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Abstract

A lot of applications can be formulated as matrix completion problems. In order to

address such problems, a common assumption is that the underlying matrix is (approxi-

mately) low-rank. Under certain conditions, the recovery of low-rank matrix can be done

via nuclear norm minimization, a convex program.

Scalable and fast algorithms are essential as the practical matrix completion tasks al-

ways occur on a large scale. Here we study two algorithms and generalize the unified

framework of fixed point iteration algorithm. We derive the convergence results and pro-

pose a new algorithm based on the insights. Compared with the baseline algorithms, our

proposed method is significantly more efficient without loss of precision and acceleration

potentiality.
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Chapter 1

Introduction

1.1 Nuclear Norm Heuristic

Seeking sparse representation is helpful when dealing with high dimensional data. For

data in matrix form, the concept of sparsity is equivalent to low rank. With the low rank

setting, we are able to solve the matrix completion problem, i.e., to recover a low-rank

matrix with partial observations. The problem arises in plenty of applications, including

machine learning, bioinformatics, computer vision etc.

Low-rank matrix completion is a special case of affine rank minimization problem, which

is of the following form,

minimize
X

rank(X)

subject to A(X) = b,
(1.1)

whereX ∈ Rm×n andA(X) = b denotes the affine restrictions onX. For matrix completion

problem, the observation can be written in this affine formulation.

Nevertheless, solving (1.1) directly is prohibitively challenging, since it is non-convex

and NP-hard in general. Fazel et al. (2001) suggest that the nuclear norm , i.e., the sum

of all the singular values, is the tightest convex surrogate of rank. Meanwhile, Fazel et al.

figure out that the nuclear norm minimization problem (1.2) could be formulated as a
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semidefinite programming (SDP).

minimize
X

‖X‖∗

subject to A(X) = b.
(1.2)

As a convex optimization problem, (1.2) has a global minimum and is much easier to

handle compared with (1.1). It is a natural thinking to approximate (1.1) with (1.2), which

is called the nuclear norm heuristic.

A number of studies have shown that (1.1) and (1.2) can be ”formally equivalent”

given certain conditions, i.e., both problems have a unique, identical solution. The first

substantial work in this direction was done by Recht et al. (2010). They propose several

restricted isometry conditions to establish the equivalence. Under a different framework,

Candès and Recht (2009) construct the equivalence based on the incoherence structure of

the matrices. Their work is further improved by Candès and Tao (2010); Gross (2011);

Recht (2011) in various aspects, respectively.

The above work consider only the noiseless case, i.e., the observed entries are exactly

from a low-rank matrix without noise. Candès and Plan (2010) claim that nuclear norm

minimization performs stably to small, elementwise noise in observations, and the recovery

error is proportional to the noise level.

1.2 Review of Algorithms

As we mentioned, (1.2) can be formulated as an SDP (see Lemma B.2). SDP is a

significant class of convex optimization problems, and there are many off-the-shelf solvers,

e.g., cvx (Grant and Boyd, 2014). These implementations are mainly based on the famous

interior-point paradigm (e.g., Vandenberghe and Boyd, 1996). On moderate size examples,

they perform well with high accuracy and fast convergence rate. However, the interior-point

method relies on second-order information, thus it is not scalable due to the storage and

computation complexity. Empirical result presents that on a common personal computer,

2



these SDP solvers can handle a 100×100 matrix at most (Lin et al., 2010). In practice, low-

rank matrix completion tasks always appear with extremely large matrices, for instance,

the famous Netflix Prize has a user-item rating matrix of size 108 × 105.

Aware of the scalability weakness of the interior-point method, the studies on the first-

order algorithms grows rapidly. The singular value thresholding (SVT) operator, which is

introduced by Cai et al. (2010), plays a central role in such algorithms. SVT is a well

defined matrix arithmetic that can be viewed as the combination of the singular value

decomposition (SVD) and soft thresholding. Yet different matrix completion algorithms

vary in formula more or less, they rely on SVT to optimize the objective iteratively. More

specifically, we concentrate on the path of Ma et al. (2011) and Mazumder et al. (2010).

In addition, because of the pervasive use of SVT, SVD becomes the chief heavy-lifting

in computation when dealing with large scale problems. In existing literatures, several

types of truncated SVD implementations are exploited for acceleration. As a summary,

Cai et al. (2010) and Mazumder et al. (2010) apply the state-of-the-art truncated SVD

package PROPACK (Larsen, 1998); Ma et al. (2011) embed a linear-time randomized SVD

implementation in Drineas et al. (2006).

1.3 Organization

Our work is primarily motivated by Ma et al. (2011) and Mazumder et al. (2010).

Although they are independently derived from different angles, they actually share the

same framework. Following the name in Ma et al. (2011), we call the scheme fixed point

iteration algorithm.

In the thesis, we derive a generalized form of convergence rate of the fixed point iteration

algorithm, and renew some proofs with a more concise version. Based on the discussion of

results, we propose a much more efficient algorithm. The new algorithm changes the step

size adaptively with approximation. Numerical results support the approximation strategy,

as a consequence, it effectively enhances the speed and remains all the good properties of

the ascent algorithms.
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The later chapters cover the above content and are organized as follows.

Chapter 2 illustrates the motivation of low-rank matrix completion and the non-expansive

property of SVT. It also clarifies the relationship between low-rank matrix completion and

other models.

Chapter 3 characterizes the framework of fixed point iteration algorithm, and derives

the convergence property as well as the rate. From the convergence results, a new algorithm

is proposed. Besides, implementation related issues are discussed.

Chapter 4 records the consequences of numerical experiments. It is clear that our

proposed algorithm achieves the same precision with baseline methods in considerably

fewer loops. Meanwhile, it benefits from the truncated SVD acceleration as well.

Chapter 5 concludes the whole thesis and figures out the potential directions for future

research.
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Chapter 2

Low-rank Matrix Completion via

Nuclear Norm Minimization

2.1 Motivation

Data is commonly stored and presented in matrix form. In some circumstances, the

data matrix itself is of interest but with serious incompleteness, such as images, genes,

user-item ratings etc. How to handle the missing values in data matrix?

Generally speaking, it is impossible to recover the repealed entries of an arbitrary

matrix. However, the recovery becomes possible if the underlying matrix has low rank.

Intuitively, we illustrate the statement by counting the number of free parameters in a

matrix, or equivalently, the degrees of freedom.

For a matrix, the degrees of freedom can be counted from its SVD form. Given a matrix

X ∈ Rm×n of rank r, we can write the SVD as

X = UΣV T , (2.1)

where both U ∈ Rm×r, V ∈ Rn×r are orthonormal matrices, i.e., UTU = V TV = I,

Σ ∈ Rr×r is a square, diagonal matrix, whose diagonal elements σ1, ...σr are positive and

5



in descent order. Therefore, the equivalent formula is

X =
r∑
i=1

σiuiv
T
i , (2.2)

where ui, vi are the column vectors of U, V respectively.

There are r(m + n + 1) parameters in total from the SVD form, as well as r(r + 1)

constrains to be subtracted. The latter equals the number of upper (lower) triangular

entries of UTU and V TV due to the orthonormality and symmetry.

Hence, the degrees of freedom of a matrix is r(m + n − r), depending on the rank.

For r � min{m,n} cases, the matrices are actually dominated by a lot fewer parameters

than it looks like. Therefore, low-rank assumption is very helpful in the context of matrix

completion.

More specifically, the theoretical meaningfulness of nuclear norm heuristic in low-rank

matrix completion is validated by several recent studies under suitable settings. For ex-

ample, the following is a typical result from Candès and Recht (2009).

Theorem 2.1. Suppose M ∈ Rm×n is of rank r, denote by M =
∑r

i=1 σiuiv
T
i its SVD,

where {ui}, {vi} are sampled uniformly at random from all families of r orthonormal vectors

independent from each other. Let n0 = max(m,n), if we observe k entries of M with

locations sampled uniformly at random, then there exist constants C and c such that if

k ≥ Cn
5/4
0 r log n0, (2.3)

the minimizer of (1.2) is unique and equal to M with probability at least 1 − cn−3
0 log n0.

In addition, if r ≤ n
1/5
0 , then the same probability still holds for exact recovery given

k ≥ Cn
6/5
0 r log n0. (2.4)

Furthermore, (2.4) holds if the marginal distributions of {ui} and {vi} are uniform, regard-

less of the dependency of {ui} and {vi}.
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Under the settings, Theorem 2.1 characterizes the minimal number of entries for both

generic and low-rank matrix reconstruction. With high probability, we need O(n
5/4
0 log n0)

entries to recover an arbitrary matrix as (2.3); however, when the matrix is a low-rank

one, the required entries reduce to O(n
6/5
0 log n0) as (2.4). Moreover, the unique solution

is given by a convex optimization program (1.2), which is typically more computationally

tractable.

