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Abstract

Due to the rapid development of computing technology and faster growth of fi-

nancial industry, Foreign Exchange high-frequency trading has become substantially

more prominent to today’s market players, especially to bankers and market makers.

This research aims at introducing today’s FX high-frequency trading structure and

discussing how a market maker can effectively reduce downside risk when market

faces a huge upward or downward stress. An Exponential Moving Average operator

is introduced and implemented using a Matlab software for tick-by-tick data analy-

sis. Simulation framework for market high-frequency data and client trading flow is

also introduced and implemented using the Matlab software. Real-time P&L calcula-

tion is introduced and used to determine the performance of a proposed risk hedging

strategy. On the other hand, due to the financial crisis we experienced in 2007, 2008,

and 2009, we analyze the tail risk of foreign exchange market. Extreme Value The-

ory (EVT) has been applied to real EUR/USD data, which contains eight-year daily

closing exchange rate. An extension of from EVT to Value-at-Risk (VaR) calcula-

tion is introduced. We also consider the volatility clustering issue in asset returns

and demonstrate how GARCH model can be applied for VaR calculation. Lastly, we

propose a method of using VaR as a high-frequency risk measure for risk hedging

strategies during intra-day trading.
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Chapter 1

Introduction and Selected

Literature Review

1.1 Motivation and Introduction

The motivation of conducting this research is to provide an overview of today’s FX

market marking business and its risk management.

The first chapter contains introductions to current structure of global FX mar-

ket. We introduce the market by its segment and participants. We also introduce

the FX interbank market, market making business model, and Electronic Broking

System for FX trading. In Chapter 2, we introduce the exponential moving average

method and its application in FX high-frequency data cleaning. In Chapter 3, we

propose a simulation framework for both client trading and FX market rate simula-

tion in Matlab. A Poisson process and Geometric Brownian Motion will respectively

be applied in the simulation of an event arrival process and asset price movements.

In Chapter 4, we implement a position limit risk hedging strategy based on simulated

client trading process. Definitions of market maker’s wealth process and P&L mea-

sures will be defined and calculated. In order to accomplish this objective, we need

to assume that the market maker has the ability to access liquidity, which means
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that the market maker can execute trades in the market at a given price at any time.

Thanks to the super power of today’s computer technology and networks, this as-

sumption is in keeping with the reality for some of the most liquid currency pairs

such as USD/CAD, USD/JPY and EUR/USD etc. In Chapter 5, we discuss about

the tail risk in foreign exchange market by using Extreme Value Theory (EVT on

EUR/USD daily returns. Maximum likelihood estimates of shape, scale, and location

parameters are calculated and compared for different block sizes. An extension of cal-

culating Value-At-Risk (VAR) by EVT is promoted. We also discuss about GARCH

model in handling stochastic volatilities. In Chapter 6, we apply the EVT on the

results produced by the simulation framework and hedging strategies introduced in

Chapter 3 and Chapter 4 respectively. Thus, we propose a method of using VaR as

a risk measure on a high-frequency level1 for a risk hedging strategy.

In this research, we assume that we have available to us a powerful computer that

is capable of obtaining all the liquidities at the given prices at any time.

1.2 Foreign Exchange Market

Foreign Exchange (Forex or FX) market is a twenty-four hour, decentralized over-the-

counter (OTC) financial market for currency trading. Its primary purpose is to carry

out international trade and investment activities, by allowing business to convert one

currency to another one. For example, if a Canadian company wishes to import three

million US dollars worth of raw materials from the US, then an exchange between

Canadian and US dollars needs to take place, and FX market is the place where

the company can carry out this currency exchange. Some other reasons to conduct

foreign exchange are to invest in foreign financial assets, to hedge against unfavorable

rates of exchange in the future and to profit from those changes. This activity is also

known as speculation.

1VaR can be calculated as many times as needed during intra-day trading.
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According to [16], FX market is the largest and most liquid financial market in

the world in terms of daily trading volume. Based on the numbers published by Bank

for International Settlements (BIS)2, the FX total trading volume increased by 38%

between April 2005 and April 2006 and has increased more than two-folds since 2001.

In 2010, the average daily turnover was reported to be $3.98 trillion, of which $1.49

trillion was traded in FX spot market, $475 billion in the forward market, $1.765

trillion in FX swaps, $43 billion in currency swaps, and $207 billion in options and

other derivatives. Geographically, 36.7% of the total trading volume was made in

London, while 17.9% in New York City, and 6.2% in Tokyo. The dramatic increase

in trading volume is mainly due to the growing importance of FX as an asset class in

fund management, particularly in hedge funds and pension funds. For the FX daily

trading volume distribution by product types and geographic locations, see Figure 1.1.

The price quotation for currencies generally follows the ISO convention, and is

the three-letter code used to identify a currency , such as USD for US dollar and

GBP for British sterling. For the list of ISO codes of G10 currencies, see Table 1.1.

Currencies are always traded against one anther. The activity of buying one currency

is tpically accompanied by the activity of selling another currency. Thus, when a

price is quoted, it is always quoted for a currency pair, and is labeled as XXXYYY or

XXX/YYY. The first three letters (XXX) represent the base currency that is quoted

against the second currency (YYY), which is called the counter currency or quoted

currency. In practice, the rate convention is to quote everything in terms of one

unit of the US dollar. For instance, the US dollar and Swiss franc rate is quoted as

USD/CHF, and is the number of Swiss franc to one US dollar. The exceptions are

for euro and sterling, which are quoted respectively as GBP/USD and EUR/USD,

the number of US dollar to one pound and one euro.

2Source: 2010 Triennial Central Bank Survey, Bank for International Settlements
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Figure 1.1: FX Daily Trading Volume Distribution

4



Table 1.1: ISO 4217 Code for G10 Currencies

USD US Dollar

CAD Canadian Dollar

JPY Japanese Yen

AUD Australian Dollar

NZD New Zealand Dollar

GBP British Pound

EUR EURO

CHF Swiss Franc

SEK Swedish Krona

NOK Norwegian Krona

1.3 FX Spot Exchange Rate

A spot FX trade is a purchase or sale of one currency against another one, with

delivery in two business days after the trade date. Non-business days are not included

in the count, so a trade on a Friday is settled on the following Tuesday. There are

some exceptions to this. For example trading of a US dollar against a Canadian dollar

are settled on the next working day. A settlement date that falls on a public holiday in

the country of one of the two currencies is delayed for settlement by one day. An FX

transaction is possible between any two currencies. However, to reduce the number of

quotes that need to be made, the market generally quotes only against the US dollar

or occasionally against the sterling or euro, so that the exchange rate between two

non-dollar currencies is calculated from the rate for each currency against the dollar.

The resulting exchange rate is known as the cross-rate. Cross-rates themselves are

also traded between banks in addition to dollar-based rates. This is usually because

the relationship between any two rates is closer than that of either one against the

dollar, for example the Swiss franc moves more closely in line with the euro than it

does against the dollar; so in practice one observes that the USD/CHF rate is more

or less a function of the EUR/CHF rate.
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The spot FX quote is a two-way bid-offer price. The bid indicates the rate at

which a bank is prepared to buy the base currency against the counter currency; it

is the lower rate. The other side of the quote is called the offer, which is the rate

at which the bank is prepared to sell the base currency against the counter currency.

For example, USD/CAD = 1.2324/26 tells that the bid and offer prices for 1 USD are

at 1.2324 and 1.2326 CAD. In other words, this expresses the willingness of a bank to

buy 1 USD at 1.2324 CAD and to sell 1 USD at 1.2326 CAD. The difference between

bid and offer prices, called the spread, can be viewed as the risk of making one unit

currency transaction. It is the (raw) profit that a market maker can generate upon

trading with clients for one unit of the base currency. In this example, the spread

for USD/CAD is 0.0002, which is also quoted as “2 pips” (where 0.0001 = 1 pip for

USD/CAD). For G10 currencies exclude JPY and GBP, pip resolutions for exchange

rates are set at the fourth decimal place. For JPY and GBP, the pip resolutions

are set at the third and fifth decimal places respectively. Spread is often used as a

measure of the liquidity of the currency pair. In particular, the smaller the spread

is, the more liquid the currency pair is. For some of the most liquid currency pairs

such as EUR/USD, EUR/GBP, and USD/CAD, the spreads are usually very small,

at 0.5 or 1 pip during intra-day busy trading hours. For some of the currencies that

are lack of liquidity, the bid-offer spread can be as large as 20 or 30 pips. An example

of such currencies is MXN/TRY (Mexican peso and Turkish lira).

1.4 FX Market Participants

The participants in the FX market include central banks, commercial and investment

banks, funds, corporations, and individuals. Unlike the stock market, access to FX

market is divided into several levels. The top tier access level is the interbank market,

which is made up of the largest commercial banks and securities dealers. They are

responsible for 53% of the global transactions. The next tier is composed of large
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hedge funds, pension funds, insurance companies, and multi-national corporations

who may need to execute an FX trading for the purpose of hedging currency risk,

speculating, foreign asset investment and payment of imports, etc. The third tier is

the group of individual investors (both long-term and short-term), who constitute a

growing segment of the market and mostly participates indirectly through brokers or

market makers.

FX market participants operate with varying perspectives. Each perspective car-

ries a different attitude, goal, investment horizon, risk appetite, and market impact

with it. According to [22], these participants can be categorized into five groups

according to their perspectives. Active Hedgers, who are mostly corporations, are

long-term players who seek a profit protection through treasury management. Market

Disruptors, who are usually governments, are long-term enablers of national, regional,

or global economic goals. Risk Avoiders, which are usually investment fund special-

ists, are long-term trend followers with high levels of skills, resources, knowledge,

and commitments. Risk Takers, who are usually individual traders, are short-term

system followers with a wide range of skills, knowledge, resources, and commitment.

Lastly, Market Makers, who are usually banks and dealers, are the credit suppliers to

corporations, governments, funds, other banks, and individual traders.

The key difference among these market participants is their levels of sophistication

which include: money management techniques, profit objectives, technologies, quan-

titative abilities, research abilities, and discipline. In terms of regulation, individual

traders have the least amount of external governance; whereas governments, banks,

corporations, and investment funds must adhere to a maximum amount of financial

regulations and restrictions. Individual traders fall into two groups: sophisticated

traders and un-sophisticated traders. In [22], the author states that “In the zero-sum

game of the FX trading, the sophisticated traders impose self-disciplines and use tools

and strategies that emulate those of the highly sophisticated institutional participants

to extract profits from the novice participants. In the end it is only the sophisticated
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participants who have the ability to extract positive returns from the FX markets”.

1.5 Interbank Market and Market Making

FX market is a decentralized market. In a centralized market such as New York

Stock Exchanges (NYSE) or the Chicago Board of Trade, each transaction is recorded

according to price dealt and size traded. There is usually a central physical place back

to which all trades can be traced. The FX market, however, is a decentralized market,

where there are more than one “exchanges” that record every trade. Instead, each

market maker records his or her own transactions and keeps it as his/her proprietary

information. According to [26], the primary market makers who make bid and offer

prices in the FX market are the largest banks in the world. They deal with each

other constantly either on behalf of themselves or their customers. This is why

the market on which banks conduct transactions is called the Interbank Market.

See Table 1.2 for the list of top 10 FX market participants by the market trading

volume3. The competition between banks ensures tight spreads and fair pricing.

Most individuals are unable to access the pricing available on the interbank market

because the interbank participants tend to include the largest mutual funds and hedge

funds in the world as well as large multinational corporations who operates in millions

(if not billions) of dollars.

Market making simply means being a buyer and a seller at the same time. A

FX market maker (usually a bank) is looking for opportunities to buy low and sell

high with as many clients as possible. A customer, can be a tourist walking into

a local branch or a hedge fund manager calling into the FX sales desk and makes

FX trading deals with the market maker. As the counter party of the customer, the

market maker is using its own capital to trade with the customer at a certain rate

that is agreed between the two parties. From [17] and [2], we know that in order

3Source: Euromoney FX survey, FX Poll 2010. The Euromoney FX survey is the largest global
poll of FX services providers.
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Table 1.2: Top 10 FX Market Participants by % of Overall Market Volume

Deutsche Bank 18.06%

UBS AG 11.30%

Barclays Capital 11.08%

Citi 7.69%

Royal Bank of Scotland 6.50%

JPMorgan 6.35%

HSBC 4.55%

Credit Suisse 4.44%

Goldman Sachs 4.28%

Morgan Stanley 2.91%

to facilitate market making business, each bank is structured differently, but most

banks will have a separate group known as the Foreign Exchange Sales and Trading

Department. This group is responsible for making prices for the bank’s clients and

for offsetting that risk with other banks. Within the foreign exchange group, there

is a sales desk and a trading desk. The sales desk is generally responsible for taking

the orders from the clients, getting a quote from the spot trader and relaying the

quote to the clients to see if they want to deal on it. This three-step process in the

industry is quite common because even though online foreign exchange trading is

available, many of the large clients, such as pension funds or big corporations, who

deal anywhere from $10 million to $100 million at a time (cash on cash), believe

that they can get better pricing by dealing over the telephone than over the trading

platform. This is because most on-line platforms offered by banks will have a trading

size limit due to the desire of the bank to be able to offset the risk.

