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Abstract

This thesis models rational criminals and regulators with flawed incentives. In it we

develop a rational model of crime and regulation that we use to show the SEC’s current

incentive structure is ineffective at preventing fraud. Under our model, criminals balance

the monetary rewards of larger frauds against an increased chance of being apprehended;

and regulators design regulations to minimize either the damage caused by fraud or some

other metric. We show that under this model, the SEC’s focus on “stats” and “quick hits”

leads to large frauds and a large social loss. We argue that regulators need to focus not

just on successful prosecutions, but also on harm reduction and deterrence.
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Chapter 1

Introduction

“It’s only when the tide goes out that you learn who’s been swimming naked.”

- Warren Buffet

In late 2008, Bernie Madoff was apprehended for running an enormous Ponzi scheme

that defrauded investors of almost $20 billion.[9] His victims include charities, pension

funds, and individuals. This financial fraud shook the world’s faith in investment manage-

ment and in financial regulators. The damage this Ponzi scheme and other financial frauds

have caused is clear. What is not clear is the best way to prevent this type of fraud from

occurring.

Unfortunately, the current regulatory mechanisms appear to be ineffective. Most of the

large frauds we look at were exposed not by regulatory fervor, but by the financial crisis

and the receding tide of investor sentiment.

The recently released Investigator General’s report on the US Security and Exchange

Commission (SEC) highlights several flaws with the current enforcement model.[21] This

thesis focuses on one of these: flawed regulatory incentives. We argue that the SEC’s

apparent preoccupation with “stats”, or the number of successful prosecutions, exacerbated

the damage these financial frauds caused.

Our analysis uses an economic model of crime where a von Neumann-Morgenstern util-

ity maximizing fraudster chooses the level of fraud to commit. Using this framework, we

derive first socially optimal regulations and then regulations that maximize the perfor-

mance metrics the SEC used. We show that regulators whose incentives are to maximize
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the number of cases prosecuted or the value of cases prosecuted make decisions that are

far from socially optimal. It is possible that a similar model exists; however, our model

was developed independently.

Chapter 2 discusses several notable frauds exposed during the recent financial crisis.

We focus on how misaligned incentives may have contributed to these frauds, arguing that

the SEC was overly focused on the number of successful prosecutions.

Our model of fraud and regulation is outlined in detail in the third chapter. We first

analyze the decision making process of a financial fraudster under an economic model of

crime. We then show how a rational regulator would create regulations to combat this

fraudster when faced with budgets or other constraints. This model is applied in Chapters

4 and 5 to highlight how the SEC’s incentive structure was flawed.

Chapter 4 applies our model to derive optimal regulations. We derive closed form solu-

tions for socially optimal regulations and for regulations set by a regulator who maximizes

the number of cases successfully prosecuted. We contrast these two sets of regulations to

show how a regulator who works to maximize this type of metric makes flawed decisions.

Additional structure is used in Chapter 5 to confirm our results. We repeat our analysis

for regulators who are less free to set regulations. We show that our conclusions still hold

under this more restrictive framework.

We conclude with recommendations on how best to measure regulator performance.

Our model suggests that regulators need to focus not just on successfully prosecuting

cases, but also on harm reduction and on deterring future fraud.
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Chapter 2

An Overview of Financial Fraud

The recent financial crisis has exposed several large frauds and made regulatory authorities

a focus of criticism. This section provides a brief overview of some of the notable frauds

of the last several years, and of the regulatory failures that may have enabled them.

Ponzi schemes are the first type of fraud we examine. We then briefly discuss other

frauds such as insider trading or the sale of fictitious securities. The model outlined in

Chapter 3 is general enough to apply to a variety of frauds.

The final section of this chapter discusses regulatory failure. We highlight how the

SEC’s incentives were flawed. This section motivates the results in Chapters 4 and 5.

2.1 Ponzi Schemes, Recent and Historic

The recently discovered Ponzi scheme run by Bernie Madoff was the largest financial fraud

of all time. A Ponzi scheme is a fraudulent investment scheme that offers attractive returns

to investors, but provides these returns not from actual investments, but by paying out the

principal of other investors. The promoter usually offers abnormally attractive returns to

entice investors and ensure a steady stream of deposits. Fresh deposits are used to fund

the promoter’s lifestyle and any withdrawals from the scheme. In order to keep the fraud

going, the promoter needs an ever-increasing inflow of new deposits.

Ponzi schemes are named after Charles Ponzi, a now-notorious Italian swindler.[7] In

1920, he started one of the best known of these eponymous swindles. Ponzi’s scheme

3



Table 2.1: Recent Financial Frauds Valued Over $500 million

Perpetrator Type Downfall Dollar Value Duration

($ million) (years)

Madoff B Ponzi Scheme Liquidity Crisis 18,000 21

Stanford A Ponzi Scheme Regulators 8,000 14

Petters T Ponzi Scheme Informant 3,650 ?

Nami K Ponzi Scheme Liquidity Crisis 2,530 6

Dreier M Fictitious Securities Regulators 700 4

Greenwood P Stole
Liquidity Crisis 667 4

and Walsh S Investors’ Money

Table 2.1: This table summarizes several recent large scale financial frauds. Most frauds

were brought down not by regulators, but by liquidity concerns, or in the case of the

Petters fraud, a coconspirator confessing. These frauds all went on for long periods of

time without detection. Note that the media often exaggerates the financial loss resulting

from Ponzi schemes by using the nominal fraud value (the fictitious value promised to

investors) instead of the smaller and more accurate measure of the amount invested. We

use the amount invested, where available.
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defrauded investors of $15 million — a princely sum at that time. However, the idea is

older even than Ponzi. It is likely that he was inspired by William Miller, who in 1899 ran

a similar scheme.[7]

As mentioned, Bernie Madoff provides a more recent example of a massive Ponzi

scheme. This New York financier defrauded a total of $18 billion from investors rang-

ing from charities to professional investment managers. This massive twenty-year fraud

was uncovered not by a vigilant regulator, but by Madoff’s own inability to fund investor

withdrawals.[9] Even more damning are the repeated letters from Harry Markopolos, at

that point an accountant working for another fund, explaining that Madoff’s fund was a

fraud.[16] Markopolos, a a gave detailed reasons for his view, and in retrospect the SEC

looks extremely foolish for ignoring his warnings. Several other sources also provided warn-

ings and suggestions that the Madoff fund was likely a Ponzi scheme, and yet the SEC

repeatedly failed to act.

Several factors may have made it difficult for the SEC to act on the Madoff case. The

investigative staff were “relatively inexperienced” and “confused about certain critical and

fundamental aspects of Madoff’s operations”.[13] Clearly these are undesirable features.

Madoff was also politically connected and noted for his philanthropy. He had an excellent

reputation and had relatives connected to the SEC’s upper management. A young investi-

gator certainly would not want to attract Madoff’s animosity, and this may have been part

of the reason the SEC staff blindly accepted what the SEC Investigator General describes

as “evasive or contradictory answers”.[13]

Texas billionaire and cricket fanatic Allen Stanford started another major Ponzi scheme.

Like Madoff, Stanford was highly connected, and even knighted in Antigua where the fraud

was based.[15] The international scope of this fraud was one of the factors that delayed

action. A top Antigua regulator has in fact been charged with complicity in the fraud.

However, there were also numerous internal failures within the SEC that allowed this fraud

to continue. The SEC was aware that Stanford was running a Ponzi scheme for almost

twelve years, but failed to take meaningful action.[21]

Two other notable Ponzi schemes are those run by Tom Petters, worth $3.65 billion, and

Nicholas Cosmo, $370 million.[17] Both had elaborate setups that made detection difficult.

Petters used forged documents to secure loans, and like Madoff, defrauded hedge funds

and several large companies. He was eventually turned in by coconspirators.[10] Cosmo
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claimed to use proceeds for construction loans, but, in reality, his fund was just a Ponzi

scheme. Cosmo ran an investment company and an insurance company that managed the

supposed loans.[22]

On an international note, Japan also recently suffered from a massive Ponzi scheme.

This scheme was started by Kazutsugi Nami and based on a phantom currency known as

Enten. Losses from this fraud have been estimated to be $2.53 billion.[27]

The success of Ponzi schemes is in some ways a failure of investors to conduct due

diligence. This is an especially damning criticism for the funds of funds that invested

with Madoff — what value could these highly compensated managers possibly be offering?

However, it is interesting to note that several of these Ponzi schemes were investigated by

the SEC, without action being taken. Some of these frauds then used their clean bill of

health to assure investors of their legitimacy.[13]

It is a mathematical certainty that Ponzi schemes will eventually collapse. But what

triggers this collapse? Most recently, the financial crisis caused several of these frauds to

unwind. The receding tide of investor sentiment causes withdrawals to increase and new

investments to decline.[2] This prevents the Ponzi scheme promoter from raising enough

money to keep up with the withdrawals, which causes the scheme to collapse under its

own weight. Ideally, regulators would detect Ponzi schemes and other frauds before they

become massive and before they collapse. Unfortunately, these frauds were not a priority

for the SEC before the Madoff case.[21]

2.2 Other Types of Fraud

In addition to Ponzi schemes, the recent financial crisis has brought to light frauds ranging

from insider trading to the sale of fictitious securities. Although the dollar losses are not

as large as those seen with the Madoff or Stanford Ponzi schemes, preventing these other

frauds is also an important mission for regulators.

There are frauds based on deception that are similar to Ponzi schemes. For example,

Marc Dreier was apprehended for selling $700 million worth of fictitious securities.[28]

Paul Greenwood and Stephen Walsh ran an investment fund and simply stole investors’

money.[14] If these fraudsters had tried to meet their obligations using money defrauded

from new investors, then these frauds would have become Ponzi schemes.
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An entirely different class of fraud is insider trading. This often involves smaller num-

bers than Ponzi schemes, but can result in substantial economic loss.[26] A recent example

of insider trading is the Du Jun case, where a Morgan Stanley managing director earned a

$4 million profit from insider trading on the Hong Kong Stock Exchange.