2.2 Problem Formulation

For low-rank matrix completion, the common formulation of nuclear norm heuristic is

minimize
X

‖X‖∗

subject to PΩ(X) = PΩ(M),
(2.5)

where ‖X‖∗ =
∑
σi is the nuclear norm, M is the observed matrix, Ω is the corresponding

entries, and PΩ(X) is defined as

(PΩ(X))ij =

Xij if (i, j) ∈ Ω

0 otherwise

However, solving (2.5) strictly can be abrupt, since it does not account for potential

noise in observations. Even if the sample is indeed noiseless, as the objective of (2.5) is

not a simple function (e.g., linear programming), the computation procedure is not able

to follow the equality constraint either. The first step is to relax the equality constraint to

inequality,

minimize
X

‖X‖∗

subject to ‖PΩ(X −M)‖F ≤ δ,

where δ > 0 and ‖X‖F =
√∑

X2
ij is the Frobenius norm.
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More specifically, the corresponding Lagrange multiplier form is more appreciated, as

it makes an unconstrained optimization problem,

minimize
X

µ‖X‖∗ +
1

2
‖PΩ(X −M)‖2

F . (2.6)

Here, µ > 0. In order to solve (2.5), we should set µ very close to 0, and this returns the

solution with sufficiently small error. For general purpose, we set the tolerance to different

noise levels by adjusting µ.

It is worth noting that (2.5) and its relaxation (2.6) are not the unique choice, for

example, another influential formulation adds penalization of the squared Frobenius norm

of X (Cai et al., 2010).

minimize
X

µ‖X‖∗ +
1

2
‖X‖2

F

,subject to PΩ(X) = PΩ(M)
(2.7)

Instead of relaxing the equality constraint of (2.5), the strategy is to bound the sum of

squares of the unobserved entries. The logic of (2.7) is perhaps not as intuitive as (2.6),

however, it benefits from

2.3 SVT as Minimizer

Both (2.6) and (2.7) include a squared Frobenius norm related to X. Beyond the

purpose of relaxation or penalization, the new formulation also eases the optimization.

Originally, the nuclear norm itself is a non-smooth function, and its subdifferential does

not have a clear form, which makes it hard to implement. However, when combined with

a related squared Frobenius norm, the minimizer of the new objective is given by SVT.

SVT has a simple form and can be computed directly based on SVD. Using the SVD

form of X in (2.2), then for any λ > 0, the SVT is defined as

Sλ(X) :=
r∑
i=1

max{σi − λ, 0}uivTi .
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From the definition, SVT actually conducts soft thresholding on the singular values of

the objective matrix. Hopefully, if X consists of many small singular values, SVT should

return a low-rank matrix because of the shrinkage effect.

Lemma 2.2. For any λ > 0 and Y ∈ Rm×n, we have

Sλ(Y ) = argmin
X

(
λ‖X‖∗ +

1

2
‖X − Y ‖2

F

)
.

We omit the proof that can be found in either Cai et al. (2010) or Mazumder et al.

(2010). The former proof uses the subdifferential of nuclear norm, i.e.,

∂‖X‖∗ := {UV T +W : UTW = 0,WV = 0, ‖W‖ ≤ 1}, (2.8)

where U, V are from the SVD of X, the spectral norm ‖W‖ is the largest singular value of

W , to verify the optimality condition (Lemma A.4); the latter proof conducts the minimizer

by expanding the objective with their SVD forms.

Because of Lemma 2.2, SVT plays the key role in nuclear norm minimization procedure.

The main advantage of SVT is its explicit form closely related to SVD, thus it is easy to

implement. As a consequence, people always try to introduce some meaningful squared

Frobenius norm term in order to exploit SVT, such as (2.6) and (2.7).

2.4 Non-expansiveness of SVT

As the shrinkage effect, SVT has non-expansive property in the Frobenius norm char-

acterized by Lemma 2.3. The property is analogous to soft thresholding on vectors.

Lemma 2.3. For any λ > 0, the SVT operator satisfies that

‖Sλ(Y1)− Sλ(Y2)‖F ≤ ‖Y1 − Y2‖F ,
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where the equality holds if and only if

Y1 − Y2 = Sλ(Y1)− Sλ(Y2).

The (equivalent) statement is seen in Ma et al. (2011) and Mazumder et al. (2010).

The former proof is under different notations and derived based on the matrix inequalities;

the latter proof makes use of the optimality condition as well as the result of Lemma B.2.

Innovated by the latter approach, we provide a even simpler proof based on the optimality

condition only.

Proof. Using Lemma 2.2 and Lemma (A.4), it satisfies that

0 ∈ λ∂‖Sλ(Yi)‖∗ + Sλ(Yi)− Yi i = 1, 2.

We specify the subgradients gi ∈ ∂‖Sλ(Yi)‖∗ satisfying the equalities, such that

Yi = λgi + Sλ(Yi) i = 1, 2. (2.9)

From the definition of subgradient, it follows thatTr
{

[Sλ(Y2)− Sλ(Y1)]T g1

}
+ ‖Sλ(Y1)‖∗ ≤ ‖Sλ(Y2)‖∗

Tr
{

[Sλ(Y1)− Sλ(Y2)]T g2

}
+ ‖Sλ(Y2)‖∗ ≤ ‖Sλ(Y1)‖∗

We sum these two inequalities up, and this yields that

Tr
{

[Sλ(Y1)− Sλ(Y2)]T (g1 − g2)
}
≥ 0.
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Therefore, (2.9) simplifies to

‖Y1 − Y2‖2
F

=‖Sλ(Y1)− Sλ(Y2) + λ(g1 − g2)‖2
F

=‖Sλ(Y1)− Sλ(Y2)‖2
F + λ2‖g1 − g2‖2

F

+ 2λTr
{

[Sλ(Y1)− Sλ(Y2)]T (g1 − g2)
}

(2.10)

≥‖Sλ(Y1)− Sλ(Y2)‖2
F .

The last two terms of (2.10) are nonnegative. Hence, we complete the proof of first part.

From (2.10), it is obvious that the equality holds if and only if g1 = g2. From equation

(2.9), this equals

Y1 − Y2 = Sλ(Y1)− Sλ(Y2),

which completes the proof.

2.5 Relationship with the Lasso

Nuclear norm heuristic and the lasso (Tibshirani, 1996) are quite alike. Notice that

nuclear norm is the `1 norm of the singular value vector,

‖X‖∗ =
r∑
i=1

|σi| = ‖σ‖1,

thus (2.6) is equivalent to

minimize
σ,U,V

µ‖σ‖1 +
1

2

∥∥∥∥∥∥
(

r∑
i=1

σiuiv
T
i

)
ij

−Mij

∥∥∥∥∥∥
2

2

subject to UTU = I, V TV = I

(2.11)

where (i, j) ∈ Ω.
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We notice that (2.6) and (2.11) optimize σ, U, V jointly. However, if it can be divided

into two steps, i.e., the first step returns the optimal U, V , then the second step is exactly

a lasso problem to solve σ.

Similarly, one can also link rank minimization with best subset selection, as the rank

is the `0 norm of singular value vector,

rank(X) =
r∑
i=1

I(σi 6= 0) = ‖σ‖0.

Therefore, we can write the rank minimization problem as

minimize
σ,U,V

µ‖σ‖0 +
1

2

∥∥∥∥∥∥
(

r∑
i=1

σiuiv
T
i

)
ij

−Mij

∥∥∥∥∥∥
2

2

subject to UTU = I, V TV = I

By analogy, Mazumder et al. (2010) expect it should indicate a better recovery precision

of nuclear norm heuristic over the rank minimization, since the lasso outperforms the best

subset selection in many situations in terms of prediction accuracy with moderate sparsity

settings (Hastie et al., 2009). Nevertheless, the guess may be not true as U, V subject to

change, so that the comparison is not even on the same baseline.

2.6 Relationship with Matrix Factorization

Before nuclear norm heuristic was proposed for low-rank matrix completion, this kind

of problems were (and are still) primarily handled via matrix factorization approach. In

a nutshell, matrix factorization method fits the objective matrix as the product of two

low-rank matrices, i.e. M = ABT . The lower dimension of A,B is predetermined, such

that they are explicitly low-rank matrices. Generally speaking, matrix factorization is not

a convex program.
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Interestingly, it can be shown that the solutions of the maximum margin matrix fac-

torization (MMMF) (Srebro et al., 2004) and (2.6) coincide when A,B are assigned a

dimension equal to the true rank of M or higher.

Briefly speaking, MMMF solves the problem

minimize
A,B

µ

2

(
‖A‖2

F + ‖B‖2
F

)
+

1

2
‖PΩ(ABT −M)‖2

F . (2.12)

Equivalently, it could be reformulated as

minimize
X,A,B

µ

2

(
‖A‖2

F + ‖B‖2
F

)
+

1

2
‖PΩ(X −M)‖2

F

subject to X = ABT .