As the market maker, bank dealers determine their prices based upon a variety

of factors including: the current market rate, how much volume is available at the

current price level, their views on where the currency pair is headed to and their

current inventory positions. If they think that the euros is moving upwards, they

may be willing to offer a more competitive rate to clients who want to sell euros
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because they believe that once they are given the euros, they can hold onto them for

a while for the price to increase. On the other hand, if they think that the euro is

headed toward a lower value and the client is giving them euros, they may offer a

lower price because they are not sure if they can sell the euro back to the market at

the same level at which it would be given to them.

To offset the risk, the bank dealers will turn to the interbank market and try

to flatten their positions by putting orders into the market. There are two primary

electronic platforms that interbank traders use to put their orders. One is offered by

Reuters Dealing and the other is offered by the Electronic Broking Services (EBS),

which will be introduced in section 1.6. The interbank market is a credit-approved

system in which banks trade based solely on the credit relationships they have es-

tablished with other banks. All of the banks can see the best market rates currently

available; however, each bank must have a specific credit relationship with another

bank in order to trade at the rates being offered. The bigger the bank is, the more

credit relationships it can have and the better pricing it will be able to access. The

same is true for clients such as retail FX brokers. The larger the retail FX broker in

terms of the available capital, the more favorable pricing it can get from the interbank

market. If a client or a bank is relatively small, it is usually restricted to dealing with

only a selected number of larger banks and tends to get less favorable pricing.

1.6 Electronic Broking System

Nowadays, over 90% the FX spot transactions goes through automated electronic

order-matching systems. Electronic brokers collect orders from tens of thousands

of market players globally by connecting to their networks and match their orders

automatically. As such, they are perfectly suited to a decentralized market in need

of efficient matching. The foreign exchange market, with its decentralized structure

and quickly growing volumes, was one of the earliest adopters of electronic brokers.
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Subsequently, many equity markets also adopted electronic brokers.

According to [26], the most popular electronic broker systems are Reuters Dealing

2000 and Electronic Broking Services (EBS) in the FX interbank market. The first,

Reuters Dealing 2000-2, was introduced by Reuters in April 1992. A year later, in

April 1993, Minex was launched by Japanese banks, with EBS following in September

1993. The EBS Partnership was established by several major market making banks

to counter the dominant role of Reuters, and EBS acquired Minex in December 1995

and thereby gained a significant market share in Asia.

The electronic brokers work with the goal of matching the buyer and the seller as

efficiently as possible. When a limit order 4 is entered, there is first a price priority to

ensure that it is always the best prices that are traded on and then a time priority

(price-time priority). Market orders5 are given priority according to time of entry,

and the system matches the counter-parties automatically. The entry of orders is

anonymous, but both parties see the counter-party’s identity immediately after the

trade. Figure 1.2 is borrowed from [26] and shows the trading screens of both Reuters

Dealing and EBS.

Part a of Figure 1.2 shows both Reuters Dealing 2000-1 and Dealing 2000-2. The

middle panel contains the D2000-1 system for direct bilateral trading, and the upper

panel is the D2000-2 electronic broker. From the D2000-1 panel, we can see that the

dealer has been contacted for a quote for USD 4 million against DEM. The dealer

replies with the quote “ 05 08 ”, which is understood to be bid 1.8305 and ask 1.8308.

The contacting dealer responds with “ I BUY ”, and the system automatically fills in

the line “ TO CONFIRM AT 1.8308 I SELL 4 MIO USD ”. In the lower right corner

of the screen, the dealer can see the price and direction of the last trades through the

D2000-2 system.

Part b of Figure 1.2 shows the EBS screen. The left half of the EBS screen shows

4A limit order is an order to buy a specified quantity up to a maximum price or sell subject to a
minimum price.

5A market order involves buying or selling a specified quantity at the best prevailing price.
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Figure 1.2: Reuters Dealing and EBS Trading Screens
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the bid and offer (ask) prices. The dealer chooses which exchange rates to display

(the base currency is written first). The prices shown are either the best prices in the

market or the best available ones (from credit-approved banks only). The upper part

of the right half of the screen shows the dealer’s own trade. The lower part shows

the price and direction of all trades through the system for selected exchange rates.

GIVEN means that it was traded at the bid price, and PAID means it was traded

at the ask price. The intuition for this is that the limit order dealer is given the base

currency (buys).

More discussions about dealer behaviors (for both electronic and traditional voice

brokers), liquidity, transaction costs on electronic FX trading can be found in [26]

and [15].

1.7 FX High-Frequency Trading

In general, high-frequency trading (HFT) involves the execution of computerized

trading strategies characterized by unusually very short position-holding periods, in

many cases taking advantage from microstructure inefficiency. In high-frequency

trading, programs analyze market data and utilize trading opportunities that may

open up for only a fraction of a second to several hours. High-frequency trading,

uses quantitative models and computer programs to hold short-term positions in

equities, options, futures, ETFs, currencies, and other financial instruments that

possess electronic trading capability. High-frequency traders compete on a basis of

speed with other high frequency traders, who are not long-term investors (that is,

who typically look for opportunities over a period of weeks, months, or years), and

compete with each other for very small, consistent profits.

According to the article [6], there are several reasons why the FX market is viewed

as the most attractive place for high-frequency trading. First, in the FX market, the

spreads are extremely low (at about 1 pip) for most liquid currency pairs such as

13



EUR/USD, EUR/GBP, etc. If we assume a trader has perfect foresight and can take

advantage of every small price spike, he/she can earn (without taking on any leverage)

approximately 2 percent of return everyday, or approximately 500 percent during one

year. If a trader can not trade at high frequency (but, for example, only once a day),

then the annual return potential is only 125 percent. Other things being equal, going

to HFT enhances the return potential of an investment strategy because a trader

can take advantage of many more price strikes. For those sophisticated investment

managers equipped with appropriate computing power and know-how, this is seen

as great enticement. Secondly, FX market is evolving at a much faster speed than

other markets such as equities or futures. Unlike equity and futures markets, where

algorithmic trading is developed as a response to a lack of liquidity, the high levels

of liquidity access in the FX market allow the market participants to focus more on

generating alphas.

To build a solid FX high-frequency trading environment is an extremely chal-

lenging exercise. A HFT engine usually contains the following components: liquidity

aggregation, trading strategies manager, execution strategies manager, and risk ana-

lytic. Liquidity aggregation involves the utilization of today’s advanced network and

computer technologies to extend the connections to as many market participants and

liquidity venues as possible. Aggregating liquidities from different sources, a HFT

engine will have a great view of FX market movements at a very low latency. In-

formation about changes in price, volume, and volatility, etc. are coming in on a

millisecond basis. And, as a result, better trading decisions and execution results can

be achieved with better liquidity aggregation. Thus, access to the liquidity pool is

very crucial in FX trading.

Trading strategies manager is the central brain of a high-frequency trading engine,

which contains the strategies that are developed by traders and quantitative modelers.

These strategies are usually built based on statistical data analysis, pervious trading

experiences, and alpha research, etc. It is the trading strategies that conduct all

14



the real-time market data analysis and make trading decisions on buy or sell certain

amounts of currency pairs at certain prices. Execution strategies manager is designed

to manage different types of orders (for example, IOC6 and GTC7, etc.) and place

orders into the market smartly and efficiently to achieve a high successful rate in its

execution. It is very important for a HFT engine to be able to catch the best timing

for its execution in this milliseconds competition. Risk analytic calculates the real-

time risk exposures and measures of the high-frequency trading activities. It is the

tool for traders to monitor auto-trading processes that are initiated by the hedging

strategies. Traders rely on risk analytic in terms of performing human-intervening

for the high-frequency trading engine.

6IOC: Immediate Or Cancel type of order
7GOC: Good Till Cancel type of order
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Chapter 2

Exponential Moving Average

2.1 Market Data

We begin the discussion in this subsection by considering a real example of FX high-

frequency time series. The data series is the USD/CAD spot tick-by-tick bid and

ask prices on 2010/05/31. The series starts at 00:00:00.2591 EST, which is the time

stamp of the first quote of the day, and ends at 23:59:58.210 EST, which is the time

stamp of the last quote update of the day. Each quote update contains a time stamp

with accuracy at 1 millisecond, and size and price for both bid and ask sides at

that moment. The data is obtained by aggregating feeds of USD/CAD spot from

four different venues, which are Reuters, EBS, HotSpot, and Currenex. A series of

data cleaning processes needs to be applied to the original raw data set to obtain a

“cleaned” version of the data that can be analyzed. A typical data cleaning processes

usually includes steps of removing inverted quotes and removing staled and expired

quotes.

Figures 2.1 and 2.2 show two different ways of viewing quote updating frequencies

for our sample data set.

1The last three digits of the time stamp are in the unit of milliseconds. It is at 259 millisecond
for this time stamp.
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Figure 2.1: Number of Quote Updates for Different Inter-arrival Time on 2010/05/31

Figure 2.2: Average Number of Quote Updates per Minute for Each 30-Minute Period on

2010/05/31
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In particular Figure 2.1 shows the number of quote updates for each different

length of Inter-Arrival Time, which is defined as the time space between two con-

secutive quote updates. There are in total 36,979 quote updates during the day of

2010/05/31. Among them, there are 4,549 quote updates with inter-arrival time less

than and equal to 10 milliseconds, 17,631 quote updates with inter-arrival time less

than and equal to 100 milliseconds, and 5,031 quote updates with inter-arrival time

between 100 and 200 milliseconds. Thus, about two-thirds of the total number of

quote updates happen at inter-arrival time less than 200 milliseconds. Next Fig-

ure 2.2 shows the average number of quote updates per minute for each 30-minute

period during the day. We can see that during the North American trading hours

(from 7:00 a.m. to 17:00 p.m.), the average number of quote updates ranges from

about 20 to 60 per minute, except for a dramatic spike of hitting almost 200 per

minute between 15:00 p.m. and 15:30 p.m. In addition, there are also big numbers

recorded at 7:00 a.m., 13:00 p.m., and 22:30 p.m., which are the beginning hours of

North American morning and afternoon trading sessions and the busy hour in Asia.

So, we can see that quote updating can happen at a millisecond level. Frequency of

updating can also be different for different periods of time during the day. For ex-

ample, quote updating speed for USD/CAD between 7:00 a.m. to 11:00 a.m. (busy

hours in North America and Europe trading) can be multiple times faster than in the

period from 4 p.m. to 5 p.m. Other reasons for a dramatic change in the quote up-

dating frequency include new releases and the announcement of important economic

numbers.

Figures 2.3, 2.4, and 2.5 are the time series plots of USD/CAD tick-by-tick prices

at different magnitudes of time intervals. Figure 2.3 is the plot of the entire time series

(for a 24-hour period) of USD/CAD bid and ask prices. Figure 2.4 is the USD/CAD

bid and ask prices for a two-hour period from 10:00 a.m. to 12:00 p.m., during which

there are 2,331 quote updates. Figure 2.5 is the plot of bid and ask prices for a

ten-minute period from 11:00 a.m. to 11:10 a.m., during which there are 202 quote
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Figure 2.3: USD/CAD Spot Rate from 00:00 a.m. to 23:59 p.m. on 2010/05/31
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Figure 2.4: USD/CAD Spot Rate from 10:00 a.m. to 12:00 p.m. on 2010/05/31
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Figure 2.5: USD/CAD Spot Rate from 11:00 a.m. to 11:10 a.m. on 2010/05/31

updates. The first thing that we observe from these plots is that high-frequency

data series is a time series with irregular time space, which is referred to as inho-

mogeneous time series. Thus, methods and tools for analyzing homogeneous (regular

time-spaced) time series need to be modified to handle inhomogeneous high-frequency

data analysis. The second thing is that price movements can vary dramatically in

a very short period of time, which renders it difficult to make good trading deci-

sions. A market participant has to be very watchful of the fact that both buying and

selling decisions need to be made within a few minutes or even seconds. Thus, a mar-

ket participant must be equipped with both advanced technology and smart trading

strategies in order to capture short-term market inefficiency in this high-frequency

market.

2.2 Exponential Moving Average

Amoving average process is a widely used in conducting technical analysis on financial

data. It is often applied to time series data to smooth out short-term fluctuations
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and highlight long-term trends or cycles.

For a continuous function x(t), its moving average at time tn is defined as an

integral

MAx,ω =

∫ tn

−∞
ω(tn − t)x(t)dt

∫ tn

−∞
ω(tn − t)dt

, (2.1)

where ω(t) is the weighting function defined on non-zero arguments.

