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Abstract

Capillary phenomena have been studied by mathematicians and physicists for hundreds
of years. In this thesis, both two-dimensional(2D) and three-dimensional(3D) bodies float-
ing on an unbounded reservoir are studied based on the Young-Laplace equation. We re-
consider the 2D floating cylinder problem studied in a groundbreaking paper of Bhatnargar
and Finn from 2006. We derive the total energy ET relative to the undisturbed state and
the total force in vertical direction and show that FT = −dET

dh
, where h is the height of

the centre of the cylinder relative to the undisturbed fluid level. The number of equilibria,
the floating configurations and their stability are also studied. In the 2D floating square
problem, we rederive the floating configurations and their stability in the no surface tension
case. Allowing surface tension, one example with contact angle γ = π

4
is considered. We

show that there is one unstable equilibrium of the floating square with a horizontal side.
In the 3D floating object problem with radial symmetry, the shooting method is applied to
obtain the fluid height u and radial distance r from the vertical axis numerically in terms
of the inclination angle ψ parameter. In the vertical cylinder problem, the relation between
ET and FT is found to be consistent with 2D cylinder case. In the floating ball problem, a
non-monotone relation between height of centre h and the wetting angle φ0 is found. We
also give an example of two floating configurations with the same height h. More study of
the 3D floating ball problem is anticipated.
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Chapter 1

Introduction

When you walk across a lawn early in the morning, you’ll find dew drops attached to the
edges of leaf blades. When you read a burette in a chemistry lab, you’ll find the liquid
surface forms a meniscus. There are countless such capillary phenomena. The records
of capillary phenomena can be tracked back to the Renaissance. Leonardo da Vinci[14]
described experiments associated with capillary phenomena in his manuscripts. His cel-
ebrated work is widely considered the first description of capillary phenomena. Many
pioneers such as Newton(1687), Huygens(1690s), Hawksbee(1709), Taylor(1712) and Ju-
rin(1718) have made contributions to the experimental work on capillarity. The description
of these pioneers’ work can be found in the literature review of capillarity by Lloyd [14].
In 1805, a breakthrough essay [22] by Thomas Young was published by the Royal Society
of London. He was the first to present the relation (1.1) between mean curvature H1 and
the pressure difference δp across a fluid interface through balancing δp and surface tension
σ, which is assumed to be a constant.

δp = 2σH, (1.1)

He also asserted the contact angle condition (1.2) that the tangential forces along the solid
must be balanced. It is also known as “Young’s diagram” (see Figures 1.1, 2.7). It leads to

cos γ =
σ1 − σ2

σ
, (1.2)

1Young first introduced the notation of mean curvature H, which was precisely defined by Sophie
Germain several decades later.
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where γ is the contact angle, σ is the surface tension between air and liquid (we say
air/liquid surface tension for short.), σ1 and σ2 are air/solid and liquid/solid surface ten-
sions, respectively.

solid

air

liquid

�1

�2
�

�

solid

air

liquid �

�1

�2

plane T

�

Figure 1.1: Young’s diagram for contact angle and a counterexample.

“Young’s diagram” is widely used in engineering. In recent years, Finn argues its valid-
ity. In paper [6], Finn gives a counterexample of a floating spherical ball in zero gravity
(see Figure 1.1). If we follow Young’s diagram, the total force in the vertical direction can
not be balanced. In [2], Bhatnagar and Finn argue that the surface tension force is only
along the fluid interface. In [16], Marchand, Weijs, Snoeijer and Andreotti also criticize
Young’s diagram and reach the same conclusion about the surface tension force. Related
discussions of Young’s diagram and Finn’s paradox example can also be found in [2], [7],
[8], [15] and [18].

Differing from Young’s qualitative analysis of capillarity, Laplace reintroduced Young’s
results with formal mathematical notations in 1806 [5]. Due to their contributions to cap-
illarity, the equation (1.1)2 was named after Thomas Young and Pierre-Simon Laplace. In
1830, Gauss reproduced the capillary equation and the contact angle condition by reasoning
that the energy of this mechanical system is stationary in equilibrium [5].

Gauss’ energy method is presented in a general framework by Finn in his celebrated
book [5] on capillarity. We now employ Gauss’ energy method in a more specific case.
Consider a vertical tube with cross section Ω in an infinite reservoir. The density of liquid
is ρl, the density of air is ρair, the surface tension of the air/liquid interface is σ, the
air/solid interface is σ1 and the liquid/solid interface is σ2. With downward acting gravity

2It is called Young-Laplace Equation or Capillary Equation.
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⌦

air

liquid

solid

z = 0⌫

�

⇢air
�1

�2

z = Htop

z = u

liquid liquid

⇢
�

Figure 1.2: A capillary tube.

g and surface tension3, capillary action causes the air/liquid interface z = u(x, y), where
(x, y) ∈ Ω, which is assumed to be a graph (see Figure 1.2). If we consider the energy in
the vertical tube from the fixed height z = Htop

4 to the reference fluid level z = 0, the
energy functional can be expressed as

E(u) = σ

∫

Ω

√
1 + |∇u|2dΩ + σ1

∫

∂Ω

(Htop − u) ds+ σ2

∫

∂Ω

uds

+ ρg

∫

Ω

u2

2
dΩ + ρairg

∫

Ω

(
H2
top − u2

2

)
dΩ, (1.3)

where σ
∫

Ω

√
1 + |∇u|2dΩ is the surface tension energy of the fluid interface. σ2

∫
∂Ω
uds

and σ1

∫
∂Ω

(Htop − u) ds are the surface tension energy of liquid/solid interface and air/solid

interface, respectively. ρg
∫

Ω
u2

2
dΩ and ρairg

∫
Ω

(
H2
top−u2

2

)
dΩ are the potential energy of the

liquid and the air in tube from z = 0 to z = Htop.

Minimizing the functional E(u) results in the capillary equation and contact angle
condition:

divTu = κu in Ω. (1.4)
ν · Tu = cos γ on ∂Ω. (1.5)

3Surface tension can be interpreted as energy per area.
4The surface z = u never touches z = Htop.
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Where ν is the outer normal of Ω, κ = ρ−ρair
σ

g is known as the capillary constant and
Tu = ∇u√

1+|∇u|2
. The interface z = u(x, y) meets the tube in the contact angle γ with cos γ

given by (1.2). In addition, divTu has the meaning of twice the mean curvature of the
surface u. With hydrostatic pressure in the liquid and air, we see that (1.4) is equivalent
to (1.1).

Two symmetric cases are discussed in this thesis. After introducing the inclination angle
ψ (see section 2.1), equation (1.4) can be geometrically interpreted for the two-dimensional
(2D) cylinder in Chapter 2,

d

dx
sinψ = κu, (1.6)

where x is the distance in horizontal axis. The left hand side of (1.6) is the curvature of
the interface curve. Moreover, the solution of equation (1.6) is classically known and can
be traced back to Laplace and Euler (see Section 2.2).

For three-dimensional(3D) symmetrical floating objects in Chapter 4, if we introduce
the radial distance r from the axis, the equation (1.4) becomes as follows,

(
r sinψ

)
r

= κru, (1.7)

where ψ is the inclination angle of the radial cross-section.

The equation (1.7) can also be written in parametric form,

du

dψ
=

r sinψ

κru− sinψ
and

dr

dψ
=

r cosψ

κru− sinψ
. (1.8)

The non-linear first order system (1.8) is also used in the study of both interior problems
such as sessile drops [5] and exterior problems such as floating drops [3]. Vogel also gives
an analogous representation for the exterior surfaces in [20]. In addition, for the exterior
problem, the fluid interface tends asymptotically to the reference level: u→ 0 and ψ → 0
as the radial distance r →∞.

The study of a 2D cylinder floating on an unbounded bath is motivated by Bhatnagar
and Finn’s work in [2]. They give both energy and force analysis in the study of the floating
configurations and their stability. In the force analysis, they discussed different choices in
order to include surface tension. We agree with Finn’s choice which is inspired by Gifford
and Scriven’s work in [9]. The surface tension force exists only along the fluid interface
instead of along the air/solid or liquid/solid interfaces as depicted in Young’s diagram5.

5This can be treated as another counterexample to Young’s diagram.
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When it comes to the buoyant force, the famous Archimedes’ principle can not be ig-
nored. In the work “On Floating Bodies”, Archimedes stated:

“Any object, wholly or partially immersed in a fluid, is buoyed up by a force
equal to the weight of the fluid displaced by the object."

But Archimedes’ principle is not in general correct when the air/liquid interface is not
flat due to the presence of surface tension. McCuan and Treinen discuss Archimedes’
principle and capillarity in [17]. Archimedes’ principle is also studied in Appendix B and
employed in studying the floating square in Chapter 3. In [2], Bhatnagar and Finn use the
principle of virtual work approach. Different from this work which considered infinitesimal
changes in the total energy, we give the full expression for the total energy ET . We also
establish the relation between the total force in vertical direction and the total energy in
Section 2.6. [2] gives the first example where the floating cylinder admits two equilibrium
positions. In the thesis, we correct the stability assertions concerning these two equilibria.
Moreover, we give the full study of the total force FT and the conditions on the number of
equilibria the system can admit and their stability.

The study of the 2D floating square is motivated by Erdös, Schibler and Herndon’s work
in [4] and Abolhassani’s work in [1]. We rederive the stability conditions of the floating
square with the allowance of rotation in absence of surface tension (see Section 3.2). Two
parameters are introduced, the centre of mass height h and the clockwise rotation angle θ
from the vertical axis. The case with surface tension is complicated. One example with
contact angle γ = π

4
is discussed. The result is similar to the case without gravity. Todd

and Siegel studied the stability of floating objects with polygonal cross sections without
gravity [12]. They concluded that the body cannot have a stable equilibrium with the fluid
interface not passing through two of the vertices. Since the stable configuration of the
square allowing rotation with surface tension is still an open question, we can only conclude
that there is one unstable equilibrium θ∗ = 0 of the floating square with a horizontal side
in one particular case.

The radial symmetric capillary equation (1.7), (1.8), has received much attention. The
study of the 3D exterior problem has drawn much attention. The parametric form (1.8)
of the capillary equation is employed in the study of liquid bridges [20], floating drops [3]
and sessile drops [5]. The non-linear first order system (1.8) does not have an analytical
solution. We have to apply the shooting method (see Section 4.2) to compute these. The
shooting method for the capillary equation was introduced by Hartland and Hartley in
[10]. Elcrat, Treinen and Hemphill also employ shooting method in the study of floating
bubbles in [11] and [19]. In the thesis, the shooting method is also applied in the study of
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the floating vertical cylinder in Section 4.2. In the study of floating ball by McCuan and
Treinen in [17], the arc length parametrization is used instead. Through our numerical
computation, the inclination parametrization has better performance (see Section 4.1).
Finally, we discuss a challenging 3D problem, the floating ball. Differing from the 2D
cylinder case, a non-monotone relation between the height of h and wetting angle φ0 is
found. Moreover, two configurations are displayed with the same height h. The relation
between the vertical total force and the total energy is left for future study.

The structure of this thesis is as follows: the 2D floating cylinder is discussed in Chapter
2, we focus on Young’s diagram, investigating the relation between FT and ET and the
number of equilibria. The 2D floating square with rotation is studied in Chapter 3. The
stability conditions are discussed in no surface tension case. With surface tension, one
example with contact angle γ = π

4
is studied. In Chapter 4, the floating vertical cylinder

and the floating ball are discussed. Finally, conclusions and future work are discussed in
Chapter 5.
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Chapter 2

Two-Dimensional Cylinder on An
Unbounded Bath

The 2D cylinder horizontally floating on an unbounded bath is motivated by the ground
breaking paper of Bhatnagar and Finn [2]. They studied equilibrium configurations and
their stability through considerations of energy and the analysis of the total force. In this
chapter, we will follow Bhatnagar and Finn’s approach but with some modifications. The
three most important contributions are:

1. The relation between the total energy and the total force.

2. How the parameters influence the number of equilibrium configurations and their
stability.

3. The limitation of the capillary model due to the possible intersection of fluid inter-
faces.

In addition, we see limitations in the use of Young’s diagram and determine the buoyant
force when the fluid interface is not flat.

2.1 Fluid Interface and Configuration

Suppose an infinite reservoir of fluid has its interface at the zero level. Introduce an infinite
cylinder of radius a floating horizontally on the infinite reservoir and assume the free fluid
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level is unchanged. If we admit the presence of surface tension, the fluid will be lifted up
or pushed down to the fluid height u.

When the fluid height u > 0, the inclination angle is measured counterclockwise from
the positive horizontal direction, ψ ranges from −π (on the top) to 0 (free fluid level).
When the fluid height u < 0, ψ ranges from 0 to π.

u

x�0
 0

�

u > 0

u < 0

 < 0
 = 0
 = 0

 = �⇡

 = �⇡
2

 = ⇡
2

 > 0

 = ⇡

Figure 2.1: Configuration.

Assume that both the fluid and the cylinder are homogeneous. Once a unit length is
chosen, our ideal model turns into two-dimensional problem. Viewing the cross section,
we set the centre of the cylinder on the vertical axis. At the contact point between the
fluid and the cylinder, we can define the contact angle γ, the inclination angle ψ0 and
the wetting angle φ0 at the contact point (see Figure 2.1). Immediately, we obtain the
geometric constraint:

ψ0 = φ0 + γ − π. (2.1)

Since the configuration is symmetric about the vertical axis, we only need to look at
the fluid interface on one side such that the horizontal distance x > 0.

2.2 The Capillary Equation

The fluid height u satisfies the one-dimensional capillary equation:

d

dx
sinψ = κu. (2.2)
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where κ = ρg
σ

is known as the capillary constant, σ is surface tension along the fluid
interface, ρ is the density difference of the fluid and the air, and g is the gravity force per
unit mass.

According to our assumption, the fluid height u goes to zero asymptotically as x→ ±∞.

lim
x→±∞

u(x) = 0. (2.3)

In this chapter, we will have that the capillary equation (2.2) with boundary condition
(2.3) admits the unique symmetric solution u(x). This solution is classically known and
can be traced back to Laplace and Euler.

h
u0

x0

 
�

Figure 2.2: Centre height h, u0 < 0 is pictured.

Finn and Bhatnagar in [2] have given the solution where u and x are functions of ψ.
We modify the solution to treat u > 0 and u < 0 simultaneously and to be consistent with
our notation.

u(ψ) = − 2√
κ

sin
ψ

2
. (2.4)

x(ψ) = − 1√
κ

[
2 cos

ψ

2
+ ln | tan

ψ

4
| − 2 cos

ψ0

2
− ln | tan

ψ0

4
|
]

+ a sinφ0. (2.5)

At the contact point, the horizontal distance is x0 = a sinφ0, the vertical fluid height
at x0 is u0 = u(ψ0) = − 2√

κ
sin ψ0

2
. We define the height of the centre h = a cosφ0 + u0 (see

Figure 2.2), therefore

h = a cosφ0 −
2√
κ

sin
ψ0

2
. (2.6)
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2.3 Derivation of the Total Energy ET

In this section, following the method of Gauss [5], we determine all the potential energies
of the floating cylinder system. Because of the unboundedness of the exterior fluids, we
have to consider the relative energy instead of the full one to avoid the confusion of infinite
energy. The types of energies will be expressed explicitly in terms of the contact inclination
angle ψ0 and the wetting angle φ0.

We have the following four types of energy:

• The body potential energy:

the body potential energy relative to the free fluid level can be expressed as EG =
mgh, where h = a cosφ0 − 2√

κ
sin ψ0

2
. EG is a function in terms of ψ0 and φ0:

EG(ψ0, φ0) = mg

(
a cosφ0 −

2√
κ

sin
ψ0

2

)
. (2.7)

• The wetting energy:

the wetting energy is written EW = −βσ|Σ|, where the wetting area per unit length
is denoted by |Σ| = 2aφ0. With the relative adhesion coefficient β, EW only depends
on φ0:

EW (φ0) = −2βσaφ0. (2.8)

In Section 2.4, we will show that β is equal to cos γ.