(2.13)

This looks much like (2.6). To prove the equivalence, it suffices to show that ‖X‖∗ is the

solution of

minimize
A,B

1

2

(
‖A‖2

F + ‖B‖2
F

)
subject to X = ABT .

(2.14)

Recall the proof of Lemma B.2, it has been clarified that ‖X‖∗ is the solution of the

dual problem (B.2). For convenience, we sketch it here.

minimize
W1,W2

1

2
(Tr(W1) + Tr(W2))

subject to

[
W1 X

XT W2

]
� 0.

It is straightforward that for any matrix P , PP T is positive semidefinite. Thus, let

P =

(
A

B

)
, then PP T =

(
AAT X

XT BBT

)
� 0 is eligible for (B.2) with W1 = AAT and

W2 = BBT , and the objective equals (2.13), i.e.,

1

2
(Tr(W1) + Tr(W2)) =

1

2

(
‖A‖2

F + ‖B‖2
F

)
.
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Therefore, it is clear that (2.13) is contained in (B.2).

We clarify that (2.13) could reach the minimum of (B.2), which is obtained at

(W1 = UΣUT ,W2 = V ΣV T ).

Here, (U, V,Σ) is the SVD triplet of X. This is equivalent to

(A = UΣ1/2, B = V Σ1/2),

and it is eligible for (2.13). The form of the optimal (A,B) implies why we need their

dimension to be at least the rank of M .

We illustrate the relationship between low-rank matrix completion and (maximum mar-

gin) matrix factorization. Although proven to be equivalent to (2.13) when the rank is

properly specified, (2.6) handles the problem in a better way. The advantages of (2.6) over

(2.13) include:

1. (2.6) is a convex optimization program, and hence free of the local minima issues

that (2.13) might suffer from.

2. (2.6) learns the latent rank automatically, and hence avoids the subjectivity of ”guess-

ing” the rank when dealing with (2.13).

3. Even though a large dimension could be assigned to A,B in (2.13) to ensure the

equivalence with (2.6), the computation cost of the former would inflate dramatically.
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Chapter 3

Fixed Point Iteration Algorithm

3.1 Soft-Impute

We begin with a special case of fixed point iteration algorithm, which is the soft-Impute

algorithm proposed by Mazumder et al. (2010).

Using the fact

X = PΩ(X) + PΩc(X),

where Ωc is the complement of Ω, we can write (2.6) as

minimize
X

µ‖X‖∗ +
1

2
‖X − (PΩc(X) + PΩ(M)) ‖2

F . (3.1)

By Lemma 2.2, it satisfies that

X∗ = Sµ (PΩc(X∗) + PΩ(M)) , (3.2)

where X∗ is a solution of (2.6).

From (3.2), X∗ is easily recognized as a fixed point of (2.6). Therefore, the optimization
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can be converted into the iterative scheme with the recursive relation

Xk+1 ← Sµ (PΩc(Xk) + PΩ(M)) .

The procedure is repeated until convergence, as the following algorithm.

Algorithm 1 Soft-Impute

1: Inputs:

PΩ(M), µ > 0

2: Initialize: Xcurr ← X0

3: while not converge do

4: Xnew ← Sµ (PΩc(Xcurr) + PΩ(M))

5: Xcurr ← Xnew

6: end while

7: Xµ ← Xnew

8: Outputs: Xµ

The key step 4 can be viewed as a two-step procedure:

1. Given the current estimate Xcurr, adjust the entries in the observed subset Ω with

observations.

2. Search the optimal matrix based on the polished current estimate.

3.2 Fixed Point Iteration

We introduce the fixed point iteration algorithm, which is actually a more generalized

version of soft-Impute algorithm.

The strategy behind fixed point iteration dates back to Hale et al. (2007) for compressed

sensing problem, before Ma et al. (2011) develop its matrix form. The idea is to construct

an objective function, whose fixed point is a solution of (2.6). In this approach, solving
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(2.6) is equivalent to searching the fixed point, which is completed by iteratively updating

the fixed point equation until convergence.

Still denote by X∗ a solution of (2.6), then from the optimality condition Lemma A.4,

it satisfies that

0 ∈ µ∂‖X∗‖∗ + PΩ(X∗ −M),

or equivalently,

0 ∈ τ (µ∂‖X∗‖∗ + PΩ(X∗ −M)) + (X∗ −X∗),

with a constant τ > 0. This can be rearranged as

0 ∈ τµ∂‖X∗‖∗ +X∗ − Y ∗,

where Y ∗ = X∗ − τPΩ(X∗ −M).

Hence, from the optimality condition Lemma A.4, it suggests that

X∗ = argmin
X

(
τµ‖X‖∗ +

1

2
‖X − Y ∗‖2

F

)
= Sτµ (X∗ − τPΩ(X∗ −M)) , (3.3)

the second equation is from Theorem 2.2.

Under the construction, X∗ is a fixed point again. The only difference is the change of

update rule,

Xk+1 ← Sτµ (Xk − τPΩ(Xk −M)) .

Not surprisingly, it becomes exactly the soft-Impute algorithm if τ = 1. We will show

later in section 3.4 that τ is an important factor in the convergence rate. Moreover, our

proposed algorithm gain its speed by making good use of τ .
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Algorithm 2 Fixed Point Iteration

1: Inputs:

PΩ(M), µ > 0, τ > 0

2: Initialize: Xcurr ← X0

3: while not converge do

4: Xnew ← Sτµ (Xcurr − τPΩ(Xcurr −M))

5: Xcurr ← Xnew

6: end while

7: Xµ ← Xnew

8: Outputs: Xµ

3.3 Convergence Property

We discuss the convergence property of fixed point iteration algorithm, which naturally

includes that of the soft-Impute algorithm as well. A few similar results can be found in

Ma et al. (2011) and Mazumder et al. (2010), however, we either generalize the conclusion

or alternate in more concise ways.

For simplicity, we denote by Jτ (X) the matrix adjustment operation of step 4,

Jτ (X) = X − τPΩ(X −M), (3.4)

such that (3.3) can be written as

X∗ = Sτµ (Jτ (X
∗)) . (3.5)

Lemma 3.1. For 0 < τ < 2, Jτ (X) satisfies the inequality

‖Jτ (X1)− Jτ (X2)‖F ≤ ‖X1 −X2‖F ,

Moreover, the equality holds if and only if Jτ (X1)− Jτ (X2) = X1 −X2.
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Lemma 3.1 shows that Jτ (X) is non-expansive in the Frobenius norm given 0 < τ < 2.

A similar result could be found in Ma et al. (2011), however, their proof is based on the

spectral norm inequality, and the upper bound of τ is given in an implicit form. Compare

with that, our proof is straightforward and the conclusion is explicit.

Proof. For 0 < τ < 2, it follows that

‖Jτ (X1)− Jτ (X2)‖2
F

=‖(X1 −X2)− τPΩ(X1 −X2)|2F
=‖X1 −X2‖2

F − 2τTr
(
(X1 −X2)TPΩ(X1 −X2)

)
+ τ 2‖PΩ(X1 −X2)‖2

F

=‖X1 −X2‖2
F + τ(τ − 2)‖PΩ(X1 −X2)‖2

F

≤‖X1 −X2‖2
F ,

which proves the first statement.

Moreover, ‖Jτ (X1)− Jτ (X2)‖F = ‖X1−X2‖F is equivalent to PΩ(X1) = PΩ(X2), from

equation (3.4), it simplifies to

Jτ (X1)− Jτ (X2) = X1 −X2.

This completes the whole proof.

Combining Lemma 2.3 and 3.1 together, step 4 in Algorithm 2 is easily seen non-

expansive in the Frobenius norm when 0 < τ < 2.

Proposition 3.2. For any 0 < τ < 2, X∗ is a solution of (2.6) if and only if

‖Sτµ (Jτ (X∗))− Sτµ (Jτ (X
∗)) ‖F = ‖X∗ −X∗‖F .

Proposition 3.2 is a necessary and sufficient condition for X∗ to be a solution of (2.6).

The proof is adapted from Ma et al. (2011).
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Proof. The ”only if” part is straightforward since X∗ and X∗ both satisfy (3.5).

In terms of the ”if” part, from the fact, as well as Lemma 2.3 and 3.1, we have

‖X∗ −X∗‖F
=‖Sτµ (Jτ (X∗))− Sτµ (Jτ (X

∗)) ‖F
≤‖Jτ (X∗)− Jτ (X∗)‖F
≤‖X∗ −X∗‖F ,

such that the equalities hold throughout, i.e.,

‖Sτµ (Jτ (X∗))− Sτµ (Jτ (X
∗)) ‖F = ‖Jτ (X∗)− Jτ (X∗)‖F = ‖X∗ −X∗‖F ,

which yields

Sτµ (Jτ (X∗))− Sτµ (Jτ (X
∗)) = Jτ (X∗)− Jτ (X∗) = X∗ −X∗, (3.6)

where the equalities are from Lemma 2.3 and 3.1 respectively.