The range of a moving average is defined as

R =

∫∞

0
tω(t)dt∫∞

0
ω(t)dt

. (2.2)

Specifically, Exponential Moving Average (EMA) is a moving average process with

the weighting function specified as

ω(t) =
1

λ
e−

1
λ
t, (2.3)

where λ is the range of the weight function. This weight function declines exponen-

tially with the time distance of the past observations starting from the present time.

The choice of the range value of λ is very important for the exponential moving aver-

age operation on time series because it controls the distribution of weights onto past

data values. Figure 2.6 shows the EMA weight functions with different range values.

We can see that the smaller the range value of λ is, the heavier the weights being

assigned to more recent observations, and the faster the weight function decays into

past.

If we apply the weight function (2.3) into equation (2.1), we can define the expo-

nential moving average of value x at time point tn as

EMAx(λ, tn) =

∫ tn

−∞
1
λ
e−

1
λ
(tn−t)x(t)dt

∫ tn

−∞
1
λ
e−

1
λ
(tn−t)dt

=

∫ tn

−∞

1

λ
e−

1
λ
(tn−t)x(t)dt (2.4)

Based on equation (2.4), EMA can be computed by a recursive method found in

[20] and [21]. Unfortunately, the formula, as presented in [20] and [21], are incorrect.

Here, we provide a correct version of the formula. In this study, we adopt similar

notations as those used in the text book [21]. Let Z(tj) represent a raw series with
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Figure 2.6: EMA Weight Functions with Different Range Values
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irregular time spaces at arrival times tj where j = 0, 1, 2, 3, ... The sequence of arrival

times is required to be monotonically increasing such that tj > tj−1. For a time point

t∗ such that tn−1 ≤ t∗ < tn, the exponential moving average value of time series Z(tj)

at time t∗ can be obtained by the following recursive formula:

EMAZ(λ, t
∗) = µ1EMAZ(λ, tn−1) + (ν1 − µ1)Z(tn−1) + (1− ν1)Z(tn) (2.5)

with µ1 = e−
1
λ
(t∗−tn−1) and value of ν1 depending on the chosen interpolation scheme

for Z(t∗), where

ν1 =





1 for the previous tick method

1− t∗ − tn−1

tn − tn−1
for the linear interpolation method.

This recursive formula of calculating EMA can be applied to both homogeneous

and inhomogeneous time series. It is easy to show that 0 < µ1 < 1 and 0 ≤ ν1 < 1

given tn−1 < t∗ ≤ tn. The values of µ1 can be viewed as the weight assigned to the

EMA value of the time series at time point tn−1. Values of ν1 − µ1 and 1− ν1 can be

viewed as the weights assigned to Z(tn−1) and Z(tn). Appendix A gives the proof of

the above recursive formula. The derivation of this formula assumes the time series

to start from time −∞, which is not realistic. For practical purpose, here we list an

analogous form of the recursive equation that assumes the time series to start from

time zero instead.

We let Z(tj) with j = 0, 1, 2, 3, ... be the raw inhomogeneous time series starting

at time point t0 = 0. For a time point t∗ such that tn−1 ≤ t∗ < tn, the exponential

moving average value of time series Z(tj) at time t∗ can be obtained by the following

recursive formula:

EMAZ(λ, t
∗) = µ2EMAZ(λ, tn−1) + (ν2 − µ2)Z(tn−1) + (1− ν2)Z(tn) (2.6)

with µ2 = e
−

1
λ
(t∗−tn−1)−e

−
1
λ
t∗

1−e
−

1
λ
t∗

and value of ν2 depending on the chosen interpolation
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scheme for Z(t∗), where

ν2 =





1 for the previous tick method

1− 1

1− e−
1
λ
t∗

t∗ − tn−1

tn − tn−1
for the linear interpolation method.

The derivation of this formula is provided in Appendix B. EMA can be regarded as

an operator that transforms one time series into another one:

EMA : Z(tn) 7−→ EMAZ(λ, tn). (2.7)

Due to this recursive formula, the integration need not be computed in practice;

instead only few multiplications and additions need to be done for each tick. In this

research, we apply the above recursive formula to our FX data.

2.3 Application of the EMA Operator

The EMA operator is implemented in matlab according to equation (2.6). For the

analysis, we consider a 15-minute (from 10:00 a.m. to 10:15 a.m.) subset of the high-

frequency data series on 2010/05/31 as a starting point. Let Z(tk) for k = 0, 1, 2, ..., n

denote n mid-prices2 being calculated during this 15-minute time interval. We choose

the first observation of the time series as the starting value of the recursive formula.

That is, we set Z(t0) = EMAZ(λ, t0). Then, the EMA values of the mid-prices at

each time stamp tk for 1 ≤ k < n are calculated iteratively.

Figure 2.7 shows the original data series of the mid prices and their EMA val-

ues with different values of the range of λ (set at 20, 100, 200, and 600 seconds

respectively).

For a value of λ = 20 (seconds), we see a small discrepancy between the original

data series and the EMA series at the very beginning portion of the plot. Then, the

two series merges into almost an identical one, which means that the EMA operator

2Mid-price = (Ask price + Bid price)/2
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Figure 2.7: Time Series of Mid Price and Its EMA Values with Different Values of Range λ
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generates estimation very closed to real values. By looking at the other three plots,

we can see that as the range of value of λ gets bigger, the discrepancy between the

values of the original data and the EMA values are getting bigger, and the longer it

takes for the two series to get closed enough to each other. Thus, no matter what

value of λ we choose, a built-up time period is necessary for the EMA operator to

produce accurate enough values. Empirically, the bigger the range value of λ is, the

longer the built-up period is needed for the EMA to produce accurate enough results.

This conforms with the rule of thumb given on page 57 in [21]: “the heavier the tail

of the kernel, the longer the required build-up is needed.”

To get a better picture of how well the EMA operator performs, Figure 2.8 shows

the mean square errors (MES) between the true market values and their EMA esti-

mates with different range values of λ. No surprise that we see EMA estimates with

larger value of λ has larger MSE values. For each value of λ, MSE starts to decrease

and converges after an enough number of observations being made. The larger the λ

is, the more observations we need to see MSE starting to decreasing.

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5
x 10

−6

Time Stamp in Second

M
S

E

MSE of Exponential Moving Average Estimates with Different Range Values

 

 

λ = 20
λ = 100
λ = 200
λ = 600

Figure 2.8: Mean Squared Errors of EMA estimates with Different Values of Range λ
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One possible explanation that Exponential Moving Average is very accurate in

estimating high-frequency data is because the time period between two consecutive

quote updates is so short that the quote jump is not significant enough to deviate

the quote far from its EMA estimate. With EMA operator, a market maker can at

least estimate market movements for a very short period (measured in milliseconds)

ahead into future. A game of issuing and canceling limit orders within millisecond

time intervals can be performed.
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Chapter 3

Simulation Framework

3.1 Motivation

Trading as the counter-party of clients is the core business model of a market maker

because client margin spreads (used to) contribute to majority part of profit. As

the evolving of advanced technology and market transparency, more and more so-

phisticated investors start to trade in FX market with access to fast information and

liquidity. Market makers can never make money the same way they did 20 years ago.

Buying from one client then selling to another one at a higher price can not be done

as easily as before. Smart risk hedging strategies must be implemented to help the

market maker trade “profitably”. In our opinion, we believe that the hedging strategy

should be subjective to client trading flows. This is saying that under different client

trading flows, different hedging strategies (or different parameter values for one hedg-

ing strategy) should be applied to optimize risk-adjusted returns. According to [1], a

market maker should carefully study his/her client trading flows so that non-public

information can be extracted from it. For example, client trades can be categorized

into different groups such as hedge funds, banks, institutional investors, and retail

flows. Transactions done with hedge fund clients provides more useful information

than transactions done with retail clients. If a speculative trader from a hedge fund
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is buying Eruos and selling Dollars, we reach a very different conclusion about the

future direction of EUR/USD than if the buying of EUR came from a US importer.

Due to the lack of historical high-frequency data and client trading information,

we build a basic simulation frame work for market data and client trades in this

chapter. Poisson process and Geometric Brownian motion are the natural starting

points for event arrival process and asset price simulations.

3.2 Poisson Process

A counting processes deals with the number of various outcomes of an experiment

over a period of time. According to [27], a counting process is defined as a stochastic

process
{
N(t), t ≥ 0

}
that has the following properties:

1. N(t) ≥ 0.

2. N(t) is an integer.

3. If s < t, then N(s) ≤ N(t). In other words, N(t) is non-decreasing.

4. If s < t, then N(t)−N(s) is the number of events occurred during time interval

(s, t).

A Poisson process is a special example of the counting process. A Poisson Process

with a rate of λ is defined as a continuous-time counting process
{
N(t), t ≥ 0

}
such

that:

1. N(t) = 0 for t = 0.

2. The process has Independent Increments, which means that the numbers of

occurrences counted in disjoint intervals are independent from each other.

3. The process has Stationary Increments. which means that the probability distri-

bution of the number of occurrences counted in any time interval only depends

on the length of the interval.
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4. The probability of k events occurred during a time period of length t is given

by P
(
N(t + s)− P (N(s) = k)

)
= e−λt

(λt)k

k!
.

The Poisson process is widely used in practice to model events such as the arrival

process of incoming calls to a call centre, customer arrival process of a restaurant,

the number of cars reaching at a traffic light, etc. A Poisson process with a rate of λ

implies that the inter-arrival time between two consecutive events are independently

and identically distributed exponential random variables with mean 1/λ. An expo-

nentially distributed random variable T with a mean value 1/λ has the cumulative

density function given by

F (t) = 1− e−λt, ∀t ≥ 0. (3.1)

Thus, a simulation of a Poisson process is equivalent to a simulation of series of

exponentially distributed inter-arrival time. In this research, we will use it to model

both the client trading arrival process and the market data arrival process.

3.3 Geometric Brownian Motion

Geometric Brownian Motion (GMB) has been applied widely in modelling asset price

movements in both academic and industry research. In [30], the author assumes the

fundamental value of the securities follows a Brownian motion, reflecting the fact

that in absence of any trades, the mid-quote price may change due to news about the

fundamental value of the security. In section 3.4, we will adopt Geometric Brownian

Motion to the high-frequency FX spot exchange rate simulation. Let us lay out the

basic framework of modeling an asset price by using GMB.

According to [29], let
{
W (t), t ≥ 0

}
be a Brownian motion. Let

{
F (t), t ≥ 0

}
be

an associated filtration, and let
{
α(t), t ≥ 0

}
and

{
σ(t), t ≥ 0

}
be adapted processes.

An Ito Process X(t) can be defined as

X(t) =

∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds, (3.2)
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which has the differential form

dX(t) = σ(t)dW (t) +
(
α(t)− 1

2
σ2(t)

)
dt. (3.3)

Next let us consider an asset with a price process following an Ito process given by

S(t) = S(0)eX(t) = S(0) exp
{∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)ds

)}
. (3.4)

Then, we can apply Ito’s formula to S(t) in equation (3.4) and obtain

dS(t) = α(t)S(t)dt+ σ(s)S(t)dW (t), (3.5)

or equivalently
dS(t)

S(t)
= α(t)dt+ σ(t)dW (t), (3.6)

where α(t) and σ(t) are the instantaneous mean rate of return and volatility respec-

tively. Both α(t) and σ(t) can be allowed to be time varying or time invariant. By

using a Geometric Brownian motion, we assume that the unit incremental amount
dS(t)

S(t)
during period ∆t is a normal random variable with mean α(t)∆t and variance

σ2(t)∆t.

3.4 Simulation of Market Data

One of the objectives of this research is to build a simulation framework for market

data with different volatility assumptions. High-frequency market data series can be

decomposed into two parts: market data arrival process and market price values. We

will illustrate how to simulate them by using a Poisson process and an Ito process

separately.

Let
{
M(t), t = 0, 1, 2, ...

}
be a Poisson process with an arriving rate of λM . This

represents the USD/CAD market data arrival process. Let us assume that for a

two-hour simulation period (that is, for D = 7200 seconds), the market data has an

average arrival rate of 1 quote update for each 2 seconds (that is, λM = 1/2). Then,
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we can simulate a series of inter-arrival time which is exponentially distributed with

mean 1/λM = 2 seconds by applying equation (3.1) and the Inverse Transformation

Method 1. The process can be stated as follows:

1. Calculate the estimated number of arrival times for period D by nM = D
λM

2. Calculate a series of estimated inter-arrival time ∆̃t =
{
∆t1,∆t2, ...,∆tnM

}

by calculating ∆tk = 1
λM

log
(
U(0, 1)

)
, where U(0, 1) is a uniform [0, 1] random

variable for each k = t1, t2, ..., tnM
.

3. The Kth market data arrival time stamp can be obtained as TK =
∑k=K

k=1 ∆tk

for K ≤ nM , and the series of market data arrival time is then given by T̃ =
{
T1, T2, ..., TnM

}
.

