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Abstract

Lossless data compression algorithms are widely used by data communication systems and data

storage systems to reduce the amount of data transferred andstored. GNU Zip (GZIP) [1] is

a popular compression utility that delivers reasonable compression ratios without the need for

exploiting patented compression algorithms [2, 3]. The compression algorithm in GZIP uses a

variation of LZ77 encoding, static Huffman encoding and dynamic Huffman encoding. Given the

fact that web traffic accounts for 42% [4] of all internet traffic, the acceleration of algorithms like

GZIP could be quite beneficial towards reducing internet traffic. A hardware implementation of

the GZIP algorithm could be used to allow CPUs to perform othertasks, thus boosting system

performance.

This thesis presents a hardware implementation of GZIP encoder written in VHDL. Unlike

previous attempts to design hardware-based encoders [5, 6], the design is compliant with GZIP

specification and includes all three of the GZIP compressionmodes. Files compressed in hardware

can be decompressed with the software version of GZIP. The flexibility of the design allows for

hardware-based implementations using either FPGAs or ASICs. The design has been prototyped

on an Altera DE2 Educational Board. Data is read and stored using an on board SD Card reader

implemented in NIOS II processor. The design utilizes 20 610LEs, 68 913 memory bits, and the

on board SRAM, and the SDRAM to implement a fully functional GZIP encoder.
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Chapter 1

Introduction

The spread of computing has led to an explosion in the volume of data to be stored on hard disks

and sent over the Internet. This growth has led to a need for data compression, that is, the ability

to reduce the amount of storage or Internet bandwidth required to handle data. There are lossless

and lossy forms of data compression. Lossless data compression is used when the data has to be

uncompressed exactly as it was before compression. Text files are stored using lossless techniques,

since losing a single character can in the worst case make thetext dangerously misleading. Archival

storage of master sources for images, video data, and audio data generally needs to be lossless as

well. Lossy compression, in contrast, works on the assumption that the data doesn’t have to be

stored perfectly. Much information can be simply thrown away from images, video data, and audio

data, and when uncompressed such media will still be of acceptable quality. Data compression

occurs just about everywhere. All the images sent and received on the Internet are compressed,

typically in JPEG or GIF formats. Most modems use data compression. HDTV broadcasts are

compressed using MPEG-2. Also, several file systems automatically compress files when stored.

To meet the growing demand for compression, Jean-loup Gailly and Mark Adler created the

compression utility GNU Zip (GZIP) [1]. The GZIP utility compresses data to create a smaller and

less demanding representation for storing and transferring data. The GZIP utility was designed

as a replacement for COMPRESS. COMPRESS is a UNIX compression program based on a

1



Chapter 1. Introduction 2

variation of LZW [2, 3] where common substrings in a file are replaced by 9-bit codes. Since

LZW is a patented algorithm, GZIP became a popular tool that achieves better compression ratios

than COMPRESS and it is free from patent issues. The GZIP utility is based on the DEFLATE

algorithm [8], which is a lossless data compression algorithm that uses a combination of LZ77

and Huffman coding. Since its release, GZIP has become the preferred tool for file compression

and is used in storage systems. More recently, GZIP has become a popular tool to compress and

decompress websites. One of the main features of using GZIP on the Internet is speed. It has been

reported by the website USWeb that using GZIP to compress itswebsite has shown a decrease

by up to 40% in page load time [9]. Another benefit of GZIP is potentially a better relationship

with search engine crawlers. For example, Google can read a GZIP file much more quickly than

crawling a site manually. When Google is updating its search queries, it attempts to not monopolize

internet traffic. If a website is slow, the spider may believeit is taxing the web servers resources and

visit the website less often. Thus, changes made to the website less often. The GZIP compression

tool has become a standardized part of the HTTP protocol and most web browsers have built-in

GZIP decompression software. The HTTP/1.1 protocol allowsfor clients to optionally request

the compression of content from the server [10]. The standard itself specifies two compression

methods: GZIP and DEFLATE. Both are supported by many HTTP client libraries and almost all

modern browsers.

1.1 Thesis Contributions and Motivations

This thesis presents the design and description of a hardware implementation for GZIP compres-

sion written entirely in VHDL. The specific contributions ofthis thesis include:

• A hardware implementation of GZIP that conforms to the GZIP specification (i.e., files com-

pressed in hardware can be decompressed in software by standard software implementations

of GZIP);

• A hardware implementation which, unlike other hardware implementations, supports all



Chapter 1. Introduction 3

three of the GZIP compression modes; and

• A fully functional prototype of the hardware implementation implemented on an Altera DE2

prototype board.

The motivation for a hardware implementation of GZIP shouldbe clear from the previous

description of the uses of GZIP. A hardware implementation of GZIP can offer the possibility of

high-speed compression and offload bandwidth consuming compression tasks from a CPU, thereby

freeing up valuable CPU resources. A specific hardware implementation of GZIP on a single chip

(e.g., a low cost FPGA) reduces the need for a fully-functional PC to perform compression tasks.

Hence, applications of a hardware implementation of GZIP would include deployment inside of

storage area networks, web servers and other Internet-related appliances such as load balancers,

firewall VPN servers and integrated routers and switches.

1.2 Thesis Organization

Chapter 2 outlines the necessary background information forthe reader to understand the GZIP

algorithm. The compression algorithms covered include: GZIP, LZ77 and Huffman. Chapter 3

discusses a hardware implementation of GZIP compression using a top-down approach. Included

in this design are block instantiations of Huffman encodersand an LZ77 encoder. These blocks

are described in detail in Chapter 4 and Chapter 5 respectively. Chapter 6 provides a detailed

description of the FPGA prototype and the interaction necessary to test the GZIP implementation.

Chapter 7 analyzes the experiments run and compares the results against a software version of

GZIP. Chapter 8 provides a few closing remarks.



Chapter 2

Background

This Chapter outlines the necessary background informationfor the reader to understand the GZIP

algorithm. Since the GZIP algorithm utilizes a LZ77 encoderand several Huffman encoders, these

algorithms will be discussed in detail. Section 2.5 evaluates existing hardware implementations of

GZIP and Section 2.6 provides a few general comments about this document.

2.1 GZIP Algorithm

A GZIP file consists of a series of data members, where each member simply appear one after

another in a file. The data members include header information, compressed blocks, and end-of-file

information.

2.1.1 File Structure

The beginning of each file compressed by GZIP contains a ten byte header with optional fields

present. The header contains information to specify that the file follows GZIP format and the state

of the computer at the time of compression. The formal representation of the GZIP file format is

presented in Figure 2.1. The first two bytes (ID1 and ID2) are unsigned identification numbers

that are used by GZIP to identify the file as being in GZIP format; they are the values 31 and 139.

The next byte (CM) is the compression method used by GZIP, the customary method chosen is

4



Chapter 2. Background 5

the DEFLATE algorithm which is represented by the value 8. The fourth byte (FLG) contains a

flag that expresses some of the possible options available inGZIP. If the first bit of the flag is set,

the file is probably ASCII text. This is an optional indicator,which the compressor may set by

checking a small amount of the input data to see whether any non-ASCII characters are present. If

a non-ASCII character is found, the bit is cleared, thus indicating binary data. If the second bit is

set, a cyclic redundancy check for the GZIP header is presentimmediately before the compressed

data. The third bit of the flag is used to indicate if any extra fields are present. If fields are present,

they immediately follow the header information. If the fourth bit is set, an original file name is

present terminated by a zero byte following any extra fields.The fifth bit determines whether a

zero-terminated file comment is present. This comment is notinterpreted; it is only present for

human information. The remaining bits of the flag are reserved for the GZIP algorithm. Following

the flag, the next four bytes (TIME) of the GZIP header represent the most recent modification time

of the original file being compressed. The ninth byte (XFL) inthe header is used to determine the

specific compression method used by DEFLATE. The DEFLATE algorithm can be executed in two

different methods. Using maximum compression and a longer runtime the algorithm assigns the

ninth byte the value 2. Using less than maximum compression and shorter runtime, the algorithm

assigns the ninth byte the value 4. Finally, the last byte (OS) of the GZIP header represents the

operating system used for compression. The GZIP header is followed by blocks of compressed

data, terminated by an end-of-block character. Following the compressed data, GZIP writes eight

bytes of data used for decompression. The first four bytes (CRC32) are a cyclic redundancy check

value for the compressed data and the last four bytes (ISIZE)contain the size of the original

uncompressed data modulo 232.

2.1.2 Block Structure

Following the header information a file compressed by GZIP consists of a series of blocks,

corresponding to successive blocks of input data. The amount of data processed for compression

can vary as long as it is smaller than 32 768 bytes. GZIP determines the amount of data to process
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Figure 2.1: GNU Zip (GZIP) File Structure
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based on a heuristic function with evaluates when it is beneficial to begin a new block. The header

of each block contains one bit to indicate if this is the last block to be processed and is followed by

two bits describing the compression mode used. The GZIP algorithm may compress each block in

three different modes: stored, fixed and dynamic. In the stored mode, the data is not compressed;

therefore the block header is simply followed by the original uncompressed data. In either the

fixed or dynamic mode, each block is compressed using a combination of the LZ77 and Huffman

coding algorithms. The input data is first encoded using the LZ77 algorithm and the output of the

LZ77 algorithm is then encoded using the Huffman algorithm.The compressed information from

the LZ77 algorithm consists of literal bytes and distance-length pairs to previous strings. Both the

literals and distance-length pairs are represented using aHuffman tree, using one tree for literals

and lengths and the other tree for distances. In the fixed mode, the frequency of the characters are

defined in advance, so the necessary Huffman trees are storedin look-up tables and the output of

LZ77 algorithm is simply encoded with values from the look-up tables. However, in the dynamic

mode the Huffman codes are generated based on the actual frequencies of the input data and must

be computed for each block. This requires a representation of the dynamic Huffman trees to follow

the block header since the Huffman trees for each block are independent of those from previous

or subsequent blocks. The compressed data encoded using thedynamic Huffman trees follows

the representation of the dynamic Huffman trees in the output file. Regardless of the compression

mode used, each block is terminated by an end-of-block marker.

