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Abstract

Finding correctable encoding that protects against a quantum process is in

general a difficult task. Two main obstacles are that an exponential number of

experiments are needed to gain complete information about the quantum pro-

cess, and known algorithmic methods for finding correctable encodings involve

operations on exponentially large matrices.

In this thesis we discuss how useful partial information of a quantum channel

can be systematically extracted by averaging the channel under the action of a set

of unitaries in a process known as twirling. We show that in some cases it is pos-

sible to find correctable encodings for the channel using the partial information

obtained via twirling.

We investigate the particular case of twirling over the set of Pauli operators

and qubit permutations, and show that the resulting quantum operation can be

characterized experimentally in a scalable manner. A post-processing scheme for

finding unitarily correctable codes for these twirled channels is presented which

does not involve exponentially large matrices. A test for non-Markovian noise

using such a twirling process is also discussed.
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Chapter 1

Introduction

Information in the physical world is represented by a physical system. Therefore

transformations of the represented information must obey the dynamical laws

that the system is governed by. Classical information theory is built upon the

principles of classical physics and only recently has information been described

using the laws of quantum mechanics. This new perspective on information is

called quantum information theory, and is a more general theory of information

than its classical counterpart. Quantum information theory allows for results that

are possibly unattainable using a classical theory, as depicted by the efficient

factorization of natural numbers into primes using Shor’s quantum algorithm

[40]. Other examples of computational speed-up using a quantum algorithm are

given by Grover’s search algorithm [17] and simulating the evolution of physical

systems [29].

The advantages of using quantum theory for information processing can only

be realized if physical implementations of a quantum information processor are

possible. Such implementations have been rudimentary from the perspective

of the goal of at least about 1000 qubits, and there is debate as to whether

large scale quantum information processors will be a reality in the future. Two

reasons for the difficulty of a large scale implementation is that quantum systems

are extremely sensitive to environmental noise effects and trying to characterize

the noise is exponentially hard in time.

Recent algorithms have been devised to combat noise effects once the noise

model is known, however these algorithms also suffer from the drawback of being

exponential in time. These methods are grouped under the title of quantum error

correction, and involve finding correctable codes for the channel. The exponential

nature of these algorithms is a result of requiring operations on exponentially
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large matrices. Thus, the exponential nature of both determining the noise model

and finding methods of protecting quantum information from the noise is a central

problem in the implementation of a quantum information processor.

This thesis will discuss the concept of twirling a quantum channel, which is an

efficient method of partially characterizing a given channel. It will be shown that

this partial characterization can lead to useful information about the channel in

the form of both correctable codes and Markovicity of the channel. An algorithm

for finding these correctable codes is presented that does not rely on operations on

exponentially large matrices, but on known algebraic relations of Pauli operators.

Finally, it is shown that the protocol is robust against experimental error.

1.1 State Space of a Quantum System

This thesis will deal only with finite dimensional quantum mechanical systems.

The states of a quantum mechanical system can be represented by trace 1 positive

operators acting on a complex Hilbert space H. Elements of the Hilbert space

will be labeled using Dirac notation. A vector in the Hilbert space is written

in ket form |ψ〉 and the inner product of |ψ〉 with |φ〉 is written 〈φ||ψ〉, or more

simply, 〈φ|ψ〉. The object 〈φ| is called a bra and represents the unique linear

functional fφ on H given by

fφ(|ψ〉) = 〈φ|ψ〉. (1.1)

The outer product of |ψ〉 and |φ〉 is denoted |φ〉〈ψ| and by linearity of the inner

product is a linear operator on H. The set of linear operators acting on H is

denoted by B(H) and forms a linear space under the usual operations of addition

and scalar multiplication. B(H) can be made into a Hilbert space by defining

the inner product of σ with τ to be

〈τ |σ〉 = tr(τ †σ) (1.2)

where τ † is the adjoint of τ . This inner product is called the trace inner product

and, unless otherwise stated, B(H) will be assumed to have this inner product

defined on it. The states ρ that satisfy

ρ2 = ρ (1.3)
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are called pure states. States that are not pure are called mixed. Pure states

may also be thought of as rank 1 projectors, hence the pure state |ψ〉〈ψ| is a

representative of the equivalence class of vectors eiθ|ψ〉 in H. Therefore the set

of pure states is represented by the set of norm 1 vectors in H, modulo phases.

1.2 Evolution

The evolution of a quantum system (assuming the system is not subject to a

measurement or initially entangled with its environment) is mathematically de-

scribed by a completely positive [34], trace preserving, linear map from states

into states. Such a map will be called a quantum operation, or quantum channel,

throughout the rest of the presentation.

A quantum channel Λ : B(H)→ B(H) has the following form [34]

Λ(ρ) =
∑
k

AkρA
†
k (1.4)

where the Ak satisfy the constraint,

∑
k

A†kAk = 1. (1.5)

This representation of a quantum channel is called an operator sum decompo-

sition. The Ak are linear operators on H called Kraus (noise) operators. The

converse is also true: if a mapping is defined by a set of Kraus operators in the

above manner then the mapping is completely positive, linear and trace preserv-

ing. Thus the general evolution of a quantum system under some noise model is

described by an operator sum decomposition satisfying the above constraint on

the Kraus operators.

There is a unitary freedom in the Kraus operators describing the quantum

channel [34]. If the set of operators {Ei} is defined by

Ei =
∑
k

UikAk (1.6)

for some unitary matrix U, then {Ei} describes the same quantum operation as

the {Ak}. The converse is also true: if {Ei} and {Ak} define the same quantum

operation then they are unitarily related as above, where the cardinality of the
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index sets for {Ei} and {Ak} can be made equal by appending the necessary num-

ber of zero operators to the smaller set. As shown below, any two sets of linearly

independent Kraus operators for E will have index sets of equal cardinality.

Proposition 1 For any quantum channel E, the minimal cardinality for the in-

dex set of Kraus operators used for the operator sum decomposition of the channel

is obtained by any set of linearly independent Kraus operators used to represent

E.

Proof: Suppose {Ak}nk=1 is a linearly independent set of Kraus operators for

the quantum operation E and let {Bj}mj=1 be another set of Kraus operators for

E such that m < n. By the unitary freedom in Kraus operators we have

Bi =
n∑
j=1

µi,jAj (1.7)

where if i > m then Bi := 0 and µi,j is a unitary matrix. Thus, fixing i > m

gives
∑n

j=1 µi,jAj = 0. By the linear independence of the Aj this implies ∀j ∈
{1, ..., n} µi,j = 0 which contradicts the unitarity of µ. So, n is the minimal

cardinality for the index set of the Kraus operators for E.

Channels with Kraus operators satisfying the additional constraint

∑
k

AkA
†
k = I (1.8)

are called unital. When a quantum system is isolated from environmental inter-

actions the evolution is unitary. The set of Kraus operators for unitary evolution

consists of a single unitary operator.

Given a linear map E on B(H), the adjoint, or dual, map E† is uniquely

defined in the usual manner by the equation

tr(E†(σ)τ) = tr(σ†E(τ)) (1.9)

Proposition 2 If E is completely positive with Kraus representation given by

{Ak} then the adjoint map is completely positive with Kraus operators {A†k}.

Proof:
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We need only verify that the equation defining the adjoint map of E is sat-

isfied using the set of Kraus operators {A†k}. Indeed, by the linearity and cyclic

properties of the trace we have,

tr(A†kσAkτ) = tr(AkτA
†
kσ). (1.10)

1.3 Measurement

Measurement of a quantum system obeys different transformation rules than

those described above. A measurement is described by a set of linear operators

{Mm} satisfying the completeness relation

∑
m

M †
mMm = 1. (1.11)

The measurement operators are indexed by the measurement outcomes m. If the

state of the system is ρ, then the probability of obtaining outcome m is given by

p(m) = tr(M †
mMmρ). (1.12)

By the completeness relation above, p(m) is a normalized probability distribution

since

∑
m

p(m) =
∑
m

tr(M †
mMmρ)

= tr(
∑
m

M †
mMmρ)

= tr(ρ)

= 1. (1.13)

The state of the system after the measurement is

MmρM
†
m

p(m)
. (1.14)

The convention is to define the positive operator
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Em = M †
mMm (1.15)

and make the necessary replacement in the above expressions. The set of oper-

ators {Em} is called a positive operator valued measure (POVM). POVM’s are

especially useful when only measurement statistics are of interest.

The simplest kind of measurement is when the measurement operators consist

of projection operators Pm = |ψm〉〈ψm| of positive rank. The Pm are uniquely

defined by the fact they are Hermitian and P 2
m = Pm. Such a measurement is

called a projective measurement. Clearly such measurements are in a 1-1 corre-

spondence with Hermitian operators where the eigenvalues are the measurement

outcomes and projectors onto the associated eigenspace are the projectors for the

measurement. The probability of outcome m is given by

p(m) = tr(Pmρ) (1.16)

and the post-measurement state is

PmρPm
p(m)

. (1.17)

1.4 Composite Quantum Systems

Let V and W be finite dimensional Hilbert spaces with bases {|vi〉}ni=1 and

{|wj〉}mj=1 respectively. The direct sum of these two spaces has basis given

by the union of the bases of its component spaces {|v1〉, ..., |vn〉, |w1〉, ..., |wm〉}.
The tensor product of V and W has basis {|v1〉 ⊗ |w1〉, ..., |v1〉 ⊗ |wm〉, ..., |vn〉 ⊗
|w1〉, ..., |vn〉 ⊗ |wm〉}.

Individual state spaces of n particles combine classically through the direct

sum while quantum states combine through the tensor product. Thus, the di-

mension of the state space of multiple classical particles grows linearly with the

number of particles, since dim(V ×W ) = dim(V ) + dim(W ). In the quantum

case, the dimension of the composite system increases as dim(V)dim(W). The

extension to multi-partite quantum systems is performed by taking the tensor

product of the spaces describing each party. We will sometimes denote the t-fold

tensor product of a state |ψ〉 with itself by the expression |ψ〉⊗t.
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1.5 Distinguishing Quantum States

There are many methods of distinguishing quantum states [14]. Distinguishing

states is often done by defining a metric, or something resembling a metric, on

the space B(H).

Definition 1 Metric

Let X be a set. A metric on X is a function d : X → R that satisfies the

following properties:

1. ∀ x, y ∈ X, d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. ∀ x,y ∈ X, d(x, y) = d(y, x)

4. ∀ x,y,z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)

Functions resembling metrics on the state space give meaning to the concept

of distance between states. Two important measures of distance are the trace

distance, which is a metric, and the fidelity, which is not. Before defining these

quantities, we look at their classical analogues.

Definition 2 Classical Trace Distance and Fidelity

Let {px} and {qx} be two probability distributions over the same index set. The

classical trace distance, DC, between the distributions is the l1 distance between

the distributions divided by 2. That is,

DC =
1

2

∑
x

|px − qx| (1.18)

The classical fidelity, FC, between the distributions is

FC(pi, qi) =
∑
i

√
piqi (1.19)

FC is clearly not a metric since if ∀i pi = qi, FC(pi, qi) = 1. Hence, FC(pi, qi)

being near 1 indicates the probability distributions are close to each other. We

now define the trace distance in the quantum case and discuss some of its prop-

erties.
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Definition 3 Trace Distance

The trace distance D between two quantum states ρ and σ is one half times

the metric induced by the trace inner product. Specifically,

D(ρ, σ) =
1

2
tr |ρ− σ| (1.20)

where as usual for A ∈ B(H), |A| =
√
A†A.

Clearly the trace distance is unitarily invariant, ie. for all unitaries U,

D(ρ, σ) = D(UρU †, UσU †). (1.21)

The following characterizes the trace distance in terms of measurement statis-

tics. [34].

Proposition 3 Let ρ and σ be quantum states and {Em} be an arbitrary POVM.

Define the probability distributions pm and qm by pm = tr(ρEm) and qm =

tr(ρEm). Then

D(ρ, σ) = max{Em}DC(pm, qm) (1.22)

where the maximization is over all POVMs.

Hence the trace distance is the largest possible classical trace distance between

the probability distributions arising from a POVM. An important property of the

trace distance is that of strong convexity [34].

Proposition 4 Let pm and qm be probability distributions over the same index

set. Then, for states ρm and σm defined on this index set,

D

(∑
m

pmρm,
∑
m

qmσm

)
≤ DC(pm, qm) +

∑
m

pmD(ρm, σm). (1.23)

In the special case of ∀m pm = qm we get

D

(∑
m

pmρm,
∑
m

pmσm

)
≤
∑
m

pmD(ρm, σm). (1.24)
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Thus the trace distance is jointly convex in its inputs. Next, we define the fidelity

and discuss some analogous properties to those for the trace distance.

Definition 4 Fidelity

The fidelity, F , between ρ and σ is

F(ρ, σ) = tr

√
ρ

1
2σρ

1
2 . (1.25)

The fidelity satisfies all of the properties of a metric except for being zero

when ρ = σ. When ρ (or σ by symmetry) is a projector |ψ〉〈ψ| we have the

following simple form for the fidelity

F(ρ, σ) = tr

√
ρ

1
2σρ

1
2

= tr
√
〈ψ|ρ|ψ〉|ψ〉〈ψ|

=
√
〈ψ|ρ|ψ〉. (1.26)

As with the trace distance, the fidelity is unitarily invariant. There is also an

analogous characterization of the fidelity in terms of measurement statistics [34].

Proposition 5 Let ρ and σ be quantum states and {Em} be an arbitrary POVM.

Define the probability distributions pm and qm by pm = tr(ρEm) and qm =

tr(ρEm). Then

F(ρ, σ) = min{Em}FC(pm, qm) (1.27)

where the minimization is over all POVMs.

As well, analogous to the strong convexity result for the trace distance, the

fidelity satisfies a strong concavity property.

Proposition 6 Let pm and qm be probability distributions over the same index

set. Then, for states ρm and σm defined on the same index set,

F

(∑
m

pmρm,
∑
m

qmσm

)
≥
∑
m

√
pmqmF(ρm, σm). (1.28)
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In the special case of pm = qm ∀m we get

F

(∑
m

pmρm,
∑
m

pmσm

)
≥
∑
m

pmF(ρm, σm). (1.29)

Thus the fidelity is jointly concave in its inputs. We are now ready to discuss

how quantum mechanics is applied to information theory

1.6 Quantum Information Theory

The fundamental unit of information in quantum information theory is a qubit,

analogous to the bit in classical information theory. Physically, a qubit may

by thought of as a two-dimensional quantum mechanical system. Hence it is

mathematically represented by the set of trace 1 positive operators acting on a

2-dimensional complex Hilbert space. A standard physical instance of a qubit is

given by photon polarization, where three sets of bases for the system are the

horizontal-vertical (H/V) basis, plus-minus basis (+/-) and the right-left circular

polarization (R-L) basis.

The state space for two qubits, each with basis {|0〉 , |1〉}, has basis {|0〉 ⊗
|0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉} which will be written more compactly as {|00〉,
|01〉, |10〉, |11〉}. In general an n qubit system has 2n basis vectors. The or-

thonormal basis for an n qubit Hilbert space formed from tensor products of |0〉
and |1〉 is called the computational basis. More generally, we write |x〉 to mean

|bnbn−1 . . . b0〉 where bi are the binary digits of the number x.

The state |00〉+|11〉
2

is an example of a quantum state that cannot be described

in terms of the state of each of its components (qubits) separately. In other words,

we cannot find a1, a2, b1, b2 such that (a1 |0〉+b1 |1〉)⊗(a2 |0〉+b2 |1〉) = |00〉+ |11〉
since

(a1 |0〉+b1 |1〉)⊗(a2 |0〉+b2 |1〉) = a1a2 |00〉+a1b2 |01〉+b1a2 |10〉+b1b2 |11〉 (1.30)

and a1b2 = 0 implies that either a1 = 0 or b2 = 0. States that cannot be

decomposed in this manner are called entangled. These states are dense in the

space of all quantum states [35]. This means that if an arbitrary state is chosen

from the state space then any open set containing this state will also contain
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an entangled state. Entangled states represent situations for which we have no

classical intuition.

1.6.1 Quantum Gates

As previously mentioned, the dynamics of a quantum system, when not interact-

ing with an environment or being measured, is described by a unitary transfor-

mation. One important consequence of the fact that quantum transformations

are unitary is that they are reversible.

The following are some examples of useful single-qubit quantum state trans-

formations written in the basis {|0〉 , |1〉}

I : |0〉 → |0〉
|1〉 → |1〉

(
1 0

0 1

)
X : |0〉 → |1〉

|1〉 → |0〉

(
0 1

1 0

)
Y : |0〉 → i |1〉

|1〉 → −i |0〉

(
0 −i
i 0

)
Z : |0〉 → |0〉

|1〉 → − |1〉

(
1 0

0 −1

)
.

X, Y, and Z are called the Pauli operators and the set {I,X, Y, Z} forms an

orthonormal basis for B(C2) when each element is scaled by 1
2
. X, Y and Z

are sometimes denoted as P1, P2, and P3 or σ1, σ2 and σ3. They satisfy the

commutation and anti-commutation relations

[Pl, Pm] = 2i
3∑

n=1

εlmnPn (1.31)

{Pl, Pm} = 2δl,m1 (1.32)

The controlled-NOT gate, C-NOT, operates on two qubits as follows: it flips

the second qubit if the first qubit is |1〉 and leaves the second qubit unchanged

when the first is |0〉. As noted, the vectors |00〉, |01〉, |10〉, and |11〉 form an

orthonormal basis for the set of pure states for a two-qubit system. Hence the
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C-NOT transformation has representation in this basis given by

C-NOT : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The transformation C-NOT is unitary and cannot be decomposed into a tensor

product of two single qubit transformations.

It is useful to have graphical representations of quantum state transforma-

tions, especially when several transformations are combined in sequence. This

representation is given by a quantum circuit, which is read left to right in time.

The number of horizontal levels in the circuit corresponds to the number of qubits

involved in the computation. The following is an example of a quantum circuit.

|k1〉 X

U

|k2〉 Y

Figure 1.1: Example of a Quantum Circuit

There are two qubits, the first in the state |k1〉 and the second in the state

|k2〉. The first qubit undergoes the unitary transformation X and the second is

transformed by Y . The entire 2 qubit system then undergoes the unspecified

unitary transformation U .