Now we have the simulation results of the market data arrival process. The

histogram of simulated inter-arrival time series ∆̃t is shown in Figure 3.1. There are

in total 3,572 inter-arrival time being simulated with about 2,200 of them are between

0 to 2 seconds.

The next step is to simulate the USD/CAD market mid-price value at each market

data arrival time (simulated above) by an Ito process. Equation (3.5) is implemented

in matlab as a function with five inputs: the initial asset mid-price Pmid(0), a fixed

value of drift α per unit of time, a fixed value of volatility σ per unit of time, a series

of simulated inter-arrival time ∆̃t, and a series of N(0, 1) distributed scores. Then, at

each market data arrival time stamp TK for K = 1, 2, ..., nM , we calculate the market

mid-price as

Pmid(TK) = Pmid(0) exp
{ K∑

k=1

σZ(0,∆tk) +

K∑

k=1

(
α− 1

2
σ2
)
∆tk

}
, (3.7)

where Pmid(0) is the starting value of the process and Z(0,∆tk) is a normal random

variable with mean 0 and variance ∆tk. If we assume that the market spread value

1Inverse Transformation Method: if Y has a uniform distribution on [0, 1] and if X has a cumu-
lative distribution denoted as FX , then the cumulative distribution function of the random variable
is given by F−1

X
(Y ) is FX
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Figure 3.1: Histogram of Simulation for USD/CAD Market Data Inter-Arrival Time

during the simulation period is fixed at δ, then the Market bid and ask prices can be

obtained as

Pbid(TK) = Pmid(TK)− 0.5δ (3.8)

Pask(TK) = Pmid(TK) + 0.5δ. (3.9)

Let us assume that the initial mid-price Pmid(0) of USD/CAD is at 1.1212, the drift

and volatility for the two-hour simulation period are at 0.01 and 0.5 pips each unit

of time (in minute) respectively, and the spread is fixed at 0.5 pips. Given the series

of inter-arrival time ∆̃t, the sample paths of USD/CAD bid and ask prices for a

two-hour period can be obtained and shown in Figure 3.2.

3.5 Simulation of Client Trades

Similar to the market data process, a client trading process can also be decomposed

into two parts: client trading arrival process and client trading amounts. We again
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Figure 3.2: Sample Paths of USD/CAD Bid and Ask Prices by an Ito Process

apply a Poisson process in the simulation of client trading arrival process. For the

client trading amount, we assume for simplicity that it follows a modified version of

the normal distribution with fixed values of mean and standard deviation.

In order to increase the flexibility of the model, we simulate the client buying

and selling trading processes separately. Let
{
N1(t), t = 0, 1, 2, ...

}
and

{
N2(t), t =

0, 1, 2, ...
}
be two Poisson processes with arriving rates of λN1 and λN2 respectively

to represent the USD/CAD client buying and selling trades arrival processes. Let

us assume that for the two-hour simulation period, the client buying and selling

trading arrival processes have an average arrival rate of 1 buying trade and 1 selling

trade for each 2-minute interval (that is, we set λN1 = λN2 = 1/120). Then, by

the same methodology used in the simulation of market data arrival process, we

obtain the series of client buying trades arrival time and selling trades arrival time

as T̃B = (TB1 , TB2 , ..., TBn1) and T̃S = (TS1 , TS2, ..., TSn2) respectively, where n1 and n2

are the numbers of client buying and selling trades happening during the simulation

34



period.

The next step is to simulate the client buying and selling amounts at each client

trading arrival time listed in T̃B and T̃S. We assume two random variables Y1 and

Y2 to represent client buying and selling amounts in terms of base currency2 such

that Y1 = |X1| and Y2 = |X2|, where X1 ∼ N(µX1, σ
2
X1) and X2 ∼ N(µX2, σ

2
X2). By

applying the absolute values onto random variables X1 and X2, we simply enlarge

the probability density for far-tail values if µX1 and µX2 are enough far from 0. This

is a reasonable assumption because we believe that the client trading amount has

a distribution with heavier tails than normal distribution. Thus, for the FX spot

trading, the market maker’s Base Currency Wealth Process of trading as the counter-

party of its clients at time t can be defined as

W1(t) = W1(0)−
∑

TBi
≤t

Y1(TBi
) +

∑

TSi
≤t

Y2(TSi
), (3.10)

where W1(0) = 0 is the initial value of the wealth in the base currency. Since currency

trading is always in pair, buying one currency comes with selling another currency

and vice versa. Then, given the market bid and ask prices as equations (3.8) and (3.9),

the Counter Currency Wealth Process W2(t) can be defined as

W2(t) = W2(0) +
∑

TBi
≤t

Y1(TBi
)[Pask(TBi

) + δC ]−
∑

TSi
≤t

Y2(TSi
)[Pbid(TSi

)− δC ], (3.11)

where W2(0) = 0 is the initial value of the counter currency wealth process and δC ≥ 0

represents client margin. As the market maker, we quote price Pask(TBi
) + δC to the

client who wants to sell us the base currency, and quote price Pbid(TSi
) − δC to the

clients who want to buy the base currency from us. Client margins are different by

client types and requested trading amounts. Usually the larger the requested amount

is, the large the client margin is. Processes W1(t) and W2(t) illustrates how a market

maker’s position changes according to pure client trading.

2For a currency pair XXX/YYY, the client trading amounts are always quoted in the amount of
currency XXX.
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On the other hand, we can combine the two series of client buying and selling

arrival time T̃B = (TB1 , TB2 , ..., TBn1) and T̃S = (TS1 , TS2, ..., TSn2) and sort them

into one monotonically increasing series T̃C = (TC1 , TC2 , ..., TC(n1+n2)
), which is the

time series of client trading arrival time regardless of buying or selling activities.

Then, at each client trading arrival time TCk
for k = 1, 2, ..., (n1 + n2), we can re-

write equations (3.10) and (3.11), Base and Counter Currency Wealth Processes, into

recursive formulas as follows:

W1(TCk
) = W1(TCk−1

)− Y1(TCk
)I[Y1(TCk

) > 0] + Y2(TCk
)I[Y2(TCk

) > 0] (3.12)

and

W2(TCk
) = W2(TCk−1

) + Y1(TCk
)[Pask(TCk

) + δC ]I[Y1(TCk
) > 0]

− Y2(TCk
)[Pbid(TCk

)− δC ]I[Y2(TCk
) > 0] (3.13)

with starting values ofW1(TC0) = 0 andW2(TC0) = 0. Indicator functions I[Y1(TCk
) >

0] and I[Y2(TCk
) > 0] tell us if it is a client buying or selling trade at time TCk

. In

our research, we assume that only one event of either client buying or selling trade

can happen at each time stamp. Thus events {Y1(TCk
) > 0} and {Y2(TCk

) > 0} are

complement of each other.

The market maker’s real-time P&L 3 of trading as the counter party with clients

can be calculated as

PL(t) = W2(t) +W ∗
2 (t), (3.14)

where

W ∗
2 (t) =




W1(t)Pbid(t) if W1(t) ≥ 0

W1(t)Pask(t) if W1(t) < 0.

(3.15)

Note that symbol t in above equations for P&L calculation can be substituted by

symbol TCk
for k = 1, 2, ..., (n1+n2). P&L is measured in the unit of counter currency.

3P&L is an abbreviation term for Profit and Loss.
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If we set the parameter values µX1 = µX2 = 500, 000, σ2
X1 = σ2

X2 = 1, 000, 000,

δC = 0.00005, and use the simulation results of market bid and ask prices for

USD/CAD in the previous section 3.4, then we obtain sample paths of market

maker’s Base and Counter Currency Wealth Processes W1(TCk
) and W2(TCk

) for

k = 1, 2, ..., (n1+n2). Figure 3.3 shows the simulation results ofW1(TCk
) andW2(TCk

).

There is no surprise that these two paths are nearly mirrors of each other. The P&L

values PL(TCk
) for k = 1, 2, ..., (n1+n2) are also calculated and shown in Figure 3.4.
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Chapter 4

Risk Hedging

4.1 Hedging Strategy

In Section 1.5, we explained how a market maker trades with clients by both buying

and selling with its own capital. The most ideal situation would be buying from one

client at market bid and selling the same amount to another client at market offer

at the same time. But this is rarely the case in practice because it is very hard to

get two clients to request the same amount of trades on each side at the same time.

Thus, a market maker will have to hold positions (positive or negative) for a period

of time, and this introduces a substantial amount of market risk to market maker’s

portfolio. Therefore it is important for a market maker to actively trade during the

day for an effective risk management.

In this chapter, we introduce a basic risk hedging strategy that generates trades

based on the market maker’s Base Currency Wealth Process
{
W1(Ck), k = 1, 2, ..., (n1+

n2)
}
. The intuition underlying this strategy is that a market maker is usually unwill-

ing to hold very big positions at any time due to a market risk exposure. Note that

the definition of “big” is subjective to market maker’s risk tolerance. This can be

determined by many factors such as client trading flows, accessibility to liquidities, ef-

ficiency in risk management, etc. For example, a global market player with advanced
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technologies to access deep liquidities and smart risk hedging strategies may allow its

EUR position staying at 100 million during the day; but a second-tier market player,

who does not have the same level of technologies and strategies, may only allow its

trader to hold the amount of EUR less than 10 million.

Let two amounts UB and UN be such that UB > 0 and UN < 0 respectively

represent the maximum allowable positive and negative amounts in the base currency

of the trading pair that the market maker can hold. Then, once the market maker

has its Base Currency Wealth Process breaches UP or UN , a risk hedging trade will

be issued to off-load the risk to a lower level. This is pre-defined by the market maker

based on his/her risk tolerance. Let us define the two lower levels LP and LN such

that UP > LP > 0 and UN < LN < 0. Then, at each client trading arrival time TCk

for k = 1, 2, 3, ..., (n1 + n2), the market maker’s Risk Adjusted Base Currency Wealth

Process AW1(TCk
) can be defined as a recursive formula as

AW1(TCk
) = AW1(T

−
Ck
) +H(TCk

)I[H(TCk
) 6= 0], (4.1)

where

AW1(T
−
Ck
) = AW1(TCk−1

)− Y1(TCk
)I[Y1(TCk

) > 0] + Y2(TCk
)I[Y2(TCk

) > 0] (4.2)

and the Risk Hedging Trading Amount being

H(TCk
) =





LP − AW1(T
−
Ck
) if AW1(T

−
Ck
) > UP

LN − AW1(T
−
Ck
) if AW1(T

−
Ck
) < UN

0 otherwise.

(4.3)

The starting value of the process is AW1(TC0) = 0, and the indicator function

I[H(TCk
) 6= 0] equals to 1 when the Risk Hedging Trading Amount is non-zero.

Similar to market maker’s Counter Currency Wealth Process W2(TCk
), the market

maker’s Risk Adjusted Counter Currency Wealth Process AW2(TCk
) can be defined
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as

AW2(TCk
) = AW2(T

−
Ck
)+H(TCk

)

{
Pask(TCk

)I[H(TCk
) > 0]+Pbid(TCk

)I[H(TCk
) < 0]

}
,

(4.4)

where

AW2(T
−
Ck
) = AW2(TCk−1

) + Y1(TCk
)[Pask(TCk

) + δC ]I[Y1(TCk
) > 0]

− Y2(TCk
)[Pbid(TCk

)− δC ]I[Y2(TCk
) > 0] (4.5)

and function H(TCk
) is given by equation (4.3).

Market maker’s Risk Adjusted P&L measured in the counter currency can be

calculated as

PLA(t) = AW2(t) + AW ∗
2 (t), (4.6)

where

AW ∗
2 (t) =




AW1(t)Pbid(t) if AW1(t) ≥ 0

AW1(t)Pask(t) if AW1(t) < 0.

(4.7)

Again, the symbol t in above equations can be substituted by the symbol TCk
for

k = 1, 2, ..., (n1 + n2). In fact, one crucial assumption we have made about this

hedging strategy is that the FX market is liquid enough so that the market maker can

successfully execute the risk hedging trade of amount H(TCk
) defined by equation 4.3

at time TCk
with no market impact. For the market makers with relatively small risk

tolerance, this assumption is reasonable.

4.2 Implementation of the Hedging Strategy

The hedging strategy introduced in the previous section 4.1 is implemented in matlab.

To carry out the test, we apply this strategy to the client trading process obtained

from the simulation exercise conducted in section 3.5. Figure 4.1 shows the market

maker’s Risk Adjusted Wealth Processes AW1(TCk
) and AW2(TCk

) when we assume

Up = 4, 000, 000, Lp = 2, 000, 000, UN = −4, 000, 000, and LN = −4, 000, 000. This
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means that whenever the client trade leads the wealth process to go beyond ±4

million USD, the hedging strategy will issue a hedging trade to bring its position

back to ±2 million USD. We can see that the Risk Adjusted Base Currency Wealth

Process AW1(TCk
) is bounded between ±4 million USD.
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Figure 4.1: Sample Paths of Market Maker’s AW1(TCk
) and AW2(TCk

)

Figure 4.2 shows the comparison between the P&L with and without risk hedging.