Initially the block of data to be compressed is processed by the LZ77 coding algorithm which

produces flags, literals, match distances and match lengths. The literal bytes from the alphabet

{0,. . . ,255} and the match lengths from the alphabet{3,. . . ,258} are merged into a single alphabet

{0,. . . ,285} where values 0,. . . ,255 represent literal bytes, the value 256 indicates the end-of-block,

and values 257,. . . ,285 represent match lengths. Similarly, the match distances from the alphabet

{1,. . . ,32 768} are mapped into the alphabet{0,. . . ,29}. The alphabet representations used are

presented in Table 2.1 and Table 2.2. In both of the alphabet mappings, extra bits are often

required to be able to extrapolate the original value duringdecompression. As mentioned above,
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the literals and match lengths{0,. . . ,285} are encoded by one Huffman tree and the match distances

{0,. . . ,29} are encoded with a separate Huffman tree. Once the two dynamic Huffman trees have

been created, GZIP determines whether compressing the block of data with dynamic Huffman

trees or static Huffman trees will produce a higher compression ratio. The static Huffman trees are

stored in a look-up table in both the compressor and decompresser and are presented in Table 2.3

and Table 2.4. If dynamic Huffman compression is beneficial then a representation of the dynamic

literal-length Huffman tree (DLLHT) and the dynamic distance Huffman tree (DDHT) must occur

at the beginning of the block to be able to reconstruct the Huffman trees for decompression

purposes. Due to restrictions placed on the Huffman algorithm, further discussed in Section 2.3,

the Huffman trees are guaranteed to be unique, requiring only the code lengths to be sent and not

the code for each value. The Huffman algorithm also places a restriction on the code length for

each value allowing a maximum of 15 bits. This ensures the code lengths of DLLHT and DDHT

are in the alphabet{0,. . . ,15}. This allows a third dynamic Huffman tree (DCLHT) to be created

with alphabet{0,. . . ,18} to compress the output of DLLHT and DDHT tree. The values 0,. .. ,15

are the code lengths and the values 16, 17 and 18 are used for special repeating values which are

presented in Table 2.5. The precise output format of the dynamic Huffman compression block is

presented in Figure 2.2. If a static Huffman tree was used, itis not necessary to output any trees

since the decompresser has access to the static codes. Once the necessary Huffman trees have been

written to the file the newly compressed information followsusing either the static or dynamic

Huffman representation, followed by an end-of-block marker.

The last block processed is followed by eight bytes of information required for GZIP decompres-

sion (see Figure 2.1). The first four bytes (CRC32) contain a cyclic-redundancy check for the

compressed data and the last four bytes (ISIZE) are the number of bytes compressed modulo 232.

2.2 Ziv-Lempel Coding Algorithm

Ziv-Lempel (LZ) is a generic compression algorithm utilizing regularities in a bit stream [11].

The LZ algorithm is a lossless dictionary based scheme, allowing the original information to be
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Table 2.1: Dynamic Literal-Length Huffman Tree (DLLHT) Alphabet

Length Extra Bits Code Length Extra Bits Code Length Extra Bits Code
3 0 257 15-16 1 267 67-82 4 277
4 0 258 17-18 1 268 83-98 4 278
5 0 259 19-22 2 269 99-114 4 279
6 0 260 23-26 2 270 115-130 4 280
7 0 261 27-30 2 271 131-162 5 281
8 0 262 31-34 2 272 163-194 5 282
9 0 263 35-42 3 273 195-226 5 283
10 0 264 43-50 3 274 227-257 5 284

11-12 1 265 51-58 3 275 258 0 285
13-14 1 266 59-66 3 276

Table 2.2: Dynamic Distance Huffman Tree (DDHT) Alphabet

Extra Extra Extra
Distance Bits Code Distance Bits Code Distance Bits Code

1 0 0 33-48 4 10 1 025-1 536 9 20
2 0 1 49-64 4 11 1 537-2 048 9 21
3 0 2 65-96 5 12 2 049-3 072 10 22
4 0 3 97-128 5 13 3 073-4 096 10 23

5-6 1 4 129-192 6 14 4 097-6 144 11 24
7-8 1 5 193-256 6 15 6 145-8 192 11 25
9-12 2 6 257-384 7 16 8 193-12 288 12 26
13-16 2 7 385-512 7 17 12 288-16 384 12 27
17-24 3 8 513-768 8 18 16 385-24 576 13 28
25-32 3 9 769-1024 8 19 24 577-32 768 13 29

Table 2.3: Static Literal-Length Huffman Tree (SLLHT)

Literal Value Code Length Code
0-143 8 48 through 191

144-255 9 400 through 511
256-279 7 0 through 23
280-287 8 192 through 199
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Table 2.4: Static Distance Huffman Tree (SDHT)

Code Code Code
Value Length Code Value Length Code Value Length Code

0 5 0 10 5 10 20 5 20
1 5 1 11 5 11 21 5 21
2 5 2 12 5 12 22 5 22
3 5 3 13 5 13 23 5 23
4 5 4 14 5 14 24 5 24
5 5 5 15 5 15 25 5 25
6 5 6 16 5 16 26 5 26
7 5 7 17 5 17 27 5 27
8 5 8 18 5 18 28 5 28
9 5 9 19 5 19 29 5 29

Table 2.5: Dynamic Compressed-Length Huffman Tree (DCLHT) Alphabet

Literal Value Extra Bits Code
0-15 0 0-15
16 2 Copy the previous code 3-6 times
17 3 Repeat a code length 0 for 3-10 times
18 7 Repeat a code length 0 for 11-138 times

Figure 2.2: Dynamic Compressed Block Format
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reconstructed from compressed data. There are multiple versions of LZ compression; LZ77, LZ78

and LZW being the most common. LZ78 and LZW both generate better compression over a finite

bit stream compared to LZ77 [12]. However, LZ78 and LZW both utilize static dictionaries. For

this type of design, a look-up table holding the recurring symbols is required. Using a look-up

table to decompress data would result in higher hardware requirements for the LZ78 and LZW

algorithms. On the other hand, LZ77 utilizes a dynamic dictionary and, as a result, has a smaller

impact on the memory required for decompression. Since LZ78and LZW are not used in GZIP,

they will not be described any further.

LZ77 processes data from left to right, inserting every string into a dictionary. Quite often

the dictionary is limited by memory, thus a sliding dictionary is used. A sliding dictionary keeps

track of the most recent strings seen, discarding any previous strings. If a string does not occur

anywhere in the dictionary, then it is emitted as a literal sequence of bytes. If a match is found, then

the duplicate string is replaced by a pointer to the previousstring in the form of distance-length

pair. The distance-length pair is composed of two parts, thefirst being the distance from the current

element to the element in which the match starts, and the second is the length of the match (see

Figure 2.3). With respect to the LZ77 used by GZIP, the newly compressed information is also

accompanied by a flag byte which precedes the data allowing the GZIP algorithm to be able to

distinguish literals and distance-length pairs. In the standard LZ77 algorithm the flag is emitted

individually as a bit, but in GZIP the LZSS variation is used.LZSS is a derivative of LZ77 that

allows 8 flag bits to be grouped together into one byte [13]. Toachieve optimum compression it

is important that the closest match in the dictionary that does not sacrifice match length is found.

This is key because matches that are nearest are encoded in the fewest number of bits.

Although the LZ77 algorithm implemented with a sliding dictionary can be run in linear time [14],

it is slow and consumes large amounts of memory. This can be solved by using a hashing algorithm,

which increases speed and reduces memory requirements. GZIP and almost all programs using the

LZ77 scheme use hashing data structures [15].
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Figure 2.3: Ziv-Lempel (LZ77) Encoding Example

2.3 Huffman Coding Algorithm

Huffman coding is a lossless statistical data compression scheme [16]. The algorithm is based on

the concept of mapping an alphabet to a different representation composed of strings of variable

size, such that symbols that have a higher probability of occurring have a smaller representation

than those that occur less often.

There are two methods of Huffman coding: static and dynamic.In the static method the

frequencies of each character in the alphabet are assigned before the program begins and are stored

in a look-up table. In the dynamic method, on the other hand, must make one pass through the

text to determine the frequency of each character. Once the histogram has either been calculated or

provided, the two algorithms are identical. Elements are selected two at a time, based on frequency;

lowest frequency elements are chosen. The two elements are made to be leaf nodes of a node with

two branches. The frequencies of the two elements selected are then added together and this value

becomes the frequency for the new node (see Figure 2.4). The algorithm continues selecting two

elements at a time until a Huffman tree is complete with the root node having a frequency of 100.

The classic Huffman coding algorithm is nondeterministic,thus allowing a data set to be

represented as more than one possible tree. The GZIP programapplies two additional rules to

ensure that each data set has at most one possible tree representation. Elements that have shorter

codes are placed to the left in the Huffman tree of those with longer codes. In Figure 2.4, D and
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Figure 2.4: Huffman Encoding Example

E end up with the longest codes, so they would be in the right branch of the tree. Also, among

elements with codes of the same length, those that come first in the element set are placed to the left

in the Huffman tree. Since D and E are the only elements with code length four and D comes first

in the data set, D will be assigned the 0 branch and E will be assigned the 1 branch. When these two

restrictions are placed on the Huffman coding algorithm, there is at most one possible tree for every

set of elements and their respective code lengths. This factallows for a substantial optimization to

be made in the Huffman coding algorithm. Since each Huffman tree is deterministic and can be

recomputed using the code lengths, it is not necessary to send each code word for decompression

purposes.

2.4 GZIP Example

An example of GZIP encoding is illustrated in Figures 2.5-2.8. The original sentence and the

output of the LZ77 encoder is presented in Figure 2.5. The elements in black text are literals, the

red elements are the flags, the blue elements are the match lengths and the green elements are the
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match distances. Each element is then sent to the appropriate Huffman tree to create the dynamic

Huffman codes. The literals (black) and match lengths (blue) are encoded in one tree (DLLHT)

in Figure 2.6. Also, the match distances (green) are encodedin another Huffman tree (DDHT) in

Figure 2.7. In both cases the static representations that already existed in GZIP are also presented

in each Figure. Once DLLHT and DDHT have been computed, DCLHT can be computed using

the code lengths from the previous Huffman trees. After the DCLHT has been computed (see

Figure 2.8), the GZIP algorithm determines with method of compression will achieve the highest

compression ratio. In this case, the stored length would be 504 bits, the fixed length would be 425

bits and the dynamic length would be 433 bits. So the block would then be compressed using the

fixed mode, which uses the static Huffman codes.