C-NOT is typically represented by a circuit of the form

|k1〉 •

|k2〉 ��������
Figure 1.2: C-NOT Gate

The filled circle indicates the control qubit, and the ⊕ indicates the conditional

negation of the target qubit.
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The Hadamard and Rk Transformations

Another important single qubit transformation is the Hadamard Transformation

defined by
H : |0〉 → 1√

2
(|0〉+ |1〉) = |+〉

|1〉 → 1√
2
(|0〉 − |1〉) = |−〉.

The transformation H has a number of important applications. When applied to

|0〉, H creates a superposition state 1√
2
(|0〉+|1〉). Applied to n qubits individually,

H generates a superposition of all 2n possible states, which can be viewed as the

binary representation of the numbers from 0 to 2n − 1.

H ⊗H ⊗ · · · ⊗H |00 . . . 0〉 =
1√
2n

((|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉))

=
1√
2n

2n−1∑
x=0

|x〉 . (1.33)

The Rk unitary transformation on a single qubit is given by the matrix

Rk =

[
1 0

0 e−
2πi

2k

]

in the standard basis. We will now discuss quantum algorithms using the concepts

presented in this section.

1.6.2 Quantum Algorithms

One of the main advantages of representing information through quantum sys-

tems is that certain computational problems with no known efficient classical

solution are efficiently solvable using a quantum information processor. Many of

the quantum algorithms that solve these problems rely on a transformation called

the quantum Fourier transform [21, 34]. Due to its importance, the quantum

Fourier transform and its generalization to finite abelian groups is given in the

appendix.

Perhaps the most prominent computational problem is that of factoring in-

tegers. Shor’s quantum algorithm for solving the factoring problem (RSA) is

essentially a specific case of a more general problem called the hidden subgroup

problem [22]. Due to the importance of solving this problem efficiently, an effi-

cient quantum algorithm for solving it is given in the appendix. The algorithm
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relies heavily on the representation theory of finite abelian groups. Hence, basic

results on group theory and representation theory of finite abelian groups are

also presented in the appendix. While it is useful to know that certain compu-

tational tasks are easy on a quantum information processor, implementing such

computations is extremely hard. This difficulty is due to the extreme sensitiv-

ity of quantum systems to their environment. The area of research that deals

with reliably preserving information when a quantum system interacts with some

environment will be examined next.

1.7 Quantum Error Correction

Quantum error correction (QEC) is a subfield of quantum information theory

that deals with how to preserve quantum information when it is sent through

a channel. Representing information through quantum states suffers from the

drawback that a quantum system is extremely sensitive to interactions with an

environment. These interactions create correlations between the system of inter-

est and the environment which results in the environment carrying away infor-

mation about the system. Thus, information initially encoded in the quantum

system may be lost through such interactions. Sending information from one

party to another requires that the received state of the system closely resembles

the initial information. Hence we must find ways to minimize the interaction of

an environment with the encoded information.

There are two types of error correction, passive and active. In passive error

correction once the initial state has been encoded it only interacts with the

quantum channel. Thus, the main part of the error correction procedure lies in

the encoding and decoding of the quantum information. Active error correction

pertains to actively manipulating the state while, or after, it interacts with the

channel in order to preserve the encoded information. QEC through noiseless

subsystems is a type of passive error correction where certain subsystems of the

state space are located as being ”unaffected” by the quantum channel.

A method for quantum error correction is given in [25] that unifies the pre-

viously known methods of error correction under one framework. This frame-

work is called operator quantum error correction and applies to both unital and

non-unital quantum channels. The previous methods of error correction are the

standard model, decoherence free subspaces and noiseless subsystems. We briefly

discuss these models for error correction and then present the unified method.
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1.7.1 The Standard Model

The standard model may be described by a triple (R, E , C), where the code

C is a subspace of the Hilbert space H, E is a quantum channel, and R is a

recovery channel. Denote the projection onto C by PC. The triple must satisfy

the following for all bounded linear operators ρ = PCρPC (ie. all ρ which are

reduced by PC and whose support lies in C),

(R ◦ E)(ρ) = ρ. (1.34)

When there exists an R for given E and C, the code C is said to correct E . In

the case R = I, the triple is called a decoherence free subspace. Let {Ea} be a

set of Kraus operators for E . Then the existence of R for E and C is equivalent

to

PCE
†
aEbPC = µabPC (1.35)

for all a, b in the index set for the Kraus representation where the matrix µab is

positive semi-definite with trace equal to 1 [34]. Since different Kraus represen-

tations for a particular CP map are related by a unitary matrix, the form of the

above condition is clearly independent of the Kraus representation used.

By the unitary freedom in the Kraus operators and the fact that µab is positive

semi-definite, there exists a set of Kraus operators for the channel E such that

µab is diagonal. For this particular set of Kraus operators, labeled {Ga}, it is

clear that the code subspace C is mapped to orthogonal subspaces by the Ga.

So, C is correctable for E if and only if there exists a Kraus representation {Ga}
such that:

1. ∀ |ψ〉 ∈ H and a 6= b, GaP |ψ〉 is orthogonal to GbP |ψ〉

2. The inner product structure on C is preserved by the Ga.

Thus the Ga map C to orthogonal undeformed copies of C in H, which is a use-

ful property of the {Ga} because the recovery operation is then easily described

by a measurement in a basis determined by the orthogonal copies followed by a

unitary operation [34].

Note that there may exist a set of Kraus operators for E such that the action

of at least two of the Kraus operators on C is the same and C is still a correctable

subspace for E . This phenomenon is called degeneracy and C in this case is called
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a degenerate code. Analogous types of codes can not be found in classical error

correction [34].

1.7.2 Noiseless Subsystems and Decoherence Free Sub-

spaces

Before describing the noiseless subsystem method, let us lay down some termi-

nology. Let E be a quantum operation with Kraus operators {Ea} and suppose

the Hilbert space H factorizes as H = (HA ⊗ HB) ⊕ K, with dim(HA) = m,

dim(HB) = n, and K a subspace of arbitrary but finite dimension. Let PAB
be the projector onto the subspace HA ⊗ HB, Pkl be projectors of the form

|αk〉〈αl| ⊗ 1B for some orthonormal basis {|αk〉} ∈ HA and the quantum op-

eration PAB be defined by Kraus operators {Pkl}. The Pkk are called minimal

reducing projections for B and PAB =
∑m

k=1 Pkk is called the minimal central

projection onto HAB. Finally, let S be the semigroup of operators of the form

σA ⊗ σB which are reduced by PAB and have support on PABH.

Definition 5 Noiseless Subsystem

B is said to be a noiseless subsystem for E if ∀σA ∀σB ∃τA

E(σA ⊗ σB) = τA ⊗ σB (1.36)

Thus, B is a noiseless subsystem for E if there exists a quantum operation FAA :

B(HA)→ B(HA) such that E|B(HA)⊗B(HB) = FAA⊗1. The following proposition

is proved in [25]

Proposition 7 The following four conditions are equivalent to B being a noise-

less subsystem for the quantum process E:

1. ∀σB ∃τA : E(1A ⊗ σB) = τA ⊗ σB
2. ∀σ ∈ S : TrA ◦ PAB ◦ E(σ) = TrA(σ)

3. ∀a : Ea is invariant on PABH and Ea|PABH ∈ B(HA)⊗ 1B

4. ∀a, k, l : EaPAB = PABEaPAB and PkkEaPll = λaklPkl where λakl is some set

of scalars.

The noiseless subsystem framework given above encompasses the notion of

decoherence free subspaces in the case when m = 1. This is easy to see from the

first condition using HA⊗HB
∼= HB and trace preservation. Hence when m = 1,

the B subsystem is actually a subspace which is undeformed by the action of E .
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1.7.3 Unified Method For Quantum Error Correction

The unified scheme that encompasses all of these models is described by a triple

(R, E ,S) where as in the terminology for the standard model, R is a recovery

quantum operation for the channel E . S is a semigroup of operators defined as

above in the noiseless subsystems section.

Definition 6 Correctable Code

For a triple (R, E ,S), the B subsystem is called correctable for E by the recov-

ery operation R if it is noiseless for the quantum operation R ◦ E. Concretely,

using a definition of a noiseless subsystem given above, B is correctable of E by

R if

∀σB ∃τA : R ◦ E(1A ⊗ σB) = τA ⊗ σB (1.37)

The standard model is encompassed within this framework in the case when

dim(HA) = m = 1. When R = I, B is a noiseless subsystem. If both R = I and

m = 1 then B is a decoherence free subspace.

The case when R can be chosen to be a unitary operation U is of particular

interest and in such a scenario the subsystem B is said to be a unitarily correctable

subsystem (UCS). A UCS code is called a unitarily noiseless subsystem (UNS)

for Λ if it is a UCS of Λn for all n ≥ 1. As usual, Λn is the channel Λ composed

with itself n times.

When E is a unital quantum channel we have the following result [26] that

will be useful in finding correctable codes later on.

Theorem 1 The following are equivalent:

1. B is a unitarily correctable subsystem for E

2. B is a noiseless subsystem for E† ◦ E.

In addition to having a framework for error correction, it is necessary to be

able to find correctable codes for the theory to be of any practical interest. In this

thesis we are interested in finding correctable codes for unital channels because

Pauli twirling a quantum channel results in a unital channel. The algorithm

we will present later finds both noiseless subsystems and unitary correctable

subsystems but is not exhaustive. For unital channels there is an algorithm that

17



finds all noiseless subsystems for the channel [19]. The main drawback of the

algorithm is that it is exponential in the number of qubits.

The algorithm that finds all noiseless subsystems for a unital quantum channel

is presented in the appendix, along with the required background on algebra

theory. The key is that for unital channels the commutant and fixed point set of

the channel coincide. By the Artin-Wedderburn theorem and the fact that the

commutant is a finite-dimensional C∗-algebra, the matrix algebras in the Artin-

Wedderburn decomposition for the commutant are areas in the Hilbert space in

which noiseless quantum information may be stored. Thus the algorithm consists

of how to find this decomposition of the commutant. It was proved in [8] that

every noiseless subsystem for a unital channel must reside in the commutant.

Hence this algorithm finds all noiseless subsystems for a unital channel. For non-

unital channels, there is an algorithm for finding noiseless subsystems [8, 23].

Unitary t-designs are introduced next, which will naturally lead into the con-

cept of twirling a quantum channel. After specific types of twirling are discussed,

the above concepts in QEC will be applied to prove various theorems regarding

twirling and to give an algorithm for finding UCS codes.
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Chapter 2

Unitary t-Designs and Twirling

Quantum Channels

In this chapter we introduce unitary t-designs and prove some basic results about

them. Unitary t-designs naturally lead to the concept of twirling a quantum

channel over a subset of the unitary group U(D). We will discuss twirling over

all of U(D) using the Haar measure and then look at applications that involve

estimating the average gate fidelity of a quantum gate. In the next chapter we

will discuss twirling over discrete subsets of the unitary group.

2.1 Unitary t-Designs

Before defining unitary t-designs we discuss the well-known concept in numerical

analysis of spherical t-designs [11]. Suppose one has a function defined on the

unit sphere Sn−1 ⊆ Rn and wants to compute the average of the function. The

maximal symmetry of the domain suggests that for ”well-behaved” classes of

functions, there should exist a set of fixed points on Sn−1 such that for any

function f in the class, the average of the values of f at these points is equal to

the global average of f on Sn−1.

Important functions in numerical analysis are polynomials, which are divided

into a countable number of classes by their degree. A natural class of functions

to analyze the existence of such a set of points is the set of polynomials of degree

t. These sets are called spherical t-designs. Formally, this is stated below

Definition 7 Spherical t-Design
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A spherical t-design is a finite set of points {x1, ..., xK} ⊆ Sn−1 such that for

any polynomial p : Sn−1 → R of degree less than or equal to t, the average of p

over Sn−1 with respect to the rotationally-invariant Haar measure (see appendix)

is equal to the average of the polynomial values at each xi. The polynomials

defined on Sn−1 are just the set of all polynomials of degree less than or equal to

t defined on Rn, but restricted to Sn−1.

In the case of S2 we require that for any polynomial p of degree less than or

equal to t whose domain is R3,

∫ 2π

0

∫ π

0

p(θ, φ)sinθdθdφ =
1

K

K∑
j=1

p(xj) (2.1)

where we utilize the usual spherical coordinate system on the sphere. A specific

example is given by the 3-design for S2 where K = 6 and the xj are chosen so

that they form the vertices of a regular octahedron. It has been proved [39] that

spherical t-designs exist of sufficiently large sizes. More precisely, there exists

a number N(n,t) such that ∀N ≥ N(n,t) there exists a spherical t-design of N

points on Sn. Only estimates of the size of N(n,t) exist.

A unitary t-design is similar in principle to that of a spherical t-design. Let

H = CD and recall that a homogeneous polynomial is one in which all the

monomials making up the polynomial have the same degree. The definition of a

unitary t-design is as follows [9],

Definition 8 Unitary t-Design

A unitary t-design is a finite set {U1, ..., UK} ⊆ U(D) of unitary matrices such

that for every homogeneous complex-valued polynomial p in 2D2 indeterminates

of degree (s,s) less than or equal to (t,t),

1

K

K∑
j=1

p(Uj) =

∫
U(D)

p(U)dU (2.2)

The integral is taken with respect to the Haar measure on U(D). p(U) is defined to

be the evaluation of p at the 2D2 matrix entries, and their complex conjugates, of

U. That is, without loss of generality, if the indeterminates are labelled x1, ..., x2D2

we can relabel the them by the mapping.
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x1 → U1,1

x2 → U1,2

.

.

xD2 → UD,D

xD2+1 → U1,1

xD2+2 → U1,2

.

.

x2D2 → UD,D (2.3)

Then the evaluation of p comes from choosing a specific U ∈ U(D) as in the def-

inition. Under this association, p having degree equal to (s,s) means that each

monomial has 2s indeterminates where s of them are from the set {U1,1, ..., UD,D}
and the remaining s must come from {U1,1, ..., UD,D}. The following gives an

equivalent characterization of a unitary t-design. The proof is an obvious exten-

sion of Corollary 5.2.2 in [9]. We give it here for completeness.

Proposition 8 {U1, ..., UK} is a unitary t-design if and only if ∀s ∈ {0, ..., t},
∀m,n ∈ {1, ..., D} and ∀ρ ∈ B(H⊗s),

1

K

K∑
j=1

Pm,n

(
U⊗sj ρU⊗sj

†
)

=

∫
U(D)

Pm,n

(
U⊗sρU⊗s

†
)
dU. (2.4)

Here we have denoted the s-fold tensor product of an operator A with itself by

A⊗s, and Pm,n corresponds to the projector onto the (m,n) entry of a matrix.

Proof:

First, suppose that {Uj}Kj=1 form a unitary t-design. Note that the entries of

U⊗s are just the set of all monomials of degree s evaluated at the matrix entries

of U. Similarly, the entries of U⊗s
†

are just the set of all monomials of degree s

evaluated at the conjugates of the matrix entries of U. Thus, the matrix entries of

U⊗sρU⊗s
†

are homogeneous degree (s,s) polynomials in the 2D2 indeterminates

given by the entries of U and U†. This shows that for each m,n ∈ {1, ..., D},
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1

K

K∑
j=1

Pm,n

(
U⊗tj ρU⊗tj

†
)

=

∫
U(D)

Pm,n

(
U⊗tρU⊗t

†
)
dU. (2.5)

The converse is also simple. Note that every Hermitian matrix is a (real)

linear combination of states. Hence, if

1

K

K∑
j=1

Pm,n

(
U⊗sj ρU⊗sj

†
)

=

∫
U(D)

Pm,n

(
U⊗sρU⊗s

†
)
dU (2.6)

holds for all states ρ, then it holds for every hermitian matrix. The fact that

there exists a Hermitian basis for B(H⊗s) implies that the statement holds for

any linear operator A in B(H⊗s). Finally, any monomial of degree (s,s) in 2D2

indeterminates can be constructed in one of the D2 entries of
(
U⊗tAU⊗t

†
)

by

choosing A appropriately. By linearity, the definition for a unitary t-design is

satisfied.

It can be seen in a manner similar to the above proof that the condition

1

K

K∑
j=1

Pm,n

(
U †jM1UjM2...U

†
jM2s−1Uj

)
=

∫
U(D)

Pm,n

(
U †jM1UjM2...U

†
jM2s−1Uj

)
dU (2.7)

holding for all s ∈ {0, ..., t}, all m,n ∈ {1, ..., D} and all linear operators M1, ..,

M2s−1 is equivalent to a t-design. Indeed, the definition of a t-design clearly

implies the above and conversely any monomial of degree (s,s) can be constructed

by appropriately choosing the M1 through M2s−1.

For D = 2n, exact unitary t-designs have been constructed for t = 1 and t = 2

[9]. The Clifford group forms a unitary 2-design while the Pauli group forms a

1-design. It is unknown whether there exist unitary t-designs for t ≥ 3.

From above it can be shown that {U1, ..., UK} satisfying the condition for a

unitary 2-design is equivalent to

1

K

K∑
j=1

Pm,n

(
UjΛ

(
U †j ρUj

)
U †j

)
=

∫
U(D)

Pm,n
(
UΛ

(
U †ρU

)
U †
)
dU (2.8)
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being satisfied for any quantum channel Λ and any state ρ [9]. This naturally

leads to the concept of twirling.

2.2 Twirling Quantum Channels

Twirling a quantum channel Λ consists of averaging Λ under the composition U ◦
Λ ◦U † for unitary operations U(ρ) = UρU † chosen according to some probability

distribution [4, 9]. The averaged channel

Λ̄(ρ) =

∫
U(D)

dµ(U) U ◦ Λ ◦ U †(ρ)

=

∫
U(D)

dµ(U) UΛ(U †ρU)U † (2.9)

is known as the “twirled channel”.

The case where the distribution over unitaries is discrete is of practical inter-

est. In this case, the twirled channel is given by Λ̄(ρ) =
∑

i pr(Ui) Ui ◦Λ ◦ U †i (ρ),

where {pr(Ui)} is a probability distribution over the Ui.

U †i Λ Ui

Figure 2.1: Twirling a Quantum Channel

Hence, from the previous section we have the following proposition,

Proposition 9 {U1, ..., UK} forms a unitary 2-design if and only if for any quan-

tum channel Λ, the uniform twirl of Λ over {U1, ..., UK} is equal to the full Haar

twirl of Λ.
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Twirling a quantum channel over both continuous and discrete sets of uni-

taries has been analyzed. We briefly discuss the case of twirling over the contin-

uous unitary group U(D) with some applications before looking at the discrete

case.

