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Abstract

Lossless data compression algorithms are widely used layaahmunication systems and data
storage systems to reduce the amount of data transferredtaretl. GNU Zip (GZIP) [1] is

a popular compression utility that delivers reasonable m@ssion ratios without the need for
exploiting patented compression algorithms [2,3]. The paession algorithm in GZIP uses a
variation of LZ77 encoding, static Huffman encoding andayic Huffman encoding. Given the
fact that web traffic accounts for 42% [4] of all internet fr@fthe acceleration of algorithms like
GZIP could be quite beneficial towards reducing interndtitraA hardware implementation of
the GZIP algorithm could be used to allow CPUs to perform othsks, thus boosting system
performance.

This thesis presents a hardware implementation of GZIP dercaritten in VHDL. Unlike
previous attempts to design hardware-based encoders fheHesign is compliant with GZIP
specification and includes all three of the GZIP compressiodes. Files compressed in hardware
can be decompressed with the software version of GZIP. Thibiliey of the design allows for
hardware-based implementations using either FPGAs or ASTGs design has been prototyped
on an Altera DE2 Educational Board. Data is read and storagd @ on board SD Card reader
implemented in NIOS Il processor. The design utilizes 20 6ES, 68 913 memory bits, and the
on board SRAM, and the SDRAM to implement a fully function&l8 encoder.
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Chapter 1

| ntroduction

The spread of computing has led to an explosion in the voluindiaia to be stored on hard disks
and sent over the Internet. This growth has led to a need tar@anpression, that is, the ability
to reduce the amount of storage or Internet bandwidth reduiw handle data. There are lossless
and lossy forms of data compression. Lossless data connqumassused when the data has to be
uncompressed exactly as it was before compression. Texafigestored using lossless techniques,
since losing a single character can in the worst case makexh@angerously misleading. Archival
storage of master sources for images, video data, and aathageénerally needs to be lossless as
well. Lossy compression, in contrast, works on the asswngtiat the data doesn’t have to be
stored perfectly. Much information can be simply thrown gviram images, video data, and audio
data, and when uncompressed such media will still be of aabkpquality. Data compression
occurs just about everywhere. All the images sent and redeiwn the Internet are compressed,
typically in JPEG or GIF formats. Most modems use data cosgioa. HDTV broadcasts are
compressed using MPEG-2. Also, several file systems autcatigtcompress files when stored.
To meet the growing demand for compression, Jean-loupyGailtl Mark Adler created the
compression utility GNU Zip (GZIP) [1]. The GZIP utility copnesses data to create a smaller and
less demanding representation for storing and transtgtata. The GZIP utility was designed

as a replacement for COMPRESS. COMPRESS is a UNIX compressagrgm based on a
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variation of LZW [2, 3] where common substrings in a file arplaeed by 9-bit codes. Since
LZW is a patented algorithm, GZIP became a popular tool tbhaiewes better compression ratios
than COMPRESS and it is free from patent issues. The GZIRyuslibased on the DEFLATE
algorithm [8], which is a lossless data compression algorithat uses a combination of LZ77
and Huffman coding. Since its release, GZIP has become #ferped tool for file compression
and is used in storage systems. More recently, GZIP has leeagmopular tool to compress and
decompress websites. One of the main features of using GZtRednternet is speed. It has been
reported by the website USWeb that using GZIP to compressetssite has shown a decrease
by up to 40% in page load time [9]. Another benefit of GZIP isgmdially a better relationship
with search engine crawlers. For example, Google can readIB @de much more quickly than
crawling a site manually. When Google is updating its seausgrigs, it attempts to not monopolize
internet traffic. If a website is slow, the spider may beligvetaxing the web servers resources and
visit the website less often. Thus, changes made to the tedbss often. The GZIP compression
tool has become a standardized part of the HTTP protocol arst web browsers have built-in
GZIP decompression software. The HTTP/1.1 protocol allfevsclients to optionally request
the compression of content from the server [10]. The stahdaelf specifies two compression
methods: GZIP and DEFLATE. Both are supported by many HT Téhtlibraries and almost all

modern browsers.

1.1 ThesisContributions and M otivations

This thesis presents the design and description of a haediwglementation for GZIP compres-

sion written entirely in VHDL. The specific contributions thfis thesis include:

e A hardware implementation of GZIP that conforms to the GZAiEcdsfication (i.e., files com-
pressed in hardware can be decompressed in software byastiegsaftware implementations

of GZIP);

e A hardware implementation which, unlike other hardware lengentations, supports all
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three of the GZIP compression modes; and

o A fully functional prototype of the hardware implementationplemented on an Altera DE2

prototype board.

The motivation for a hardware implementation of GZIP shooéclear from the previous
description of the uses of GZIP. A hardware implementatib&aIP can offer the possibility of
high-speed compression and offload bandwidth consumingression tasks from a CPU, thereby
freeing up valuable CPU resources. A specific hardware im@hgation of GZIP on a single chip
(e.g., alow cost FPGA) reduces the need for a fully-funa@id?C to perform compression tasks.
Hence, applications of a hardware implementation of GZIRld/anclude deployment inside of
storage area networks, web servers and other Interngedetgppliances such as load balancers,

firewall VPN servers and integrated routers and switches.

1.2 Thesis Organization

Chapter 2 outlines the necessary background informatiothireader to understand the GZIP
algorithm. The compression algorithms covered includelR5EZ77 and Huffman. Chapter 3

discusses a hardware implementation of GZIP compressiag asop-down approach. Included
in this design are block instantiations of Huffman encoderd an LZ77 encoder. These blocks
are described in detail in Chapter 4 and Chapter 5 respectivehapter 6 provides a detailed
description of the FPGA prototype and the interaction ne&gsto test the GZIP implementation.
Chapter 7 analyzes the experiments run and compares thésragalinst a software version of

GZIP. Chapter 8 provides a few closing remarks.



Chapter 2

Background

This Chapter outlines the necessary background informé#picime reader to understand the GZIP
algorithm. Since the GZIP algorithm utilizes a LZ77 encoaled several Huffman encoders, these
algorithms will be discussed in detail. Section 2.5 evasaxisting hardware implementations of

GZIP and Section 2.6 provides a few general comments abisuddlcument.

2.1 GZIP Algorithm

A GZIP file consists of a series of data members, where eachbeesimply appear one after
another in afile. The data members include header informatmmpressed blocks, and end-of-file

information.

2.1.1 FileStructure

The beginning of each file compressed by GZIP contains a tén Hmader with optional fields
present. The header contains information to specify thafitl follows GZIP format and the state
of the computer at the time of compression. The formal repregion of the GZIP file format is
presented in Figure 2.1. The first two bytes (ID1 and ID2) arsigned identification numbers
that are used by GZIP to identify the file as being in GZIP fdrtizey are the values 31 and 139.

The next byte (CM) is the compression method used by GZIP, usemary method chosen is
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the DEFLATE algorithm which is represented by the value 8e Tdurth byte (FLG) contains a
flag that expresses some of the possible options availal@IR. If the first bit of the flag is set,
the file is probably ASCII text. This is an optional indicatahich the compressor may set by
checking a small amount of the input data to see whether amASCII characters are present. If
a non-ASCII character is found, the bit is cleared, thus iatiing binary data. If the second bit is
set, a cyclic redundancy check for the GZIP header is presenediately before the compressed
data. The third bit of the flag is used to indicate if any extetdfs are present. If fields are present,
they immediately follow the header information. If the ftubit is set, an original file name is
present terminated by a zero byte following any extra fieldise fifth bit determines whether a
zero-terminated file comment is present. This comment igmtetpreted; it is only present for
human information. The remaining bits of the flag are resgfeethe GZIP algorithm. Following
the flag, the next four bytes (TIME) of the GZIP header repneee most recent modification time
of the original file being compressed. The ninth byte (XFL)he header is used to determine the
specific compression method used by DEFLATE. The DEFLATB@tlgm can be executed in two
different methods. Using maximum compression and a longime the algorithm assigns the
ninth byte the value 2. Using less than maximum compressidrshorter runtime, the algorithm
assigns the ninth byte the value 4. Finally, the last byte) (@3he GZIP header represents the
operating system used for compression. The GZIP headellasvex by blocks of compressed
data, terminated by an end-of-block character. Followhedompressed data, GZIP writes eight
bytes of data used for decompression. The first four bytes (QR&® a cyclic redundancy check
value for the compressed data and the last four bytes (IStoBEjain the size of the original

uncompressed data modulé?2

2.1.2 Block Structure

Following the header information a file compressed by GZIRsis of a series of blocks,
corresponding to successive blocks of input data. The atrafuttata processed for compression

can vary as long as it is smaller than 32 768 bytes. GZIP datestthe amount of data to process
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[7lel5]4]3[2]1]0]

01\\3/56789

[ D1 | D2 | c™ | FLG | TIME [ xFL | Os |
(if FLG(2) set)
[ XLen | .. XLEN bytes of “extra field” |
(if FLG(3) set)

| ...original file name, zero-teriminated... |

(if FLG(4) set)
| ...file comment, zero-terminated... |

(if FLG(1) set)

| ...compressed blocks...

| CRC32 ISIZE

ID1=31

ID2=139

CM=DEFLATE=8

XFL=DELFATE Mode

0OS=0Operating System

CRC16=Header Cyclic Redundancy Check
CRC32=Compressed Information Cyclic Redundancy Check
ISIZE=Number of Bytes Compressed

Figure2.1: GNU Zip (GZIP) File Structure
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based on a heuristic function with evaluates when it is beiatio begin a new block. The header
of each block contains one bit to indicate if this is the ldstk to be processed and is followed by
two bits describing the compression mode used. The GZIRidigpmay compress each block in
three different modes: stored, fixed and dynamic. In theestonode, the data is not compressed;
therefore the block header is simply followed by the originacompressed data. In either the
fixed or dynamic mode, each block is compressed using a catmof the LZ77 and Huffman
coding algorithms. The input data is first encoded using thé7.algorithm and the output of the
LZ77 algorithm is then encoded using the Huffman algoritfitne compressed information from
the LZ77 algorithm consists of literal bytes and distaremgth pairs to previous strings. Both the
literals and distance-length pairs are represented uskigfiaan tree, using one tree for literals
and lengths and the other tree for distances. In the fixed mMbddrequency of the characters are
defined in advance, so the necessary Huffman trees are $tolaak-up tables and the output of
LZ77 algorithm is simply encoded with values from the logiktables. However, in the dynamic
mode the Huffman codes are generated based on the actuafrags of the input data and must
be computed for each block. This requires a representatitreaynamic Huffman trees to follow
the block header since the Huffman trees for each block atep@endent of those from previous
or subsequent blocks. The compressed data encoded usidgrtamic Huffman trees follows
the representation of the dynamic Huffman trees in the ditjgu Regardless of the compression
mode used, each block is terminated by an end-of-block marke