The model we describe in Chapter 3 works just as well for these types of fraud. In fact,

it can be applied to any type of crime where it can be argued that the perpetrator makes

a rational decision about the magnitude of the crime he is planning.

2.3 Regulatory Failure

This thesis compares effective and ineffective regulators. Why would we think financial

regulators are ineffective? Because of their failure to detect and act on frauds. Take, for

example, the Madoff and Stanford Ponzi schemes, both of which went on for over a decade

and caused billions of dollars of damage. Madoff was identified as a fraud in great detail,

yet the SEC gave him only a cursory examination. Stanford was known to be a Ponzi

scheme by the examination division of the SEC, yet the enforcement division did nothing

because it had other priorities.

Much of our analysis here focuses on the SEC. We do this both because it is the

preeminent regulator and because we have excellent information on its internal failures from

the SEC Investigator General’s reports on the Stanford and Madoff cases. Our findings

may have a broader application, because although the SEC has been under fire recently, it

is likely other regulators face similar problems. See for example the Enten controversy in

Japan[27] or the Haitian cooperative crisis,[23] both of which grew to massive proportions

before being shut down by regulators.

Several factors make it difficult to track down and expose large frauds. These frauds

often have elaborate setups and are run by politically connected fraudsters. Some are based

in countries where there is limited access to information. Further, it can be difficult for

the regulators to get staff with enough experience in finance, as people with the necessary

skill-set may not be interested in working for the government. However, our model suggests

that part of the problem may also be a flawed incentive structure within the SEC.

One reason for the SEC’s failure to prevent financial frauds was an excessive focus on

“actions brought” — the number of successfully prosecuted cases.[21] The SEC Investigator
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General’s report on the Stanford case states that “novel or complex cases were disfavored”

in favor of “quick-hit” cases. This type of performance metric treats big cases and small

cases equally, and in fact discouraged investigation of larger, more complex cases such as

the Stanford Ponzi scheme.

This “actions brought” measure has several advantages. It is simple and easy for

those within and outside the agency to understand. It is objective, simple to measure,

quantitative, and easily comparable. These features may have lead to its widespread use

within the SEC. However, we will show that this type of performance measure creates

perverse incentives for regulators. Under our model, it leads to larger frauds, ineffective

regulations, and much higher levels of economic loss. The SEC’s new Enforcement Director,

Robert Khuzami, also feels the incentive structure is flawed. He has stated that he plans to

“de-emphasize the current quantitative metrics used to evaluate personnel and programs —

the number of cases opened and the number of cases filed — in favor of a more qualitative

standard, which includes concepts like timeliness, programmatic significance, and deterrent

effect of a case.”[20] Our analysis suggests that this is precisely the correct course of action.

As mentioned, complexity makes it difficult to investigate large frauds. These frauds

may be based internationally, as Stanford’s was; or be in the form of a multinational,

as Petters’ was. This complexity also means that it is difficult and costly to collect and

process the evidence needed to get a conviction on a large fraud case.

Enforcement is also complicated by the political connectedness of many of these fraud-

sters. Madoff was well known and respected, and his niece was connected to SEC (although

the SEC Investigator General has stated this connection did not affect the investigation).

Stanford was a huge figure in Antigua and was even knighted. Madoff and several other

Ponzi scheme managers were noted philanthropists and connected to the political elite.

Because of these connections, a junior investigator assigned to investigate Bernie Madoff

or Allen Stanford might be wary about pushing too hard.

All of these forces push regulators away from focusing on larger frauds. However, we

will show that a failure to actively focus on large frauds can have disastrous consequences.
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Chapter 3

A Game Theoretic Model of Fraud

and Regulation

This chapter develops an expected utility maximization model of financial fraud that we

use throughout this thesis. Here we outline the model; in Chapters 4 and 5 we apply it.

We start with a discussion of regulatory regimes and how to model them. Instead of

focusing on the detection of a specific type of fraud, we use a general model that is equally

applicable to several types of fraud.

In the second section we build on Becker’s economic model of crime to model how a

rational fraudster makes decisions.[3]

After discussing the motives of fraudsters, we analyze how regulators might create ef-

fective regulations. We build up a model of how performance metrics impact the regulatory

decision making process.

Finally, we derive a measure of the social cost of fraud. We will later use this to look

at the social loss resulting from misaligned regulator incentives.

3.1 Modeling Regulatory Structures

Much of this thesis focuses on the design of optimal regulations. But how can we mathe-

matically model a regulatory structure?
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Regulations take effect both through overarching policy decisions and through the low-

level decisions made by the investigation and enforcement agents. The choices about which

cases to investigate and prosecute are based both on the evidence and on the regulators’

priorities.

Several papers have analyzed how regulators should make the low level decisions about

which funds to investigate. For example, Bollen and Pool analyze the past returns of legit-

imate and fraudulent funds and propose a set of simple flags to identify funds that might

be fraudulent.[6] Bernard and Boyle look at the split-strike-conversion strategy Madoff

purported to use and show the returns he claimed were impossible.[4] Although making

these low-level decisions effectively is crucial to effective regulation, such decisions are not

the focus of this thesis.

We take a different approach: instead of looking at how to identify fraud, we focus

on the optimal relationship between fraud size and probability of apprehension. Doing

so allows us to us to better model regulatory incentives; however, it ignores much of the

complexity of regulatory practice.

How should we model the probability of the fraudster being apprehended? We assume

that the probability of apprehension is some function of the amount of damage done by

the fraud. This has an intuitive appeal. Consider an individual who is considering illegally

trading on insider information. The rewards of such a crime increase as the amount of

money traded increases; however, the probability that the fraud fails and is detected also

increases.

Definition 3.1.1 We use the term regulation to denote a function that maps levels of

frauds to probabilities of failure:

ψ : [0,∞)→ [0, 1].

Using this notation, ψ(x) = q denotes that a fraud with value $x has a q probability of

failure. We assume that non-involvement in fraud will not result in punishment, and so

ψ(0) = 0 as there is a zero probability being apprehended.

This form is general enough to be applied to a variety of types of fraud. However, it

ignores the specific structures of regulations and of fraud. A more realistic model might

better take these structures into account.
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For example, an extended version of this model could better match the mathematical

characteristics of Ponzi schemes and the regulations that detect them. Such a model could

be inspired by a variety of sources. For instance, Bhattacharya looks at how the possi-

bility of a government bailout can lead to Ponzi scheme formation even among informed

investors.[5] Artzrouni takes an extremely mathematical approach and models the condi-

tions under which a Ponzi scheme will grow large or fail quickly.[1] Páscoa and Seghir look

at how default penalties can induce Ponzi-like structures.[24] Our analysis goes beyond

these frameworks in order to provide more insight into regulations and financial frauds.

Note that we have, for now, ignored the probability and costs of Type I error. We will

talk later about how to incorporate this cost. Also note that we have used the terms failure

and detection interchangeably. We ignore the distinction between these two to simplify

analysis.

3.2 Inside the Mind of a Criminal

What drives the decision-making process of a white collar criminal? This section attempts

to answer that by using an expected utility maximization framework based on the economic

model of crime pioneered by Gary Becker.[3]

We assume that a fraudster makes his decision to commit fraud rationally, as an ex-

pected utility maximizer. This assumption of rationality has an empirical justification. Em-

pirical work suggests that those who commit violent crimes and petty crimes respond to in-

creases in the probability of apprehension and punishment by committing fewer crimes.[29]

It seems very likely that white collar criminals would do the same. Several of the fraudsters

we discussed were lawyers or successful businessmen. These professionals are likely to be

better able to objectively judge the risks and rewards of crime.

Under our framework, a potential financial fraudster is aware of the probability of

success for different levels of fraud. He uses this information to make a decision about the

amount of fraud to commit. Faced with some regulation ψ, the potential fraudster can

choose either to remain honest, or to take some positive amount of money from investors.

If the fraudster attempts to take $x from investors, he has a ψ(x) chance of failure.

In line with the rational model of crime, we assume that the fraudster works to maximize

his expected utility. We use uS(x) to denote the utility associated with a successful fraud
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of value x. We write the utility associated with remaining honest as uS(0). We assume

that the fraudster prefers a larger successful fraud to a smaller successful fraud, in other

words that u′S(x) ≥ 0. This assumption is very plausible for an unsatiated criminal and it

helps create the cost benefit tradeoff that we use in the economic model of crime.

We have discussed the utility resulting from a successful fraud, but it is clear that not

every fraud is successful. Because we assume that the fraudster is aware of the likelihood of

failure, he must also be aware of the penalties associated with being apprehended. These

could include loss of reputation, isolation, fines, or even a prison term. Some form of

punishment is a very real possibility and likely carries a substantial utility penalty. We

use uF (x) to denote the utility associated with being apprehended while attempting to

commit a fraud of value x. We make two assumptions about this punishment function.

First, we assume that being caught and punished is undesirable and always worse than

either a successful fraud or remaining uninvolved, so that

uS(x) > uF (y) ∀x ≥ 0, y > 0.

Additionally, we assume that being caught for a larger fraud is at least as undesirable as

being caught for a smaller fraud. Again, this seems reasonable as prison sentences and

other punishments appear to be an increasing function of fraud size. We write this as

uF (x) ≥ uF (y) ∀y ≥ x > 0.

For convenience, we will often use a constant negative utility of −p as the utility of

being apprehended and punished, where p is some positive real constant. As we assume p

is positive, the level of utility −p is always negative. If we do not use constant utility for

a failed fraud, we will usually use a utility function that is convex over fraud size. There

are two simple justifications for this:

First, punishments do not directly scale with fraud size. Consider Bernie Madoff, who

defrauded investors of $18 billion and was sentenced to 150 years in prison. The 72-year-old

financier is unlikely to serve 30 years of that sentence. If he had defrauded ‘only’ $1 billion

it is unlikely that his sentence would be a proportionally smaller 20 months. It is also

unlikely that the damage to his reputation, assets, or status would scale proportionally.

