with Y . Without loss of generality, suppose that these L
columns are indexed by {1, 2, . . . , L}. Then the R × R matrix Z ∈ ZR×R formed by the
columns indexed by {1, . . . , R} has det(Z) coprime to |G|, by the definition of G being
L-coprime to Y . Since Y x = 0, we have

Z


x1

x2
...
xR

 =


y1,1 y1,2 · · · y1,R

y2,1 y2,2 · · · y2,R
...

...
. . .

...
yR,1 yR,2 · · · yR,R



x1

x2
...
xR



=


y1,1x1 + y1,2x2 + · · ·+ y1,RxR
y2,1x1 + y2,2x2 + · · ·+ y2,RxR

...
yR,1x1 + yR,2x2 + · · ·+ yR,RxR



= −


y1,R+1xR+1 + y1,R+2xR+2 + · · ·+ y1,SxS
y2,R+1xR+1 + y2,R+2xR+2 + · · ·+ y2,SxS

...
yR,R+1xR+1 + yR,R+2xR+2 + · · ·+ yR,SxS

 .

Within the set {xR+1, xR+2, . . . , xS} ⊆ A, there are |A| ways to pick xi, which fixes xj = xi.
There are |A| ways to pick the each of the remaining S−R− 2 elements, so that there are
|A|S−R−1 ways to determine the set {xR+1, xR+2, . . . , xS} ⊆ A. Since gcd(det(Z), |G|) = 1,
we have by Lemma 8 that Z is invertible over G. As such, once {xR+1, xR+2, . . . , xS} ⊆ A
is fixed, the above equations determine the elements {x1, x2, . . . , xR}, which may or may
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not be elements of A. Therefore the number of solutions of Y x = 0 with x ∈ AS and
xi = xj is bounded above by |A|S−R−1.

Suppose now that {i, j} ∩ lY (G;L) 6= ∅. Without loss of generality, assume that j ∈
lY (G;L). Since G is L-coprime to Y , we can remove any L − R + 1 of the L columns
indexed by lY (G;L) and there exist within the remaining columns two disjoint sets of R
columns forming matrices which have determinant coprime to |G|. By removing L−R+ 1
columns which include the jth column, there exist two disjoint R-subsets of {1, . . . , S}\{j},
called U and V , which index columns forming R × R matrices with determinant coprime
to |G|. We have that j is in neither U nor V , and that i is in at most one of U or V .
Without loss of generality assume that U ∩ {i, j} = ∅. Now our proof mirrors that of the
first case:

Without loss of generality assume that U = {1, . . . , R}. Within the set {xR+1, xR+2, . . . , xS} ⊆
A, there are |A| ways to pick xi, which fixes xj = xi. There are |A| ways to pick the each
of the remaining S − R − 2 elements, so that there are |A|S−R−1 ways to determine the
set {xR+1, xR+2, . . . , xS} ⊆ A. We have that the R × R matrix Z ∈ ZR×R formed by the
columns indexed by U = {1, . . . , R} has det(Z) coprime to |G|, and it is invertible over
G by Lemma 8. As such, once {xR+1, xR+2, . . . , xS} ⊆ A is fixed, the invertibility of Z
determines the elements {x1, x2, . . . , xR} ⊆ G, which may or may not be elements of A.
Therefore the number of solutions of Y x = 0 with x ∈ AS and xi = xj is bounded above
by |A|S−R−1.

Combining the two cases, we see that upon fixing distinct columns indexed by i and j, the
number of solutions x ∈ AS to Y x = 0 is bounded above by |A|S−R−1. Since there are

(
S
2

)
ways to fix i and j, we have

T (A) ≤
(
S

2

)
|A|S−R−1

as desired.

Lemma 10. We have that

sup
γ∈Ĝ
γ 6=e

∣∣∣∣∣∑
x∈A

γ(x)

∣∣∣∣∣ ≤ d(n− 1)|G| − |A|.

Proof. This proof is similar in spirit to the proof of Lemma 6. Recall δ : Ĝ → {0, 1} was
defined by

δ(γ) =

{
1, if γ = e,
0, otherwise,
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and that χA : G→ {0, 1} was defined by

χA(g) =

{
1, if g ∈ A,
0, otherwise.

We first show that

sup
γ∈Ĝ
||G|d(N − 1)δ(γ)− χ̂−A(γ)| ≤ d(N − 1)|G| − |A|.