2.5 Recent Advances

Despite the importance of the GZIP algorithm, relatively few complete hardware implementations

exist. For example, [5] presents a GZIP encoder and decoder which implements only the static

Huffman encoding specified by the GZIP standard. The implementation was written in VHDL

and tested on an FPGA. In comparison, this thesis presents a GZIP implementation that includes

all three of the GZIP compression modes. It is also written inVHDL and tested on an FPGA.

By implementing all three compression modes, the implementation described in this thesis can

achieve better overall compression ratios. In [6], a GZIP encoder is implemented using a CAM

Sentence to compress:

LZ77 Output:

I went for a walk in the rain on the walkway and seen a rainbow

00 I w e n t f 00 o r a w a l

00 k i n t h e 140 r a 3 9 o 6 12 4 24

00 a y a n d s

w

24 e e n 3 43 4 31 b o w

Figure 2.5: GZIP Encoding Example (Part 1)
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Literal-Length Huffman Tree:
Character     Dynamic Code     Static Code

“00” “01010000”
I “10100” “01111001”
a “010” “10010001”
b “111000” “10010010”
d “10101” “10010100”
e “0110” “10010101”
f “111001” “10010110”
h “111010” “10011000”
i “111011” “10011001”
k “111100” “10011011”
l “10110”
n “0111” “10011110”
o “1000” “10011111”
r “10111”
s “11000” “10100011”
t “11001” “10100100”
w “1001” “10100111”
y “111101” “10101001”
256 “111110” “0000000”
257 “11010” “0000001”
258 “11011” “0000010”
260 “111111” “0000100”

“10011100”

“10100010”

(3)
(4)
(6)

Figure 2.6: GZIP Encoding Example (Part 2)

Distance Huffman Tree:
Distance       Dynamic Code     Static Code

6 “00” “0110”
8 “01” “01000”
9 “10” “01001”
10 “11” “01010”

(9,12)
(24)
(31)

(43)

Figure 2.7: GZIP Encoding Example (Part 3)

Dynamic Compressed-Length Huffman Tree:
Symbol     Dynamic Code

0 “00”
2 “100”
3 “11110”
4 “1111”
5 “01”
6 “111”
17 “11111”
18 “110”

Figure 2.8: GZIP Encoding Example (Part 4)
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(Content Addressable Memory). Consequently, the design is expensive in terms of its hardware

requirements and is not necessarily portable to other architectures. The implementation presented

in this thesis does not use architecturally specific blocks like CAM and is therefore more easily

ported to other architectures. Although not necessarily described in the context of GZIP, additional

prior work on hardware-based implementations of LZ77 and Huffman encoding can be found.

Dictionary based implementations (LZ77) fall into one of three categories: the microprocessor

approach [17], the CAM approach [18] and the systolic array approach [19]. The first approach

does not explore full parallelism and is not attractive for real time applications. The CAM approach

is able to achieve high throughput by exploiting parallelism and can outperform C-programs

running on CPU’s [20]. However one drawback of the CAM approachis that it is costly in terms

of hardware requirements. The systolic array approach, as compared to the CAM approach, is not

as fast but has lower hardware requirements and has improvedtestability. These three approaches

are architecture specific and cannot be easily ported to different architectures. The proposed state

machine implementation in VHDL is architecture independent and can be easily transferred to

other architectures. The flexibility of the design allows for hardware-based implementations on

FPGA boards and inside ASICs.

Many different groups have investigated implementations of static Huffman coders [21–25].

As mentioned above, a static coder assumes that the signal distribution is known when the

algorithm begins. This type of assumption can cause negative side effects. If the actual signal

distribution is not close to the assumed distribution, coding overheads can occur. Dynamic

Huffman implementations have also been implemented [26, 27]. Since these implementations

do not include the two additional rules GZIP uses to ensure the Huffman tree is deterministic,

they require the entire tree to be sent to the decompresser rather than just the code lengths. This

increases the overall runtime and compression ratio and is not a feasible option.
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2.6 General Comments

Since most data compression techniques can work on different types of digital data, such

as characters or bytes in image files, data compression literature speaks in general terms of

compressing symbols. Many of the examples in this document refer to compressing characters,

simply because a text file is very familiar to most readers. However, in general, compression

algorithms are not restricted to compressing text files. Hence, throughout the remainder of this

thesis, the terms symbol and character are used interchangeably. Similarly, most of the examples

talk about compressing data in files, just because most readers are familiar with that idea. However,

in practice, data compression applies just as much to data transmitted over a modem or other data

communications link as it does to data stored in a file. There’s no strong distinction between the

two as far as data compression is concerned.

2.7 Summary

This Chapter has discussed the relevant background information regarding the GZIP algorithm.

The LZ77 and Huffman algorithms have been described in detail because they play a significant

role in GZIP compression. Despite the importance of GZIP, only a few prior attempts have

been made to implement the algorithm in hardware. These prior implementations have been

(1) architecture dependent, (2) expensive in terms of theirhardware requirements, and/or (3)

incomplete in so far as they did not implement all the compression modes specified by GZIP. These

issues serve to make the implementation described in the remainder of this thesis interesting.
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GZIP Hardware Implementation

This Chapter begins a top-down description of the GZIP hardware implementation. Section 3.1

provides a block-level overview of the GZIP encoder and Section 3.2 gives details regarding the

internal structure of the GZIP encoder itself. Section 3.3 gives an in depth explanation of the GZIP

hardware implementation. The implementation requires block instantiations of LZ77 and Huffman

encoders. These blocks are described in detail in Chapter 4 and Chapter 5 respectively.

3.1 Block Structure

The block structure for the GZIP encoder is illustrated in Figure 3.1. Theclock signal is self

explanatory. Thereset is an active low input signal used to reset the entire circuit. The signals

inputSend, inputValid, input andeof are used to load the data to be compressed into the

encoder. The clock cycle afterinputSend is equal to one, the signalinput is assigned the new

value from the input source which raisesinputValid to one indicating new data is available. If the

end-of-file had been reached, the signaleof is set to one. Similarly for output, whenoutputValid

is one, the value atoutput is written to the output file. Once the algorithm is complete,the signal

outputDone is assigned one, indicating that we are done with the file and it may be closed. The

signalssram address, sram data, sram we andsram q are used to read and write to a RAM.

18
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GNU Zip
Encoder
(GZIP)

output

inputSend

outputValid

outputDone

sram_address

sram_data

sram_we

1

1

18

1

16

16

1

1

16

8

1

1

1

inputValid

sram_q

input

eof

reset

clock

unsigned                     std_logic_vector         std_logic

Figure 3.1: GNU Zip (GZIP) Encoder Block

3.2 Major Components

Based on the description of GZIP in Chapter 3, the majority of the GZIP hardware implementation

is based on the instantiation of a number of different blocksand the interaction between them. This

requires four block instantiations, one LZ77 encoder and three dynamic Huffman encoders. The

design also requires two static Huffman encoders, static literal-length Huffman tree (SLLHT) and

static distance Huffman tree (SDHT). The overall block interaction can be seen in Figure 3.2.

The GZIP encoder holds the representation of the static Huffman trees used. SLLHT is stored

in two RAMs; SLLHTCodes andSLLHTLengths of size 286×9 bits and 286×4 bits respectively.

TheSLLHTLengths RAM is a dual-port RAM which allowing sequential reads from the Huffman

encoder block. Similarly, SDHT is stored in one RAM calledSDHTCodes of size 30×5 bits. Only

one RAM is required because all codes in the SDHT have a lengthof 5.
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Distribution
Calculations

SLLHT SDHT

Compress
Data

DCLHT

LZ77
Output

DDHT

DLLHT

LZ77
Encoder

input

output

Control

Figure 3.2: GNU Zip (GZIP) Internal Structure
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3.3 Implementation

The GZIP algorithm essentially has three key responsibilities. The first is to control the data flow

throughout the algorithm. This includes control signals for the LZ77 encoder and three dynamic

Huffman encoders. The second and third parts are two distinct sets of calculations. The first set of

calculations computes the distribution for DCLHT and the second chooses the data compression

method and outputs the compressed data. The details of thesethree important parts are discussed

in detail below.

3.3.1 Data Flow and Control Signals

This Section provides a description of the flow of data through the GZIP encoder. The GZIP

compression hardware begins by waiting for areset signal from the user. Once areset is

received, the Huffman encoders and the LZ77 encoder are alsoreset. While the four internal

blocks are initializing, the ten bytes of header information are written to the output file. A function

sendBits has been created to send data to a file. It takes as parameters the value to send and

the number of bits to send. In thesendBits function if two bytes of data are ready to be written

to the output file the value is assigned tooutput andoutputValid is assigned one. To send

the ten header bytes, five states are required callingsendBits in each state. The GZIP encoder

then continues to sit in a wait state until the LZ77 encoder iscomplete and DLLHT and DDHT

have received all their necessary data and can begin construction of the Huffman trees. The GZIP

encoder then enters another wait state until DLLHT is done calculating its code lengths. Now

that the code lengths for DLLHT have been computed, an iteration must be performed on each

code length to build the distribution for DCLHT. As previously mentioned, DCLHT is used to

compress the output of the dynamic Huffman trees by taking advantage of repeating code lengths

(see Table 2.5). This distribution calculation is discussed in detail in Section 3.3.2. Once the

DLLHT has been processed the algorithm must wait until the DDHT code lengths have been

calculated and then repeats the set of calculations. Once DLLHT and DDHT have been processed,

the algorithm waits until the DCLHT code lengths have been calculated. After all the DCLHT
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code lengths have been computed the algorithm enters another set of calculations to determine the

compression mode for the block and then writes the newly compressed information back to the file

(see Section 3.3.3).

If the input file is longer than 32 768 characters then the algorithm will need to process more

than one block of data. This occurs by resetting the LZ77 encoder and the three Huffman encoders

and looping the GZIP algorithm to the wait state after the tenbytes of header information has been

written to the output file. Otherwise, if the end-of-file as occurred then the GZIP algorithm must

write the last eight bytes of the GZIP header information. Ifthe output file is not on a byte marker,

zero bits are emitted until the byte is complete. In the next four clock cycles, the cyclic redundancy

check is written in four bytes and the original file input sizeis written in four bytes. One thing to

note about the implementation is that the algorithm only processes block sizes of 32 768 characters

where the software version of GZIP processes varying sized blocks.