• The surface tension energy:

surface tension has the interpretation energy
area

. In order to avoid infinite energy, we
define the surface energy Eσ, a relative energy compared with the surface energy of
undisturbed fluid surface (Figure 2.3). It has the form:

Eσ = 2σ lim
x1→∞

[∫ x1

x0

√
1 + (

du

dx
)2dx−

∫ x1

0

dx

]
. (2.9)

In Figure 2.3, the fluid surface is a graph. The fluid interface can also have a non-
graph shape. The computation of both cases is in Appendix A. Eσ is shown below:

Eσ(ψ0, φ0) =
4σ√
κ

(1− cos
ψ0

2
)− 2σa sinφ0. (2.10)
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0

x0

x1

Figure 2.3: Computation relative surface tension energy.

• The fluid potential energy

the fluid potential energy EF is also treated as a relative energy compared with the
free fluid level as shown on Figure 2.4. A better expression for EF is to break EF
into two parts EF1 and EF2:

y
u

x0

Figure 2.4: Computation of relative potential energy.

EF = 2ρg

∫ x0

0

y2

2
dx

︸ ︷︷ ︸
EF1

+ 2ρg

∫ ∞

x0

u2

2
dx

︸ ︷︷ ︸
EF2

. (2.11)

Where y is the vertical height from the free fluid level to the bottom of the cylinder.
The calculation of EF is in Appendix A. EF is shown below:
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EF = EF1 + EF2

= − 4σ

3
√
κ

(
1− 2 cos

ψ0

2
+ cos

ψ0

2
cosψ0

)
+

1

12
ρga3 sin 3φ0

− ρga3φ0 cosφ0 +
3

4
ρga3 sinφ0 − a2√σρg sin

ψ0

2
sin 2φ0

+ 2a2√σρgφ0 sin
ψ0

2
+ 4σa sin2 ψ0

2
sinφ0. (2.12)

The total energy ET can be expressed of the sum of the above four energies.

ET = EG + EW + Eσ + EF . (2.13)

The full expression of ET in terms of ψ0 and φ0 is:

ET (ψ0, φ0) = mg

(
a cosφ0 − 2

√
σ

ρg
sin

ψ0

2

)
− 2βσaφ0 +

8

3
σ

√
σ

ρg

(
1− cos3 ψ0

2

)

− 2σa sinφ0 cosψ0 +
1

12
ρga3 sin 3φ0 − ρga3φ0 cosφ0 +

3

4
ρga3 sinφ0

− a2√σρg sin
ψ0

2
sin 2φ0 + 2a2√σρgφ0 sin

ψ0

2
. (2.14)

2.4 The Relative Adhesion Coefficient β

Finn argues in a very general setting by a variational argument that β = cos γ in [5]. In
this section, we will show that minimizing ET (ψ0, φ0) subject to h = h0 (h0 is a constant)
gives the same result. The Lagrange multiplier is applied.

∇ET = λ∇h, (2.15)
∂ET
∂φ0

+ λa sinφ0 = 0, (2.16)

∂ET
∂ψ0

+
λ√
κ

cos
ψ0

2
= 0. (2.17)

We multiple 1√
κ

cos ψ0

2
and a sinφ0 both sides on (2.16) and (2.17) respectively to obtain:
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1√
κ

cos
ψ0

2

∂ET
∂φ0

= a sinφ0
∂ET
∂ψ0

. (2.18)

By substituting total energy ET into (2.18):

RHS = −mga 1√
κ

sinφ0 cos
ψ0

2
+ 4a

σ√
κ

cos2 ψ0

2
sin

ψ0

2
sinφ0

+2σa2 sin2 φ0 sinψ0 −
1

2
a3√σρg cos

ψ0

2
sin 2φ0 sinφ0 + a3√σρgφ0 cos

ψ0

2
sinφ0.

LHS = −mga 1√
κ

sinφ0 cos
ψ0

2
− 2βa

σ√
κ

cos
ψ0

2
− 2a

σ√
κ

cosφ0 cosψ0 cos
ψ0

2

+
1

4
a3√σρg cos

ψ0

2
cos 3φ0 − a3√σρg cosφ0 cos

ψ0

2
+ a3√σρgφ0 sinφ0 cos

ψ0

2

+
3

4
a3√σρg cosφ0 cos

ψ0

2
− 2σa2 sin

ψ0

2
cos

ψ0

2
cos 2φ0 + 2σa2 sin

ψ0

2
cos

ψ0

2
.

⇒

LHS = RHS,

2a
σ√
κ

sinψ0 cos
ψ0

2
sinφ0 = −2βa

σ√
κ

cos
ψ0

2
− 2a

σ√
κ

cosφ0 cosψ0 cos
ψ0

2
,

sinψ0 sinφ0 = −β − cosφ0 cosψ0,

β = − cos(φ0 − ψ0).

With the geometric constraint ψ0 = φ0 + γ − π, then β = cos γ.
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2.5 Total Energy with One Parameter ET (φ0) and the
Analysis of the Forces

With the geometric constraint ψ0 = φ0 + γ − π and β = cos γ, the total energy ET (ψ0, φ0)
can be converted to ET (φ0):

ET (φ0) = mg

(
a cosφ0 + 2

√
σ

ρg
cos

(
φ0 + γ

2

))
− 2σaφ0 cos γ +

8

3
σ

√
σ

ρg

(
1− sin3

(
φ0 + γ

2

))

+ 2σa sinφ0 cos (φ0 + γ) +
1

12
ρga3 sin 3φ0 − ρga3φ0 cosφ0 +

3

4
ρga3 sinφ0

+ a2√σρg cos

(
φ0 + γ

2

)
sin 2φ0 − 2a2√σρgφ0 cos

(
φ0 + γ

2

)
. (2.19)

g

FG

FB

F�

Figure 2.5: Gravitational, buoyant and surface tension forces.

By symmetry the surface tension forces in the horizontal direction cancel so that the net
force in the horizontal direction is zero. We only consider forces in the vertical direction.
Bhatnagar and Finn give an analysis of the forces in [2], we suppose upward is positive
direction and modify the expression of the forces as follows.

• The gravitational force:

with downward pointed gravitational field g and the mass of a unit length m, the
gravitational force can be expressed as

FG = −mg. (2.20)

• The buoyant force:
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the buoyant force rises from the pressure of fluid acting on the floating object. With
the outer unit normal of the cylinder n̂c and the unit vertical upward pointing vector
k̂, the buoyant force has the form:

FB = k̂ ·
∫

Σ

~Fds. (2.21)

Where the centripetal component pressure ~F = ρgyn̂c, Σ is the wetted region.

k̂

n̂c

y

~F

�

Figure 2.6: Computation of buoyant force.

The buoyant force can also be calculated by integrating with respect to φ (see Figure
2.6):

FB = 2

∫ φ0

0

ρgy cosφa dφ

= 2

∫ φ0

0

ρg(a cosφ− h) cosφa dφ

= −4a
√
σρg cos

(
φ0 + γ

2

)
sinφ0 −

1

2
ρga2 sin 2φ0 + ρga2φ0. (2.22)

With no surface tension, the Divergence Theorem leads to Archimedes’ principle. But
Archimedes’ principle is not generally correct when the surface tension is present (See
Appendix B).

• The surface tension force:
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in 1805, Thomas Young derived the formula to determine the contact angle γ in terms
of three surface tensions. The Figure 2.7 is known as “Young’s diagram”. Balancing
the forces tangential to the solid gives:

cos γ =
σ1 − σ2

σ
. (2.23)

Where σ is air/liquid surface tension, σ1 and σ2 are air/solid and liquid/solid surface
tension, respectively.

air

solid liquid

�1

�2

�

�
air

solid liquid�

�

Figure 2.7: Young’s diagram and its correction.

The discussion of Young’s diagram has gone on for centuries. Recently, Finn gives
a counterexample to show the incorrectness of Young’s diagram [6]. Instead of ap-
plying Young’s diagram, we agree with Gifford and Scriven’s interpretation [9] of the
direction of surface tension acting: the surface tension acts along the fluid interface
(see Figure 2.7).

In our case, the vertical component of the surface tension is

Fσ = 2σ sinψ0

= −2σ sin(φ0 + γ). (2.24)

The full expression of FT in terms of φ0 is

FT (φ0) =FG + Fσ + FB

=−mg − 2σ sin(φ0 + γ)− 4a
√
σρg cos

(
φ0 + γ

2

)
sinφ0

− 1

2
ρga2 sin 2φ0 + ρga2φ0. (2.25)
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2.6 Total Energy and Total Force

As minimizing the total energy ET (φ0) is laborious, we introduce a more convenient ap-
proach. Firstly, we write h in terms of φ0 by substituting the geometric constraint.

h(φ0) = a cosφ0 +
2√
κ

cos

(
φ0 + γ

2

)
. (2.26)

The derivative dh
dφ0

= −a sinφ0 −
√

σ
ρg

sin
(
φ0+γ

2

)
≤ 0 where equality only holds when

φ0 = γ = 0 or φ0 = γ = π. Therefore, h and φ0 are in one-to-one correspondence.
With the parameters in Bhatnagar and Finn’s paper [2] {g = 980 cm/s2, m = 1.2 g, ρ =
1g/cm2, σ = 72 dyn/cm, γ = π

2
, a = 1√

π
cm}, the one-to-one correspondence between h

and φ0 is shown in Figure 2.8.

0 1 2 3
φ0

-1

0

1

h

φ0 vs h

Figure 2.8: φ0 versus h.

When the chain rule is applied, −dET
dh

and the vertical total force FT are equal, as
expected (see Appendix C).

− dET
dh

= −dET
dφ0

dφ0

dh
= FT . (2.27)

This leads to the following equivalences.
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Since dφ0

dh
< 0 (except φ0 = γ = 0 or φ0 = γ = π), dET

dφ0
and FT have the same sign by

(2.27):

sign

(
dET
dφ0

)
= sign(FT ). (2.28)

Assume that φ̄0 ∈ (0, π) is the critical point for ET (φ0), then

dET
dφ0

(φ̄0) = 0 ⇔ FT (φ̄0) = 0. (2.29)

So the critical point φ̄0 for ET (φ0) is equivalent to the vertical force balance point FT (φ̄0) =
0. If we rearrange equation (2.27) and differentiate with respect to φ0, we obtain

− d2ET
dφ2

0

=
dFT
dφ0

dh

dφ0

+ FT
d2h

dφ2
0

. (2.30)

If we plug in φ̄0, we have the following sign equivalence:

sign

(
d2ET
dφ2

0

(φ̄0)

)
= sign

(
dFT
dφ0

(φ̄0)

)
. (2.31)

φ̄0 is a local minimum if sign

(
d2ET
dφ2

0
(φ̄0)

)
> 0 and φ̄0 is a local maximum if sign

(
d2ET
dφ2

0
(φ̄0)

)
<

0, equivalently,

dFT
dφ0

(φ̄0) > 0 ⇒ φ̄0 is locally stable. (2.32)

dFT
dφ0

(φ̄0) < 0 ⇒ φ̄0 is locally unstable. (2.33)

The cases φ0 = γ = 0 and φ0 = γ = π are not physically realizable, they are in the
intersection case, see Section 2.11.

Equipped with the equivalences above, we can focus on FT instead of ET to solve the
minimization problem. But finding the force balance point is still not easy. Two techniques,
non-dimensionalization and Fourier decomposition, are introduced in the following sections.
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Remark 2.1. Bhatnagar and Finn first give an example where the floating cylinder admits
two equilibrium positions (we label the equilibria: φ̄01 < φ̄02). With parameters: {g =
980 cm/s2, m = 1.2 g, ρ = 1g/cm2, σ = 72 dyn/cm, γ = π

2
, a = 1√

π
cm}, they assert φ̄01

is unstable and φ̄02 is stable. Here, we correct their stability assertion based on (2.32) and
(2.33), thus the smaller equilibrium point φ̄01 is stable and the larger equilibrium point φ̄02

is unstable.

2.7 Two Independent Non-dimensional Parameters

Bhatnagar and Finn introduced two dimensionless parameters in [2]:

A = m
a2ρ

and B = ρg
σ
a2.

Where B is known as the Bond number, which is the ratio of gravitational to surface tension
forces. It will be more convenient to introduce C =

√
B =

√
κa. The equation of the total

force FT in (2.25) can be expressed as:

FT = σ

[
−AC2 − 2 sin(φ0 + γ)− 4C cos

(
φ0 + γ

2

)
sinφ0 −

1

2
C2 sin 2φ0 + C2φ0

]
. (2.34)

If we define a characteristic force as Fc = 1σ, where 1 is the unit length of the horizontal
cylinder. The non-dimensional form total force F̂T can be expressed as

F̂T = −AC2 − 2 sin(φ0 + γ)− 4C cos

(
φ0 + γ

2

)
sinφ0 −

1

2
C2 sin 2φ0 + C2φ0. (2.35)

Moreover, we require A > 0 and C > 0 to have physical meaning, A only appears in
the constant term, if we increase the value of A, the curve of F̂T in terms of φ0 shifts down.

2.8 Trigonometric Series

The total force F̂T in (2.35) is mainly comprised of trigonometric functions sine and cosine.
The Fourier decomposition can be applied and the main part of F̂T can be written as the
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trigonometric series in terms of
{

sin
φ0

2
, cos

φ0

2
, sinφ0, cosφ0, sin

3φ0

2
, cos

3φ0

2
, sin 2φ0, cos 2φ0

}
. (2.36)

The projection formulas give the expression of the coefficients:

an =
1

2π

∫ 4π

0

F̂T (φ0) cos

(
nφ0

2

)
dφ0 where n ∈ {1, 2, 3, 4}. (2.37)

bn =
1

2π

∫ 4π

0

F̂T (φ0) sin

(
nφ0

2

)
dφ0 where n ∈ {1, 2, 3, 4}. (2.38)

Where an is the coefficient of cos(nφ0

2
) and bn is the coefficient of sin(nφ0

2
).

The total force equation F̂T in (2.35) can be transformed to the following:

F̂T (φ0) =−AC2 − 2C cos
γ

2
sin

φ0

2
+ 2C sin

γ

2
cos

φ0

2
− 2 cos γ sinφ0

− 2 sin γ cosφ0 − 2C cos
γ

2
sin

3φ0

2
− 2C sin

γ

2
cos

3φ0

2

− 1

2
C2 sin 2φ0 + C2φ0. (2.39)

2.9 Stability Behaviors

We wish to study the stability behaviors of our floating cylinder system. First of all, we
have to find the equilibria based on the equivalence relation (2.29). We just need to focus
on finding the total force balance point φ̄0, where F̂T (φ̄0) = 0.

In the analysis of the total force equation, there are four parameters: φ0, γ, A and C.
We consider two dimensionless parameters A > 0 and C > 0. The contact angle γ ∈ [0, π]
and σ > 0. The discussion can be divided into three cases: γ = π

2
, γ > π

2
and γ < π

2
.

2.9.1 The Case γ = π
2

The following properties are very useful in analyzing the shape of F̂T curve.
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Property 2.1. 1. F̂T is centrally symmetric with respect to the point
(
π
2
, F̂T (π

2
)
)
.

2. There are two critical points for F̂T (φ0), one is in (0, π
2
) and the other is in (π

2
, π).

Proof. 1. We pick φ0 ∈ [0, π] and so π − φ0 ∈ [0, π].