Let γ ∈ Ĝ and let W = ker(γ). Since γ(G) is a cyclic group and γ(G) ∼= G/W , we have
that c(W ) ≥ c(G)− 1 ≥ N − 1. Note that

|W |
∣∣|G|d(N − 1)δ(γ)− χ̂−A(γ)

∣∣ =

∣∣∣∣∣∑
y∈W

∑
x∈G

d(N − 1)γ(−x)−
∑
y∈W

∑
x∈G

χ−A(x)γ(−x)

∣∣∣∣∣ .
For any y ∈ W = ker(γ), we have γ(−x) = γ(−x− y) and∑

x∈G

χ−A(x)γ(−x) =
∑
x∈G

χ−A(x)γ(−x− y) =
∑
x∈G

χ−A(x− y)γ(−x).

Therefore

|W |
∣∣|G|d(N − 1)δ(γ)− χ̂−A(γ)

∣∣ =

∣∣∣∣∣∑
x∈G

(∑
y∈W

d(N − 1)−
∑
y∈W

χ−A(x− y)

)
γ(−x)

∣∣∣∣∣
≤

∑
x∈G

∣∣∣∣∣∑
y∈W

d(N − 1)−
∑
y∈W

χ−A(x− y)

∣∣∣∣∣ .
Since

χ−A(x− y) =

{
1, if x− y ∈ −A,
0, otherwise,

we have that ∑
y∈W

χ−A(x− y) = |(x−W ) ∩ −A| = |W ∩ (x+ A)|.

Suppose that w = (w1, . . . , ws) = (x+a1, x+a2, . . . , x+as) ∈ (W ∩(x+A))S with Y w = 0.
Let x = (x, x, . . . , x) ∈ Gs and a = (a1, . . . , as) ∈ As, so that 0 = Y w = Y x + Y a. Since
the elements of each row of Y sum to 0, we have Y x = 0 which implies Y a = 0. We chose
A so that if Y a = 0 there is some i, j ∈ {1, . . . , s} with i 6= j and ai = aj, so that wi = wj.
Therefore there is no vector w = (w1, . . . , ws) ∈ W ∩ (x+A) of distinct elements satisfying
Y w = 0. As such,
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d(N − 1) ≥ |W ∩ (x+ A)|
|W |

and

|W |
∣∣|G|d(N − 1)δ(γ)− χ̂−A(γ)

∣∣ ≤ ∑
x∈G

∣∣∣∣∣∑
y∈W

d(N − 1)−
∑
y∈W

χ−A(x− y)

∣∣∣∣∣ .
=

∑
x∈G

||W |d(N − 1)− |W ∩ (x+ A)||

=
∑
x∈G

|W |d(N − 1)− |W ∩ (x+ A)|.

To compute
∑

x∈G |W ∩ (x+A)|, we first arbitrarily choose a ∈ A. There are |W | different
x ∈ G with x+ a ∈ W , so that∑

x∈G

|W ∩ (x+ A)| = |A||W |.

It holds that ∑
x∈G

|W |d(N − 1) = |G||W |d(N − 1),

which results in

|W |
∣∣|G|d(N − 1)δ(γ)− χ̂−A(γ)

∣∣ ≤ |G||W |d(N − 1)− |A||W |.

Therefore, for each γ ∈ Ĝ,∣∣|G|d(N − 1)δ(γ)− χ̂−A(γ)
∣∣ ≤ |G|d(N − 1)− |A|,

so that
sup
γ∈Ĝ
||G|d(N − 1)δ(γ)− χ̂−A(γ)| ≤ d(N − 1)|G| − |A|.

When γ 6= e, we have δ(γ) = 0, so that

sup
γ∈Ĝ
γ 6=e

|χ̂−A(γ)| ≤ |G|d(N − 1)− |A|.

We have
χ̂−A(γ) =

∑
x∈G

χ−A(x)γ(−x) =
∑
a∈A

γ(a),
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so that

sup
γ∈Ĝ
γ 6=e

∣∣∣∣∣∑
a∈A

γ(a)

∣∣∣∣∣ = sup
γ∈Ĝ
γ 6=e

|χ̂−A(γ)| ≤ |G|d(N − 1)− |A|.

Lemma 11. Define

QY (G;L) =
{
B ⊆ lY (G;L) : |B| = L−R + 1

}
.

Given B ∈ QY (G;L), define

ΓB,Y (G;L) =
{

(γ1, γ2, . . . , γR) ∈ ĜR : γ
y1,j
1 γ

y2,j
2 · · · γyR,jR 6= e for all j ∈ B

}
.