2.3 Twirling Quantum Channels Over U(D)

Twirling a quantum channel Λ over U(D) is given by the expression

Λ̄(ρ) =

∫
U(D)

dµH(U) UΛ(U †ρU)U † (2.10)

where the measure µH on U(D) is the unique bi-invariant normalized Haar mea-

sure. Since the set of twirling elements is the full unitary group one would expect

that the channel resulting from this twirl has a high amount of symmetry, or more

simply, the resulting channel can be described by a small number of parameters.

This is in fact the case as twirling over U(D) results in Λ̄ being a depolarizing

channel [12]

Λ̄(ρ) = pρ+ (1− p) 1
D

(2.11)

where p ∈ [0, 1]. We use this result in the next section to show a method of calcu-

lating the average fidelity between a quantum operation and a unitary operation

[12].

2.3.1 Average Gate Fidelity

In many instances it is useful to estimate how ”close” a quantum operation is to

a given unitary operation. For instance during a quantum computation one may

want to implement the unitary gate U and, as with any physical implementation,

this will not be perfect. Thus the resulting operation will be represented by a

channel E . It would be useful to have an idea of how well E approximates U . As

noted previously there are many different measures of how close two quantum

operations are [14], two of which, the fidelity and trace distance, were discussed

in the introduction. One important measure is related to the fidelity and is called

the average gate fidelity.
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Definition 9 Average Gate Fidelity

The average gate fidelity between E and U , Fg(E ,U), is given by

Fg(E ,U) =

∫
dψ tr (U (|ψ〉〈ψ|) E (|ψ〉〈ψ|)) . (2.12)

The integral is over the unitarily invariant Fubini-Study measure on pure states

[3]. The above can be rewritten as

Fg(E ,U) =

∫
dψ tr (U (|ψ〉〈ψ|) Λ ◦ U (|ψ〉〈ψ|)) (2.13)

where Λ is defined by

Λ := E ◦ U−1 (2.14)

and is called the cumulative noise operator for E and U .

Now we can again re-write the average fidelity as,

Fg(E ,U) =

∫
dψ tr

(
U |ψ〉〈ψ|U−1Λ

(
U |ψ〉〈ψ|U−1

))
=

∫
dψ tr

(
|ψ〉〈ψ |U−1

(
Λ
(
U |ψ〉〈ψ|U−1

))
U
)

=

∫
dψ tr

(
|ψ〉〈ψ| U−1 ◦ Λ ◦ U (|ψ〉〈ψ|)

)
. (2.15)

where U is the unitary Kraus operator for U . Note that the last two expressions

for Fg(E ,U) involve a twirl of Λ. This will be used to prove the following theorem

[12].

Theorem 2

Fg(E ,U) =

∑
k |Tr(Ak)|2 +D

D2 +D
, (2.16)

where the {Ak} are a set of Kraus operators for Λ.

Proof:

Note that we can integrate over the Haar measure on U(D),
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Fg(E ,U) =

∫
U(D)

dU tr
(
ρ U−1

(
Λ
(
UρU−1

))
U
)

= tr

(
ρ

∫
U(D)

dU U−1
(
Λ
(
UρU−1

))
U

)
(2.17)

for ρ = |ψ〉〈ψ | fixed. Now,∫
U(D)

dU U−1
(
Λ
(
UρU−1

))
U (2.18)

is the definition of twirling Λ over the full unitary group U(D). As noted, twirling

a quantum channel over U(D) produces an operation Λ̄ which is a depolarizing

channel. Hence,

Fg(E ,U) = tr
(
ρΛ̄(ρ)

)
(2.19)

for

Λ̄ρ = pρ+ (1− p) 1
D

(2.20)

where from [12]

p =

∑
k |tr(Ak)|

2 − 1

D2 − 1
. (2.21)

Hence

Fg(E ,U) = tr

(
ρ

(
pρ+ (1− p) 1

D

))
= p+

1− p
D

=

∑
k |Tr(Ak)|2 +D

D2 +D
(2.22)

as desired.

p is called the noise strength parameter and characterizes how well E approxi-

mates U . If p is close to 1 then E can be thought of as approximating U well,
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while if p is close to 0 then E does not resemble U .

We now describe a protocol for estimating the average gate fidelity Fg(E ,U).

We have

Fg(E ,U) =

∫
U(D)

dU tr
(
Uρ U−1

(
Λ
(
UρU−1

)))
(2.23)

which is the average over the unitary group of the function f : U(D)→ R defined

by

f(U) = tr
(
ρ U−1

(
Λ
(
UρU−1

))
U
)
. (2.24)

ρ may be taken as the computational basis state |0〉|0〉...|0〉〈0|...〈0|〈0|. Note that

there can be a dependence of Λ on U. In the special case of Λ being independent

of the choice of U, we can use the concentration of measure effect for large Hilbert

spaces (see appendix 2). This effect essentially gives that if we choose a unitary

operator at random and implement it, then f(U) will be close to the average

Fg(E ,U) in that

f(U) = p+
1− p
D

+ O

(
1√
D

)
. (2.25)

There are two drawbacks to the above protocol for determining the average

fidelity of E and U. The first is that choosing a random unitary over the Haar

measure is exponentially hard in the system dimension D. The second is that

even if one calculates f(U) for some unitary U then they will have to either

perform a measurement in the basis defined by U acting on the computational

basis, or perform full process tomography on the output of E(ρ) = Λ◦U(ρ). Both

of these are infeasible in general. In the case of implementing motion-reversal

transformations, the second difficulty can be overcome as shown at the end of

the next section.

2.3.2 Motion-Reversal Transformations

While the expression for Fg(E ,U) can be thought of as the average fidelity be-

tween I and U−1 ◦ Λ ◦ U , one can’t estimate Fg(E ,U) by implementing U−1 ◦ U
as there will be some noise associated with U−1. More precisely, assume that

the target operation is the ”motion-reversal” transformation U−1 ◦ U . We can
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decompose the noise affecting the transformation in two steps as previously done.

In the first step, U is implemented and as above,

E = Λ ◦ U . (2.26)

The next step is to act U−1. Suppose the actual operation performed is G
and let U ◦ G = Φ for some quantum operation Φ. Then,

G = U−1 ◦ Φ. (2.27)

This gives that the actual operation performed is

G ◦ E = U−1 ◦ Φ ◦ Λ ◦ U (2.28)

and so the noise affecting the implementation of I = U−1 ◦ U is

Λ̃ := Φ ◦ Λ (2.29)

Hence, the average fidelity between G ◦ E and I = U−1 ◦ U is,

Fg(G ◦ E ,U−1 ◦ U) =

∫
dψ tr

(
|ψ〉〈ψ| U−1 ◦ Φ ◦ Λ ◦ U (|ψ〉〈ψ|)

)
(2.30)

which is not Fg(E ,U). Thus, implementing U−1 ◦ U and comparing with the

identity does not give a method for estimating Fg(E ,U).

Motion-reversal transformations give useful information about the strength

of a noise process [12, 24], hence estimating Fg(G ◦ E ,U−1 ◦ U) is of interest.

Following the protocol given in the average fidelity section above we have that

Fg(G ◦ E ,U−1 ◦ U) =

∫
U(D)

dU tr
(
ρ U−1

(
Λ̃
(
UρU−1

))
U
)

(2.31)

and we define the function f : U(D)→ R by

f(U) = tr
(
ρ U−1

(
Λ̃
(
UρU−1

))
U
)
. (2.32)
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with ρ = |0〉|0〉...|0〉〈0|...〈0|〈0|. Again, if Λ̃ is independent of the unitary U

chosen then we pick a unitary U at random and calculate f(U). By concentration

of measure,

f(U) = p+
1− p
D

+ O

(
1√
D

)
. (2.33)

Since we are implementing a motion-reversal transformation, f(U) is calculated

by taking the inner product of G ◦ E(ρ) = U−1
(

Λ̃ (UρU−1)
)
U(ρ) with ρ, which

is just the probability of obtaining ρ from a measurement in the computational

basis. Hence the second difficulty described in the section on average gate fidelity

can be overcome for a motion-reversal transformation.

An extension of the motion-reversal protocol is when one implements a string

of motion-reversal transformations,

ρ(n) =
(
U−1
n ◦ Λ̃n ◦ Un

)
◦ ... ◦

(
U−1

2 ◦ Λ̃2 ◦ U2

)
◦
(
U−1

1 ◦ Λ̃1 ◦ U1

)
ρ(0). (2.34)

We take ρ(0) = |0〉|0〉...|0〉〈0|...〈0|〈0|. Each Λ̃i is the noise arising from im-

plementing the i’th motion reversal transformation and will be assumed to be

independent of the choice of unitary chosen in the i’th time step. The above

discussion has shown how to estimate the average fidelity of each motion reversal

transformation. An interesting question is how the average fidelity of the com-

position of motion-reversal transformations with the identity behaves as n grows

large.

Denote the string of motion-reversal transformations by K. Then the fidelity

of K with the identity is

F (ρ(0),Kρ(0)) = tr (ρ(0)Kρ(0)) (2.35)

= tr
(
ρ(0)

(
U−1
n ◦ Λ̃n ◦ Un

)
◦ ... ◦

(
U−1

1 ◦ Λ̃1 ◦ U1

)
ρ(0)

)
If one integrates each motion reversal sequence over the Haar measure to obtain

the average fidelity we end up with a composition of n depolarizing channels

Fg(G, I) = tr
(
ρ(0)Λ̃1 ◦ ... ◦ Λ̃n (ρ(0))

)
(2.36)
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Λ̃jρ = pjρ+ (1− pj)
1

D
(2.37)

Hence if we make the simplifying assumption that the Λ̃j are all the same then

we define ∀j pj = p to obtain

Fg(G, I) = pn +
1− pn

D
. (2.38)

As n → ∞, Fg(G, I) → 1
D

which is the average fidelity between randomly

chosen states. Since p is a measure of how strong the cumulative noise is, the

decay property of pn is a measure of how strong the noise process is. Slow con-

vergence of pn to 0 implies weak noise whereas fast convergence implies strong

noise. This decay property is utilized in [24]. By concentration of measure, if D

is large then implementing n random motion-reversal sequences and performing

a measurement in the computational basis will give a value that is close to the

average fidelity in the sense shown above for a single motion-reversal transfor-

mation. Again, note that the above protocol is not strictly efficient because it is

exponentially hard to generate a Haar random unitary.

In the next chapter we look at twirling quantum channels over discrete subsets

of the unitary group and how to gain information about a channel via a twirling

procedure. Discrete twirls are easier to implement experimentally and so are of

larger practical interest than twirls over the full unitary group U(D).
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Chapter 3

Gaining Information About a

Quantum Channel Via Twirling

This chapter is based mainly on [41], however we give more detail and expand

upon many of the results. We begin by discussing twirls over discrete subsets

of U(D), in particular we will analyze twirling over both the Pauli group and

random qubit permutations. We show that when a channel is twirled over any

discrete subset of U(D), correctable codes for the twirled channel are correctable

for the original channel, up to some unitary correction. We then prove some basic

results about channels twirled over the Pauli group and random permutations

that lead to an algorithm for finding certain correctable codes. This scheme is

proved to be robust under experimental error. Finally, we show that Markovian

quantum channels satisfy a specific composition law when twirled over the Pauli

group and random permutations.

3.1 Twirling Quantum Channels Over the Pauli

and Permutation Groups

Before discussing twirling over discrete subsets of U(D) let us lay down some

notation. Let P1 be the set of single qubit Pauli operators adjoined with the

identity operation, that is, P1 = {1, X, Y, Z}. Define P⊗n1 to be all n-fold tensor

products of P1. Up to phases of -1, i, and -i, P1 and P⊗n1 form groups under

multiplication. Let C1 be the normalizer of the group P1, Cn be the normalizer

of P⊗n1 , and C⊗n1 be all n-fold tensor products of C1.

It was shown in [9] that twirling Λ over Cn results in a depolarizing channel
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that is characterized by a single paramenter. This depolarizing channel is the

same one that is obtained when twirling over the the full unitary group. Hence

from a previous characterization, Cn is a unitary 2-design. Recently, it has been

shown that twirling Λ over both C⊗n1 and random qubit permutations reduces

the number of parameters describing the twirled channel Λ̄Π to n + 1 [13].

We will now analyze the effect of twirling Λ over both P⊗n1 and random qubit

permutations.

Suppose Λ is an n-qubit quantum channel described by Kraus operators {Ak}.
Expanding the Kraus operators in terms of the Hermitian basis P⊗n1 we have

Ak =
∑
l

γkl Pl (3.1)

and so,

Λ(ρ) =
∑
k

AkρA
†
k

=
∑
k

(∑
l

γkl Pl

)
ρ

(∑
m

γkm
∗
Pm

)

=
∑
l,m

(∑
k

γkl γ
k
m

∗
)
PlρPm

:=
∑
l,m

χl,mPlρPm (3.2)

where we have defined

χl,m =
∑
k

γkl γ
k
m

∗
. (3.3)

Trace preservation of Λ requires that
∑

k A
†
kAk = 1 which implies

∑
l,m

(∑
k

γkl γ
k
m

∗
)
PmPl = 1. (3.4)

Hence,
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∑
l,m

χl,mPmPl = 1 (3.5)

Taking the trace of both sides gives

tr(χ) = 1 (3.6)

and since χm,m =
∑

k γ
k
mγ

k
m
∗
, the diagonals of the chi matrix are non-negative

and add up to 1. Hence the diagonal elements can be interpreted as probabilities

and the set {χi,iPi} define a set of Kraus operators for a quantum operation.

We can obtain the operation defined by {χi,iPi}, which will be denoted Λ̄,

from Λ by uniformly twirling over P⊗n1 [9],

Λ̄(ρ) =
1

4n

∑
i

∑
k

PiAkPiρPiA
†
kPi

=
∑
i

χiiPiρPi. (3.7)

The twirl over P⊗n1 strips away the off-diagonals of the χ matrix and since ∀i
PiP

†
i = 1, Λ̄ is a unital channel. Channels that have a Kraus decomposition

given by scaled Pauli operators are called Pauli channels.

The channel Λ̄ still has a number of parameters that is exponential in the

number of qubits comprising the system. Hence attempting to estimate these

parameters is an inefficient process. However, if one considers an additional twirl

over the group of permutations on n qubits, Sn, then the number of parameters

describing the resulting channel, denoted Λ̄Π, becomes polynomial. If an element

of Sn is denoted Sj then since |Sn| = n! we have

Λ̄(ρ) =
1

n!

1

4n

∑
j

∑
i

∑
k

SjPiAkPiS
†
jρSjPiA

†
kPiS

†
j . (3.8)

Note that one need not actually implement the twirl over Sn as such a twirl is

equivalent to neglecting any ordering of the qubits when making measurements

on the system.

To see that the number of parameters describing Λ̄Π becomes polynomial

when twirling over Sn, first define for an element P ∈ P⊗n1 the vector weight of

P, denoted wt(P), by
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wt(P ) = (wx, wy, wz). (3.9)

wx is the number of X operators in the decomposition of P as a tensor product

of elements of P1, and similarly for wy and wz. Hence the number of identity

operators in the decomposition of P is n−(wx+wy+wz). Any triple (wx, wy, wz)

satisfying wx, wy, wz ≥ 0 and wx + wy + wz ≤ n will be denoted w.

Suppose Λ̄ is given and a twirl over random permutations is performed. All

Kraus operators with the same w must end up with the same probability coef-

ficient as the qubits are indistinguishable under the random permutations. This

coefficient must be the average of the associated probability weights of these op-

erators in Λ̄. Hence the result of randomly permuting qubits is to create another

Pauli channel where all Pauli operators with the same weight vector w are associ-

ated with a probability pw. These channels are called permutation invariant Pauli

channels, as they are unchanged under permutations of the qubits. Hence the

number of parameters describing Λ̄Π is equal to the number of different possible

w.

If we show that the number of such w is polynomial in the number of qubits

then we are done. Note that the number of possible w is equal to the number

of solutions to the equation wx + wy + wz = w where 0 ≤ w ≤ n. Clearly, the

number of such solutions is

n∑
w=0

w∑
wx=0

w−wx∑
wy=0

1. (3.10)

From the equations

w−wx∑
wy=0

1 = w − wx + 1, (3.11)

w∑
wx=0

w − wx + 1 = w(w + 1)− w(w + 1)

2
+ w + 1

=
w2

2
+

3w

2
+ 1, (3.12)

we get,
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n∑
w=0

w∑
wx=0

w−wx∑
wy=0

1 =
n∑

w=0

w2

2
+

3w

2
+ 1

=
1

2

(
n3

3
+
n2

2
+
n

6

)
+

3

2

n(n+ 1)

2
+ n+ 1

=
n3

6
+ n2 +

11n

6
+ 1. (3.13)

Hence the number of parameters describing Λ̄Π is polynomial in the number of

qubits and so one can write

Λ̄Π(ρ) =
∑
w

pw
Nw

 ∑
Pi∈P⊗n1 :wt(P )=w

PiρPi

 (3.14)

where Nw is the number of Pauli’s whose vector weight is w = (wx, wy, wz). Nw

can easily be shown to have the form

Nw =

(
n

wx + wy + wz

)(
wx + wy + wz

wx

)(
wy + wz
wz

)
. (3.15)

The factor
(

n
wx+wy+wz

)
comes from the number of ways that wx +wy +wz qubits

can be acted on, and the
(
wx+wy+wz

wx

)(
wy+wz
wz

)
factor comes from the different ways

the single qubit operators act on a set of wx + wy + wz qubits.

One can rewrite the above expression for Λ̄Π as

Λ̄Π(ρ) = pwM
p
w(ρ) (3.16)

where Mp
w is the quantum channel given by

Mp
w(ρ) =

1

Nw

∑
Pi∈P⊗n1 :wt(P )=w

PiρPi. (3.17)

An interesting fact about Pauli channels is that eigenoperators of these chan-

nels are Pauli operators. To see this, note that for any two Pi, Pj ∈ P⊗n1 either

[Pi, Pj] = 0 or {Pi, Pj} = 0. If
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E(ρ) =
D2∑
i=1

pr(Pi)PiρPi. (3.18)

is a Pauli channel then for Pk ∈ P⊗n1 ,

E(Pk) =
D2∑
i=1

pr(Pi)PiPkPi

=
∑

i:[Pi,Pk]=0

pr(Pi)Pk −
∑

i:{Pi,Pk}=0

pr(Pi)Pk

=

 ∑
i:[Pi,Pk]=0

pr(Pi)−
∑

i:{Pi,Pk}=0

pr(Pi)

Pk

= C(Pk)Pk (3.19)

where C(Pk) is clearly in the interval [−1, 1]. Thus, as P⊗n1 forms an orthogonal

basis for B(H), Pauli channels are Hermitian, or self-dual.