Secondly, empirical work has suggested people are risk seeking over utility loss.[18][12]

Thus, we feel justified in assuming that u′′F ≤ 0.
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Given the knowledge of these two utility functions, we can write out the expected utility

derived by a fraudster who chooses to commit a fraud worth $x. This will allow us to model

the fraudster’s decision-making process. We write the expected utility as the sum of two

parts:

1) The fraudster’s utility if he is not caught, denoted uS(x), multiplied by the proba-

bility of not being caught, equal to 1− ψ(x);

- plus -

2) The fraudster’s utility if he is caught, equal to uF (x), multiplied by the probability

of being caught, ψ(x).

Thus the expected utility of a fraudster who chooses to commit a fraud worth x is equal

to the following expression:

uS(x)×
(
1− ψ(x)

)
+ uF (x)× ψ(x). (3.1)

We can model the fraudster’s decision process using the above derivation of the fraud-

ster’s expected level of utility and our assumption that the fraudster is an expected utility

maximizer. Thus we can determine how a fraudster will behave when faced with some

given regulation. The fraudster’s decision problem is to balance the benefits of larger frauds

against the increased possibility of apprehension and perhaps increased punishment.

We write the fraudster’s decision problem as maximizing (3.1) over the level of fraud.

For a fixed regulation ψ, the fraudster would defraud $x that solves the following maxi-

mization problem

max
x≥0

u(x)×
(
1− ψ(x)

)
+ uF (x)× ψ(x). (3.2)

We use x(ψ) to denote the solution to this maximization problem — the amount of

fraud induced by regulation ψ. Note that this notation can be ambiguous as in some

cases multiple values of x solve the maximization problem (3.2). We will work to avoid

this ambiguity, but for convenience we assume that in ambiguous situations the fraudster

chooses the lowest x value that solves the maximization problem.

As Becker notes, under an economic model of crime we can easily deter fraud by in-

creasing the punishments for failed frauds.[3] However, in most developed countries crimi-
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nal punishments for financial fraud are determined by the judiciary and not by regulators.

As our primary focus is on large frauds how regulator’s make decisions, we assume that

punishments cannot be changed by the regulator.

Our model of fraudster decision making can be implemented in a straightforward man-

ner. To illustrate this, we include the following example of how a potential fraudster might

make decisions.

Example 3.2.1 This example shows how a potential fraudster might weigh the costs and

benefits of committing a financial fraud. Consider an individual who is risk neutral over

the gains from a successful frauds, uS(x) = x, and faces a penalty of apprehension that is

constant across fraud size uF (x) = −p < 0. Suppose that this individual is faced with a

regulation of the form ψ(x) = 1 − η0e−η1x for some η0 ∈ (0, 1] and η1 > 0. This type of

regulation has a simple form that ensures larger frauds are more likely to be detected.

Suppose this individual commits a fraud. Given this, we can use (3.2) to write the

fraudster’s utility maximization problem as

max
x>0

x× η0e−η1x − p×
(
1− η0e−η1x

)
.

This optimization problem shows the conflict between increasing monetary rewards and

decreasing success probability. As the amount of fraud increases, the utility resulting from

a successful fraud increases but so does the likelihood of failure. Using the first order

condition, we can solve this problem and find the level of fraud that maximizes fraudster

utility:

0 =
∂

∂x
x× η0e−η1x − p×

(
1− η0e−η1x

)
=
(
1− p η1 − x η1

)
η0 e

−η1x.

From this first order condition, we get that x = 1
η1
− p.1

The above considers the optimal level of fraud if a fraud is committed, but what about

the option of not committing fraud? Clearly uS(0) = 0 and so the utility of not committing

fraud is zero. We can compare this to the utility of committing a fraud.

From our solution and (3.1), we have the utility the fraudster derives from the optimal

level of fraud is
η0
η1
eη1p−1 − p.

1 A quick check of the signs of the derivatives shows that ∂
∂x x × η0e

−η1x − p ×
(
1 − η0e

−η1x
)

=(
1− p η1 − x η1

)
η0 e

−η1x is positive for x < 1
η1
− p and negative for x > 1

η1
− p, provided η0, η1 > 0.
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If 1
η1
−p < 0, then this utility level is less than 0 and so the interior solution is the preferred

strategy for η0
η1
eη1p−1 > p, and honesty is the preferred strategy for η0

η1
eη1p−1 ≤ p.

Using these derivations, we can write the fraudster’s optimal strategy as follows:

x(ψ) =

 1
η1
− p for η0

η1
eη1p−1 > p

0 otherwise.

Unfortunately, even with this stylized regulation structure, we are left with two cases.

However, this solution has a simple and intuitive interpretation. The potential fraudster

stays honest if the penalty is large enough that the fraud is not worthwhile, if p ≥ η0
η1
eη1p−1.

If the potential fraudster does choose to commit a fraud, the amount of the fraud increases

as the following parameters decrease: p, the penalty if the fraudster is apprehended, and

η1, the rate at which the likelihood of detection increases as the level of fraud increases.

We illustrate this decision problem with Figure 3.1.

The utility maximization framework outlined in this thesis is general enough to apply

to several types of financial fraud. For Ponzi schemes, insider trading, and the sale of

fictitious securities, there is a clear relationship between the amount of damage done and

the amount of monetary gain for the perpetrator. Further, it is likely that the manager of

one of these frauds has a good deal of control over the amount of money taken in. It is

also reasonable to speculate that increasing the fraud size would bring additional exposure,

which increases the risk of detection for this type of fraud.

3.3 Fraudsters and Regulators

A perfect regulatory structure would detect all fraud at no cost and without instituting

costs on legitimate funds. Unfortunately, we are a long way from such a structure. The

recent financial crisis has shown that it is extremely difficult to detect financial fraud. In

this section we assume that a regulator sets a regulation ψ in order to minimize the damage

caused by financial fraud or to maximize some other metric.

How can we design regulations that minimize the damage caused by financial fraud?

As before, we look at regulations as simply functions that assign a certain possibility of
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Figure 3.1: The Fraudster’s Utility Maximization Problem
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Figure 3.1: This chart shows how a fraudster’s expected utility
(
as given

by (3.1)
)

varies with the amount of fraud committed for a sample pa-

rameterization. Low levels of fraud result in a low probability of being

apprehended but yield low monetary rewards. Higher levels of fraud

work in the opposite way. The above chart shows this problem using

a probability of detection of 1 − 1
2e
−0.2×x and a fraudster that is risk

neutral over successful frauds but faces a constant penalty of appre-

hension. We characterize such a fraudster using the utility functions

uS(x) = x and uF (x) = −1 where x is the level of fraud. Under this,

the fraudster’s expected utility is zero if a fraud is not committed and

x × 1
2e
−0.2×x − (1 − 1

2e
−0.2×x) if a fraud is committed. By solving the

first order condition, we get x = 4 as the level of fraud that maximizes

the fraudster’s expected utility.
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capture to fraud of a certain value. Thus, under our framework the regulator’s task is

to determine the relative priority to be placed on large and small frauds. This setup lets

us focus on the allegation we make in Section 2.3: that the SEC’s incentive structure

concentrated the agency’s attention on the wrong types of fraud.

What types of damage measures might a regulator try to optimize? To provide full

generality, we use two measures, one for failed (discovered) frauds and one for successful

(undiscovered) frauds. We write vS as a utility function that maps the value of a successful

fraud (or rather, a fraud that does damage) to regulator utility; and vF for a similar

function that maps the value of an apprehended fraud to regulator utility.

We will consider a variety of plausible regulator utility functions. Much of Chapters 4

and 5 contrast a risk neutral regulator with a regulator who has skewed incentives. We

do restrict our consideration to continuous functions in order to avoid technicalities in

Chapter 4. For example, a regulator who myopically focuses on successfully apprehending

as many fraudsters as possible, thus has vS(x) = 1 and vF (x) = 0. We will show that

such a regulator produces regulations that are far from optimal, and yet this type of utility

function is very close to what the SEC encouraged by its emphasis on the number of

successful prosecutions.

Using the fraudster’s decision process, we can write out the regulator’s utility for a

given regulation. As before, we use x(ψ) to denote the amount of fraud that is committed

under regulation ψ. From this, we write vF (x(ψ)) to denote the regulator utility associated

with a failed fraud of the amount induced by ψ. Similarly, we use vS(x(ψ)) to denote the

amount of regulator utility associated with a successful fraud of value x(ψ).

Using this, we can write out the regulator’s expected utility in a similar way to the

previous section, as the sum of two parts:

1) The regulator’s utility if a fraud of value x(ψ) is not detected, vF (x(ψ)), multiplied

by 1 − ψ(x(ψ)), the probability that a fraudster committing that amount of fraud is not

caught;

- plus -

2) The regulator’s utility if a fraudster committing a fraud of x(ψ) is apprehended ,

vF (x(ψ)), multiplied by the probability of that fraudster being apprehended, ψ(x(ψ)).

Using this, we can succinctly write the regulator’s expected utility under regulation ψ
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as

vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)
. (3.3)

If the regulator is rational and has perfect knowledge of the fraudster’s decision-making

process, it will work to maximize this expected utility. This is equivalent to solving the

following optimization problem:

max
ψ∈A

vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)
, (3.4)

where A is some set of possible regulations. We will address what we consider plausible

regulations in the next section.

We first note that we have assumed that the regulator has complete knowledge of the

fraudster’s decision-making process. This assumption is not entirely reasonable, but in

Chapter 5 we will show how to relax it. If the fraudster’s utility function is unknown, we

can write the regulator’s expected utility as

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
(3.5)

and the regulator’s minimization problem as

max
ψ∈A

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
(3.6)

where x(ψ) is a random variable. This formulation will be useful later on.