Then
ĜR \ {e} = Γ(G) ⊆

⋃
B∈QY (G;L)

ΓB,Y (G;L).

Proof. Fix (γ1, γ2, . . . , γR) ∈ Γ(G). It holds that amongst any R columns chosen from the
L columns satisfying G’s L-coprimality to Y , there exists some column indexed by k so
that

γ
y1,k
1 γ

y2,k
2 · · · γyR,kR 6= e.

To verify this we assume otherwise: Choose R columns from the L columns satisfying the
L-coprimality of G, and let these R columns be indexed by {l1, l2, . . . , lR} ⊆ lY (G;L). Let
Z ∈ ZR be the matrix formed by these R columns, and note that since G is L-coprime to
Y , we have Z = (yi,lj)1≤i,lj≤R satisfies gcd(det(Z), |G|) = 1. Assume that

γ
y1,lj
1 γ

y2,lj
2 · · · γ

yR,lj
R = e

for each j ∈ {1, . . . , R}. We saw in Chapter 1 that G ∼= Ĝ. Let ρ : Ĝ → G be an
isomorphism, so that for each j ∈ {1, . . . , R},

0 = ρ(e) = ρ(γ
y1,lj
1 γ

y2,lj
2 · · · γ

yR,lj
R ) = y1,ljρ(γ1) + y2,ljρ(γ2) + · · ·+ yR,ljρ(γR).
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As such, 
0
0
...
0

 =


y1,l1ρ(γ1) + y2,l1ρ(γ2) + · · ·+ yR,l1ρ(γR)
y1,l2ρ(γ1) + y2,l2ρ(γ2) + · · ·+ yR,l2ρ(γR)

...
y1,lRρ(γ1) + y2,lRρ(γ2) + · · ·+ yR,lRρ(γR)



=
(
ρ(γ1), ρ(γ2), . . . , ρ(γR)

)

y1,l1 y1,l2 · · · y1,lR

y2,l1 y2,l2 · · · y2,lR
...

...
. . .

...
yR,l1 yR,l2 · · · yR,lR


=

(
ρ(γ1), ρ(γ2), . . . , ρ(γR)

)
Z.

By Lemma 8, we have ρ(γ1) = ρ(γ2) = · · · = ρ(γR) = 0. Since ρ is an isomorphism

from Ĝ to G, we have that (γ1, γ2, . . . , γR) = e ∈ ĜR. This contradicts the fact that
(γ1, γ2, . . . , γR) ∈ Γ(G). Therefore, there exists some k ∈ {l1, . . . , lR} with

γ
y1,k
1 γ

y2,k
2 · · · γyR,kR 6= e.

Iteratively, choose R columns, indexed by {l1, . . . , lR} ⊆ lY (G;L). There is some k1 ∈
{l1, . . . , lR} with

γ
y1,k1
1 γ

y2,k1
2 · · · γyR,k1R 6= e.

If possible, choose R columns indexed by {l1, . . . , lR} ⊆ lY (G;L) \ {k1}. There is some
k2 ∈ {l1, . . . , lR} with

γ
y1,k2
1 γ

y2,k2
2 · · · γyR,k2R 6= e.

At the ith step, choose R columns indexed by {l1, . . . , lR} ⊆ lY (G;L) \ {k1, . . . , ki−1} if
possible, and choose ki ∈ {l1, . . . , lR} with

γ
y1,ki
1 γ

y2,ki
2 · · · γyR,kiR 6= e.

After L−R + 1 steps, it is no longer possible to choose R columns since∣∣lY (G;L) \ {k1, . . . , kL−R+1}
∣∣ = R− 1.

Let B = {k1, . . . , kL−R+1}. Then for all j ∈ B,

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR 6= e
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so that (γ1, γ2, . . . , γR) ∈ ΓB,Y (G;L). Since (γ1, . . . , γR) ∈ Γ(G) was chosen arbitrarily,

Γ(G) ⊆
⋃

B∈QY (G;L)

ΓB,Y (G;L)

as desired.

Definition 5.3.1. LetG be a finite abelian group and letA ⊆ G. For γ = (γ1, γ2, . . . , γR) ∈
ĜR, define

Fj(γ;A) =
∑
x∈A

γ1(y1,jx)γ2(y2,jx) · · · γR(yR,jx).

When it is clear from context, we write Fj(γ) = Fj(γ;A). By properties of the dual group,
we can equivalently characterize Fj(γ) in the following ways:

Fj(γ) =
∑
x∈A

γ1(y1,jx)γ2(y2,jx) · · · γR(yR,jx)

=
∑
x∈A

γ
y1,j
1 (x)γ

y2,j
2 (x) · · · γyR,jR (x)

=
∑
x∈A

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR (x).