By definition, PIP channels have the property of being invariant under per-

mutations. Hence all Pauli’s with the same weight vector w have the same eigen-

value λw under the action of the channel. Therefore for a Pauli and permutation

twirled channel Λ̄Π we can write

Λ̄Π(ρ) =
∑
w

λwM
λ
w(ρ) (3.20)

where the Mλ
w are quantum channels that are sums of projectors onto each Pauli

operator with weight vector w. In this form, composition of two PIP chan-

nels corresponds to multiplication of the eigenvalues λw. It can be shown [13]

that the λw can be estimated efficiently by experiments. More precisely, with

O

(
log(2(n

3

6
+n2+ 11n

6
+1))

ε2

)
experiments one can estimate each of the eigenvalues to

precision ε with constant probability.

There is a linear invertible mapping between the λw and pw, which is denoted

by Ω,

λw =
∑
v

Ωw,vpv. (3.21)
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As a matrix, Ω is n3

6
+ n2 + 11n

6
+ 1 by n3

6
+ n2 + 11n

6
+ 1. The expression for the

matrix entries of Ω and Ω−1 are computed to be,

Ωw,v =
tr
(
Mλ

w
†
Mp

v

)
tr
(
Mλ

w
†Mλ

w

) (3.22)

Ω−1
w,v =

tr
(
Mp

w
†Mλ

v

)
tr
(
Mp

w
†Mp

w

) . (3.23)

In the next section we look at the relationship between correctable codes for the

original and twirled channels.

3.2 Correctable Codes For Twirled Quantum

Channels

From the previous section, twirling a channel over P⊗n1 , C⊗n1 or Cn takes it to

one described by a polynomial number of parameters. The twirling operation

will be useful if it preserves, at least partially, properties of the original channel.

Specifically, one would hope that correctable codes of the twirled channel resem-

ble those of the original channel. As the following proposition shows, this is the

case.

Theorem 3 Let E be a quantum channel and Ē be the image of E under a twirling

operation with twirl operators given by a discrete subset of the unitary group

U(D). Then, a correctable triple for Ē is a correctable triple for E, up to a

unitary correction.

Proof: Let the Kraus operators for E be {Ea} and let the twirl operators

be {Ub}. Thus, a Kraus operator for Ē is UbEaU
†
b . Suppose that there exists a

correctable triple (R, Ē ,S) for Ē. Let {Rc} be the Kraus operators for the recovery

operation. Then from the section on correctable codes, there exists a projector P

such that ∀a, b, c

PRcUbEaU
†
bP = RcUbEaU

†
bP (3.24)

and
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RcUbEaU
†
b |P ∈ B(HA)⊗ 1B (3.25)

where HA⊗HB is such that B is the noiseless sector for R◦E. Now, look at the

channel U †i ◦ Ē ◦Ui for some i in the index set of the twirling elements. WOLOG,

let i = 1. By definition this channel is unitarily equivalent to Ē. The action of

this channel is

U †1 ◦ Ē ◦ U1(ρ) =
∑
b

∑
k

U †1UbEaU
†
bU1ρU

†
1UbE

†
aU
†
bU1. (3.26)

and so a Kraus operator for U †1 ◦ Ē ◦ U1 is U †1UbEaU
†
bU1. The projector P ′ =

U †1PU1, recovery operation R′ with Kraus operators R′c = U †1RcU1, and semigroup

S ′ = U †1SU1 are such that

P ′R′cU
†
1UbEaU

†
bU1P

′ = U †1PU1U
†
1RcU1U

†
1UbEaU

†
bU1U

†
1PU1

= U †1PRcUbEaU
†
bPU1

= U †1RcUbEaU
†
bPU1

= U †1RcU1U
†
1UbEaU

†
bU1U

†
1PU1

= R′cU
†
1UbEaU

†
bU1P

′ (3.27)

and

R′cU
†
1UbEaU

†
bU1|P ′ ∈ U †1 (B(HA)⊗ 1B)U1. (3.28)

Therefore (R′,U †1 ◦ Ē ◦ U1,S ′) is a correctable triple. If in the above equations we

set b = 1 we get

P ′R′cEaP
′ = R′cEaP

′ (3.29)

and

R′cEa|P ′ ∈ U
†
1B(HA)⊗ 1BU1. (3.30)

Thus, (R′, E ,S ′) is a correctable triple and so, up to a unitary correction, a

correctable code for Ē is correctable for E.
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As the composition of two twirls is itself a twirl, we have that the above propo-

sition holds for a channel Λ̄Π twirled over both P⊗n1 (or C⊗n1 ) and random qubit

permuations. Moreover, as both P⊗n1 and C⊗n1 contain the identity, there is no

unitary correction.

The converse is clearly not true for when the twirling elements are taken from

the Clifford group, Cn, the twirled channel is depolarizing. A more interesting

counter-example is that of the collective rotation channel [20] twirled over P⊗n1 .

Noiseless susbsystems for the collective rotation channel are lost when this twirl is

performed as the symmetry of the noise acting in the same direction on all qubits

is broken. The following is a specific case of the above proposition, however the

proof relies only on the commutation relations of the Pauli operators.

Proposition 10 Let E be a quantum channel and Ē be the P⊗n1 twirled channel

for E. Then a noiseless subsystem for Ē is a noiseless subsystem for E.

Proof: First, note that Ē is a unital quantum channel [9]. As well, for unital

channels it is known that the commutant for the Kraus operators and fixed point

sets coincide (see appendix 3). Thus, noiseless subsystems may be found from

an analysis of the commutant. Moreover, any noiseless subsystem for a unital

quantum channel must reside in the commutant of the channel [8]. Hence if we

show that an element in the commutant of the Pauli twirled channel must be an

element of the commutant of the original channel, we are done.

Indeed, let {Ea} be the Kraus operators for E. Then, a Kraus operator for Ē
is of the form PbEaPb. Suppose A is in the commutant of Ē, that is, APbEaPb =

PbEaPbA ∀a, b. Since Ē is unital, A is in the fixed-point algebra of Ē, however

this algebra is generated by a subset of the Pauli operators. So, WOLOG, let A

be a Pauli operator and fix a, b. Then

APbEaPb = PbEaPbA

⇒ PbAPbEaPb = EaPbA

⇒ PbAPbEa = EaPbAPb

⇒ AEa = EaA (3.31)

where the last implication holds because of the commutation and anti-commutation

relations of the Pauli operators. Thus, A is in the commutant of E and so the

commutant of Ē is a ∗sub-algebra of the commutant of E. Therefore noiseless

subsystems for Ē are noiseless subsystems for E.
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Now that we have shown correctable codes for twirled channels are correctable

for the original channel, the next question is how to find correctable codes for

the twirled channel. Before discussing an algorithm for finding codes for the

twirled channel some interesting properties of Pauli channels are given in the

next section.

3.2.1 UCS Codes for Pauli Channels

The following is a useful result for finding UCS codes of Pauli channels.

Proposition 11 Let Λ be a unital, diagonalizable quantum channel with eigen-

values λi and eigenoperators Li. Then, the noise commutant of Λ†◦Λ is generated

by the eigenoperators Li with eigenvalues satisfying |λi| = 1.

Proof: Λ is unital, thus so is Λ† ◦Λ. Moreover, Λ is diagonalisable, so Λ† ◦Λ

has eigenoperators Li with eigenvalues λ∗iλi = |λi|2, where the λi are the eigen-

values of Λ. Since Λ† ◦ Λ is unital, its fixed point algebra and noise commutant

coincide, and both are generated by the eigenoperators Li with |λi|2 = 1.

Pauli channels are unital channels and, since they are diagonalisable and

Hermitian, these channels have a particularly simple fixed-point set structure.

In particular, we immediately obtain the following result.

Corollary 1 Let Λ̄ be a Pauli channel. Then the noise commutant of Λ̄† ◦ Λ̄ is

the algebra generated by the eigenoperators with eigenvalues ±1.

Hence, from [26], we have that all UCS codes for a Pauli channel are found from

the algebra generated by the Pauli operators with eigenvalues ±1.

Another intereseting property of Pauli channels that follows from the above

proposition is that every UCS is a UNS.

Corollary 2 A UCS code of a Pauli channel E is also a UNS.

Proof: Let the subsystem B of a semigroup S be a UCS for E. By definition,

B is a UNS for E if ∀n ∈ N, B is a UCS for En. Since E is unital, En is unital for

every n ∈ N. Hence, B is a UNS for E if and only if it is a noiseless subsystem

of (En)† ◦ En for every n ∈ N. As E is Hermitian, E† = E, and thus we have

that (En)† ◦ En = (E† ◦ E)n. So we must show that B is a noiseless subsystem of

(E† ◦ E)n for every n ∈ N.
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B is a UCS for E if and only if B is a noiseless subsystem of E† ◦ E. Since

the eigenvalues of E are real, there are no negative eigenvalues for E† ◦ E = E2

and so the fixed point set of E† ◦ E is identical to the fixed point set of (E† ◦ E)n.

Thus, B is a noiseless subsystem of (E† ◦ E)n = (En)† ◦ En for every n ∈ N.

3.3 Algorithm For Finding UCS Codes of Twirled

Quantum Channels

We now discuss an algorithm which uses the eigenvalues of Λ̄Π to find UCS codes

for Λ̄Π. From the previous section, UCS codes found in this manner are also UCS

codes for Λ.

By [19, 26], there exists an algorithm for finding all UCS codes of a unital

channel Λ if the linear structure of the commutant of Λ† ◦Λ is known. However,

this algorithm requires the manipulation of exponentially large matrices. Since

the Pauli operators form an eigenbasis for PIP channels, the fixed point algebra

of Λ̄†Π ◦ Λ̄Π is the algebra of polynomials generated by the eigenvalue ±1 Pauli

operators.

A simple way to find UCS codes is to partition the eigenvalue ±1 Pauli

operators into triplets which satisfy the single qubit Pauli commutation relations.

These commutation relations can be computed without writing the observables

explicitly in a particular representation. For finding noiseless subsystems, one

would restrict their attention to the eigenvalue 1 Pauli operators. In this case,

choosing the largest number K of mutually exclusive triplets which commute with

each other, one implicitly describes how to encode a noiseless Hilbert space of

dimension 2K .

The encoding of the noiseless qubits is performed by a unitary operation that

maps the first triplet to the set {X ⊗ 1⊗n−1, Y ⊗ 1⊗n−1, Z ⊗ 1⊗n−1}, the second

triplet to the set {1⊗X ⊗ 1⊗n−2, 1⊗ Y ⊗ 1⊗n−2, 1⊗Z ⊗ 1⊗n−2}, and so on up

to the K’th triplet.

The unitary which performs the encoding of these n qubits is guaranteed to

be in the Clifford group since it maps a set of Pauli operators to another set

of Pauli operators with the same commutation relations. Standard techniques

can be applied to determine which Clifford group operations implement a desired

encoding [1].

This discussion leads to the following algorithm for finding UCS codes given

the eigenvalues of the PIP channel Λ̄Π:
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(i)Enumerate the Pauli operators with eigenvalues ±1 under the action of Λ̄,

Denote the set of these operators by F.

(ii) Choose a triplet of Pauli operators satisfying the single qubit Pauli com-

mutation relations. If none can be found, the search is over.

(iii) If such a triplet can be found, remove it from F, as well as all operators

that do not commute with the triplet, and go back to step (ii).

The number of mutually exclusive triplets found in this manner corresponds to

an allowable number of UCS codes of dimension 2 that can be protected from the

action of Λ̄Π. Finding noiseless subsystems is similarly simple. The only change

to the above algorithm is in step (i) where one will enumerate all Pauli operators

in the ±1 eigenspace. The question as to whether this algorithm can find all

noiseless and unitarily correctable encodings for a PIP channels remains open.

3.3.1 Examples of the Algorithm

Some simple examples of how to use the algorithm are as follows:

Example 1: Consider the 2 qubit PIP channel with Kraus operators proportional

to {11, ZZ}. The Pauli operators with eigenvalue 1 are 11, XX, Y Y, ZZ,XY, Y X,

and 1Z,Z1. Out of this set, {XX,XY,1Z} satisfy the commutation relations,

and no other triplets which commute with these can be found. Hence, a single

qubit can be encoded noiselessly through this channel.

Example 2: Consider the 2 qubit PIP channel with Kraus operators proportional

to {11, Y X,XY }. The eigenoperators with eigenvalue 1 are 11, XY, Y X, and

ZZ. There are no triplets with the right commutation relations. The eigenoper-

ators with eigenvalues -1 are 1Z,Z1, XX, Y Y . If we consider the ±1 eigenspace,

we obtain the same eigenoperators with eigenvalue 1 as the previous example,

and thus there exists a UCS consisting of a single qubit.

In the case of the previous examples, we want to map the generating set of

Pauli operators {1X,1Z} to the generating set {XX,1Z}, which can be done

by a controlled-NOT gate. The second qubit is the control, and the first qubit

is the target. The next section deals with robustness of the above protocol.

3.4 Robustness of the Method

There is always error in experimentally determining the values of λi. Suppose

that the above algorithm is used to find a set of k qubits and the 3k Pauli
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operators in the k triplets from the algorithm are experimentally determined to

have eigenvalues no smaller than 1− ε for some ε ≥ 0. Let these Pauli operators

be Ki,j where the first index runs from 1 to 3 and determines which single qubit

Pauli Ki,j represents. If i = 1 then the operator represents Pauli X and so on.

The second index runs from 1 to k and represents the j’th qubit. We want to

use these 3k Pauli operators to transmit k qubits reliably through the twirled

channel Λ̄Π. We first prove a result that puts a bound on the eigenvalue of any

product of two operators Ki,j, Kl,m for Λ̄Π.

Theorem 4 Suppose Ki,j and Kl,m are two Pauli operators whose eigenvalues,

λ(Ki,j), λ(Kl,m) under Λ̄Π are bounded below by 1 − ε. Then the eigenvalue of

Ki,jKl,m is bounded below by 1− 3ε.

Proof: Define Q = Ki,j and R = Kl,m. We know that

λ(Q) = pr(Q)− pr(Q)

≥ 1− ε (3.32)

where pr(Q) is the probability that a randomly chosen Pauli operator commutes

with Q and pr(Q) is the probability that a randomly chosen Pauli operator anti-

commutes with Q. Hence since pr(Q) + pr(Q) = 1 we get,

pr(Q) ≥ 1− ε

2
. (3.33)

This implies that pr(Q) ≤ ε
2
. Analogous equations hold for R. For the Pauli

operator QR we have,

λ(QR) = pr(QR)− pr(QR). (3.34)

Note that

pr(QR) = pr(Q ∧R) + pr(Q ∧R) (3.35)

where pr(Q ∧ R) is the probability that a randomly chosen Pauli operator com-

mutes with both Q and R, and pr(Q̄∧R) is the probability that a randomly chosen

Pauli operator anti-commutes with both Q and R. As well,

pr(QR) = pr(Q ∧R) + pr(Q ∧R) (3.36)
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where pr(Q ∧ R) is the probability that a randomly chosen Pauli operator anti-

commutes with Q and commutes with R, and similarly for pr(Q ∧R).

Now we have the equations,

pr(Q ∧R) = pr(Q) + pr(R)− pr(Q ∨R) (3.37)

and

pr(Q ∧R) = pr(Q) + pr(R)− pr(Q ∨R) (3.38)

where pr(Q ∨ R) is the probability that a randomly chosen Pauli operator com-

mutes with Q or commutes with R, and similarly for pr(Q ∨ R). Hence since

pr(Q ∨R) ≤ 1 we get

pr(Q ∧R) ≥ 1− ε

2
+ 1− ε

2
− 1

= 1− ε. (3.39)

Similarly, since pr(Q ∨R) ≥ 1− ε
2
,

pr(Q ∧R) ≤ ε

2
+ 1− (1− ε

2
)

= ε. (3.40)

By symmetry, pr(Q ∧R) ≤ ε. Finally, with pr(Q ∧R) ≥ 0 we get,

λ(QR) ≥ 1− ε+ 0− ε− ε
≥ 1− 3ε (3.41)

which proves the theorem.

We immediately obtain the following corollary.

Corollary 3 If the Ki,j have eigenvalue bounded below by 1−ε then any element

in the algebra generated by these operators has eigenvalue bounded below by 1−
3k2ε where k is the number of qubits.
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Proof: By linearity, we need only show that for a collection of Pauli operators

{Kij ,j}kj=1 with eigenvalues bounded below by 1 − ε, the product Πk
j=1Kij ,j has

eigenvalue bounded below by 1 − 3k2ε. Here Kij ,j is essentially a single qubit

Pauli operator acting on the j’th qubit. When k is even,

Πk
j=1Kij ,j = Ki1,1Ki2,2...Kik−1,k−1Kik,k

= (Ki1,1Ki2,2) ...
(
Kik−1,k−1Kik,k

)
(3.42)

where from the above theorem, for each j ∈ {0, ..., k−1}, the operators {Rij ,j}
k
2
j=1 =

Kij ,jKij+1,j+1 have eigenvalue bounded below by 1−3ε. Iterating this process with

these new operators until all of the operators have been multiplied together results

in a number of steps equal to log2k and we get the lower bound for λ
(
Πk
j=1Kij ,j

)
of 1− 3log2kε.

If k is odd then we get the lower bound of 1− 3log2(k−1)+1ε. In either case,

λ
(
Πk
j=1Kij ,j

)
≥ 1− 3log2k+1ε

≥ 1− 3(4log2k)ε

= 1− 3k2ε (3.43)

which proves the corollary.

Using these results we can show that the protocol is robust. Suppose the Ki,j

are such that the square of their eigenvalues, λKi,j, under Λ̄Π are experimentally

determined to be bounded below by 1− ε. Hence, from above the eigenvalue of

any product of these operators for Λ̄†Π ◦ Λ̄Π is bounded below by 1− 3k2ε. When

ε is 0 these operators form a k qubit noiseless subsystem for Λ̄†Π ◦ Λ̄Π and hence

a k qubit UCS for Λ̄Π.