F̂T (π − φ0) = −AC2 −
√

2C cos
φ0

2
+
√

2C sin
φ0

2
+ 2 cosφ0 +

√
2C cos

3φ0

2

+
√

2C sin
3φ0

2
+

1

2
C2 sin 2φ0 + C2(π − φ0).

Moreover,

F̂T (φ0) + F̂T (π − φ0) = −2AC2 + C2π

= 2F̂T

(π
2

)
.

2. We take the first derivative dF̂T
dφ0

:

dF̂T
dφ0

= −
√

2C
2

cos
φ0

2
−
√

2C
2

sin
φ0

2
+ 2 sinφ0 −

3
√

2C
2

cos
3φ0

2

+
3
√

2C
2

sin
3φ0

2
− C2 cos 2φ0 + C2.

Check the end points φ0 = 0, π and φ0 = π
2
.

dF̂T
dφ0

(0) = −2
√

2C < 0 and
dF̂T
dφ0

(π) = −2σC < 0.

dF̂T
dφ0

(π
2

)
= 2

[
1 + C + C2

]
> 0.

That dF̂T
dφ0

is strictly increasing on (0, π
2
) follows from:

d2F̂T

dφ0
2 =

√
2C
4

sin
φ0

2
−
√

2C
4

cos
φ0

2
+ 2 cosφ0 +

9
√

2C
4

sin
3φ0

2

+
9
√

2C
4

cos
3φ0

2
+ 2C2 sin 2φ0 > 0.
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Since dF̂T
dφ0

is a continuous function, dF̂T
dφ0

(0) < 0 and dF̂T
dφ0

(π
2
) > 0, so F̂T admits exactly

one critical point in (0, π
2
). With the central symmetry property, F̂T also admits

another critical point in (π
2
, π).

0 1 2 3
φ0

-8

-6

-4

-2

0

2

F̂
T

Total Force with γ = π
2

0 1 2 3
φ0

-8
-6
-4
-2
0
2

F̂
T

Total Force with γ = π
2

A
A∗

Figure 2.9: Parameters: A = 4, A∗ = 5.0893 and C = 1.

Property 2.1 gives the behavior of the F̂T (φ0) curve. F̂T decreases at the beginning then
reaches the first critical point, and then F̂T increases until reaching the second critical point,
finally F̂T decreases. The Figure 2.9 shows the important result that F̂T admits at most
two equilibrium points (we label the equilibria: φ̄01 < φ̄02). According to the criteria (2.32)
and (2.33), the smaller φ̄01 is stable and the larger φ̄02 is unstable.

We consider how the values of A affect the number of equilibria of F̂T . Since A only
appears in the constant term of F̂T , if the value of A increases, the curve of F̂T will shift
down (see Figure 2.9). Given the value of C, we define A∗ such that

F̂T (φ∗0,A∗) = 0, (2.40)

where φ∗0 >
π
2
is the second critical point of F̂T . A∗ has to be found numerically. The

following table shows the number of equilibria and stability behaviors for different values
of A.

The number of equilibria can also be shown in C vs A Figures. The details will be
discussed in Section 2.12.
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Range of A Number of Equilibria Stability
0 < A < 2

C2 + π 1 stable
2
C2 + π ≤ A < A∗ 2 φ̄01 is stable, φ̄02 is unstable
A = A∗ 1 unstable
A > A∗ 0 NA

Table 2.1: Stability Behaviors, Number of Equilibria with Different A.

2.9.2 The Case γ > π
2

When γ > π
2
, the stability behaviors of the F̂T (φ0) depend on the sign of dF̂T

dφ0
at the end

point φ0 = 0. This leads to the following theorem:

Theorem 2.1. For γ > π
2
, there are two types of behavior of the total force F̂T curve.

1. If dF̂T
dφ0

(0) < 0, there are two critical points, one lies in [0, π
4
], the other lies in [π

2
, π].

F̂T decreases to the first critical point, then increases to the second critical point, and
then decreases.

2. If dF̂T
dφ0

(0) ≥ 0, there is only one critical point in [π
2
, π]. F̂T increases to the only

critical point and then decreases.

Proof. We firstly consider the following two cases for φ0 ∈ [0, π
4
].

1. If dF̂T
dφ0

(0) < 0, we have

2C cos
γ

2
+ cos γ > 0 ⇔ 2 cos γ sinφ0 > −4C cos

γ

2
sinφ0,

where γ 6= π and φ0 6= 0. The latter inequality gives the underlined terms in the
following calculation.

d2F̂T

dφ0
2 =

C
2

(
cos

γ

2
sin

φ0

2
− sin

γ

2
cos

φ0

2
+ 9 cos

γ

2
sin

3φ0

2
+ 9 sin

γ

2
cos

3φ0

2

)

+ 2C2 sin 2φ0 + 2 cos γ sinφ0 + 2 sin γ cosφ0

>
C
2

(
cos

γ

2
sin

φ0

2
− sin

γ

2
cos

φ0

2
− 8 cos

γ

2
sinφ0 + 9 cos

γ

2
sin

3φ0

2
+ 9 sin

γ

2
cos

3φ0

2

)

2C2 sin 2φ0 + 2 sin γ cosφ0 > 0.
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In the last inequality, the term in parentheses is shown to be positive by graphing it
with Matlab.

Moreover, d
2F̂T
dφ0

2 = 4C sin γ
2

+ 2 sin γ > 0 when φ0 = 0. Therefore, dF̂T
dφ0

is increasing on
[0, π

4
].

dF̂T
dφ0

(
π

4
) = C

(
− cos

γ

2
cos

π

8
− sin

γ

2
sin

π

8
− 3 cos

γ

2
cos

3π

8
+ 3 sin

γ

2
sin

3π

8

)

+C2 +
√

2(sin γ − cos γ) > 0.

According to the Intermediate Value Theorem, F̂T has a critical point, which lies in
[0, π

4
].

2. If dF̂T
dφ0

(0) ≥ 0, we have

2C cos
γ

2
+ cos γ ≤ 0. (2.41)

Condition in (2.41) implies the monotonicity of F̂T at [0, π
4
]:

dF̂T
dφ0

= C2 − C2 cos 2φ0 − 2 cos γ cosφ0 + 2 sin γ sinφ0

+C
(
− cos

γ

2
cos

φ0

2
− sin

γ

2
sin

φ0

2
− 3 cos

γ

2
cos

3φ0

2
+ 3 sin

γ

2
sin

3φ0

2

)

≥ C2 − C2 cos 2φ0 + 2 sin γ sinφ0 − 2 cos γ cosφ0 + C sin
γ

2

(
3 sin

3φ0

2
− sin

φ0

2

)

+
1

2
cos γ cos

φ0

2
+

3

2
cos γ cos

3φ0

2
≥ 0.

The equality only holds for φ0 = 0. Therefore, F̂T increases on [0, π
4
].

Next we consider φ0 ∈ [π
4
, π

2
],

dF̂T
dφ0

= −C cos
γ

2
cos

φ0

2
− C sin

γ

2
sin

φ0

2
− 2 cos γ cosφ0 + 2 sin γ sinφ0

−3C cos
γ

2
cos

3φ0

2
+ 3C sin

γ

2
sin

3φ0

2
− C2 cos 2φ0 + C2 > 0.
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Hence, F̂T is increasing at [π
4
, π

2
].

Finally, we consider φ0 ∈ [π
2
, π]. We evaluate F̂T

dφ0
at end points π

2
, π:

dF̂T
dφ0

(π) = −4C sin
γ

2
+ 2 cos γ < 0.

dF̂T
dφ0

(
π

2
) =
√

2C cos
γ

2
+
√

2C sin
γ

2
+ 2 sin γ + 2C2 > 0.

When φ0 ∈ [π
2
, π],

d2F̂T

dφ0
2 =

C
2

(
cos

γ

2
sin

φ0

2
− sin

γ

2
cos

φ0

2
+ 9 cos

γ

2
sin

3φ0

2
+ 9 sin

γ

2
cos

3φ0

2

)

+2C2 sin 2φ0 + 2 cos γ sinφ0 + 2 sin γ cosφ0 < 0.

dF̂T
dφ0

is monotone decreasing on [π
2
, π]. By the Indermediate Value Theorem, there exists

a φ∗ ∈ [π
2
, π] such that dF̂T

dφ0
(φ∗) = 0. Therefore, F̂T (φ0) increases then attaches the critical

point, and then decreases on [π
2
, π].

0 1 2 3
φ0

-2

0

2

4

F̂
T

γ = 3π
4 and C = 0.5
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-12

-2

8

18

F̂
T

γ = 3π
4 and C = 3

Figure 2.10: Parameter: A = 1.

In summary, there are two behaviors of F̂T : two typical examples of those cases are
shown in Figure 2.11.
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2.9.3 The Case γ < π
2

When γ < π
2
, the stability behaviors of the F̂T (φ0) depend on the sign of dF̂T

dφ0
at end point

φ0 = π. We obtain the following theorem:

Theorem 2.2. For γ < π
2
, there are two types of behavior of the total force F̂T curve.

1. If dF̂T
dφ0

(π) < 0, there are two critical points, one lies in [0, π
2
], the other lies in [3π

4
, π].

F̂T decreases to the first critical point, then increases to the second critical point, and
then decreases.

2. If dF̂T
dφ0

(π) ≥ 0, there is only one critical point in [3π
4
, π]. F̂T decreases to the only

critical point and then increases.

Proof. With γ < π
2
,

dF̂T
dφ0

(0) = −4C cos
γ

2
− 2 cos γ < 0.

dF̂T
dφ0

(
π

2
) =
√

2C cos
γ

2
+
√

2C sin
γ

2
+ 2 sin γ + 2C2 > 0.

F̂T always decreases at the beginning. We first consider φ0 ∈ [0, π
2
],

d2F̂T

dφ0
2 = 2C2 sin 2φ0 + 2 cos γ sinφ0 + 2 sin γ cosφ0

+
C
2

(
cos

γ

2
sin

φ0

2
− sin

γ

2
cos

φ0

2
+ 9 cos

γ

2
sin

3φ0

2
+ 9 sin

γ

2
cos

3φ0

2

)
≥ 0.

The equality only holds for both φ0 and γ being 0. Therefore, dF̂T
dφ0

increases on [0, π
2
]. By

the Intermediate Value Theorem, there exists φ∗ ∈ [0, π
2
] such that dF̂T

dφ0
(φ∗) = 0. As a

result, F̂T (φ0) decreases then reaches the critical point, and then increases.

Next, we consider φ0 ∈ [π
2
, 3π

4
],

dF̂T
dφ0

= C2 − C2 cos 2φ0 − 2 cos γ cosφ0 + 2 sin γ sinφ0

+C
(
− cos

γ

2
cos

φ0

2
− sin

γ

2
sin

φ0

2
− 3 cos

γ

2
cos

3φ0

2
+ 3 sin

γ

2
sin

3φ0

2

)
> 0.
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Therefore, F̂T (φ0) increases on [π
2
, 3π

4
].

Finally, we consider φ0 ∈ [3π
4
, π]. We distinguish the cases as follows:

1. If dF̂T
dφ0

(π) ≥ 0, we have

cos γ ≥ 2C sin
γ

2
⇔ −C ≥ − cos γ

2 sin γ
2

with γ 6= 0. (2.42)

The inequality in (2.42) leads the following result:

dF̂T
dφ0

= C2 − C2 cos 2φ0 − 2 cos γ cosφ0 + 2 sin γ sinφ0

−C
(

cos
γ

2
cos

φ0

2
+ sin

γ

2
sin

φ0

2
+ 3 cos

γ

2
cos

3φ0

2
− 3 sin

γ

2
sin

3φ0

2

)

≥ C2 − C2 cos 2φ0 − 2 cos γ cosφ0 + 2 sin γ sinφ0

− cos γ

2 sin γ
2

(
cos

γ

2
cos

φ0

2
+ sin

γ

2
sin

φ0

2
+ 3 cos

γ

2
cos

3φ0

2
− 3 sin

γ

2
sin

3φ0

2

)
> 0.

Moreover, if γ = 0, dF̂T
dφ0

> 0 as well. Hence F̂T increases on [3π
4
, π].

2. If dF̂T
dφ0

(π) < 0, d2F̂T
dφ0

2 is monotone decreasing on [3π
4
, π]. At the other end point

dF̂T
dφ0

(3π
4

) > 0. By the Intermediate Value Theorem, F̂T admits one critical point
φ∗ ∈ [3π

4
, π]. Therefore F̂T (φ0) increases and reaches the critical point, then decreases

at [3π
4
, π].

In summary, there are two behaviors of F̂T , two typical examples of those cases are
shown in Figure 2.11.

2.10 Asymptotic Behavior of A∗ and φ∗0 for γ = π
2

As we discussed, for γ = π
2
, φ∗0 and A∗ in (2.40) have to be found numerically. But there do

exist asymptotic equations of φ∗0(C) and A∗(C) as both C → ∞ and C → 0. In this section,
we will find these asymptotic series. We first state a special case of the Real Analytic
Implicit Function Theorem [13]:
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Figure 2.11: Parameter: A = 1.

Theorem 2.3. Let ϕ(x, ε) be a real valued function analytic at (x0, 0), that is, ϕ(x, ε) has
a two-variable power series in powers of x−x0 and ε which converges in a ball about (x0, 0).
Let ϕ(x0, 0) = 0 and ϕx(x0, 0) 6= 0. Then there is an ε0 > 0 and a unique analytic function
x = x(ε) defined for all |ε| ≤ ε0, that is, x(ε) has a power series in ε which converges for
|ε| ≤ ε0, such that

ϕ (x(ε), ε) = 0 and x(0) = x0. (2.43)

2.10.1 As C → 0

We notice that d
dφ0
F̂T (π; 0) = 0 and d2

dφ2
0
F̂T (π; 0) 6= 0. By the Implicit Function Theorem 2.3,

there exists φ∗0 = g(C) with g(0) = π, where g is a analytic about C = 0. Therefore, there
exists an analytic function φ∗0(C) in terms of C near C = 0 satisfying d

dφ0
F̂T (φ∗0(C); C) = 0.

Consider the regular asymptotic series φ∗0 = π + a1C + a2C2 + .... After tedious calcu-
lations, we obtain:

A∗ =
2

C2
+ 2 + π − 2

√
2C +O(C2). (2.44)

φ∗0 = π −
√

2C + 2C2 − 7

12

√
2C3 +O(C4). (2.45)

As C → 0 (see details in Appendix D).
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2.10.2 As C → ∞
The regular asymptotic series doesn’t work in this case, we have to reconsider the series.
Rearranging dF̂T

dφ0
= 0,

2 sin2 φ0 +
1

C

√
2

2

{
− cos

φ0

2
− sin

φ0

2
− 3 cos

3φ0

2
+ 3 sin

3φ0

2

}
+

2

C2
sinφ0 = 0. (2.46)

We define a function K(φ0, C):

K(φ0, C) = sinφ0 −
[

1

C

√
2

4

{
cos

φ0

2
+ sin

φ0

2
+ 3 cos

3φ0

2
− 3 sin

3φ0

2

}
− 1

C2
sinφ0

] 1
2

.

(2.47)

The solutions of K = 0 and dF̂T
dφ0

= 0 are equivalent. Let D = 1√
C ,

K(φ0,D) = sinφ0 −D
[√

2

4

{
cos

φ0

2
+ sin

φ0

2
+ 3 cos

3φ0

2
− 3 sin

3φ0

2

}
−D2 sinφ0

] 1
2

.