3.3.2 Distribution Calculation

To ensure that the dynamic Huffman tree representation is assmall as possible, the code lengths for

DLLHT and DDHT are compressed using a third Huffman tree, DCLHT. This set of calculations

compute the necessary input for DCLHT. Since both DLLHT and DDHT are processed in the

same manner, the description provided will be in terms of a general Huffman tree. The description

provided expands on what occurs in the Distributions Calculations box in Figure 3.2 which is

further expanded in the flow diagram in Figure 3.3 and Figure 3.4. The distribution calculations

begins by addressing the Huffman treeslengthsRAM, which contains each code length, at zero in

the first state. In state three, variablesprevLen andcount are assigned zero. One clock cycle later

the RAM access is complete and in the fourth state, a variablenextLen is assignedlengths[0].

If lengths[0] does not equal zeromaxCount=7 and minCount=4, otherwisemaxCount=138

andminCount=3. The variablesmaxCount andminCount are used throughout to determine the

appropriate signal to send to DCLHT in accordance with the description in Table 2.5.

In state five the main loop of the distribution calculation isentered and ifj, which is initially
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zero, is less than or equal to the signalmaxCode, thenlengths is addressed atj+1. The signal

maxCode is used by the Huffman tree to indicate the highest code processed on input as to avoid

processing extra symbols that did not occur in the Huffman tree. Also in state five,curLen is

assignednextLen andcount is incremented. Two clock cycles are then waited for thelengths

read and in state eightnextLen is assignedlengths[j+1].

State nine incrementsj, and considers the following five different conditions in the specified

order.

1. (count < maxCount) and (curLen = nextLen)

2. (count < minCount)

3. (curLen 6= 0)

4. (count ≤ 10)

5. Otherwise

If condition one is satisfied, the algorithm loops back to state five, indicating the same length

was processed as seen in the previous iteration. Otherwise,if condition two is satisfied, indicating

there is not enough repeating code lengths to bother compressing,curLen is sent to DCLHTcount

times. This involves a loop of four states since the Huffman tree can only process data every four

clock cycles. If the third condition is true, the value 16 is sent to Huffman tree. A value of 16

is used to indicate that the previous code has been repeated three to six times. IfcurLen does

not equal zero andcurLen does not equalprevLen, thencurLen must also be sent, requiring a

four cycle wait once again. In either case, in state tencount is assigned zero andprevLen is

assignedcurLen. Also if nextLen equals zero thenmaxCount=138 andminCount=3, otherwise if

curLen equalsnextLen, maxCount=6 andminCount=3 . If neither of those conditions hold true,

maxCount=7 andminCount=4. The algorithm then loops back to state five. If the fourth condition

is satisfied, a 17 is sent to DCLHT and the algorithm proceeds tostate ten and then loops back to

state five. A 17 implies that a code length of zero has been repeated three to ten times. Finally,

if the previous four conditions were not satisfied, an 18 is sent to the Huffman tree, the algorithm

proceeds to state ten and then loops back to state five. An 18 implies that a code length of zero has
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been repeated 11 to 138 times.

In state five, ifj is greater than or equal tomaxCode then the distribution is complete for this

specific Huffman tree.

3.3.3 Compress and Output Data

Once the DCLHT code lengths have been determined, the GZIP algorithm must determine the

compression mode and compress the data. First, the GZIP algorithm iterates through each DCLHT

code length to determine how many compressed-lengths codesmust be sent. When the DCLHT

representation is written to the output file the code lengthsare sent in a specific order to take

advantage of the fact that some code lengths will occur less often then others. The code lengths

are output by indexinglengths in the following order: 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3,

13, 2, 14, 1, 15. To send only the required number of codes, a loop is executed on the code lengths

in the reverse order to eliminate sending as many as possiblecode lengths equal to zero. So if

lengths[15] andlengths[1] equal zero, then only the first 17 code lengths would be written.

This loop is accomplished in three states, allowing for the RAM access and the two required wait

states. The number of code lengths to be written is stored in the variableindex.

At this point, the GZIP algorithm must choose the method of compression. Each Huffman

tree has computed the number of bits required to send the block both dynamically and statically

and the LZ77 encoder has stored the number of bytes to reproduce the original data. The total

dynamic block length (DBL) is computed using Equation 3.1. The calculation includes the cost to

send all of the dynamic Huffman trees and compressed data. The three extra constants at the end

of Equation 3.1 account for sending the number of codes in each tree as specified in Figure 2.1.

Also, index is multiplied by three because each code length in the DCLHT issent in three bits.
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nextLen=lengths_q

Continued in Figure 3.4

9

prevLen=0
count=0

lengths_address=0

nextLen=lenghts_q
j=0
if (lengths_q==0) then

maxCount=138
minCount=3

else
maxCount=7
minCount=4

if (j<maxCode) then
lengths_address=j+1

else
nextLen=31

curLen=nextLen
count=count+1

j=j+1
if (count<maxCount) and (curLen==nextLen) then

//LOOP
elsif (count<minCount) then

elsif (curLen/=0) then

elsif (count<=10) then

else

send curLen

send 16

send 17

send 18

j>=maxCode

1

2

3

4

5

6

7

8

WAIT

WAIT

WAIT
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count=count-1

if (count>0) then
send curLen

5

Continued in Figure 3.3

count=0
prevLen=curLen
if (nextLen=0) then

maxCount=138
minCount=3

elsif (curLen=nextLen) then
minCount=6
maxCount=3

else
maxCount=7
minCount=4

send curLen

10

(count<maxCount)
and

(curLen==nextLen)

count<minCount                                      otherwise

curLen/=0

count>0

5

15

16

17

18

11

12

13

14

WAIT

WAIT

WAIT

WAIT

WAIT

Figure 3.4: Distribution Calculations Flow Diagram (Part 2)
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DBL = (DLLHT dynamicLength)+(DDHT dynamicLength)+(DCLHT dynamicLength)+

(index+1)∗3+5+5+4

(3.1)

The static block length (SBL) is computed in Equation 3.2. This accounts for only sending the

compressed data since tree representations are not necessary in the static case.

SBL = (DLLHT staticLength)+(DDHT staticLength) (3.2)

The GZIP algorithm chooses the compression mode, fixed, dynamic, or stored, based on

whichever of DBL, SBL or stored block length is the smallest.A block header is written to the file

regardless of compression mode, the first bit for end-of-fileand the last two bits for compression

mode. If the stored compression mode is chosen the original data is written to the file. This requires

a three state loop to allow reading the original data from RAM. However, if the dynamic method

was chosen a representation of the Huffman trees must be written to the file. As in Figure 2.2 the

first 14 bits are the number of codes that are going to be written for each Huffman tree. The first

five bits are the number of DLLHT code lengths to be sent, DLLHTmaxCode-257. The DLLHT

maxCode is guaranteed to be at least 257 because of the end-of-block marker, allowing GZIP to

subtract 257 to be able to send the value in five bits. The middle five bits are the number of DDHT

code lengths to be sent, DDHTmaxCode-1. The last four bits are the number of DCLHT code

lengths to be sent,index-4. Following the first 14 bits, the DCLHT is written. A loop of three

states is necessary to allow for the RAM access and each code length is output in three bits. Next

the DLLHT is written to the file by going through the distribution function defined previously.

Rather than sending the codes to a Huffman tree, the values are referenced in DCLHT and written

to the file by calling thesendBits function. DDHT is written in the same manner as DLLHT.

Once the dynamic tree representations are complete, the fixed and stored methods are identical
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except for which Huffman tree the code value is looked up in. The GZIP algorithm then begins to

compress the data by looping through all the values stored from the output of the LZ77 encoder.

Remember that flags, literals and distance-length matches were outputted by the LZ77 encoder

and stored into the RAM. Two variables are used in this section calledflag andflagUsed where

initially flagUsed is equal to eight. The algorithm reads each value from the RAMand based on

the values offlag andflagUsed determines how to process the data. IfflagUsed equals eight

then the input is stored inflag andflagUsed is set to zero. Otherwise, ifflagUsed does not equal

eight and bit 0 offlag equals zero then a literal is being processed and its code is looked up in the

literal-length tree, either the dynamic tree or the static tree based on the compression mode, and

sendBits is called. If bit 0 offlag is one, then a distance-length match is being processed. This

is accomplished by referencing the mapping of the first valuein the literal-length tree and sending

the code. Followed by reading in another value and referencing its mapping in the distance tree

and callingsendBits. Each time either a literal or match is processed,flag is shifted left by one

bit andflagUsed is incremented. This process continues until all data has been compressed. Each

read from the RAM to retrieve the input requires three clock cycles and each code look up and

output requires three clock cycles. As previously mentioned, an end-of-block marker is required

following the compressed data, so the value 256 is referenced in the literal-length tree and written

to the file.

3.4 Summary

This chapter has outlined the implementation of GZIP compression in hardware. A block overview

has been provided, as well as a detailed description of the implementation. The implementation

has been broken down into three distinct parts. The first was the overall data flow of the

algorithm, including the control signals for the internal encoders. The second and third parts

of the implementation were necessary calculations described in terms of state machines written in

VHDL.
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Ziv-Lempel Hardware Implementation

This Chapter discusses the hardware implementation of a LZ77encoder. The LZ77 implementa-

tion consists of RAMs and a state machine to compress the datawhich is written in VHDL. The

overall block structure of the LZ77 encoder is described in Section 4.1. Further, details regarding

the encoder are discussed in the remaining Sections.

4.1 Block Structure

The block structure for the LZ77 encoder is presented in Figure 4.1. The signalsclock andreset

are connected directly to the same signals as the GZIP block.The signalsinput, inputSent

and inputValid are used to provide the LZ77 encoder with data to compress. The signals

sram address, sram q, sram we andsram data are used to read and write to a RAM that is

necessary for the design. When the algorithm is complete the signal lzDone is set to indicate

the algorithm is complete and construction of the dynamic Huffman trees may begin. The signals

outLength andinLength are assigned the number of bytes output by the LZ77 encoder and the

number of bytes read in by the encoder. The newly compressed values calculated by the LZ77

encoder are transferred directly to Huffman blocks using the signalstree1Data, tree1Valid,

tree2Data andtree2Valid. Finally, the signalinputCRC is the cyclic redundancy check for the

input data.