At about 80th minute, we start to see discrepancies between the P&Ls. This is because

that there is no risk hedging trade happening before that time. This plot also shows

that our current risk hedging strategy does not necessarily produce better P&L. But

at least this gives us something to start with.

4.3 Scenario Analysis

After a risk hedging strategy is introduced, the first question would be “What impact

could it have on the market maker’s P&L?” In order to answer this question, we will
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run the simulation exercise for the market data process and client trading process

under three different scenarios as follows:

1. Balanced client buying and selling flows under flat market condition.

2. Intensive client selling flow under downward market condition.

3. Intensive client buying flow under upward market condition.

Scenarios 2 and 3 are more like stress tests for our strategy. For each scenario, we

calculate P&L values (equations (3.14) and (4.6)) before and after risk hedging for

each sample path, and compare their difference. Sharp ratios are also calculated to

compare the returns before and after risk hedging. It is a measure of the excess return

per unit of risk in an investment asset or a trading strategy. In [28], it is defined as

S =
E
[
R− Rf

]
√

V AR
[
R− Rf

] , (4.8)
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where R and Rf are the asset return and risk-free return respectively. In our situation,

we let Rf equal to 0 since we are looking at absolute return.

4.3.1 Balanced Client Buying and Selling Flows under Flat

Market Condition

In this subsection, we assume that we are under a flat market condition. Then, given

a pre-defined client flow, which contains balanced client buying and selling trades,

we compute and compare the P&L with and without risk hedging on 5,000 different

market data paths. For a five-hour trading horizon, we use the following parameter

assumptions for the pre-defined client trading flow:

1. For client buying trades, we assume Poisson arrival process with rate λN1 =

1/120, µX1 = 500K, and σ2
X1 = 500K.

2. For client selling trades, we assume Poisson arrival process with rate λN2 =

1/120, µX2 = 500K, and σ2
X2 = 500K.

3. Client margin δC = 0.5 pip.

For each of the 5,000 sample paths of market (mid-price) data process, we assume

Poisson arrival process with rate λM = 1/2. Its value follows a geometric Brownian

motion given by equation (3.7) with initial value Pmid(0) = 1.1212, drift α = 0 pip

per minute, and volatility σ2 = 0.5 pip per minute. Market bid-ask spread remains

at δ = 1 pip. For risk hedging strategy, we set the risk barriers values of UP = 4M ,

LP = 1M , UN = −4M , and LN = −1M .

Figures 4.3 and 4.4 show the simulation results of market maker’s P&L without

and with risk hedging respectively. Figure 4.5 shows the difference between them, and

Figure 4.6 shows the comparison of sharp ratio values before and after risk hedging.
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Figure 4.3: P&L Without Risk Hedging in Flat Market with Balanced Client Flow

Figure 4.4: P&L With Risk Hedging in Flat Market with Balanced Client Flow
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Figure 4.5: P&L Differences in Flat Market with Balanced Client Flow
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From inspecting Figure 4.5 alone, it is difficult to tell that using an active risk

hedging strategy generates more revenue for the market maker than not hedging. For

the 5,000 sample paths, we see that about 50% of the time that the risk hedging

strategy generates less revenue than the un-hedging strategy. The amounts of out-

performance and under-performance almost cancel each other. But if we compare

figure 4.3 and figure 4.4, we can see that the P&L process without the risk hedging

strategy has a much wider range than the P&L process with the risk hedging strategy

does during the simulation horizon. At the end of the period, the P&L process

without the risk hedging strategy has its range from −5, 000CAD to 28, 000CAD,

while the P&L process with the risk hedging strategy has its range from 5, 000CAD

to 19, 000CAD. Figure 4.6 shows that the sharp ratio of risk-hedging P&L starts

perform better once the first risk-hedging trade is initiated. The better sharp ratio

values are mainly resulted from return variance reduction. This tells us that being

active in risk hedging is not necessarily more superiors than being in non-risk hedging,

but it substantially reduce the probability of getting very low (or even negative) P&L

in trading with the clients. This makes sense because more risk taking imposes more

chances in both winning in a big way and losing in a big way. The risk hedging strategy

is helpful if the market maker is seeking stability in his/her revenue generating.

4.3.2 Intensive Client Selling Flow under Downward Market

Condition.

In this subsection, we assume that we are facing a downward market condition and

experiencing intensive client selling trades during the trading horizon. P&Ls are

calculated on 5,000 simulation paths for risk hedging and un-hedging. For the five-

hour trading horizon, we use the following parameter assumptions for the predefined

client trading flow:

1. For client buying trades, we assume a Poisson arrival process with the rate of
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λN1 = 1/120, µX1 = 500K, and σ2
X1 = 500K.

2. For client selling trades, we assume a Poisson arrival process with a rate of

λN2 = 1/60, µX2 = 1M , and σ2
X2 = 1M .

3. Client margin δC = 0.5 pip.

For each of the 5,000 sample paths of market (mid-price) data process, we assume

a Poisson arrival process with a rate of λM = 1/2. Its value is assumed to follow

a geometric Brownian motion given by equation (3.7) with initial value Pmid(0) =

1.1212, drift α = −0.5 pip per minute (negative drift means downward market), and

volatility σ2 = 1 pip per minute. Market bid-ask spread remains at δ = 1 pip. For

the risk hedging strategy, we set the risk barriers values of UP = 4M , LP = 1M ,

UN = −4M , and LN = −1M .

Figure 4.7 shows the market maker’s P&L results when the risk hedging strategy

is not applied. Since this is in a downward trend market, and client selling trades

are arriving with large amounts at twice the speed of buying trades, the market

maker is loosing a large amount of money. Figure 4.8 shows the simulation results of

market maker’s P&L with risk hedging, and Figure 4.9 shows the difference of P&L

between hedging and un-hedging. We can see that by imposing a hedging strategy,

we substantially reduce the probability of loosing money. Nearly half of the sample

paths end up in the positive region of P&L. Even if the P&L is negative, it is much

less negative than the P&L without a risk hedging strategy. By figure 4.10, we see

that the sharp ratio of risk-hedging P&L is contained at a certain level around −1,

while the sharp ratio of non-risk hedging P&L is with a big downward slope.

4.3.3 Intensive Client Buying Flow under Upward Market

Condition.

In this subsection, we assume that we face an upward market condition and experience

intensive client buying trades during the trading horizon. This represents the opposite
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Figure 4.7: P&L Without Risk Hedging in Downward Trend Market with Intensive Client Sell

Figure 4.8: P&L With Risk Hedging in Downward Trend Market with Intensive Client Sell
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Figure 4.9: P&L Differences in Downward Trend Market with Intensive Client Sell
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Figure 4.10: Sharp Ratio Comparison in Downward Trend Market with Intensive Client Sell
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scenario to the scenario used in the pervious section. P&Ls are calculated on 5,000

simulation paths for risk hedging and un-hedging strategies. For the five-hour trading

horizon, we use the following parameter assumptions for the predefined client trading

flow:

1. For client buying trades, we assume a Poisson arrival process with a rate of

λN1 = 1/90, µX1 = 1.5M , and σ2
X1 = 1M .

2. For client selling trades, we assume a Poisson arrival process with a rate of

λN2 = 1/120, µX2 = 500K, and σ2
X2 = 500K.

3. Client margin δC = 0.5 pip.

For each of the 5,000 sample paths of market (mid-price) data process, we assume

a Poisson arrival process with a rate of λM = 1/2. Its value is assumed to follow

a geometric Brownian motion given by equation (3.7) with initial value Pmid(0) =

1.1212, drift α = 0.3 pip per minute (positive drift means upward market), and

volatility σ2 = 1 pip per minute. The market bid-ask spread is set to remain at

δ = 1 pip. For the risk hedging strategy, we set the risk barriers values of UP = 4M ,

LP = 1M , UN = −4M , and LN = −1M .

There is no surprise that we obtain similar results as the ones obtained in the

previous section. Figures 4.11 and 4.12 show the simulation results of market maker’s

P&L without and with a risk hedging strategy respectively, and Figure 4.13 shows

the difference between them. We can see that without any risk hedging strategy, the

market maker suffers huge losses when the upward market rally happens with intensive

client buying trades. Once the risk hedging strategy is imposed, the probability of

getting negative P&L is substantially reduced. P&L differences between the risk

hedging and un-hedging strategies are positive for all sample paths. Figure 4.14 shows

that the risk-hedging P&L achieved positive sharp ratios while non-risk hedging P&L

has a negative and decreasing sequence of sharp ratios.
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Figure 4.11: P&L Without Risk Hedging in Upward Trend Market with Intensive Client Buy

Figure 4.12: P&L With Risk Hedging in Upward Trend Market with Intensive Client Buy
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Figure 4.13: P&L Differences in Upward Trend Market with Intensive Client Buy
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Figure 4.14: Sharp Ratio Comparison in Upward Trend Market with Intensive Client Buy
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Chapter 5

Tail Risk Analysis

5.1 Overview of Extreme Value Theory

The last years of 2007, 2008, and 2009 have seen the greatest financial crisis since the

Great Depression 1929. This has led to numerous criticisms about the existing risk

management systems and motivated the search for more appropriate methodologies

able to cope with rare events that have heavy consequences. The typical question one

would like to answer is: “If things go wrong, how wrong can they go?” The problem is

then to model the rare phenomena that lie outside the range of available observations.

Extreme value theory (EVT) provides a framework to formalize the study of behavior

in the tails of a distribution. Critical questions relating to the probability of a market

crash or boom require an understanding of the statistical behavior expected in the

tails. EVT allows us to use extreme observations to measure the density in the

tail. This measure can be extrapolated to parts of the distribution that have yet to

be observed in the empirical data. It can also be mapped onto distributions with

specific tail behavior. In this way we can simulate a theoretical process that captures

the extreme features of the empirical data and improve the accuracy of estimated

probabilities of extraordinary market movements. Extreme Value Theory has been

well established in many fields such as insurance and engineering. Text books [25]
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and [7] gives introduction of Extreme Value Theory from its basic foundation to its

applications in insurance and finance industries.

This chapter is composed by two parts. In the first part, we draw down the

foundation work of Extreme Value Theory, and introduce the empirical estimation

methods for its shape, location, and scale parameters. A dataset of EUR/USD ex-

change rates with five-minute frequency with be applied for the empirical estimation.

In the second part of this chapter, we will introduce the concept of Value-at-Risk

(VaR), which is the most popular and important quantity for risk management. We

will discuss an approach to VaR calculation using the Extreme Value Theory.

Firstly, let’s introduce the basics of Extreme Value Theory. Assume that a series of

random variables Xk for k = 1, 2, 3, ..., n are independent and identically distributed

with a common cumulative distribution function (c.d.f) F (x). The range of random

variables Xk for k = 1, 2, 3, ..., n is [l, u]. For Xk being log returns, we have l = −∞
and u = ∞. Let Mn = max{X1, X2, ..., Xn} be the maximum of the random sample

of size n. Then, the c.d.f. of Mn is given by

Fn(x) = Pr(Mn ≤ x)

=
n∏

j=1

Pr(Xj ≤ x)

= [F (x)]n

= F n(x). (5.1)

In practice, the c.d.f. F (x) is unknown and, hence the c.d.f. F n(x) of Mn is

unknown. However, as n → ∞, F n(x) → 0 if x < u and F n(x) → 1 if x ≥ u, where

u is the upper boundary of the range. Therefore, the limiting distribution of F n(x)

is degenerate. To deal with this, we need to normalize F n(x). Suppose there exists a

sequence of constants an > 0 and bn ∈ R such that:

P (
Mn − bn

an
≤ z) = F n(anz + bn), (5.2)
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then the limiting distribution of F n(anz + bn) is given by

lim
n→∞

F n(anz + bn) = G(z). (5.3)

Finding the limiting distribution G(z) is called the Extremal Limit Problem. Find-

ing the F (x) that have sequences of constants as described above leading to G(z) is

called the Domain of Attraction Problem. In articles [10] and [24], authors gave the

limiting law for the maxima Mn with n being the sample size. The theorem is as

follows: let M i
n be a sequence of i.i.d. random variables for i = 1, 2, .... If there exist

constants an > 0, bn ∈ R, and some non-degenerate distribution function G such that

Z i =
M i

n − bn
an

d→ G, (5.4)

then G belongs to one of the three standard extreme value distributions:

Frechet : Φα(z) =




0 for z ≤ 0 and α > 0

e−z−α

for z > 0 and α > 0

(5.5)

Weibull : Ψα(z) =




e−(−z)α for z ≤ 0 and α > 0

1 for z > 0 and α > 0

(5.6)

Gumbel : Λ(z) = e−e−z

for z ∈ R (5.7)

where parameter α > 0 is the shape parameter, which captures the weights of the tail

in the distribution of the parent random variable X. This theorem is known as the

Fisher-Tippet Theorem. Constants an > 0 and bn ∈ R are referred to as scale

parameter and location parameter respectively.