Therefore, (3.5) suggests Sτµ (Jτ (X∗)) = X∗. Hence X∗ satisfies (3.3) and is also a

solution of (2.6). This completes the proof.

With the lemmas and proposition, we claim the global convergence of Algorithm 2,

i.e., the sequence generated by Algorithm 2 converges to a solution of (2.6). The proof is

adapted from Ma et al. (2011).

Theorem 3.3. For any 0 < τ < 2, the sequence {Xk} obtained from Algorithm 2 converges

to a solution of (2.6).

Proof. From Lemma 2.3 and 3.1, for 0 < τ < 2, ‖Xk − X∗‖F ≥ 0 is monotonically non-
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increasing,

‖Xk+1 −X∗‖F
=‖Sτµ (Jτ (Xk))− Sτµ (Jτ (X

∗)) ‖F
≤‖Jτ (Xk)− Jτ (X∗)‖F
≤‖Xk −X∗‖F ,

such that ‖Xk −X∗‖F converges as k →∞,

lim
k→∞
‖Xk −X∗‖F = ‖X∗ −X∗‖F ,

where X∗ is a limit point of {Xk}.

We verify that X∗ is a solution of (2.6) using Proposition 3.2. As k → ∞, it satisfies

that

‖Xk+1 −X∗‖F = ‖Sτµ (Jτ (X∗))− Sτµ (Jτ (X
∗)) ‖F = ‖Xk −X∗‖F = ‖X∗ −X∗‖F .

This completes the proof.

Remark. Theorem 3.3 only claims that the fixed point iteration algorithms converge to one

of solutions to (2.6). However, under the settings of Theorem 2.1, there is unique solution

to (2.6) with high probability. As Theorem 2.1 is the theoretical foundation of matrix

completion, it is reasonable to ignore the multi-solution issue (2.6).

Remark. For 0 < τ < 2, the equality condition of Lemma 2.3 and 3.1 enable us to eliminate

the Frobenius norm and obtain equation (3.6). Therefore, any limit point of Xk is also a

solution of (2.6).

As the boundary, τ = 2 is a little special, as ‖J2(X1)−J2(X2)‖F ≡ ‖X1−X2‖F breaks

the second statement of Lemma 3.1. Because of the non-expansive property of the SVT

operator, ‖Xk −X∗‖F still converges, since

‖Xk+1 −X∗‖F = ‖S2µ (J2(Xk))− S2µ (J2(X∗)) ‖F ≤ ‖J2(Xk)− J2(X∗)‖F ≡ ‖Xk −X∗‖F .
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However, Xk might end up jumping between two stationary points. Denote by X1
∞ a

limit point of Xk, from Lemma 2.3 it satisfies that

S2µ

(
J2(X1

∞)
)
− S2µ (J2(X∗)) = J2(X1

∞)− J2(X∗),

such that the subsequent one, denoting by X2
∞, becomes

X2
∞ = S2µ

(
J2(X1

∞)
)

= S2µ (J2(X∗)) + J2(X1
∞)− J2(X∗)

= X∗ +X1
∞ −X∗ − 2PΩ(X1

∞ −X∗)

= X1
∞ − 2PΩ(X1

∞ −X∗) (3.7)

Apply (3.7) once more on X2
∞, and this yields X3

∞ = X1
∞, such that X1

∞, X
2
∞ are stationary

points if they are not equal.

Nevertheless, it should not be a problem to apply τ = 2 in implementation, since the

stationary situation can be easily quit by reducing τ when ‖Xk−X∗‖F converges. Actually,

our numerical experiments never witness a stationary situation. A possible illustration is

that the stationary point either rarely exists or is too close to the solution to be discovered.

3.4 Convergence Rate

Theorem 3.3 guarantees the convergence of Algorithm 2 with 0 < τ < 2. Moreover,

it is also desirable to learn the convergence speed. For the special case τ = 1, Mazumder

et al. (2010) conduct the convergence rate. Here we prove a more generalized result not

limited to τ = 1, yet it is stronger on τ = 1. More significantly, it provides insights on the

selection of τ , which leads to our proposed Algorithm 2.

Typically, it is more difficult to establish the convergence rate, and we need to rely on

some additional conditions. Following the notations in Mazumder et al. (2010), we denote
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by fµ(X) the objective of (2.6),

fµ(X) = µ‖X‖∗ +
1

2
‖PΩ(X −M)‖2

F , (3.8)

and define an intermediate variable Qτ,µ(X|X̃) as

Qτ,µ(X|X̃) = µ‖X‖∗ +
1

2
‖PΩ(X̃ −M)‖2

F +
1

2τ
‖X − X̃‖2

F

+ Tr
(

(X − X̃)TPΩ(X̃ −M)
)
. (3.9)

Qτ,µ(X|X̃) can be viewed as a second-order approximation of fµ(X) around X̃, such

that

Qτ,µ(Xk|Xk) = fµ(Xk). (3.10)

Moreover, it equals the objective of (3.3) divided by τ up to a constant. Hence, it

satisfies that

Xk+1 = argmin
X

Qτ,µ(X|Xk), (3.11)

where {Xk} is obtained from Algorithm 2.

As fµ(X) is the objective we wish to minimize, it is desirable if the sequence {fµ(Xk)}
is non-increasing. A sufficient condition is

fµ(Xk+1) ≤ Qτ,µ(Xk+1|Xk), (3.12)

which combined with (3.10), (3.12) leads to

fµ(Xk+1) ≤ Qτ,µ(Xk+1|Xk) ≤ Qτ,µ(Xk|Xk) = fµ(Xk). (3.13)

For convenience, we temporarily take (3.12) for granted, and will come backward later

in section 3.5. We are able to derive the convergence rate if the condition (3.12) holds

throughout.
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Lemma 3.4. Suppose that τ̄ is carefully chosen such that (3.12) is fulfilled for all k, then

for any X and {Xk} generated by Algorithm 2, it obeys that

‖Xk+1 −X‖2
F − ‖Xk −X‖2

F ≤ 2τ̄ (fµ(X)− fµ(Xk+1)) . (3.14)

Proof. From (3.11), it is obvious that

fµ(X)− fµ(Xk+1) ≥ fµ(X)−Qτ̄ ,µ(Xk+1|Xk).

The convexity of fµ(X) yields a lower bound of the first-order expansion around Xk+1,

fµ(X) ≥ µ
{
‖Xk+1‖∗ + Tr

(
gT (X −Xk+1)

)}
+

1

2
‖PΩ(Xk+1 −M)‖2

F + Tr
(
PΩ(Xk+1 −M)T (X −Xk+1)

)
,

where g ∈ ∂‖Xk+1‖∗. Combine the above two inequalities, this yields

fµ(X)− fµ(Xk+1) ≥ − 1

2τ̄
‖Xk+1 −Xk‖2

F

+Tr
(
(X −Xk+1)T (µg + PΩ(Xk −M))

)
.

Since Xk+1 minimizes Q(Xk+1|Xk), it follows that

0 ∈ µ∂‖Xk+1‖∗ + PΩ(Xk −M) +
1

τ̄
(Xk+1 −Xk).

Let g be the subgradient satisfying the equality, such that

µg + PΩ(Xk −M) = −1

τ̄
(Xk+1 −Xk).
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Plugging in this yields

fµ(X)− fµ(Xk+1) ≥ − 1

2τ̄
‖Xk+1 −Xk‖2

F −
1

τ
Tr
(
(X −Xk+1)T (Xk+1 −Xk)

)
=

1

2τ̄
Tr
(
(Xk+1 −Xk)

T (Xk+1 +Xk − 2X)
)

=
1

2τ̄
Tr
{

[(Xk+1 −X)− (Xk −X)]T [(Xk+1 −X) + (Xk −X)]
}

=
1

2τ̄

(
‖Xk+1 −X‖2

F − ‖Xk −X‖2
F

)
,

which simplifies to (3.14) and completes the proof.

Theorem 3.5. Denote by X∗ the solution of (2.6), then for any k ≥ 1, the sequence {Xk}
generated by Algorithm 2 satisfies

fµ(Xk)− fµ(X∗) ≤ 1

2τ̄ k
‖X∗ −X0‖2

F . (3.15)

if τ̄ satisfies condition (3.12) for all k.