29
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Ziv-Lempel
Encoder
(LZ77)

inputSend

lzDone

outLength

inLength

sram_we

sram_data

tree1Valid

sram_address

tree2Data

tree1Data

tree2Valid

inputCRC

32

32

1

1

1

32

16

1

18

5

9

1

32

1

8

16

1

1

inputValid

input

sram_q

reset

clock

unsigned                     std_logic_vector         std_logic

Figure 4.1: Ziv-Lempel (LZ77) Encoder Block
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4.2 Major Components

This Section introduces a number of RAMs and global variables used throughout the implementa-

tion of the LZ77 encoder. To simplify the process of finding matches for compression, a chaining

hashing method is used in the GZIP version of LZ77. The hashtable is composed ofhSize

locations, each of which index the head of a linked list. Eachlinked list contains the previous

elements hashed to that location in the table. The hashtableis composed of two RAMs:head

andprev (see Figure 4.2). The RAMhead is of sizehSize×16 bits and represents the most

recent string hashed into that position in the hashtable, wherehSize=32 768. Similarly the RAM

prev of sizedSize×16 bits contains the previous strings hashed to that position in the hashtable,

wheredSize=32 768. By storing the hashtable in this manner, if a match were to befound in the

hashtable, the first one would be the closest.

xxxx                    xxxy                    xxxt

abca                   abcd                    abce

h=hashValue(abcr)

h

head                                                        prev

Figure 4.2: Ziv-Lempel (LZ77) Hashtable

The implementation requires a RAM to store the input data. Itis calledwindow and is of

sizewSize×8 bits, wherewSize=32 768. A variablelookAhead is used to store the number of

characters left to be processed and a variablestrStart is used to indexwindow.
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An arrayencodeData of size 16×16 bits is used to store the distance-length pairs and literals to

be emitted untilflagPos equals 128, indicating eight iterations of the loop have been completed.

After eight iterations have been performedencodedData may hold a maximum of 16 elements if

eight distance-length pairs have been stored and a minimum of 8 elements if we have eight literals.

Finally, to be able to complete the compression later in the GZIP block, the output of the LZ77

encoder is stored in a RAM of size 33 792×16 bits calledcompress.

Although it is not part of the LZ77 compression algorithm, asinput is read, a cyclic redundancy

check is computed for the data to ensure the data has been properly recreated in the decompresser.

This requires a RAMcrcTable which is of size 256×32 bits and is initialized with fixed values

from a file.

4.3 Implementation

The actual implementation can be broken down into four key parts; initialization, reading data,

hash setup and data compression. Each part will be describedin detail below using a state machine

approach.

4.3.1 Initialization

The purpose of the initialization is two-fold. Several global variables need to be assigned their

correct start-up values and the hashtable needs to be cleared by assigning all locations inhead

the value zero. The implementation requires two states for initialization; the first state assigns

the required variables with the correct start-up values. During data compression the variable

matchAvailable is used as a flag to determine if a match should be processed nowor whether

to wait until the next iteration of the state machine. Also, the variablesflag andflagPos are

used to calculate and store the flag values once compression is complete. The second state loops

initializing each value ofhead in the hashtable with zero.
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4.3.2 Reading Data

Once the initialization is complete,window must be filled with characters from the alphabet

{0. . . 255} to be compressed. This process is illustrated in Figure 4.3.A request for a character

is sent by assigninginputSent the value one. The state machine loops in this state until it can

confirm the request has been received, indicated byinputValid being non-zero. Also in this state,

if this is not the first character to be computed theninputCRC is updated using Equation 4.1. In the

second state, the value,input, is available. IfinputValid is equal to one,input is then assigned

to window[lookAhead] andlookAhead andinLength are incremented. To compute the cyclic

redundancy check for the input data the RAMcrcTable is indexed at the value ofinput. These

states continue looping whilelookAhead is less thanwSize and end-of-file is not reached. At the

end of this process, the signallookAhead indicates how many symbols are stored inwindow to be

compressed.

inputCRC = crcTable[input] xor inputCRC >> 8 (4.1)

4.3.3 Hash Setup

In the GZIP version of LZ77, the sliding dictionary is implemented as a hashtable. To insert every

possible string into the table would be expensive and time consuming. GZIP only considers string

of lengthminMatch, whereminMatch=3. The value 3 was chosen because if a match were to

be found, the distance-length pair would not be longer than the original word. An incremental

hash function is used allowing the hash value to be incrementally updated for each string rather

than having to repeat the calculationminMatch times for every string. In order to begin the LZ77

algorithm, the hash valueh must be updated for the firstminMatch-1 characters (see Figure 4.4).

The calculation is accomplished by addressingwindow with the value ofj, which initially is

zero. The next state simply waits for the RAM access. In statethree, the hash calculation is

completed withwindow[j] as the parameter. The hash calculation is completed in one clock
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inputSend=’1’

inputCRC=crcTable_q xor (inputCRC>>8)

window[lookAhead]=input
lookAhead++

crcTable_address=input

inputValid

eof
lookAhead<wSize

Figure 4.3: Reading Data Flow Diagram

cycle as presented in Equation 4.2. Once the calculation is complete,j is incremented,window is

addressed at the value ofj, and the state machine loops back to the second state provided j is less

thanminMatch-1. At completion of the hash setup all the necessary variableshave been initialized

and the algorithm is ready to begin compressing the data.

h = ((h << 5) xor parameter) and(hSize-1) (4.2)

4.3.4 Data Compression

The data compression portion of the algorithm is the most resource intensive portion of the LZ77

encoder. All the necessary variables have been initialized, including clearing the hashtable. The

data to compress has been stored inwindow and the signallookAhead holds the number of

symbols locatedwindow. The initial hash setup has been performed by calculating the hash

value for the firstminMatch-1 symbols. An illustration of the entire data compression process
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h=((h<<5) xor window_q) and (hSize-1)
window_address=j+1

j++

window_address=j

j<minMatch-1

WAIT

Figure 4.4: Hash Setup Flow Diagram

can be see in Figure 4.5. IflookAhead is greater than zero then the compression portion of the

algorithm is entered, otherwise the algorithm is complete.The first task is to insert the string of

lengthminMatch into the hashtable, this is accomplished in theinsertString routine and will be

discussed in detail in Section 4.3.5.

After the string of lengthminMatch is inserted in the hashtable, the previous match needs to

be saved by storing the current length and distance inprevMatch. If the value ofhashHead,

which was computed ininsertString does not equal zero then thelongestMatch routine is

entered, otherwise the function is skipped. ThelongestMatch routine is discussed in detail in

Section 4.3.6. The purpose of thelongestMatch routine is to search through the hashtable and

return a match, which could have a length of zero if no match was found.

After exiting thelongestMatch routine a comparison is performed to determine what, if

anything, should be stored for output. If a match was found inthe previous iteration of the loop and

is better than the new match, the distance-length pair of theprevious match will be stored. The first

state stores the output toencodedData, adjusts theflag to specify a distance-length pair has been

encoded, decrementslookAhead by the previous match length and assignsmatchAvailable the

value zero. Also in the first state, the signalstree1Data andtree2Data are assigned the mapped
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values of the previous match length and match distance andtree1Valid andtree2Valid are

set to one. A second state is then needed to insert all the substrings of lengthminMatch into

the hashtable by callinginsertString several times and incrementingstrStart. If the first

statement was not satisfied, a check is performed to see ifmatchAvailable equals one. If the

condition holds true, then no match was found the last iteration and a better match was not found

this time, so a literal is stored. The first state addresseswindow at strStart-1. The second

and third states wait for the RAM access and the fourth state stores the literal toencodedData,

decrementslookAhead and incrementsstrStart. Also in the fourth state the signaltree1Data

is assigned the value of the literal andtree1Valid is assigned one. If neither of the previous

conditions hold true, the algorithm waits until the next iteration to determine what to do. This is

accomplished by assigning one tomatchAvailable, decrementinglookAhead, and incrementing

strStart.

After processing the information provided by the longest match routine, a check is required to

determine if the output is ready to be processed. IfflagPos is equal to 128 then eight elements

have been encoded, either literals or distance-length pairs. If this is true then theflag and data

stored inencodedData is stored in RAM for later use,flag andflagPos are reset andoutLength

is incremented for each byte stored. If this is not the case,flagPos is shifted left by one position to

prepare for the next iteration in the loop. After all the checks are complete, the algorithm proceeds

back to the first state of the state machine and repeats the entire process.

4.3.5 Insert String Routine

The insertString routine inserts the string of lengthminMatch into the hashtable (see Fig-

ure 4.6). At first,window is addressed atstrStart+minMatch-1. A wait state is then entered to

wait for window to be read. In state three, the hash value is updated by executing Equation 4.2 with

window[strStart+minMatch-1] as the parameter. Once the hash value is updated,head is read

at the new hash valueh. Once again, a wait state is required to wait forhead to be read. In state

five, the insertion is performed. It can be seen that insertions are quick and simple, and deletions
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Done

insertString

longestMatch

Store Literal WaitStore Match

Output

flagPos=128

lookAhead>0

matchAvailableprevMatch > curMatch

Figure 4.5: Ziv-Lempel (LZ77) Flow Diagram
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are unnecessary since a sliding dictionary is used and olderstrings will be overwritten.

h=((h<<5) xor window_q) and (hSize-1)
head_address=h

window_address=strStart+minMatch-1

prev[strStart and (dSize-1)]=head_q
head[h]=hashHead=strStart

WAIT

WAIT

Figure 4.6: Insert String Flow Diagram (insertString)

4.3.6 Longest Match Routine

ThelongestMatch routine searches though the hashtable, finding any possibleduplicate strings

within the hashtable, this process is illustrated is Figure4.7. The main feature of thelongestMatch

routine is readingwindow in two different locations and comparing the values returned. Two

variables are used to keep track of these locations:scan and match. Also, a variable called

curMatch is used to keep track of the head of the linked list that is currently being processed. To

begin,match andcurMatch are assigned the value ofhashHead andscan is assigned the value of

strStart. Thewindow RAM is then addressed at both locations and the necessary clock cycles

for RAM accesses are waited. Ifwindow[scan] is equal towindow[match] thenscan andmatch

are incremented and we return to the third state. One restriction is placed on this loop, allowing a

maximum match length of 258, ensuring a reasonably sized setof lengths to encode.
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In state six, a comparison is made between the length of the newly found match and any

previous match that may have been found. If the new match length is longer, then it is stored,

otherwise it is discarded. The algorithm must then continueto process any other strings that have

also been hashed to the same value. Previously,prev was addressed atcurMatch, at this point

the value is accessed and is assigned tocurMatch. If the new value ofcurMatch is greater than

zero and less than 128 elements in the linked list have been processed, the rest of the linked list

is then checked for matches. This is accomplished in the samemanner as before, but only with

a new value ofcurMatch. Once all necessary assignments are made the algorithm loops back to

state two. After 128 elements of the linked-list have been processed or the list comes to an end,

thelongestMatch routine is complete.