Initially the block of data to be compressed is processedby¥Z77 coding algorithm which
produces flags, literals, match distances and match lendths literal bytes from the alphabet
{0,...,258 and the match lengths from the alphab@t ..,258 are merged into a single alphabet
{0,...,288 where values 0,. . .,255 represent literal bytes, the vabéertlicates the end-of-block,
and values 257,...,285 represent match lengths. Simillwdymatch distances from the alphabet
{1,...,32768 are mapped into the alphabfl,...,23. The alphabet representations used are
presented in Table 2.1 and Table 2.2. In both of the alphalagipmgs, extra bits are often

required to be able to extrapolate the original value dudagompression. As mentioned above,
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the literals and match length®,. . . ,2853 are encoded by one Huffman tree and the match distances
{0,...,29 are encoded with a separate Huffman tree. Once the two dgndaffman trees have
been created, GZIP determines whether compressing th& bfodata with dynamic Huffman
trees or static Huffman trees will produce a higher compoesisatio. The static Huffman trees are
stored in a look-up table in both the compressor and decasspreind are presented in Table 2.3
and Table 2.4. If dynamic Huffman compression is benefibiahta representation of the dynamic
literal-length Huffman tree (DLLHT) and the dynamic disterHuffman tree (DDHT) must occur
at the beginning of the block to be able to reconstruct thefrHam trees for decompression
purposes. Due to restrictions placed on the Huffman algaritfurther discussed in Section 2.3,
the Huffman trees are guaranteed to be unique, requiringtbel code lengths to be sent and not
the code for each value. The Huffman algorithm also placessaiction on the code length for
each value allowing a maximum of 15 bits. This ensures the éeagths of DLLHT and DDHT
are in the alphabeft0,. ..,15. This allows a third dynamic Huffman tree (DCLHT) to be crehte
with alphabet{0,...,18 to compress the output of DLLHT and DDHT tree. The values.(Ql5
are the code lengths and the values 16, 17 and 18 are usectfalsgpeating values which are
presented in Table 2.5. The precise output format of the miyn&uffman compression block is
presented in Figure 2.2. If a static Huffman tree was usad,nbt necessary to output any trees
since the decompresser has access to the static codes.h@mseessary Huffman trees have been
written to the file the newly compressed information follousng either the static or dynamic
Huffman representation, followed by an end-of-block marke

The last block processed is followed by eight bytes of infation required for GZIP decompres-
sion (see Figure 2.1). The first four bytes (CRC32) contain diccyedundancy check for the

compressed data and the last four bytes (ISIZE) are the nuofibgtes compressed moduld?2

2.2 Ziv-Lempe Coding Algorithm

Ziv-Lempel (LZ) is a generic compression algorithm utifigi regularities in a bit stream [11].

The LZ algorithm is a lossless dictionary based schemewallpthe original information to be
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Table 2.1: Dynamic Literal-Length Huffman Tree (DLLHT) Alphabet

Length | ExtraBits | Code || Length | ExtraBits | Code | Length | ExtraBits | Code
3 0 257 || 15-16 1 267 67-82 4 277
4 0 258 || 17-18 1 268 83-98 4 278
5 0 259 || 19-22 2 269 || 99-114 4 279
6 0 260 | 23-26 2 270 || 115-130 4 280
7 0 261 | 27-30 2 271 || 131-162 5 281
8 0 262 | 31-34 2 272 || 163-194 5 282
9 0 263 || 35-42 3 273 || 195-226 5 283
10 0 264 | 43-50 3 274 || 227-257 5 284
11-12 1 265 | 51-58 3 275 258 0 285
13-14 1 266 | 59-66 3 276
Table 2.2: Dynamic Distance Huffman Tree (DDHT) Alphabet
Extra Extra Extra
Distance | Bits | Code | Distance | Bits | Code Distance Bits | Code
1 0 0 33-48 4 10 1025-1536 9 20
2 0 1 49-64 4 11 1537-2048 9 21
3 0 2 65-96 5 12 2049-3072 10 22
4 0 3 97-128 5 13 3073-4096 10 23
5-6 1 4 129-192 6 14 4097-6144 | 11 24
7-8 1 5 193-256 6 15 6145-8192 11 25
9-12 2 6 257-384 7 16 8193-12288| 12 26
13-16 2 7 385-512 7 17 || 12288-16384 12 27
17-24 3 8 513-768 8 18 || 16385-24576 13 28
25-32 3 9 769-1024| 8 19 || 24577-32768 13 29

Table 2.3: Static Literal-Length Huffman Tree (SLLHT)

Literal Value | Code Length Code
0-143 8 48 through 191
144-255 9 400 through 511
256-279 7 0 through 23
280-287 8 192 through 199
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Table 2.4: Static Distance Huffman Tree (SDHT)

Code Code Code
Value | Length | Code || Value | Length | Code || Value | Length | Code
0 5 0 10 5 10 20 5 20
1 5 1 11 5 11 21 5 21
2 5 2 12 5 12 22 5 22
3 5 3 13 5 13 23 5 23
4 5 4 14 5 14 24 5 24
5 5 5 15 5 15 25 5 25
6 5 6 16 5 16 26 5 26
7 5 7 17 5 17 27 5 27
8 5 8 18 5 18 28 5 28
9 5 9 19 5 19 29 5 29

Table 2.5: Dynamic Compressed-Length Huffman Tree (DCLHT) Alphabet

Literal Value | Extra Bits Code
0-15 0 0-15
16 2 Copy the previous code 3-6 times
17 3 Repeat a code length 0 for 3-10 times
18 7 Repeat a code length O for 11-138 times

5 Bits: HLIT, Number of Codes in DLLHT-257 (257-286)
5 Bits: HDIST, Number of Codes in DDHT-1 (1-32)
4 Bits: HCLEN, Number of Codes in DCLHT-4 (4-19)

(HCLEN+4)x3 bits: code lengths for DCHT in the order:
16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15

HLIT+257 code lengths for DLLHT using encoding in DCLHT
HDIST+1 code lengths for DDHT using encoding in DCLHT
The actual compressed data of the block encoded using DLLHT and DDHT

The symbol 256 encoded using DLLHT

Figure 2.2: Dynamic Compressed Block Format
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reconstructed from compressed data. There are multipteores of LZ compression; LZ77, LZ78
and LZW being the most common. LZ78 and LZW both generatebettimpression over a finite
bit stream compared to LZ77 [12]. However, LZ78 and LZW botitize static dictionaries. For
this type of design, a look-up table holding the recurringhbgls is required. Using a look-up
table to decompress data would result in higher hardwareinements for the LZ78 and LZW
algorithms. On the other hand, LZ77 utilizes a dynamic diwdiry and, as a result, has a smaller
impact on the memory required for decompression. Since LAYBLZW are not used in GZIP,
they will not be described any further.

LZ77 processes data from left to right, inserting everyngfrinto a dictionary. Quite often
the dictionary is limited by memory, thus a sliding dictionas used. A sliding dictionary keeps
track of the most recent strings seen, discarding any pusvétrings. If a string does not occur
anywhere in the dictionary, then it is emitted as a literglsnce of bytes. If a match is found, then
the duplicate string is replaced by a pointer to the prevetusg in the form of distance-length
pair. The distance-length pair is composed of two partsfitsigbeing the distance from the current
element to the element in which the match starts, and thendesahe length of the match (see
Figure 2.3). With respect to the LZ77 used by GZIP, the newdmpressed information is also
accompanied by a flag byte which precedes the data allowm@#iIP algorithm to be able to
distinguish literals and distance-length pairs. In thexdéad LZ77 algorithm the flag is emitted
individually as a bit, but in GZIP the LZSS variation is usaSS is a derivative of LZ77 that
allows 8 flag bits to be grouped together into one byte [13].adbieve optimum compression it
is important that the closest match in the dictionary thagsdeot sacrifice match length is found.
This is key because matches that are nearest are encodedf@ntst number of bits.

Although the LZ77 algorithm implemented with a sliding dactary can be run in linear time [14],
itis slow and consumes large amounts of memory. This canlidedsby using a hashing algorithm,
which increases speed and reduces memory requirementB. &dlalmost all programs using the

LZ77 scheme use hashing data structures [15].
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PQRSQRSUVW Data To Be Compressed

PQR S <33>UVW Compressed Data
0 00O 1 000 Flag(Reversed)

[6 P QR S 33UV W|

Flag Literals Match Literals

Figure 2.3: Ziv-Lempel (LZ77) Encoding Example

2.3 Huffman Coding Algorithm

Huffman coding is a lossless statistical data compressibarse [16]. The algorithm is based on
the concept of mapping an alphabet to a different representaomposed of strings of variable
size, such that symbols that have a higher probability oticony have a smaller representation
than those that occur less often.

There are two methods of Huffman coding: static and dynaniicthe static method the
frequencies of each character in the alphabet are assigfiectlihe program begins and are stored
in a look-up table. In the dynamic method, on the other hangstrmake one pass through the
text to determine the frequency of each character. Onceist@gnam has either been calculated or
provided, the two algorithms are identical. Elements alecsed two at a time, based on frequency;
lowest frequency elements are chosen. The two elementsade ta be leaf nodes of a node with
two branches. The frequencies of the two elements selestetien added together and this value
becomes the frequency for the new node (see Figure 2.4). [fbatam continues selecting two
elements at a time until a Huffman tree is complete with tleg rmde having a frequency of 100.

The classic Huffman coding algorithm is nondeterministtois allowing a data set to be
represented as more than one possible tree. The GZIP pragpphes two additional rules to
ensure that each data set has at most one possible treeargptess. Elements that have shorter

codes are placed to the left in the Huffman tree of those waitigér codes. In Figure 2.4, D and
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Character | Frequency
== (@
B 32 0 1
C 36 \
D 8
| ® (&
Histogram 0 !

Character Code
A 110 0 ’

B 10
C 0
D 1110
E 1111
Character Codes Huffman Tree

Figure 2.4: Huffman Encoding Example

E end up with the longest codes, so they would be in the riglubddr of the tree. Also, among
elements with codes of the same length, those that comenfitst ielement set are placed to the left
in the Huffman tree. Since D and E are the only elements witledength four and D comes first
in the data set, D will be assigned the 0 branch and E will bgasd the 1 branch. When these two
restrictions are placed on the Huffman coding algorithrareéhs at most one possible tree for every
set of elements and their respective code lengths. Thiaflmets for a substantial optimization to
be made in the Huffman coding algorithm. Since each Huffmee is deterministic and can be
recomputed using the code lengths, it is not necessary tbessach code word for decompression

purposes.