We also note that we have assumed the fraudster is aware of the regulation that is in

place and the associated detection probabilities. In reality, this may be far from true — one

would hope potential criminals have less than perfect information about the behavior of

regulators. However, we will continue to assume that fraudsters have an unbiased picture of

detection probabilities. Since information about many of the regulatory actions is released,

this is plausible. For example, the SEC releases information on its enforcement actions on

its website at www.sec.gov.

An additional reason for assuming that the fraudster has unbiased information is that

it is difficult to model other cases. For example, suppose the regulator can credibly state

it will institute regulatory regime ψ1 while actually following regime ψ2. If the regulator

can deceive fraudsters in such a manner, it is trivial to create regulatory regimes that both

push fraud to an arbitrary level and also catch all frauds.
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For example, consider a regulator that claims to institute a regulation

ψ1(x) =

1 for x = y

0 otherwise
but actually institutes ψ2(x) = 1− ψ1(x) =

1 for x 6= y

0 otherwise
.

Unfortunately for would-be criminals, this strategy catches all financial frauds. It

should also be close to costless, as legitimate cash flows are unlikely to take a value precisely

equal to y. So although our assumption of fraudster knowledge is imperfect, it suffices for

now.

This section described the regulator’s decision-making process: maximize some metric

based on the amount of failed and successful fraud that occurs, with the optimization

occurring across some set of regulations A. The following section discusses what sets of

regulations we consider and contains a brief example of the regulator’s decision-making

process.

3.4 Limitations to Regulation

In the previous section we discuss the optimization problem that the regulator faces, and

note that it is reasonable to assume that not all regulatory structures are possible. In this

section we will discuss possible constraints.

We will use two type of constraints on the regulator’s optimization. The first type is

used throughout, and is a budget constraint. The second type is a complexity constraint,

and is used in Chapter 5.

We will usually define our budget constraints in the general form c(ψ) ≤ κ where we

define c as follows:

Definition 3.4.1 We use c to denote the cost of a regulation. This maps from the set of

regulations to the nonnegative real numbers

c : F ((0,∞), [0, 1])→ [0,∞) : ψ →
∫ ∞
0

g(y, ψ(y))dy

for some fixed function g : R× R→ [0,∞).
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The above structure allows for a large degree of flexibility, as g can be modified to suit

a variety of structures.

We can implement intuitive notions of cost using this structure. For example, suppose

that a regulator is looking for a small number of fraudulent cash flows among a large

number n of legitimate cash flows.

Suppose that there are a large number of cash flows x1, . . . , xn, some of which may be

fraudulent. We will assume that checking any cash flow has a fixed cost of d and that a

fraudulent cash flow will be detected if, and only if, it is checked. Thus, in order to detect

an average of ψ(x) of the fraudulent cash flows of level x, the regulator must check ψ(x) of

these cash flows. So the expected cost of a regulation that detects ψ(x) of the fraudulent

cash flows of value x will be equal to
∑n

i=1 d × ψ(xi). Suppose n is large and xi follow a

distribution f(x) for i = 1, 2, . . . , n. Under any checking scheme that resulted in detection

probabilities given by ψ, a randomly selected cash flow of value x would be checked with

ψ(x) probability. So the expected cost for a random cash flow is equal to E[ψ(X)] where

X has distribution f . But then the cost of checking all of the cash flows in this way equals

n× d×
∫∞
0
ψ(y)× f(y)dy. This form corresponds to g(y, z) = z × f(y).

We can easily extend this to a model where the cost of detecting fraud increases with

fraud size. Suppose, for example, that the cost of checking a cash flow of size x is j(x)

for some j : [0,∞) → [0,∞). Then repeating the above analysis we get that the cost of

regulation ψ is approximately n× d×
∫∞
0
j(y)×ψ(y)vf(y)dy, so g(y, z) = z× j(y)× f(y).

Another way to make the model my realistic is by using an increasing marginal cost

of fraud detection, so that, for example, the cost of detecting 20% of frauds was more

than twice the cost of detecting 10% of frauds. We could easily set up a g that followed

this structure, for example setting g(y, z) = zγ × λe−λy for some γ > 1 would make it so

that the cost of catching additional fraudsters would increase with the level of regulation

already in place.

Note that we assume that g is increasing with respect to its second argument. This

ensures that the cost of catching more fraudsters is higher than the cost of catching fewer.

This assumption is extremely plausible and helps our analysis.

We could also use this structure to take into account the cost of Type I errors; that is

the cost of prosecuting innocent people. This certainly has high social costs, but it also has

direct costs to the regulator in the form of court fees and employee time. Such errors would
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presumably be an increasing function of ψ(y), and so this cost could also be captured by

the increasing marginal cost setup described above.

In addition to budget constraints, we also consider constraints of scope. Given the

way in which regulators operate, it would be impossible to create regulations of arbitrarily

complex form. This follows both from the fact that it is impossible to know the precise

scope of a fraud before the investigation is complete and that multiple layers of regulation

and administration distort any incentive scheme.

To take this into account, in Chapter 5 we implement constraints that restrict our

regulation types further. We consider only regulations of certain, parameterized forms.

For example, we assume regulations must be of the form

ψη0,η1(x) = 1− η0 × e−η1×x

for some 0 < η0 ≤ 1 and 0 < η1.

This type of two parameter model is simple while still providing the regulator an extra

degree of freedom. The regulator can control the relative amount of attention given to

large and small frauds by manipulating the parameters. In the case above, a simple view

of these two parameters is of basic checks and checks of exceptional events. The regulator

strikes a balance between the level of scrutiny given to small potential frauds and the level

of scrutiny given to larger potential frauds.

This structure also avoids the problem of deriving a closed-form solution for a truly

optimal regulation. This is unfortunately beyond our reach in many cases, as it is a

nonconvex optimization problem over a function space.2

To illustrate how these constraints affect the regulator’s decision problem, we include

another simple example.

2 We show by counterexample that the problem is nonconvex. Let I equal the indicator function and

consider a world where the financial fraudsters have utility functions of the form uS(x) = x and uF (x) = −p
where p = 1 is a penalty function. We will show that for the two regulations ψ1(x) = 0.8I[x > 0]+0.2I[x >
2] and ψ2(x) = I[x > 2] their convex combination, ψc(x) = 0.4I[x > 0]+0.6I[x > 2], results in less regulator

utility than either regulation. Under ψ1, the fraudster chooses not to commit fraud, for an expected loss

of 0. Under ψ2, the fraudster chooses x = 2 and is detected 0% of the time for an expected loss of 2. But

under ψc, the fraudster chooses x = 2 and is detected 40% of the time, for an expected loss of 1.2 > 0+2
2 .

This shows that the regulator’s optimization problem is nonconvex.
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Example 3.4.2 This example builds on our previous example to show how a regulator

might choose between different regulatory schemes. Suppose that the regulator is risk

neutral and wants to minimize the losses from fraud, we use vS(x) = −x and vF (x) = −c×x
for some c ∈ (0, 1). In the next section, we will argue that this type of regulation is socially

optimal. Further assume a constant cost of checking cash flows and legitimate cash flows

that are exponentially distributed with parameter λ. So, as we outlined above, we get

g(y, z) = z × λe−λy for our cost constraint. We also implement a constraint of scope, so

that the regulator can implement only those regulations of the form ψ(x) = 1− η0× e−η1x

for η0 ∈ [0, 1], η1 > 0. Again, this gives the regulator basic control over the balance between

examining small and large frauds.

Now suppose, as in our previous example, that the fraudster is risk neutral over suc-

cessful frauds, uS(x) = x, and faces a constant penalty for failed frauds, uF (x) = −p < 0.

As shown in Example 3.2.1, when faced with a regulation of the form ψ(x) = 1−η0×e−η1x

this type of fraudster chooses a level of fraud that depends on the model parameters:

x(ψ) =

 1
η1
− p for η0

η1
eη1p−1 > p

0 otherwise.

Faced with such a fraudster, our socially optimal regulator would seek to solve its

optimization problem (3.4):

max
ψ∈A

vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)
.

If the regulator can set a regulation ψ such that x(ψ) = 0, then the regulator can

induce the fraudster to remain honest. Clearly this is the best solution, as the regulator’s

utility will be zero, which is its least upper bound. The regulator can deter fraud if it can

set η0, η1 such that η0
η1
eη1p−1 < p where ψη0,η1 ∈ A. This will be impossible if the budget

constraint is too low.

If it is not possible, then from (3.4) the regulator’s problem is to solve

max
ψη0,η1∈A

−x(ψη0,η1)×
(

1− ψη0,η1
(
x(ψη0,η1)

))
− c× x(ψη0,η1)× ψη0,η1

(
x(ψη0,η1)

)
⇔ min

ψη0,η1∈A
x(ψη0,η1)×

(
(1 + c)×

(
1− ψη0,η1

(
x(ψη0,η1)

))
+ c

)
⇔ min

ψη0,η1∈A

1− pη1
η1

×
(
(1 + c)× η0 × epη1−1 + c

)
.
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The minimand is an increasing function of η0. For any value of η1 > 0 our minimand will

be minimized by choosing the smallest value of η0 that satisfies the budget constraint. We

simplify the budget constraint:

A =

{
(η0, η1) such that κ ≥

∫ ∞
0

(1− η0e−η1y)λe−λydy and η0 ∈ (0, 1], η1 > 0

}

=

{
(η0, η1) such that κ ≥ 1− η0λ

η1 + λ
and η0 ∈ (0, 1], η1 > 0

}
.

So from the budget constraint, we get

κ ≥ 1− η0λ

η1 + λ
⇒ η0 ≥

(1− κ)(η1 + λ)

λ
for η1 ≤

λκ

1− κ

Thus, we recast our optimization problem in terms of η1:

min
η1≤ λκ

1−κ

1− pη1
η1

×
(
(1 + c)× (1− κ)(η1 + λ)

λ
× epη1−1 + c

)
.