4.4 Summary

This Chapter discussed a hardware implementation of LZ77. Anoverall block description was

provided as well as an in depth discussion of the implementation. The implementation was broken

down into four parts; initialization, reading data, hash setup and compressing data. Each part was

discussed in detail with a state machine approach.
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matchData=window_q

match=curMatch=hashHead
scan=strStart

window_address=match
chainLength=128

if(matchData=window_q)then
scan++
match++
window_address=match

window_address=scan

prev_address=curMatch

curMatch=prev_q
chainLength=chainLength-1
scan=strStart
if best match then

store in currentLength, currentDistance
if(chainLength>0) then

match=curMatch
window_address=match

chainLength>0

matchData=window_q

Figure 4.7: Longest Match Flow Diagram (longestMatch)



Chapter 5

Huffman Hardware Implementation

This Chapter discusses in detail the hardware implementation of dynamic Huffman encoders

written in VHDL. The three encoders described are importantpart of the GZIP design. A block

overview is provided for each encoder and a general detaileddescription is provided for all three.

5.1 Block Structure

Due to the different sizes of the three Huffman trees and the slightly different manner each tree

interacts with the GZIP block, each Huffman tree has a different block structure. The block

structure for each Huffman tree is illustrated in Figure 5.1, Figure 5.2 and Figure 5.3. Theclock

signal in each block is the same clock used in the GZIP encoder. Each block also includes

a reset signal which is used each time a new block of data is processed. For DLLHT and

DDHT, theinput signal comes directly from LZ77 encoder usingtree1Data andtree2Data.

Similarly, the signalinputValid for DLLHT and DDHT are assigned the values oftree1Valid

andtree2Valid from the LZ77 encoder. For DCLHT the signalsinput andinputValid are

assigned by the GZIP encoder. The signalinputDone indicates that all the input has been received

by the Huffman tree. For DLLHT and DDHT, this signal is assigned the value oflzDone in

the LZ77 coder. Once the Huffman tree has been built, GZIP needs to be able to access the

lengths andcodes RAMs. This is accomplished using the signalsdynamicCodes address,

41
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dynamicCodes q, dynamicLengths address anddynamicLengths q. In Figure 5.2 the signals

staticLengths address and staticLengths q allow the DLLHT encoder to read SLLHT

from outside the block. The output signalsdynamicLengthsDone anddynamicCodesDone are

used to indicate that the code lengths and the codes are finished being calculated. The signals

dynamicLength andstaticLength are used to assist GZIP in determining which compression

mode to use and store the length of the block if it was encoded using the dynamic and static

Huffman tree. Finally, in Figure 5.1 and 5.2,maxCode stores the maximum input value that was

processed by the specific Huffman tree.

Literal-Length
Huffman Encoder

(DLLHT)

dynamicLengthsDone

dynamicCodesDone

dynamicLength

staticLength

maxCode

dynamicCodes_q

dynamicLengths_q

staticLengths_address

32

32

9

1

1

32

9

15

4

94

1

10

9

9

1

1

1

staticLengths_q:

inputDone

dynamicLengths_address

dynamicCodess_address

input

inputValid

reset

clock

unsigned                     std_logic_vector         std_logic

Figure 5.1: Literal-Length Huffman Tree (DLLHT) Encoder Block

5.2 Major Components

As mentioned in Chapter 2, three dynamic Huffman trees are required to compress any block of

data. Each Huffman tree will use the same data structures butthey will be of a different size

since each tree has a different alphabet to be encoded, requiring the data structures to be different
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Distance
Huffman Encoder

(DDHT)

dynamicLengthsDone

dynamicCodesDone

dynamicLength

staticLength

maxCode

dynamicCodes_q

dynamicLengths_q

32

32

5

1

1

32

15

4

1

6

5

5

1

1

1

inputDone

dynamicLengths_address

dynamicCodess_address

input

inputValid

reset

clock

unsigned                     std_logic_vector         std_logic

Figure 5.2: Distance Huffman Tree (DDHT) Encoder Block

Compressed-Lengths
Huffman Encoder

(DCLHT)

dynamicLengthsDone

dynamicCodesDone

dynamicLength

dynamicCodes_q

dynamicLengths_q

32

1

1

15

4

1

6

5

5

1

1

1

inputDone

dynamicLengths_address

dynamicCodess_address

input

inputValid

reset

clock

unsigned                     std_logic_vector         std_logic

Figure 5.3: Compressed-Lengths Huffman Tree (DCLHT) Encoder Block
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sizes (see Table 5.1). This Section introduces the requiredRAMs and global variables used by the

Huffman encoder.

The main feature of a dynamic Huffman coder is that the histogram is calculated from the

input data and not read from a look-up table. A RAM is requiredto store the frequencies of each

character,freq is initialized to contain all zeros and is incremented each time a character is seen.

Since the main purpose of the Huffman coder is to build a Huffman tree, two RAMs will be

required to store the values. A RAM calledparent is used to keep track of every node’s parent in

the tree. Similarly, the RAMdepth is used to keep track of the depth of each node in the Huffman

tree.

Perhaps the most important step in the actual Huffman algorithm is to choose two elements with

the smallest frequencies. This is accomplished using a heapstructure. A RAMheap is used to

store the heap and it is re-heaped every time an element is removed or added. A variableheapLen

is used to keep track the length of the heap and the variableheapMax is used to store the highest

unused element in the heap.

Once the Huffman algorithm is complete, the length of each character in the tree must be

computed. This requires a dual-port RAM calledlengths which does not require the usual 16 bits

because GZIP places a restriction on the code length of 15.

Once the code lengths have been calculated the codes can be determined, requiring a dual-port

RAM calledcodes. Once again, only 15 bits are required because each code wordcan only be 15

bits long. Thelengths andcodes RAM are dual-port to allow for Huffman tree to be retrieved

outside the block.

Two RAMs are used when determining the code lengths and the codes callednextCount and

bCount of size 16×15 bits each.

5.3 Implementation

The Huffman encoder can be described as a six state process including:

1. Initialization
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2. Read input

3. Initial heap setup

4. Huffman algorithm

5. Compute code lengths

6. Compute code words

Each stage will be described in the remainder of this Section.

5.3.1 Initialization

The purpose of the initialization is to clear the necessary RAMs and to assign variables with

their correct start-up values. The initialization step requires two states. The first state assigns

various variables their required initialization values, including maxCode=-1. The second state

loops, assigning all values offreq, codes, lengths andbCount the value zero.

5.3.2 Reading Input

To create a dynamic Huffman tree, one pass must be made through the data and the frequency

updated for each character seen. This is accomplished usingfour states. The first state receives the

new input character and address thefreq RAM at that location. Two cycles are used waiting

for the memory ready to complete and in the fourth state the frequency is incremented. The

Huffman encoder loops in these four states until all data hasbeen received, indicated by the signal

inputDone. Once this loop is complete the Huffman algorithm has the statistics needed for the

histogram, allowing for dynamic Huffman coding.

Table 5.1: Dynamic Huffman Encoder RAMs

freq parent depth heap lengths codes

DLLHT 572×16 bits 572×16 bits 572×16 bits 572×16 bits 572×4 bits 286×15 bits
DDHT 60×16 bits 60×16 bits 60×16 bits 60×16 bits 60×4 bits 30×15 bits
DCLHT 38×16 bits 38×16 bits 38×16 bits 38×16 bits 38×4 bits 19×15 bits
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5.3.3 Heap Setup

To compute the dynamic Huffman tree, the algorithm must be able to choose two elements at a

time based on their frequency. A min heap is used to retrieve the smallest element to be processed.

This requires the initial elements to be inserted into the heap, and is completed in four states. The

first state addressesfreq at a counterj which initially equals zero. States two and three wait for

the RAM access and state four does the insertions into the heap. If the freq[j] does not equal

zero, implying that the character was seen in input, then valuej is inserted inheap atheapLen+1,

whereheapLen initially equals zero. Also, each element is assigned a depth of zero by assigning

depth at j equal to zero. This loop continues until all elements infreq are processed. Once the

loop is complete, a re-heap is required for the firstheapLen/2 elements; this process is described

in Section 5.3.4. The variablemaxCode is assigned the maximum value ofj that is inserted into the

heap. Once the necessary re-heaps have been completed, heapsetup is complete and the Huffman

algorithm may begin.

5.3.4 Huffman Algorithm

Since a heap is being used to determine the smallest values, are-heap must be performed every

time an element is removed or added. This involves a tremendous amount of sequential reads

from RAM as illustrated in Figure 5.4 and Figure 5.5. It begins by reading the first element in the

heap,heap[k], wherek=1. The variablek is used to keep track of the element we are considering

swapping, in this case, the root of the tree. The variablea is used to index the left and right

children ofk. Initially a is equal to2×k. After two clock cycles,heap[k] is stored in the variable

v for safe keeping. In the next several clock cycles,heap is read atleft=a andright=a+1, and

freq anddepth are read atheap[left], heap[right] andheap[k]. Once all the necessary

reads have been completed, the comparisons can be made to determine if any elements need to be

swapped. The comparison and swapping can be seen in state 12.The algorithm loops back up to

the sequential reads ofleft, right, andk, until either theleft or right index is larger than the

heapLen or the re-heap is complete. Just before the re-heap is complete, the value atv is written
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to theheap atk thus completing the swap.