Intuitively, these three standard extreme value distributions represent three possi-

bilities for the decay of the density function in the tail. Frechet distribution represents

tails that decay by a power, as in the cases of the stable Paretian, Cauchy and Student

t distributions. They are no longer integrable when weighted by the tail probabilities,

hence leading to ”fat tails”. Weibull represents tails that can decay with a finite tail
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index; this will be a thin tailed distribution with a finite upper endpoint. Gumbel

represents tails that can decay exponentially with all finite moments; these are stan-

dard cases of Normal, Lognormal, Gamma, etc. Figure 5.1 shows the shapes of the

probability density functions for standard Frechet , Weibull , and Gumbel distributions

when shape parameter α = 1.5.

Figure 5.1: Density Functions for Frechet, Weibull, and Gumbel when α = 1.5

In article [13], Jenkinson and Von Mises suggested an one-parameter representa-

tion given by

Gξ(z) =




e−(1+ξz)

−
1
ξ

if ξ 6= 0

e−e−z

if ξ = 0

(5.8)

for these three standard distributions, with x such that 1+ξx > 0. This generalization

is known as the Generalized Extreme Value (GEV) distribution, and is obtained by

setting ξ = α−1 for Frechet distribution, ξ = −α−1 for Weibull distribution, and by

interpreting the Gumbel distribution as the limiting case for ξ = 0. We can obtain the

probability density function (p.d.f.) of the Generalized Extreme Value distribution
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by differentiating the above c.d.f. (5.8), which gives

gξ(z) =




(1 + ξz)−( 1

ξ
+1)e−(1+ξz)

−
1
ξ

if ξ 6= 0

ex−e−z

if ξ = 0.

(5.9)

This generalized representation is very useful when maximum likelihood estimates

have to be computed when we do not know the type of limiting distribution of the

sample maxima in advance.

5.2 Maximum Likelihood Methods for EVT

From the previous section, we know that the Generalized Extreme Value distribution

contains three parameters ξ, an > 0, and bn ∈ R, which are referred to as shape,

scale, and location parameter respectively. In this section, we explain how to use

maximum likelihood estimate method in estimating the three parameters.

For one given sample, there is only one minimum value or maximum value ob-

served. We can not estimate these three parameters with only one extreme obser-

vation. An alternative approach that has been applied is to divide the sample into

non-overlapping sub-samples and apply the extreme value theory to the sub-samples.

This approach has been applied in literatures such as [11] and [24]. For a sample of

size T , we divide the sample into k non-overlapping sub-samples each with n obser-

vations, assuming for simplicity that T = nk. That is, we divide the sample

{x1, x2, ..., xT}

into

{x1, ..., xn, |xn+1, ..., x2n, |......|x(k−1)n+1, ..., xnk}.

We can write the observation value as xin+j, where 1 ≤ j ≤ n and i = 0, 1, ..., k−1.

This tells us that observation xin+j is the j
th observation of ith sub-sample. When the

size of each sub-sample is sufficiently large, we hope that the Extreme Value Theory
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will apply to each sub-sample. According to [14] and [24], the choice of n is subjective

to the practical application. For example, for daily stock returns, n = 21 corresponds

approximately to the number of trading days in a month, and n = 63 is the number

of trading days in a quarter.

Let’s define

mi
n = max{x(i−1)n+1, x(i−1)n+2, ..., x(i−1)n+n}, for i = 1, ..., k

being the maximum (or nth order statistics) of the ith sub-sample, where n stands

for the sub-sample size. When n is sufficiently large, zi =
mi

n−bn
an

should follow an

extreme value distribution, and the collection of sub-sample maximum values {mi
n|i =

1, 2, ..., k} can be regarded as a sample of k observations from that extreme value

distribution. This collection of sub-sample maximums is the data set that we will use

to estimate the unknown parameter values of the extreme value distribution.

Note that the c.d.f. and p.d.f. functions 5.8 and 5.9 are of normalized maximum

zi =
mi

n−bn
an

. To obtain the p.d.f. of mi
n, we simply apply change of variable theory

and obtain

gξ(m
i
n) =





1
an
(1 + ξmi

n−bn
an

)−( 1
ξ
+1)e−(1+ξ

mi
n−bn
an

)
−

1
ξ

if ξ 6= 0

1
an
e

[
mi

n−bn
an

−e
−

mi
n−bn
an

]
if ξ = 0.

(5.10)

And the likelihood function of the sub-sample maximum values can be obtained as

L(m1
n, m

2
n, ..., m

k
n|ξ, an, bn) =

k∏

i=1

gξ(m
i
n). (5.11)

The log-likelihood function for ξ 6= 0 is

l(ξ, an, bn) = log

(
1

an

)k

−
(
1 +

1

ξ

) k∑

i=1

log

(
1 + ξ

mi
n − bn
an

)

−
k∑

i=1

(
1 + ξ

mi
n − bn
an

)− 1
ξ

. (5.12)
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The log-likelihood function for ξ = 0 is

l(an, bn) = log

(
1

an

)k

+

k∑

i=1

(
mi

n − bn
an

− e−
mi

n−bn
an

)
(5.13)

We see that the MLE estimates will depend on the number of blocks k and the number

of observations n in each block. According to [25], there is a trade-off between the

bias and variance of the estimates. The bias of the MLE is reduced by increasing the

block size n, and the variance of the MLE is reduced by increasing the number of

blocks k. Nonlinear estimation procedure can then be applied to obtain the maximum

likelihood estimates of parameters ξ, an, and bn.

5.3 Empirical Analysis on EVT

The data sample we are about to analyze is the daily EUR/USD exchange rate

from 5/01/1998 to 06/30/2006. There are in total of 2, 058 days. Each data point

is marked with a unique date stamp. Before we fit the generalized extreme value

distribution by maximum likelihood method, let’s conduct some preliminary data

analysis. In financial practice, many investors are worried about the investment loss,

so let’s calculate the daily loss (or negative return) of EUR/USD as follows

xi = −
(
pi − pi−1

pi−1

)
100%, (5.14)

where pi stands for the day-end price of day i for i = 2, 3, ..., 2058. In our sample,

the day-end price is marked with time stamp 23:55 for each day stamp. Figure 5.2

shows the day end-price of EUR/USD for our sample period. Figure 5.3 is the QQ

plot of the EUR/USD daily loss observations xi for i = 2, ..., 2058. The plot suggests

that loss observations are having a thicker tail than normal distribution. It suggests a

Weibull family of generalized extreme value distribution with ξ < 0 for the sub-sample

maximum loss.

Next, let’s find the maximum daily loss for each monthly period. In order to make

sure that there are n = 20 (number of trading days) observations in each month, we
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Figure 5.3: Q-Q Plot of EUR/USD Daily Loss
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will count the first one or two days of the next month into this month if there is only

a number of 18 or 19 days available for this month. We will also use the first 20 days

data if the month has more than 20 trading days. This gives us in total of k = 98

observations. Figure 5.4 shows maximum daily loss in each monthly block. We see

that the largest daily loss in a monthly block is 2.34% in 2000 September.

Figure 5.4: EUR/USD Maximum Daily Loss for Each Month

Then, we can calculate the Maximum Likelihood Estimates for the parameters of

the generalized extreme value distribution by using these 98 monthly block maxima

daily loss on EUR/USD. By inputting the data into MATLAB, we get the estimates

of shape parameter ξ̂ = −0.132, scale parameter ân = 0.3513, and location parameter

b̂n = 1.0108. Since the shape parameter ξ̂ < 0, the monthly maximum daily loss fol-

lows a Weibull distribution. Figure 5.5 compares the empirical cdf for the sample and

the theoretical cdf of the generalized extreme distribution with estimated parameters.

Now We can apply the same procedures with different combinations of n and k.

Thus, we can see the effects of number of observations on MLE estimates. Table 5.1
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shows the MLE estimates for the generalized extreme value distribution of the daily

maximum loss with different block sizes. We can see that shape and location parame-

ters ξ and bn are quite sensitive to the number of observations in each block, whereas

the scale parameter an is less sensitive compare to the other two.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Comparison of Empirical and Theoretical CDF

 

 

Empirical
Theoretical

Figure 5.5: Empirical and Theoretical CDF Comparison for Maximum Daily Loss in Monthly

Block

Table 5.1: MLE Estimates for Generalized Extreme Value Distribution with Different

Block Size

Frequency # of Obs # of Blocks ξ̂ ân b̂n

Bi-Weekly n = 10 k = 196 −0.1323 0.3689 0.7856

Monthly n = 20 k = 98 −0.1320 0.3513 1.0108

Quarterly n = 60 k = 32 −0.0039 0.2643 1.3087

Semi-Annually n = 120 k = 16 −0.1257 0.2647 1.5467

Annually n = 240 k = 8 −0.3158 0.2767 1.7597
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5.4 Value-at-Risk (VaR)

Value-at-Risk (VaR) is a widely used risk measure in today’s financial industry. It

is an attempt to provide a single number to summarize the total risk in a portfo-

lio of financial assets. It is an accepted methodology used by corporate treasurers,

fund managers, and financial institutions. Central banks regulators also use VaR in

determining the capital a bank is required to keep to reflect the market risk it is

bearing.

The definitions and concepts of VaR can be found in many books and literatures

such as [12] and [4]. In [4], VaR is defined as the maximum loss which can occur with

X% confidence over a holding period of n days for a portfolio. Thus, when using

VaR as a measure of risk, we are interested in making a statement of the following

form: “We are X percent certain that we will not lose more than V dollars in the

next N days for a certain portfolio.” The variable V is the VaR of the portfolio. For

example, if a daily VaR is stated as $100, 000 with a 95% level of confidence for a

portfolio, it means that we are 95% confident that the portfolio will not lose more

than $100, 000 during a day. We can see that VaR is a very important risk measure

in helping banks to set up capital requirements for preventing extreme market risk

events. According to [12], the Basel Committee on Bank Supervision, (the committee

of world’s bank regulators), requires VaR to be calculated with N = 10 and X = 99

for the bank’s trading book on a daily basis. The capital it requires the bank to hold

is the multiplier k times the VaR measure. k is chosen on a bank-by-bank basis by

the regulators and must be at least 3.0.

Now let’s define VaR under a probabilistic framework. Since investors usually

would like to think of risk from a loss perspective, we let a continuous random variable

X represent the loss (or negative return) of a financial instrument during a certain

period of time h with c.d.f. Fh. Thus, a VaR value with p level of confidence for a

period of h can be defined as the (pth quantile of the distribution function Fh. That
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is

VaRh,p = F−1
h (p), (5.15)

where F−1 is the inverse function of the distribution function F . Equivalently, we

have

P (X > VaRh,p) = 1− Fh(VaRh,p) = 1− p. (5.16)

To quote a valid VaR statement, we must include three components: a time period,

a confidence level, and a loss amount. According to [4], calculation of VaR involves

the following factors in its practical applications:

1. The confidence level p such as p = 95% or p = 99%.

2. The time horizon h. This might be set by a regulatory committee such that

h = 1 day or h = 10 days.

3. The frequency of the data, which might not be the same as the time horizon h.

Daily observations are often used.

4. The c.d.f. Fh(x) for the return random variable.

5. The amount of the financial position or the mark-to-market value of the port-

folio.

Among these factors, it is the c.d.f. Fh(x) that draws most research attentions.

The most commonly used VaR models assume that random variable X , asset return

(or log-return) follows a normal distribution. This assumption itself is a huge risk to

those practitioners who use it because reality suggests that returns of most financial

products are fat-tailed.

5.5 An Extreme Value Approach to VaR

In this section, we discuss an approach to VaR calculation using the Extreme Value

Theory. In section 5.2, we derived the maximum likelihood function for estimating
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parameter values for a generalized extreme value distribution. By fitting the model

with the sample data, we perform an MLE calculation in Matlab and obtain esti-

mates of shape parameter ξ̂, location parameter b̂n, and scale parameter ân for the

generalized extreme value distribution of sub-sample maximum values. If we plug

these estimates into the c.d.f. equation 5.8 with z = mn−bn
an

, we obtain the estimate of

the c.d.f. of random variable Mn, the sub-sample maximum value under the limiting

generalized extreme value distribution. It is given as follows:

F̂n(mn) =




e−(1+ξ̂mn−b̂n

ân
)
−

1
ξ̂

if ξ̂ 6= 0

e−e
−

mn−b̂n
ân if ξ̂ = 0.