The partial derivative of the minimand is always negative:

∂

∂η1

1− pη1
η1

×
(
(1 + c)× (1− κ)(η1 + λ)

λ
× epη1−1 + c

)
= − 1

η21

(
c− (1 + c)

(1− κ)

λ
× epη1−1

(
p2η31 + λ(1− η1p+ p2η21)

))
.

Thus, it is always optimal to set η1 to its maximal value of λκ
1−κ and η0 to 1. This means

that in this scenario it is socially optimal for the regulator to put a high weight on large

frauds.

3.5 A True Measure of Loss

We have discussed how a regulator might behave when trying to maximize an arbitrary

metric, but what are the true losses associated with a fraud of value $x? We argue that

these losses are proportional to the amount of fraud, and so it would be optimal for

regulators to act as risk neutral fraud minimizers.
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Clearly society’s production is well diversified, and the losses from any one fraud, no

matter how large, are unlikely to significantly change GDP or overall consumption levels.

This suggests that loss is best measured in a risk neutral perspective: thus, the loss from

two $100, 000 frauds is equal to the loss from one $200, 000 fraud. We can characterize

such a risk neutral regulator using vS(x) = −x and vF (x) = −c× x, where c is a constant

that allows us to change the relative value of discovered and undiscovered fraud.

As we have hinted, the next question is how to weight the loss from a discovered fraud

versus an undiscovered fraud. We first assert that both undiscovered and discovered frauds

do damage, and so c > 0. The next question is whether damage from a discovered fraud is

less than the damage from an undiscovered fraud. We argue that undiscovered frauds are

more damaging not only because they can continue to defraud investors, but also because

investors who have been defrauded would prefer to discover their losses sooner rather than

later. Thus a discovered fraud does less damage than an undiscovered fraud and should be

weighted less. We have not included the cost of administering justice and investigating the

fraud. These costs can be substantial, for example, Stanford’s legal defense cost $20–30

million.[8] However, these costs will very likely be incurred eventually as most frauds are

eventually discovered, and so a fraud remaining undiscovered does not avoid these costs,

but only pushes them farther into the future. Therefore, we argue that 0 < c < 1 - that

a discovered fraud is better than an undiscovered fraud but worse than no fraud. We will

use these assumptions for the remainder of this thesis.

In a similar manner to the previous section, we can write out the expected social cost

associated with a given regulation:

1) The size of fraud induced by regulation ψ, x(ψ), multiplied by 1 − ψ(x(ψ)), the

probability that a fraudster committing that amount of fraud is not caught;

- plus -

2) The size of fraud induced by ψ, x(ψ), multiplied by the factor by which to discount

frauds that are captured, c, multiplied by the probability of the fraudster being caught,

ψ(x(ψ)).

Using this formulation, we write the expected social loss associated with regulation ψ

as

− x(ψ)×
(
1− ψ(x(ψ)

)
− c× x(ψ)× ψ

(
x(ψ)

)
. (3.7)
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Clearly this is just a special case of (3.3), and we can extend it in a similar way. For the

regulator, there is a loss minimization problem associated with this function. We write

this problem as

max
ψ∈A

−x(ψ)×
(
1− ψ(x(ψ)

)
− c× x(ψ)× ψ

(
x(ψ)

)
. (3.8)

Chapters 4 and 5 compare the regulations set by regulators looking to either minimize

social loss or to maximize some skewed internal metric. This structure will allow us to

analyze the costs of various inefficient performance measurement structures that could be

applied to regulators.

One weakness of our approach was the our assumption of risk neutrality. This is

reasonable for the US, but perhaps less so for smaller countries. For example, the Haitian

cooperative crisis cost Haiti a huge portion of its GDP.[23] However, most of our analysis

holds even without the assumption of risk neutrality. If social utility as a function of fraud

is any decreasing function of x×ψ(x)+c×x(ψ)×ψ(x), then the socially optimal regulator

faces the same maximization problem as (3.8).

Another question is how to discount fraud. In states of the world where the economy

performs poorly, more frauds are likely to be discovered, as we have seen with the large

number of frauds that came to light during the recent financial crisis. This would sug-

gest that the cost of fraud is more than would be expected when looking at its real world

probability. However, the money that is invested into fraudulent schemes is likely invested

primarily in states of the world when the economy has performed well — irrational exuber-

ance is the fuel of Ponzi schemes. This suggests a higher degree of discounting. The answer

to this question is beyond the scope of this model; however we highlight this question as

being worth further discussion.

Building on this, one interesting aspect of financial fraud is that it can be difficult to

define what loss really means. For example, consider an investor who invests $10 into a

Ponzi scheme or other financial fraud in 2005 and sees their reported balance increase to

$30 by 2009. If the scheme collapses at that point and they receive $5 back, what was their

loss? Do we use the fraudulent numbers and report the difference between the amount

returned and the fictitious value, $25? Or do we ignore the opportunity cost of investing

the money and use the difference between the initial investment and the amount returned,

$5? In the Madoff case, investors lost not only all of the fictitious investment returns they

believed they had earned, but also most of their initial investment.
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We feel the preceding analysis is best understood by using the second definition of loss:

the amount of cash taken in by the fraudster. There are two reasons for this. First, this

is the view that has been taken by regulators.[11] Secondly, the cash lost by the investor

is what the fraudster gains. The fraudster gains nothing directly by awarding fictitious

returns, and that makes it more difficult to set up a structure around them. Using cash

invested as a measure of loss simplifies the problem, as it reduces it in some ways to a

simple minimax problem: the regulator works to minimize the loss, while the fraudster

works to maximize that same loss. That is our cat-and-mouse game.
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Chapter 4

Utility Based Regulations

This chapter applies the model of crime and regulation outlined in Chapter 3 in order to

examine the effect of regulatory incentives. We show how a regulator operating under our

model would make decisions about what regulations to implement. We use this to argue

that flawed regulatory incentives lead to ineffective regulatory regimes.

Our first section derives optimal solutions for the regulator and fraudster described in

Chapter 3 — we solve the cat and mouse game.

Next, we apply this model to fraudsters with constant relative risk aversion (CRRA).

We compare the regulations intended to maximize the number of frauds apprehended

with those designed to minimize social loss. Our results show that incentive schemes are

ineffective when they only reward the number or dollar value of successful cases. These

incentive schemes produce regulations that are ineffective at preventing large frauds.

The final section generalizes these results beyond the case of CRRA fraudsters. By

making plausible assumptions about fraudster utility, we confirm our previous results that

regulators focused on maximizing the number of cases brought will set ineffective regulatory

schemes.

We find that a key component of effective regulations under this model is a “harm

reduction” approach that discourages fraudsters from choosing to commit larger frauds.

This approach is not practiced by regulators seeking to maximize discovered fraud. The

SEC’s focus on “actions brought” appears to create an incentive structure that suffers from

this flaw.
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The analysis in this chapter is based on regulators with perfect information. This

assumption is relaxed in Chapter 5, where scope constraints are used to provide more

general solutions.

4.1 Optimal Regulations Given A Budget Constraint

This section shows how a rational regulator would make the decision about what regulation

to implement. We reduce this problem to optimizing across the levels of fraud and associ-

ated detection probabilities that are possible given the budget constraint. Theorem 4.1.1

and Corollary 4.1.2 show which regulatory outcomes are unattainable. Theorem 4.1.3 then

shows how we can construct regulations that come arbitrarily close to those regulatory

outcomes that are attainable. Finally, we show how a utility maximizing regulator would

optimize across these attainable regulatory outcomes.

We first provide a lower bound on the cost of a regulation that induces a given level of

fraud at a given detection likelihood:

Theorem 4.1.1 Fix a level of fraud x? ∈ [0,∞) and a detection rate d ∈ [0, 1]. Then any

regulation ψ that induces x? amount of fraud with a detection rate at least as high as d

must have a cost satisfying the following lower bound:

c(ψ) ≥
∫ ∞
0

g
(
y,
(uS(y)− uS(x?) +

(
uS(x?)− uF (x?)

)
× d

uS(y)− uF (y)

)+)
dy

where g is as in the cost function.

Thus, such a fraud level and detection rate pair (x?, d) is not attainable with a budget

constraint below this lower bound.

Proof

Let U? equal the fraudster’s maximum expected utility under the regulation ψ. From

(3.1), we write this as

U? = uS(x?)×
(
1− ψ(x?)

)
+ uF (x?)× ψ(x?) = uS(x?)× (1− d) + uF (x?)× d.

28



Now we know x? is the solution to the fraudster’s utility maximization problem (3.2).

So we must have that

U? ≥ uS(y)×
(
1− ψ(y)

)
+ uF (y)× ψ(y) ∀y ≥ 0.

If this inequality failed to hold for some y ≥ 0, the fraudster would choose to defraud

y instead of x?, which would contradict our assumptions.

We rewrite the inequality in order to better isolate ψ(y):

U? ≥ uS(y) +
(
uF (y)− uS(y)

)
× ψ(y) ∀y ≥ 0.

From our assumptions about fraudster utility, we know that uF (y)− uS(y) ≤ 0. Thus,

our inequality can again be rewritten, this time to

ψ(y) ≥ uS(y)− U?

uS(y)− uF (y)
.

But this is sufficient to derive the lower bound on the cost. Using the definition of

the cost function c and our assumption that g is monotonic nondecreasing in its second

argument, we get that

c(ψ) =

∫ ∞
0

g(y, ψ(y))dy ≥
∫ ∞
0

g
(
y,

uS(y)− U?

uS(y)− uF (y)

)
dy.

Expanding U? completes the proof.

The preceding theorem shows that some regulatory outcomes are unattainable without

a sufficiently generous budget. Corollary 4.1.2 provides what is effectively the dual of this

result: the unattainable regulatory outcomes for a given budget.