Proof. Invoking Lemma 3.4, plug in X = Xk and this yields

‖Xk+1 −Xk‖2
F ≤ 2τ̄ (fµ(Xk)− fµ(Xk+1)) ,

multiplying each inequality by its index and sum them together from j = 0 to k, we obtain

k∑
j=0

j‖Xj+1 −Xj‖2
F ≤2τ̄

k∑
j=0

j (fµ(Xj)− fµ(Xj+1))

=2τ̄

(
k+1∑
j=1

fµ(Xj)− (k + 1)fµ(Xk+1)

)
. (3.16)

Again for X = X∗, it follows that

‖Xk+1 −X∗‖2
F − ‖Xk −X∗‖2

F ≤ 2τ̄ (fµ(X∗)− fµ(Xj+1)) ,
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such that they sum to

‖Xk+1 −X∗‖2
F − ‖X∗ −X0‖2

F =
k∑
j=0

(
‖Xj+1 −X∗‖2

F − ‖Xj −X∗‖2
F

)
≤2τ̄

k∑
j=0

(fµ(X∗)− fµ(Xj+1))

=2τ̄

(
(k + 1)fµ(X∗)−

k+1∑
j=1

fµ(Xj)

)
. (3.17)

Combine (3.16) and (3.17) together

2τ̄(k + 1) (fµ(Xk+1)− fµ(X∗)) ≤‖X∗ −X0‖2
F − ‖Xk+1 −X∗‖2

F

≤‖X∗ −X0‖2
F . (3.18)

Therefore, equivalently, for k ≥ 1,

fµ(Xk)− fµ(X∗) ≤ 1

2τ̄ k
‖X∗ −X0‖2

F .

As a direct comparison with the convergence rate of Mazumder et al. (2010), their

result is

fµ(Xk)− fµ(X∗) ≤ 2

k + 1
‖X∗ −X0‖2

F ,

which is improved by our result if τ̄ = 1 is eligible,

fµ(Xk)− fµ(X∗) ≤ 1

2k
‖X∗ −X0‖2

F . (3.19)

Remark. It is worth noting that τ̄ in Lemma 3.4 and Theorem 3.5 is not simply the τ

assigned in Algorithm 2. Although, (3.19) is permanently true, or equivalently, τ̄ = 1 is

always eligible.
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3.5 Selection of τ

We discuss how to select τ properly for Algorithm 2. Based on the results, we depend

on two criteria, i.e., Theorem 3.3 and 3.5. The theorems characterize two different styles

of monotone convergence: ‖Xk −X∗‖F for the former, and fµ(Xk) for the latter.

We start from the aspect of Theorem 3.5. In section 3.4, the conduct of convergence rate

of Algorithm 2 is based on condition (3.12), which guarantees the monotone convergence

of fµ(Xk) with the help of intermediate variable Qτ,µ(Xk+1|Xk). In order to verify the

results, we check the condition (3.12), which is equivalent to

fµ(Xk+1)−Qµ(Xk+1|Xk)

=
1

2

(
‖PΩ(Xk+1 −M)‖2

F − ‖PΩ(Xk −M)‖2
F

)
− 1

2τ
‖Xk+1 −Xk‖2

F

− Tr
(
(Xk+1 −Xk)

TPΩ(Xk −M)
)

=
1

2
Tr
(
PΩ(Xk+1 −Xk)

TPΩ(Xk+1 +Xk − 2M)
)
− 1

2τ
‖Xk+1 −Xk‖2

F

− Tr
(
(Xk+1 −Xk)

TPΩ(Xk −M)
)

=
1

2
Tr
(
(Xk+1 −Xk)

TPΩ(Xk+1 +Xk − 2M)
)
− Tr

(
(Xk+1 −Xk)

TPΩ(Xk −M)
)

− 1

2τ
‖Xk+1 −Xk‖2

F

=
1

2
Tr
(
(Xk+1 −Xk)

TPΩ(Xk+1 −Xk)
)
− 1

2τ
‖Xk+1 −Xk‖2

F

=
1

2
‖PΩ(Xk+1 −Xk)‖2

F −
1

2τ
‖Xk+1 −Xk‖2

F

< 0.

Hence, we obtain the range of τ for Lemma 3.4 and Theorem 3.5,

0 < τ ≤ ‖Xk+1 −Xk‖2
F

‖PΩ(Xk+1 −Xk)‖2
F

, (3.20)
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where ‖PΩ(Xk+1 −Xk)‖2
F 6= 0. Because Ω is a subset, it is obviously seen

‖Xk+1 −Xk‖2
F

‖PΩ(Xk+1 −Xk)‖2
F

≥ 1.

If ‖PΩ(Xk+1 − Xk)‖2
F = 0, then any τ > 0 is feasible. Therefore, τ ∈ (0, 1] is perma-

nently eligible for (3.12), as well as Lemma 3.4 and Theorem 3.5. The discovery somehow

illustrates the strategy of soft-Impute algorithm, as τ = 1 is the maximum value of the

absolutely feasible set.

Although, the upper bound result from Theorem 3.5 is just the worst case. This is

caused by the proof procedure: in order to obtain a unified global upper bound, we require

τ̄ to satisfy (3.20) for all values from 1 to k. That is to say, the τ̄ in the theorem has to

be the minimum of the k eligible values. It is very likely that τ̄ is indeed close to or even

reaches 1 when k grows.

However, if we remove this ”redundant” constraint introduced for the purpose of global

property proof, then τ does not necessarily satisfy all k constraints simultaneously. Fur-

thermore, τ does not even have to be a constant through the iterations. As long as τ obeys

the condition (3.20) in each step, then (3.13) demonstrates a monotone non-increase of

fµ(Xk), the core of Theorem 3.5.

Suppose we use the strategy that in each loop, τ > 0 is judiciously chosen to satisfy

the equality in (3.20). In this way, the real error fµ(Xk)− fµ(X∗) is dramatically smaller

than the theoretical upper bound, if sufficiently many τ ’s are significantly larger than the

minimum τ . In fact, this is a common situation in low-rank matrix completion problem.

Recall the setting and Theorem 2.1, Ω is usually a rather small subset, which implies that

‖Xk+1 −Xk‖2
F

‖PΩ(Xk+1 −Xk)‖2
F

� 1

should happen very often. From this viewpoint, choosing τ = 1 is too conservative, as it

strictly follows the strategy of Theorem 3.5, though it is optimal within that range.

We have seen that τ = 1 is not a good choice. For Algorithm 2, the optimal constant

28



value of τ should be 2. The first reason is that τ = 2 could usually satisfy (3.20), and

it approximately speeds up the convergence rate by two; the second reason is that from

Theorem 3.3, τ = 2 is the maximum to ensure the convergence of ‖Xk − X∗‖F . Thus,

τ = 2 is the best choice for Algorithm 2, if we restrict τ to be fixed.

3.6 New Algorithms

Fixing τ = 2 still does not fully make use of Theorem 3.5. As we discuss in section 3.5,

a better way is to update τ per loop under criterion (3.20). This idea naturally leads to a

new fixed point iteration algorithm with line search, listed as Algorithm 3.

In Algorithm 3, τ = 2 is set as the baseline option, and adjustment will take place

whenever τ does not reach the bound provided by criterion (3.20).

Nevertheless, Algorithm 3 is just a prototype, because it has a serious drawback: the

line search procedure is totally identical with a regular iteration of Algorithm 2, so is

the computation complexity. The fact as well as our numerical results show that, for

Algorithm 3, the reduction in number of loops and the line search cost usually cancel out

or even worse.
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Algorithm 3 Fixed Point Iteration with Line Search

1: Inputs:

PΩ(M), µ > 0, 0 < γ < 1

2: Initialize: Xcurr ← X0, τ ← 2

3: while not converge do

4: Xnew ← Sτµ (Xcurr − τPΩ(Xcurr −M))

5: if τ <
‖Xnew−Xcurr‖2F

‖PΩ(Xnew−Xcurr)‖2F
then

6: while τ <
‖Xnew−Xcurr‖2F

‖PΩ(Xnew−Xcurr)‖2F ,
do

7: τ ← τ
γ

8: Xnew ← Sτµ (Xcurr − τPΩ(Xcurr −M))

9: end while

10: else if τ > max
(

‖Xnew−Xcurr‖2F
‖PΩ(Xnew−Xcurr)‖2F

, 2
)

then

11: while τ > max
(

‖Xnew−Xcurr‖2F
‖PΩ(Xnew−Xcurr)‖2F

, 2
)

do

12: τ ← max(γτ, 2)

13: Xnew ← Sτµ (Xcurr − τPΩ(Xcurr −M))

14: end while

15: end if

16: Xcurr ← Xnew

17: end while

18: Xµ ← Xnew

19: Outputs: Xµ

However, the strategy behind Algorithm 3 is still helpful. As the main time consuming

module is the line search procedure, we come up with a simple method to get rid of the

expensive line search. The idea is to approximate the current τ with the upper bound

calculated from the last round. This new algorithm is summarized as Algorithm 4.
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Algorithm 4 Adaptive Fixed Point Iteration

1: Inputs:

PΩ(M), µ > 0

2: Initialize: Xcurr ← X0, τ ← 2

3: while not converge do

4: Xnew ← Sτµ (Xcurr − τPΩ(Xcurr −M))

5: τ ← max
(

‖Xnew−Xcurr‖2F
‖PΩ(Xnew−Xcurr)‖2F

, 2
)

6: Xcurr ← Xnew

7: end while

8: Xµ ← Xnew

9: Outputs: Xµ

3.7 Other Issues

Besides the technical part, we hereby consider a couple of details that are mainly about

the implementation.