2.4 GZIP Example

An example of GZIP encoding is illustrated in Figures 2.8-2The original sentence and the
output of the LZ77 encoder is presented in Figure 2.5. Theelds in black text are literals, the

red elements are the flags, the blue elements are the matpthdesmnd the green elements are the
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match distances. Each element is then sent to the appmphidtman tree to create the dynamic
Huffman codes. The literals (black) and match lengths (béwe encoded in one tree (DLLHT)
in Figure 2.6. Also, the match distances (green) are encodadother Huffman tree (DDHT) in
Figure 2.7. In both cases the static representations trestd existed in GZIP are also presented
in each Figure. Once DLLHT and DDHT have been computed, DCL&IT lme computed using
the code lengths from the previous Huffman trees. After ti& BT has been computed (see
Figure 2.8), the GZIP algorithm determines with method ahpeession will achieve the highest
compression ratio. In this case, the stored length wouldOdebits, the fixed length would be 425
bits and the dynamic length would be 433 bits. So the blocklgvthen be compressed using the

fixed mode, which uses the static Huffman codes.

2.5 Recent Advances

Despite the importance of the GZIP algorithm, relatively somplete hardware implementations
exist. For example, [5] presents a GZIP encoder and decodighvimplements only the static
Huffman encoding specified by the GZIP standard. The impigat®n was written in VHDL
and tested on an FPGA. In comparison, this thesis presen®&R i@ plementation that includes
all three of the GZIP compression modes. It is also writteWHDL and tested on an FPGA.
By implementing all three compression modes, the impleatent described in this thesis can

achieve better overall compression ratios. In [6], a GZIBoeler is implemented using a CAM

Sentence to compress:
I went for a walk in the rain on the walkway and seen a rainbow

LZ77 Output:
Lof1] [wle[nft] [f]{olofr] [a] [wla]l]
Lok [iln[ t[hle|fiad [r]a3[9fo]6]1q4[24w|

[0[aly] [aln[d] [s|f4e[e[n]5]s54]31]b]o]w]

Figure 2.5: GZIP Encoding Example (Part 1)
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Literal-Length Huffman Tree:

| Character]! Dynamic Code| Static Code |
“00” “01010000”
| “10100” “01111001”
a “010” “10010001”
b “111000” “10010010”
d “10101” “10010100”
e “0110” “10010101”
f “111001” “10010110”
h “111010” “10011000”
i “111011” “10011001”
k “111100” “10011011”
| “10110” “10011100”
n “0111” “10011110”
o) “1000” “10011111”
r “10111” “10100010”
s “11000” “10100011”
t “11001” “10100100”
w “1001” “10100111”
y “111101” “10101001”
256 “111110” “0000000”
257(3) “11010” “0000001”
258(4) “11011” “0000010”
260(6) “1M11111” “0000100”

Figure 2.6: GZIP Encoding Example (Part 2)

Distance Huffman Tree:

Distance | Dynamic Code | Static Code |
6(9,12) “00” “0110"
8(24) “01” “01000”
9(31) “10” “01001”
10(43) “11” “01010”

Figure 2.7: GZIP Encoding Example (Part 3)

Dynamic Compressed-Length Huffman Tree:

Symbol | Dynamic Code
0 “00”

“100”

“11110”

“1111”

“01”

“111”

7 “11111”

8 “110”

2 20PN

Figure 2.8: GZIP Encoding Example (Part 4)
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(Content Addressable Memory). Consequently, the designgsresive in terms of its hardware
requirements and is not necessarily portable to other tctoires. The implementation presented
in this thesis does not use architecturally specific blodes CAM and is therefore more easily
ported to other architectures. Although not necessaribedbed in the context of GZIP, additional
prior work on hardware-based implementations of LZ77 antfrHan encoding can be found.

Dictionary based implementations (LZ77) fall into one afth categories: the microprocessor
approach [17], the CAM approach [18] and the systolic arrgyr@gch [19]. The first approach
does not explore full parallelism and is not attractive &altime applications. The CAM approach
is able to achieve high throughput by exploiting paralleliand can outperform C-programs
running on CPU'’s [20]. However one drawback of the CAM approadhat it is costly in terms
of hardware requirements. The systolic array approachoagpared to the CAM approach, is not
as fast but has lower hardware requirements and has impteseability. These three approaches
are architecture specific and cannot be easily ported terdift architectures. The proposed state
machine implementation in VHDL is architecture indeperideamd can be easily transferred to
other architectures. The flexibility of the design allows fardware-based implementations on
FPGA boards and inside ASICs.

Many different groups have investigated implementatiohstatic Huffman coders [21-25].
As mentioned above, a static coder assumes that the sigstaibdiion is known when the
algorithm begins. This type of assumption can cause negatde effects. If the actual signal
distribution is not close to the assumed distribution, ngdoverheads can occur. Dynamic
Huffman implementations have also been implemented [26, Since these implementations
do not include the two additional rules GZIP uses to ensueeHbffman tree is deterministic,
they require the entire tree to be sent to the decomprester rhan just the code lengths. This

increases the overall runtime and compression ratio andtia feasible option.
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2.6 General Comments

Since most data compression techniques can work on diffeéggres of digital data, such
as characters or bytes in image files, data compressiomtliter speaks in general terms of
compressing symbols. Many of the examples in this docunefat to compressing characters,
simply because a text file is very familiar to most readers.weieer, in general, compression
algorithms are not restricted to compressing text files. déemhroughout the remainder of this
thesis, the terms symbol and character are used interchblyg&imilarly, most of the examples
talk about compressing data in files, just because mostreadefamiliar with that idea. However,
in practice, data compression applies just as much to datartritted over a modem or other data
communications link as it does to data stored in a file. Tlseme’ strong distinction between the

two as far as data compression is concerned.

2.7 Summary

This Chapter has discussed the relevant background infmmeggarding the GZIP algorithm.
The LZ77 and Huffman algorithms have been described in lde¢gause they play a significant
role in GZIP compression. Despite the importance of GZIRy @anfew prior attempts have
been made to implement the algorithm in hardware. These priplementations have been
(1) architecture dependent, (2) expensive in terms of thamware requirements, and/or (3)
incomplete in so far as they did not implement all the comgicesmodes specified by GZIP. These

issues serve to make the implementation described in thaineler of this thesis interesting.
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GZIP Hardware Il mplementation

This Chapter begins a top-down description of the GZIP haredwaplementation. Section 3.1
provides a block-level overview of the GZIP encoder and i8ac3.2 gives details regarding the
internal structure of the GZIP encoder itself. Section 3v@gan in depth explanation of the GZIP
hardware implementation. The implementation requireshiostantiations of LZ77 and Huffman

encoders. These blocks are described in detail in Chapted €hapter 5 respectively.

3.1 Block Structure

The block structure for the GZIP encoder is illustrated igufe 3.1. Theclock signal is self
explanatory. Thereset is an active low input signal used to reset the entire circliite signals
inputSend, inputValid, input andeof are used to load the data to be compressed into the
encoder. The clock cycle aftenputSend is equal to one, the signahput is assigned the new
value from the input source which raisasgputValid to one indicating new data is available. If the
end-of-file had been reached, the siganat is set to one. Similarly for output, whemtputvalid

is one, the value atutput is written to the output file. Once the algorithm is compléie, signal
outputDone is assigned one, indicating that we are done with the file andhy be closed. The

signalssram address, sram data, sram we andsram_q are used to read and write to a RAM.

18
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| clock |—/1—> —,L>| inputSend |
[reset |—/1—> —jL>| output |
[input |—_/8—> —,L>| outputValid |
| inputValid |—/1—> E,Téﬁ,f;? —/1—>|outputDone |
[eof |—/1—> e —}8—>| sram_address |
[sam q AN L2 fsram data |

L[ we |

. unsigned . std_logic_vector . std_logic

Figure 3.1: GNU Zip (GZIP) Encoder Block

3.2 Major Components

Based on the description of GZIP in Chapter 3, the majorityhef®&ZIP hardware implementation
is based on the instantiation of a number of different blaoks the interaction between them. This
requires four block instantiations, one LZ77 encoder amddldynamic Huffman encoders. The
design also requires two static Huffman encoders, staéical-length Huffman tree (SLLHT) and
static distance Huffman tree (SDHT). The overall block iat¢éion can be seen in Figure 3.2.

The GZIP encoder holds the representation of the staticriariftrees used. SLLHT is stored
in two RAMS; SLLHTCodes andSLLHTLengths of size 286<9 bits and 286&4 bits respectively.
TheSLLHTLengths RAM is a dual-port RAM which allowing sequential reads frome tHuffman
encoder block. Similarly, SDHT is stored in one RAM calkHTCodes of size 30<5 bits. Only

one RAM is required because all codes in the SDHT have a leofdih
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input

Control

LZ77
Encoder

b‘ DLLHT

1,

|

™

Distribution
Calculations

SLLHT

SDHT

Figure 3.2. GNU Zip (GZIP) Internal Structure
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3.3 Implementation

The GZIP algorithm essentially has three key respong#slitThe first is to control the data flow
throughout the algorithm. This includes control signalstfe LZ77 encoder and three dynamic
Huffman encoders. The second and third parts are two distets of calculations. The first set of
calculations computes the distribution for DCLHT and theosecchooses the data compression
method and outputs the compressed data. The details ofttiveseimportant parts are discussed

in detail below.

3.3.1 DataFlow and Control Signals

This Section provides a description of the flow of data thiotige GZIP encoder. The GZIP
compression hardware begins by waiting for@set signal from the user. Once zeset is
received, the Huffman encoders and the LZ77 encoder areressi. While the four internal
blocks are initializing, the ten bytes of header informatawe written to the output file. A function
sendBits has been created to send data to a file. It takes as parantetevaltie to send and
the number of bits to send. In thkendBits function if two bytes of data are ready to be written
to the output file the value is assigneddaotput andoutputValid is assigned one. To send
the ten header bytes, five states are required calngiBits in each state. The GZIP encoder
then continues to sit in a wait state until the LZ77 encodeoisplete and DLLHT and DDHT
have received all their necessary data and can begin cotistrwof the Huffman trees. The GZIP
encoder then enters another wait state until DLLHT is dorleutaing its code lengths. Now
that the code lengths for DLLHT have been computed, an iterahust be performed on each
code length to build the distribution for DCLHT. As previoyshentioned, DCLHT is used to
compress the output of the dynamic Huffman trees by takinvguaihge of repeating code lengths
(see Table 2.5). This distribution calculation is discassedetail in Section 3.3.2. Once the
DLLHT has been processed the algorithm must wait until theHDDrode lengths have been
calculated and then repeats the set of calculations. Oné#¢iDland DDHT have been processed,

the algorithm waits until the DCLHT code lengths have beecwated. After all the DCLHT
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code lengths have been computed the algorithm enters arsathef calculations to determine the
compression mode for the block and then writes the newly ceaged information back to the file
(see Section 3.3.3).