Corollary 4.1.2 For every budget constraint κ ≥ c(ψ), there exists a Uκ such that any

regulation ψ satisfying the budget constraint must also satisfy

1. x(ψ) ≥ u−1S (Uκ); and

2. ψ(x(ψ)) ≤ uS(x(ψ))−Uκ
uS(x(ψ))−uF (x(ψ))

.
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We write this Uκ as Uκ = inf

{
U such that κ ≥

∫∞
0
g
(
y,
(

uS(y)−U
uS(y)−uF (y)

)+)
dy

}
. Note

that Uκ is equivalent to the lowest expected utility the regulator can force the fraudster to

accept, where the fraudster’s expected utility is given by (3.1).

Proof

Consider a regulation ψ such that κ ≥ c(ψ). By Theorem 4.1.1 we have that

κ ≥ c(ψ) ≥
∫ ∞
0

g
(
y,
(uS(y)− uS(x(ψ)) +

(
uS(x(ψ))− uF (x(ψ))

)
× ψ(x(ψ))

uS(y)− uF (y)

)+)
dy.

From this inequality and the infimum definition of Uκ it follows that

Uκ ≤ uS(x(ψ))−
(
uS(x(ψ))− uF (x(ψ))

)
× ψ(x(ψ)).

This inequality must hold for all y ≥ 0, as it failing to hold would contradict our

assertion that Uκ is an infimum.

Statement 2 can be shown simply by reorganizing this inequality, while noting that

uS(x(ψ))− uF (x(ψ) > 0.

Statement 1 follows from the fact that ψ ≥ 0. Because of this, we must have Uκ ≤
uS(x(ψ)) and thus x ≥ u−1S (Uκ) which is precisely our first statement. This inverse is well

defined because of our assumption that uS is an increasing function.

This corollary shows what regulatory outcomes are unattainable. But what about

the fraud level detection rate pairs that Corollary 4.1.2 does not show are unattainable?

Theorem 4.1.3 shows that these other outcomes are effectively attainable, by explicitly

constructing a sequence of regulations that comes arbitrarily close to the limits imposed

by Corollary 4.1.2.

Theorem 4.1.3 Consider the following sequence of regulations

φx
?,d
n (y) =

(uS(y)− uS(x?) +
(
uS(x?)− uF (x?)

)
× d− 1

n
I[y = x?]

uS(y)− uF (y)

)+
for n = 1, 2, 3, . . . where I is the indicator function.

This sequence of regulations has the following three properties:
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1. Each regulation meets the cost lower bound in Theorem 4.1.1 for the given d and x?;

2. We have x(φx
?,d
n ) = x? for all n; and

3. As n→∞ we get φx
?,d
n (x?)→ d.

It is clear from Theorem 4.1.1 that this sequence is in a sense optimal. If a lower cost

regulation induces x? fraud, there must be some n such that the φx
?,d
n induces the same

level of fraud while providing a higher detection rate.

Proof We prove our assertions in order.

1. For our first statement, consider the cost of the regulation φx
?,d
n . We have that

c(φx
?,d
n ) =

∫ ∞
0

g
(
y, φx

?,d
n (y)

)
=

∫ ∞
0

g
(
y,
(uS(y)− uS(x?) +

(
uS(x?)− uF (x?)

)
× d− 1

n
I[y = x?]

uS(y)− uF (y)

)+)
dy

=

∫ ∞
0

g
(
y,
(uS(y)− uS(x?) +

(
uS(x?)− uF (x?)

)
× d

uS(y)− uF (y)

)+)
dy,

with the third equality holding because the set [y = x?] has zero measure. This shows

that the cost of φx
?,d
n is precisely the cost lower bound.

2. Next, consider the level of fraud induced by φx
?,d
n . In order to show the level is equal

to x?, from (3.2) we must show that

uS(x?)×
(
1−φx?,dn (x?)

)
+uF (x?)×φx?,dn (x?) ≥ uS(y)×

(
1−φx?,dn (y)

)
+uF (y)×φx?,dn (y)

with the inequality holding strictly for y < x?.

We rewrite this inequality, expanding φx
?,d
n and reorganizing:(

uS(y)−uS(x?)+
(
uS(x?)−uF (x?)

)
×d
)+
≥ uS(y)−uS(x?)+

((
uS(x?)−uF (x?)

)
×d− 1

n

)+
.

We then show our result using two cases:

• If y > x?, we have uS(y) > uS(x?), and the inequality simplifies to(
uS(x?)− uF (x?)

)
× d ≥

((
uS(x?)− uF (x?)

)
× d− 1

n

)+
which clearly holds as uS(x?) ≥ uF (x?).
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• If y < x?, we have uS(y) < uS(x?) and the inequality holds strictly:

For uS(y)− uS(x?) +
(
uS(x?)− uF (x?)

)
× d < 0, we have

0 > uS(y)− uS(x?) +
(
uS(x?)− uF (x?)

)
× d− 1

n

≥ uS(y)− uS(x?) +
((
uS(x?)− uF (x?)

)
× d− 1

n

)+
.

For uS(y)− uS(x?) +
(
uS(x?)− uF (x?)

)
× d ≥ 0, we have

uS(y)−uS(x?)+
(
uS(x?)−uF (x?)

)
×d > uS(y)−uS(x?)+

((
uS(x?)−uF (x?)

)
×d− 1

n

)+
⇔
(
uS(x?)− uF (x?)

)
× d >

((
uS(x?)− uF (x?)

)
× d− 1

n

)+
which holds as uS(y) − uS(x?) +

(
uS(x?) − uF (x?)

)
× d ≥ 0 implies

(
uS(x?) −

uF (x?)
)
× d ≥ 0.

3. Finally, consider the behaviour of φx
?,d
n (x?) as n→∞. We have

φx
?,d
n (x?) =

(
d− 1

n
(
uS(x?)− uF (x?)

))+
and so clearly as n→∞ we have φx

?,d
n (x?)→ d.

We will use these results to construct optimal regulations. However, at this stage it is

useful to summarize what we have shown. For a regulator with budget constraint κ, the

following hold:

• The regulator cannot induce the fraudster to commit frauds with values below u−1S (Uκ).

This means that for every budget, there is a lower limit on the amount of fraud the

regulator can induce.

• Detection rates above uS(x
?)−Uκ

uS(x?)−uF (x?)
are unattainable. Due to budget constraints, it is

impossible to design regulations that catch all fraud.
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• Detection rates arbitrarily close to uS(x
?)−Uκ

uS(x?)−uF (x?)
are attainable using a sequence of

regulations φx,dn . This gives an explicit construction for any fraud level, detection

rate pair that is not unattainable.

From formula (3.3), it is clear that the regulator’s expected utility only depends on

the regulation through the level of fraud induced and the associated detection rate. We

will refer to fraud level, detection rate pairs as regulatory outcomes. Consider the space of

all such regulatory outcomes, (x?, d) ∈ [0,∞) × [0, 1]. Corollary 4.1.2 showed that many

of these outcomes are unattainable, while Theorem 4.1.3 allows us to get arbitrarily close

to those outcomes that are attainable. We use these two results to partition the space of

regulatory outcomes into those that are attainable and those that are not.

Figure 4.1 illustrates this partition. Attainable regulatory outcomes are fraud level,

detection rate pairs (x?, d) such that x? > u−1S (Uκ) and d ≤ uS(x
?)−Uκ

uS(x?)−uF (x?)
. The regulator

can construct regulations that are arbitrarily close to any of these outcomes, whereas other

outcomes are unattainable.

For the purposes of finding an optimal regulation, only the curve of highest detection

rates matters. We can see this by looking at the regulators expected utility function (3.3):

vS
(
x(ψ)

)
−
(
vS
(
x(ψ)

)
− vF

(
x(ψ)

))
× ψ

(
x(ψ)

)
.

As vS > vF , this expected utility is increasing in the detection rate. Thus, we need only

consider those regulatory outcomes that maximize detection rate for the level of fraud they

induce. This corresponds to the solid curve on Figure 4.1. This is intuitive: all else equal,

the regulator would prefer detecting more fraud to detecting less fraud. The regulator

may not be able to achieve all of the regulatory outcomes on that curve. However, as the

regulator can induce a solution arbitrarily close to any of these points, this is not a concern

(due to our assumption of continuous regulator utility functions).

So we will restrict our consideration to only those points on the border of attainable

and unattainable. We can construct a series of regulations that deliver expected utility

arbitrarily close to what these outcomes provide. The border between these two regions

is the set of nonnegative frauds x such that x ≥ u−1S (Uκ) and the levels of detection

d = uS(x)−Uκ
uS(x)−uF (x)

.
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Figure 4.1: Attainable Regulatory Outcomes
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Figure 4.1: Under our model, the regulator’s expected utility depends

only on the size of the fraud that occurs and the probability that the

fraudster is apprehended. The above chart shows how we can divide

the set of all possible (fraud level, detection rate) pairs into those that

are attainable given the regulator’s budget constraint, and those that

are not. Attainable regulatory outcomes are those points (x, d) where

the regulator can set a regulation ψ that induces x level of fraud with a

detection rate arbitrarily close to d. Unattainable outcomes are where

this is not possible. The depicted example is for a fraudster who is

risk neutral over expected gains and perceives a constant penalty of

apprehension, thus has uS(x) = x and uF (x) = −1. We construct the

regions using a regulator with enough budget to force the fraudster to

accept 2 as an expected utility.
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By considering only these points, we can rewrite the regulator’s utility maximization

problem as a simple search for the ‘optimal’ level of fraud. We recast equation (3.4) as

max
x≥u−1

S (Uκ) and x≥0
vS(x)−

(
vS(x)− vF (x)

)
× uS(x)− Uκ
uS(x)− uF (x)

, (4.1)

where Uκ is as formulated in Corollary 4.1.2.

This problem can often be easily solved. After this solution is known, an optimal or

nearly optimal regulation can be constructed as described as above. Namely, the sequence

of regulations

φx
?,d
n (y) =

(uS(y)− uS(x?) +
(
uS(x?)− uF (x?)