For algorithm 2, it takes a rather long time to converge if µ is too tiny. An intuitive

explanation is that Xk almost remains stagnant, since the shrinkage size τµ is too small,

see step 4. More formally, as τµ is very small, it approximately obeys

Xk+1 = Sτµ (Xk − τPΩ(Xk −M)) ≈ Xk − τPΩ(Xk −M),

which implies the difference between Xk+1 and Xk arises mostly in Ω. Recall the upper

bound of τ by (3.20), this yields

τ ≤ ‖Xk+1 −Xk‖2
F

‖PΩ(Xk+1 −Xk)‖2
F

≈ 1

Therefore, the tiny µ straits reaches the worst case (3.19) characterized by Theorem

3.5. Unlike other situation, τ is not that likely to vary dramatically over the loops, and
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the unique way from (3.19) to reduce error would be using a ”warm start”, i.e., initializing

X0 such that ‖X∗ − X0‖2
F is small. In order to obtain a warm start, Ma et al. (2011)

and Mazumder et al. (2010) suggest to solve problems with a series of decreasing µ until

reach the destination. Usually, the first µ is sufficiently large and hence easy to handle.

By construction, each current solution is a warm start for the subsequent problem. The

strategy could be used to cross-validate µ as well. However, µ should not be too small,

unless we are very confident that the observations are noiseless.

The next issue is how to accelerate SVD, since the SVT operator could be viewed as

”SVD + softe thresholding”, and the former is the heavy lifting. When data size grows

rapidly, Exploiting the low-rank structure ofX, we could reduce the full SVD to a truncated

version concentrating only on the dominant singular values.

Essentially, there are two types of implementation, roughly speaking, deterministic and

randomized versions. In terms of the former, the state-of-the-art software package PROPACK

designed for computing the SVD of large and sparse matrices, is highly recommended

under the circumstance. The performance of Ma et al. (2011) suggests that randomized

version fits in with the low-rank matrix completion. This type of SVD implementations

approximates the top-k singular value triplets with a random sample slightly larger than k

of columns. Obviously, such algorithms enjoy dramatically lower computation and storage

complexity, and the accuracy is provable in probability scheme (cf. Drineas et al., 2006;

Halko et al., 2011).

Ideally, the truncated SVD should compute only those singular values σi ≥ τµ and

the corresponding singular vectors. However, for both versions, the dominant parameter is

the number of singular values to compute. In practice, the parameter is selected through

trial and error, e.g., Ma et al. (2011) increase the number by 1 if the non-expansiveness is

violated 10 times, Mazumder et al. (2010) do the same adjustment when the last singular

value is larger than τµ.

The application of truncated SVD may significantly reduce the time cost in an iteration,

yet it depends on the algorithm as well. Typically it makes additional operation than full

SVD to calculate it the partial way, hence it outperforms the null only when the objective
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matrix is (approximately) severely low-rank. In the end, it does not influence the number

of iterations to converge.

The last issue is the pro-proceeding of the solution. It is neither simple nor necessary to

tune µ exactly to the best. Having obtained a solution, it is highly recommended to check

the singular values and eliminate the redundancy if there exists. Generally speaking, too

small singular values or too rapid decay in singular value sequence should be recognized as

evidence of rank redundancy. We can simply drop the redundant triplets if the problem is

not too serious, otherwise, we may have to try some new µ.
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Chapter 4

Numerical Experiments

4.1 Settings and Main Results

The section summarizes the details of experiment settings, i.e., the implementation

issues, the evaluation criteria, the platform etc. As a conclusion, the numerical experiments

clarify two main results.

1. Our new algorithm 3, 4 perform the same as Algorithm 1, 2 in accuracy;

2. Algorithm 4 takes considerably fewer iterations than the original Algorithm 2.

3. Algorithm 4 is also able to exploit the problem structure to be accelerated by

PROPACK, and it still outperforms Algorithm 1 in almost the same degree.

Because of result 1, we do not concentrate on the performance comparison with peer

methods, circumstantial records could be found in the corresponding chapter or section of

Ma et al. (2011) and Mazumder et al. (2010). More interestingly, the experiment results

provide strong evidence upon result 2 and 3.

In experiment, the stopping rule is based on the fraction of X change. It is not only for

the ease to calculate, but also because of the non-expansiveness of ‖Xk − Xk−1‖F . More
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specifically, the algorithms keep running until

‖Xnew −Xcurr‖F
max (1, ‖Xcurr‖F )

≤ 1× 10−4.

As a summary, we compare the performance of the following methods.

1. FPI1. Algorithm 1 or equivalently Algorithm 2 with τ = 1, which is the Soft-Impute

algorithm in Mazumder et al. (2010).

2. FPI2. Algorithm 2 with τ = 2, which is generally the fastest version of the FPC

algorithm in Ma et al. (2011).

3. FPILS. Algorithm 3, which is the näıve algorithm with line search.

4. AFPI. Algorithm 4, which replaces the line search procedure of FPILS by simple

approximation.

All the experiments are conducted on the platform with Intel Core i5-2450M, 2.50GHz

CPU and 4GB RAM, and the MATLAB version is R2013b.

4.2 Simulation Study

In this simulation study, we generate the underlying low-rank matrix M ∈ Rm×n of

rank r with

M ← ABT ,

where A ∈ Rm×r, B ∈ Rn×r, and the entries of A,B are independent and identically

distributed (i.i.d) samples from standard Gaussian distribution N(0, 1). It is easily seen

that the entries of M have mean 0 and variance r.

In some studies, we need to handle observations with noise. This is fulfilled by intro-

ducing a noise matrix N . The elements of N are i.i.d. samples from Gaussian distribution

with mean 0. For the purpose of comparability, we use the signal-to-noise ratio (SNR) to
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measure the noise level. SNR denotes the ratio of standard deviation between entries of

M and N .

SNR :=
σM
σN

=

√
r

σN

Hence, the distribution of N ’s entries is N(0, r/SNR2). Having obtained the matrix M or

the noisy version M +N , the observed subset Ω is then uniformly sampled at random. We

denote by SR the sampling ratio,

SR :=
|Ω|
mn

.

When evaluating the matrix completion consequence, we calculate two kinds of error,

i.e., training error and test error, defined as

training error :=
‖PΩ (X − (M +N)) ‖2

F

‖PΩ(M +N)‖2
F

and

test error :=
‖PΩc (X −M) ‖2

F

‖PΩc(M)‖2
F

.

The former measures the goodness-of-fit on observed set, and the latter calculates the

prediction error with the underlying matrix on unobserved part. Both types of errors are

standardized.

Without loss of generality, all the experiments are conduct on square matrices. The

parameters of matrices are listed in Table 4.1. All the algorithms are tested on matrices

with three different levels of noise, i.e., noiseless, SNR = 6 and SNR = 9. Throughout the

study, we initialize with X0 = PΩ(M + N) and use traditional full SVD to compute the

SVT. Running time, recovered rank and the errors are averaged over 50 simulations. The

results are summarized in Table 4.2 – 4.4.

From the results, we discover that all the algorithms perform almost the same in recov-

ered rank and errors. The consequence is totally within expectation for FPI1, FPI2 and

FPILS, because the problem is convex and the convergence of the above algorithms are

guaranteed by Theorem 3.3 and 3.5. To our interest, the identical performance of AFPI

with the above ones highly support our simplified τ -estimation method.
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Table 4.1: Parameters of randomly generated matrices

dimension rank SR

100 10 0.5
200 10 0.4
500 20 0.25
1000 50 0.25

Under all these circumstances, the FPI algorithms complete matrices with test errors

less than 0.1. They perform very well for noiseless (Table 4.2) case and high SNR (Table

4.3) case. Nevertheless, for difficult problems with low sampling ratio, high dimension and

rank, we observe that the recovered rank inflates as the noise level increases (Table 4.4,

m = 500, 1000).

In the aspect of running time, for rather easy problems with high sampling ratio, low

dimension and true rank, FPI1 is usually the fastest one (m = 100). When dimension is

larger than 100, FPI1 becomes the slowest one, as we expect. FPILS is almost as slow

as FPI1, since the line search procedure is identical to a regular iteration, it fails to gain

efficiency through line search. In most cases, FPI2 spends around 55% the running time of

FPI1, the fact somehow supports our guess that (3.20) is always far greater than 1. Our

proposed algorithm AFPI performs the best in difficult problems (m = 500, 1000), it could

even cut down about 33% the running time from FPI2.

As we use the default full SVD in the tests, due to the homogeneity of core operation,

the running time reflects the number of iterations (and line search procedures for FPILS).

To understand how these algorithms work, we pick up the m = 1000 case of Table 4.3 to

display the procedure perspectively. The results are summarized in Table 4.5 and Figure

4.2, 4.1.