If the input file is longer than 32 768 characters then theritlym will need to process more
than one block of data. This occurs by resetting the LZ77 éecand the three Huffman encoders
and looping the GZIP algorithm to the wait state after theltgties of header information has been
written to the output file. Otherwise, if the end-of-file asooed then the GZIP algorithm must
write the last eight bytes of the GZIP header informatiorthe output file is not on a byte marker,
zero bits are emitted until the byte is complete. In the neut tlock cycles, the cyclic redundancy
check is written in four bytes and the original file input sigevritten in four bytes. One thing to
note about the implementation is that the algorithm onlypsses block sizes of 32 768 characters

where the software version of GZIP processes varying silaakb.

3.3.2 Distribution Calculation

To ensure that the dynamic Huffman tree representationdsadl as possible, the code lengths for
DLLHT and DDHT are compressed using a third Huffman tree, DTLTFhis set of calculations
compute the necessary input for DCLHT. Since both DLLHT andHDDare processed in the
same manner, the description provided will be in terms ofreega Huffman tree. The description
provided expands on what occurs in the Distributions Catma box in Figure 3.2 which is
further expanded in the flow diagram in Figure 3.3 and Figude Jhe distribution calculations
begins by addressing the Huffman treaeagths RAM, which contains each code length, at zero in
the first state. In state three, variabfe®vLen andcount are assigned zero. One clock cycle later
the RAM access is complete and in the fourth state, a vartadteLen is assigned engths [0].

If lengths[0] does not equal zer@aaxCount=7 and minCount=4, otherwisemaxCount=138
andminCount=3. The variablesnaxCount andminCount are used throughout to determine the
appropriate signal to send to DCLHT in accordance with themjgson in Table 2.5.

In state five the main loop of the distribution calculatiorergered and ifj, which is initially
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zero, is less than or equal to the signakCode, thenlengths is addressed at+1. The signal
maxCode is used by the Huffman tree to indicate the highest code psmzkon input as to avoid
processing extra symbols that did not occur in the Huffmae.trAlso in state fivegurLen is
assignechextLen andcount is incremented. Two clock cycles are then waited forthegths
read and in state eiglhextLen iS assignedengths [j+1].

State nine incrementi and considers the following five different conditions i tspecified
order.

1. (count < maxCount) and (urLen = nextLen)

2. (count < minCount)

3. (curLen # 0)

4. (count < 10)

5. Otherwise

If condition one is satisfied, the algorithm loops back tdestave, indicating the same length
was processed as seen in the previous iteration. Othenfvgsandition two is satisfied, indicating
there is not enough repeating code lengths to bother cosipggsurLen is sent to DCLHTcount
times. This involves a loop of four states since the Huffnrae tan only process data every four
clock cycles. If the third condition is true, the value 16 ensto Huffman tree. A value of 16
is used to indicate that the previous code has been repdatsslto six times. lkcurLen does
not equal zero andurLen does not equaprevLen, thencurLen must also be sent, requiring a
four cycle wait once again. In either case, in state detnt is assigned zero anglrevLlen is
assignedturLen. Also if nextLen equals zero themaxCount=138 andminCount=3, otherwise if
curLen equalsnextLen, maxCount=6 andminCount=3 . If neither of those conditions hold true,
maxCount=7 andminCount=4. The algorithm then loops back to state five. If the fourthdiban
is satisfied, a 17 is sent to DCLHT and the algorithm proceedsate ten and then loops back to
state five. A 17 implies that a code length of zero has beerategéehree to ten times. Finally,
if the previous four conditions were not satisfied, an 18 i $e@ the Huffman tree, the algorithm

proceeds to state ten and then loops back to state five. Andlg&srthat a code length of zero has
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been repeated 11 to 138 times.
In state five, ifj is greater than or equal imxCode then the distribution is complete for this

specific Huffman tree.

3.3.3 Compressand Output Data

Once the DCLHT code lengths have been determined, the GZRithlgp must determine the
compression mode and compress the data. First, the GZIRthlgoterates through each DCLHT
code length to determine how many compressed-lengths ecodssbe sent. When the DCLHT
representation is written to the output file the code lengtiessent in a specific order to take
advantage of the fact that some code lengths will occur l&ss then others. The code lengths
are output by indexingengths in the following order: 16, 17, 18,0, 8,7, 9, 6, 10, 5, 11, 4,32
13, 2, 14, 1, 15. To send only the required number of codegmikexecuted on the code lengths
in the reverse order to eliminate sending as many as possilole lengths equal to zero. So if
lengths[15] andlengths[1] equal zero, then only the first 17 code lengths would be writte
This loop is accomplished in three states, allowing for thdvVRaccess and the two required wait
states. The number of code lengths to be written is stordueivariableindex.

At this point, the GZIP algorithm must choose the method aghpression. Each Huffman
tree has computed the number of bits required to send thé& bloihh dynamically and statically
and the LZ77 encoder has stored the number of bytes to repeoithe original data. The total
dynamic block length (DBL) is computed using Equation 3.te Talculation includes the cost to
send all of the dynamic Huffman trees and compressed datthrlee extra constants at the end
of Equation 3.1 account for sending the number of codes ih &ae as specified in Figure 2.1.

Also, index is multiplied by three because each code length in the DCLHEmM in three bits.
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!

lengths_address=0 1

WAIT 2

prevLen=0 3
count=0

nextLen=lenghts_q

j=0

if (lengths_g==0) then
maxCount=138 4
minCount=3

else
maxCount=7
minCount=4

if j<maxCode) then
lengths_address=j+1
else S
nextLen=31
curLen=nextLen
count=count+1

j>=maxCode
WAIT 6
WAIT 7
nextLen=lengths_q 8

=+

if (count<maxCount) and (curLen==nextLen) then
/ILOOP
elsif (count<minCount) then
send curlLen
elsif (curLen/=0) then
send 16
elsif (count<=10) then
send 17
else
send 18
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!

Continued in Figure 3.3

(count<maxCount)

(curLen==nextLen)

count<minCount

count=count-1

WAIT

WAIT

A

if (count>0) then

send curlLen

count>0

15

16

17

18

otherwise
curLen/=0
WAIT 11 count=0
prevLen=curLen
if (nextLen=0) then
A 4 maxCount=138
WAIT 12 minCount=3
elsif (curLen=nextLen) then
minCount=6
v maxCount=3
WAIT 13 |else
maxCount=7
minCount=4
A 4
send curlLen 14

10

Figure 3.4: Distribution Calculations Flow Diagram (Part 2)
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DBL = (DLLHT dynamicLength)+ (DDHT dynamicLength)+ (DCLHT dynamicLength)-+
(index+1)%3+5+5+4
(3.1)

The static block length (SBL) is computed in Equation 3.2isEtcounts for only sending the

compressed data since tree representations are not ngcasbee static case.

SBL = (DLLHT staticLength)+ (DDHT staticLength) (3.2)

The GZIP algorithm chooses the compression mode, fixed, dynaor stored, based on
whichever of DBL, SBL or stored block length is the smallésblock header is written to the file
regardless of compression mode, the first bit for end-ofdild the last two bits for compression
mode. If the stored compression mode is chosen the origatalid written to the file. This requires
a three state loop to allow reading the original data from RAMwever, if the dynamic method
was chosen a representation of the Huffman trees must beemvtd the file. As in Figure 2.2 the
first 14 bits are the number of codes that are going to be writie each Huffman tree. The first
five bits are the number of DLLHT code lengths to be sent, DLLd%Code-257. The DLLHT
maxCode iS guaranteed to be at least 257 because of the end-of-bladkem allowing GZIP to
subtract 257 to be able to send the value in five bits. The mifil# bits are the number of DDHT
code lengths to be sent, DDHiaxCode-1. The last four bits are the number of DCLHT code
lengths to be sent,ndex-4. Following the first 14 bits, the DCLHT is written. A loop of &
states is necessary to allow for the RAM access and each endthlis output in three bits. Next
the DLLHT is written to the file by going through the distribrt function defined previously.
Rather than sending the codes to a Huffman tree, the valeesf@renced in DCLHT and written
to the file by calling thesendBits function. DDHT is written in the same manner as DLLHT.

Once the dynamic tree representations are complete, trtedne stored methods are identical
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except for which Huffman tree the code value is looked up ime GZIP algorithm then begins to
compress the data by looping through all the values storad the output of the LZ77 encoder.
Remember that flags, literals and distance-length matckees wautputted by the LZ77 encoder
and stored into the RAM. Two variables are used in this sectaledf1lag andflagUsed where
initially f1agUsed is equal to eight. The algorithm reads each value from the Rkl based on
the values off1ag andflagUsed determines how to process the dataf1kgUsed equals eight
then the input is stored ifilag andf lagUsed is set to zero. Otherwise, fflagUsed does not equal
eight and bit 0 off 1ag equals zero then a literal is being processed and its codekedl up in the
literal-length tree, either the dynamic tree or the stage tbased on the compression mode, and
sendBits is called. If bit 0 offlag is one, then a distance-length match is being processed. Thi
is accomplished by referencing the mapping of the first vaiuge literal-length tree and sending
the code. Followed by reading in another value and refengnits mapping in the distance tree
and callingsendBits. Each time either a literal or match is processEdg is shifted left by one

bit andflagUsed is incremented. This process continues until all data has bempressed. Each
read from the RAM to retrieve the input requires three clogkles and each code look up and
output requires three clock cycles. As previously mentthraa end-of-block marker is required
following the compressed data, so the value 256 is refeckimctine literal-length tree and written

to the file.

3.4 Summary

This chapter has outlined the implementation of GZIP comsgion in hardware. A block overview
has been provided, as well as a detailed description of tipbeiimentation. The implementation
has been broken down into three distinct parts. The first \asaverall data flow of the
algorithm, including the control signals for the internadceders. The second and third parts
of the implementation were necessary calculations destiiibterms of state machines written in

VHDL.
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Ziv-Lempel Hardware | mplementation

This Chapter discusses the hardware implementation of a leAiédder. The LZ77 implementa-
tion consists of RAMs and a state machine to compress thewdatd is written in VHDL. The
overall block structure of the LZ77 encoder is describedeot®n 4.1. Further, details regarding

the encoder are discussed in the remaining Sections.