Lemma 12. It holds that

1

|G|R
∑

γ∈Γ(G)

∣∣F1F2 · · ·FS(γ)
∣∣ ≤ ( L

L−R + 1

)(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1.

Proof. As defined in Lemma 11, let

QY (G;L) =
{
B ⊆ lY (G;L) : |B| = L−R + 1

}
,

and for B ∈ QY (G;L), let

ΓB,Y (G;L) =
{

(γ1, γ2, . . . , γR) ∈ ĜR : γ
y1,j
1 γ

y2,j
2 · · · γyR,jR 6= e for all j ∈ B

}
.
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Given B ∈ Q, we have

1

|G|R
∑
γ∈ΓB

∣∣F1F2 · · ·FS(γ)
∣∣ =

1

|G|R
∑
γ∈ΓB

(∏
j∈B

|Fj(γ)|

)∏
j /∈B

|Fj(γ)|


≤ 1

|G|R

(
sup
γ∈ΓB

∏
j∈B

|Fj(γ)|

) ∑
γ∈ΓB

∏
j /∈B

|Fj(γ)|

≤ 1

|G|R

(∏
j∈B

(
sup
γ∈ΓB

|Fj(γ)|
)) ∑

γ∈ΓB

∏
j /∈B

|Fj(γ)|.

Recalling the definition of ΓB, we notice that for j ∈ B and γ ∈ ΓB,

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR 6= e

so that
γ
y1,j
1 γ

y2,j
2 · · · γyR,jR ∈ Γ(G).

Therefore, by Lemma 10

sup
γ∈ΓB

|Fj(γ)| = sup
γ∈ΓB

∣∣∣∣∣∑
x∈A

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR (x)

∣∣∣∣∣
≤ sup

γ∈Γ(G)

∣∣∣∣∣∑
x∈A

γ(x)

∣∣∣∣∣
≤ d(N − 1)|G| − |A|.

This implies that

1

|G|R
∑
γ∈ΓB

∣∣F1F2 · · ·FS(γ)
∣∣ ≤ 1

|G|R

(∏
j∈B

d(N − 1)|G| − |A|

) ∑
γ∈ΓB

∏
j /∈B

|Fj(γ)|

=
1

|G|R
(d(N − 1)|G| − |A|)|B|

∑
γ∈ΓB

∏
j /∈B

|Fj(γ)|

= (d(N − 1)|G| − |A|)L−R+1 1

|G|R
∑
γ∈ΓB

∏
j /∈B

|Fj(γ)|.

We have that B ⊆ lY (G;L) with |B| = L−R+1, so that we can apply the second condition
of G being L-coprime to Y : After removing the columns indexed by B we can find two
disjoint subsets U, V ⊆ {1, . . . , S} \B so that
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1. |U | = |V | = R,

2. the matrix formed by the columns indexed by U has determinant coprime to |G|,

3. the matrix formed by the columns indexed by V has determinant coprime to |G|.

Let U = {j1, j2, . . . , jR}, and let Z ∈ ZR×R be the matrix formed by the columns indexed
by U , i.e.

Z =


y1,j1 y1,j2 · · · y1,jR

y2,j1 y2,j2 · · · y2,jR
...

...
. . .

...
yR,j1 yR,j2 · · · yR,jR

 ,

gcd(det(Z), |G|) = 1, and Z is invertible over G by Lemma 8. Notice that

1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
2

=
1

|G|R
∑
γ∈ĜR

∏
j∈U

|Fj(γ)|2

=
1

|G|R
∑
γ∈ĜR

∏
j∈U

〈Fj(γ), Fj(γ)〉

=
1

|G|R
∑
γ∈ĜR

∏
j∈U

〈∑
a∈A

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR (a),

∑
b∈A

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR (b)

〉
.

Utilizing properties of the dual group and by indexing U = {j1, j2, . . . , jR}, we have

1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
2

=
1

|G|R
∑
γ∈ĜR

R∏
i=1

∑
a,b∈A

〈
γ
y1,ji
1 γ

y2,ji
2 · · · γyR,jiR (a), γ

y1,ji
1 γ

y2,ji
2 · · · γyR,jiR (b)

〉
=

1

|G|R
∑
γ∈ĜR

R∏
i=1

(∑
a,b∈A

γ
y1,ji
1 γ

y2,ji
2 · · · γyR,jiR (a− b)

)

=
1

|G|R
∑
γ∈ĜR

R∏
i=1

(∑
a,b∈A

γ1(y1,jia− y1,jib) · · · γR(yR,jia− yR,jib)

)
.
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For a = (a1, . . . , aR), b = (b1, . . . , bR) ∈ AR, we may instead write

a =


aj1
aj2
...
ajR

 and b =


bj1
bj2
...
bjR

 .