Table 4.5 displays the number of iterations1 required by each algorithms. Consistent

with the running time in Table 4.3, FPI1 takes 76 formal loops to converge, compared

with 25 loops for FPILS. However, in order to achieve the minimum number of formal

1equivalent iterations include the line search procedures of FPILS.
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Table 4.2: Numerical results for randomly generated matrix completion with noise free
observations, where γ = 2

3
, µ =

√
m

algorithm time rank training error test error

m = 100 FPI1 0.185 10 0.0311 0.0627
r = 10 FPI2 0.231 10 0.0311 0.0627
SR = 50% FPILS 0.238 10 0.0311 0.0627

AFPI 0.249 10 0.0311 0.0627

m = 200 FPI1 1.061 10 0.0348 0.0586
r = 10 FPI2 0.569 10 0.0348 0.0585
SR = 40% FPILS 0.836 10 0.0348 0.0585

AFPI 0.556 10 0.0348 0.0585

m = 500 FPI1 9.583 20 0.0373 0.0693
r = 20 FPI2 5.431 20 0.0373 0.0691
SR = 25% FPILS 9.472 20 0.0373 0.0690

AFPI 3.672 20 0.0373 0.0690

m = 1000 FPI1 114.414 50 0.0203 0.0460
r = 50 FPI2 62.797 50 0.0203 0.0458
SR = 25% FPILS 110.594 50 0.0202 0.0457

AFPI 41.917 50 0.0202 0.0458
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Table 4.3: Numerical results for randomly generated matrix completion with noisy obser-
vations, where SNR = 9, γ = 2

3
; µ =

√
m for m = 100, 200, 500; µ = 1.5

√
m for m = 1000

algorithm time rank training error test error

m = 100 FPI1 0.154 10 0.0392 0.0662
r = 10 FPI2 0.214 10 0.0391 0.0662
SR = 50% FPILS 0.215 10 0.0391 0.0662
SNR = 9 AFPI 0.210 10 0.0391 0.0662

m = 200 FPI1 1.121 10 0.0437 0.0607
r = 10 FPI2 0.592 10 0.0437 0.0606
SR = 40% FPILS 0.908 10 0.0437 0.0606
SNR = 9 AFPI 0.658 10 0.0437 0.0606

m = 500 FPI1 16.759 20 0.0455 0.0724
r = 20 FPI2 9.347 20 0.0455 0.0722
SR = 25% FPILS 17.151 20 0.0454 0.0722
SNR = 9 AFPI 6.806 20 0.0454 0.0722

m = 1000 FPI1 84.250 50.43 0.0499 0.0920
r = 50 FPI2 46.672 50.29 0.0499 0.0919
SR = 25% FPILS 83.443 50.19 0.0499 0.0918
SNR = 9 AFPI 30.115 50.24 0.0499 0.0918
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Table 4.4: Numerical results for randomly generated matrix completion with noisy obser-
vations, where SNR = 6, γ = 2

3
; µ =

√
m for m = 100, 200, 500; µ = 1.5

√
m for m = 1000

algorithm time rank training error test error

m = 100 FPI1 0.111 10 0.0491 0.0701
r = 10 FPI2 0.143 10 0.0491 0.0700
SR = 50% FPILS 0.154 10 0.0491 0.0700
SNR = 6 AFPI 0.149 10 0.0491 0.0700

m = 200 FPI1 1.138 10 0.0549 0.0638
r = 10 FPI2 0.639 10 0.0549 0.0638
SR = 40% FPILS 0.991 10 0.0549 0.0638
SNR = 6 AFPI 0.669 10 0.0549 0.0638

m = 500 FPI1 10.757 22.38 0.0551 0.0758
r = 20 FPI2 5.908 22.24 0.0551 0.0757
SR = 25% FPILS 10.402 22.20 0.0551 0.0756
SNR = 6 AFPI 4.000 22.20 0.0551 0.0756

m = 1000 FPI1 98.823 78.70 0.0575 0.0995
r = 50 FPI2 54.647 78.19 0.0575 0.0993
SR = 25% FPILS 98.183 78.00 0.0575 0.0991
SNR = 6 AFPI 36.120 78.00 0.0575 0.0991
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Figure 4.1: Change of τ over formal iterations, where m = 1000, r = 50, SR = 25%, SNR
= 9, µ = 1.5
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Figure 4.2: Change of fµ(X) over formal iterations, where m = 1000, r = 50, SR = 25%,
SNR = 9, µ = 1.5
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Figure 4.3: Part of Figure 4.2, highlight the difference between FPI2, FPILS and AFPI
from iteration 10 to 20
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Table 4.5: Number of formal iterations and equivalent iterations, where m = 1000, r = 50,
SR = 25%, SNR = 9, µ = 1.5

√
m

algorithm # formal # equivalent
iterations iterations

FPI1 76 76
FPI2 42 42
FPILS 25 73
AFPI 28 28

iterations, FPILS has to apply line search so frequently, that its equivalent iterations are

almost as many as FPI1. However, AFPI eliminates the huge line search cost by replacing

it with approximation without introducing heavy burden in computation.

Figure 4.1 illustrates the tendency of τ change. For most of the time, AFPI take values

around τ = 2; otherwise, their peaks come after one or several those of FPILS. Although

this may cause a little delay (e.g., Figure 4.2, iteration = 10), the strategy always performs

quite well. By setting τ = 2 as the baseline, FPI2, FPILS, AFPI all enjoy much steeper

descent than FPI1 at the beginning. However, when fµ(X) starts to decrease flatly, for

example, iteration ≥ 20, FPI2 becomes slower than FPILS and AFPI.

The difference in flat part is highlighted in Figure 4.3. FPILS goes down in the steepest

path, and AFPI follows up the tendency in three iterations. Both algorithms are faster

than FPI2. This is also reflected in the τ behaviors of FPI2 versus FPILS and AFPI in

Figure 4.1.

As a conclusion, among the fixed point iteration algorithms above, AFPI is the optimal

one in the sense that it obtains the same precision with the least time, as well as the fewest

equivalent iterations on large matrices. Modified from FPILS, AFPI smartly updates τ

without costly line search, and the simple strategy well approximates the consequence of

line search with an ignorable cost.
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4.3 Acceleration Result

For the completion of large matrices, full SVD is prohibitively expensive in computation.

Compared with that, since only a small fraction of singular values are required, truncated

SVD is far more time-economic under the circumstance. Since large-scale SVD is the most

significant computational bottleneck, algorithms which well cooperate with truncated SVD

always outperform the ones with better theoretical convergence rate but poorly fit to the

purpose of applying truncated SVD. The numerical tests by Lin et al. (2010) show that

PROPACK is usually slower than full SVD if computing more than 20% singular values.

Therefore, in order to accelerate with it, desirable algorithms should frequently compute

the SVD of approximately low-rank matrices.

For example, the convergence rate of soft-Impute/FPI1 algorithm is O( 1
k
), compared

with O( 1
k2 ) of accelerated Nestorov algorithm by Ji and Ye (2009), which is the optimal

convergence rate of first-order algorithms. Although, the SVT objective of the former has

a special structure of ”Low Rank + Sparse”, i.e., the key step is

Sµ (Xk + PΩ(M −Xk)) ,

where Xk is a low-rank matrix and PΩ(M −Xk) is a sparse one. Mazumder et al. (2010)

figure out that the structure is usually approximately low-rank, and hence enjoys a supreme

bonus when implementing with PROPACK. Their numerical results present an obvious ad-

vantage in running time over the latter, when both embedded with PROPACK. The latter

does not gain so much acceleration from truncated SVD as the former. Since the objective

of the latter is a combination of Xk and Xk−1, it does not reduce to approximately low-rank

quickly and stably, which is against the usage of truncated SVD.

The ”Low Rank + Sparse” structure naturally holds for all the fixed point iteration

algorithms above. For accelerated version, we still expect it to outperform FPI1. Be-

cause the truncated SVD does not influence the number of iterations to converge, and the

operations with acceleration here are still homogeneous.

With the m = 1000 examples from Table 4.2 – 4.4, Table 4.6 presents the performance
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Table 4.6: Running time of FPI1 and AFPI embedded with PROPACK. The examples are
from the last rows of Table 4.2 – 4.4, where m = 1000, rank = 50, SR = 25%, µ =

√
m for

noiseless case; µ = 1.5
√
m for SNR = 6 and SNR = 9.

SNR algorithm time reduction rate

noiseless FPI1 69.969 38.85%
AFPI 26.554 36.65%

9 FPI1 49.858 40.82%
AFPI 17.977 40.30%

6 FPI1 67.245 31.95%
AFPI 26.817 25.76%

of accelerated FPI1 and AFPI. In terms of the acceleration, we substitute the full SVD

with the truncated one, when the rank of current objective is smaller than 0.2m. The

results are averaged over 50 simulations, and the time reduction rate is calculated based

on the running time of full SVD version in Table 4.2 – 4.4. Furthermore, we display the

rank change of the noiseless example, as Figure 4.4.