4.1 Block Structure

The block structure for the LZ77 encoder is presented inféigul. The signalslock andreset
are connected directly to the same signals as the GZIP bldtle signalsinput, inputSent
and inputValid are used to provide the LZ77 encoder with data to compresse signals
sram_address, sram ¢, sram we andsram data are used to read and write to a RAM that is
necessary for the design. When the algorithm is completeigmalslzDone is set to indicate
the algorithm is complete and construction of the dynamiffidan trees may begin. The signals
outLength andinLength are assigned the number of bytes output by the LZ77 encodkethan
number of bytes read in by the encoder. The newly compressie@s calculated by the LZ77
encoder are transferred directly to Huffman blocks usirg slgnalstreeiData, treeiValid,
tree2Data andtree2Valid. Finally, the signainputCRC is the cyclic redundancy check for the

input data.

29
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| clock

| reset

|input

| inputValid

338!

| sram_q
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sram_address

tree1Data

tree1Valid

tree2Data

tree2Valid

FIFLTT

inputCRC

. unsigned

. std_logic_vector . std_logic

Figure4.1: Ziv-Lempel (LZ77) Encoder Block
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4.2 Major Components

This Section introduces a number of RAMs and global varebked throughout the implementa-
tion of the LZ77 encoder. To simplify the process of findingtahes for compression, a chaining
hashing method is used in the GZIP version of LZ77. The ha#hts composed ohSize
locations, each of which index the head of a linked list. Ekcked list contains the previous
elements hashed to that location in the table. The hashimlgemposed of two RAMshead
andprev (see Figure 4.2). The RAMead is of sizehSizex16 bits and represents the most
recent string hashed into that position in the hashtablerengize=32 768. Similarly the RAM
prev of sizedSize x 16 bits contains the previous strings hashed to that positithe hashtable,
wheredSize=32768. By storing the hashtable in this manner, if a match were ttobad in the

hashtable, the first one would be the closest.

head prev

h _—| abca I—I abcd |—| abce

|

H -1

|

XXXX |—| XXXY |—| xxxt |

h=hashValue(abcr)

Figure4.2: Ziv-Lempel (LZ77) Hashtable

The implementation requires a RAM to store the input datais ltalledwindow and is of
sizewSize x8 bits, wherewSize=32768. A variablelookAhead is used to store the number of

characters left to be processed and a variabisStart is used to indexindow.
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An arrayencodeData Of size 16< 16 bits is used to store the distance-length pairs andlsteza
be emitted untilf1agPos equals 128, indicating eight iterations of the loop havenbssmpleted.
After eight iterations have been performetkcodedData may hold a maximum of 16 elements if
eight distance-length pairs have been stored and a minini@welements if we have eight literals.

Finally, to be able to complete the compression later in tAéR®lock, the output of the LZ77
encoder is stored in a RAM of size 33 %926 bits calledcompress.

Although it is not part of the LZ77 compression algorithmjrgsut is read, a cyclic redundancy
check is computed for the data to ensure the data has beeerlyrogrreated in the decompresser.
This requires a RAMcrcTable which is of size 25632 bits and is initialized with fixed values

from a file.

4.3 Implementation

The actual implementation can be broken down into four keyspanitialization, reading data,
hash setup and data compression. Each part will be desc¢nlgedail below using a state machine

approach.

4.3.1 Initialization

The purpose of the initialization is two-fold. Several ghblvariables need to be assigned their
correct start-up values and the hashtable needs to be @lbgrassigning all locations inead
the value zero. The implementation requires two statesriitiaiization; the first state assigns
the required variables with the correct start-up values.ririgudata compression the variable
matchAvailable is used as a flag to determine if a match should be processedmnatvether

to wait until the next iteration of the state machine. Aldwe wariablestlag andflagPos are
used to calculate and store the flag values once compressaamiplete. The second state loops

initializing each value ohead in the hashtable with zero.
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4.3.2 Reading Data

Once the initialization is completesindow must be filled with characters from the alphabet
{0...255 to be compressed. This process is illustrated in Figure A.Bequest for a character
is sent by assigningnputSent the value one. The state machine loops in this state untlnt c
confirm the request has been received, indicatethipyitvValid being non-zero. Also in this state,
if this is not the first character to be computed thaputCRC is updated using Equation 4.1. In the
second state, the valuimput, is available. IfinputValid is equal to onejnput is then assigned
to window [lookAhead] andlookAhead andinLength are incremented. To compute the cyclic
redundancy check for the input data the RANcTable is indexed at the value diput. These
states continue looping whileokAhead is less thamSize and end-of-file is not reached. At the
end of this process, the sigrialokAhead indicates how many symbols are storedrimdow to be

compressed.

inputCRC = crcTable[input] XOr inputCRC >> 8 (4.2)

433 Hash Setup

In the GZIP version of LZ77, the sliding dictionary is implented as a hashtable. To insert every
possible string into the table would be expensive and tirmsgming. GZIP only considers string
of lengthminMatch, whereminMatch=3. The value 3 was chosen because if a match were to
be found, the distance-length pair would not be longer tih@ndriginal word. An incremental
hash function is used allowing the hash value to be increatignipdated for each string rather
than having to repeat the calculatiminMatch times for every string. In order to begin the LZ77
algorithm, the hash value must be updated for the firatinMatch-1 characters (see Figure 4.4).
The calculation is accomplished by addressirigdow with the value ofj, which initially is
zero. The next state simply waits for the RAM access. In dfatee, the hash calculation is

completed withwindow[j] as the parameter. The hash calculation is completed in @k cl
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A 4

A 4

inputSend="1’
inputCRC=crcTable_q xor (inputCRC>>8)

QputVali

A

window[lookAhead]=input
lookAhead++
crcTable_address=input

O

lookAhead<wSize ‘A

Figure 4.3: Reading Data Flow Diagram

cycle as presented in Equation 4.2. Once the calculatioongtete,j is incrementedyindow is
addressed at the value pfand the state machine loops back to the second state pdoyiddess
thanminMatch-1. At completion of the hash setup all the necessary varidides been initialized

and the algorithm is ready to begin compressing the data.

h = ((h << 5) xor parameter) and (hSize-1) (4.2)

4.3.4 Data Compression

The data compression portion of the algorithm is the mosiue® intensive portion of the LZ77
encoder. All the necessary variables have been initiglizeduding clearing the hashtable. The
data to compress has been storedvimdow and the signallookAhead holds the number of
symbols locatedvindow. The initial hash setup has been performed by calculatieghtsh

value for the firstminMatch-1 symbols. An illustration of the entire data compressioncpss
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v

window_address=j

.

— WAIT

h=((h<<5) xor window_q) and (hSize-1)
window_address=j+1
j+H+

j<minMatch-1

Figure 4.4: Hash Setup Flow Diagram

can be see in Figure 4.5. 1TbokAhead is greater than zero then the compression portion of the
algorithm is entered, otherwise the algorithm is compléike first task is to insert the string of
lengthminMatch into the hashtable, this is accomplished in theertString routine and will be
discussed in detail in Section 4.3.5.

After the string of lengthminMatch is inserted in the hashtable, the previous match needs to
be saved by storing the current length and distancgrigwMatch. If the value ofhashHead,
which was computed innsertString does not equal zero then thengestMatch routine is
entered, otherwise the function is skipped. ThegestMatch routine is discussed in detail in
Section 4.3.6. The purpose of thengestMatch routine is to search through the hashtable and
return a match, which could have a length of zero if no match feand.

After exiting the longestMatch routine a comparison is performed to determine what, if
anything, should be stored for output. If a match was fourtiéprevious iteration of the loop and
is better than the new match, the distance-length pair git&xé@ous match will be stored. The first
state stores the output éacodedData, adjusts the& lag to specify a distance-length pair has been
encoded, decrementsokAhead by the previous match length and assigaschAvailable the

value zero. Also in the first state, the signate1Data andtree2Data are assigned the mapped
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values of the previous match length and match distancetandiValid andtree2Valid are
set to one. A second state is then needed to insert all therisgssof lengthminMatch into
the hashtable by callingnsertString several times and incrementingrStart. If the first
statement was not satisfied, a check is performed to seetifhAvailable equals one. If the
condition holds true, then no match was found the last f@madnd a better match was not found
this time, so a literal is stored. The first state addresseslow at strStart-1. The second
and third states wait for the RAM access and the fourth states the literal teencodedData,
decrementdookAhead and incrementstrStart. Also in the fourth state the signateeiData

is assigned the value of the literal amélee1Valid is assigned one. If neither of the previous
conditions hold true, the algorithm waits until the nextatton to determine what to do. This is
accomplished by assigning onentatchAvailable, decrementingookAhead, and incrementing
strStart.

After processing the information provided by the longestehaoutine, a check is required to
determine if the output is ready to be processedt1HgPos is equal to 128 then eight elements
have been encoded, either literals or distance-lengtts péithis is true then thé&lag and data
stored inencodedData is stored in RAM for later usef1ag andflagPos are reset andutLength
is incremented for each byte stored. If this is not the caéiBggPos is shifted left by one position to
prepare for the next iteration in the loop. After all the ckeeare complete, the algorithm proceeds

back to the first state of the state machine and repeats the pracess.

435 Insert String Routine

The insertString routine inserts the string of lengthinMatch into the hashtable (see Fig-
ure 4.6). At first.window is addressed aftrStart+minMatch-1. A wait state is then entered to
wait for window to be read. In state three, the hash value is updated by @xgé&tquation 4.2 with
window [strStart+minMatch-1] as the parameter. Once the hash value is updated, is read
at the new hash value Once again, a wait state is required to waitliead to be read. In state

five, the insertion is performed. It can be seen that insestere quick and simple, and deletions
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lookAhead>0
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prevMatch > curMatch matchAvailable
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flagPos=128
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Figure4.5: Ziv-Lempel (LZ77) Flow Diagram
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are unnecessary since a sliding dictionary is used and stdegs will be overwritten.

|

window_address=strStart+minMatch-1

!

WAIT

!

h=((h<<5) xor window_q) and (hSize-1)
head_address=h

-

WAIT

:

prev[strStart and (dSize-1)]=head_q
head[h]=hashHead=strStart

.

Figure4.6: Insert String Flow Diagram (insertString)

4.3.6 Longest Match Routine

The longestMatch routine searches though the hashtable, finding any possuiplkcate strings
within the hashtable, this process is illustrated is Figuve The main feature of tHengestMatch
routine is readingsindow in two different locations and comparing the values retdrndwo
variables are used to keep track of these locatiafisin andmatch. Also, a variable called
curMatch is used to keep track of the head of the linked list that isemtty being processed. To
begin,match andcurMatch are assigned the value ndshHead andscan is assigned the value of
strStart. Thewindow RAM is then addressed at both locations and the necessarly cjales
for RAM accesses are waited.Window [scan] is equal tovindow [match] thenscan andmatch
are incremented and we return to the third state. One réstrits placed on this loop, allowing a

maximum match length of 258, ensuring a reasonably sizeof $etgths to encode.
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In state six, a comparison is made between the length of thwyrfeund match and any
previous match that may have been found. If the new matcttHeisgonger, then it is stored,
otherwise it is discarded. The algorithm must then contitougrocess any other strings that have
also been hashed to the same value. Previogshy was addressed aurMatch, at this point
the value is accessed and is assignecliitMatch. If the new value okurMatch is greater than
zero and less than 128 elements in the linked list have bemegsed, the rest of the linked list
is then checked for matches. This is accomplished in the saamner as before, but only with
a new value oturMatch. Once all necessary assignments are made the algorithra bsagk to
state two. After 128 elements of the linked-list have beatessed or the list comes to an end,

thelongestMatch routine is complete.