(2.48)
We have K(π, 0) = 0 and ∂K

∂φ0
(π, 0) = −1. According to the Implicit Function Theorem

2.3, there exists φ∗0 = g(D) with g(0) = π, where g is a analytic about D = 0. We can
consider φ∗ = π + a1D + a2D2 + a3D3 + ... (equivalently φ∗0 = π + a1

C
1
2

+ a2

C + a3

C
3
2

+ ...) and

plug the series into dF̂T
dφ0

(φ∗0) = 0 (see details in Appendix D).
As C → ∞,

A∗ = π +
4
3
2

3
4

C 3
2

+O(C− 1
2 ).

φ∗0 = π − 2
1
4

C 1
2

+

√
2

2

C +
7
24

2−
1
4

C 3
2

+O(C−2).

The following Figures in 2.12 give the performance of the asymptotic series.

2.11 Intersection Condition

There is a possibility that interfaces on the two sides of the cylinder intersect, invalidating
our model. Consider ψ < 0 case, we find that the intersection of the fluid interfaces happens
if all of the following three conditions are satisfied:
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Figure 2.12: The performance of asymptotic series compared with numerical results.

• −π ≤ ψ0 < −π
2
⇔ 0 ≤ φ0 + γ < π

2
.

• h > a ⇔ cosφ0 + 2
C cos(φ0+γ

2
) > 1.

• x(−π
2
) ≤ 0 ⇔

√
2 + ln(tan π

8
)− 2 sin(φ0+γ

2
)− ln

[
− tan(φ0+γ−π

4
)

]
≥ C sinφ0.

Actually the third condition implies the second condition. Our conditions are:

• Angle constraint:
0 ≤ φ0 + γ <

π

2
, where γ ∈ [0,

π

2
).

• The inequality:

C ≤

√
2 + ln(tan π

8
)− 2 sin(φ0+γ

2
)− ln

[
− tan(φ0+γ−π

4
)

]

sinφ0

.

For the ψ > 0 case, the following conditions are needed:

• π
2
< ψ0 ≤ π ⇔ 3π

2
< φ0 + γ ≤ 2π.

• −h > a.
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Figure 2.13: Intersection for the ψ < 0 case.

• x(π
2
) ≤ 0.

Similar to the conditions above, we have:

• Angle constraint:

3π

2
< φ0 + γ ≤ 2π, where γ ∈ (

π

2
, π] and φ0 ∈ [0, π].

• The inequality:

C ≤

√
2 + ln(tan π

8
)− 2 sin(φ0+γ

2
)− ln

[
tan(φ0+γ−π

4
)

]

sinφ0

.

We define the intersection function I(φ0, C) as follows:

I(φ0, C) = C sinφ0−
√

2− ln(tan
π

8
)+2 sin(

φ0 + γ

2
)+ln

[
±tan(

φ0 + γ − π
4

)

]
, (2.49)

where “ + ” sign works for γ ∈ [0, π
2
), φ0 ∈ (0, π

2
− γ] and “ − ” sign works for

γ ∈ (π
2
, π], φ0 ∈ [3π

2
− γ, π). In addition, I(φ0, C) = 0 is the boundary curve between

the intersection region1 and the non-intersection region, and we have the pair (φ0, C)
lies in the non-intersection region if and only if I(φ0, C) > 0.

1The intersection region means the region that the fluid interfaces intersect.
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In Figure 2.21, the intersection of fluid interfaces happens in the shaded region. The
two cases are: γ = π

4
, φ0 ∈ [0, π

4
) and γ = 3π

4
, φ0 ∈ (3π

4
, π].

0 1 2
φ0

0

3

6

9

C

Intersection Region for γ = π
4

2 3
φ0

0

3

6

9

C

Intersection Region for γ = 3π
4

Figure 2.14: Intersection regions for γ = π
4
and γ = 3π

4
.

When γ = π
2
, there is always no intersection. Moreover, we are also interested in the

number of the equilibrium points for γ 6= π
2
. If the floating cylinder could admit two

equilibrium points, we would like to know whether or not the equilibrium points lie in the
intersection region.

Remark 2.2. We expect that the stable point would never lie in the intersection region,
while the unstable point might or might not lie in the intersection region. We will discuss
the details in next section.

2.12 C vs A: Regions with Different Numbers of Equi-
libria

A, C and contact angle γ will affect the number of equilibria of our floating system. So
plotting C vs A region will be helpful and clear. Examples with typical contact angles,γ =
0, π

4
, π

2
, 3π

4
and π, will be discussed. In C vs A, we define Ci(A) as the boundary curves

between the regions with different number of equilibria. According to the discussion of the
types of behavior of the F̂T curve in Section 2.9, sign of F̂T (π), sign of F̂T (φ∗0) and sign of
F̂T (φ̃0) play important roles in changing the number of equilibria. The boundary curves
Ci(A) can be expressed as follows:
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1. C1(A) : F̂T (π) = 0 ⇔ (A− π)C2 = 2 sin γ.

2. C2(A) : F̂T (φ∗0) = 0 where φ∗0 >
π
2
satisfying dF̂T

dφ0
(φ∗0) = 0.

3. C3(A) : F̂T (φ̃0) = 0 where φ̃0 satisfying I(φ̃0, C) = 0, I(φ0, C) is the intersection
function (2.49).

Only C1(A) can be solved analytically such that C1(A) =
√

2 sin γ
A−π (for γ 6= 0, π). While,

the critical point of dF̂T
dφ0

, φ∗0 and the angle φ̃0 can be solved by Fzero in Matlab. In the
following, we will analyze the boundary curves Ci(A) and plot the C vs A region.

2.12.1 Example One: γ = 0

When γ = 0, we have dF̂T
dφ0

(π) = 2σ > 0 such that F̂T has at most one equilibrium point,
denoted as φ̄0 if it exists. Therefore, C1(A) the boundary between the zero equilibrium
point region and the one equilibrium point region has the following expression:

F̂T (π) = 0 ⇔ A = π. (2.50)

Theorem 2.4 tells us φ̄0 never lies in the intersection region if the equilibrium point φ̄0

exists. Figure 2.15 shows the C vs A region, the one equilibrium point region is to the left
of C1(A) and the no equilibrium point region is to the right of C1(A).

Theorem 2.4. For γ = 0, if there exists φ̄0 such that F̂T (φ̄0) = 0, then I(φ̄0, C) > 0 for
any given C.

Proof. See Appendix E.

2.12.2 Example Two: γ = π
4

When γ = π
4
, sign

(
dF̂T
dφ0

(π)
)
can be either nonnegative or negative. We have:
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Figure 2.15: C vs A: γ = 0. 0 indicates the zero equilibrium point region and 1 indicates
the one equilibrium point region. The boundary curve between region 0 and region 1 is
A = π.

• Case 1: dF̂T
dφ0

(π) ≥ 0 ⇔ −4C sin γ
2

+ 2 cos γ ≥ 0.

The inequality above implies C ∈ [0, C0] where C0 = cos γ
2 sin γ

2
. In this case, F̂T has at

most one equilibrium point, denoted as φ̄0 if it exists. I(φ̄0, C) > 0 can be checked
numerically, hence the intersection never happens.

When C ∈ [0, C0], the boundary curve C11(A) is

F̂T (π) = 0 ⇔ C11(A) =

√ √
2

A− π , (2.51)

where A ∈ [A0,∞) and A0 satisfies C11(A0) = C0. Moreover, C11(A) is the bound-
ary curve between the zero equilibrium point region and the one equilibrium point
region. The zero equilibrium point region is above C11(A) and the one equilibrium
point region is below C11(A).

• Case 2: dF̂T
dφ0

(π) < 0 ⇔ −4C sin γ
2

+ 2 cos γ < 0.
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dF̂T
dφ0

(π) < 0 implies C > C0. In this case, F̂T has at most two equilibrium points,
denoted as φ̄01 and φ̄02 if they exist. Both I(φ̄01, C) > 0 and I(φ̄02, C) > 0 can be
tested numerically, so the equilibria never lie in the intersection region.

When C > C0, the boundary curve C12(A) is

F̂T (π) = 0 ⇔ C12(A) =

√ √
2

A− π where A ∈ (π,A0]. (2.52)

Since dF̂T
dφ0

(π) < 0, C12(A) is the boundary curve between the one equilibrium point
region and the two equilibrium points region. The one equilibrium point region is
to the left of C12(A) and the two equilibrium points region is to the right of C12(A).
Moreover, C11(A) in (2.51) and C12(A) in (2.52) can be combined together, giving
C1(A):

C1(A) =

√ √
2

A− π where A ∈ (π,∞). (2.53)

To obtain C2(A), we need φ∗0 >
π
2
, which belongs to the dF̂T

dφ0
(π) < 0 case.

In Figure 2.16, The region between the curve C1(A) and C2(A) is the two equilibrium
points region with A ∈ (π,A0]. The one equilibrium region is below C1(A) and the zero
equilibrium region is above C12(A) and C2(A) curves.
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Figure 2.16: C vs A: γ = π
4
. 0 indicates the zero equilibrium point region, 1 indicates

the one equilibrium point region and 2 indicates the two equilibrium points region. The

boundary curve ends at point (A0, C0) =

(
π + 4

√
2

2+
√

2
,

√
2+
√

2

2

)
.

2.12.3 Example Three: γ = π
2

When γ = π
2
, intersection of the fluid interfaces never happens. We have the explicit

expression for the boundary C1(A) =
√

2
A−π . And the boundary curve C2(A∗) can be

obtained numerically. It is the inverse of A∗(C) curve. We change notation, using A
instead of A∗. Moreover, we have discussed the asymptotic series of A∗ for both C → 0
and C → ∞ in Section 2.10.

In Figure 2.17 γ = π
2
case, the zero equilibrium point region is above C2(A), the two

equilibrium points region is between C1(A) and C2(A). The one equilibrium point region
is below C1(A).
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Figure 2.17: C vs A: γ = π
2
. 0 indicates the zero equilibrium point region, 1 indicates the

one equilibrium point region and 2 indicates the two equilibrium points region.

Remark 2.3. When γ ≤ π
2
, the intersection of fluid interface never happens. Therefore

C3(A) does not exist. If F̂T only admits one equilibrium point φ̄0, φ̄0 is always stable. And
if the system admits two equilibria φ̄01 and φ̄02, φ̄01 is stable and φ̄02 is unstable.

2.12.4 Example Four: γ = 3π
4

For γ > π
2
, dF̂T
dφ0

(π) < 0. When γ = 3π
4
, F̂T can admit at most two equilibria, denoted as

φ̄01 and φ̄02 if they exist. If φ̄01 and φ̄02 ∈ [3π
4
, π], I(φ0, C) is needed to test their validity2.

Therefore C3(A) is the boundary curve between the one valid and one invalid equilibrium
points region and the two equilibrium points region.

If F̂T (π) > 0, F̂T admits exact one equilibrium point φ̄0. Since I(φ̄0, C) > 0, the
equilibrium point never lies in intersection region. When F̂T (π) = 0, φ̄0 = π is also a
equilibrium point, but it’s invalid (I(π, C) < 0). Therefore, C1(A) is the boundary curve
between the one equilibrium point region and the one valid, one invalid equilibrium points
region. Explicitly, we have the form C1(A) =

√ √
2

A−π .

In Figure 2.18, the one equilibrium point region is below C1(A), the zero equilibrium
point region is above C2(A). The one valid and one invalid equilibrium points region is
bounded by C1(A) and C3(A). The two equilibrium points region is bounded by C2(A) and
C3(A).

2Valid means the no intersection case.
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Figure 2.18: C vs A: γ = 3π
4
. 0 indicates the zero equilibrium point region, 1 indicates the

one equilibrium point region, 1v1iv indicates the one valid, one invalid equilibrium points
region and 2 indicates the two equilibrium points region.
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Figure 2.19: C vs A: γ = π. 0 indicates the zero equilibrium point region, 1 indicates the
one equilibrium point region, 1v1iv indicates the one valid, one invalid equilibrium points
region and 2 indicates the two equilibrium points region. C1(A) curve is A = π.

2.12.5 Example Five: γ = π

When γ = π, the results are similar to the previous case, γ = 3π
4
. The same strategy is

applied to obtain C2(A) and C3(A). The only difference is that the boundary curve C1(A)
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between the one equilibrium point region and the one valid, one invalid equilibrium points
region is A = π (see Figure 2.19).

2.13 An Example That Admits Two Configurations

In this section, we will give an example that admits two configurations. With contact angle
γ = π

2
, A = 3.8 and C = 2, total force curve can be shown as follows:

0 2 4
φ0

-20

-15

-10

-5

0

5

F̂
T

Total Force with γ = π
2

Figure 2.20: Two Equilibrium points: φ̄01 = 2.3915 and φ̄02 = 3.0178.

We obtain two equilibrium points φ̄01 = 2.3915 and φ̄02 = 3.0178. The following shows
their configurations:
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Figure 2.21: Parameters: γ = π
2
, A = 3.8, C = 2 and radius a = 1.
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Chapter 3

Two-Dimensional Floating Square

We introduce a 2D floating square allowing rotation in this chapter. Physically, we mean a
horizontal cylinder with square cross-section. In Kemp and Siegel’s work [12], they discuss
the stability of floating objects with polygonal cross-sections in absence of gravity. They
show that the only stable floating configurations occur when the fluid interfaces intersect
two corners of the polygon. In this chapter, the energy method is applied in the study of
floating square with rotation. In no surface tension case, we rederive the stability conditions
of the floating square with the allowance of rotation. Our derivation is slightly different
from Erdös, Schibler and Herndon’s work [4] and Abolhassani’s work [1]. Archimedes’
principle is applied in the energy function. In the presence of surface tension case, an
example with contact angle π

4
is discussed.

3.1 Configurations with No Surface Tension

Suppose the square with side length a is floating on the liquid with two vertices immersed,
and the bottom parallel to the horizontal reference level. Different from floating cylinder,
the square is not rotationally invariant. We introduce the rotational angle θ, which is
clockwise from the vertical axis, and the height of centre h. The homogeneous square has
a density of ρs and liquid has a density of ρ. We define the density ratio as α = ρs

ρ
. For

α > 1, floating is not possible. For 1
2
< α ≤ 1, by reflecting the square with respect to the

fluid level and replacing α by 1− α, we have the same energy, see [4]. Thus it is sufficient
to discuss only α ∈ (0, 1

2
].
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When we restrict θ ∈ [0, π
4
] and α ∈ (0, 1

2
], there are two types of configurations (see

Figure 3.1 and Figure 3.2).

3.1.1 Two Corners Immersed

Suppose two vertices C and D are immersed in the fluid and centre of the square G is set
to be the origin, and η is an included angle between the diagonal line of the square and
the horizontal axis through the origin G. The geometric constraint is as follows:

θ + η =
π

4
. (3.1)

The coordinates of vertices CG and DG (with G as the origin) can be obtained:

CG =

(
−
√

2

2
a cos η,−

√
2

2
a sin η

)
, (3.2)

DG =

(√
2

2
a sin η,−

√
2

2
a cos η

)
. (3.3)

A

B
C

D

G

E

✓

F

h

hB

⌘

J

Figure 3.1: Two corners immersed.