Suppose we want to send a k qubit state through Λ̄Π using this code. We

would like to determine a lower bound on the fidelity between the input and

output states. Let us assume the input state is pure. As the physical state space

is comprised of n qubits, the input state will be adjoined to an ancilla state in

the remaining n-k qubits. Suppose that the initial state is ρ0 ⊗ ρanc where ρ0 is

the k qubit state to be transmitted and ρanc is an n-k qubit ancilla state. Let
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ρ0 =
22k−1∑
i=0

ρ0
iPi (3.44)

be a pure state where Pi ∈ P⊗k1 and

ρanc =
22(n−k)−1∑

j=0

ρancj Pj (3.45)

with Pj ∈ P⊗(n−k)
1 . Hence,

ρ0 ⊗ ρanc =
22k−1∑
i=0

ρ0
iPi ⊗

22(n−k)−1∑
j=0

ρancj Pj

=
1

2n−k

22k−1∑
i=0

ρ0
iPi ⊗ 12n−k +

22k−1∑
i=0

22(n−k)−1∑
j=1

ρ0
i ρ
anc
j Pi ⊗ Pj (3.46)

From above there is a Clifford operation that maps Pi ⊗ 12n−1 to Ki,1 and so

on for each of the k qubits. Call this Clifford element the encoding operation

and label it as ENC. Then,

ENC
(
ρ0 ⊗ ρanc

)
=

1

2n−k

22k−1∑
i=0

ρ0
iMi +

22k−1∑
i=0

22(n−k)−1∑
j=1

ρ0
i ρ
anc
j Ri,j (3.47)

where the first sum represents the encoded state, with {Mi}22k−1
i=1 being all prod-

ucts of the Ki,j. The second sum is over Pauli operators Ri,j such that no Ri,j is

the identity. We send this state through Λ̄Π to obtain

Λ̄Π

(
ENC

(
ρ0 ⊗ ρanc

))
=

1

2n−k

22k−1∑
i=0

λMi ρ
0
iMi +

22k−1∑
i=0

22(n−k)−1∑
j=1

λRi,jρ
0
i ρ
anc
j Ri,j.

Applying the decoding procedure and tracing out the n-k ancilla qubits eliminates

the second sum because it contains only non-identity Pauli operators. Hence the

output state ρF is
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ρF =
22k−1∑
i=0

λiρ
0
iPi (3.48)

Since ρ0 was assumed to be a pure state, the fidelity of ρ0 and ρF is given by

tr(ρ0ρF ). However,

tr(ρ0ρF ) = tr

22k−1∑
i=0

ρ0
iPi

22k−1∑
j=0

λjρ
0
jPj


= 2k

22k−1∑
i=0

(
ρ0
i

)2
λi

≥ miniλi

2k
22k−1∑
i=0

(
ρ0
i

)2


= miniλi

[
tr(
(
ρ0
)2

)
]

≥ 1− 3k2ε (3.49)

where we have used the fact that tr((ρ0)
2
) = 1 since the trace of the square of a

pure state is 1. By concavity of fidelity, this bound holds for any input state and

so the procedure is robust. The next section shows that other useful information

about a quantum process can be obtained by twirling. Specifically, one can gain

information regarding the Markovicity of the channel.

3.5 A Composition Law for Twirled Markovian

Quantum Channels

The quantum operation formalism presented to this point describes the evolution

of a quantum system from one specific time instance to another. A more general

method of description is to model the evolution of the system in a continuous

manner.

Definition 10 One Parameter Family of Quantum Channels

Let Λ(t) denote a mapping from the non-negative real numbers to the space

of quantum channels acting on B(H). Such a mapping is called a one parameter

family of quantum channels.
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A one parameter family that does not have any memory effects is called Marko-

vian.

Definition 11 Markovian Quantum Process

Λ(t) is a Markovian quantum process [5] if

1. Λ(0) = 1.

2. For any t1, t2 ≥ 0, Λ(t2 + t1) = Λ(t2) ◦ Λ(t1).

For t1, t2 ≥ 0, let Λt1→t2 denote the quantum channel given by Λ(t) acting

from t1 to t2.

Theorem 5 Let Λ(t) be a Markovian quantum process and Λ̄0→δt, Λ̄δt→2δt be

P⊗n1 (C⊗n1 ) twirls of Λ(δt) = Λ0→δt and Λδt→2δt respectively. Then the eigenvalues

c̃w associated with the channel Λ̄δt→2δt ◦ Λ̄0→δt are the squares of the eigenvalues

cw associated with Λ̄0→δt.

Proof: Since Λ(t) is Markovian,

Λ0→2δt = Λ0→δt ◦ Λ0→δt. (3.50)

Moreover by definition,

Λ0→2δt = Λδt→2δt ◦ Λ0→δt. (3.51)

This implies that

Λ̄δt→2δt ◦ Λ̄0→δt = Λ̄0→δt ◦ Λ̄0→δt. (3.52)

Λ̄0→δt is diagonalizable with orthogonal eigenbasis given by P⊗n1 and the cw are

the eigenvalues of Λ̄0→δt implies that c2
w are the eigenvalues of Λ̄0→δt ◦ Λ̄0→δt.

Hence since c̃w are the eigenvalues of Λ̄δt→2δt ◦ Λ̄0→δt, the c̃w are the squares of

the cw.

The above theorem shows that twirling a quantum process can lead to extrac-

tion of useful information regarding Markovicity of the original channel. Indeed,

if the eigenvalues of Λ̄δt→2δt◦ Λ̄0→δt are not equal to the squares of the eigenvalues

of Λ̄0→δt, then Λ(t) can not have been a Markovian process.
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3.5.1 Non-Markovian Channels Don’t Obey A Composi-

tion Law

A natural question to ask is whether non-Markovian processes obey the above

constraint on the eigenvalues when the channel is twirled. It is clear that, in

general, a non-Markovian process will not satisfy this condition. A counter-

example is the non-Markovian process on a system S given by the circuit below.

|+〉 〈+|E • •

|0〉 〈0|S �������� ��������
Figure 3.1: C-NOT Gates in Series as a Non-Markovian Process

This operation is clearly equal to the identity. The system of interest, S, is

a single qubit that is coupled to an environment E, also comprised of a single

qubit. The initial state ρES = |+〉〈+|E ⊗ |0〉〈0|S is a product state, and hence

by Stinespring’s dilation theorem the entire dynamics for S is described by a

CP map. However, one can see that the input to the second C-NOT gate is the

maximally entangled state given by

CNOT (ρES) =
1

2
(|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|

+|1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|) (3.53)

7→


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 . (3.54)

Hence the dynamics for S after the initial CNOT gate is non-CP, and so the

overall dynamics for S is non-Markovian.

Let us assume that each of the CNOT gates is executed in time δt. We can

test the eigenvalue condition by Clifford twirling S on each gate, as shown in the

circuit diagram below.

49



|+〉 〈+|E • •

|0〉 〈0|S Ci �������� C†i Cj �������� C†j

Figure 3.2: Clifford Twirling a Non-Markovian Process

Recall that the Clifford group on n qubits is a unitary 2-design, that is, for

all quantum channels Λ and states ρ,

1

|C⊗n1 |
∑

Uk∈C⊗n1

U †kΛ(UkρU
†
k)Uk =

∫
U(D)

U †Λ(UρU †)U (3.55)

where the integral is with respect to the Haar measure on U(D). In [16], a

condition is given for a finite set of unitary operators to constitute a unitary

2-design. If G = {U1, ..., UK} is a set of unitary operators, then G constitutes a

2-design if and only if

∑
Uk,Uk′∈G

|tr(U †kUk)|4

K2
= 2 (3.56)

Thus, one can use any set of operators that constitute a 2-design to perform

a Clifford twirl, since the action of either will be the same. The following set of

unitary matrices constitutes a 2-design on a single qubit, as can easily be verified.
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U1 = 1

U2 = e
iπX

2

U3 = e
iπY
2

U4 = e
iπZ
2

U5 = e
iπX

4 e
iπY
4

U6 = e
−iπX

4 e
iπY
4

U7 = e
iπX

4 e
−iπY

4

U8 = e
−iπX

4 e
−iπY

4

U9 = e
iπY
4 e

iπX
4

U10 = e
−iπY

4 e
iπX

4

U11 = e
iπY
4 e

−iπX
4

U12 = e
−iπY

4 e
−iπX

4 (3.57)

The eigenvalue condition is tested by calculating the cw values directly after

the first Clifford twirl, and the c̃w values after the second Clifford twirl. Since

S is a single qubit, there are two possibilities, 0 and 1, for w. As the CNOT

gates can not be decomposed into a gate acting on S alone, one can not explicitly

calculate the cw or (c̃w) values as eigenvalues of some twirled channel. Instead,

we must revert to the original definition of these quantities as described in [13].

We have for cw (and similarly for c̃w),

cw = 2qw − 1 (3.58)

where qw is the probability that, upon measurement in the computational basis,

a random subset of w qubits has even parity. Hence, q0 and c0 are always 1.

We calculate the density operator of the composite system both directly after

the first twirl, and after the second twirl. Labeling these as ρ and ρ̃ respectively,

we have,

ρ =


1
2

0 0 0

0 0 0 0

0 0 1
6

0

0 0 0 1
3

 , (3.59)
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ρ̃ =


1
2

0 0 0

0 0 0 0

0 0 5
18

0

0 0 0 2
9

 . (3.60)

This gives reduced density operators ρs and ρ̃s

ρs =

[
2
3

0

0 1
3

]
, (3.61)

ρ̃s =

[
7
9

0

0 2
9

]
. (3.62)

Clearly, q1 is just the probability of obtaining 0 from a measurement in the

computational basis, and so q1 = 2
3
. Similarly, q̃1 = 7

9
. Thus, c1 = 1

3
and c̃1 = 5

9
,

which shows that c̃1 6= c2
1. Hence the eigenvalue condition is not satisfied for this

non-Markovian process on S.

3.6 Conclusion

We have discussed twirling a quantum channel Λ over a subset of U(D) and in

particular over the Pauli and permutation groups. This specific twirl results in

a channel Λ̄Π that is described by a number of parameters that is polynomial in

the number of qubits comprising the system. These parameters can be estimated

efficiently in an experimental setting and so the twirled channel can be estimated

without resorting to quantum process tomography.

We have shown that useful partial information for Λ can be gained via

twirling. Correctable codes for the channel resulting from twirling Λ over any

discrete subset of U(D) are also correctable for Λ up to some unitary operation.

We proved various results regarding UCS codes for Pauli channels that naturally

lead to an algorithm for finding these types of codes. The algorithm is exponen-

tial however it does not involve operations on exponentially large matrices. Some

simple examples of the algorithm were given and the protocol was shown to be

robust against experimental error.

When Λ is Markovian and the twirl is over the Pauli and permutation groups,

the twirled channel obeys a specific composition law. Hence if this law is not
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satisfied, the original channel can’t be Markovian. It was shown that a general

non-Markovian channel will not satisfy such a composition law.

3.7 Further Work

There are some open questions remaining from this work. While we have shown

that correctable codes for Λ are correctable for Λ̄Π up to a unitary correction,

it is not clear how to quantify the loss of possible codes from a twirling proce-

dure, specifically when twirling over the Pauli group and random permutations.

Finding the amount of codes that are lost will give an idea as to how useful the

protocol presented here is. The algorithm presented for finding UCS codes for

the twirled channel still has a large overhead. It would be useful to find a way of

using the algebraic relations of the Pauli operators to obtain a polynomial time

algorithm for finding a UCS code for Λ̄Π. In addition, finding the largest possible

UCS code for Λ̄Π via this algorithm would be of interest.

A more general question is the existence of unitary t-designs for t ≥ 2. As we

have shown, the Clifford group forms a unitary 2-design and twirling a channel

over the Clifford group gives direct information regarding the average fidelity of

the channel. It can be seen that if one wants information about the variance of

the fidelity as a distribution, a unitary 4-design is required. Similarly, informa-

tion about higher order moments of the fidelity distribution require higher order

unitary t-designs.
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Appendix A

Group Theory, The Quantum

Fourier Transform and

Applications to Quantum

Algorithms

A.1 The Cyclic Quantum Fourier Transform

Before defining the quantum Fourier transform, we recall the classical discrete

Fourier transform (CDFT).

Definition 12 Classical Discrete Fourier Transform

The CDFT is a mapping FC : CN → CN defined by (x0, ..., xN−1)→ (y0, ..., yN−1)

where

yk =
1√
N

N−1∑
j=0

xje
2πijk
N . (A.1)

The cyclic QFT is defined similarly in the following manner.

Definition 13 Cyclic Quantum Fourier Transform

Let the Hilbert space H have dimension N and suppose H has orthonormal

basis B = {|0〉, ..., |N − 1〉}. The cyclic QFT is a mapping FN : H → H defined

by {|0〉, ..., |N − 1〉} → {|y0〉, ..., |yN−1〉} where
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|yk〉 =
1√
N

N−1∑
j=0

e
2πijk
N |j〉. (A.2)

If one writes out a general state in B as

|ψ〉 = x0|0〉+ ...+ xN1|N − 1〉 → (x0, ..., xN−1) (A.3)

then

FN |ψ〉 = x0FN |0〉+ ...+ xN1FN |N − 1〉

= x0
1√
N

N−1∑
j=0

e
2πij0
N |j〉+ ...+ xN−1

1√
N

N−1∑
j=0

e
2πij(N−1)

N |j〉

=
1√
N

(
x0e

2πi00
N + ...+ xN−1e

2πi0(N−1)
N

)
|0〉+ ...

+
1√
N

(
x0e

2πi(N−1)0
N + ...+ xN−1e

2πi(N−1)(N−1)
N

)
|N − 1〉

= y0|0〉+ ...+ yN−1|N − 1〉 → (y0, ..., yN−1) (A.4)

where the yi are as defined in the CDFT. Hence the cyclic QFT is just the CDFT

when one represents a state by its coordinates in the computational basis. It is

easy to verify that the cyclic QFT is a unitary transformation.

Clearly, from the definition of the cyclic QFT, the representation of the cyclic

QFT in the basis B is

FN 7→
1√
N



1 1 1. . . . 1

1 ωN ω2
N . . . ωN−1

N

1 ω2
N ω4

N . . . ω
2(N−1)
N

. . . . . . .

. . . . . . .

. . . . . . .

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)2

N


where ωN is the primitive N -th root of unity e

2πi
N . This can also be written using

the outer product formalism
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F =
∑

g,h∈ZN

ωghN |g〉〈h| (A.5)

As we will see, the cyclic QFT is a specific case of a more general definition

of a quantum Fourier transform over finite abelian groups. As suggested by its

name, the cyclic QFT results from the underlying group being cyclic.

Next, we give a simple formula for the output of the cyclic QFT for an n-fold

tensor product of C2, ie. for an n-qubit Hilbert space. This will give insight

into what a quantum circuit decompostion for the cyclic QFT will look like. Let

N = 2n where n ∈ P. Write the basis {|0〉, ..., |2n − 1〉} in binary representation,

ie. |j〉 → |j1j2...jn〉 where j = j12n−1 + ...+ jn20. Then by definition,

|k〉 → 1

2
n
2

1∑
j1=0

...
1∑

jn=0

e
2πik

(
j12n−1+...+jn20

2n

)
|j1...jn〉

=
1

2
n
2

(
1∑

j1=0

e2πikj12−1|j1〉

)
⊗ ...⊗

(
1∑

jn=0

e2πikjn2−n|jn〉

)

=
1

2
n
2

(
|0〉+ e2πi(k12n−1+...+kn20)2−1|1〉

)
⊗ ...

⊗
(
|0〉+ e2πi(k12n−1+...+kn20)2−n|1〉

)
=

1

2
n
2

(
|0〉+ e2πi0.kn|1〉

)
⊗ ...⊗

(
|0〉+ e2πi0.k1...kn|1〉

)
(A.6)

where we have used e2πikm2n−r = 1 for km ∈ {0, 1} and r ≤ n, and the binary

fraction representation

0.klkl+1...kd =
kl
2

+
kl+1

22
+ ...+

kd
2d−l+1

(A.7)

As noted, this formula allows one to construct a simple quantum circuit im-

plementing the cyclic QFT over n qubits, which is given below. The circuit gives

the above state (in reverse order) for input |k〉 = |k1...kn〉. To get the correct

order, one needs to use n
2

swap gates. Hence, by inspection, the circuit uses

O(n2) = O(log2(N)) elementary gates or operations. Therefore the circuit is

polynomial in the number of qubits n and poly-logarithmic in N .

It can be shown that there exist circuit decompositions that approximate the

cyclic QFT for any N ∈ N which uses a number of gates poly-logarithmic in N
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|k1〉 H R2 · · · Rn−1 Rn

|k2〉 • H · · · Rn−2 Rn−1

...
...

|kn−1〉 • • · · · H R2

|kn〉 • • · · · • H

Figure A.1: Circuit Decomposition for Cyclic QFT

[30]. The circuit decompositions for arbitrary N ∈ N are more complicated than

for N = 2n.

A.2 Group Representations and Characters

Definition 14 Group

A group is a set G together with a binary operation denoted by + in additive

notation (or · in multiplicative notation) that satisfies the following properties:

1. ∀ a, b, c ∈ G, a+ (b+ c) = (a+ b) + c (Associativity)

2. ∃0 ∈ G ∀a ∈ G, a+ 0 = 0 + a (Identity)

3. ∀a ∈ G ∃b ∈ G, a+ b = 0 = b+ a (Inverses)

The element b in 3 above is called the inverse of a, and is denoted by −a in

additive notation. G will be used to denote both the set on which the group

operation is defined and the group itself.

When the binary operation is also commutative G is called abelian. An

example of a finite abelian group is given by the integers modulo n. A useful

group in mathematics is that of the invertible n by n matrices over a field F. This

group is called the general linear group of dimension n and denoted GL(n, F ).
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Definition 15 Homomorphism

A homomorphism from a group G into a group H is a function f that satisfies

f(a+ b) = f(a) + f(b) (A.8)

∀ a, b ∈ G. If in addition f is one to one and onto, f is called an isomorphism.

Definition 16 Group Representation

A representation of a group G on Cn is a group homomorphism from G into

GL(n,C).

A representation of a group G on Cn will just be called a representation.

Unless otherwise stated, the group operation on the generic group G will be

taken to be additive.