4.4 Summary

This Chapter discussed a hardware implementation of LZ77.overall block description was
provided as well as an in depth discussion of the implemiemal he implementation was broken
down into four parts; initialization, reading data, hastupeand compressing data. Each part was

discussed in detail with a state machine approach.
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|

match=curMatch=hashHead
scan=strStart
window_address=match
chainLength=128

v

window_address=scan

!

prev_address=curMatch

!

matchData=window_q

!

if(matchData=window_q)then
scan++
match++
window_address=match

matchData=window_q

A

curMatch=prev_q
chainLength=chainLength-1
scan=strStart
if best match then
store in currentLength, currentDistance
if(chainLength>0) then
match=curMatch
window_address=match

chainLength>0

Figure4.7: Longest Match Flow Diagram (longestMatch)
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Huffman Hardware I mplementation

This Chapter discusses in detail the hardware implementaifodynamic Huffman encoders
written in VHDL. The three encoders described are imporfart of the GZIP design. A block

overview is provided for each encoder and a general detdasdription is provided for all three.

5.1 Block Structure

Due to the different sizes of the three Huffman trees and ligatly different manner each tree
interacts with the GZIP block, each Huffman tree has a dffemlock structure. The block
structure for each Huffman tree is illustrated in Figure, 3:ijure 5.2 and Figure 5.3. Thdock
signal in each block is the same clock used in the GZIP enco#&ach block also includes
a reset signal which is used each time a new block of data is processent DLLHT and
DDHT, the input signal comes directly from LZ77 encoder usibigee1Data andtree2Data.
Similarly, the signalinputVvalid for DLLHT and DDHT are assigned the valuestafee1Valid
andtree2valid from the LZ77 encoder. For DCLHT the signalsput and inputValid are
assigned by the GZIP encoder. The sighglutDone indicates that all the input has been received
by the Huffman tree. For DLLHT and DDHT, this signal is as&drithe value ofizDone in
the LZ77 coder. Once the Huffman tree has been built, GZIRIsi¢e be able to access the

lengths andcodes RAMs. This is accomplished using the signaimamicCodes_address,

41
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dynamicCodes_q, dynamicLengths _address anddynamicLengths_g. In Figure 5.2 the signals
staticLengths address and staticLengths q allow the DLLHT encoder to read SLLHT
from outside the block. The output signalgnamicLengthsDone anddynamicCodesDone are
used to indicate that the code lengths and the codes aredfihisfing calculated. The signals
dynamicLength andstaticLength are used to assist GZIP in determining which compression
mode to use and store the length of the block if it was encod@iguhe dynamic and static
Huffman tree. Finally, in Figure 5.1 and 5i23xCode stores the maximum input value that was

processed by the specific Huffman tree.

[ clock |—/1—> —/1—>| dynamicCodesDone |

| reset |—/1—> —/1—>| dynamicLengthsDone |

| input |—/9—> —3,;2—>| dynamicLength |

| inputDone |—/1—> LereHlaist —:}2—>|staticLength |
1 Huffman Encoder 9

[inputvalid —+— (DLLHT) —/——>{maxCode |

|dynamicCodess_address |—/9—> P dynamicCodes_q |

—_
o

| dynamicLengths_address dynamicLengths_q |

I |
I

| staticLengths_q: staticLengths_address |

. unsigned . std_logic_vector . std_logic

Figureb5.1: Literal-Length Huffman Tree (DLLHT) Encoder Block

5.2 Major Components

As mentioned in Chapter 2, three dynamic Huffman trees aneined)to compress any block of
data. Each Huffman tree will use the same data structureshbytwill be of a different size

since each tree has a different alphabet to be encodedrirgpthie data structures to be different
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| clock

| reset

|input

| inputDone

| inputValid

| dynamicCodess_address

|dynam|cLengths address

2a533:

. unsigned

Distance
Huffman Encoder
(DDHT)

dynamicCodesDone

dynamicLengthsDone

[T

32

I

dynamicLength

32

staticLength

I

maxCode

15

dynamicCodes_q

I

dynamicLengths_q

. std_logic_vector . std_logic

Figure5.2: Distance Huffman Tree (DDHT) Encoder Block

| clock

| reset

|input

| inputDone

| inputValid

| dynamicCodess_address

|dynam|cLengths address

328533

. unsigned

Compressed-Lengths
Huffman Encoder
(DCLHT)

dynamicCodesDone

T

dynamicLengthsDone

32

I

dynamicLength

15
—/—>|dynamicCodes_q

4

—/—»ldynamicLengths_q

. std_logic_vector . std_logic

Figure 5.3: Compressed-Lengths Huffman Tree (DCLHT) Encoder Block



Chapter 5. Huffman Hardware I mplementation 44

sizes (see Table 5.1). This Section introduces the req&fdds and global variables used by the
Huffman encoder.

The main feature of a dynamic Huffman coder is that the hrstwgis calculated from the
input data and not read from a look-up table. A RAM is requi@gtore the frequencies of each
characterfreq is initialized to contain all zeros and is incremented eacie &a character is seen.

Since the main purpose of the Huffman coder is to build a Haffrtree, two RAMSs will be
required to store the values. A RAM calledrent is used to keep track of every node’s parent in
the tree. Similarly, the RAMiepth is used to keep track of the depth of each node in the Huffman
tree.

Perhaps the most important step in the actual Huffman dlguoris to choose two elements with
the smallest frequencies. This is accomplished using a beagture. A RAMheap is used to
store the heap and it is re-heaped every time an element m/ezhor added. A variablgeapLen
is used to keep track the length of the heap and the variadalpMax is used to store the highest
unused element in the heap.

Once the Huffman algorithm is complete, the length of eadciratter in the tree must be
computed. This requires a dual-port RAM calleghgths which does not require the usual 16 bits
because GZIP places a restriction on the code length of 15.

Once the code lengths have been calculated the codes catebmided, requiring a dual-port
RAM calledcodes. Once again, only 15 bits are required because each codecanrdnly be 15
bits long. Thelengths andcodes RAM are dual-port to allow for Huffman tree to be retrieved
outside the block.

Two RAMSs are used when determining the code lengths and tthesoccallechextCount and

bCount of size 16x 15 bits each.

5.3 Implementation

The Huffman encoder can be described as a six state proa#sding:

1. Initialization
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2. Read input

3. Initial heap setup

4. Huffman algorithm

5. Compute code lengths
6. Compute code words

Each stage will be described in the remainder of this Section

5.3.1 Initialization

The purpose of the initialization is to clear the necessa®MR and to assign variables with
their correct start-up values. The initialization stepuiees two states. The first state assigns
various variables their required initialization values¢ludingmaxCode=-1. The second state

loops, assigning all values éteq, codes, lengths andbCount the value zero.

5.3.2 Reading Input

To create a dynamic Huffman tree, one pass must be made thtbegdata and the frequency
updated for each character seen. This is accomplished fmingtates. The first state receives the
new input character and address theq RAM at that location. Two cycles are used waiting
for the memory ready to complete and in the fourth state tegquency is incremented. The
Huffman encoder loops in these four states until all datdile@s received, indicated by the signal
inputDone. Once this loop is complete the Huffman algorithm has théssiezs needed for the

histogram, allowing for dynamic Huffman coding.

Table5.1: Dynamic Huffman Encoder RAMs

freq parent depth heap lengths codes
DLLHT | 572x16 bits | 572x16 bits | 572x16 bits | 572x 16 bits | 572x4 bits | 286x 15 bits
DDHT 60x16 bits | 60x16 bits | 60x16 bits | 60x16 bits | 60x4 bits | 30x15 bits
DCLHT | 38x16 bits | 38x16 bits | 38x16 bits | 38x16 bits | 38x4 bits | 19x15 bits
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5.3.3 Heap Setup

To compute the dynamic Huffman tree, the algorithm must be &bchoose two elements at a
time based on their frequency. A min heap is used to retriseesmallest element to be processed.
This requires the initial elements to be inserted into thephend is completed in four states. The
first state addresseseq at a counterj which initially equals zero. States two and three wait for
the RAM access and state four does the insertions into the. Hé¢he freq[j] does not equal
zero, implying that the character was seen in input, themevals inserted irheap atheapLen+1,
whereheapLen initially equals zero. Also, each element is assigned aldepzero by assigning
depth at j equal to zero. This loop continues until all elementsirq are processed. Once the
loop is complete, a re-heap is required for the firsipLen/2 elements; this process is described
in Section 5.3.4. The variabteaxCode is assigned the maximum value pthat is inserted into the
heap. Once the necessary re-heaps have been completedehgas complete and the Huffman

algorithm may begin.

5.3.4 Huffman Algorithm

Since a heap is being used to determine the smallest valuesheap must be performed every
time an element is removed or added. This involves a tremendmount of sequential reads
from RAM as illustrated in Figure 5.4 and Figure 5.5. It begby reading the first element in the
heapheap [k], wherek=1. The variablek is used to keep track of the element we are considering
swapping, in this case, the root of the tree. The variable used to index the left and right
children ofk. Initially a is equal ta2 xk. After two clock cyclesheap [k] is stored in the variable
v for safe keeping. In the next several clock cyclesap is read atleft=a andright=a+1, and
freq anddepth are read aheap[left], heap[right] andheap[k]. Once all the necessary
reads have been completed, the comparisons can be madenmidetif any elements need to be
swapped. The comparison and swapping can be seen in stai@d 2lgorithm loops back up to
the sequential reads @&ft, right, andk, until either theleft or right index is larger than the

heapLen or the re-heap is complete. Just before the re-heap is coepphe value at is written
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to theheap atk thus completing the swap.