Our two corners immersed configuration is obtained by shifting G up vertically by h.
Therefore, the coordinates for vertices C and D are:
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C = (Cx, Cy) =
(
−a

2
(cos θ + sin θ), h− a

2
(cos θ − sin θ)

)
, (3.4)

D = (Dx, Dy) =
(a

2
(cos θ − sin θ), h− a

2
(cos θ + sin θ)

)
. (3.5)

The coordinates of the other two vertices F and J are:

F = (Fx, Fy) = (Cx + a sin θ, Cy + a cos θ) , (3.6)
J = (Jx, Jy) = (Dx + a sin θ,Dy + a cos θ) . (3.7)

A and E are the points that the square and the fluids intersect at, with coordinates:

A = (Ax, Ay) =
(
−a

2
cos θ − a

2
sin θ tan θ − h tan θ, 0

)
, (3.8)

E = (Ex, Ey) =
(a

2
cos θ +

a

2
sin θ tan θ − h tan θ, 0

)
. (3.9)

With two corners immersed, we require Cy < 0 and Jy > 0 or equivalently,

a

2
(sin θ − cos θ) < h <

a

2
(cos θ − sin θ). (3.10)

Archimedes’ principle (see Appendix B) implies the height of centre in force balance
h∗. If we consider one unit length, the weight of the square is equal to the weight of liquid
displaced:

Msquare = Mliquid,

ρsa
2 = ρAreaACDE. (3.11)

Where the area of the trapezoid ACDE is:

AreaACDE =
1

2

(
|AC|+ |DE|

)
|CD|

=
1

2
a

(−Cy
cos θ

+
−Dy

cos θ

)

=
a2

2
− ah

cos θ
. (3.12)
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Equations (3.11) and (3.12) imply

h∗ = a(
1

2
− α) cos θ. (3.13)

With 0 < α ≤ 1
2
and |h| ≤ a

2
(cos θ − sin θ),

0 ≤ θ ≤ arctan(2α), where α ∈
(
0,

1

2

]
. (3.14)

3.1.2 One Corner Immersed

Another configuration has only the vertex D immersed. Compared with the two corners
immersed case, the expressions of the coordinates of the vertices and the intersection points
are the same except for vertex A.

A =

(
Cy

tan θ
− a

2
(cos θ + sin θ), 0

)
, where θ 6= 0. (3.15)

A B

C

D

G

E

✓

F

hB

h

J

Figure 3.2: One corner immersed.

With one corner immersed, we require Cy ≥ 0 and Dy < 0 or equivalently,

a

2
(cos θ − sin θ) ≤ h <

a

2
(cos θ + sin θ). (3.16)
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Archimedes’ principle implies

Msquare = Mliquid,

ρsa
2 = ρAreaADE, (3.17)

where

AreaADE =
1

2
|AD||DE|

=
1

2

(
a− Cy

sin θ

)(−Dy

cos θ

)
. (3.18)

Combining (3.17) and (3.18), we have the height of centre in force balance

h∗ =
a

2
(cos θ + sin θ)± a

√
α sin 2θ. (3.19)

Since Dy < 0, only “−” sign is valid, and therefore,

h∗ =
a

2
(cos θ + sin θ)− a

√
α sin 2θ. (3.20)

With a
2
(cos θ − sin θ) ≤ h < a

2
(cos θ + sin θ),

arctan(2α) ≤ θ ≤ π

4
, where α ∈

(
0,

1

2

]
. (3.21)

Remark 3.1. The three corners immersed case only happens when α > 1
2
, and can be

obtained by reflecting the square with respect to the fluid level in the one corner immersed
case and replacing α by 1− α.

3.2 Energy Point of View

To study the stability behaviour of our floating square with rotation, the energy method is
employed again as in Section 2.3. Without surface tension, the total energy ET is consists
of the body potential energy EG and the fluid potential energy EF . ET depends on both
h and θ. If we consider ET in force balance, ET only depends on the rotational angle θ.
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3.2.1 Total Energy ET (θ) in Force Balance

• The body potential energy EG:

with the downward pointing gravity g, EG depends on variable h∗:

EG(h∗) = ρsa
2gh∗. (3.22)

• Fluid potential energy EF :

We treat EF differently than in the 2D floating cylinder case by expressing it in terms
of the centre of buoyancy. hB is the centroid of ADE. We obtain:

EF = ρg

∫

Σ

y2

2
ds

= −ρg|Σ|hB, (3.23)

where Σ is the wetted region, ds is the element of the wetted region, y is the vertical
displacement from the reference level to Σ and hB is the vertical component of the
centre of buoyancy1.

If there are two corners immersed, the enclosed region Σ ∪ |AE| is a trapezoid,
and the vertical component of the centre of buoyancy is

hB =
1

6AreaACDE

[
(Ay + Cy)(AxCy − CxAy) + (Cy +Dy)(CxDy −DxCy)

+(Dy + Ey)(DxEy − ExDy) + (Ey + Ay)(ExAy − AxEy)
]
. (3.24)

Provided h∗ = a(1
2
− α) cos θ, hB in force balance can be expressed as

hB = −a
(

1

2
α cos θ +

1

24α
sin θ tan θ

)
. (3.25)

If there is one corner immersed, the enclosed region Σ ∪ |AE| is a triangle, and the
vertical component of the centroid of buoyancy is

hB =
1

3
(Ay + Ey +Dy)

= −1

3
a
√
α sin 2θ. (3.26)

1The formulas of centroid of polygons are provided in [21]
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Therefore, the total energy ET in force balance has the expression:

• In the two corners immersed case,

ET (θ) = ρsa
2gh∗ − ρg|Σ|hB

= ρsa
2gh∗ − 1

2
ρa2g(

h∗

cos θ
− a

2
)(α cos θ +

1

12α
sin θ tan θ)

= ρsa
3g

[
1

2
cos θ(1− α) +

1

24α
sin θ tan θ

]
, (3.27)

where 0 < θ ≤ arctan(2α), and α ∈ (0, 1
2
].

• In the one corner immersed case,

ET (θ) = ρsa
2gh∗ + ρg

1

2

(
a− h∗ − a

2
(cos θ − sin θ)

sin θ

)( a
2
(cos θ + sin θ)− h∗

cos θ

)
(
1

3
a
√
α sin 2θ)

= ρsa
3g

[
1

2
(cos θ + sin θ)− 2

3

√
α sin 2θ

]
, (3.28)

where arctan(2α) ≤ θ ≤ π
4
, and α ∈ (0, 1

2
].

3.2.2 Stability Analysis of Two Corners Immersed Case

So far, we obtained the expression of total energy in force balance ET (θ),

ET (θ) = ρsa
3g

[
1

2
cos θ(1− α) +

1

24α
sin θ tan θ

]
,

where 0 ≤ θ ≤ arctan(2α), and α ∈ (0, 1
2
].

The following theorem gives the stability of the floating square with rotation for two
corners immersed case.

Theorem 3.1. Total energy ET admits two critical points θ∗ = 0 and θ∗ = arccos
(

1√
12α−12α2−1

)
.

1. When θ∗ = 0, θ∗ is stable if 0 < α ≤ 1
2
− 1

2
√

3
and θ∗ is unstable if 1

2
− 1

2
√

3
< α ≤ 1

2
.

2. When θ∗ = arccos

(
1√

12α−12α2−1

)
, α is only valid on [1

2
− 1√

6
, 1

4
] and θ∗ is stable.
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Proof. First, we compute the critical points,

dET
dθ

(θ) = ρsa
3g

[
1

2
(α− 1) sin θ +

1

24α

(
sin θ +

sin θ

cos2 θ

)]
= 0. (3.29)

This leads to θ∗ = 0 or cos2 θ∗ = 1
12α−12α2−1

.

The inequality 12α−12α2−1 ≥ 0 gives α ≥ 1
2
− 1√

6
. Therefore, θ∗ = arccos

(
1√

12α−12α2−1

)
.

In order to require the two corners immersed, we need θ∗ ≤ arctan(2α), or equivalently,

α ≤ 1
4
. Thus, if we have θ∗ = arccos

(
1√

12α−12α2−1

)
, α ranges from (1

2
− 1√

6
) to 1

4
.

Next, we calculate d2ET
dθ2 (θ),

d2ET
dθ2

(θ) = ρsa
3g

[
1

2
(α− 1) cos θ +

1

24α

(
cos θ +

sin2 θ

cos3 θ
+

1

cos3 θ

)]
. (3.30)

1. If θ∗ = 0,
d2ET
dθ2

(0) = ρsa
3g

[
− 1

2
+

1

2
α +

1

12α

]
= 0.

Therefore, θ∗ = 0 is stable if

d2ET
dθ2

(0) ≥ 0 ⇔ 0 < α ≤ 1

2
− 1

2
√

3
,

and θ∗ = 0 is unstable if
d2ET
dθ2

(0) < 0 ⇔ 1

2
− 1

2
√

3
< α ≤ 1

2
.

2. If θ∗ = arccos

(
1√

12α−12α2−1

)
,

d2ET
dθ2

(θ∗) = ρsa
3g

{
α− 1

2
√

12α− 12α2 − 1
+

1

24α

[
1√

12α− 12α2 − 1
−
√

12α− 12α2 − 1

+2

(√
12α− 12α2 − 1

)3]}
≥ 0. (3.31)

Therefore, θ∗ = arccos

(
1√

12α−12α2−1

)
is stable if 1

2
− 1√

6
≤ α ≤ 1

4
.
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3.2.3 Stability Analysis of One Corner Immersed Case

With one corner immersed, the total energy in force balance ET is

ET (θ) = ρsa
3g

[
1

2
(cos θ + sin θ)− 2

3

√
α sin 2θ

]
,

where arctan(2α) ≤ θ ≤ π
4
, and α ∈ (0, 1

2
].

For one corner immersed case, the following theorem shows the stability behaviour of
the floating square with rotation.

Theorem 3.2. Total energy ET admits two critical points θ∗ = π
4
and θ∗ = 1

2
arcsin( 16α

9−16α
).

1. When θ∗ = π
4
, θ∗ is stable if 9

32
≤ α ≤ 1

2
and θ∗ is unstable if 0 < α < 9

32
.

2. When θ∗ = 1
2

arcsin( 16α
9−16α

), α must belong to the interval [1
4
, 9

32
] and θ∗ is stable.

Proof. We compute the critical points:

dET
dθ

(θ) = ρsa
3g

(
1

2
(− sin θ + cos θ)− 2

√
α

3

cos 2θ√
sin 2θ

)
= 0. (3.32)

This leads to θ∗ = π
4
and θ∗ = 1

2
arcsin( 16α

9−16α
). Since arctan(2α) ≤ θ∗ ≤ π

4
, α ranges

from 1
4
to 9

32
when θ∗ = 1

2
arcsin( 16α

9−16α
).

We compute the second derivative:

d2ET
dθ2

(θ) = ρsa
3g

{
− 1

2
(sin θ + cos θ) +

2
√
α

3

(
2
√

sin 2θ +
cos2 2θ√
sin3 2θ

)}
. (3.33)

1. When θ∗ = π
4
,

d2ET
dθ2

(
π

4
) = ρsa

3g(
4
√
α

3
−
√

2

2
). (3.34)

Therefore, θ∗ = π
4
is stable if

d2ET
dθ2

(
π

4
) ≥ 0 ⇔ 9

32
≤ α ≤ 1

2
,

and θ∗ = π
4
is unstable if

d2ET
dθ2

(
π

4
) < 0 ⇔ 0 < α <

9

32
.
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2. When θ∗ = 1
2

arcsin( 16α
9−16α

),

d2ET
dθ2

(θ∗) = ρsa
3g

(
1 + 4096

135
(α− 9

64
)2

96α
√

9− 16α

)
> 0. (3.35)

Therefore, θ∗ = 1
2

arcsin
(

16α
9−16α

)
is stable if 1

4
≤ α ≤ 9

32
.

Remark 3.2. Detailed conclusions in Theorem 3.1 and Theorem 3.2 are the same as those
in [4].

3.3 Floating Square With Rotation and Surface Tension

With surface tension, the configurations of the floating square with a rotation become
complicated. In this section, we are going to give a typical example of two corners immersed
square when surface tension is present and contact angle γ = π

4
.

3.3.1 Configuration With γ = π
4

A

B
C

D

G

E

✓
 10

 20

�

�

hB

h

L

R

M

N

Figure 3.3: The floating square when surface tension is present.

We consider the configuration in Figure 3.3, the floating square has two corners im-
mersed and is rotated clockwise by θ. The liquid is lifted up, with contact angle γ = π

4
,
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to the square. We define two inclination angles to parametrize the fluid interfaces: ψ1 ∈
[ψ10, 0] is to the right and ψ2 ∈ [ψ20, 0] is to the left, where ψ10, ψ20 < 0. We have the
following geometric constraints:

2γ − π = ψ10 + ψ20, (3.36)

−ψ20 + γ + θ =
π

2
, (3.37)

−ψ10 + γ − θ =
π

2
. (3.38)

Solutions of the capillary equation in Section 2.2 can also be employed in this case.
We denote u1(ψ) and u2(ψ) as the height of fluid interfaces to the right and to the left,
respectively:

u1(ψ1) = − 2√
κ

sin
ψ1

2
and u2(ψ2) = − 2√

κ
sin

ψ2

2
. (3.39)

Based on the fluid heights at the contact points u1(ψ10) and u2(ψ20), we can compute
the horizontal distances of the contact points x10 and x20:

Nx = Ex + u10 tan θ and Mx = Ax + u20 tan θ. (3.40)

Moreover, the left fluid interface has positive slope du2

dx
= − tanψ2 and the right fluid

interface has negative slope du1

dx
= tanψ1. Given dx

dψ2
= cosψ2

κu2
and dx

dψ1
= − cosψ1

κu1
, we

integrate the ψ2 and ψ1, respectively. Then the parametric solutions for x(ψ1) and x(ψ2)
can be expressed as follows:

x(ψ1;ψ10, θ, h) = − 1√
κ

[
2 cos

ψ1

2
+ ln

∣∣∣∣tan
ψ1

4

∣∣∣∣+ 2 cos
ψ10

2
+ ln

∣∣∣∣tan
ψ10

4

∣∣∣∣
]

+
a

2
cos θ +

a

2
sin θ tan θ − h tan θ − 2√

κ
sin

ψ10

2
, (3.41)

x(ψ2;ψ20, θ, h) =
1√
κ

[
2 cos

ψ2

2
+ ln

∣∣∣∣tan
ψ2

4

∣∣∣∣− 2 cos
ψ20

2
− ln

∣∣∣∣tan
ψ20

4

∣∣∣∣
]

−a
2

cos θ − a

2
sin θ tan θ − h tan θ − 2√

κ
sin

ψ20

2
. (3.42)
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3.3.2 Total Energy ÊT and Stability Analysis for γ = π
4

The dimensionless total energy ÊT can be expressed in terms of ĥ and θ, where ĥ = h
a
.

In order to avoid the contact points L,R hitting the vertices of the square, we choose
ĥ ∈

[
−1

2
+ u0

a
, 1

2
+ u0

a

]
if θ = 0. Since our configuration is also symmetric with respect to

the rotational angle θ, ET (ĥ,−θ) and ET (ĥ, θ) give the same energy. Moreover, θ ∈ [−π
4
, π

4
].

We introduce a characteristic energy Esquare and a dimensionless variable S as follows:

Esquare = ρsa
3g and S =

σ√
κρsa3g

. (3.43)

The dimensionless form of the total energy can be expressed as follows:

ÊT (ĥ, θ;S, θ) = ÊG + ÊW + Êσ + ÊF , (3.44)

where,

1. The body potential energy is:
ÊG = ĥ. (3.45)

2. The wetting energy is:

ÊW = 2 cos γ

[
3

√
S2

α

(
ĥ

cos θ
− 1

)
+
√

2S cos θ
2
(sin γ

2
− cos γ

2
)

cos θ

]
. (3.46)

3. The surface tension energy is:

Êσ = 2S
[
2−
√

2 cos
θ

2

(
sin

γ

2
+ cos

γ

2

)]
− 3

√
S2

α

(
cos θ + sin θ tan θ

)

−2
√

2S tan θ sin
θ

2

(
sin

γ

2
+ cos

γ

2

)
. (3.47)

4. The fluid potential energy is:

ÊF = −S
[

4

3
−
√

2 cos
θ

2

(
sin

γ

2
+ cos

γ

2

)
+

√
2

3
cos

3θ

2

(
sin

3γ

2
− cos

3γ

2

)]

+
4

3
S tan θ

[
sin3(

γ + θ

2
− π

4
)− sin3(

γ − θ
2
− π

4
)

]

+
1

α

[
1

12 cos θ
+

ĥ2

2 cos θ
− ĥ

2
+

cos 2θ

24 cos θ

]
. (3.48)

52



-0.8
1

-0.6

-0.4

-0.2

0.5 0.5

0

E
T

0.2

S = 0.1

θ

0

0.4

ĥ
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Figure 3.4: Two examples with γ = π
4
and α = 1

4
.