)
× d− 1

n
I[y = x?]

uS(y)− uF (y)

)+
for n = 1, 2, 3, . . . will approach the regulator’s optimal utility. In the following section we

will use this result to examine how skewed regulator incentives can result in suboptimal

regulations.

4.2 A Constant Relative Risk Aversion Fraudster

This section contrasts effective and ineffective regulatory incentives by applying the re-

sults derived in Section 4.1. We consider a fraudster with constant relative risk aversion

preferences.

We assume that the fraudster exhibits such risk aversion over both successful and failed

frauds, so that uS(x) = xα ≥ 0 and uF (x) = −p− q × xβ < 0 for some α, β, p, q > 0. This

structure provides a good level of generality while remaining fairly simple in form.

The derivations of the previous section allow us to consider the regulator’s maximization

problem directly. From (4.1), we write this as

max
x≥ α√Uκ

vS(x)−
(
vS(x)− vF (x)

)
× xα − Uκ
xα + q × xβ + p

.

What types of regulator utility function should we use? We first consider socially

optimal regulations. In Section 3.5 we argue that a socially optimal regulator would have
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utility functions of the form vS(x) = −x and vF (x) = −c× x for 0 < c < 1. Using this, we

can rewrite our optimization problem as

min
x≥ α√Uκ

xα+1 + x× p+(1−c)×Uκ
c

xα + q × xβ + p
.

To shed some light on what an optimal solution might be, we consider the first derivative

of the minimand:1

∂

∂x

xα+1 + x× p+(1−c)×Uκ
c

xα + q × xβ + p

=
x2α + q(α + 1− β)× xα+β + (w(1− α) + p(α + 1))× xα + w(1− β)q × xβ + wp

(xα + q × xβ + p)2

If α, β ≤ 1 this derivative is always positive and so the social cost of fraud is minimized

for x = α
√
Uκ. But those parameter restrictions are very reasonable. A fraudster who is

not risk seeking over successful fraud payoffs would have α ≤ 1, while β ≤ 1 means that

the fraudster is risk seeking over punishment. As we noted in Section 3.2, this is what we

would expect for the fraudster’s utility function, as empirical work suggests people tend to

be risk averse over gains and risk seeking over losses.[18][12]

This analysis showed that a socially optimal regulator will set regulations that induce

low levels of fraud. We derived a socially optimal realized fraud of α
√
Uκ, coupled with very

low detection rates.

What type of regulations would be set by a regulator incentivized to maximize the

number of successful prosecutions? We characterize this type of regulator using vF (x) = 1

and vS(x) = 0 — a regulator who tries to maximize the number of successfully apprehended

fraudsters. This regulator would solve

max
x≥ α√Uκ

xα − Uκ
xα + q × xβ + p

.

We again look at the first partial derivative:

∂

∂x

xα − Uκ
xα + q × xβ + p

=
(α− β + Uκβ)q × xβ + (Uκ + p)α

(xα + q × xβ + p)2
× xα−1.

1For simplicity, we write this using w = p+(1−c)×Uκ

c . Note that w will be reused later in this thesis.
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This time we see that it is always positive if β < α
1−Uκ . If this held, then the prosecutions-

driven regulator would seek to maximize convictions at the expense of failing to deter large

frauds. This is the opposite of our socially optimal regulation.

It is very plausible that β would satisfy this inequality. The inequality holds unless the

fraudster is very risk averse over successful frauds and the regulator has a large budget (and

thus a large Uκ). Excluding the case of well funded regulators and extremely risk averse

criminals, we see that regulators are likely to induce an extremely high level of fraud.

The same conclusion holds for a regulator who cares only about the dollar value of

frauds captured; or in fact, any regulator who cares only about an increasing function of

the number of frauds captured and the dollar value of frauds captured.

Suppose vS(x) = g(x) for some increasing and positive g, and that vF (x) = 0 again

holds. A regulator characterized by these functions would solve

max
x≥u−1

S (Uκ)
g(x)× xα − Uκ

xα + q × xβ + p
.

But the first derivative of this maximand is just

∂

∂x
g(x)× xα − Uκ

xα + q × xβ + p

= g′(x)× xα − Uκ
xα + q × xβ + p

+ g(x)× ∂

∂x

[ xα − Uκ
xα + q × xβ + p

]
.

But this is again always positive for α > β. We know the first product is non-negative

because g is increasing and the detection rate cannot be negative. The second product

must be positive because g is positive and ∂
∂x

[
1 − xα−Uκ

xα+q×xβ+p

]
is also positive, as we have

already shown.

Thus, the same results apply to regulators whose incentives are based only on the

dollar value and number of frauds detected. Under our model, these types of regulators

set ineffective regulations.

4.3 General Results on Misaligned Incentives

We can generalize the results from the previous section. The following two lemmas make

general observations about the regulations set by regulators who care about either the
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number of frauds detected or about the dollar value of frauds detected. We show that under

reasonable assumptions about fraudster utility, these types of regulators set regulations

that lead to very large frauds.

Lemma 4.3.1 Any regulator who only considers the number of successful prosecutions will

set regulations that result in very high levels of frauds if any of the following statements

about the fraudster’s utility functions hold:

• uF is bounded and uS is unbounded; or

• uF < 0, uS > 0 and
u′S(x)

uS(x)
>

u′F (x)

uF (x)
.

Proof

From (4.1), we have that the regulator works to solve

max
x≥u−1

S (Uκ) and x≥0
vS(x)−

(
vS(x)− vF (x)

)
× uS(x)− Uκ
uS(x)− uF (x)

.

A regulator focused on maximizing the number of successful prosecutions can be char-

acterized by vS(x) = 0 and vF (x) = 1. Thus, the maximization problem becomes

max
x≥u−1

S (Uκ) and x≥0

uS(x)− Uκ
uS(x)− uF (x)

.

If we have uF is bounded and uS is unbounded, then as x → ∞ we get that the

maximand approaches 1, which is the maximum value.

Looking at the first order condition,

∂

∂x

uS(x)− Uκ
uS(x)− uF (x)

=
u′S(x)

uS(x)− uF (x)
− (u′S(x)− u′F (x))

uS(x)− Uκ
(uS(x)− uF (x))2

=
−u′S(x)uF (x) + u′F (x)uS(x) + (u′S(x)− u′F (x))Uκ)

(uS(x)− uF (x))2

= −
u′S(x)

uS(x)
− u′F (x)

uF (x)

uF (x)uS(x)(uS(x)− uF (x))2
+

(u′S(x)− u′F (x))Uκ
(uS(x)− uF (x))2
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If our second condition holds, this partial derivative is always positive and thus the regu-

lator’s utility is maximized for the highest possible level of fraud.

This lemma shows that a regulator who cares only about the number of frauds caught

will set extremely poor regulations in several scenarios; namely, in the cases where punish-

ments grow more quickly than rewards or where rewards are unbounded and punishments

are not. Both these scenarios are very reasonable. Punishments are naturally bounded —

under the American justice system the worst punishment that can be awarded for white

collar crime is life imprisonment. On the other hand, rewards are effectively unbounded

(although this may not translate into an unbounded utility function).

Clearly, the statements of Lemma 4.3.1 also hold for a regulator who seeks to maximize

the dollar value of fraud discovered: as shown in Section 4.2, this type of regulator has

even greater incentives towards higher amounts of fraud. However, we can also prove strong

results for such a regulator. We provide these results in the following lemma.

Lemma 4.3.2 A regulator who only considers the dollar value of successful prosecutions

will set regulations that result in very high levels of fraud if the fraudster is such that any

of the following hold:

• uF is bounded; or

• u′′F ≤ 0.

Proof

From (4.1), we have that the regulator works to solve

max
x≥u−1

S (Uκ) and x≥0
vS(x)−

(
vS(x)− vF (x)

)
× uS(x)− Uκ
uS(x)− uF (x)

.

A regulator that only considers the dollar value of successful cases has vS(x) = 0 and

vF (x) = x, and thus the maximization problem becomes

max
x≥u−1

S (Uκ) and x≥0
x

uS(x)− Uκ
uS(x)− uF (x)

.
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First suppose uF ≥ −a for some a ∈ R. Then we have

x
uS(x)− Uκ

uS(x)− uF (x)
≥ x

(
1− Uκ − a

uS(x)− a

)
≥ b× x

for some constant b > 0. But this means by increasing x, we can increase the regulator’s

utility without bound. So the regulator will induce very high levels of fraud.

Looking at the first order condition,

∂

∂x
x

uS(x)− Uκ
uS(x)− uF (x)

=
uS(x)− Uκ + xu′S(x)

uS(x)− uF (x)
− x(u′S(x)− u′F (x))

uS(x)− Uκ
(uS(x)− uF (x))2

=
(uS(x)− uF (x)− xu′S(x) + xu′F (x))(uS(x)− Uκ) + (uS(x)− uF (x))xu′S(x)

(uS(x)− uF (x))2

> (uS(x)− uF (x) + xu′F (x))
(uS(x)− Uκ)

(uS(x)− uF (x))2

If u′′F ≤ 0, this is never negative and thus the derivative is always positive. Again, it is

reasonable to assume that this second derivative will be negative and that fraudsters will

be risk seeking over failed frauds. If this holds, the regulator will maximize its utility by

inducing very large amounts of fraud: a very undesirable outcome.

These two lemmas suggest that aligning regulatory incentives to the dollar value or

amount of fraud captured works spectacularly badly for some types of fraudster utility

function. Such incentives place too little emphasis on minimizing damage, which means

regulators focus on catching fraudsters and not on inducing fraudsters to commit less fraud.
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Chapter 5

Structured Regulations

The previous chapter showed that with perfect information, regulators who are overly

focused on catching fraudsters will design ineffective regulations. This chapter imposes

additional restrictions on the structure of regulations. Doing so will allow us to apply our

model to the case where the precise fraudster’s utility function is not known.