(5.17)

Suppose m∗
n is the pth quantile of the sub-sample maximum under the limiting gen-

eralized extreme value distribution, we can then rewrite equation 5.17 as

p = Pr(Mn ≤ m∗
n) =





e−(1+ξ̂
m∗

n−b̂n
ân

)
−

1
ξ̂

if ξ̂ 6= 0

e−e
−

m∗

n−b̂n
ân if ξ̂ = 0,

(5.18)

and solve for value m∗
n. We then obtain the pth quantile of the sub-sample maximum

under the limiting generalized extreme value distribution as

m∗
n =




b̂n − ân

ξ̂

[
1− [log(p)]ξ̂

]
if ξ̂ 6= 0

b̂n − ân
[
log[−log(p)]

]
if ξ̂ = 0.

(5.19)

According to [18] and [4], the case of ξ̂ 6= 0 is of major interest in financial applications.

The next step is to make explicit the relationship between sub-sample maxima

random variable Mn and the sub-sample loss (or negative return) random variable

Xj for j = 1, 2, ..., n. The relationship is established upon a strong assumption of

the financial asset returns in the sub-sample. That is, we assume most asset returns

are either serially uncorrelated or have weal serial correlations in the sub-sample. Let

V ∗ denote the p∗th quantile of the loss random variable X , then we can write down
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following equation

[p∗]n = [Pr(X ≤ V ∗)]n

=
n∏

j=1

Pr(Xj ≤ V ∗)

= Pr(Mn ≤ V ∗)

=




e−(1+ξ V ∗

−bn
an

)
−

1
ξ

if ξ 6= 0

e−e
−

V ∗
−bn
an if ξ = 0.

(5.20)

The 2nd equal sign in the above equation is based on assuming that asset returns are

i.i.d. The last equal sign is given by replacing m∗
n by V ∗ in equation (5.18). By taking

power of 1
n
on both sides of the above equation, we obtain

p∗ = Pr(X ≤ V ∗)

=




e−

1
n
(1+ξ V ∗

−bn
an

)
−

1
ξ

if ξ 6= 0

e−
1
n
e
−

V ∗
−bn
an if ξ = 0.

(5.21)

Then, the p∗th quantile of the loss random variable X can be obtained by solving the

above equation for V ∗ as follows:

V ∗ =




bn − an

ξ

[
1− [−nlog(p∗)]−ξ

]
if ξ 6= 0

bn − an
[
log[−nlog(p∗)]

]
if ξ = 0.

(5.22)

Consequently, if X is the loss amount random variable over a time period h, V ∗ is

the VaR with p∗ confidence level for a period of time h. By MLE estimates given

in Table 5.1, we can calculate the VaR value with 95% confidence level for the next

h = 10 days period as follows:

VaR10day, 0.95 = 0.7856− 0.3689

−0.1323

[
1− [−10log(0.95)]0.1323

]

= 1.021318.

If one holds a long position of 1, 000, 000 EURUSD, the estimated VaR with 95%

confidence level and 10 days period is equal to 100, 000 × 0.01021318 = 10, 213.18
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EUR. This is saying that in the next 10 days, we have 95% confidence level to say

that our daily loss will not exceed 10, 213.18 EUR if we hold 1 Million EUR.

Similarly, a VaR value with 99% confidence level with h = 20 days can be calcu-

lated as

VaR20day, 0.99 = 1.0108− 0.3513

−0.1320

[
1− [−20log(0.99)]0.1320

]

= 1.518747.

As expected, with higher confidence level and longer time period, we obtained a bigger

VaR value.

5.6 Considering Volatility Clustering

Volatility has been a crucial ingredient in modeling financial time series, designing

trading strategies and implementing risk management. In empirical finance, it is often

found that asset return volatility is highly persistent in the sense that periods of high

volatility tend to be followed by high volatility and periods of low volatility tend to

be followed by low volatility. This behavior is well-known as heteroskedasticity.

There are many articles providing empirical supports for the argument, such as such

as [9], [23], and [19]. In this section, we will extend our tail risk estimation to include

a stochastic volatility structure for the asset loss (or equivalently, negative return).

In 1982, Article [8] proposed ARCH (autoregressive conditional heteroscedasticity) to

model volatility dynamics by taking weighted averages of past squared forecast errors.

In 1986, article [3] introduced a generalization method (GARCH), which extended

the original ARCH model to allow lagged conditional variances enter as well.

In this section, we will calculate the tail risk measurement VaR with stochastic

volatility dynamics being modeled by GARCH. According to [19], research shows that

econometric models of volatility dynamics that assume conditional normality, such as

GARCH models, do yield VaR estimates reflecting the current volatility background.
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5.6.1 GARCH (p, q) Model

LetXt for all t ∈ N be a strictly stationary1 time series representing daily observation

of loss on a financial asset. Then, Xt is said to be a GARCH(p, q) process if it satisfies

equation

Xt = µt + σtZt (5.23)

with

σ2
t = ω +

p∑

i=1

αi(Xt−i − µt−i)
2 +

q∑

j=1

βjσ
2
t−j , (5.24)

where ω > 0, αi > 0, βj > 0 for all i and j ∈ N . Parameters µt and σt are the

conditional mean and conditional variance of Xt based on past information

Ft−1, which is the σ-field up to time t − 1. Process {Zt for all t ∈ N} is a series of

independent and identically distributed random variable with mean 0 and variance 1.

The (p, q) in parentheses is a standard notation in which the first number p refers

to how many past squared error terms are included, while the second number q refers

to how many moving average lags of past conditional variance terms are included. If

we let q = 0, we obtained ARCH(p) model. In this research, we will consider the case

where p = q = 1, which gives the mostly applied GARCH(1, 1) model.

5.6.2 Conditional Quantile

Let FX and FZ denote the marginal distribution functions of random variable Xt and

Zt respectively. For a future horizon of h days, we let Yh = Xt+1 +Xt+2 + ... +Xt+h

represent the total loss random variable for the next h days. Then, FYh|Ft
(x) is the

predictive conditional distribution of loss random variable over next h day given the

information of losses up to and including current day t. Then, the pth conditional

quantile of the predictive conditional distribution for the loss over the next h days

1A process is called strictly stationary if none of its finite moments depend on time.
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is obtained by

yph = inf
{
y ∈ R : FYh|Ft

(y) ≤ p
}

= inf
{
y ∈ R : FXt+1+Xt+2+...+Xt+h|Ft

(y) ≤ p
}
. (5.25)

If we let h = 1 day, we can obtain

FY1(y) = FXt+1|Ft
(y)

= Pr (µt+1 + σt+1Zt+1 ≤ y|Ft)

= Pr

(
Zt+1 ≤

y − µt+1

σt+1
|Ft

)

= Pr

(
Zt+1 ≤

y − µt+1

σt+1

)

= FZ

(
y − µt+1

σt+1

)
(5.26)

since {Zt, for all t ∈ N} is a series of i.i.d. random variables.

Then, the pth conditional quantile for the 1-step predictive conditional distribution

for the loss over 1 day is given by

yp1 = µt+1 + σt+1z
p, (5.27)

where zp is the pth quantile of the marginal distribution of Zt+1.

5.6.3 Empirical Analysis on GARCH(1,1)

In this section, we will conduct empirical analysis on EUR/USD daily closing rate

by GARCH(1, 1) model. Autocorrelation plot is most commonly used tool to visu-

alize non-independency of the observations in a time series. Figure 5.6 shows the

autocorrelation of EUR/USD daily loss at different time lags. The two horizontal

lines are the 95% confidence level lower and upper bounds. For the time lags with

autocorrelation value locating beyond the bounds, the null hypothesis that there is

no autocorrelation at and beyond these time lags is rejected at a confidence level of

95%.
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Figure 5.6: Autocorrelation Function of EUR/USD Daily Loss

The next step is to calculate the parameter values µt+1 and σt+1. We consider

that EUR/USD daily loss time series is a realization of an AR(1) - GARCH(1,1)

process. This means that the conditional mean being modeled by an AR(1) model

and the conditional variance being modeled by the GARCH(1,1) model. Hence, we

can obtain the following equations for conditional mean and conditional variance:

µt = φ1Xt−1 + φ0, (5.28)

and

σ2
t = ω + α1(Xt−1 − µt−1)

2 + β1σ
2
t−1 (5.29)

where ω > 0, α1 > 0, and β1 > 0. Then we can fit the AR(1) - GARCH(1,1)

model by Maximum Likelihood method with EUR/USD data, and assume that the

innovations (or residuals) Zt has a standard normal distribution. In Matlab, given the

original time series of EUR/USD daily loss observations {x1, x2, ...xn} for n = 2057,

we can specify the model and obtain the parameter estimates
{
φ̂0, φ̂1, ω̂, α̂1, β̂1

}
.

Table 5.2 gives the estimates of these parameter values, and figure 5.7 shows the
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plots of Innovations being inferred from the original series, the standard deviations,

and the original EUR/USD daily loss series. To see the model effect, figure 5.8 gives

the plot of autocorrelation functions of the innovations. We can clearly see that up to

20-day lags, there is no autocorrelation locating outside the lower and upper bounds.

Table 5.2: AR(1)-GARCH(1,1)Parameter Estimates given by MLE with Normal In-

novations

φ̂0 φ̂1 ω̂ α̂1 β̂1

−0.0119 −0.0358 0.0041 0.0177 0.9722
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Figure 5.7: Inferred Innovations, Standard Deviations, and Original Time Series

Now we can calculate the conditional mean and conditional variance for day t+1

by applying equations

µ̂t+1 = φ̂0 + φ̂1xt (5.30)
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Figure 5.8: Autocorrelation Function of Innovations

and

σ̂2
t+1 = ω̂ + α̂1 (xt − µ̂t)

2 + β̂1σ̂
2
t . (5.31)

We will obtain µ̂t+1 = 0.001407 and σ̂2
t+1 = 0.299724.

Given the assumption that innovations Zt are i.i.d. standard normal variables,

the pth quantile of Z can be obtained by zp = Ψ−1(p), where Ψ−1 is the inverse of

standard normal distribution function. Then, for our EUR/USD daily loss data, we

can get the 99% conditional quantile for the 1-step predictive conditional distribution

for the loss over 1 day as

ŷ0.991 = µ̂t+1 + z0.99σ̂t+1

= 0.001407 + 2.326
√
0.299724

= 1.275014.

This is also the 1-day VaR of the EUR/USD loss with 99% confidence level.

Another standard approach is to assume that the innovations have a leptokurtic
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distribution such as Student’s t−distribution (scaled to have variance 1). An AR(1)

- GARCH(1,1) model with t-innovations can also be fitted with maximum likelihood

and an additional parameter ν (degree of freedom) can be obtained. By specifying

the model in Matlab, we obtain following estimates for parameter values (given in

Table 5.3) with assumption of t-innovations.

Table 5.3: AR(1)-GARCH(1,1)Parameter Estimates given by MLE with Student t

Innovations

φ̂0 φ̂1 ω̂ α̂1 β̂1 ν̂

−0.0076 −0.0420 0.0031 0.0177 0.9747 14

We then obtain estimation values for conditional mean and conditional variance

as µ̂t+1 = 0.008011 and σ̂t+1 = 0.299551, and consequently get the 99% conditional

quantile for the 1-step predictive conditional distribution for the EUR/USD loss over

1 day as

ŷ0.991 = µ̂t+1 + z0.99σ̂t+1

= 0.008011 + 2.624
√
0.299551

= 1.444159.

In above equation, z0.99 = 2.624 is the 99th quantile of a Student’s t-distribution with

degrees of freedom ν̂ = 14. As expected, we obtain a higher value for the conditional

quantile of Student’s t−distribution than Standard Normal.

Next, we assume the conditional variance has dynamics given by another forms

of GARCH: GJR-GARCH. It consider one more quantity than the GARCH model

in previous sections. That is, the asymmetric innovations. According to [5], GJR-

GARCH is a more generic process of the evolution of the conditional variance given

by

σ2
t = ω +

p∑

i=1

αi(εt−i)
2 +

o∑

k=1

γk(εt−k)
2I[εt−k<0]

q∑

j=1

βjσ
2
t−j , (5.32)
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where the extra parameter γk is the coefficient of the asymmetric error square. Integer

values of p, o, and q are the orders for the symmetric error squares, asymmetric error

squares, and lagged variance term respectively. If we only focus on modeling the

conditional variance σ2
t , we obtain follow parameter estimates for GJR-GARCH(1, 1,

1) given in table 5.4.