The calculation details are shown in Appendix F.

Minimizing the total energy ÊT is complicated and numerical computation will be
sufficient. We choose γ = π

4
, α = 1

4
and S ∈ [0, 100]. According to our numerical

computation, there are two typical examples S = 0.1 and S = 10 (see Figure 3.4).

• When S = 0.1,

∂ÊT

∂ĥ
= 0 and

∂ÊT
∂θ

= 0.

⇒ ĥ∗ =
1

2
− 10 + 2

√
2 3
√

5

40
≈ 0.129 > 0 and θ∗ = 0. (3.49)

Since the valid interval for ĥ is [−0.395, 0.605] with u0 ≈ 0.524, ĥ∗ ∈ [−0.395, 0.605],
(ĥ∗, θ∗) is a critical point. The test discriminant is

D|(ĥ∗,θ∗) =

(
∂2ÊT

∂ĥ2

)(
∂2ÊT
∂θ2

)
−
(
∂2ÊT

∂ĥ∂θ

)
< 0. (3.50)

Thus, (ĥ∗, θ∗) is an unstable equilibrium point by the second derivative test. The
following Figure 3.5 shows the unstable configuration in this case.
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An Unstable Equilibrium

Figure 3.5: Parameters: S = 0.1, α = 1
4
, γ = π

4
and a = 5.

Remark 3.3. Allowing only vertical motion, the configuration in Figure 3.5 is stable.

• When S = 10,

∂ÊT

∂ĥ
= 0 and

∂ÊT
∂θ

= 0.

⇒ ĥ∗ =
1

2
− 1 + 2

11
6 5

2
3

4
≈ −2.355 and θ∗ = 0. (3.51)

Since the valid interval for ĥ is [−0.477, 0.523] with u0 ≈ 0.113, ĥ∗ /∈ [−0.477, 0.523],
there is no critical point in this case. Moreover, this case is not physically realizable.
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Chapter 4

Three-dimensional Floating Objects

In this chapter, two cases of 3D radial symmetric objects floating on an infinite reservoir
are studied. One is a floating vertical cylinder and the other is a floating ball. The following
three questions are discussed:

1. How to solve for radially symmetric exterior capillary surfaces, the nonlinear system
(4.6)?

2. In 3D problems, does the relation −dET
dh

= FT still hold?

3. Can we find stable configurations?

4.1 Governing Equation

We define r as the radial distance from the axis of symmetry. The fluid height u(r) can be
obtained by solving the radial symmetric capillary equation:

(
ru′√

1 + (u′)2

)′
= κru. (4.1)

Through the scaling transformation

u(r) =
1√
κ
w(
√
κr), (4.2)
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the capillary equation (4.1) can be transformed to
(

r̄wr̄√
1 + (wr̄)2

)

r̄

= r̄w, (4.3)

where r̄ =
√
κr. The equations (4.1) and (4.3) are equivalent when κ = 1 and thus, the

capillary equation with any value of κ can be transformed to one with κ = 1. In addition,
the capillary equation (4.1) can be written as

(r sinψ)r = κru, (4.4)

with the inclination angle ψ introduced in Chapter 2. Equation (4.4) can be converted into
a system of DEs with the parameter ψ:

(r sinψ)r ≡ sinψ + r cosψ
dψ

dr
= κru

⇒ dr

dψ
=

r cosψ

κru− sinψ
. (4.5)

Equation (4.5) and du
dr

= tanψ imply that

du

dψ
=

r sinψ

κru− sinψ
and

dr

dψ
=

r cosψ

κru− sinψ
. (4.6)

With our

r

u

 < 0

! > 0

Figure 4.1: Tangent angles ψ and ω.

An analogous representation is used in the study of the liquid bridges in [20], sessile
drops in [5] and floating drops in [3], shown as follows:

du

dω
=
−r sinω

κru+ sinω
and

dr

dω
=
−r cosω

κru+ sinω
, (4.7)

56



where ω can be seen in Figure 4.1. With relation ω−ψ = π, equations (4.6) and (4.7) are
equivalent.

Moreover, the arc length parametric representation is used by McCuan and Treinen in
the study of 3D floating ball in [17], is as follows:

du

ds
= sinψ,

dr

ds
= cosψ and

dψ

ds
= κu− sinψ

r
. (4.8)

The systems of DEs (4.6), (4.7) and (4.8) are equivalent. They all work in both the
graph case and the non-graph case1. In practice, the equations (4.6) have the best numerical
performance, and therefore, we choose the system of DEs in (4.6) as the governing equation.

Remark 4.1. For the exterior problem, given a radial distance r̄ and its corresponding
inclination angle ω̄, and boundary condition lim

r→∞
u = 0, Elcrat, Neel and Siegel show that

there is a unique solution of u(r) on r ≥ r̄ for equations (4.8) in [3].

4.2 3D Floating Vertical Cylinder

In this section, we consider a vertical cylinder with radius a and length 2a floating on an
infinite bath (see Figure 4.2). We allow the cylinder to only move in the vertical direction.
This is similar to the configuration is in Chapter 2, where h is the height of centre and γ
is the contact angle. The geometric constraint can be expressed as

γ − ψ0 =
π

2
. (4.9)

The fluid height u(ψ) and the radial distance from the vertical axis r(ψ) can be
parametrized by the inclination angle ψ based on the system of DEs (4.6) with bound-
ary conditions:

lim
r→∞

u = 0 and r(ψ0) = a, (4.10)

where a is the radius of the cylinder.
1The graph case means the fluid interface is a graph, the non-graph case means the fluid interface is

not a graph.
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Figure 4.2: The cross-section of a floating vertical cylinder.

4.2.1 The Shooting Method for Fluid Height u When κ = 1

Since both governing equations (4.1) and (4.6), with boundary conditions in (4.10), are non-
linear, the analytic solution has not been obtained yet. Based on the scaling transformation
discussed in section 4.1, it will be sufficient to consider κ = 1 case. For the boundary value
problem of ODEs, the shooting method can be applied. Heartland and Hartley [10] give
an approximate to the solution for r � a, which can be treated as a good initial guess for
the shooting method. The approximation is obtained as follows.

Since du
dr
→ 0, as r is sufficiently large, equation (4.1) can be approximated by

u′√
1 + (u′)2

+
ru′′

(√
1 + (u′)2

)3 = ru

⇒ u′′ +
1

r
u′ − u = 0. (4.11)

Equation (4.11) is the modified Bessel’s equation and has the solution:

u(r) = CK0(r) + C̄I0(r). (4.12)

With lim
r→∞

u = 0, C̄ has to be zero since I0(r)→∞ as r →∞. For large r, the solution
can be approximated by

u(r) ≈ CK0(r), (4.13)
where C is a constant. Since K0(10) ≈ 10−5, r → r∗ = 10 is good enough as a boundary
condition instead of r →∞.

The shooting method has the following algorithm:

58



1. Guess a small C = c0
2, and define the initial condition

(
u∗(ψ∗), r∗(ψ∗)

)
=

(
c0K0(r∗), r∗

)
,

where ψ∗ = arctan(u′(r∗)).

2. Define a function f(C;ψ∗, u∗, r∗) = r(ψ0)− a, where r(ψ0) can be obtained by inte-
grating the system (4.6) with respect to ψ backwards to ψ0.

3. Solve f(C;ψ∗, u∗, r∗) = 0 for C using fsolve such that u = CK0(r) gives the correct
height utrue at r = r∗.

4. Based on the true values
(
utrue, r

∗) and good approximation ψ∗ = − arctan(CK1(r∗)),
we integrate the system (4.6) backwards with respect to ψ from ψ∗ to ψ0 and obtain
the numerical solutions as follows:

{ui}Ni=0, {ri}Ni=0 and {ψi}Ni=0. (4.14)

The Figure 4.3 shows the Shooting method algorithm. Moreover, pseudocode is pro-
vided in Appendix G, and the Figure 4.3 also shows our shooting method with γ = π

4
,

r∗ = 10 and initial guess c0 = 10−2.

u

r

r⇤

 0

 0

Initial Guess

Correct Solution

a

0 5 10

r

0.00

0.25

0.50

u

Shooting Mehtod

Figure 4.3: The shooting method algorithm and the fluid height u(r).

2In practice, c0 = 10−2 is a good value for the initial guess.
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4.2.2 Numerical Computation of ÊT

The shooting method gives the numerical solutions for u(ψ) and r(ψ), say,

{ui}Ni=0, {ri}Ni=0 and {ψi}Ni=0. (4.15)

We also discretize the height of centre h ∈ [u0 − a, u0 + a]: {hi}N0 . The density of the
cylinder is ρs, the density of the liquid is ρ, and the density ratio α is define as α = ρs

ρ
,

The acceleration due to gravity is g and acts in the downward direction. We introduce the
characteristic energy Ec = πσa2 and dimensionless parameters: ĥi = hi

a
, ûi = ui

a
, r̂ = r

a

and Bond number B = κa2. We numerically compute the dimensionless total energy ÊT :

• The body potential energy is:

EG = ρsπa
2(2a)gh

⇒ EGi = EcB(2αĥi)

⇒ ÊGi = 2Bαĥi. (4.16)

• The wetting energy is:

EW = − cos γσ|Σ|

⇒ EWi = − cos γσ

[
(2πa)(u0 + a− hi) + πa2

]

⇒ ÊWi = − cos γ

[
2(û0 − ĥi) + 3

]
. (4.17)

• The surface tension energy is:
As the height h varies, the shape of the fluid interface is unchanged, and Eσ can be
computed through integrating ψ. The trapezoidal rule is applied on approximating
the integration:

Eσ = σ

∫ 2π

0

dθ

∫ ∞

a

(√
1 + u2

r − 1

)
rdr

⇒ Eσ = 2πσ

(∫ ψ∗

ψ0

Sσ(ψ; r, u)dψ

︸ ︷︷ ︸
(1)

+

∫ 0

ψ∗
Sσ(ψ; r, u)dψ

︸ ︷︷ ︸
(2)

)

⇒ Êσi ≈
(
ψ∗ − ψ0

N

)N−1∑

k=0

[
Ŝσ(ψk; rk, uk) + Ŝσ(ψk+1; rk+1, uk+1)

]
, (4.18)
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where the integrands are Sσ(ψ; r, u) =

(√
1 + tan2 ψ − 1

)
r2 cosψ
ru−sinψ

and Ŝσ(ψ; r, u) =
(√

1 + tan2 ψ − 1

)
r̂2 cosψ
Br̂û−sinψ

. (2) can be approximated by C
∫∞
r∗
K0(r)dr, which is

much smaller than the value of (1), so we can ignore it.

• The fluid potential energy is:

EF = EF1 + EF2

⇒ EF = ρg

∫ 2π

0

dθ

∫ ∞

a

u2

2
rdr + ρg

∫ 2π

0

dθ

∫ a

0

(a− h)2

2
rdr

⇒ EF = πρg

(∫ r∗

a

u2rdr

︸ ︷︷ ︸
(3)

+

∫ ∞

r∗
u2rdr

︸ ︷︷ ︸
(4)

)
+

1

2
πρga2(a− h)2

⇒ ÊFi ≈ B
(
r̂∗ − 1

2N

)N−1∑

k=0

[
(ûk)

2r̂ + (ûk+1)2r̂k+1

]

+ B (1− ĥi)2

2
. (4.19)

In addition, (4) can be approximated by C2
∫∞
r∗

K2
0 (r)

2
rdr, which is much smaller than

the value of (3), so we can ignore it.

Thus, ÊT has the expression:

ÊT = ÊG + ÊW + Êσ + ÊF . (4.20)

In Figure 4.4, we give an example of ÊT vs h and ÊT admits the minimum at ĥ ≈
−0.193, thus it is stable.

In the analysis of total force FT in vertical direction, we introduce the characteristic
force Fc = πσa. We can compute the dimensionless total force F̂T :

1. The gravitational force is:

FG = −ρmπa2(2a)g

= −πσ(2Bα)

⇒ F̂G = −2Bα. (4.21)
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Figure 4.4: ÊT vs h with parameters: a = 1, α = 0.1,B = 1 and γ = π
3
.

2. The surface tension force: since σ can also be interpreted as force per length,

Fσ = −σ cos γ(2πa)

⇒ F̂σ = −2 cos γ. (4.22)

3. The buoyant force: based on the discussion of the buoyant force in Appendix B,

FB = ρgπa2(a− h)

⇒ F̂B = B(1− ĥ). (4.23)

The dimensionless total force F̂T in the vertical direction can be expressed as follows:

F̂T = F̂G + F̂σ + F̂B

= B(1− ĥ− 2α)− 2 cos γ. (4.24)

Moreover, dÊT
dĥ

has the analytic expression

dÊT

dĥ
= 2 cos γ −B(1− ĥ− 2α), (4.25)

which leads to the relation F̂T = −dÊT
dĥ

.
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4.3 Discussion of the 3D Floating Ball

A challenging problem, the 3D floating ball, is introduced in this section. Since it is
radially symmetric, the cross sectional configuration of the 3D floating ball is the same as
the configuration of 2D cylinder case.

u

�0
 0

�

r

Figure 4.5: The cross sectional configuration of the 3D floating ball.

The shooting method can also be employed to obtain the fluid height. Differing from
the one-to-one relation between h and φ0 for the 2D floating cylinder, the relation of h and
φ0 is not monotonic in the 3D floating ball case (see Figure 4.6). Recall that the height h
has the form:

h = a cosφ0 + u0, (4.26)

where a is the radius of the ball, u0 is the fluid height at the contact point, which can be
computed by the shooting method.

The following example shows that the system admits two different configurations with
the same h = −1.3 and contact angle γ = π

2
.

The non-monotonic relation between h and φ0 makes it more difficult to study the total
energy ET of the floating ball. The relation −dET

dh
= FT has not been proved in floating ball

case. We cannot give a convincing explanation of this unexpected result, and therefore,
more study is expected for the floating ball problem.
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Figure 4.6: Non-monotonic relation of φ0 and h, with parameters: B = 1, γ = π
2
and a = 1.
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h= − 1. 3 when φ0 = 2. 44
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h= − 1. 3 when φ0 = 3. 01

Figure 4.7: Two different configurations with same h = −1.3.
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Chapter 5

Conclusions and Future Work

In this thesis, the floating configurations and their stability of both two-dimensional and
three-dimensional objects on infinite reservoir are studied. The conclusions can be sum-
marized as follows.

5.1 2D Floating Cylinder Problem

The fluid height u(ψ) and horizontal distance x(ψ) can be analytically parametrized by
the inclination angle ψ. With the geometric constraint ψ0 = φ0 + γ − π and the height
h, which is defined as the displacement from the centre of the cylinder to the reference
fluid level, the relative total energy ET can be expressed only in terms of the wetting angle
φ0. Based on the one-to-one correspondence between h and φ0, we investigate the relation
between ET and the vertical total force FT , that is −dET

dh
= FT . The sign equivalence,

sign(dET
dφ0

) = sign(FT ) and sign

(
d2ET
dφ2

0
(φ̄0)

)
= sign

(
dFT
dφ0

(φ̄0)

)
, gives a more convenient

way to minimize ET .