It holds that

R∏
i=1

(∑
a,b∈A

γ1(y1,jia− y1,jib) · · · γR(yR,jia− yR,jib)

)

=
∑

a,b∈AR

γ1

(
R∑
i=1

y1,ji(aji − bji)

)
· · · γR

(
R∑
i=1

yR,ji(aji − bji)

)
.

Therefore

1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
2

=
1

|G|R
∑
γ∈ĜR

∑
a,b∈AR

γ1

(
R∑
i=1

y1,ji(aji − bji)

)
· · · γR

(
R∑
i=1

yR,ji(aji − bji)

)

=
∑

a,b∈AR

1

|G|R
∑
γ∈ĜR

γ1

(
R∑
i=1

y1,ji(aji − bji)

)
· · · γR

(
R∑
i=1

yR,ji(aji − bji)

)
.

By Proposition 5.2.2, the inner sum is only non-zero when

R∑
i=1

y1,ji(aji − bji) = · · · =
R∑
i=1

yR,ji(aji − bji) = 0.

In this case, the inner sum is equal to |G|R. We therefore have

1

|G|R
∑
γ∈ĜR

γ1

(
R∑
i=1

y1,ji(aji − bji)

)
· · · γR

(
R∑
i=1

yR,ji(aji − bji)

)
= 1
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if and only if
y1,j1aj1 + y1,j2aj2 + · · · y1,jRajR
y2,j1aj1 + y2,j2aj2 + · · · y2,jRajR

...
yR,j1aj1 + yR,j2aj2 + · · · yR,jRajR

 =


y1,j1bj1 + y1,j2bj2 + · · · y1,jRbjR
y2,j1bj1 + y2,j2bj2 + · · · y2,jRbjR

...
yR,j1bj1 + yR,j2bj2 + · · · yR,jRbjR

 ,

which is equivalent to
y1,j1 y1,j2 · · · y1,jR

y2,j1 y2,j2 · · · y2,jR
...

...
. . .

...
yR,j1 yR,j2 · · · yR,jR



aj1
aj2
...
ajR

 =


y1,j1 y1,j2 · · · y1,jR

y2,j1 y2,j2 · · · y2,jR
...

...
. . .

...
yR,j1 yR,j2 · · · yR,jR



bj1
bj2
...
bjR

 .

The preceding equality can be expressed as Za = Zb. Since Z is invertible over G, this
equality holds if and only if a = b, so that having chosen a ∈ AR, it determines b = a. As
such, we can write

1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
2

=
∑
a∈AR

1 = |A|R.

Similarly,

1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈V

Fj(γ)

∣∣∣∣∣
2

=
∑
a∈AR

1 = |A|R.

Notice that for γ ∈ ĜR and j ∈ {1, . . . , S},

|Fj(γ)| =

∣∣∣∣∣∑
x∈A

γ
y1,j
1 γ

y2,j
2 · · · γyR,jR (x)

∣∣∣∣∣ ≤∑
x∈A

∣∣γy1,j1 γ
y2,j
2 · · · γyR,jR (x)

∣∣ =
∑
x∈A

1 = |A|.

Therefore

1

|G|R
∑
γ∈ĜR

∏
j /∈B

|Fj(γ)| =
1

|G|R
∑
γ∈ĜR

∏
j∈U

|Fj(γ)|
∏
j∈V

|Fj(γ)|
∏
j /∈B

j /∈U∪V

|Fj(γ)|

≤ 1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
∣∣∣∣∣∏
j∈V

Fj(γ)

∣∣∣∣∣ |A||{1,...,S}\(B∪U∪V )|

= |A|S−L−1−R 1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
∣∣∣∣∣∏
j∈V

Fj(γ)

∣∣∣∣∣ .
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Remark that B,U, V are all disjoint, with |B| = L − R + 1 and |U | = |V | = R, so that
|{1, . . . , S}\(B∪U∪V )| = S−L−1−R. By Cauchy’s inequality and previous calculations,
it follow that

1

|G|R
∑
γ∈ĜR

∏
j /∈B

|Fj(γ)| ≤ |A|S−L−1−R

 1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈U

Fj(γ)

∣∣∣∣∣
2
 1

2
 1

|G|R
∑
γ∈ĜR

∣∣∣∣∣∏
j∈V

Fj(γ)

∣∣∣∣∣
2
 1

2

= |A|S−L−1−R|A|
R
2 |A|

R
2

= |A|S−L−1.