Definition 17 Group Character

Let G be a group and σ : G→ GL(n,C) be a representation of G. If n=1 we

call σ a character of G. The character χ : G→ C/{0} defined by χ(g) = tr(σ(g))

is called the character of G afforded by σ.

The set of characters of G will be denoted char(G).

Proposition 12 If χ is a character of a finite group G, then each function value

χ(g) is a root of unity.

Proof: Let g ∈ G. Since G is finite, |g| is finite and so let |g| = n. If e

denotes the identity in G, then since χ is a homomorphism,

1 = χ (e) = χ (ng) = χ (g)n (A.9)

Hence χ(g) is a root of unity

Since char(G) is just the set of homomorphisms from G into C/{0}, char(G) is

an abelian group, called the character group, under the multiplicative operation

defined by fg(a) = f(a)g(a). The identity of the group is called the principal

character and maps every element of G to 1. The rest of the discussion will

involve only finite abelian groups.

The following is a structure theorem for finite abelian groups. A proof can

be found in [38].
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Theorem 6 Let G be a finite abelian group such that |G| > 1. Let the unique

factorization of |G| into primes be

|G| = pα1
1 ...p

αn
n (A.10)

where p1 > ... > pn. Then,

1. G ∼= A1 ⊕ ...⊕ An where |Ai| = pαii

2. ∀Ai ∈ {A1, ..., An}

Ai ∼= Z
p
β1
i
⊕ ...⊕ Z

p
βt
i

(A.11)

where β1 ≥ ... ≥ βt ≥ 1, β1 + ...+ βt = αi, and t and each βj depend on i.

By the above structure theorem, we will WOLOG suppose throughout the

rest of the presentation that the generic group G has a decomposition of the form

G ∼= ZN1 ⊕ ...⊕ ZNk (A.12)

where the Ni are prime powers. Hence for any g ∈ G we can make the association

g 7→ (g1, ..., gk) (A.13)

where gi ∈ ZNi . Denote the identity of G by e 7→ (0, ..., 0). Let β1 7→ (1, 0, ..., 0),

β2 7→ (0, 1, 0, ..., 0) ,..., βk 7→ (0, 0, ..., 1) and note that any element g = (g1, ..., gk)

can be written as

g 7→ g1β1 + ...+ gkβk =
k∑
i=1

giβi. (A.14)

Theorem 7 A finite abelian group G is isomorphic to char(G)

Proof: Let χ : G→ C be a character of G. Then we have

χ(g) = χ

(
k∑
j=1

gjβj

)
=

k∏
j=1

χ (βj)
gj (A.15)

which implies that χ is completely determined by its action on the βj. Moreover,

since the βj have order Nj, χ(βj) must have order dividing Nj. Therefore χ(βj) =
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ω
hj
Nj

where ωNj is the primitive Njth root of unity e
2πi
Nj and hj is an integer in

{0, 1, ..., Nj − 1}.

This gives that any given character χ : G → C is determined by a k-tuple

(h1, ..., hk) and clearly each such k-tuple is associated with an element in G in a

one to one manner. Therefore the characters may be labeled uniquely by elements

of G and a character χg is given by

χg(h) =
k∏
j=1

ω
gjhj
Nj

(A.16)

for h ∈ G. Note from the above that ∀g, h ∈ G,

χg(h) = χh(g) (A.17)

and

χg(−h) =
1

χg(h)
. (A.18)

Multiplication in the character group is given by χgχh = χg+h, where χe is

the identity. Therefore the mapping g 7→ χg is a homomorphism and so an

isomorphism.

Next we introduce the notion of orthogonal elements relative to a set.

Definition 18 Orthogonal Element

Let G be finite and abelian and X ⊂ G with h ∈ G. We say that h is

orthogonal to X if ∀x ∈ X, χh(x) = 1.

Proposition 13 If X ⊆ G then the set of all elements that are orthogonal to X,

denoted X⊥, is a group

Proof: χe ∈ X⊥. If a, b ∈ X⊥ then for all x ∈ X, χa−b(x) = χx(a − b) =
χx(a)
χx(b)

= 1. Thus, a− b ∈ X⊥ and so X⊥ is a subgroup of G.

Definition 19 Orthogonal Subgroup

If H ≤ G then H⊥ is called the orthogonal subgroup for H.
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Theorem 8 Let χh ∈ char(G). Then

1. h = e⇒
∑

g∈G χh(g) = |G|

2. h 6= e⇒
∑

g∈G χh(g) = 0

Proof:

∑
g∈G

χh(g) =
∑

g1∈ZN1

...
∑

gk∈ZNk

k∏
j=1

ω
hjgj
Nj

(A.19)

=

 ∑
g1∈ZN1

ωh1g1
N1

 ...

 ∑
gk∈ZNk

ωhkgkNk

 . (A.20)

If for some j, hj 6= 0 then ω
hj
Nj
6= 1 and so the geometric sum formula gives

∑
gj∈ZNj

(
ω
hj
Nj

)gj
=

1−
(
ω
hj
Nj

)Nj+1

1− ωhjNj
= 0 (A.21)

Now, hj 6= 0 for some j if and only if h 6= e. If h = e then clearly the sum is |G|.

Corollary 4 Label the elements of the finite abelian group G as {g1 = e, ..., g|G|}.
Then each character χh may be represented by a vector

1√
|G|


χh(g1)

.

.

.

χh(g|G|)


and the set of these vectors form an orthonormal basis for C|G|.

Proof: Let h, h′ ∈ G. Then

1

|G|
∑
g∈G

χh(g)χh′(g)∗ =
1

|G|
∑

g1∈ZN1

...
∑

gk∈ZNk

k∏
j=1

ω
hjgj
Nj

k∏
l=1

ω
−h′lgl
Nl

(A.22)

=
1

|G|
∑

g1∈ZN1

...
∑

gk∈ZNk

k∏
j=1

ω
(hj−h′j)gj
Nj

(A.23)
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From the above theorem this is 0 if and only if h 6= h′. Otherwise, if h = h′

it is 1. Hence the set of vectors forms an orthonormal basis in C|G|.

The following is proved in [30]

Theorem 9 The following relations hold:

1.

G/H ∼= H⊥ (A.24)

2.

H⊥⊥ = H. (A.25)

Using the representation and character theory introduced in this section we can

now define the quantum Fourier transform over more general groups than the

cyclic group.

A.3 The Finite Abelian Group Quantum Fourier

Transform

Suppose we associate the elements of G to an orthonormal basis of a finite di-

mensional Hilbert space of dimension |G| by g 7→ |g〉. By the decomposition

theorem for finite abelian groups, the Hilbert space will be assumed to have the

tensor product structure defined by g = (g1, ..., gk) 7→ |g1〉...|gk〉 = |g〉.

Definition 20 Quantum Fourier Transform, Translation Operator and Phase

Change Operator

We define the following three operators

1. The finite abelian group quantum Fourier transform

FG =
1√
|G|

∑
g,h∈G

χg(h)|g〉〈h| (A.26)

2. The translation operator
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Let t ∈ G.

τt =
∑
g∈G

|t+ g〉〈g| (A.27)

3. The phase change operator

Let h ∈ G,

φh =
∑
g∈G

χg(h)|g〉〈g| (A.28)

A direct result of the fact that char(G) forms an orthonormal basis in C|G| is

the Fourier transform defined above is a unitary operator. The next proposition

shows that FG can be decomposed as a tensor product of cyclic QFT’s using the

structure theorem for finite abelian groups.

Proposition 14 FG = ⊗kj=1FNj
Proof: We have that

FG =
1√
|G|

∑
g,h∈G

χg(h)|g〉〈h| (A.29)

=
1√
|G|

∑
g,h∈G

(
k∏
j=1

ω
gjhj
Nj

)
|g1〉...|gk〉〈...h1|...〈hk| (A.30)

=
1√
|G|

∑
g,h∈G

(
ωg1h1

N1
|g1〉〈h1| ⊗ ...⊗ ωgkhkNk

|gk〉〈hk|
)

(A.31)

=
1√
N1

 ∑
g1,h1∈ZN1

ωg1h1

N1
|g1〉〈h1|

⊗ ... (A.32)

⊗ 1√
Nk

 ∑
gk,hk∈ZNk

ωgkhkNk
|gk〉〈hk|

 (A.33)

= ⊗kj=1FNj (A.34)

The following is a simple result [30].

Theorem 10 For H ≤ G, let |H〉 = 1√
|H|

∑
h∈H |h〉. Then
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1.

FG|H〉 = |H⊥〉 (A.35)

2.

FGτt = φtFG (A.36)

Next, we state and prove the hidden subgroup problem using the results of

this section.

A.4 The Finite Abelian Hidden Subgroup Prob-

lem

First we give the statement of the hidden subgroup problem for finite abelian

groups.

Definition 21 The Finite Abelian Hidden Subgroup Problem (HSP):

Let G be a finite abelian group, X a finite set, and f : G → X a function

such that there is H ≤ G which satisfies the following property

∀a, b ∈ G, f(a) = f(b) if and only if a− b ∈ H. (A.37)

Then, with probability at least 1 − 1
|G| determine a generating set for H in

O(polylog|G|) operations.

There always exists the O(|G|) time algorithm for determiningH that involves

evaluating the image of each element under f. The question becomes whether

there exists an algorithm that reduces the naive O(|G|) time algorithm to one

that is O(polylog|G|) time. In the quantum case, the answer is yes, while in the

classical case there is no known O(polylog|G|) time algorithm. Before describing

the quantum algorithm we briefly discuss the assumptions.

Assumptions:

1. The finite set X will without loss of generality be thought of as the integers

modulo |X| under addition.
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2. The decomposition of G into a direct product of cyclic groups is known.

Given generators of G, finding such a decomposition is possible via a quantum

algorithm that runs in O(polylog|G|) time [7].

3. There is an efficient encoding of G and X to basis states of the quantum

computer being used. Thus, we assume that the first register of our quantum

computer is associated with G and the second register is associated with X.

4. There is a method of evolving the state of the system under a unitary op-

eration that is equivalent to calling the function f . This is done by assum-

ing there is a quantum ”black-box” that performs the unitary transformation

Uf |g〉|x〉 = |g〉|x ⊕ f(g)〉 where g ∈ G, x ∈ X. To see that Uf is unitary, note

that Uf |g1〉|x1〉 = Uf |g2〉|x2〉 if and only if |g1〉|x1 ⊕ f(g1)〉 = |g2〉|x2 ⊕ f(g2)〉.
Hence, g1 = g2 and x1 ⊕ f(g1) = x2 ⊕ f(g2). Therefore g1 = g2 and x1 = x2.

We can now present the polynomial time algorithm for solving the hidden

subgroup problem.

Algorithm:

1. Prepare the initial state |0〉|0〉 and apply FG to the first register to obtain the

state 1√
|G|

∑
g∈G |g〉|0〉

2. Apply Uf to obtain the state 1√
|G|

∑
g∈G |g〉|f(g)〉. Since f is promised to be

constant and distinct on cosets, if we let T = {t1, ..., tm} be a set of representatives

for the different cosets then

1√
|G|

∑
g∈G

|g〉|f(g)〉 =
1√
|T |

∑
t∈T

(
1√
|H|

∑
h∈H

|t+ h〉

)
|f(t)〉 (A.38)

=
1√
|T |

∑
t∈T

(τt|H〉) |f(t)〉 (A.39)

3. Apply FG to the first register to get 1√
T

∑
t∈T (FGτt|H〉)|f(t)〉. Then, by the

above theorems,
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1√
|T |

∑
t∈T

(FGτt|H〉)|f(t)〉 =
1√
T

∑
t∈T

(φtFG|H〉)|f(t)〉 (A.40)

=
1√
|T |

∑
t∈T

(φt|H⊥〉)|f(t)〉 (A.41)

(A.42)

Now, the action of φt on a state |g〉, g ∈ G, serves only to introduce a phase.

Hence if one performs a measurement on the first register in the basis {|g〉 : g ∈
G}, then in terms of measurement statistics, the above state is equivalent to

(
1√
|H⊥|

∑
h′∈H⊥

|h′〉

)
⊗

(
1√
|T |

∑
t∈T

|f(t)〉

)
(A.43)

Therefore performing a measurement on the first register is equivalent to uni-

formly sampling from H⊥.

This concludes the quantum mechanical aspects of the algorithm. Let us

determine the time cost of a single run of the above algorithm. The only resources

required are those needed for performing FG. By a result proved above,

FG = ⊗kj=1FNj (A.44)

where the Nj are the prime powers arising from the decomposition G ∼= ZN1 ⊕
... ⊕ ZNk . Now, since the Nj are powers of the primes that |G| factorizes into,

there are at most log|G| of them, ie. k ≤ log|G|. We also know that each cyclic

QFT FNj has a circuit decomposition requiring log(Nj)
2 gates. Hence, by the

decomposition for FG given above we have that the number of gates required to

implement FG is at most log|G|maxj{log(Nj)
2} which is bounded by log3|G|.

Hence there exist circuit decompositions for FG that are poly-logarithmic in |G|.

What remains is to find a generating set for H⊥ and, from this set, determine

a generating set for H. It can be shown [30] that choosing t + log|G| uniformly

random elements of any finite group G will generate G with probability at least

1 − 1
2t

. Hence, running the above algorithm t1 + log|H⊥| ≤ t1 + log|G| times

gives a generating set for H⊥ with probability at least 1 − 1
2t1

. It can also be

shown [30] that if one has a set of t1 generators for H⊥ then finding a uniformly

random element ofH is equivalent to randomly solving a set of t1 linear equations.
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Randomly solving this set of linear equations t2 + log|H| ≤ t2 + log|G| times

generates H with probability at least 1− 1
2t2

.

Solving the set of equations once can be done in O(log|G|loglog|G|) steps.

Therefore if one runs the algorithm t1 + log|G| times to get t1 generators of H⊥

with probability at least 1 − 1
2t1

, and then randomly solves the set of t1 linear

equations t2 + log|G| times, they will have a generating set of H with probability

at least (1− 1
2t1

)(1− 1
2t2

) in (t1 + log|G|)log3|G|+ (t2 + log|G|)O(log|G|loglog|G|)
operations. If we choose t1 = t2 = log|G| + 1 then the probability of success is

at least 1− 1
|G| with O(polylog|G|) number of operations.
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Appendix B

Concentration of Measure

B.1 Topology and Measure Theory

B.1.1 Topology

The following is a basic introduction to topology. A reference for further reading

is [32]

Definition 22 Topology

A topology τ on a set X is a subset of the power set, P(X), of X that satisfies

1. If Ai, i ∈ I, are in τ then ∪i∈IAi ∈ τ .

2. If A and B are in τ then A ∩B is in τ .

3. ∅, X ∈ τ .

Elements of τ are called open sets. A set X with a topology τ defined on it

is called a topological space and denoted (X, τ).

Definition 23 Open Cover, Compact Topological Space

If X is a topological space then an open cover of X is a subset Ai of τ such

that ∪i∈IAi = X. A compact topological space is one for which every open cover

contains a finite sub-collection that also covers X.

If X and Y are topological spaces with topologies τ1 and τ2, there is a natural

topology, τp, one can put on X × Y called the product topology. Elements of τp
are arbitrary unions of sets of the form U × V where U ∈ τ1 and V ∈ τ2.
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Definition 24 Continuous Function

A function, f, from a topological space (X, τ1) to a topological space (Y, τ2) is

called continuous if for every open set V in τ2, f−1(V ) is open in τ1.

Definition 25 Topological Group

A topological group is both a group and a topological space (X, τ) such that

1. The group operation is continuous from (X ×X, τp) to (X, τ).

2. The mapping defined by g → g−1 ∀g ∈ X is continuous from (X, τ) to (X, τ).

An example of a compact topological group is the unitary group U(D) un-

der the usual operation of multiplication. A compact Lie group [28] is, loosely

speaking, a differentiable manifold with a group operation that is smooth with

respect to the defined manifold. U(D) is a compact Lie group as a submanifold

of CD2
.

B.1.2 Measure Theory

The following is a basic introduction to measure theory. A reference for further

reading is [6].

Definition 26 Algebra, σ-Algebra

Let X be a set and M be a subset of P(X). M is called an algebra of sets if

1. ∅ ∈ M.

2. A,B ∈M ⇒ A ∪ B ∈M.

3. A ∈M ⇒ X \A ∈M.

If the second property is extended to countable unions,M is called a σ-algebra

of sets.

Definition 27 Measure, Measure Space, Measurable Sets and Probability Mea-

sure

LetM be a σ-algebra of subsets of some set X. A function µ :M→ R∪{∞}
is called a measure if
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1. µ(∅) = 0.

2. For any countable disjoint collection of sets Xi, µ(∪iXi) =
∑

i µ(Xi).

3. µ(A) ≥ 0 ∀A ∈M.

The triple (X,M, µ) is called a measure space and elements of M are called

measurable sets. If in addition to the above conditions µ(X) = 1 then µ is called

a probability measure.

An example of a probability measure on a finite set X is the counting measure

µC defined by

µC (A) =
|A|
|X|

(B.1)

for any subset A of X.

For any set X, P(X) is a σ-algebra of subsets of X. Hence, if S is a subset

of P(X) one can define the Borel algebra of S, B(S), as the smallest σ-algebra

containing S. In the case of a topological space (X, τ), the Borel algebra on

(X, τ), B (X, τ) is the smallest σ-algebra containing all of the open sets of τ . A

measure defined on B (X, τ) is called a Borel measure on (X, τ). The following

is an important result for Borel measures on compact groups.

Theorem 11 If (X, τ) is a compact topological group then there exists, up to

a constant, a unique Borel measure µH on (X, τ), called the bi-invariant Haar

measure, satisfying the following conditions

1. µH(xE) = µH(E) = µH(Ex) ∀x ∈ X ∀E ∈ B (X, τ).

2. µH(U) > 0 for every non-empty open set U ∈ τ .

3. µH(K) <∞ for every compact set K.

Since the bi-invariant Haar measure is unique up to a constant and the third

property implies µH(X) <∞ there exists a unique bi-invariant Haar probability

measure on a compact group.

B.2 Concentration of Measure

Concentration of measure [31, 15, 37, 27] is a phenomenon that can be empirically

understood by considering an unbiased coin-tossing experiment consisting of N
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trials where N is large. Let X be the state space composed of sequences of single

trial outcomes. Define the function f from X to N by f(x) = the number of

heads observed. Empirically, f(x) is concentrated around the median value N
2

for

f. Thus, under the counting measure µC on X, µC(f−1(N − n,N + n)) is close

to 1 even for small n ∈ N as N grows large. The following discussion attempts

to make these ideas rigorous.