From Table 4.6, by replacing the full SVD on (approximately) low-rank matrix with

truncated SVD, the accelerated version saves a lot of time. The acceleration is even more

significant and necessary as the dimension grows extremely high.

Figure 4.4 highlights the accelerated iterations explicitly, i.e., the points under the

horizontal green line. The red curve displays the non-increasing trend of rank, such that

truncated SVD keeps on as long as the rank of Xk decline to the green line. This illustrates

how FPI1 exploits the structured SVD to accelerate. For AFPI, although the monotonicity

slightly breaks at the beginning, the rank reaches the green line much faster than FPI1,

and it descends monotonically after falling off the green line. The gaps of rank between

neighbourhood iterations suggest the effect of adaptively changing τ .

Consequently, we observe that truncated SVD via PROPACK dramatically reduces the

time cost of a single iteration, when computing sufficiently few singular value triplets. The

fixed point iteration algorithms form the objective into ”Low Rank + Sparse” structure,

which is convenient to apply truncated SVD constantly. We have been aware that AFPI
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Figure 4.4: Change of rank over iterations, where m = 1000, r = 50, SR = 25%, µ =
√
m
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takes fewer steps to converge than any other peers from section 4.2, the results here further

demonstrate that AFPI also takes advantages of acceleration earlier and better than the

proven successful soft-Impute/FPI1 algorithm.

4.4 An Image Example

In order to verify the effectiveness of our algorithm on real data, as well as illustrate it

in a visible approach, we present the algorithms on the image recovery. Images are stored in

matrix forms, for example, a color image needs three matrices, representing red, green and

blue, respectively. In this example, for simplicity, we consider the grayscale figure stored in

one matrix. Each entry of the matrix stands for the grey scale of the corresponding pixel.

The dimension of the testing figure is 768 × 1024, and it is not an ideally (approx-

imately) low-rank matrix consistent with the model assumption. Moreover, we do not

apply truncated SVD either due to the above reason. The mission is to recover the matrix,

of which 50% pixels are masked uniformly at random. In this example, fixed point iteration

algorithms still succeed to recover good approximations, even though the assumptions are

not fulfilled.

Table 4.7: Records of image recovery, where 50% pixels masked uniformly at random and
the true rank is 768. Set µ = 1.25×

√
1024, tol = 1× 10−3

algorithm time rank error (×103)

FPI1 118.81 335 4.46
FPI2 66.85 317 4.29
FPILS 82.85 315 4.25
AFPI 77.31 312 4.26

We notice that FPI2 is the fastest one, and the running time is still around 55%

of FPI1. However, AFPI becomes much slower than before. This phenomenon can be

illustrate by the stopping rule we choose. Because FPI1 and FPI2 strictly follows Theorem

3.3, ‖Xk −Xk+1‖F decreases monotonically. AFPI, in contrast, make use of Theorem 3.5
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Figure 4.5: Original Figure (768× 1024), rank = 768
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Figure 4.6: Remove 50% pixels of the original figure uniformly at random
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Figure 4.7: Figure recovered by FPI1, rank = 335, error = 4.46× 103
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Figure 4.8: Figure recovered by FPI2, rank = 317, error = 4.29× 103
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Figure 4.9: Figure recovered by FPILS, rank = 315, error = 4.25× 103

53



Figure 4.10: Figure recovered by AFPI, rank = 312, error = 4.26× 103
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as well, such that it does not aim at reducing the criterion monotonically. Of course, both

clues lead to the same thing in the end. In this case, unlike the previous example, AFPI

terminates more lately, but with lower rank and error. Located in a more comparable

situation, AFPI still approximates FPILS well even under the assumption violated case.
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Chapter 5

Conclusion and Future Work

The thesis studies a family of fixed point iteration algorithms for the purpose of low-

rank matrix completion, and provides systematic proofs on the properties of the algorithms.

Based on the results, we propose a much more effective fixed point iteration algorithm 4

called AFPI. AFPI not only takes fewer steps to converge, but also forms the objective

into the particular structure that is easy to accelerate with truncated SVD.

Beyond the scope of the current work, we are interested to investigate the following

topics later in the future.

1. In terms of noisy matrices completion, what is the error upper bound for the fixed

point iteration algorithms? For some other methods, there are error upper bound

results, e.g., Koltchinskii et al. (2011) and Negahban et al. (2011).

2. The simple rule of updating τ in AFPI algorithm is shown to be very effective in

numerical experiments, while it still lacks a rigorous proof. Perhaps there is some

relationship with existing methods, or something new requires to be discovered.

3. O( 1
k2 ) is the optimal convergence rate of first-order algorithm, however, the existing

method does not well suit the purpose of applying truncated SVD (at least via

PROPACK). Is there an algorithm fitting to both aspects simultaneously?
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4. For recommendation problems, it is often helpful to involve more information, e.g.,

content of the items. Is there any way to formulate a matrix completion problem to

exploit the content information and still keeps its convexity? If yes, then how to?
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Appendix A

Convex Analysis

This chapter summarizes the elementary knowledge of convex analysis used in the

thesis.

Definition A.1. An optimization problem has the form,

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m,

For a convex optimization problem, the functions f0, · · · , fm : Rn → R are all convex,

i.e., satisfying

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ≥ 0 with α + β = 1.

The significance of convexity in optimization is as essential as linearity in statistics.

Generally speaking, a convex optimization problem is relatively easy to solve, as the con-

vexity ensures the local minimum to be the global minimum.

Definition A.2. g is a subgradient of f at x if

f(y) ≥ f(x) + gT (y − x) for all y,
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and the subdifferential of f at x is the set of all subgradients of f at x

∂f(x) = {g : f(y) ≥ f(x) + gT (y − x) for all y}

Subgradient (subdifferential) can be viewed as a generalized version of gradient (dif-

ferential), it is still well defined for some non-smooth function. We can easily verify its

scalability and additivity.

Lemma A.3. Suppose f1, f2 are convex functions, and f2 are continuously differentiable,

then it satisfies that

∂(f1 + f2)(x) = ∂f1(x) +∇f2(x),

where ∇f2(x) denotes the differential of f2(x).

Lemma A.3 is quite intuitive: the additivity of subdifferential holds even with differ-

ential. Yet the proof is not as simple as it seems, hence we omit it, readers may refer to

Nedic and Bertsekas (2003).

Lemma A.4. A necessary and sufficient condition for f(x∗) to be global minimum is

0 ∈ ∂f(x∗).

Proof. From definition (A.2), the following statements are equivalent

0 ∈ ∂f(x∗) ⇐⇒ f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗),

which completes the proof.

Lemma A.4 is intensively used in the proofs. The statement is similar to the optimality

condition in differential form. However, the conclusion is much stronger in the sense that,

the eligible x∗ is a global minimum, compared to the local optimum in differential form.

The difference comes from the definition of subdifferential.
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Appendix B

SDP Form of Nuclear Norm

Minimization

The chapter illustrates how to formulate nuclear norm minimization as an SDP. The

result is established on the of dual norm.

Definition B.1. Given any particular norm of X, i.e., ‖X‖o, there exists a corresponding

dual norm ‖X‖d defined as

‖X‖d := sup{Tr(XTY ) : ‖Y ‖o ≤ 1}

Following the definitions, it can be shown that nuclear norm is the dual norm of spectral

norm. Moreover, as a byproduct, this gives another illustration of nuclear norm. In this

way, we can formulate nuclear norm minimization as an SDP.

Lemma B.2. The dual norm of spectral norm is the nuclear norm.
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Proof. By definition, the dual norm of spectral norm is the solution of

maximize
Y

Tr(XTY )

subject to

[
Im Y

Y T In

]
� 0,

(B.1)

and its dual problem is

minimize
W1,W2

1

2
(Tr(W1) + Tr(W2))

subject to

[
W1 X

XT W2

]
� 0.

(B.2)

Provided the SVD of X, i.e., X = UΣV T , let W1 = UΣUT , W2 = V ΣV T , it is easy to

verify the feasibility of (W1,W2) for (B.2), such that

sup
Y

Tr(XTY ) ≤ 1

2
(Tr(W1) + Tr(W2)) = ‖X‖∗.

From the aspect of primal problem, as Y = UV T is feasible for (B.1), it follows that

sup
Y

Tr(XTY ) ≥ Tr(Σ) = ‖X‖∗.

Combining both together yields

Tr(Σ) = ‖X‖∗ ≤ sup
Y

Tr(XTY ) ≤ ‖X‖∗ =
1

2
(Tr(W1) + Tr(W2)) ,

such that the equality holds throughout, and ‖X‖∗ is the solution of (B.1), this completes

the proof.

The last step of proof demonstrates that the nuclear norm is the solution of (B.2),

which is a typical SDP. For matrix completion problem, the constraint on observed entries

can be written in the positive semidefinite matrix form as well. Therefore, the nuclear

norm heuristic for matrix completion is still an SDP.
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