Continuing with previous estimates, we see that

1

|G|R
∑
γ∈ΓB

∣∣F1F2 · · ·FS(γ)
∣∣ ≤ (d(N − 1)|G| − |A|)L−R+1 1

|G|R
∑
γ∈ΓB

∏
j /∈B

|Fj(γ)|

≤ (d(N − 1)|G| − |A|)L−R+1 1

|G|R
∑
γ∈ĜR

∏
j /∈B

|Fj(γ)|

≤ (d(N − 1)|G| − |A|)L−R+1 |A|S−L−1.

We also have that∑
γ∈ΓB

∣∣F1F2 · · ·FS(γ)
∣∣ ≤ |G|R (d(N − 1)|G| − |A|)L−R+1 |A|S−L−1.

By Lemma 11, it holds that

Γ(G) ⊆
⋃

B∈QY (G;L)

ΓB,Y (G;L),

so that∑
γ∈Γ(G)

∣∣F1F2 · · ·FS(γ)
∣∣ ≤ ∑

B∈QY (G;L)

∑
γ∈ΓB

∣∣F1F2 · · ·FS(γ)
∣∣

≤ |QY (G;L)||G|R (d(N − 1)|G| − |A|)L−R+1 |A|S−L−1.

Since
QY (G;L) =

{
B ⊆ lY (G;L) : |B| = L−R + 1

}
,

we have that

|QY (G;L)| =
(

L

L−R + 1

)
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and
1

|G|R
∑

γ∈Γ(G)

≤
(

L

L−R + 1

)
(d(N − 1)|G| − |A|)L−R+1 |A|S−L−1,

as desired.

Lemma 13. It holds that

|A|S

|G|R
−
(

L

L−R + 1

)(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1 ≤
(
S

2

)
|A|S−R−1.

Proof. Recall that T (A) = |{x ∈ AS : Y x = 0}|, and notice that

∑
γ∈ĜR

F1F2 · · ·FS(γ) =
∑
γ∈ĜR

(
S∏
i=1

Fi(γ)

)

=
∑
γ∈ĜR

(
S∏
i=1

(∑
x∈A

γ1(y1,ix)γ2(y2,ix) · · · γR(yR,ix)

))

=
∑
γ∈ĜR

(∑
x1∈A

γ1(y1,1x1) · · · γR(yR,1x1)

)
· · ·

(∑
xR∈A

γ1(y1,SxS) · · · γR(yR,SxS)

)

=
∑
γ∈ĜR

∑
(x1,...,xS)∈AS

(
S∏
i=1

γ1(y1,ixi)

)
· · ·

(
S∏
i=1

γR(y1,ixi)

)

=
∑

(x1,...,xS)∈AS

∑
γ∈ĜR

γ1

(
S∑
i=1

y1,ixi

)
· · · γR

(
S∑
i=1

yR,ixi

)
.

By Proposition 5.2.2, we have

∑
γ∈ĜR

γ1

(
S∑
i=1

y1,ixi

)
· · · γR

(
S∑
i=1

yR,ixi

)
=

{
|G|R, if

(∑S
i=1 y1,ixi

)
= · · · =

(∑S
i=1 yR,ixi

)
= 0,

0, otherwise.

Therefore

∑
γ∈ĜR

F1F2 · · ·FS(γ) = |G|R
∣∣∣∣∣
{

(x1, . . . , xS) ∈ AS :
S∑
i=1

yj,ixi = 0 for each j ∈ {1, . . . , R}

}∣∣∣∣∣
= |G|R

∣∣{x ∈ AS : Y x = 0
}∣∣

= |G|RT (A).

69



Note that for each i ∈ {1, . . . , S},

Fi(e) =
∑
x∈A

e(y1,ix)e(y2,ix) · · · e(yR,ix) =
∑
x∈A

1 = |A|.

We can therefore deduce that

T (A) =
1

|G|R
F1(e)F2(e) · · ·FS(e) +

1

|G|R
∑

γ∈Γ(G)

F1F2 · · ·FS(γ)

=
|A|S

|G|R
+

1

|G|R
∑

γ∈Γ(G)

F1F2 · · ·FS(γ).