Suppose (X, d, µ) is a metric space with Borel probability measure µ.

Definition 28 ε-Neighbourhood

For S ⊆ X we define

Nε(S) = {x ∈ X : ∃y ∈ S with d(x, y) < ε} (B.2)

and call it the ε-neighbourhood of S.

Definition 29 Median

Let f : X → R be a continuous function. A median of f, denoted M(f), is

defined by the inequalities

1

2
= µ ({x ∈ X : f(x) ≤M(f)}) = µ ({x ∈ X : f(x) ≥M(f)}) . (B.3)

Definition 30 Modulus of Continuity

Let f : X → R be continuous and ε > 0. The modulus of continuity for f and

epsilon, denoted ωf (ε), is

ωf (ε) = sup{|f(x)− f(y)| : d(x, y) ≤ ε}. (B.4)

Definition 31 η-Lipschitz Functions

A function f : X → R is called η-Lipschitz if ∀x, y ∈ X,

|f(x)− f(y)| ≤ η d(x, y) (B.5)

Definition 32 Concentration Function

∀ε > 0 the concentration function of X with respect to ε is
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αX(ε) = 1− inf
{
µ (Nε(S)) : S ⊆ X is Borel measurable and µ(S) ≥ 1

2

}
. (B.6)

Two equivalent expressions for the concentration function are

αX(ε) = sup
{
µ (X −Nε(S)) : S is Borel measurable andµ(S) =

1

2

}
(B.7)

and

αX(ε) = sup{µ ({x : f(x) ≥Med(f) + ε}) : f is 1-Lipschitz}. (B.8)

Note that the concentration functions decrease as ε grows.

Definition 33 Levy Family

∀i ∈ N let F = {((Xi, di), µi)} be a family of metric spaces with Borel proba-

bility measures. F is called Levy if for any sequence of Borel sets Si ⊆ Xi such

that lim inf µi(Si) > 0, and every ε > 0,

limi→∞µi(Nε(Si)) = 1 (B.9)

Equivalently, F is a Levy family if ∀ε > 0, αXi(ε)→ 0 as i→∞.

Definition 34 Normal Levy Family

F is called a normal Levy family if there exist constants A, B such that ∀i
and ε > 0

αXi(ε) ≤ Ae−Bε
2i (B.10)

The following lemma, which is proved from the definitions of the concentration

function and a normal Levy family, is required for the main result.

Lemma 1 Let ε > 0 and f be a continuous function on (X, d, µ) with modulus

of continuity ωf (ε). Then,

µ
(
f−1 (M(f)− ωf (ε) ,M(f) + ωf (ε))

)
≥ 1− 2αX(ε). (B.11)
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This gives the desired result [31].

Theorem 12 Let F be a normal Levy family. For each i, let fi be a continuous

function on (Xi, di, µi) with median M(fi) and modulus of continuity ωfi(ε) for

each ε > 0. Then ∀ε > 0,

µ
(
f−1
i (M(fi)− ωfi (ε) ,M(fi) + ωfi (ε))

)
≥ 1− 2αXi(ε) ≥ 1− 2Ae−Bε

2i (B.12)

The phenomenon of concentration of measure for high dimensional structures is

depicted in the above inequality which says that the functions fi become con-

centrated near their medians in terms of the measure on Xi. Next we look at

various examples of normal Levy families.

B.3 Examples of Concentration of Measure

Example 1 The standard example of a normal Levy family is that of unit spheres

in (Rn, ‖‖2) with the geodesic metric. The 2-norm, ‖‖2, on Rn, is defined through

the Euclidean inner product on Rn. Taking x = (x1, ..., xn) ∈ Rn,

||x||2 :=
√
< x, x > =

√√√√ n∑
i=1

x2
i . (B.13)

As usual,

Sn−1 := {x ∈ Rn : ||x|| = 1}. (B.14)

Let d be the geodesic (Riemannian) metric on Sn−1,

d(x, y) = arccos < x, y > (B.15)

which is the angle between x and y in Rn. As well, let µ be the unique Borel (Haar)

measure on Sn−1 generated by the topology induced by d. Suppose f: Sn−1 → R is

continuous and let M(f) be the median of f. Then,

µ
(
{x ∈ Sn−1 : |f(x)−M(f)| ≤ ε}

)
≥ 1−

√
π

2
e−ε

2 (n−2)
2 . (B.16)
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Thus the set {(Sn+1 ⊂ Rn+2, dn+1, µn+1)} indexed by n ∈ N is a Levy family with

A =
√

π
8

and B = 1
2
.

Example 2 Next, we look at the unitary group U(n). ∀n ∈ N, U(n) is a Lie

group. In addition, U(n) is compact and so can be equipped with a unique bi-

invariant (ie. left and right invariant) metric. Let dn be this bi-invariant metric

on U(n) which is actually induced by the trace inner product

d(U, V ) =
√
tr((U − V )†(U − V )) (B.17)

Denote the Haar measure on U(n) by µn. The following theorem is proved in

[31].

Theorem 13 The family {(U(n), dn), µn} is a normal Levy family with con-

stants A =
√

π
8

and B = 1
8
.

Example 3 This example also deals with Sn defined above, however the metric

defined on it is the Euclidean metric ‖ ‖2. In this case, by Appendix V of [31],

we have for an η-Lipschitz function f : Sn → R (with respect to ‖ ‖2) and the

Haar measure of example 1,

µ

(
f−1

(
−∞,

∫
fdµ− ε

))
≤ 2e

−Cε2(n+1)

η2 (B.18)

and

µ

(
f−1

(∫
fdµ+ ε,+∞

))
≤ 2e

−Cε2(n+1)

η2 (B.19)

where C = 1
9π3ln2

and
∫
fdµ is the integral of f with respect to the Haar mea-

sure.This implies,

µ

(
f−1

(∫
fdµ− ε,

∫
fdµ+ ε

))
≥ 1− 4e

−Cε2(n+1)

η2 . (B.20)

Additionally, a relationship between the measure of f−1(
∫
fdµ− ε,

∫
fdµ+ ε)

and f−1(M(f)− ε,M(f) + ε) is given which results in analogous inequalities,
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µ
(
f−1 (−∞,M(f)− ε)

)
≤ e

−Dε2(n−1)

η2 , (B.21)

µ
(
f−1 (M(f) + ε,+∞)

)
≤ e

−Dε2(n−1)

η2 , (B.22)

and

µ
(
f−1 (M(f)− ε,M(f) + ε)

)
≥ 1− 2e

−Dε2(n−1)

η2 (B.23)

where D = 1
2π2ln2

.

Other examples of Normal Levy families are the permutation groups and

Hamming cubes {0, 1}n of all binary strings of length n. Both are equipped

with the normalized Hamming distance and the normalized counting measure.

Further examples can be found in in [37, 31, 27].
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Appendix C

Finding Noiseless Subsystems for

Unital Channels

C.1 Basic Algebra Theory

C.1.1 C∗-Algebras

The theory of algebras plays a central role in the theory of noiseless subsystems,

thus it is imperative to present basic definitions and theorems regarding these

objects [2, 18, 33].

Definition 35 Ring

Let R be a set such that two binary operations, + and ·, are defined on R
with the following properties:

1. R is an abelian group over +

2. ∀ a, b, c ∈ R, a · (b · c) = (a · b) · c (Associativity)

3. ∃1 ∈ R such that ∀a ∈ R, a · 1 = 1 · a (Identity)

4. ∀ a, b, c ∈ R, a · (b+ c) = a · b+ a · c (Distributivity)

5. ∀ a, b, c ∈ R, (a+ b) · c = a · c+ b · c.

Then R is called a ring.
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Definition 36 Algebra

Let A be a set satisfying the following properties

1. A is a ring

2. The abelian group (A,+) is a linear space over some field F

3. If x, y are in A and α ∈ F then α(xy) = (αx)y = x(αy)

Then A is called an algebra over F .

For the rest of the definitions up to and including C∗-algebras, F will be C.

Definition 37 Normed Algebra

Suppose A is an algebra and that there is a norm, ‖ ‖, defined on A such that

4. If x, y are in A then ‖xy‖ ≤ ‖x‖‖y‖.

Then A is called a normed algebra.

Definition 38 Banach Algebra

Suppose the normed algebra A is a Banach space with respect to ‖ ‖, then it

is called a Banach algebra.

The following defines a ∗-algebra in terms of an involution mapping.

Definition 39 Involution and ∗-Algebra

Let ∗ be a mapping from a set D into itself satisfying the following properties

(x∗)∗ = x (C.1)

(x+ y)∗ = x∗ + y∗ (C.2)

(xy)∗ = y∗x∗ (C.3)

(αx)∗ = ᾱx∗ (C.4)

Then ∗ is called an involution on D. An algebra with an involution ∗ is called a
∗-algebra.
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Finally, we can characterize a C∗-algebra.

Definition 40 C∗-Algebra

Suppose that A is a Banach ∗-algebra satisfying the following ∀x ∈ A

‖x∗x‖ = ‖x‖2. (C.5)

Then A is called a C∗-algebra.

From the definitions above, it is clear that the complex field is a C∗-algebra

where it is treated as a vector space over itself. The norm is the usual Euclidean

norm and the involution is just the mapping taking each element to its complex

conjugate. References for further clarification of the terminology used in the

upcoming theorems regarding C∗-algebras can be found in [2, 10].

Next, we will show that the set of bounded linear operators on a Hilbert space

H forms a C∗-algebra. For a Hilbert space H, denote the set of all bounded linear

operators on H by B(H).

Theorem 14 B(H) is a C∗-algebra under the operator norm induced by the

norm defined on H.

Proof: The set of all bounded linear operators defined on any inner product

space forms a ring. The addition operation is defined pointwise and multiplication

of operators is given by composition. The multiplication operation is associative,

the addition of operators forms an abelian group and the required distributive

laws hold. Since B(H) on an inner product space forms a vector space under

addition and scalar multiplication of operators, and property 3 in Definition 1

clearly holds, B(H) forms an algebra. The norm defined on B(H) is the operator

norm induced by the inner product on H. This norm satisfies

F,G ∈ B(H)⇒ ‖FG‖ ≤ ‖F‖‖G‖ (C.6)

since if x ∈ H,

‖FG(x)‖ = ‖F [G(x)]‖ ≤ ‖F‖‖G(x)‖ ≤ ‖F‖‖G‖‖x‖. (C.7)

This implies ∀x 6= 0
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‖FG(x)‖
‖x‖

≤ ‖F‖‖G‖. (C.8)

Therefore ‖FG‖ ≤ ‖F‖‖G‖, and B(H) is a normed algebra. Since H is a Banach

space, B(H) is a Banach space, and so B(H) is a Banach algebra. The involution
∗ defined on B(H) is the obvious one taking each element to its adjoint relative

to the inner product on H. That is, ∀A ∈ B(H),

∗(A) = A∗. (C.9)

The adjoint operation ∗ on B(H) satisfies all of the properties required for ∗ to

be an involution. Finally, it needs to be shown that ∀L ∈ B(H)

‖L∗L‖ = ‖L‖2. (C.10)

From above and the fact that ‖L∗‖ = ‖L‖ we have,

‖L∗L‖ ≤ ‖L∗‖‖L‖ = ‖L‖2 (C.11)

So if we can show ‖L∗L‖ ≥ ‖L‖2 then we are done. However,

‖Lx‖2 = 〈Lx|Lx〉 = 〈L∗Lx|x〉 (C.12)

and by the Cauchy-Schwartz inequaltiy,

〈L∗Lx|x〉 ≤ ‖L∗Lx‖‖x‖ ≤ ‖L∗L‖‖x‖2. (C.13)

So for all x

‖Lx‖2 ≤ ‖L∗L‖‖x‖2 (C.14)

which gives ‖L∗L‖ ≥ ‖L‖2. Thus B(H) is a C∗-algebra.

Next, we give conditions for when a subset of a C∗-algebra is itself a C∗-

algebra.

Theorem 15 A subset K of a C∗-algebra A is a sub C∗-algebra if and only if

the following are satisfied
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1. The vector space and multiplication operations on K are closed

2. K is closed under the involution operation

3. K is closed in the norm-induced metric topology

Proof: The first condition of operations being closed is an obvious one. These

conditions give that K is itself a ring and a vector space. This implies K is a

normed linear associative algebra since all of the other required properties are

inherited from the structure of A. The second property defines an involution on

K in the same manner as was defined on A. The requirement of being closed

under the norm topology just states that K is complete and hence a Banach space,

since every closed subset of a Banach space is complete. Finally, the requirement

∀L ∈ K, ‖L∗L‖ = ‖L‖2 is satisfied since the involution defined on K is exactly

the same as the one defined on A.

C.1.2 Wedderburn Structure Theorems

Before presenting the Wedderburn structure theorems, a few more definitions

must be made.

Definition 41 Ideal

Let R be a ring and I a non-empty subset of R. Then I is called a (two-sided)

ideal if the following are satisfied

1. I is an additive subgroup of R

2. For every r ∈ R, rI ⊆ I and Ir ⊆ I, where rI = {ra|a ∈ I} and Ir is

defined similarly.

If only rI ⊆ I is satisfied for all r ∈ R, then I is called a left ideal of R. Right

ideals are defined similarly.

Definition 42 Division Ring

Let R be a ring and suppose that for all a and b in R, ab = 0 ⇒ a = 0 or

b = 0. Then R is called a division ring.
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The above definition for a division ring may be equivalently stated as for all

a ∈ R, there exists b ∈ R such that ab = ba = 1. That is every element has an

inverse. An algebra whose ring structure is a division ring is called a division

algebra.

Definition 43 (Proper) Nilpotent Elements and the Radical

Let A be an algebra and x 6= 0 be in A. Then x is said to be nilpotent if for

some n ∈ N, xn = 0. x is said to be properly nilpotent if ∀a ∈ A, ax and xa are

either nilpotent or zero. The set of all properly nilpotent elements of an algebra

is called the radical of the algebra.

It can easily be shown that the radical of an algebra is an ideal.

Definition 44 Simple Algebra

Let A be a non-zero algebra. If the set of all ideals of A consists only of the

zero ideal and A itself then A is called a simple algebra.

Definition 45 Semi-Simple Algebra

If A is an algebra such that the radical of A is the zero ideal then A is called

semi-simple.

Note that the set of all linear operators on a finite dimensional vector space

is simple, and since it contains an identity element, a semi-simple algebra. We

now present the Wedderburn structure theorems [33, 38].

Theorem 16 First Wedderburn Structure Theorem

A is a finite dimensional semi-simple algebra if and only if A is isomorphic

to a direct sum of simple algebras. Moreover, the direct sum decomposition of A
is unique up to ordering.

Theorem 17 Second Wedderburn Structure Theorem

Let A be a finite dimensional simple algebra. Then A is isomorphic to A =

M ⊗D where M is a full matrix algebra and D is a division algebra

These two theorems taken together imply that every finite dimensional semi-

simple algebra is isomorphic to the direct sum of factors of matrix and division

algebras. These theorems are the foundation for representations of algebras. For

our presentation we will be concerned with finite-dimensional C∗-algebras over

C. In this case we have the following stronger representation theorem. [2]
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Theorem 18 Unitary Equivalence (UE) Theorem

Let A be a finite dimensional C∗-algebra over C. Then A is isometrically
∗-isomorphic to an orthogonal direct sum of the form

A ∼= (Mn1 ⊗ Im1)⊕ ...⊕ (Mnd ⊗ Imd) (C.15)

where the above representation is unique up to ordering. Mni is a full matrix

algebra on an ni dimensional space and Imi is the identity on an mi dimensional

space. All spaces are over C.

C.2 Unital Channels

The UE theorem will give us our starting point for the discussion of unital chan-

nels, however before proceeding let us discuss a few results given by the theorem.

First, note that the UE theorem splits the Hilbert space on which the repre-

sentation of A acts into orthogonal subspaces, each of which is a direct product

of subspaces. Moreover, the the algebra acts invariantly on one of these factor

spaces.

If we have a set E of linear operators acting on a finite dimensional Hilbert

spaceH, and this set of operators is closed under ring and vector space operations,

and is closed under adjoints (†-closed) then E is a sub C∗-algebra of B(H). The

condition of being closed in the metric topology is trivially satisfied since E is a

finite dimensional subspace of B(H). Thus, E has a decomposition of the form

given in the UE theorem.

The above remarks give some intuition as to how to proceed. If a unital

channel can be described by a finite dimensional C∗-algebra of operators acting

on a finite dimensional Hilbert space then the UE theorem tells us there exist

subsystems in the Hilbert space unaffected by the quantum channel. The problem

will then be to find these subsystems. Before explicitly giving an algorithm for

finding these subsystems we state a few definitions and prove a structure theorem

for unital channels.

Definition 46 Reduction and Invariance of an Operator

A projection P on a Hilbert space reduces an element T of B(H) if T and P

commute, that is T (PH) ∈ PH and T (P⊥H) ∈ P⊥H. As well, T ∈ B(H) is

said to be invariant on PH if TP = PTP , that is only T (PH) ∈ PH is satisfied.
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We now state without proof [19] an important lemma for unital channels.

Lemma 2 Suppose Λ is a unital quantum channel and P is a projection on H.

Then the following are equivalent.

A) Λ(P ) = P

B) P reduces any set of Kraus operators describing Λ

C) PH is invariant for any set of Kraus operators describing Λ

D) PH is invariant for {A†i} where the Ai are any set of Kraus operators

describing Λ

In this lemma it is clear that if P is a rank one projection |ψ〉〈ψ| then |ψ〉 is

a joint eigenstate of the Ak. Lemma 1 will be of importance throughout the rest

of the paper.

Definition 47 Interaction Algebra

Let Λ be a quantum channel and A1, ..., An be Kraus operators for the operator

sum decomposition. The interaction algebra generated by A1, ..., An, denoted by

A = Alg{Ai}, is the algebra of polynomials generated by {Ai}

The Cayley-Hamilton theorem states that every operator in B(H) is the root

of some polynomial of degree at most the dimension of the space the operator

acts on [18]. As a result, the degree of Alg{Ai} is bounded uniformly by the

same positive integer.