In this chapter, we will assume that regulators can only set regulations that follow

certain parameterized forms. This additional structure gets around two key weaknesses of

the analysis in Chapter 4:

• The assumption that the regulator possesses precise knowledge of the fraudster utility

function; and

• The assumption that regulations can take any form.

Again, we compare the regulations set by a regulator with skewed incentives to the

regulations that are socially optimal; again we find that regulations set by a regulator who

focuses on maximizing the number of successful prosecutions or the dollar amount of frauds

apprehended are far from socially optimal. However, this chapter derives this result using

constraints of scope and additional generality.
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5.1 Uncertain Levels of Risk Aversion

This section considers how regulators might set regulations when faced with fraudsters

with unknown constant relative risk aversion. We will again show that regulators who seek

to maximize frauds detected have perverse incentives and set regulations with undesirable

consequences.

Our results are similar to the ones we derive in Section 4.2. However, there are three

key differences in our method:

• We assume an unknown level of fraudster utility;

• We do not consider penalty functions; and

• We constrain the set of possible regulations.

This exclusion of penalty functions is questionable, but needed to ensure tractable results.

It is also applicable to in-progress Ponzi schemes, as in effect, where an increased chance

of failure due to liquidity concerns is the penalty for failing to defraud a sufficient amount.

As we have stated, we consider a fraudster with power utility over successful frauds,

and no penalty function: uS(x) = xα for some α > 0 and uF (x) = 0. We will assume that

α is unknown to the regulator, but known to the fraudster.

We further assume that the regulator faces a budget constraint of κ ≥
∫∞
0
λe−λyψ(y)dy,

but also faces a constraint of scope. We assume that the regulator sets regulations of the

form

ψη0,η1(y) = 1− η0 × e−η1×y (5.1)

for 0 < η0 ≤ 1 and 0 < η1.

This type of constraint gives the regulator power over the level of scrutiny to apply to

large frauds versus small frauds. By increasing η1, the regulator can focus more on larger

frauds, by decreasing η0, the regulator can shift the focus to smaller frauds.

Because the regulations are of a known form, we can write the fraudster’s utility maxi-

mization problem in terms of the regulations. From (3.2) and (5.1), the fraudster’s problem

is

max
x≥0

xα × η0 × e−η1×x.
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Because there is no penalty of failure, it always makes sense for the fraudster to commit

a fraud. So we can solve for the optimal value of this fraud using the first order condition:

0 =
∂

∂x
xα × η0 × e−η1×x = (α− η1x)× xα−1η0e−η1×x.

Thus we get that x = α
η1

is the fraudster’s optimal level of fraud.1

Consider a regulator trying to set an optimal regulation, while being uncertain about

the fraudster’s precise utility function. This regulator will solve equation (3.6),

max
ψ∈A

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
.

We can substitute the parameterization for the regulation and our solutions for the

level of fraud in the above expression:

max
ψ∈A

E
[
vS
( α
η1

)
× η0 × e−α + vF

( α
η1

)
× (1− η0 × e−α)

]
.

As before, we characterize a socially optimal regulator by vS(x) = −x and vF (x) =

−c× x. This type of regulation would solve

max
ψ∈A

E
[
(c− 1)

α

η1
× η0 × e−α − c

( α
η1

)]
⇔ min

ψ∈A

1

η1
×
(
η0 +

cE[α]

(1− c)E[αe−α]

)

To simplify notation, we write w = cE[α]
(1−c)E[αe−α]

, noting that this will always be positive.

We will reassign w for later problems. Using this notation, the problem becomes

min
ψ∈A

η0 + w

η1

To solve this problem, we need to consider the budget constraint, κ ≥
∫∞
0
λe−λyψ(y)dy.

We can easily simplify this by solving the integral:

κ ≥
∫ ∞
0

λe−λy(1− η0e−η1y)dy

⇔ κ ≥ 1− η0λ

η1 + λ
.

1 It is clear that the first derivative is positive only for x < α
η1

.
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As the minimand is a decreasing function of η1, we can take this constraint as binding and

write η0 as a function of η1.

κ ≥ 1− η0λ

η1 + λ
⇒ η0 =

(1− κ)(η1 + λ)

λ
for η1 ≤

λ

(1− κ)
− λ

So we can rewrite the problem of minimizing social costs as

min
η1≤ λ

(1−κ)−λ

η1 + λ(1 + w/(1− κ))

η1λ
.

This is minimized for η1 = λ
(1−κ) − λ and η0 = 1.

But what types of regulations might a regulator with a flawed incentive structure

choose? Consider a regulator whose goal is to maximize some increasing function of the

following two metrics:

• The dollar value of fraud captured; and

• The number of fraudsters apprehended.

This type of structure appears to be very close to the internal incentive structures used

by a prominent regulator. We express the regulator’s utility functions as vS(x) = 0 and

vF (x) = g(x) for a nonnegative and increasing g.

Consider the regulator’s maximization (3.6):

max
ψ∈A

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
.

⇔ max
ψ∈A

E
[
g
(
x(ψ)

)
× ψ

(
x(ψ)

)]
⇔ max

ψ∈A
E
[
g
( α
η1

)
×
(
1− η0 × e−α

)]
.

For any fixed α, the maximand is a decreasing function of both η0 and η1. Thus, the

expectation must also be a decreasing function of these two parameters and our poorly

incentivized regulator would minimize both η1 and η0. A quick check shows that such a

regulation leads to large numbers of extremely large frauds.
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5.2 Unknown Penalty Functions

This section applies the methods shown in the previous section to the case of unknown

penalty functions. This section builds on Examples 3.2.1 and 3.4.2. We make assumptions

similar to these examples:

• A fraudster who is risk neutral over successful frauds, uS(x) = x, and faces a constant

penalty of failure, uF (x) = −p < 0;

• A regulator who has budget constraint of κ ≥
∫∞
0
λe−λyψ(y)dy; and

• A constraint of scope such that only regulations of the form

ψη0,η1(y) = 1− η0 × e−η1×y (5.2)

for 0 ≤ η0 ≤ 1 and 0 < η1 are attainable.

We generalize beyond these examples by assuming that p is a random variable and providing

more analysis.

From Examples 3.2.1, we know that the fraudster’s utility maximization problem is

max
x≥0

x× η0 × e−η1×x − p× (1− η0 × e−η1×x),

and that the solution to this problem is

x(ψ) =

 1
η1
− p for η0

η1
eη1p−1 > p

0 otherwise.

In Example 3.4.2, we simplified the budget constraint to κ ≥ 1− η0λ
η1+λ

and determined

that for any known p a socially optimal regulator would set regulations that maximize η1,

and thus set η1 = λκ
1−κ and η0 = 1 (provided the regulator’s budget is sufficiently small). If

this result holds for any p, then this result must also hold for the expectation maximization

problem (3.6), provided that the regulator’s budget κ is sufficiently small that the regulator

cannot induce zero fraud with positive probability.

Consider a regulator incentivized to maximize the value or number of frauds successfully

prosecuted. We will show that such a regulator will set regulations that are far from the

socially optimal form.
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Such a regulator would work to solve (3.6),

max
ψ∈A

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
.

But what types of regulations might a regulator choose? We consider the same regulator

as in the previous section, whose goal is the standard maximization problem with vS(x) = 0,

a zero loss from a undiscovered fraud, and vF (x) = g(x), a gain from each apprehended

fraud that is positive and nondecreasing in fraud size. We have

max
ψ∈A

E
[
vS
(
x(ψ)

)
×
(
1− ψ(x(ψ)

)
+ vF

(
x(ψ)

)
× ψ

(
x(ψ)

)]
⇔ max

ψ∈A
E
[
g
(
x(ψ)

)
× ψ

(
x(ψ)

)]
⇔ max

ψ∈A
E
[
g
( 1

η1
− p
)
×
(
1− η0epη1−1

)]
This problem is similar to the previous section, as we get that lower values of both η0

and η1 are preferred by the regulator for any distribution of p. Thus the optimal solution

is η0 = 1 − κ and η1 = 0. This occurs when η1 is minimized. But as we argued in the

previous section, this leads to extremely large frauds and is far from optimal. Again, we

have some generality in that this result holds for any bounded distribution of p, given a

small enough κ.
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Chapter 6

Conclusion

Our analysis suggests that financial regulations should be designed not just to catch as

many criminals as possible, but also to ensure that successful small-time criminals do not

have an incentive to become big-time criminals. These regulatory structures have a “harm

reduction” effect: by making larger frauds more risky and thus less desirable, they deter

rational criminals from committing large frauds.

The performance measures used by the SEC appear to have been flawed and created

incentives that contributed to the recent financial crisis. The incoming SEC Enforcement

Director Robert Khuzami stated that the SEC should move away from these metrics and

focus more on deterrence effect and significance. Our model agrees with this: such regula-

tions might better minimize the damage financial fraud causes.

Note that our model has several major limitations: we focus primarily on the single

period setting, whereas most frauds are repeated games; we greatly simplify the process

through which regulatory actions are aggregated and transformed into apprehension like-

lihoods; we assume that white-collar criminals are rational and have fine control over the

amount of fraud to commit; and we assume both fraudsters and regulators have unbiased

information. However, even with these limitations and simplifying assumptions, we feel

the model offers valuable insights. A further weakness of our model is our incomplete

treatment of Type I errors - innocent people erroneously prosecuted. These errors have a

high social cost, but in the interests of simplicity our model doesn’t fully address this.

There are several interesting avenues for future research. It should be possible to derive
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closed form solutions for optimal regulations with unspecified fraudster utility. This would

have interesting implications for regulatory design.

Empirical validation of the model would be interesting but it would be very challenging

to find an appropriate dataset. Because each country’s financial regulators are centralized,

cross-country data is the obvious choice; however, it would be plagued by cultural factors.

We hope that our research, along with better monitoring and enforcement, will help

regulators become more effective at preventing financial fraud and the social costs that

result.
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