By Lemma 12 we can conclude that

T (A) ≥ |A|S

|G|R
− 1

|G|R
∑

γ∈Γ(G)

|F1F2 · · ·FS(γ)|

≥ |A|S

|G|R
−
(

L

L−R + 1

)(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1.

By Lemma 9,

|A|S

|G|R
−
(

L

L−R + 1

)(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1 ≤
(
S

2

)
|A|S−R−1

therefore proving the lemma.

5.4 Proof of Theorem 5.1.1

Let R, S ∈ N with S ≥ 2R + 1. Let Y = (yi,j) ∈ ZR×S be a matrix satisfying yi,1 + yi,2 +
· · ·+ yi,S = 0 for each i ∈ {1, . . . , R}. Let L ∈ N with R ≤ L ≤ S−R− 1. Let N ∈ N. Let
G be a finite abelian group so that c(G) ≥ N and G is L-coprime to Y . Let A ⊆ G contain
only trivial solutions to Y . Let d∗(G) = |A|/|G|.To ease our calculations, we introduce the

70



following notation:

1) C1 =

(
S

2

)
,

2) C2 =

(
L

L−R + 1

)
,

3) C3 = (2C2)
−1

L−R+1 =

(
2

(
L

L−R + 1

)) −1
L−R+1

,

4) C4 = (C3 + 1)
R

L−R+1 =

((
2

(
L

L−R + 1

)) −1
L−R+1

+ 1

) R
L−R+1

.

Let

C = max

{
(R + 1)(L−R + 1)

eR ln(2)
(2C1)

R
(R+1)(L−R+1) ,

C4

C4 − 1

}
.

We will show by induction that

d∗(G) ≤
(
C

N

)L−R+1
R

,

and since G and A were chosen arbitrarily, we can conclude that

dY (N ;L) = sup
{
d∗(G)|G is L-coprime to Y, c(G) ≥ N

}
≤
(
C

N

)L−R+1
R

,

thus proving Theorem 5.1.1.

Notice that when N ≤ C, we always have that

d∗(G) =
|A|
|G|
≤ 1 ≤

(
C

N

)L−R+1
R

so the theorem holds trivially. Notice also that C ≥ C4

C4−1
> 1, so this addresses the base

case. We now assume that N > C and consider two cases:

Case I: Suppose that

d∗(G)− C1d
∗(G)S−R−1

|G|
≤ d∗(G)S

2
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so that
d∗(G)S

2
≤ C1d

∗(G)S−R−1

|G|
.

This simplifies to

d∗(G)R+1 ≤ 2C1

|G|
so that

d∗(G) ≤
(

2C1

|G|

) 1
R+1

.

Since c(G) ≥ N , it holds that |G| ≥ 2N , so that

d∗(G) ≤
(

2C1

|G|

) 1
R+1

≤
(

2C1

2N

) 1
R+1

= (2C1)
1

R+1 2
−N
R+1 .

To obtain the result of Theorem 5.1.1, we will verify that(
2C1

2N

) 1
R+1

≤
(
C

N

)L−R+1
R

.

Define a function f : [0,∞)→ R with

f(x) = 2
−x
R+1x

L−R+1
R .

Notice that f is continuous, f is non-negative on [0,∞), f(0) = 0, and that the limit of f
as x approaches infinity is 0. Therefore, f attains its maximum on [0,∞). We have that

f ′(x) = 2
−x
R+1

(
L−R + 1

R

)
x
L−2R+1

R − ln(2)

R + 1
2

−x
R+1x

L−R+1
R .

Setting f ′(x) = 0 gives us the unique critical point of f at

x =
(L−R + 1)(R + 1)

R ln(2)
,

so that for x ∈ [0,∞),

f(x) ≤ f

(
(L−R + 1)(R + 1)

R ln(2)

)
=

(
(L−R + 1)(R + 1)

eR ln(2)

)L−R+1
R

.
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Therefore (
2C1

2N

) 1
R+1

N
L−R+1

R = (2C1)
1

R+1f(N)

≤ (2C1)
1

R+1

(
(L−R + 1)(R + 1)

eR ln(2)

)L−R+1
R

≤ C
L−R+1

R .

As such, we have

d∗(G) ≤
(

2C1

2N

) 1
R+1

≤
(
C

N

)L−R+1
R

as desired.

Case II: Suppose that

d∗(G)S − C1d
∗(G)S−R−1

|G|
>
d∗(G)S

2
.