Definition 48 Noise Commutant

Let A be the interaction algebra generated by A1, ..., An. The noise commutant

of A, denoted by A′, is the set of all linear operators that commute with every

element in A.

Note that since the Ai generate A, it is sufficient to have A′ be the set of

all linear operators that commute with each of the Ai. As well, clearly A′ is an

algebra.

Definition 49 Fixed Point Set

The fixed point set of a quantum channel Λ is given by the set of all elements

in B(H) that are fixed points of Λ. The fixed point set is denoted by Fix(Λ).
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Note that Fix(Λ) is †-closed by the representation of Λ through an operator

sum decomposition. Now, we state a well known theorem due to Von Neu-

mann [36] which will be of use later on.

Theorem 19 Von Neumann Double Commutant Theorem (VNDC)

Let A be an algebra of bounded operators on a Hilbert space H, containing the

identity operator and closed under taking adjoints, that is, A is a unital †-closed

subalgebra of B(H). Then the closures of A in the weak operator topology and

the strong operator topology [36] are equal, and are in turn equal to the double

commutant (A′)′ of A. This algebra is the von Neumann algebra generated by A.

If the interaction algebra, Alg{Ai}, is †-closed, that is Alg{Ai} is a C∗-

algebra, then Alg{Ai} = (A′)′. This is clear since by definition, Alg{Ai} is an

algebra in B(H). Also, Alg{Ai} contains the identity by observing either the

unitality or trace preserving conditions. Moreover, since the algebra of operators

is finite dimensional, the closures of Alg{Ai} in the weak operator and strong

operator topology are just Alg{Ai}. Thus by VNDC if Alg{Ai}, is †-closed

Alg{Ai} = (A′)′. The following theorem shows that in fact Alg{Ai} is †-closed

and gives some of the main results needed for the rest of the paper.

C.2.1 Structure Theorem For Unital Channels

Theorem 20 Structure Theorem

Let Λ:B(H) → B(H) be a unital quantum channel represented by the Kraus

operators A1, ..., An. Then the following are true

A) The interaction algebra A = Alg{Ai} is †-closed and depends only on Λ

B) A′ is a †-closed algebra

C) Fix(Λ) = A′

Proof: The theorem will be proved if C is shown. This is because if C is true

then since A′ is an algebra and Fix(Λ) is †-closed B is true. Since A = (A′)′
by VNDC and Fix(Λ) = A′ we have A = Fix(Λ)′. This implies that A is a

function of Λ only, and hence A is independent of the choice of Kraus operators

for its representation. A will †-closed since if B ∈ A and C ∈ Fix(Λ) = A′,

[B,C] = 0⇒ BC − CB = 0⇒ [B†, C†] = 0⇒ B† ∈ A (C.16)
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where the last implication holds since Fix(Λ) is assumed to be †-closed and so

B† commutes with every element in A′. So by VNDC, B† ∈ A. Thus, we only

prove C.

First, let T ∈ A′. Then,

Λ(T ) =
∑
k

AkTA
†
k = T

∑
k

AkA
†
k = TI = T (C.17)

and T ∈ Fix(Λ). So, A′ ⊆ Fix(Λ).

To prove the reverse inclusion we first note that if the set of fixed points only

consists of scalar multiples of I, then since all scalar multiples of I are in A′, A′
= Fix(Λ). So, suppose there exists a non-scalar operator S in Fix(Λ). Every

operator S can be broken up into its real and imaginary parts in the following

manner

S = Re(S) + iIm(S) =
1

2
(S + S†) + i(

1

2i
(S − S†)) (C.18)

Now, since Fix(Λ) is †-closed and each of Re(S) and Im(S) are self-adjoint,

Re(S) and Im(S) are self-adjoint operators in Fix(Λ). Moreover, since S is

non-scalar, at least one of Re(S) and Im(S) is non-scalar. Thus without loss

of generality, if Fix(Λ) contains a non-scalar operator, we may choose the non-

scalar operator to be self-adjoint. In fact, we can choose the non-scalar operator

to be positive by the fact that if S is self-adjoint, S + ‖S‖ is clearly positive and

in Fix(Λ). Thus, let S be a positive non-scalar operator in Fix(Λ). Order the

eigenvalues of S in an increasing sequence {λi} ≥ 0 with

S = λ1P1 + ...+ λrPr (C.19)

Thus, 0 ≤ S ≤ ‖S‖I = λrI where ≤ is the partial order defined on B(H) by

C ≤ D if ∀ |∈〉H, 〈C| |ψ〉 ≤ 〈ψ|D|ψ〉. If |ψ〉 is in the eigenspace associated with

λr so that S|ψ〉 = λr|ψ〉 then since λr is the extremal eigenvalue for S,

λr〈ψ||ψ〉 =
∑
k

〈ψ|AkSA†k|ψ〉 =
∑
k

〈A†kψ|S|A
†
kψ〉 ≤ λr

∑
k

〈A†kψ||A
†
kψ〉 (C.20)

Now, unitality and linearity of the channel gives,
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λr
∑
k

〈A†kψ||A
†
kψ〉 = λr〈ψ||ψ〉 (C.21)

This implies that in fact 〈A†kψ|S|A
†
kψ〉 = λr〈A†kψ|A

†
kψ〉 and so A†k|ψ〉 is in

the eigenspace associated with λr, call it Hr for all k. Thus Hr is an invariant

subspace for A†k and by Lemma 1, Hr is a reducing subspace for the algebra A
and Pr is in A′. So, S−λrPr = 0Pr +λ1P1 + ...+λr−1Pr−1 ∈ A′. This argument

can clearly be iterated to obtain that each Pi ∈ A′. Therefore S ∈A′. Now, for an

arbitrary operator T ∈ Fix(Λ), we can write T in terms of its real and imaginary

parts, each of which is self-adjoint and also in Fix(Λ). As well, each self-adjoint

operator R produces a positive operator R + ‖R‖ which is in Fix(Λ). Therefore

R ∈ A′, which implies T is in A′. So, Fix(Λ) ⊆ A′ and we have Fix(Λ) = A′.

C.3 The Structure of the Commutant: An Al-

gorithmic Approach

As stated previously, the structure theorem along with the UE theorem form the

basis for the algorithmic approach to finding noiseless subsystems. From the UE

and structure theorems, the interaction algebra A for a unital quantum channel

is a finite dimensional unital C∗-algebra and so there exists a basis for the Hilbert

space in which the representation of A takes the form (Mn1 ⊗ Im1)⊕ ...⊕ (Mnd ⊗
Imd). Moreover, the direct sum (Mn1 ⊗ Im1)⊕ ...⊕ (Mnd ⊗ Imd) is unique up to

ordering.

Definition 50 Minimal Central Projections for A

A projection in A which corresponds to the identity on (Mnk ⊗ Imk) is called

a minimal central projection for A.

By the representation of A as above, the Hilbert space H decomposes as

(Hn1 ⊗ Hm1) ⊕ ... ⊕ (Hnd ⊗ Hmd). Choose one term in the direct sum, say

Hnk ⊗ Hmk . The space Hnk ⊗ Hmk can equivalently be thought of as housing

(being a direct sum of) mk orthogonal copies of Hnk . These copies are such that

when an operator in A acts on H, and an orthonormal basis is fixed for Hnk , the

same matrix in Mnk acts on each of the copies of Hnk . Moreover the particular

Hnk subspaces for which this is true are unique. Thus, these particular subspaces

are linked by the fact that there is a redundancy in the action of Mnk on these
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subspaces. Clearly, the projections onto one of these subspaces reduces A, but

will not be a minimal central projection for A.

The projections onto one of the above mentioned subspaces are called min-

imal A-reducing projections, and since the representation of A is unique up to

ordering, the maximal family of minimal A-reducing projections is unique. Since

these projections reduce A, they are in A′, however they may not be in A. The

reason they may not be in A is that such a minimal A-reducing projection onto

one of the subspaces does not act redundantly on the mk copies. Thus, such a

projection will not be in A, unless there is only one such copy, that is, mk = 1

in the decomposition. As well, one can easily see that since Hnk ⊗Hmk is com-

prised of a unique orthogonal sum of these minimal A reducing subspaces, the

sum of the projections onto these subspaces is a minimal central projection for

A corresponding to the projection onto Hnk ⊗ Hmk . This discussion motivates

the following definition.

Definition 51 Linked Minimal A-Reducing Projections

Suppose {Pj}, j ∈ S, is the unique maximal family of minimal A-reducing

projections discussed above. A subset {Qi}, with i ∈ SQ of this family is linked

if the following are true

A) Q =
∑

i∈SQ Qi is in A

B) If S0 ( SQ then
∑

i∈S0
Qi is not in A

Thus, the sum of linked projections correspond exactly to minimal central

projections for A and the cardinality of each Sk is mk. Once the representation

of A has been identified, the structure of A′ is easily found by the fact that

A′ = (⊕kMnk ⊗ Imk)′ = ⊕k(Mnk ⊗ Imk)′ = ⊕k(Ink ⊗Mmk) (C.22)

Thus, noiseless subsystems will be associated with the Mmk and these sub-

systems represent the possibility of encoding quantum information. We are now

ready to construct the algorithm for finding noiseless subsystems. The only as-

sumption that is required is that the linear structure of A′ is already known.

There are two broad parts to the algorithm.

Part 1: Obtain the unique maximal family of minimal A-reducing projections in

A′
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Part 2: Obtain the minimal central projections for A by computing all linked

projections in the unique maximal family from Part 1.

C.3.1 Part 1

If A′ contains only scalar multiples of the identity, then the identity operator is

the only minimal central projection for A. That is, A is unitarily equivalent to a

full matrix algebra on the entire Hilbert space. This is easily seen to be equivalent

to the fact that there are no non-trivial reducing subspaces of A. So, suppose A′
contains non-trivial operators. As shown in the proof of the structure theorem,

this implies that there exists a self-adjoint operator, T , in A′. We will use the

spectral projections for T as the first step in Part 1. Note that if an eigenvalue

λ of T has degeneracy larger than 1, then the spectral projection associated to

λ corresponds to the projection onto the entire eigenspace for λ.

Lemma 3 For self-adjoint T ∈ B(H), TFAE

A) Λ(T ) = T

B) If P is a spectral projection of T then Λ(P ) = P

C) If P is a spectral projection of T then P ∈ A′

Proof: The proof is straightforward. The equivalence of B and C follows

directly from the structure theorem. B ⇒ A follows from linearity of the unital

channel. A ⇒ B will follow by supposing R commutes with T and showing R

commutes with P . Indeed, let {λi|i = 1, ...,m} consist of the distinct eigenvalues

of T . Then TR = RT if and only if

R(λ1P1 + ...+ λmPm) = (λ1P1 + ...+ λmPm)R (C.23)

or

λ1[R,P1] + ...+ λm[R,Pm] = 0 (C.24)

Since the λi were assumed to be distinct, they are linearly independent variables.

Thus, each of the [R,Pi] must be zero.

If P is a spectral projection for T and P0 < P then the proof of A ⇒ B above

shows it may not be the case that P0 reduces A.
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By the above lemma, if {Pj} are the spectral projections of T then for each

j we can define a unital channel Λj from PjH into PjH of the form

Λj(T ) =
∑
k

Ak,jTA
†
k,j (C.25)

with Ak,j = Ak|PjH . These channels are clearly unital, with the identity given by

I|PjH , and they are trace preserving. Thus Λj is a unital quantum channel with

underlying Hilbert space corresponding to PjH. The following proposition will

give the result required to finish Part 1 of the algorithm

Proposition 15 Suppose Λ : B(H)→ B(H) is a unital channel with interaction

algebra A determined by Kraus operators Ai. Let P be a projection which reduces

A. Then the mapping ΛP : B(H) → B(H) given by ΛP (T ) =
∑

k Ak,PTA
†
k,P is

a unital quantum channel such that

Fix(ΛP ) = (A|PH)′ = PA′|PH (C.26)

and P is a minimal A-reducing projection if and only if Fix(ΛP ) = PA′|PH =

CI|PH .

Proof: By the discussion above ΛP is a unital channel. We introduce the

notation PA′|PH = PA′P and (A|PH)′ = (AP )′. This is done because PA′|PH
is just a set of operators from PH into PH and each function in this set may

be extended in its domain to all of H by defining it to be zero on all subspaces

orthogonal to PH. That is, PA′|PH is associated to

PA′P =

[
PA′|PH 0

0 0

]
, (C.27)

Similarly, A|PH is associated with

AP =

[
A|PH 0

0 0

]
, (C.28)

which gives the correspondence (A|PH)′ = (AP )′.

Now, suppose T ∈ A′ so that PT |PH ∈ PA′|PH = PA′P . Then,

PT |PHAi|PH = PAi|PHT |PH = Ai|PHPT |PH (C.29)
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Thus, PA′P ⊆ (AP )′. Note that PT |PHAi|PH = Ai|PHPT |PH if and only if

(PTP )(AiP ) = (AiP )(PTP ), which is clear from the discussion following our

definition of notation. Now, suppose T ∈ (AP )′. Then, T may be associated

with an operator over the entire Hilbert space H of the form T = PTP . That is,

PTP has the form of T from PH to PH and maps all subspaces orthogonal to

PH to 0. This gives,

TAi = PTPAi = TPAi = T (AiP ) = (AiP )T = AiT (C.30)

Thus, T ∈ PA′P and so (AP )′ ⊆ PA′P . Therefore (AP )′ = PA′P and

Fix(ΛP ) = PA′P . Finally, P is a minimal A-reducing projection if and only if

there are no projections which reduce the restricted noise algebra Ai,P . However,

this is equivalent to Fix(ΛP ) = CI|PH , or by the above, PA′P = CP .

If we use the spectral projections Pj of self-adjoint T in A′, then the above

proposition gives that Pj is a minimal A reducing projection if and only if

PjA′|PjH = CI|PjH . Or, equivalently, PjA′Pj = CPj. So, since we have as-

sumed we know the linear structure of A′, we take a basis Bk of this linear space

and compute PjBkPj. If for each k, this is proportional to Pj then Pj is in the

maximal family of minimal A reducing projections we seek. If there exists a

Bm such that this is not true, then there are smaller projections that reduce the

original interaction algebra. They can be found by iterating the above process.

This is done by noting that Λj is a unital channel with non-scalar fixed point

PjBmPj. This operator will give us, through its’ real and imaginary parts, a self-

adjoint operator whose spectral projections define unital channels on subspaces

of PjH. Since H is finite-dimensional, this process will terminate at a minimal

A reducing projection. This concludes Part 1.

C.3.2 Part 2

Suppose the maximal family of minimal A reducing projections, {Pj}, has been

found from Part 1. It is clear that a sub-family of {Pj} is linked only if the

projections in the sub-family are of the same rank. Thus for all positive natural

numbers k let {Pj,k} be the subfamily of {Pj} whose elements are of rank k.

Let Sk be the index set for {Pj,k}. Now, by Von Neumann’s Double Commutant

Theorem A =(A′)′ and so if {Bi} is a basis for A′, we have that an element of

A must commute with each of the Bi. This gives a systematic method to find

the linked projections in {Pj,k}. The method is to let S ⊆ Sk and take PS to be
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the sum of all of the projectors indexed by elements in S. Then, PS is a minimal

central projection for A if and only if [PS, Bi] = 0∀i and there is no proper subset

of S for which this is true. Again, this searching type algorithm will terminate

in finite time and is not in NP.

The rank one projections are easier to test for links than higher rank projec-

tions by the following theorem which we present without proof [19].

Theorem 21 Let {Pj,1} := {Rk} be the set of rank one projectors in the maximal

family obtained from Part 1 and suppose Rk = |ψk〉〈ψk|. Suppose the interaction

algebra for the unital quantum channel Λ is generated by {Ai}, i ∈ {1, ..., n} and

define the n-tuple (λ1k, ..., λnk) by

Ai|ψk〉 = λik|ψk〉 (C.31)

This defines a mapping from {Rk} into Cn given by

f(Rk) = (λ1k, ..., λnk) (C.32)

Suppose λ ∈ Cn is such that f−1(λ) 6= Ø. Then f−1(λ) forms a linked set of

projections.

What this means is that we can group together all of the rank one projections

with the same eigenvalues under the Ai and the resulting partition will correspond

to minimal central projections for A. Before we summarize the algorithm just

constructed, it is interesting to note that for the case of an abelian algebra, the

maximal family obtained from part 1 will only consist of rank one projectors [19].

C.3.3 Summary of the Algorithm

Assumption: The linear structure of A′ is known

• If A′ = CI then we are done and the identity is the only minimal central

projection in A. If A′ 6= CI then choose a non-scalar, self-adjoint T ∈ A′,
and compute the corresponding spectral projections

• For each Pj, compute PjBiPj for a basis {Bi} of A′. If for every i, the result

is proportional to Pj, then Pj is in the desired maximal family. If this is

not the case then the channel Λj has fixed points that are non-scalar. This

brings us back to the start of the algorithm, and we repeat this process

until we find the desired maximal family
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• Assuming the maximal family has been found, group together projectors

of the same rank. A subset of one of the groups is linked if the sum of all

projectors in the subset commutes with each Bi, and this is not true for a

smaller sum of these projectors

• The projectors of rank one may be subdivided by their eigenvalues un-

der the Ai. Each class in this subdivision corresponds to a linked set of

projectors

• Once the links have been found, the minimal central projections will be

determined. Thus, the spatial location of each block Mnk ⊗ Imk in the rep-

resentation of A will be apparent and will correspond to the subalgebra AP

where P is a minimal central projection. The factor of mk will correspond

to the number of linked (redundant) minimal A-reducing projections which

form P . Moreover, each minimal A-reducing projection will correspond to

a projection onto a matrix block Mnk . The structure of the commutant is

now easily determined and has blocks Ink ⊗Mmk and will give the possible

noiseless subsystems we are in search of

The algorithm presented here involves parts where searches must be made

which will not run in polynomial time. Therefore, the algorithm will become

virtually intractable for very large Hilbert spaces.
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Appendix D

List of Abbreviations

Table D.1: List of Abbreviations Used.

Abbreviation Full Name
POVM Positive Operator Valued Measure
QEC Quantum Error Correction
PIP Channel Permutation Invariant Pauli Channel
UCS Unitarily Correctable Subsystem
UNS Unitarily Noiseless Subsystem
CDFT Classical Discrete Fourier Transform
QFT Quantum Fourier Transform
VNDC Von Neumann Double Commutant Theorem
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