The actual Huffman algorithm is quite simple once the repivegis taken care off. It begins
by getting the smallest element from the heap and assighittgthe variablep, decrementing
theheapLen and executing a re-heap. Once the re-heap is complete, themallest element is
removed from the heap and assigned to the varigble the next five states, a read is performed
of depth andfreq atp andq and the results are stored pDepth, qDepth, pFreq, qFreq are
stored. At the same time&eap is written the value® and q at heapMax-1 and heapMax-2
respectively. Once the reads fifeq anddepth are completedepth atmaxCode+1 is assigned
themax (pDepth,qDepth)+1, andfreq is assignegpFreq+qFreq. The value ofparent is also
assigned ap andq with the valuemaxCode+1. Now that the iteration is almost completesap
at one is assigned the new valuexCode+1, a re-heap is performed andxCode is incremented.
This loops continues whil&eapLen is greater than or equal to two. Once the algorithm is

complete, the dynamic Huffman tree is stored in the RAMpth andparent.

5.3.5 Calculating Code Lengths

Once the Huffman tree has been computed and all the poimtersrient have been assigned,
computing the code lengths is quite simple. Unfortunatedégause of sequential RAM accesses
a number of states are required (see Figure 5.6 and 5.7)iallyithe heap is addressed at a
counterj, which is initialized to zero. Two cycles later when the \&lis accessibleparent

is addressed ateap[j]. Once again, two cycles must pass before the value is abfesdn
the next statelengths is addressed with the newly availaljerent [heap[jl]. Two cycles
later, length atheap[j] is assigned engths [parent [heap[jl]1]+1. If the valueheap[j] is
less thamaxCode, which implies that it was one of the original input charastéhenbCount

at lengths [parent [heap[j]]]1+1 is incremented by one. It should be mentioned that this is
an original copy ofmaxCode before it was incremented in the Huffman algorithm. Oncs thi
complete,j is incremented and the loop starts over until every eleméfitetree is processed.

This routine is similar to traversing a tree, where a childl@das length equal to one plus its
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!

heap_a_dq ress=k 1
a=k*2

!
WAIT 2
WtIT 3

.
v=heap_q 4

!
freq_address=v 5

depth_address=v
heap_address=a //left child

4

heap_address=a+1 //right child 6
WAIT 7
h1=heap_q
fv=freq_q
dv=depth_q 8

depth_address=heap_q
freq_address=heap_q

!

h2=heap_q 9
depth_address=heap_q
freq=address=heap_q

v

WAIT 10
A 4
d1=depth_q 11
f1=freq_q

Continued in Figure 5.6

Figure5.4: Re-heap Flow Diagram (Part 1)
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Continued in Figure 5.5

d2=depth_q
f2=freq_q

if (a <= heap_len) then
if (@ < heap_len) and ((f1<f2) or ((f1==f2) and (d1<=d2)))) then
if(fv<f1)or((fv==f1)and(dv<=d1))) then
a=31 //Re-heap done, exit
else
heap[k]=h1
k=a+1
a=(a+1)*2
else
if(fv<f2)or((fv==f2)and(dv<=d2))) then
a=31 //Re-heap done, exit
else
heap[k]=h2
k=a
a=a*2

a<=heaplLe

5

heap[k]=v 13

}

12

Figure5.5: Re-heap Flow Diagram (Part 2)
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parent’s length. The assignmentiCount at the end creates a list of how many code lengths there
are for each length. Once this loop is complete, all codethlenlgave been determined and stored
in lengths.

For GZIP to be able to determine which compression mode wolipce the highest compres-
sion ratio, it requires the potential length of the block wrempressed by dynamic Huffman
trees and static Huffman trees. At this point in the algonitihis involves the number of times a
character occurs and the number of bits required to sencttzaficter in the static and dynamic
representations. The dynamic calculation can be compuyteddiressingreq andlengths at the
appropriate location. The two values are simply multiplegether and added to the current value
of dynamicLength which is initially zero. This calculation occurs for all #& Huffman trees.
The static calculation is only required for DLLHT and DDHTdaise if a static representation is
chosen DCLHT is never used. This requires addresgieg andstaticLengths for the DLLHT
calculation. The DDHT calculation only requires the freqeyebecause all the codes have length
five. The static calculation is performed by multiplying thitic length by the frequency and

adding it to the current value aftaticLength which is initially zero.

5.3.6 Calculating Codes

To ensure that the decompresser and compressor can corhputarhe codes, GZIP calculates
the code words based on the code lengths. Calculating thevemrdis based on theode lengths
requires two separate loops as illustrated in Figure 5.858d The first loop runs fronj equal
to zero tomaxLength, which equals 15, assigning the first code for each lengtieiaCount.
A variable code is used in this loop and is initially zero. The loop begins bgding the value
of bCount at j, this of course takes two clock cycles. In the third cyclededs incremented by
bCount [j] and shifted left by one position and written #iextCount [j]. This loop stores the
first code for each code lengthirextCount.

The second loop runs fromequal to zero tmaxCode. Thelengths RAM is addressed at the

variablej, and after two clock cycles, ifengths [j] does not equal zengextCount is addressed



Chapter 5. Huffman Hardware I mplementation

!

heap_address=j 1
WAIT 2
WAIT 3
parent_address=heap_q 4
code=heap_q
v
WAIT 5
A 4
WAIT 6
v
lengths_address=parent_q 7
A 4
WAIT 8
A 4
j=i+1 9
A 4
lengths[code]=lengths_q+1
if(code<maxCode) then 10
bCount_address=lengths_q+1

!

Continued in Figure 5.8

Figure5.6: Code Length Computation Flow Diagram (Part 1)
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Continued in Figure 5.7

1 < j<size
A
code<maxCode
WAIT 11
y
WAIT 12

v

bCount[lengths_qg+1]=bCount_qg+1 13

j<size

Figure5.7: Code Length Computation Flow Diagram (Part 2)

!

> bCount_address=j

!

WAIT

v

WAIT

code=(code+bCount_q)<<2
nextCount[j]=code
=i+

j<maxLength /

Figure5.8: Code Computation Flow Diagram (First Loop)
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!

—> lengths_address=j

WAIT

y
J=j+1

A

if(lengths_qg/=0) then
nextCount_address=lengths_q

WAIT

v

WAIT

!

codesJj-1]=nextCount_q
nextCount[j-1]=nextCount_qg+1

j<maxCode

Figure5.9: Code Computation Flow Diagram (Second Loop)
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with the valuelengths [j]. Two cycles latercodes is assigned the valuextCount [1engths [j]]
at j andnextCount [lengths [j]] is incremented by one. This loop effectively readgtCount
to get the first available code for that code length, assigtwsthe tree and then increments it for

the next code.

5.4 Summary

This Chapter has discussed in detail the hardware implerniemiaf three Huffman encoders that
are necessary for the implementation of GZIP. An overviewaxth block has been provided and

described. Each encoder uses RAMs and a state machine tacpradiynamic Huffman tree.
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FPGA Prototype

In the design of any hardware, an actual working prototypenisortant for proof of concept.
Consequently, this Chapter discusses the actual implenentdtour GZIP hardware on an FPGA
prototype board; namely the Altera DE2 board [7].

Section 6.1 provides a description of the Altera DE2 boamhponents and specifications
in detail. In using this prototype board, the different RAMsed in the design needed to be
partitioned to the available board resources. Section figes a breakdown of all the RAMs
used in the design and specifies their locations on the DE&Ibéanally, Section 6.3 provides a
brief description of the overall system layout, the testleas used and the interactions between

the different components.

6.1 Altera DE2 Components

This Section outlines the structure and specifications @fAtbera DE2 Board as specified in the
DEZ2 User Manual [7]. A photograph of the Altera DE2 board isyaded in Figure 6.1. The GZIP
hardware design utilizes the following features:

Cyclonell 2C35 FPGA

e 33216 LEs
e 105 M4K RAM blocks
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¢ 483 840 total RAM bits

¢ 35 embedded multipliers

e 4 PLLs

e 475 user /O pins

e FineLine BGA 672-pin package
SRAM

e 512 kByte Static RAM memory chip

e Organized as 256k x 16 bits

e Accessible as memory for the Nios Il processor and by the DEZrGbPanel
SDRAM

¢ 8 MByte Single Data Rate Synchronous Dynamic RAM memory chip

e Organized as 1M x 16 bits x 4 banks

e Accessible as memory for the Nios Il processor and by the DE#rGbPanel

SD Card Socket

e Provides SPI mode for SD Card access

e Accessible as memory for the Nios Il processor with the DE2C3{2d Driver

The DE2 board also incorporates many useful input and owlgnvites including; pushbutton
switches, toggle switches, LEDs, 7-segment displays, dod@ display. Several extra features
not used in the design are also available; USB 2.0, 10/10€r&¢h, 1 MByte Flash memory, IrDA
transceiver, expansion headers, VGA video DAC, TV decodedjcaCODEC, PS2 port and a
RS-232 port. These features allow for a wide range of cirdagigns to be created by the user.
Figure 6.2 provides the block diagram for the Altera DE2 Bhbakll connections are made through

the Cyclone Il FPGA device allowing the user to configure th&RRo implement any design.
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HEEEELEE )

[

Figure6.1: Altera DE2 Board [7]

6.2 Assignment of RAM

All of the blocks described in this thesis (namely, the GZhealer, the LZ77 encoder, and each of
the dynamic Huffman encoders) required several RAMs to e tabcomplete their calculations.
Due to the memory limitations of our FPGA, some of these RAMgehbeen offloaded onto an
off-chip SRAM. Tables 6.1, 6.2 and 6.3 list each RAM used inheaomponent of the design
and specifies their location on the development board. GawveRPGA with enough memory bits

available, the SRAM would not be needed by the design.