In the total force analysis, we assume the surface tension force Fσ exists only along the
fluid interface, which contradicts Young’s diagram. The result is consistent with Finn’s
assertion in [2]. Archimedes’ principle only holds when the fluid surface is flat. With
surface tension, the buoyant force FB can be approached by the Divergence Theorem,
which gives an analogue to Archimedes’ principle.

In the analysis of the numbers of equilibria and their stability behaviour, we introduce
two dimensionless parameters A = m

a2ρ
and C =

√
κa. The numbers of equilibria can
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be shown on AC plane. In Section 2.12, several examples with typical values of γ are
discussed and the boundary curves between the regions with different numbers of equilibria
are obtained numerically.

The F̂T curve depends on φ0, A, C and γ. We summarize the numbers and the stability
behaviour of equilibrium points in the following cases:

1. When γ ≥ π
2
, F̂T admits at most two equilibrium points φ̄01 and φ̄02, the smaller

equilibrium point φ̄01 is stable and the larger equilibrium point φ̄02 is unstable. In
addition, if F̂T admits only one equilibrium point φ̄0 and dF̂T

dφ0
(φ̄0) > 0, it is stable. If

dF̂T
dφ0

(φ̄0) = 0, it is unstable.

2. When γ < π
2
, if dF̂T

dφ0
(π) < 0, F̂T behaves the same as F̂T with γ ≥ π

2
. If dF̂T

dφ0
(π) > 0,

F̂T admits at most one equilibrium point φ̄0 and therefore, it is stable except φ̄0 = π.

Moreover, we discuss the limitation of the model. When γ = π
2
, there is always no

intersection of the fluid interfaces, and when γ 6= π
2
, intersection may happen. We give

two typical Figures to illustrate the intersection region with γ = π
4
and γ = 3π

4
(see Figure

2.21). Moreover, the stable equilibrium point never lies in the intersection region, while
the unstable equilibrium point may lie in the intersection region.

5.2 2D Floating Square with Rotation

The no surface tension case is first considered in the 2D floating square with rotation. We
introduce the height of centre h (same as h in Chapter 2) and clock-wise rotational angle
from the vertical axis θ. We define the solid/liquid density ratio α = ρs

ρ
∈ (0, 1

2
], which

results in two different configurations: one corner immersed and two corners immersed.
Since the fluid interface is flat, Archimedes’ principle gives the height in equilibrium h∗.
The relative total energy ET in force balance depends only on θ. We summarize the
stability based on minimizing ET (θ) as follows:

1. When two corners are immersed, ET admits two critical points θ∗ = 0 and θ∗ =

arccos

(
1√

12α−12α2−1

)
. If θ∗ = 0, θ∗ is stable if 0 < α ≤ 1

2
− 1

2
√

3
and θ∗ is unstable if

1
2
− 1

2
√

3
< α ≤ 1

2
. If θ∗ = arccos

(
1√

12α−12α2−1

)
, α must belongs to

[
1
2
− 1√

6
, 1

4

]
and

θ∗ is stable.
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2. When one corner is immersed, ET admits two critical points θ∗ = π
4

and θ∗ =
1
2

arcsin( 16α
9−16α

). If θ∗ = π
4
, θ∗ is stable if 9

32
≤ α ≤ 1

2
and θ∗ is unstable if 0 < α < 9

32
.

If θ∗ = 1
2

arcsin
(

16α
9−16α

)
, α belongs to

[
1
4
, 9

32

]
and θ∗ is stable.

With surface tension, it is difficult to analyze all cases and only γ = π
4
is considered.

We introduce the characteristic energy Esquare = ρsa
3g and the dimensionless variable

S = σ√
κρsa3g

. The dimensionless ÊT depends on two variable ĥ and θ. Through the
numerical computation, we give two typical examples:

1. When S = 0.1, (h∗, θ∗) =
(

1
2
− 10+2

√
2 3√5

40
, 0
)

is a critical point, which is a saddle
point; thus it is unstable by the second derivative test.

2. When S = 10, there is no critical point for ĥ ∈ [−1, 1], φ0 ∈ [0, π].

5.3 3D Floating Vertical Cylinder and Ball

Two axisymmetric examples are discussed in the 3D floating objects section, one is a
vertical cylinder allowed to move only in the vertical direction, the other is a floating ball.
With scaling transformation u(r) = 1√

κ
w(
√
κr), the solutions of the capillary equation

(4.1) can be obtained based on the κ = 1 case. The shooting method is applied to obtain
the parametrized solutions of the fluid height u(ψ) and the radial distance r(ψ).

In the vertical cylinder case, the shape of the fluid interface is independent of the
vertical position of the cylinder. With α = 0.1, a = 1 and γ = π

3
, the minimum ÊT occurs

at ĥ∗ ≈ −0.193, which is a stable equilibrium. Moreover, the relation −dÊT
dĥ

= F̂T holds in
general.

The floating ball case is different from the 2D cylinder case. The non-monotonic relation
between φ0 and h causes difficulties. We give an example with data a = 1, κ = 1 and γ = π

2
,

and give two configurations (one is φ0 = 2.44 and the other is φ0 = 3.01) with the same
height h = −1.3.

5.4 Future Work

Several aspects can be considered for future work:
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1. More numerical analysis in looking forward to the study of the numbers and stability
of the equilibrium points in both 2D and 3D models.

2. In the 2D case, the floating cylinder with polygonal cross-section and surface tension
present is also worth studying.

3. For the 3D floating ball, FT = 0 and minimizing ET seem to give different results.
We can not give a convincing explanation for the unexpected results, and more study
is required.
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Appendix A

ET of the 2D Cylinder

In this part, the detailed derivation of both surface tension energy Eσ and the fluid potential
energy EF are given when the interface is a graph and when it is a non-graph.

A.1 Surface Tension Energy Eσ

In section 2.3, the surface energy Eσ is defined of the form:

Eσ = 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

dx−
∫ x1

0

dx

]
. (A.1)

0

x0

x1

Figure A.1: Computation of relative surface tension energy.
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• When the fluid interface is a graph, the inclination angle ψ ranges from −π
2
to π

2
,

from Equation (2.2), the chain rule gives dψ
dx

= κu
cosψ

= −2
√
κ sin ψ

2

cosψ
. With inclination

angle tanψ = du
dx
, Eσ can be achieved.

Eσ = 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

dx−
∫ x1

0

dx

]

= 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

dx− (x1 − x0)− a sinφ0

]

= 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

− 1dx

]
− 2σa sinφ0

= 2σ lim
ψ1→0

{∫ ψ1

ψ0

(√
1 + tan2 ψ − 1

)( − cosψ

2
√
κ sin ψ

2

)
dψ

}
− 2σa sinφ0

= 2σ lim
ψ1→0

{
− 1

2
√
κ

∫ ψ1

ψ0

(
1

sin ψ
2

− cosψ

sin ψ
2

)
dψ

}
− 2σa sinφ0

= 4
σ√
κ

(
1− cos

ψ0

2

)
− 2σa sinφ0.

• When the fluid interface is not a graph, we have to assume that there is no intersection
of the fluid interfaces, i.e. the fluid interfaces on either side of the cylinder do not
intersect. In addition, the inclination angle ψ ∈ [−π, π].

• Case 1: ψ0 > 0,
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Eσ = 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

dx−
∫ x1

0

dx

]

= 2σ lim
ψ1→0

[ ∫ ψ0

ψ1

√(
dx

dψ

)2

+

(
du

dψ

)2

dψ −
∫ x1

0

dx

]

= 2σ lim
ψ1→0

[ ∫ ψ0

ψ1

1√
κ

√
cos2 ψ

4 sin2 ψ
2

+ cos2
ψ

2
dψ −

∫ ψ1

ψ0

(
− 1

2
√
κ

)
cosψ

sin ψ
2

dψ

]
− 2σa sinφ0

= 2σ

(
1

2
√
κ

)
lim
ψ1→0

∫ ψ0

ψ1

{
1

sin ψ
2

− cosψ

sin ψ
2

}
dψ − 2σa sinφ0

= 4
σ√
κ

(
1− cos

ψ0

2

)
− 2σa sinφ0.

• Case 2: ψ0 < 0,

Eσ = 2σ lim
x1→∞

[ ∫ x1

x0

√
1 +

(
du

dx

)2

dx−
∫ x1

0

dx

]

= 2σ lim
ψ1→0

[ ∫ ψ0

ψ1

√(
dx

dψ

)2

+

(
du

dψ

)2

dψ −
∫ x1

0

dx

]

= 2σ lim
ψ1→0

[ ∫ ψ0

ψ1

1√
κ

√
cos2 ψ

4 sin2 ψ
2

+ cos2
ψ

2
dψ −

∫ ψ1

ψ0

(
− 1

2
√
κ

)
cosψ

sin ψ
2

dψ

]
− 2σa sinφ0

= 2σ

(
1

2
√
κ

)
lim
ψ1→0

∫ ψ1

ψ0

{
− 1

sin ψ
2

+
cosψ

sin ψ
2

}
dψ − 2σa sinφ0

= 4
σ√
κ

(
1− cos

ψ0

2

)
− 2σa sinφ0.

In summary, we have the surface energy:

Eσ = 4
σ√
κ

(
1− cos

ψ0

2

)
− 2σa sinφ0. (A.2)
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A.2 Fluid Potential Energy EF

In section 2.3, we break the fluid potential energy EF into two parts.

EF = 2ρg

∫ x0

0

y2

2
dx

︸ ︷︷ ︸
EF1

+ 2ρg

∫ ∞

x0

u2

2
dx

︸ ︷︷ ︸
EF2

. (A.3)

Where y is the vertical height of the bottom of the cylinder and u is the fluid height.

u(ψ) = − 2√
κ

sin
ψ

2
. (A.4)

y = a cosφ− h. (A.5)

y
u

x0

Figure A.2: Computation of relative potential energy.

EF2 = 2ρg

∫ ∞

x0

u2

2
dx

= ρg

∫ 0

ψ0

(
− 2√

κ
sin

ψ

2

)2
(
− 1

2
√
κ

cosψ

sin ψ
2

)
dψ

= − 2σ√
κ

∫ 0

ψ0

sin
ψ

2
cosψdψ

= − 2σ√
κ

(
2

3
− cos

ψ0

2
+

1

3
cos

3ψ0

2

)
.
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With the identity cos 3ψ0

2
= cos ψ0

2
(2 cosψ0 − 1),

EF2 = − 4σ

3
√
κ

(
1− 2 cos

ψ0

2
+ cos

ψ0

2
cosψ0

)
. (A.6)

For EF1,

EF1 = 2ρg

∫ x0

0

y2

2
dx

= ρg

∫ φ0

0

(a cosφ− h)2a cosφdφ

= ρg

∫ φ0

0

(
a cosφ− a cosφ0 +

2√
κ

sin
ψ0

2

)2

a cosφdφ

=
1

12
ρga3 sin 3φ0 − ρga3φ0 cosφ0 +

3

4
ρga3 sinφ0 − a2√σρg sin

ψ0

2
sin 2φ0

+2a2√σρgφ0 sin
ψ0

2
+ 4σa sin2 ψ0

2
sinφ0.

y
u

Figure A.3: A non-graph case.

If the fluid interface is not a graph (Figure A.3), the formula (A.3) also works. But in
addition, we have to assume that there is no intersection of the fluid interfaces. The fluid
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potential energy EF has the form:

EF = EF1 + EF2 = − 4σ

3
√
κ

(
1− 2 cos

ψ0

2
+ cos

ψ0

2
cosψ0

)

+
1

12
ρga3 sin 3φ0 − ρga3φ0 cosφ0 +

3

4
ρga3 sinφ0 − a2√σρg sin

ψ0

2
sin 2φ0

+2a2√σρgφ0 sin
ψ0

2
+ 4σa sin2 ψ0

2
sinφ0.
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Appendix B

Analysis of the Buoyant Force

In this part, we will examine how Archimedes’ principle works in no surface tension case
and another way to approach buoyant force using the Divergence theorem.

From section 2.5, the buoyant force has the form:

FB = k̂ ·
∫

Σ

~Fds. (B.1)

Where the centripetal component pressure ~F = ρgyn̂c, n̂c is the outer unit normal of the
cylinder, k̂ is the unit vertical vector pointing upward and Σ is the wetted region of the
cylinder.

y
D

S

k̂

n̂c

n̂s

Figure B.1: Archimedes’ principle.
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• If no surface tension exists (as shown in Figure B.1),

FB = k̂ ·
∫

Σ

~Fds

=

∫

Σ

(
ρgyk̂

)
· n̂ds+

∫

S

(
ρgyk̂

)
· n̂ds

︸ ︷︷ ︸
=0

=

∫

Σ∪S

(
ρgyk̂

)
· n̂ds

=

∫

D

ρgdA = ρg |D| .

On the boundary S,
∫
S
(ρgk̂) · n̂ds = 0 since y = 0 on free fluid level. ∂D = Σ∪S and

n̂ ∈ {n̂c, n̂s} is the outer normal of ∂D. When the Divergence theorem is applied,
FB = ρg|D| which is consistent with Archimedes’ principle.

• If surface tension is present (as shown in Figure B.2),

y
D

k̂

n̂c

n̂sStop

Sside

y
D

n̂c

n̂s
k̂ Sside

Stop

Figure B.2: The buoyant force when surface tension is present.
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FB = k̂ ·
∫

Σ

~Fds

=

∫

Σ

(
ρgyk̂

)
· n̂cds+

∫

Stop

(
ρgyk̂

)
· n̂sds

︸ ︷︷ ︸
=0

+

∫

Sside

(
ρgyk̂

)
· n̂sds

︸ ︷︷ ︸
=0

=

∫

Σ∪Stop∪Sside

(
ρgyk̂

)
· n̂ds

=

∫

D

ρgdA = ρg|D|.

On the boundary Stop,
∫
S

(
ρgk̂
)
·n̂sds = 0 since y = 0 on free fluid level and

∫
Sside

(
ρgyk̂

)
·

n̂sds = 0 since k̂ and n̂s are orthogonal. ∂D = Σ∪Stop∪Sside and n̂ ∈ {n̂c, n̂s} is the outer
normal of ∂D. When the Divergence theorem is applied, FB = ρg|D|, This is not consistent
with Archimedes’ principle anymore. The enclosed area is no longer the immersed region
due to the presence of surface tension.
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Appendix C

Relation between −dETdh and FT

Firstly, we take derivative of ET in terms of φ0,

dET
dφ0

(φ0) = −mga sinφ0 −mg
√

σ

ρg
sin

(
φ0 + γ

2

)

−2σa sinφ0 sin(φ0 + γ)− 2σ

√
σ

ρg
sin(φ0 + γ) sin

(
φ0 + γ

2

)

−4σa sin

(
φ0 + γ

2

)
cos

(
φ0 + γ

2

)
sinφ0 − 4a2√σρg sin2 φ0 cos

(
φ0 + γ

2

)

−1

2
ρga3 sinφ0 sin 2φ0 −

1

2
a2√σρg sin

(
φ0 + γ

2

)
sin 2φ0

+ρga3φ0 sinφ0 +
√
σρga2φ0 sin

(
φ0 + γ

2

)
.

After arranging the terms, we factor out the common term:

a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)
. (C.1)
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dET
dφ0

(φ0) = −mg
{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}

−2σ sin(φ0 + γ)

{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}

−4a
√
σρg cos

(
φ0 + γ

2

)
sinφ0

{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}

−1

2
ρga2 sin 2φ0

{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}

+ρga2φ0

{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}
.

When the chain rule is applied, we multiple one more term dφ0

dh
:

−dET
dφ0

dφ0

dh
= −

{
−mg − 2σ sin(φ0 + γ)− 4a

√
σρg cos

(
φ0 + γ

2

)
sinφ0

−1

2
ρga2 sin 2φ0 + ρga2φ0

}{
a sinφ0 +

√
σ

ρg
sin

(
φ0 + γ

2

)}

{
− 1

a sinφ0 +
√

σ
ρg

sin(φ0+γ
2

)

}

= −mg − 2σ sin(φ0 + γ)− 4a
√
σρg cos

(
φ0 + γ

2

)
sinφ0

−1

2
ρga2 sin 2φ0 + ρga2φ0

= FT .