Table 5.4: Parameter Estimates for GJR-GARCH(1,1,1)

Model ω̂ α̂1 γ̂1 β̂1

GJR-GARCH(1,1,1) 0.0050 0.0135 0.0090 0.9696

It is quite obvious that the assumption of normal distribution for innovation is one

of the biggest drawback for this empirical method. In previous sections, we already

discussed that financial asset returns are with heavy tails. An approach of taking

account of heavy tails would be to leverage generalized extreme value distribution for

innovations in fitting GARCH Model. This can be an interest area for future research.
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Chapter 6

VaR for A Trading Strategy

6.1 Ideas

This chapter will link the connection between Chapter 4 and Chapter 5 by using VaR

as a performance measure of a risk trading strategy. Same as measuring the tail risk

of a financial product, VaR can also be used to measure the tail risk of a portfolio’s

real-time P&L process. If the portfolio is managed by a specific risk trading strategy,

measuring VaR of the portfolio’s tail risk is equivalent in measuring the performance

of a risk trading strategy. In previous chapters from 1 to 4, we explained the FX

market making business process by its two major components: client trading and

risk hedging. During busy market hours, live FX quotes come into the system in

milliseconds, and client trades also come in at a higher frequency than during normal

condition market. This leads to the real-time P&L process given by equations 3.14

and 4.6 to be updated at a much higher frequency, which will produce a large sample

size of the P&L numbers in a very short time period, and it motives the idea of

calculating real-time VaR during the intra-day as a performance measure for the

trading strategy. So, the question that we ask will be ”What is the extreme loss that

the P&L process can have for the next 10 minutes trading period by using current

trading strategy given a 99% level of confidence?”
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6.2 Methodology and Example

The method we are going to apply is very similar to the method given in sections 5.2

5.5, and 5.3. We will apply generalized extreme value distribution to the block max-

ima of the P&L process, calculate the MLE estimates of the underlying parameters,

and apply equation 5.22 to calculate VaR.

For regulation purpose, VaR is calculated on a daily basis with a time period

of h = 1 or 10 days. For our purpose, h is more likely to be set at 5, 10, or 30

minutes depending on our preference. As the live rate updates are with un-equal

time intervals, the first step is to apply linear interpolation method to produce a

homogeneous time series of the P&L values. The choice of length for each time

interval of the homogeneous time series is subject to the length of the period h of

which VaR is quoted on. The short the h, the finer the time interval we need for linear

interpolation in order to have a big enough sample for each block. The choice of h is

really up to the user’s preference. But a user should keep in mind that for non-busy

trading hours, h is better to be a long interval than short. The reason is that the rate

updates may be very slow during the non-busy hour compare to the busy ones. So

does the P&L process. Thus, a very short h for a non-busy hour may contain only few

real observations before applying linear interpolation. Another key point that affects

the confidence in VaR calculation is the length of the history of the strategy. The

longer the strategy runs, the more observations we have, hence the more confidence we

have in the VaR calculation. If we decide to use only current intra-day data for VaR

calculation, then we need a built-up time period before reaching a high confidence

level in our estimation. By denoting each element of the homogeneous time series

of P&L process by {x1, x2, ..., xT}, where T is the total sample size, we can apply

exactly the same method as mentioned in sections 5.2, 5.5, and 5.3 to calculate VaR.

To given an example, let’s run our Limit Position Trading Strategy, which was

introduced in chapter 4, to simulate one P&L sample path for a 30-hour trading

period for USD/CAD. During this 30-hour period, each of the first, second, and third
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10-hour period is with the same assumption values of the three scenarios in section

4.3, which are scenarios of Balanced Client Buying and Selling Flows under Flat

Market Condition, Intensive Client Selling Flow under Downward Market Condition,

and Intensive Client Buying Flow under Upward Market Condition respectively.

The simulation result provides a sample with a number of 2,131 observations. Each

is at the time stamp of an incoming client trade. Since we assume our risk hedging

trades can be executed immediately in the market without any delay, the time stamps

of risk hedging trades are identical to the time stamps of those client trades which hit

the position limit and trigger the auto-hedging trades1. The time series of the sample

observations is a non-homogeneous one, which has the time interval from 0 to 1,800

minutes. This mean that on average we have more than one observations per minute.

Thus, we apply linear interpolation method to transfer the original non-homogeneous

time series into a homogeneous one with time interval of 2-minute period between

two consecutive points. Figure 6.1 shows the original and the interpolated time series

with 2-minute interval period.

The ultimate objective for a market maker is to realize positive increments in

the P&L process over a portfolio. Given the homogeneous time series of the P&L

observations {y1, y2, ..., yN}2, we will perform the extreme value theory analysis and

VaR calculation on the time series {x1, x2, ..., xN−1} for which xk = yk+1 − yk for

k = 1, 2, ...N − 1. Figure 6.2 shows the P&L increment time series {x1, x2, ..., xN−1},
and figure 6.3 is the Q-Q plot of these observations, which suggests that the P&L

increment has a heavy tail distribution.

Then we perform exactly the same procedures as in section 5.3 to model the block

maxima by generalized extreme value distribution and to calculate the MLE estimates

of parameters. Since we have in total of 30-hour trading history and a homogeneous

time series of P&L increments with 2-minute time interval between two consecutive

1For the client trades simulation, we didn’t apply any client spread in price. Thus, the P&L
sample path doesn’t contain client margin

2The interpolated time series with 2-minute interval period between two consecutive observations.
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Figure 6.1: Simulated P&L Sample Path for a 30-hour Trading Period
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Figure 6.3: Q-Q Plot for P&L Increments for A 30-hour Trading Period
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points, we divide the P&L increment time series into k = 30 blocks with n = 30

observations in each block. Figure 6.4 shows the maximum 2-minute loss (or negative

P&L increment) in each hourly block.

Figure 6.4: Maximum 2-Minute Loss in Hourly Block for A 30-Hours Period

By fitting the maximum block loss observations to the generalized extreme value

distribution, we obtain the maximum likelihood estimates of shape parameter ξ̂ =

−0.1070, scale parameter ân = 337.2511, and location parameter b̂n = 471.8377.

Figure 6.5 compares the empirical cdf for the sample and the theoretical cdf of the

generalized extreme distribution with estimated parameters.

Then, according to equation 5.22, we can calculate

VaR1hour, 0.95 = 471.8377− 337.2511

−0.1070

[
1− [−30log(0.95)]0.1070

]

= 323.0779.

This tells us that with a 95% confidence level that 2-minute P&L loss will not exceed

323.0779 in the next one-hour trading period.

With this method, it is possible to use VaR on a high-frequency level as a risk mea-
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surement for a high-frequency trading strategy. As the sample size increases during

the trading period, the MLE estimations will be more and more accurate. Moreover,

VaR can be calculate on a real-time basis so that it provides a good indication on

how the strategy performs. If the VaR value is getting bigger and bigger, this may

be a signal for us to shut down the strategy or at least to be cautious in operations.

The choice of the block interval size can also be adjusted to serve different purposes

of different groups. For traders, they may want the block interval to be as small as

possible such as 5-minute, 3-minute, or even 1-minute. For regulators, they may only

care about the 1-day or 10-day VaR.
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Chapter 7

Conclusions and Future Work

In this research paper, we looked into literatures about global foreign exchange market

in terms of its structure, product type, participants, and evolvements. We also looked

into the FX high-frequency data structure, and implemented the Exponential Moving

Average operator in matlab for processing the tick-by-tick data. Empirical analysis

on the real data showed that a built-up period was needed for the EMA operator to

produce accurate enough estimates. The bigger the range value of the operator had,

the long the built-up period was needed.

In the second part of this research, we investigated how a market maker could

effectively manage real-time risk as the counter-party of clients trading. In order

to conduct the analysis, we introduced a framework for market high-frequency data

simulation and client trading flow simulation. By using a Poisson process and a

Geometric Brownian motion, we simulated the market data arrival process and the

market data value respectively. The client trading flow can be simulated by a Poisson

process and a modified Gaussian distribution. Then, market maker’s Base Currency

Wealth Process and Counter Currency Wealth Process were successfully defined with

client trading amounts and market prices. In Chapter 4, we introduced a basic risk

hedging strategy, which limits the position that a market maker can take during the

trading horizon. Simulation results showed that when we set the risk limit at a static
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level, the risk hedging strategy did not necessarily generate more revenue than a non-

risk hedging strategy, but it helped reducing the downside risk substantially when

the market faced am upward or downward rally.

In the third part of this research, we looked into the Extreme Value Theory and

its extension to Value-at-Risk Calculation. By using eight years daily EUR/USD

exchange rate data, we performed Maximum Likelihood Estimation methods to cal-

culate estimates for shape, scale, and location parameters. Different estimates were

obtained for different combinations of number of blocks and block sizes. Then, we

extend the generalized extreme value distribution to VaR calculation based on the

assumption that financial product has independent daily returns. Lastly, we applied

GARCH(1,1) method for modeling volatility dynamics and calculated conditional

quantile for the predictive conditional distribution function of asset loss.

One interesting avenue for future work is to identify links among risk limits, client

trading flow, and market movements. Then, the risk limit can be dynamically ad-

justed according to a real-time market event and client flows so that optimal risk-

adjusted returns can be obtained. For example, we can fix a client trading flow, and

to search for the relationship between the risk limits and market volatility. Another

interesting direction is to apply the Exponential Moving Average operator in risk

hedging strategy. For example, we can use EMA operator to estimate where the mar-

ket will be in the next couple of seconds or milliseconds, so that when we place risk

hedging trades, we can place limit orders rather than market orders to avoid paying

market spreads. The third interesting area is to leverage generalized extreme value

distribution for innovations in fitting GARCH Model. This will be very helpful in

removing the assumption that the underlying innovations are normally distributed.
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Appendix A

Proof of EMA Iteration Formula for t Starting from −∞

By equation (2.4), for a time point t∗ such that tn−1 < t∗ ≤ tn, we can write

EMAZ(λ, t
∗) =

∫ t∗

−∞

1

λ
e−

1
λ
(t∗−t)Z(t)dt

=

∫ tn−1

−∞

1

λ
e−

1
λ
(t∗−t)Z(t)dt+

∫ t∗

tn−1

1

λ
e−

1
λ
(t∗−t)Z(t)dt

=

∫ tn−1

−∞

1

λ
e−

1
λ
(tn−1−t)e−

1
λ
(t∗−tn−1)Z(t)dt+

1

λ
e−

1
λ
(t∗−t)λZ(t)|t∗t=tn−1

= e−
1
λ
(t∗−tn−1)

∫ tn−1

−∞

1

λ
e−

1
λ
(tn−1−t)Z(t)dt+ Z(t∗)− e−

1
λ
(t∗−tn−1)Z(tn−1)

= µ1EMAZ(λ, tn−1) + (ν1 − µ1)Z(tn−1) + (1− ν1)Z(tn)

(A.1)

with µ1 = e−
1
λ
(t∗−tn−1) and value of ν1 depending on the chosen interpolation scheme

for Z(t∗), where

ν1 =





1 for the previous tick method

1− t∗ − tn−1

tn − tn−1
for the linear interpolation method.
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Appendix B

Proof of EMA Iteration Formula for t Starting at Zero

By the general definition of moving average, which is given by (2.1), for a time point

t∗ such that tn−1 < t∗ ≤ tn, we can write

EMAZ(λ, t
∗) =

∫ t∗

0
1
λ
e−

1
λ
(t∗−t)Z(t)dt

∫ t∗

0
1
λ
e−

1
λ
(t∗−t)dt

=

∫ tn−1

0
1
λ
e−

1
λ
(t∗−t)Z(t)dt

∫ t∗

0
1
λ
e−

1
λ
(t∗−t)dt

+

∫ t∗

tn−1

1
λ
e−

1
λ
(t∗−t)Z(t)dt

∫ t∗

0
1
λ
e−

1
λ
(t∗−t)dt

=
e−

1
λ
(t∗−tn−1)

∫ tn−1

0
1
λ
e−

1
λ
(tn−1−t)Z(t)dt

∫ tn−1

0
1
λ
e−

1
λ
(tn−1−t)dt

∫ t∗

0
1
λ
e
−

1
λ
(t∗−t)

dt
∫ tn−1
0

1
λ
e
−

1
λ
(tn−1−t)

dt

+

∫ t∗

tn−1

1
λ
e−

1
λ
(t∗−t)Z(t)dt

∫ t∗

0
1
λ
e−

1
λ
(t∗−t)dt

=
e−

1
λ
(t∗−tn−1) − e−

1
λ
t∗

1− e−
1
λ
t∗

∫ tn−1

0
1
λ
e−

1
λ
(tn−1−t)Z(t)dt

∫ tn−1

0
1
λ
e−

1
λ
(tn−1−t)dt

+
Z(t∗)− e−

1
λ
(t∗−tn−1)Z(tn−1)

1− e−
1
λ
t∗

=
e−

1
λ
(t∗−tn−1) − e−

1
λ
t∗

1− e−
1
λ
t∗

EMAZ(λ, tn−1) +
Z(t∗)− e−

1
λ
(t∗−tn−1)Z(tn−1)

1− e−
1
λ
t∗

= µ2EMAZ(λ, tn−1) + (ν2 − µ2)Z(tn−1) + (1− ν2)Z(tn)

(B.1)
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with µ2 = e
−

1
λ
(t∗−tn−1)−e

−
1
λ
t∗

1−e
−

1
λ
t∗

and value of ν2 depending on the chosen interpolation

scheme for Z(t∗), where

ν2 =





1 for the previous tick method

1− 1

1− e−
1
λ
t∗

t∗ − tn−1

tn − tn−1
for the linear interpolation method.
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