Table 6.1: GZIP RAM Breakdown

Name Size L ocation
SLLHTLengths | 286x4 bits| FPGA
SLLHTCodes 286x9 bits| FPGA
SDHTCodes 30x5 bits FPGA
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S50Mhz / 2TMhz | ExtIn

v

USB 2.0 Host/Device

10/100 Ethernet P hy/MAC

SD Card

IrDATransceiver
Flash (1 Mbyte)

SDRAM (8 Mbytes)

Cyclone Il
FPGA

16-bit Audio CODEC

VGA 10-bitVideo DAC

——— TV Decoder

T

UserGreen LEDs (8)

|

2C35

SRAM (512 Kbytes)

7-Segment Display (8)
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il

UserRed LEDs (18)

16x 2 LCD Module
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Toggle Switches (18)

-}——— Pushbutton Switches(4)

i

EPCS16 USB

Config
Device

Blaster

Figure6.2: Altera DE2 Block

Diagram [7]

Table 6.2;: LZ77 RAM Breakdown

Name Size L ocation
head 32768x16 bits| SRAM
prev 32768x16 bits| SRAM
window 32768x8 bits | SRAM
encodeData 16x16 bits FPGA
compress 33792<16 bits| SRAM
crcTable 256xx32 bits FPGA
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Table 6.3: Huffman RAM Breakdown

Name Size L ocation
DLLHT freq 572x16 bits| FPGA
DLLHT parent 572x16 bits| FPGA
DLLHT heap 572x16 bits| FPGA
DLLHT lengths 572x 4 bits FPGA
DLLHT codes 286x15 bits| FPGA
DLLHT nextCount | 16x15bits | FPGA
DLLHT bCount 16x15bits | FPGA
DDHT freq 60x16 bits | FPGA
DDHT parent 60x16 bits | FPGA
DDHT heap 60x16 bits | FPGA
DDHT lengths 60x 4 bits FPGA
DDHT codes 30x15 bits | FPGA
DDHT nextCount 16x15 bits | FPGA
DDHT bCount 16x15bits | FPGA
DCLHT freq 38x16 bits | FPGA
DCLHT parent 38x16 bits | FPGA
DCLHT heap 38x16 bits | FPGA
DCLHT lengths 38x4 bits FPGA
DCLHT codes 19x15 bits | FPGA
DCLHT nextCount | 16x15 bits FPGA
DCLHT bCount 16x15bits | FPGA
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6.3 System L ayout

To facilitate testing of the hardware implementation of 82 test harness was created using
a NIOS Il processor and the SDRAM. The interface used linkesNIOS processor to the on
board SD Card reader. The SDRAM is used as stack space for dleegsor, thus not placing
further demands on the available memory (M4K) blocks withemFPGA. Figure 6.3 illustrates the
interaction between all board components; the SDRAM, SRAM,Card reader and the FPGA.
Each time the design wants to send or receive data from the 3B, @a interrupt is sent to
the processor. The processor can only service new intarmipén not currently serving another

interrupt.

6.4 Summary

This Chapter has outlined the FPGA prototype. The FPGA, NifaSgssor, SRAM and SDRAM
have been utilized in the design. A general description e bncluded for the prototype and
the Altera DE2 Board specifics have been provided. A furtheakdown of all the RAMs used

throughout the design has been provided, including theation on the prototype board.

M4K RAM Blocks

SRAM

GZIP System

SDRAM
NIOS
Stack

Test Harness

NIOS Il Processor
Card

Figure 6.3: Complete Overview of Design
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Experiments

To evaluate our hardware implementation of GZIP a seriesesifstwere completed on a set
of benchmarks. In Section 7.1 the testing procedure is disl in detail and the results for
compression ratio and runtime are provided. In Section R RPGA resource utilization is
provided and broken down for each component. In the lasti@ecsome design analysis is

provided, including discussion of the critical path for thesign.

7.1 Test Results

The benchmarks used are from the University of Calgary cofp8fk This corpus is present in a
majority of data compression research papers and provigesécomparison. The list of files and
the number of bytes in each file are provided in Table 7.1. Erebmarks were tested using three
different methods. The first method will use the standardwsaoe GZIP on a UNIX personal
computer with a 2.8 GHz processor and 1 GB RAM. The second adetbsts our hardware
implementation in simulation. Finally, the third methodttethe hardware implementation on
the Altera DE2 board. By testing in this manner a comparisimtze made between compression
ratios and relative runtime.

The runtime results for each method are illustrated in Fegud. Some of the columns have

been truncated to allow viewing of the CPU results. For themete results, refer to Table 7.2.
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Table 7.1: University of Calgary Corpus

Graph Index | Filename | File Size (Bytes)
1 bib 111261
2 book1 768771
3 book2 610856
4 geo 102400
5 news 377109
6 obj1 21504
7 obj2 246814
8 paperl 53161
9 paper2 82199
10 paper3 46526
11 paper4 13286
12 papers 11954
13 paper6 38105
14 progc 39611
15 progl 71646
16 progp 49379
17 trans 91692

Seconds
HINEEEEEEEE
HEEEEEREEREEEN
HEEEEEEREREEEE
HIEEEREREENEN
HEEEEEREEREEEN
HEEEEEEEEEEEE

9 10 11 12 13 14 15 16 17
Benchmarks

‘I CPU M Simulation M Altera DE2 FPGA ‘

Figure 7.1: Compression Runtime Results
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Table 7.2: Compression Runtime Results

File | CPU Runtime | Simulation Runtime | FPGA Runtime
1 2s 0.33s 55.92s
2 17s 2.56s 775.57s
3 11s 1.62s 595.71s
4 5s 0.37s 64.95s
5 7s 0.75s 184.36s
6 1s 0.26s 11.77s
7 5s 0.66s 113.24s
8 2s 0.13s 12.62s
9 2s 0.24s 39.65s
10 1s 0.12s 22.92s
11 1s 0.25s 6.86s
12 1s 0.02s 6.28s
13 1s 0.1s 18.05s
14 1s 0.1s 18.66s
15 2s 0.23s 29.48s
16 1s 0.13s 20.38s
17 2s 0.2s 38.72s

As previously mentioned, when testing on the Altera DE2 B@ar SD Card is used for input and
output. This causes a great deal of latency since the GZIPpssion algorithm often has to
wait for the SD Card access. This does not allow for a fair camspa between software GZIP
and our Altera DE2 hardware implementation. The simulatbanthe other hand assumes that
accessing the input and output source will only take twolcloeles, providing a more accurate
comparison to software. Both the simulation and Altera DE&itvare implementations are driven
by a 50 MHz clock, allowing us to compute the number of secdrad®d on the required number
of clock cycles. For example, if 200 000 000 clock cycles wewired to perform compression

the runtime would be computed to be 2 seconds as in Equatlon 7.

RUNtime — Clock Cycles 100000000
~ Frequency 50000000

2s (7.2)

It is apparent that the hardware simulation is slightlydashan the software implementation.
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This is misleading because it does not account for gate gelayeality, software will be faster as

the speed of memory access on a CPU exceeds the speed of agé®sM in hardware.

Compression Ratio

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Benchmarks

‘l CPU M Altera DE2 FPGA \

Figure 7.2: Compression Ratio Results

The compression ratio results for each method are illustrat Figure 7.2. It is only necessary
to report the results for the CPU method and the Altera DE2 otethince the simulation
compression ratios will be the same as the FPGA compresat@msr There is a slight variation
between the software and hardware compression ratios,eags 2%. This is caused by the fact
the software version of GZIP allows the LZ77 algorithm toereihce matches in previous blocks.

The hardware implementation does not allow this due to mgmestrictions on the FPGA.

7.2 FPGA Resources Utilized

The FPGA resource requirements for the hardware implertient@f GZIP compression are
outlined in Table 7.3.

The resources used by the design can be further broken dovaabb individual component
and are presented in Table 7.4. Keep in mind that the GZIPdamamntains the DLLHT, DDHT,
DCLHT, SLLHT, SDHT and the LZ77 encoder. It is apparent thatihock instantiations within
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Table 7.3: FPGA Resource Utilization for Hardware Implementation @& Compression

Resource Number Used | Percent of FPGA Used
Logic Elements 20610 62%
Registers 3884 -

Pins 431 91%

Virtual Pins 0 -

Memory Bits 69913 14%

9-bit Multipliers 26 37%

PLLs 1 25%

the GZIP encoder consume 43% of the logic elements, 60% atktiisters, 80% of the memory
bits and 100% of the 9-bit multipliers of the GZIP encoderotgses. Thus, the remaining

resources utilized are consumed by the connections betiiedriocks and the NIOS Il processor.

Table 7.4: FPGA Resource Utilization Breakdown by Component

Component Logic Elements | Registers | Memory Bits | 9-bit Multipliers
GZIP Encoder 18380 2673 59673 26

e DLLHT 2066 573 40234 10

e DDHT 1980 533 4410 10

e DCLHT 1842 502 2969 6

e SLLHT 0 0 3718 0

e SDHT 0 0 150 0

e LZ77 Encoder 2077 734 8192 0
NIOS Il Processor 2230 1211 10240 0

7.3 Design Analysis

The design was compiled using Altera Quartus Il softwarewaasl clocked with a 50 MHz clock.
After further analysis it was discovered that one portiothi@ implementation was actually being
clocked at 25.6 MHz. The critical path in the design was frol DDHT and DCLHT dual-port
lengths RAM to the output of data in the GZIP encoder. Since the necgssait states were

provided, this was not an issue and this portion of code canmat 50MHz.
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7.4 Summary

This Chapter has compared the hardware implementation oPGuth the current software
version available. It has been found that the hardware aeisthieves a reasonable runtime given
the prototype limitations and would have been better hagatioutput device with less latency
had been used. The compression ratio was found to be withiof2¥e GZIP software utility.
Given the design tradeoffs discussed earlier, this is ag@able difference. Section 7.2 provides
a breakdown of the FPGA resouces used by component. The datib® discusses the clock

frequency and critical path for the design.
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Conclusion

8.1 Summary and Contributions

This thesis discussed the design and implementation of GZHardware. Several details were
investigated, including: LZ77, Huffman and GZIP itself.

Previous research in the field has been limited to hardwapéeimentations of Huffman and
LZ77 encoders. Several individuals in the field have allutetthe idea of implementing GZIP in
hardware, but limited their implementation to the statidfithan encoding (fixed modeHowever,
the implementation discussed in this thesis supports alfression modes of a GZIP compression
utility and its output can be decompressed with any standafivare GZIP utility. By allowing
GZIP compression to be offloaded from a CPU, a processor careéeé fo complete other tasks,
allowing tasks to be completed in parallel.

The compression ratio and runtime generated by the hardwgrlementation of GZIP was
compared to the software version of GZIP and found to be &her The compression ratio
was on average within 2% and reasonable runtime was recayoed the limitations of our
FPGA prototype. The choice to make each LZ77 data block iedeéent caused the variation
in compression ratio. Also, the runtime would have been myaicker had a device with less

input/output latency been used. Since this implementasiovritten in VHDL, it is fully portable
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to a variety of hardware architectures. As FPGA technolaggroves, the performance of the

hardware implementation of GZIP will improve with out theageto change the design.

8.2 FutureDirections

There is still room to improve the performance and qualityedults from the GZIP hardware
implementation. Our implementation of the LZ77 encodemuasss each block or compressed
data is independent. This causes the beginning of each bddok mostly literals as there is no
data to compare against and potentially find a match. Thikldeeiavoided by allowing a match
to occur within the previous 32 768 characters regardleddamk boundary. Another avenue to
investigate could include allowing blocks to be differeries based on some heuristic function
rather than a fixed size. In the dynamic Huffman encoder, & f@and that the reorganization of
the heap was the most resource intensive process. If agldrallp structure existed in hardware,
our implementation speed would improve significantly. Alisothe LZ77 encoder a large number
of sequential reads were required to find the longest mattla. ldrge enough dual-port RAM
was available RAM accesses could have been performed itigdarnother idea to investigate

includes a hardware implementation of GZIP decompression.
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