Therefore, we find the relation between −dET
dh

and the vertical total force FT :

− dET
dh

= FT . (C.2)
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Appendix D

Asymptotic Series of φ∗0 and A∗

D.1 As C → 0

Consider the regular asymptotic series φ∗0 = π + a1C + a2C2 + ... and plug the series into
dF̂T
dφ0

(φ∗0) = 0.

dF̂T
dφ0

(φ∗0) = σ

[
−
√

2C
2

cos
φ∗0
2
−
√

2C
2

sin
φ∗0
2

+ 2 sinφ∗0 −
3
√

2C
2

cos
3φ∗0
2

+
3
√

2C
2

sin
3φ∗0
2
− C2 cos 2φ∗0 + C2

]
= 0.

⇒
−
√

2

2
C cos

[
1

2
(π + a1C + a2C2 + ...)

]
−
√

2

2
C sin

[
1

2
(π + a1C + a2C2 + ...)

]

+2 sin

[
π + a1C + a2C2 + ...

]
− 3
√

2

2
C cos

[
3

2
(π + a1C + a2C2 + ...)

]

+
3
√

2

2
C sin

[
3

2
(π + a1C + a2C2 + ...)

]
− C2 cos

[
2(π + a1C + a2C2 + ...)

]
+ C2 = 0.
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⇒ √
2

2
C sin

[
1

2
(a1C + a2C2 + ...)

]
−
√

2

2
C cos

[
1

2
(a1C + a2C2 + ...)

]

−2 sin

[
a1C + a2C2 + ...

]
− 3
√

2

2
C sin

[
3

2
(a1C + a2C2 + ...)

]

−3
√

2

2
C cos

[
3

2
(a1C + a2C2 + ...)

]
− C2 cos

[
2(a1C + a2C2 + ...)

]
+ C2 = 0.

We consider the power series expansions for Sine and Cosine at 0.

cos(x) = 1− x2

2
+
x4

24
+ ...

sin(x) = x− x3

6
+ ...

Let P = a1C + a2C2 + ...

√
2

2
C
[

1

2
P − 1

6
(
1

2
P )3 + ...

]
−
√

2

2
C
[
1− 1

2
(
1

2
P )2 +

1

24
(
1

2
P )4 + ...

]
− 2

[
P − 1

6
P 3 + ...

]

− 3
√

2

2
C
[

3

2
P − 1

6
(
3

2
P )3 + ...

]
− 3
√

2

2
C
[
1− 1

2
(
3

2
P )2 +

1

24
(
3

2
P )4 + ...

]

− C2

[
1− 1

2
(2P )2 +

1

24
(2P )4 + ...

]
+ C2 = 0.

We sort each term and obtain:

O(1) : 0;

O(C) : −2
√

2− 2a1 = 0 → a1 = −
√

2;

O(C2) : −2
√

2a1 − 2a2 = 0 → a2 = 2;

O(C3) : −2
√

2a2 + 7
4

√
2a2

1 − 2a3 + 1
3
a3

1 = 0 → a3 = − 7
12

√
2;
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So φ∗0 = π −
√

2C + 2C2 − 7
12

√
2C3 +O(C4) as C → 0.

As C → 0,

φ∗0 = π −
√

2C + 2C2 − 7

12

√
2C3 +O(C4). (D.1)

We substitute φ∗0 in (D.1) into F̂T = 0 to get A∗, where A∗ = b0
C2 + b1

C +b2+b3C+b4C2+...

O(1) : −b0 + 2 = 0 → b0 = 2;

O(C) : −b1 = 0 → b1 = 0;

O(C2) : −b2 + 2 + π = 0 → b2 = 2 + π;

O(C3) : −b3 − 2
√

2 = 0 → b3 = −2
√

2;

O(C4) : −b4 + 2 = 0 → b4 = 2;

Therefore A∗ = 2
C2 + 2 + π − 2

√
2C +O(C2) as C → 0.

In summary, as C → 0,

A∗ =
2

C2
+ 2 + π − 2

√
2C +O(C2).

φ∗0 = π −
√

2C + 2C2 − 7

12

√
2C3 +O(C4).

D.2 As C → ∞
Consider φ∗0 = π + a1

C
1
2

+ a2

C + a3

C
3
2

+ ... and plug the series into dF̂T
dφ0

(φ∗0) = 0.
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dF̂T
dφ0

(φ∗0) = σ

[
−
√

2C
2

cos
φ∗0
2
−
√

2C
2

sin
φ∗0
2

+ 2 sinφ∗0 −
3
√

2C
2

cos
3φ∗0
2

+
3
√

2C
2

sin
3φ∗0
2
− C2 cos 2φ∗0 + C2

]
= 0.

⇒
−
√

2

2
C cos

[
1

2
(π +

a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...)

]
−
√

2

2
C sin

[
1

2
(π +

a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...)

]

+2 sin

[
π +

a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...

]
− 3
√

2

2
C cos

[
3

2
(π +

a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]

+
3
√

2

2
C sin

[
3

2
(π +

a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]
− C2 cos

[
2(π +

a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]
+ C2 = 0.

⇒ √
2

2
C sin

[
1

2
(
a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...)

]
−
√

2

2
C cos

[
1

2
(
a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...)

]

−2 sin

[
a1

C 1
2

+
a2

C +
a3

C 3
2

+ ...

]
− 3
√

2

2
C sin

[
3

2
(
a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]

−3
√

2

2
C cos

[
3

2
(
a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]
− C2 cos

[
2(
a1

C 1
2

+
a2

C +
a3

C 3
2

...)

]
+ C2 = 0.

Consider the power series expansions for Sine and Cosine at 0.

cos(x) = 1− x2

2
+
x4

24
+ ...

sin(x) = x− x3

6
+ ...

Let P = a1

C
1
2

+ a2

C + a3

C
3
2

+ ...

√
2

2
C
[

1

2
P − 1

6
(
1

2
P )3 + ...

]
−
√

2

2
C
[
1− 1

2
(
1

2
P )2 +

1

24
(
1

2
P )4 + ...

]
− 2

[
P − 1

6
P 3 + ...

]

− 3
√

2

2
C
[

3

2
P − 1

6
(
3

2
P )3 + ...

]
− 3
√

2

2
C
[
1− 1

2
(
3

2
P )2 +

1

24
(
3

2
P )4 + ...

]

− C2

[
1− 1

2
(2P )2 +

1

24
(2P )4 + ...

]
+ C2 = 0.
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Sorting each term and obtain:

O(C) : −2
√

2 + 2a1
2 = 0 → a1 = 2

1
4 (invalid) or a1 = −2

1
4 (valid, φ∗0 < π);

O(C 1
2 ) : −2

√
2a1 + 4a2a1 = 0 → a2 =

√
2

2
;

O(1) : −2
√

2a2 + 7
4

√
2a1

2 − 2
3
a1

4 + 2a2
2 + 4a1a3 = 0 → a3 = 7

24
2−

1
4 ;

Therefore,

φ∗0 = π − 2
1
4

C 1
2

+

√
2

2

C +
7
24

(2−
1
4 )

C 3
2

+O(C− 1
2 ) as C → ∞. (D.2)

Then we plug φ∗0 in (D.2) into F̂T = 0 to get A∗, where A∗ = b0 + b1

C
1
2

+ b2
C + b3

C
3
2

+ b4
C2 + ...

O(C2) : −b0 + π = 0 → b0 = π;

O(C 3
2 ) : −b1 = 0 → b1 = 0;

O(C) : −b2 = 0 → b2 = 0;

O(C 1
2 ) : −b3 + 4

3
2

3
4 = 0 → b3 = 4

3
2

3
4 ;

O(1) : b4 = 0;

O(C 1
2 ) : b5 = −1

6
2

1
4 ;

In summary, as C → ∞,

A∗ = π +
4
3
2

3
4

C 3
2

+O(C− 1
2 ).

φ∗0 = π − 2
1
4

C 1
2

+

√
2

2

C +
7
24

2−
1
4

C 3
2

+O(C−2).
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Appendix E

No Intersection for γ = 0

In Section 2.12.1, Theorem 2.4 shows the equilibrium point(if it exists) never lies in inter-
section region. The proof is shown as follows.

Theorem. If there exists φ̄0 such that F̂T (φ̄0) = 0, then I(φ̄0, C) > 0 for any given C

Proof. With γ = 0,

F̂T (φ0) = −AC2 − 2C sin
φ0

2
− 2 sinφ0 − 2C sin

3φ0

2
− 1

2
C2 sin 2φ0 + C2φ0.

The smallest φ̄0 appears when A = 0. Suppose φ̄0 min is the smallest equilibrium point
for given C. If we can prove I(φ̄0 min, C) > 0, then all equilibrium points φ̄0 never lie in
intersection region.

F̂T (φ̄0 min) = −2C sin
φ̄0 min

2
− 2 sin φ̄0 min − 2C sin

3φ̄0 min

2
− 1

2
C2 sin 2φ̄0 min + C2φ̄0 min = 0.

We only need to consider φ̄0 min ∈ [0, π
2
]. Since the intersection never occurs for γ = 0

and φ̄0 min ∈ (π
2
, π], therefore we suppose φ̄0 min ∈ [0, π

2
].

The equation F̂T (φ̄0 min) = 0 turns out to be the quadratic equation in C.

(
φ̄0 min −

1

2
sin 2φ̄0 min

)
C2 − 2

(
sin

φ̄0 min

2
+ sin

3φ̄0 min

2

)
C − 2 sin φ̄0 min = 0.
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Moreover,

φ̄0 min −
1

2
sin 2φ̄0 min ≥ 0, “ =′′ holds only φ̄0 min = 0,

2

(
sin

φ̄0 min

2
+ sin

3φ̄0 min

2

)
> 0.

We can solve for C:

C =

2
(

sin φ̄0 min

2
+ sin 3φ̄0 min

2

)
±
√[

2
(

sin φ̄0 min

2
+ sin 3φ̄0 min

2

)]2

+ 8
(
φ̄0 min − 1

2
sin 2φ̄0 min

)
sin φ̄0 min

2
(
φ̄0 min − 1

2
sin 2φ̄0 min

) .

Only + is valid (we require C being positive). And we have C > 2(sin
φ̄0 min

2
+sin

3φ̄0 min
2

)

φ̄0 min− 1
2

sin 2φ̄0 min
then

plug in I(φ̄0 min, C).

I(φ̄0 min, C) >
2(sin φ̄0 min

2
+ sin 3φ̄0 min

2
)

φ̄0 min − 1
2

sin 2φ̄0 min

sin φ̄0 min −
√

2− ln
(

tan
π

8

)

+2 sin

(
φ̄0 min

2

)
+ ln

[
− tan

(
φ̄0 min − π

4

)]

> 0.

Therefore, I(φ̄0, C) > 0.
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Appendix F

ÊT of the Square with Rotation

Similar to what we did in Section 2.3, we are going to compute the dimensionless total
energy ÊT of in terms of ĥ = h

a
and θ. In addition, the characteristic energy Esquare and a

dimensionless variable S are introduced in (F.6).

• The body potential energy is:
EG = ρ′a2gh. (F.1)

• The wetting energy is:

EW = − cos γσ|Σ|

= − cos γσ

[
|AC|+ |DE|+ |CD|+ |LA|+ |RE|

]

= − cos γσ

[
2a− 2h

cos θ
−

2√
κ

sin ψ10

2
+ 2√

κ
sin ψ20

2

cos θ

]

= 2 cos γσ

[
h

cos θ
+

√
2 cos θ

2
(sin γ

2
− cos γ

2
)√

κ cos θ
− a
]
. (F.2)
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• The surface tension energy is:

Eσ = σ

∫ ∞

Nx

[√
1 +

(
du1

dx

)2

− 1

]
dx+ σ

∫ Mx

−∞

[√
1 +

(
du2

dx

)2

− 1

]
dx− σ|MN |

= σ

∫ ψ10

0

[√
1 + tan2 ψ1 − 1

]
cosψ1

κu1

dψ1 + σ

∫ ψ20

0

[√
1 + tan2 ψ2 − 1

]
cosψ2

κu2

dψ2

−σ
[
a cos θ + a sin θ tan θ − 2√

κ
tan θ

(
sin

ψ10

2
− sin

ψ20
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• The fluid potential energy is:

EF = ρg

∫ ∞
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where hB can be calculated by equation (3.24). Thus
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We introduce the characteristic energy Esquare and a dimensionless variable S,

Esquare = ρsa
3g and S =

σ√
κρsa3g

. (F.6)

In addition, the term σa = 3

√
S2

α
Esquare.

EG = Esquareĥ. (F.7)
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ĥ

cos θ
− 1

)
+
√

2S cos θ
2
(sin γ

2
− cos γ

2
)

cos θ

]}
. (F.8)

Eσ = Esquare
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In summary, the non-dimensional ÊT can be written as

ÊT (ĥ, θ;S, θ) =
EG + EW + Eσ + EF

Esquare
. (F.11)
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Appendix G

Python Code of the Shooting Method

## import libraries.
import numpy as np
from scipy.integrate import odeint
from scipy import special
from scipy.optimize import fsolve

## steps
N =400

## set contact angle to be pi/3
gamma = np.pi/3

## define radius of cylinder as a
## define radial distance boundary r_star
a = 1.
r_star = 10. ## 10 is good enough

## non-dimensionlize r
r_star = r_star/a

## define capillary length
kappa = 1.

## initial guess
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c0 = 10**-2

## geometric constraint
## define the inclination angle at contact point
psi0 = gamma-np.pi/2.

## define governing equation
## z = [r u]
def ODEmodel(z,psi):

drdpsi = z[0]*np.cos(psi)/(kappa*z[0]*z[1]-np.sin(psi))
dudpsi = z[0]*np.sin(psi)/(kappa*z[0]*z[1]-np.sin(psi))
return [drdpsi,dudpsi]

## define shooting function
def func14(c,r_star,psi0):

r0 = a
steps = N
if psi0 > 0:

u_star = -c*special.k0(r_star)
psi_star = np.arctan(c*special.k1(r_star))
z0 = np.array([r_star,u_star])

# integrate from psi* to psi0

psi = np.linspace(psi_star,psi0,steps)
z = odeint(ODEmodel,z0,psi)

else: #psi0<0
u_star = c*special.k0(r_star)
psi_star = -np.arctan(c*special.k1(r_star))
z0 = np.array([r_star,u_star])

# integrate from psi* to psi0

psi = np.linspace(psi_star,psi0,steps)
z = odeint(ODEmodel,z0,psi)

return z[-1,0]-r0
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## define root finding function
def fcn(c):

return func14(c,r_star,psi0)

## solve root finding function to obtain the
## coefficient c
c = fsolve(fcn,c0)

## generate the fluid interface
if psi0 >0:

u_star = -c*special.k0(r_star)
z0 = np.array([r_star,u_star])
psi_star = np.arctan(c*special.k1(r_star))
psi = np.linspace(psi_star,psi0,N)
z = odeint(ODEmodel,z0,psi)

else: #psi0<0
u_star = c*special.k0(r_star)
z0 = np.array([r_star,u_star])
psi_star = -np.arctan(c*special.k1(r_star))
psi = np.linspace(psi_star,psi0,N)
z = odeint(ODEmodel,z0,psi)

## thus r = z[:,0] and u = z[:,1]

## save the data
np.savetxt(’shape.txt’, np.c_[z[:,0],z[:,1],psi], delimiter=’,’)
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