The actual Huffman algorithm is quite simple once the re-heaping is taken care off. It begins

by getting the smallest element from the heap and assigning it to the variablep, decrementing

theheapLen and executing a re-heap. Once the re-heap is complete, the next smallest element is

removed from the heap and assigned to the variableq. In the next five states, a read is performed

of depth andfreq at p andq and the results are stored inpDepth, qDepth, pFreq, qFreq are

stored. At the same time,heap is written the valuesp and q at heapMax-1 and heapMax-2

respectively. Once the reads offreq anddepth are complete,depth at maxCode+1 is assigned

themax(pDepth,qDepth)+1, andfreq is assignedpFreq+qFreq. The value ofparent is also

assigned atp andq with the valuemaxCode+1. Now that the iteration is almost complete,heap

at one is assigned the new valuemaxCode+1, a re-heap is performed andmaxCode is incremented.

This loops continues whileheapLen is greater than or equal to two. Once the algorithm is

complete, the dynamic Huffman tree is stored in the RAMsdepth andparent.

5.3.5 Calculating Code Lengths

Once the Huffman tree has been computed and all the pointers in parent have been assigned,

computing the code lengths is quite simple. Unfortunately,because of sequential RAM accesses

a number of states are required (see Figure 5.6 and 5.7). Initially the heap is addressed at a

counterj, which is initialized to zero. Two cycles later when the value is accessible,parent

is addressed atheap[j]. Once again, two cycles must pass before the value is accessible. In

the next state,lengths is addressed with the newly availableparent[heap[j]]. Two cycles

later,length at heap[j] is assignedlengths[parent[heap[j]]]+1. If the valueheap[j] is

less thanmaxCode, which implies that it was one of the original input characters, thenbCount

at lengths[parent[heap[j]]]+1 is incremented by one. It should be mentioned that this is

an original copy ofmaxCode before it was incremented in the Huffman algorithm. Once this is

complete,j is incremented and the loop starts over until every element of the tree is processed.

This routine is similar to traversing a tree, where a child node has length equal to one plus its
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v=heap_q

h1=heap_q
fv=freq_q

dv=depth_q
depth_address=heap_q
freq_address=heap_q

heap_address=k
a=k*2

freq_address=v
depth_address=v

heap_address=a //left child

heap_address=a+1 //right child

h2=heap_q
depth_address=heap_q
freq=address=heap_q

d1=depth_q
f1=freq_q

1

2

3

4

5

6

7

8

9

10

11

Continued in Figure 5.6

WAIT

WAIT

WAIT

WAIT

Figure 5.4: Re-heap Flow Diagram (Part 1)
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d2=depth_q
f2=freq_q

if (a <= heap_len) then
if ((a < heap_len) and ((f1<f2) or ((f1==f2) and (d1<=d2)))) then

if((fv<f1)or((fv==f1)and(dv<=d1))) then
a=31 //Re-heap done, exit

else
heap[k]=h1
k=a+1
a=(a+1)*2

else
if((fv<f2)or((fv==f2)and(dv<=d2))) then

a=31 //Re-heap done, exit
else

heap[k]=h2
k=a
a=a*2

heap[k]=v

a<=heapLen
5

Continued in Figure 5.5

12

13

Figure 5.5: Re-heap Flow Diagram (Part 2)
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parent’s length. The assignment tobCount at the end creates a list of how many code lengths there

are for each length. Once this loop is complete, all code lengths have been determined and stored

in lengths.

For GZIP to be able to determine which compression mode will produce the highest compres-

sion ratio, it requires the potential length of the block when compressed by dynamic Huffman

trees and static Huffman trees. At this point in the algorithm, this involves the number of times a

character occurs and the number of bits required to send thatcharacter in the static and dynamic

representations. The dynamic calculation can be computed by addressingfreq andlengths at the

appropriate location. The two values are simply multipliedtogether and added to the current value

of dynamicLength which is initially zero. This calculation occurs for all three Huffman trees.

The static calculation is only required for DLLHT and DDHT because if a static representation is

chosen DCLHT is never used. This requires addressingfreq andstaticLengths for the DLLHT

calculation. The DDHT calculation only requires the frequency because all the codes have length

five. The static calculation is performed by multiplying thestatic length by the frequency and

adding it to the current value ofstaticLength which is initially zero.

5.3.6 Calculating Codes

To ensure that the decompresser and compressor can compute the same codes, GZIP calculates

the code words based on the code lengths. Calculating the codewords based on thecode lengths

requires two separate loops as illustrated in Figure 5.8 and5.9. The first loop runs fromj equal

to zero tomaxLength, which equals 15, assigning the first code for each length tonextCount.

A variablecode is used in this loop and is initially zero. The loop begins by reading the value

of bCount at j, this of course takes two clock cycles. In the third cycle, code is incremented by

bCount[j] and shifted left by one position and written tonextCount[j]. This loop stores the

first code for each code length innextCount.

The second loop runs fromj equal to zero tomaxCode. Thelengths RAM is addressed at the

variablej, and after two clock cycles, iflengths[j] does not equal zeronextCount is addressed
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parent_address=heap_q
code=heap_q

heap_address=j

WAIT

WAIT

lengths_address=parent_q

lengths[code]=lengths_q+1
if(code<maxCode) then

bCount_address=lengths_q+1

WAIT

WAIT

WAIT

j=j+1

1

2

3

4

5

6

7

8

9

10

Continued in Figure 5.8

Figure 5.6: Code Length Computation Flow Diagram (Part 1)
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WAIT

WAIT

bCount[lengths_q+1]=bCount_q+1

j<size

j<size

code<maxCode

1

Continued in Figure 5.7

11

12

13

Figure 5.7: Code Length Computation Flow Diagram (Part 2)

code=(code+bCount_q)<<2
nextCount[j]=code

j=j+1

bCount_address=j

WAIT

WAIT

j<maxLength

Figure 5.8: Code Computation Flow Diagram (First Loop)
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lengths_address=j

if(lengths_q/=0) then
nextCount_address=lengths_q

WAIT

j=j+1

WAIT

WAIT

codes[j-1]=nextCount_q
nextCount[j-1]=nextCount_q+1

j<maxCode

Figure 5.9: Code Computation Flow Diagram (Second Loop)
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with the valuelengths[j]. Two cycles later,codes is assigned the valuenextCount[lengths[j]]

atj andnextCount[lengths[j]] is incremented by one. This loop effectively readsnextCount

to get the first available code for that code length, assigns it to the tree and then increments it for

the next code.

5.4 Summary

This Chapter has discussed in detail the hardware implementation of three Huffman encoders that

are necessary for the implementation of GZIP. An overview ofeach block has been provided and

described. Each encoder uses RAMs and a state machine to produce a dynamic Huffman tree.
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FPGA Prototype

In the design of any hardware, an actual working prototype isimportant for proof of concept.

Consequently, this Chapter discusses the actual implementation of our GZIP hardware on an FPGA

prototype board; namely the Altera DE2 board [7].

Section 6.1 provides a description of the Altera DE2 board components and specifications

in detail. In using this prototype board, the different RAMsused in the design needed to be

partitioned to the available board resources. Section 6.2 provides a breakdown of all the RAMs

used in the design and specifies their locations on the DE2 board. Finally, Section 6.3 provides a

brief description of the overall system layout, the test harness used and the interactions between

the different components.

6.1 Altera DE2 Components

This Section outlines the structure and specifications of the Altera DE2 Board as specified in the

DE2 User Manual [7]. A photograph of the Altera DE2 board is provided in Figure 6.1. The GZIP

hardware design utilizes the following features:

Cyclone II 2C35 FPGA

• 33 216 LEs

• 105 M4K RAM blocks
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• 483 840 total RAM bits

• 35 embedded multipliers

• 4 PLLs

• 475 user I/O pins

• FineLine BGA 672-pin package

SRAM

• 512 kByte Static RAM memory chip

• Organized as 256k x 16 bits

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

SDRAM

• 8 MByte Single Data Rate Synchronous Dynamic RAM memory chip

• Organized as 1M x 16 bits x 4 banks

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

SD Card Socket

• Provides SPI mode for SD Card access

• Accessible as memory for the Nios II processor with the DE2 SDCard Driver

The DE2 board also incorporates many useful input and outputdevices including; pushbutton

switches, toggle switches, LEDs, 7-segment displays, and aLCD display. Several extra features

not used in the design are also available; USB 2.0, 10/100 Ethernet, 1 MByte Flash memory, IrDA

transceiver, expansion headers, VGA video DAC, TV decoder, audio CODEC, PS2 port and a

RS-232 port. These features allow for a wide range of circuitdesigns to be created by the user.

Figure 6.2 provides the block diagram for the Altera DE2 Board. All connections are made through

the Cyclone II FPGA device allowing the user to configure the FPGA to implement any design.
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Figure 6.1: Altera DE2 Board [7]

6.2 Assignment of RAM

All of the blocks described in this thesis (namely, the GZIP encoder, the LZ77 encoder, and each of

the dynamic Huffman encoders) required several RAMs to be able to complete their calculations.

Due to the memory limitations of our FPGA, some of these RAMs have been offloaded onto an

off-chip SRAM. Tables 6.1, 6.2 and 6.3 list each RAM used in each component of the design

and specifies their location on the development board. Givenan FPGA with enough memory bits

available, the SRAM would not be needed by the design.