Noticing that |A| = d∗(G)|G| and incorporating the definitions of C1and C2, the conclusion
of Lemma 13 can be expressed as

d∗(G)S|G|S−R−C1d
∗(G)S−R−1|G|S−R−1−C2

(
d(N−1)|G|−d∗(G)|G|

)L−R+1
d∗(G)S−L−1|G|S−L−1 ≤ 0,

which reduces to

d∗(G)S − C1d
∗(G)S−R−1

|G|
− C2

(
d(N − 1)− d∗(G)

)L−R+1
d∗(G)S−L−1 ≤ 0.

Our assumption for the second case means that

d∗(G)S

2
≤ C2

(
d(N − 1)− d∗(G)

)L−R+1
d∗(G)S−L−1,

which simplifies to

d∗(G)L+1 ≤ 2C2

(
d(N − 1)− d∗(G)

)L−R+1
.

We get that

d∗(G)
L+1

L−R+1 ≤ (2C2)
1

L−R+1

(
d(N − 1)− d∗(G)

)
so that

C3d
∗(G)

L+1
L−R+1 + d∗(G) ≤ d(N − 1).

73



For x ∈ (1,∞), define

g(x) =
x
L+1
R

(x− 1)
L−R+1

R

− x.

We will see that g(x) is a decreasing function, and to ease our computations we let s = L+1
R

.
As such, s > 1 because L ≥ R. Write

g(x) = xs(x− 1)s−1 − x.

Therefore
g′(x) = sxs−1(x− 1)1−s + xs(1− s)(x− 1)−s − 1.

We have

g′′(x) = s(s− 1)xs−2(x− 1)1−s + sxs−1(1− s)(x− 1)−s

+(1− s)sxs−1(x− 1)−s + (1− s)xs(−s)(x− 1)−s−1

= s(s− 1)
xs−2

(x− 1)s−1

(
1− 2

(
x

x− 1

)
+

(
x

x− 1

)2
)

= s(s− 1)
xs−2

(x− 1)s−1

(
1− x

x− 1

)2

.

Since x > 1 and s > 1 we conclude that g is concave up. By L’Hopital’s rule, we see that

lim
x→∞

g(x) = lim
x→∞

x

((
x

x− 1

)s−1

− 1

)

= lim
x→∞

(
x
x−1

)s−1 − 1
1
x

=
(s− 1)

(
x
x−1

)s−2 −1
(x−1)2

−1
x2

= lim
x→∞

(s− 1)

(
x

x− 1

)s
= s− 1.

We have shown that g(x) is a concave up function with a finite limit point, so we may
conclude that g(x) is decreasing on (1,∞).
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Since we are only addressing the cases when N > C, it holds that

N
L+1
R

(N − 1)
L−R+1

R

−N ≤ C
L+1
R

(C − 1)
L−R+1

R

− C.

Notice that

C4

C4 − 1
≤ C

⇐⇒ C

C − 1
≤ C4 = (C3 + 1)

R
L−R+1

⇐⇒
(

C

C − 1

)L−R+1
R

− 1 ≤ C3

⇐⇒ C

(
C

C − 1

)L−R+1
R

− C ≤ CC3

⇐⇒ C
L+1
R

(C − 1)
L−R+1

R

− C ≤ CC3.

We therefore have

N
L+1
R

(N − 1)
L−R+1

R

−N ≤ C3C

⇐⇒ N
L+1
R

(N − 1)
L−R+1

R

C
L−R+1

R −NC
L−R+1

R ≤ C3C
L+1
R

⇐⇒ N
L+1
R

(N − 1)
L−R+1

R

C
L−R+1

R ≤ C3C
L+1
R +NC

L−R+1
R

⇐⇒
(

C

N − 1

)L−R+1
R

≤ C3

(
C
N

)L+1
R +

(
C
N

)L−R+1
R .
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By the induction hypothesis, we see that

C3d
∗(G)

L+1
L−R+1 + d∗(G) < d(N − 1)

≤
(

C

N − 1

)L−R+1
R

≤ C3

(
C

N

)L+1
R

+

(
C

N

)L−R+1
R

= C3

((
C

N

)L−R+1
R

) L+1
L−R+1

+

(
C

N

)L−R+1
R

.

If we let f(x) = C3x
L+1

L−R+1 + x, it is clear that f(x) is increasing on [0,∞). Therefore
we can conclude that

d∗(G) ≤
(
C

N

)L−R+1
R

which finishes Case II and therefore the proof of Theorem 5.1.1.
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