Table 6.1: GZIP RAM Breakdown

Name Size Location
SLLHTLengths 286×4 bits FPGA
SLLHTCodes 286×9 bits FPGA
SDHTCodes 30×5 bits FPGA
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Figure 6.2: Altera DE2 Block Diagram [7]

Table 6.2: LZ77 RAM Breakdown

Name Size Location
head 32 768×16 bits SRAM
prev 32 768×16 bits SRAM
window 32 768×8 bits SRAM
encodeData 16×16 bits FPGA
compress 33 792×16 bits SRAM
crcTable 256×x32 bits FPGA
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Table 6.3: Huffman RAM Breakdown

Name Size Location
DLLHT freq 572×16 bits FPGA
DLLHT parent 572×16 bits FPGA
DLLHT heap 572×16 bits FPGA
DLLHT lengths 572×4 bits FPGA
DLLHT codes 286×15 bits FPGA
DLLHT nextCount 16×15 bits FPGA
DLLHT bCount 16×15 bits FPGA
DDHT freq 60×16 bits FPGA
DDHT parent 60×16 bits FPGA
DDHT heap 60×16 bits FPGA
DDHT lengths 60×4 bits FPGA
DDHT codes 30×15 bits FPGA
DDHT nextCount 16×15 bits FPGA
DDHT bCount 16×15 bits FPGA
DCLHT freq 38×16 bits FPGA
DCLHT parent 38×16 bits FPGA
DCLHT heap 38×16 bits FPGA
DCLHT lengths 38×4 bits FPGA
DCLHT codes 19×15 bits FPGA
DCLHT nextCount 16×15 bits FPGA
DCLHT bCount 16×15 bits FPGA
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6.3 System Layout

To facilitate testing of the hardware implementation of GZIP, a test harness was created using

a NIOS II processor and the SDRAM. The interface used links the NIOS processor to the on

board SD Card reader. The SDRAM is used as stack space for the processor, thus not placing

further demands on the available memory (M4K) blocks withinthe FPGA. Figure 6.3 illustrates the

interaction between all board components; the SDRAM, SRAM,SD Card reader and the FPGA.

Each time the design wants to send or receive data from the SD Card, an interrupt is sent to

the processor. The processor can only service new interrupts when not currently serving another

interrupt.

6.4 Summary

This Chapter has outlined the FPGA prototype. The FPGA, NIOS processor, SRAM and SDRAM

have been utilized in the design. A general description has been included for the prototype and

the Altera DE2 Board specifics have been provided. A further breakdown of all the RAMs used

throughout the design has been provided, including their location on the prototype board.

GZIP
Control
Logic

Huffman
RAMs

LZ77
RAMs

M4K RAM Blocks

GZIP
RAMs

NIOS II Processor SD
Card

SDRAM

SRAM

LZ77
RAMs

NIOS
Stack

GZIP System

Test Harness

Figure 6.3: Complete Overview of Design



Chapter 7

Experiments

To evaluate our hardware implementation of GZIP a series of tests were completed on a set

of benchmarks. In Section 7.1 the testing procedure is discussed in detail and the results for

compression ratio and runtime are provided. In Section 7.2 the FPGA resource utilization is

provided and broken down for each component. In the last Section, some design analysis is

provided, including discussion of the critical path for thedesign.

7.1 Test Results

The benchmarks used are from the University of Calgary corpus[28]. This corpus is present in a

majority of data compression research papers and provides agood comparison. The list of files and

the number of bytes in each file are provided in Table 7.1. The benchmarks were tested using three

different methods. The first method will use the standard software GZIP on a UNIX personal

computer with a 2.8 GHz processor and 1 GB RAM. The second method tests our hardware

implementation in simulation. Finally, the third method tests the hardware implementation on

the Altera DE2 board. By testing in this manner a comparison can be made between compression

ratios and relative runtime.

The runtime results for each method are illustrated in Figure 7.1. Some of the columns have

been truncated to allow viewing of the CPU results. For the complete results, refer to Table 7.2.
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Table 7.1: University of Calgary Corpus

Graph Index Filename File Size (Bytes)
1 bib 111261
2 book1 768771
3 book2 610856
4 geo 102400
5 news 377109
6 obj1 21504
7 obj2 246814
8 paper1 53161
9 paper2 82199
10 paper3 46526
11 paper4 13286
12 paper5 11954
13 paper6 38105
14 progc 39611
15 progl 71646
16 progp 49379
17 trans 91692
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Figure 7.1: Compression Runtime Results
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Table 7.2: Compression Runtime Results

File CPU Runtime Simulation Runtime FPGA Runtime
1 2s 0.33s 55.92s
2 17s 2.56s 775.57s
3 11s 1.62s 595.71s
4 5s 0.37s 64.95s
5 7s 0.75s 184.36s
6 1s 0.26s 11.77s
7 5s 0.66s 113.24s
8 2s 0.13s 12.62s
9 2s 0.24s 39.65s
10 1s 0.12s 22.92s
11 1s 0.25s 6.86s
12 1s 0.02s 6.28s
13 1s 0.1s 18.05s
14 1s 0.1s 18.66s
15 2s 0.23s 29.48s
16 1s 0.13s 20.38s
17 2s 0.2s 38.72s

As previously mentioned, when testing on the Altera DE2 board an SD Card is used for input and

output. This causes a great deal of latency since the GZIP compression algorithm often has to

wait for the SD Card access. This does not allow for a fair comparison between software GZIP

and our Altera DE2 hardware implementation. The simulationon the other hand assumes that

accessing the input and output source will only take two clock cycles, providing a more accurate

comparison to software. Both the simulation and Altera DE2 hardware implementations are driven

by a 50 MHz clock, allowing us to compute the number of secondsbased on the required number

of clock cycles. For example, if 100 000 000 clock cycles wererequired to perform compression

the runtime would be computed to be 2 seconds as in Equation 7.1.

Runtime=
Clock Cycles
Frequency

=
100000000
50000000

= 2 s (7.1)

It is apparent that the hardware simulation is slightly faster than the software implementation.
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This is misleading because it does not account for gate delays. In reality, software will be faster as

the speed of memory access on a CPU exceeds the speed of accessing RAM in hardware.
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Figure 7.2: Compression Ratio Results

The compression ratio results for each method are illustrated in Figure 7.2. It is only necessary

to report the results for the CPU method and the Altera DE2 method since the simulation

compression ratios will be the same as the FPGA compression ratios. There is a slight variation

between the software and hardware compression ratios, on average 2%. This is caused by the fact

the software version of GZIP allows the LZ77 algorithm to reference matches in previous blocks.

The hardware implementation does not allow this due to memory restrictions on the FPGA.

7.2 FPGA Resources Utilized

The FPGA resource requirements for the hardware implementation of GZIP compression are

outlined in Table 7.3.

The resources used by the design can be further broken down for each individual component

and are presented in Table 7.4. Keep in mind that the GZIP encoder contains the DLLHT, DDHT,

DCLHT, SLLHT, SDHT and the LZ77 encoder. It is apparent that the block instantiations within
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Table 7.3: FPGA Resource Utilization for Hardware Implementation of GZIP Compression

Resource Number Used Percent of FPGA Used
Logic Elements 20 610 62%
Registers 3884 -
Pins 431 91%
Virtual Pins 0 -
Memory Bits 69 913 14%
9-bit Multipliers 26 37%
PLLs 1 25%

the GZIP encoder consume 43% of the logic elements, 60% of theregisters, 80% of the memory

bits and 100% of the 9-bit multipliers of the GZIP encoder resources. Thus, the remaining

resources utilized are consumed by the connections betweenthe blocks and the NIOS II processor.

Table 7.4: FPGA Resource Utilization Breakdown by Component

Component Logic Elements Registers Memory Bits 9-bit Multipliers
GZIP Encoder 18380 2673 59673 26

• DLLHT 2066 573 40234 10
• DDHT 1980 533 4410 10
• DCLHT 1842 502 2969 6
• SLLHT 0 0 3718 0
• SDHT 0 0 150 0
• LZ77 Encoder 2077 734 8192 0

NIOS II Processor 2230 1211 10240 0

7.3 Design Analysis

The design was compiled using Altera Quartus II software andwas clocked with a 50 MHz clock.

After further analysis it was discovered that one portion inthe implementation was actually being

clocked at 25.6 MHz. The critical path in the design was from the DDHT and DCLHT dual-port

lengths RAM to the output of data in the GZIP encoder. Since the necessary wait states were

provided, this was not an issue and this portion of code can berun at 50MHz.
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7.4 Summary

This Chapter has compared the hardware implementation of GZIP with the current software

version available. It has been found that the hardware version achieves a reasonable runtime given

the prototype limitations and would have been better had a input/output device with less latency

had been used. The compression ratio was found to be within 2%of the GZIP software utility.

Given the design tradeoffs discussed earlier, this is an acceptable difference. Section 7.2 provides

a breakdown of the FPGA resouces used by component. The last Section discusses the clock

frequency and critical path for the design.
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Conclusion

8.1 Summary and Contributions

This thesis discussed the design and implementation of GZIPin hardware. Several details were

investigated, including: LZ77, Huffman and GZIP itself.

Previous research in the field has been limited to hardware implementations of Huffman and

LZ77 encoders. Several individuals in the field have alludedto the idea of implementing GZIP in

hardware, but limited their implementation to the static Huffman encoding (fixed mode).However,

the implementation discussed in this thesis supports all compression modes of a GZIP compression

utility and its output can be decompressed with any standard software GZIP utility. By allowing

GZIP compression to be offloaded from a CPU, a processor can be freed to complete other tasks,

allowing tasks to be completed in parallel.

The compression ratio and runtime generated by the hardwareimplementation of GZIP was

compared to the software version of GZIP and found to be favorable. The compression ratio

was on average within 2% and reasonable runtime was recordedgiven the limitations of our

FPGA prototype. The choice to make each LZ77 data block independent caused the variation

in compression ratio. Also, the runtime would have been muchquicker had a device with less

input/output latency been used. Since this implementationis written in VHDL, it is fully portable
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to a variety of hardware architectures. As FPGA technology improves, the performance of the

hardware implementation of GZIP will improve with out the need to change the design.

8.2 Future Directions

There is still room to improve the performance and quality ofresults from the GZIP hardware

implementation. Our implementation of the LZ77 encoder assumes each block or compressed

data is independent. This causes the beginning of each blockto be mostly literals as there is no

data to compare against and potentially find a match. This could be avoided by allowing a match

to occur within the previous 32 768 characters regardless ofblock boundary. Another avenue to

investigate could include allowing blocks to be different sizes based on some heuristic function

rather than a fixed size. In the dynamic Huffman encoder, it was found that the reorganization of

the heap was the most resource intensive process. If a parallel heap structure existed in hardware,

our implementation speed would improve significantly. Also, in the LZ77 encoder a large number

of sequential reads were required to find the longest match. If a large enough dual-port RAM

was available RAM accesses could have been performed in parallel. Another idea to investigate

includes a hardware implementation of GZIP decompression.
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